Driver for JDBC Implementation

Guide
ldentity Manager 4.0.2

January 2014

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically
disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any
person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right
to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of
such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade
laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or
classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S.
export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use
deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. For more information on exporting
Novell software, see the Novell International Trade Services Web page (http://www.novell.com/info/exports/). Novell assumes
no responsibility for your failure to obtain any necessary export approvals.

Copyright © 2008-2012 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on
a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.

1800 South Novell Place
Provo, UT 84606

U.S.A.

www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see Novell
Documentation (http://www.novell.com/documentation/).

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/info/exports/
http://www.novell.com/documentation/
http://www.novell.com/documentation/
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide 9
1 Introducing the Identity Manager Driver for JDBC 11
O R I 1= g @0 o =T) 11
111 JDBC . it 11

1.1.2 Identity Manager IDBC driVer e 12

1.1.3 Third-Party IDBC DIiVEI e e 12

114 Identity Vault 12

1.1.5 Directory SChema 13

1.1.6 Application Schema. 13

117 Database Schema. 13

1.1.8 Synchronization Schema. 13

119 Logical Database Class. i e 13
1120 XDS . ot 13

1.2 Database CONCEPIS . . . oottt e e e 13
1.2.1 Structured QUEry LanguUagettt 14

122 Data Manipulation Language.ot 14

1.2.3 Data Definition Languageot 14

124 VIO . oot 14

1.25 Identity Columns/SeqUENCES. o 15

1.2.6 TrANSACHON . . . ot 15

1.2.7 Stored Procedures or FUNCHONS i 16

072 O I 1o o = 16

1.29 Instead-Of-Trigger ot 17

1.3 DIIVEr FRALUIESottt e e e e e e e 18
131 Local and Remote Platformso 18

1.3.2 Password Synchronization e 18

133 Data Synchronization Models 18

1.3.4 Triggerless vs. Triggered Publication 21

2 Installing the Driver Files 23
2.1 Installingthe Driver Files 23
2.2 Installing JDBC Driver Jar Files 23
3 Installing and Configuring Database Objects 25
3.1 SOQL Script CoNVENtONS. . . oottt 25
3.2 Installing IBM DB2 Universal Database (UDB)titiii e 27
3.3 Installing Informix Dynamic Server (IDS)ot 27
3.4 Installing Microsoft SQL Server 28
3.5 Installing MyS QL 28
3.6 Installing Oracle 29
3.7 Installing PostgreSQL 8o 29
3.8 Installing PostgreSQL O 30
3.9 Installing Sybase Adaptive Server Enterprise (ASE) 30
3.10 Testing the Database Object Installation i 31

Contents 3

4

4 Creating a New Driver Object
4.1 Creating the Driver Object in DeSIgNer i e
41.1 Importing the Current Driver Packagesot
41.2 Installing the Driver Packagesot
413 Configuring the Driver Object e
41.4 Deploying the Driver Object. e
415 Starting the Driver Object e e
4.2 Activating the DIriVer.
4.3 JDBC DrVEr SEtiNGS . . . vttt
5 Configuring the JDBC Driver
5.1 Smart Configurationt
5.1.1 Specifying Custom Descriptor Files.
5.1.2 Reserved Filenames for Descriptor Files.
513 Import Descriptor Files.
514 Descriptor File LOCAtIONSt
515 PrecedencCe
5.1.6 Custom Descriptor Best PractiCes.t
5.1.7 Descriptor File DTDS . . .ottt e e e
5.2 Configuration Parameterst
5.2.1 Viewing Driver Parametersot e
5.2.2 Deprecated Parameters. e e
5.2.3 Authentication Parameters
5.3 DriVer Parameterso
53.1 Uncategorized Parameterso
5.3.2 Database Scoping Parameters e
5.3.3 Connectivity Parameters
5.3.4 Compatibility Parameters.
5.4 SubsCription Parameters e
54.1 Uncategorized Parametersttt e
5.4.2 Primary Key Parametersttt
5.5 Publication Parameters
551 Uncategorized Parameterst
5.5.2 Triggered Publication Parameters
5.5.3 Triggerless Publication Parameters.
55.4 Polling Parameters e
5.6 TraCe LeVelS. . ..o
5.7 Configuring Third-Party IDBC DIIVEIS oottt e e e e e
5.8 Configuring jTDS Support for the IDBC Driver e
6 Upgrading an Existing Driver
6.1 Supported Upgrade Paths e
6.2 What's New in Version 4.0.2 e
6.3 Upgrade Procedure
7 Managing the Driver
8 Schema Mapping
8.1 High-Level View e
8.2 Logical Database Classest
8.3 Indirect SYnChronization.
8.3.1 Mapping eDirectory Classes to Logical Database Classes
8.3.2 Parent Tables

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

33

33
33
34
38
38
39
39
40

41

41
42
42
42
42
43
43
43
43
44
44
44
45
47
51
55
57
67
68
70
75
76
78
80
81
84
85
86

87

87
87
87

89

8.3.3 Parent Table Columns. 94

8.3.4 Child Tables.o 95

8.3.5 Referential Attributes e 96

8.3.6 Single-Value Referential Attributes 96

8.3.7 Multivalue Referential Attributes 97

8.4 DireCt SYnChronizationt 98
8.4.1 View Column Meta-Identifiers 99

8.4.2 Primary Key COIUMNS 101

8.4.3 Schema Mapping.o ot 101

8.5 Synchronizing Primary Key ColUMNS. e e 101
8.6 Synchronizing Multiple Classes 102
8.7 Mapping Multivalue Attributes to Single-Value Database Fields 102
9 Mapping XDS Events to SQL Statements 103
9.1 Mapping XDS Events for Indirect Synchronization 103
9.2 Mapping XDS Events for Direct Synchronization. i 104
10 The Event Log Table 105
10.1 Event Log COlUMNSo e e e e e e 105
10.1.1 record_ido 105
10.1.2 table_KeY . . .o e 106
10.1.3 StAIUS . . . vttt et e e 106
10.1.4 BVeNt YD . . ot e 107
10.0.5 event time . .. e e e 107
10.1.6 PeIPEAlOr . . v vttt e 107
10.1.7 table_name 107
10.1.8 COlUMN_NAMEo e e e 107
10.1.9 old_value e 108
10.1.10 neW Valuet e e 108

10,2 EVENE TYPBS o i ittt e 108
11 Embedded SQL Statements in XDS Events 117
11.1 Common Uses of Embedded SQL. e e 118
11.2 Embedded SQL BaSiCSttt 118
11.2.1 Elements . ..o e 118
11.2.2 NAMESPACES . . . o o vttt et et e e e e e e 118
11.2.3 Embedded SQL EXample 118

11.3 ToKen SUbSHULIONo e e e 119
114 VIrtUAl THOOEIS . « o oottt e e e e e e e e e e e e 121
11.5 Manual vs. Automatic TranSaCONS« ottt e e e e e e e 122
11.6 Transaction Isolation Level 123
11,7 S AEMENt Ty P . . e e 124
11.8 SOQL QUEES . .ot e 125
11.9 Data Definition Language (DDL) Statements.t e 127
11.10 Logical OperationsSottt e e e e e 127
11.11 Implementing Password Set with Embedded SQL i 128
11.12 Implementing Modify Password with Embedded SQL 128
11.13 Implementing Check Object Password 129
11.14 Calling Stored Procedures and FUNCLIONSt 129
11.14.1 Using Embedded SQL to Call Stored Procedures or Functions 130
11.14.2 Using the jdbc:call-procedure Element 131
11.14.3 Using the jdbc:call-function Element 134

11.15 BeSt PracCliCeSttt 138

Contents 5

6

12 Supported Databases 141
12.1 Database Interoperability 141
12.2 Supported Databases 141
12.3 Database CharaCteriStiCs.t e 142

12.3.1 Database Featuresttt e 142
12.3.2 Current Time Stamp Statements 143
12.3.3 Syntaxes for Calling Stored Procedures and Functions 144
12.3.4 Left Outer JOIN OPEratorst e e e 144
12.3.5 Undelimited Identifier Case Sensitivity 145
12.3.6 Supported Transaction Isolation Levels. i 145
12.3.7 Commit KEYWOIdSo e e e e 146
12.3.8 IBM DB2 Universal Database (UDB).t 146
12.3.9 Informix Dynamic Server (IDS)ot 147
12.3.10 Microsoft SQL SerVer e 148
12,311 MYSQ L. .ot 148
12.3.12 OraCle . ..o e 149
12.3.138 POStOreS L . . ottt 150
12.3.14 Sybase Adaptive Server Enterprise (ASE) 151

13 Third-Party JDBC Drivers 153
13.1 Third-Party JDBC Driver Interoperability 153
13.2 Third-Party IDBC DIIVEr TYPES . . . ottt et e e e et e e e e e 153

13.2.1 DIIVEI TYPES .ottt et e e e e 154
13.2.2 Which Type TO USe 7 . . . oo e e e e e e 154
13.3 Supported Third-Party JDBC Drivers (Recommended) 154
13.3.1 Third-Party JDBC Driver Features.t e e e 155
13.3.2 IDBC URL SYNMAXES . .« o v et ottt e e e et e e et e e e e e 155
13.3.3 JIDBCDriver Class Namest e e 156
13.3.4 Supported Third-Party Jar File Placement. i 156
13.3.5 IBM DB2 Universal Database Type 4 JDBC Driver., 156
13.3.6 INformix IDBC DIIVEN. ot 158
13.3.7 JTDS JIDBC DIIVEL . . . ottt et e et e e e e e e e e e 159
13.3.8 MySQL Connector/lJ JIDBC DIIVENo e e 161
13.3.9 Oracle Thin Client IDBC DIiVErttt 162
13.3.10 Oracle OCIJIDBC DIIVES . . . oottt e e e e e 164
13.3.11 PostgreSQL IDBC DIiVEr . . . oottt 165
13.3.12 Sybase Adaptive Server Enterprise JConnect JDBC Driver 166
13.4 Supported Third-Party JDBC Drivers (Not Recommended). 167
13.4.1 Third-Party JDBC Driver Features.t e e e 167
13.4.2 JIDBC URL SYNAXES .« .+« v et ittt et ettt e e e e e e e e 167
13.4.3 JIDBCDriver Class Namest e e 168
13.4.4 IBM DB2 Universal Database JDBC Driver.ttt 168
13.4.5 Microsoft SQL Server 2005 Driver for JDBC o 169
13.4.6 Microsoft SQL Server 2008 IDBC Drivero e 171
13.4.7 Microsoft SQL Server 2008 R2 JDBC Driver. . ..o oo e 172
13.5 Deprecated Third-Party IDBC DIIVEIS oottt e e e e e e 173
13.6 Other Third-Party IDBC DIIVEIS.ottt e e e e e e e e 174
13.6.1 IBM Toolbox for Java/JTOPeNo e e e 174
13.6.2 Minimum Third-Party JDBC Driver Requirements. 174
13.6.3 Considerations When Using Other Third-Party JDBC Drivers. 175
13,7 SECUMY ISSUBS . . . ottt e e e e 175

14 The Association Utility 177
14.1 Independent OPErationSttt 177
14.2 Before YoU Begin.o 178

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

14.3 Using the Association Utility. 178
14.4 Parameters for Searching and Replacing 179
15 Troubleshooting the JDBC Driver 181
15.1 The Dirxml-Accounts Attribute Shows Incorrect Value When a User is Enabled or Disabled in
the Identity Vault on the DB2 and Oracle Database Drivers i, 181
15.2 Password Changes for Users Are Not Synchronized from the Identity Vault for the Oracle
Database DIIVETot 181

15.3 Adding Users on the Subscriber Channel for the Sybase Driver in Direct Mode Causes Error. . .. 182
15.4 Recognizing Publication Events. 182
15.5 EXecuting TSt SCHPtSottt e 182
15.6 Troubleshooting Driver PrOCESSES ottt e e e e 182

A Uninstalling the Driver 183
A.1 Deleting Identity Manager Driver Objects e 183
A.2 Running the Product Uninstaller e e 183
A.3 Executing Database Uninstallation Scripts i 183
A.3.1 IBM DB2 Universal Database (UDB) Uninstallation 184

A.3.2 Informix Dynamic Server (IDS) Uninstallation 184

A.3.3 Microsoft SQL Server Uninstallation i, 184

A.3.4 MySQLUNINStallation e 185

A.3.5 OracleUninstallation 185

A.3.6 PostgreSQL Uninstallation. 185

A.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation 186

B Known Issues and Limitations 187
B.1 KNOWN ISSUEBS. . . . e 187
B.2 LIMItations 187

C Best Practices 189
C.1 Tips for Synchronizing Millions of User Records on the Publisher Channel 189
C.2 Schema Name Use Cases.ottt e e e e e e et e 189

D FAQ 193
D.1 CantSee Tables Or VIEWS.ot e e 193
D.2 Synchronizing with Tables 193
D.3 Processing Rows inthe EventLog Table i 194
D.4 Managing Database User ACCOUNTS.ottt e e 194
D.5 Synchronizing Large Data TYPESo ottt 194
D.6 Slow PubliCation. 194
D.7 Synchronizing Multiple Classes i e 195
D.8 ENCrypted TranSport. . . . ottt et e e e 195
D.9 Mapping Multivalue Attributes 195
D.10 Synchronizing Garbage Stringsot 195
D.11 Running Multiple JIDBC Driver INStanCesttt e 195

Contents 7

8

E Supported Data Types

F java.sgl.DatabaseMetaData Methods

G JDBC Interface Methods

H Third-Party JDBC Driver Descriptor DTD

| Third-Party JDBC Driver Descriptor Import DTD

J Database Descriptor DTD

K Database Descriptor Import DTD

L Policy Example: Triggerless Future Event Processing

M Setting Up an OCI Client on Linux

M.1 Downloading the Instant Client e e
M.2 Setting Upthe OCI Client. e e e
M.3 Configuring the OCI DIIVEr. e

N Sybase Chain Modes and the Identity Manager JDBC driver

NI EmOr COUES . .ottt e e
N.2 Procedures and MOAESot e e

N.2.1
N.2.2
N.2.3
N.2.4

Using Stored Procedure Sp_proxXmodettt
Chained and Unchained Modes e e
Managing TransactionsinaPolicy i
USefUl LINKS . . o ot

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

197

199

201

207

209

211

213

215

217

217

217
218

About This Guide

The Identity Manager Driver for Java Database Connectivity (JDBC) provides a generic solution for
synchronizing data between an Identity Vault and relational databases.

This guide provides an overview of the driver’s technology as well as configuration instructions.

¢ Chapter 1, “Introducing the Identity Manager Driver for JDBC,” on page 11
¢ Chapter 2, “Installing the Driver Files,” on page 23

¢ Chapter 3, “Installing and Configuring Database Objects,” on page 25

¢ Chapter 4, “Creating a New Driver Object,” on page 33

¢ Chapter 5, “Configuring the JDBC Driver,” on page 41

¢ Chapter 6, “Upgrading an Existing Driver,” on page 87

¢ Chapter 7, “Managing the Driver,” on page 89

¢ Chapter 8, “Schema Mapping,” on page 91

¢ Chapter 9, “Mapping XDS Events to SQL Statements,” on page 103

¢ Chapter 10, “The Event Log Table,” on page 105

¢ Chapter 11, “Embedded SQL Statements in XDS Events,” on page 117

¢ Chapter 12, “Supported Databases,” on page 141

¢ Chapter 13, “Third-Party JDBC Drivers,” on page 153

¢ Chapter 14, “The Association Utility,” on page 177

¢ Chapter 15, “Troubleshooting the JDBC Driver,” on page 181

¢ Appendix A, “Uninstalling the Driver,” on page 183

¢ Appendix B, “Known Issues and Limitations,” on page 187

¢ Appendix C, “Best Practices,” on page 189

¢ Appendix D, “FAQ,” on page 193

¢ Appendix E, “Supported Data Types,” on page 197

¢ Appendix F, “java.sql.DatabaseMetaData Methods,” on page 199

¢ Appendix G, “JDBC Interface Methods,” on page 201

¢ Appendix H, “Third-Party JDBC Driver Descriptor DTD,” on page 207

¢ Appendix I, “Third-Party JDBC Driver Descriptor Import DTD,” on page 209
¢ Appendix], “Database Descriptor DTD,” on page 211

¢ Appendix K, “Database Descriptor Import DTD,” on page 213

¢ Appendix L, “Policy Example: Triggerless Future Event Processing,” on page 215
¢ Appendix M, “Setting Up an OCI Client on Linux,” on page 217

¢ Appendix N, “Sybase Chain Modes and the Identity Manager JDBC driver,” on page 219

About This Guide

10

Audience

This guide is for Novell eDirectory and Identity Manager administrators who are using the Identity
Manager Driver for JDBC.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with Novell Identity Manager. Please use the User Comment feature at the bottom of each
page of the online documentation.

Documentation Updates

For the most recent version of this document, see the Identity Manager 4.0.2 Drivers Documentation
Web site (http://www.netiq.com/documentation/idm402drivers/index.html).

Additional Documentation

For documentation on using Identity Manager and the other drivers, see the Identity Manager 4.0.2
Documentation Web site (http://www.netiq.com/documentation/idm402drivers/index.html).

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://www.netiq.com/documentation/idm402drivers/index.html
http://www.netiq.com/documentation/idm402drivers/index.html
http://www.netiq.com/documentation/idm402drivers/index.html
http://www.netiq.com/documentation/idm402drivers/index.html

11

111

Introducing the Identity Manager Driver
for JIDBC

The Identity Manager Driver for Java DataBase Connectivity (JDBC) provides a generic solution for
synchronizing data between Identity Manager and JDBC-accessible relational databases.

The principal value of this driver resides in its generic nature. Unlike most drivers that interface with
a single application, this driver can interface with most relational databases and database-hosted
applications.

¢ Section 1.1, “Driver Concepts,” on page 11

¢ Section 1.2, “Database Concepts,” on page 13

¢ Section 1.3, “Driver Features,” on page 18

Driver Concepts

¢ Section 1.1.1, “JDBC,” on page 11

¢ Section 1.1.2, “Identity Manager JDBC driver,” on page 12
¢ Section 1.1.3, “Third-Party JDBC Driver,” on page 12

¢ Section 1.1.4, “Identity Vault,” on page 12

¢ Section 1.1.5, “Directory Schema,” on page 13

¢ Section 1.1.6, “Application Schema,” on page 13

¢ Section 1.1.7, “Database Schema,” on page 13

¢ Section 1.1.8, “Synchronization Schema,” on page 13

¢ Section 1.1.9, “Logical Database Class,” on page 13

¢ Section 1.1.10, “XDS,” on page 13

JDBC

Java DataBase Connectivity (JDBC) is a cross-platform database interface standard that Sun
Microsystems developed.

Most enterprise database vendors provide a unique implementation of the JDBC interface. Three
versions of the JDBC interface are available:

+ JDBC 1 (Java 1.0)
+ JDBC 2 (Java 1.2 or 1.3)
+ JDBC 3 (Java 1.4 or 1.5)

The JDBC driver primarily uses the JDBC 1 interface. It uses a small subset of JDBC 2 or JDBC 3
methods when supported by third-party JDBC drivers.

Introducing the Identity Manager Driver for JDBC 11

12

1.1.2

1.1.3

114

Identity Manager JDBC driver

The Identity Manager JDBC driver uses the JDBC interface to synchronize data and identities
between an Identity Vault and relational databases.

The driver consists of four jar files:

¢ JDBCShim.jar
¢ JDBCUtil.jar
¢ JDBCConfig.jar

¢ CommonDriverShim.jar

In addition to these files, you need a third-party JDBC driver to communicate with each individual
database.

Third-Party JDBC Driver

A third-party JDBC driver is one of the numerous JDBC interface implementations that the Identity
Manager JDBC driver uses to communicate with a particular database.

For example, classesl2.zip is one of the Oracle JDBC drivers. Different third-party JDBC drivers
implement different portions of the JDBC interface specification and implement the interface in a
relatively consistent manner.

The following illustration indicates the relationship between the Identity Manager JDBC driver and
third-party JDBC drivers.

Figure 1-1 Identity Manager JDBC Driver vs. Third-Party |[DBC Drivers

- -

SELECT

Third-Party
JDBC Driver

IDM JDBC DRIVER B oy Sl Sy 1

U

Database

Identity Vault

An Identity Vault is the data store that Identity Manager uses.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

1.1.5

1.1.6

1.1.7

1.1.8

1.1.9

1.1.10

1.2

Directory Schema

The directory schema is the set of object classes and attributes in the directory.

For example, the eDirectory User class and Given Name attribute are part of the eDirectory schema.

Application Schema

The application schema is the set of classes and attributes in an application.

Because databases have no concept of classes or attributes, the JDBC driver maps eDirectory classes
to tables or views, and maps eDirectory attributes to columns.

Database Schema

Database schema is essentially synonymous with ownership. A database schema consists of database
objects (for example, tables, views, triggers, stored procedures, and functions) that a database user
owns.

With the JDBC driver, schema is useful to scope the database (reduce the number of database objects
visible to the driver at runtime).

Ownership is often expressed by using a qualified dot notation (for example, indirect .usr, where
indirect is the name of the database user that owns the table usr). All of the database objects owned
by indirect constitute the indirect database schema.

Synchronization Schema

The synchronization schema is the database schema visible to the driver at runtime.

Logical Database Class

The logical database class is the set of tables or view used to represent an eDirectory class in a
database.

XDS

XDS format is the defined Novell subset of possible XML formats that Identity Manager can use.

XDS is the initial format for data coming from the Identity Vault. By modifying default rules and
changing the style sheets, you can configure the JDBC driver to work with any XML format.

Database Concepts

¢ Section 1.2.1, “Structured Query Language,” on page 14
¢ Section 1.2.2, “Data Manipulation Language,” on page 14
¢ Section 1.2.3, “Data Definition Language,” on page 14

¢ Section 1.2.4, “View,” on page 14

¢ Section 1.2.5, “Identity Columns/Sequences,” on page 15

¢ Section 1.2.6, “Transaction,” on page 15

Introducing the Identity Manager Driver for JDBC 13

14

121

1.2.2

1.2.3

1.2.4

¢ Section 1.2.7, “Stored Procedures or Functions,” on page 16
¢ Section 1.2.8, “Trigger,” on page 16
¢ Section 1.2.9, “Instead-Of-Trigger,” on page 17

Structured Query Language

Structured Query Language (SQL) is the language used to query and manipulate data in relational
databases.

Data Manipulation Language

Data Manipulation Language (DML) statements are highly standardized SQL statements that
manipulate database data.

DML statements are essentially the same, regardless of the database that you use. The JDBC driver is
DML-based. It maps Identity Manager events expressed as XDS XML to standardized DML
statements.

The following example shows several DML statements:

SELECT * FROM usr;
INSERT INTO usr (lname) VALUES('Doe') ;
UPDATE usr SET fname = 'John' WHERE idu = 1;

Data Definition Language

Data Definition Language (DDL) statements manipulate database objects such as tables, indexes, and
user accounts.

DDL statements are proprietary and differ substantially between databases. Even though the JDBC
driver is DML-based, you can embed DDL statements in XDS events. For additional information,
refer to Chapter 11, “Embedded SQL Statements in XDS Events,” on page 117,

The following examples show several DDL statements:

CREATE TABLE usr

(
idu INTEGER,
fname VARCHAR?2 (64),
lname VARCHAR2 (64)

)i

CREATE USER idm IDENTIFIED BY novell;

NOTE: Examples used throughout this guide are for the Oracle database.

View
A view is a logical table.

When queried by using a SELECT statement, the view is created by executing the SQL query supplied
when the view was defined. Views are a useful abstraction mechanism for representing multiple
tables of arbitrary structure as a single table or logical database class.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

1.2.5

1.2.6

CREATE VIEW view usr
(

pk_idu,

fname,

lname

)
AS
SELECT idu, fname, lname from usr;

Identity Columns/Sequences

Identity columns and sequences are used to generate unique primary key values. Identity Manager
can associate with these values, among other things.

An identity column is a self-incrementing column used to uniquely identify a row in a table. Identity
column values are automatically filled in when a row is inserted into a table.

A sequence object is a counter that can be used to uniquely identify a row in a table. Unlike an
identity column, a sequence object is not bound to a single table. However, if it is used by a single
table, a sequence object can be used to achieve an equivalent result.

The following is an example of a sequence object:

CREATE SEQUENCE seq idu
START WITH 1
INCREMENT BY 1
NOMINVALUE
NOMAXVALUE
ORDER;

Transaction

A transaction is an atomic database operation that consists of one or more statements.

When a transaction is complete, all statements in the transaction are committed. When a transaction
is interrupted or one of the statements in the transaction has an error, the transaction is said to roll
back. When a transaction is rolled back, the database is left in the same state it was before the
transaction began.

Transactions are either manual (user-defined) or automatic. Manual transactions can consist of one or
more statements and must be explicitly committed. Automatic transactions consist of a single
statement and are implicitly committed after each statement is executed.

¢ “Manual (User-Defined) Transactions” on page 15

¢ “Automatic Transactions” on page 16

Manual (User-Defined) Transactions

Manual transactions usually contain more than one statement. DDL statements typically cannot be
grouped with DML statements in a manual transaction.

The following example illustrates a manual transaction:
SET AUTOCOMMIT OFF
INSERT INTO usr (lname) VALUES ('Doe') ;

UPDATE usr SET fname = 'John' WHERE idu = 1;
COMMIT; -- explicit commit

Introducing the Identity Manager Driver for JDBC 15

16

1.2.7

1.2.8

Automatic Transactions

Automatic transactions consist of only one statement. They are often referred to as auto-committed
statements because changes are implicitly committed after each statement. An auto-committed
statement is autonomous of any other statement.

The following example illustrates an automatic transaction:

SET AUTOCOMMIT ON
INSERT INTO emp (lname) VALUES ('Doe') ;
-- implicit commit

Stored Procedures or Functions

A stored procedure or function is programmatic logic stored in a database. Stored procedures or
functions can be invoked from almost any context.

The Subscriber channel can use stored procedures or functions to retrieve primary key values from
rows inserted into tables, to create associations. Stored procedures or functions can also be invoked
from within embedded SQL statements or triggers.

The distinction between stored procedures and functions varies by database. Typically, both can
return output, but they differ in how they do it. Stored procedures usually return values through
parameters. Functions usually return values through a scalar return value or result set.

The following example illustrates a stored procedure definition that returns the next value of a
sequence object:

CREATE SEQUENCE seq idu
START WITH 1
INCREMENT BY 1
NOMINVALUE
NOMAXVALUE
ORDER;

CREATE
PROCEDURE sp_idu(io_idu IN OUT INTEGER)
IS
BEGIN

IF (io_idu IS NULL) THEN

SELECT seq_idu.nextval INTO io_idu FROM DUAL;

END IF;
END sp_idu;

Trigger

A database trigger is programmatic logic associated with a table, which executes under certain
conditions. A trigger is said to fire when its execution criteria are met.

Triggers are often useful for creating side effects in a database. In the context of the JDBC driver,
triggers are useful to capture event publications. The following is an example of a database trigger on
the usr table.

CREATE TABLE usr

(
idu INTEGER,
fname VARCHAR2 (64),
lname VARCHAR2 (64)

)i

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

1.2.9

-- t = trigger; i = insert

CREATE TRIGGER t usr i
AFTER INSERT ON usr
FOR EACH ROW

BEGIN
UPDATE usr SET fname = 'John';
END;

When a statement is executed against a table with triggers, a trigger fires if the statement satisfies the
conditions specified in the trigger. For example, using the above table, suppose the following insert
statement is executed:

INSERT INTO usr (lname) VALUES ('Doe')

Trigger t_emp_1i fires after the insert statement is executed, and the following update statement is
also executed:

UPDATE usr SET fname = 'John'

A trigger can typically be fired before or after the statement that triggered it. Statements that are
executed as part of a database trigger are typically included in the same transaction as the triggering
statement. In the above example, both the INSERT and UPDATE statements are committed or rolled
back together.

Instead-Of-Trigger

An instead-of-trigger is programmatic logic associated with a view, which executes under certain
conditions.

Instead-of-triggers are useful for making views writable or subscribeable. They are often used to
define what it means to INSERT, UPDATE, and DELETE from a view. The following is an example of an
instead-of-trigger on the usr table.

CREATE TABLE usr

(
idu INTEGER,
fname VARCHAR2 (64),
lname VARCHAR2 (64)

)i

CREATE VIEW view usr
(
pk_idu,
fname,
lname
)
AS
SELECT idu, fname, lname from usr;
-- t = trigger; i = insert
CREATE TRIGGER t view usr i
INSTEAD OF INSERT ON usr
BEGIN
INSERT INTO usr (idu, fname, lname)
VALUES (:NEW.pk_idu, :NEW.fname, :NEW.lname) ;
END;

When a statement is executed against a view with instead-of-triggers, an instead-of-trigger executes
if the statement satisfies the conditions specified in the trigger. Unlike triggers, instead-of-triggers
always execute before the triggering statement. Also, unlike regular triggers, instead-of-triggers are
executed instead of, not in addition to, the triggering statement.

For example, using the above view, suppose the following insert statement is executed instead of the
original insert statement:

Introducing the Identity Manager Driver for JDBC 17

INSERT INTO view usr(pk idu, fname, lname)
VALUES (1, ‘John', ‘Doe')

Rather than executing the original statement, instead-of-trigger t view usr i fires and executes the
following statement:

INSERT INTO usr(idu, fname, lname)
VALUES (:NEW.pk_idu, :NEW.fname, :NEW.lname) ;

In this example, the statements happen to be equivalent.

1.3 Driver Features

*

Section 1.3.1, “Local and Remote Platforms,” on page 18

*

Section 1.3.2, “Password Synchronization,” on page 18

*

Section 1.3.3, “Data Synchronization Models,” on page 18

*

Section 1.3.4, “Triggerless vs. Triggered Publication,” on page 21

1.3.1 Local and Remote Platforms

The driver runs on all platforms supported for Identity Manager 4.0.2, including any local
installation (Metadirectory server) or remote installation (Remote Loader). For information about
supported platforms for Identity Manager 4.0.2, see “System Requirements” in the Identity Manager
4.0.2 Integrated Installation Guide.

For information on supported databases, see “Database Interoperability” on page 141.

For information on supported third-party JDBC drivers, see “Third-Party JDBC Driver
Interoperability” on page 153.

1.3.2 Password Synchronization

The JDBC driver supports password set and check on the Subscriber channel. The driver does not
support bidirectional password synchronization.

1.3.3 Data Synchronization Models

The JDBC driver supports two data synchronization models: direct and indirect. Both terms are best
understood with respect to the final destination of the data being synchronized.

Model Association Description

Direct Usually associated with views Views provide the abstraction mechanism that best
facilitates integration with existing customer tables.

Indirect Usually associated with tables Customer tables probably don’t match the structure
required by the driver. Therefore, it's usually
necessary to create intermediate staging tables that
do match the structure that the driver requires.
Although the structures might match, it is highly
unlikely.

18 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#bpo8wc2
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front

The following sections describe how direct and indirect synchronization work on both the Subscriber
and Publisher channels.

¢ “Indirect Synchronization” on page 19

¢ “Direct Synchronization” on page 20

Indirect Synchronization

Indirect synchronization uses intermediate staging tables to synchronize data between the Identity
Vault and a database.

The following diagrams illustrate how indirect synchronization works on the Subscriber and
Publisher channels. In the following scenarios, you can have one or more customer tables and
intermediate staging tables.

Subscriber Channel

Figure 1-2 Indirect Synchronization on the Subscriber Channel

Database

Synchronization
Schema

Interme diate

Tables(s) Synchronization

Trigger(s) Customer

Table(s}

-

The Subscriber channel updates the intermediate staging tables in the synchronization schema. The
synchronization triggers then update customer tables elsewhere in the database.

Publisher Channel

Figure 1-3 Indirect Synchronization on the Publisher Channel

Database

.
Synchronization
Schema
L Intermediate = =
Tables(s) Synchronization -/
Trigger(s) Customer
__I Table{s)
1__ Publication

Trigger(s) -

When customer tables are updated, synchronization triggers update the intermediate staging tables.
Publication triggers then insert one or more rows into the event log table. The Publisher channel then
reads the inserted rows and updates the Identity Vault.

Introducing the Identity Manager Driver for JDBC 19

20

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the intermediate tables before updating the Identity
Vault. After updating the Identity Vault, the Publisher channel then deletes or marks the rows as
processed.

Direct Synchronization

Direct synchronization typically uses views to synchronize data between Identity Manager and a
database. You can use tables if they conform to the structure that the JDBC driver requires.

The following diagrams illustrate how direct synchronization works on the Subscriber and Publisher
channels. In the following scenarios, you can have one or more customer views or tables.

Subscriber Channel

Figure 1-4 Direct Synchronization on the Subscriber Channel

* T——
Customer
Table(s)

The Subscriber channel updates existing customer tables through a view in the synchronization
schema.

Database

Synchronization
Schema

(CSobscrbor)- = +

Direct synchronization without a view is possible only if customer tables match the structure that the
JDBC driver requires. For additional information, see Section 8.3, “Indirect Synchronization,” on
page 91.

Publisher Channel

Figure 1-5 Direct Synchronization on the Publisher Channel

Database

Synchronlzation
Schema

..--——"-'I = -

----- -u---'! i 5]'_/:*'--------

¥ an. B Cuslomer
Tabla
>+ (4 ‘ﬂ
ication
Triggeris) _,

When a customer table is updated, publication triggers insert rows into the event log table. The
Publisher channel then reads the inserted rows and updates the Identity Vault.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

1.3.4

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the view before updating the Identity Vault. After
updating the Identity Vault, the Publisher channel then deletes or marks the rows as processed.

Triggerless vs. Triggered Publication

Triggers are not required to log events for the Publisher channel. In situations where triggers cannot
be used to capture granular events, the Publisher channel can derive database changes by inspecting
database data.

Triggerless publication is particularly useful when support contracts forbid the use of triggers on
database application tables or for rapid prototyping.

However, triggerless publication is less efficient than triggered publication. With triggered
publication, what changed is already known. With triggerless publication, change calculation must
occur before events can be processed.

Triggerless publication, unlike triggered publication, does not preserve event order. It only
guarantees that, by the end of a polling cycle, objects in the database and the Identity Vault are in
sync.

Triggerless publication, unlike triggered publication, does not provide historical data such as old
values. It provides information on the current state of an object, not the previous state.

Triggerless publication does have the advantage of being much simpler because it reduces database-
side dependencies. Writing database triggers can be complicated and requires extensive knowledge
of database-specific SQL syntaxes.

The following figure illustrates direct triggerless publication:

Figure 1-6 Direct Triggerless Publication

Database

Synchronization
Schema

P |

P) + 14 Ve 4%
i i

he. I Customer

Table(s) |

b B

The following figure illustrates indirect triggerless publication:

Introducing the Identity Manager Driver for JDBC 21

Figure 1-7 Indirect Triggerless Publication

Database

Synchronization
Schema
(Pl) 4 Irfermedid <

Takl Synchronization
I'--. L _""_5{/5} Trigger(s) Customer
Table(s)

If you move the driver without moving the state files, the driver must build up new state files by
resynchronizing. For information on this situation, see “State Directory” on page 49.

22 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

2.1

2.2

Installing the Driver Files

By default, the JDBC driver files are installed on the Metadirectory server at the same time as the
Metadirectory engine. The installation program extends the Identity Vault's schema and installs the
driver shim and a driver configuration file. It does not create the driver object in the Identity Vault
(see Chapter 4, “Creating a New Driver Object,” on page 33) or upgrade an existing driver’s
configuration (see Chapter 6, “Upgrading an Existing Driver,” on page 87).

The JDBC driver can either be located on the same server as the JDBC database or any other server.
The following sections explain what to do if the JDBC driver files are not on the JDBC database server
and how to install the third-party JDBC jar files that the driver uses to communicate with the
database:

¢ Section 2.1, “Installing the Driver Files,” on page 23

¢ Section 2.2, “Installing JDBC Driver Jar Files,” on page 23

For information about uninstalling the driver, see Chapter A, “Uninstalling the Driver,” on page 183.

Installing the Driver Files

You can install the JDBC driver files in the following ways:

¢ On alocal machine: Install the JDBC driver files on the Metadirectory server and connect to the
database by using the Provider URL (Connection Properties). For information on installing the
Metadirectory server, see “Installing Identity Manager” in the Identity Manager 4.0.2 Integrated
Installation Guide.

¢ On a remote machine: Install the JDBC driver files on the Remote Loader. For information on
installing the Remote Loader, see “Installing Identity Manager” in the Identity Manager 4.0.2
Integrated Installation Guide.

Installing JDBC Driver Jar Files

To communicate with the JDBC database, the JDBC driver requires that you copy the appropriate
JDBC driver jar files to the driver location.
1 Locate the appropriate JDBC driver jar files.

Information about the jar files you need and where to download them from is found in
Section 13.3, “Supported Third-Party JDBC Drivers (Recommended),” on page 154.

2 Place the files in the appropriate location.

The following tables identify the paths where you need to place JDBC driver jar files on a
Metadirectory server or on a Remote Loader server that is running the JDBC driver.

Installing the Driver Files 23

https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#bpo8y7u
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#bpo8y7u
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front

Table 2-1 Locations for JAR Files: Metadirectory Server

Platform Directory Path

Solaris, Linux, or AIX /opt/novell/eDirectory/lib/dirxml/classes

Windows novell\NDS\1lib

Table 2-2 Locations for JAR Files: Remote Loader

Platform Directory Path

Solaris, Linux, or AlX /opt/novell/eDirectory/lib/dirxml/classes

Windows novell\RemoteLoader\1lib

24 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

3.1

Installing and Configuring Database
Objects

You need to install and configure database objects (for example, tables, triggers, and indexes) for
synchronization with the sample driver configuration. If you don’t configure database objects, the
sample configuration file won’t work.

¢ Section 3.1, “SQL Script Conventions,” on page 25

¢ Section 3.2, “Installing IBM DB2 Universal Database (UDB),” on page 27

¢ Section 3.3, “Installing Informix Dynamic Server (IDS),” on page 27

¢ Section 3.4, “Installing Microsoft SQL Server,” on page 28

¢ Section 3.5, “Installing MySQL,” on page 28

¢ Section 3.6, “Installing Oracle,” on page 29

¢ Section 3.7, “Installing PostgreSQL 8,” on page 29

¢ Section 3.8, “Installing PostgreSQL 9,” on page 30

¢ Section 3.9, “Installing Sybase Adaptive Server Enterprise (ASE),” on page 30

¢ Section 3.10, “Testing the Database Object Installation,” on page 31

SQL Script Conventions

The following table lists default locations for SQL scripts:

Table 3-1 Default Locations for SQL Scripts

Platform Default Location
Windows c:\Novell\IdentityManager\NDS\DirXMLUtilities\jdbc\sqgl\
UNIX/Linux /opt/novell/eDirectory/lib/dirxml/rules/jdbc/sql/

For example, when the scripts are installed on a SUSE Linux Enterprise Server with eDirectory, the
DB2 scripts are found in opt /novell/eDirectory/lib/dirxml/rules/jdbc/db2_udb/install
directory.

All SQL scripts use the same conventions, regardless of the database.

The maximum size of a DB2 identifier is 18 characters. This least common denominator length

defines the upper bound of database identifier length across all SQL scripts. Because of this restricted

length, abbreviations are used. The following table summarizes identifier abbreviations and their
meanings:

Installing and Configuring Database Objects

25

Table 3-2 Identifier Abbreviations and Meanings

Abbreviation Interpretation

proc_ stored procedure/function
idx_ index

trg_ trigger

i on insert trigger

_u on update trigger

_d on delete trigger

chk_ check constraint

pk_ view primary key constraint

fk_ view foreign key constraint

mv_ view multi-valued column

SV_ view single-valued column (implicit default)

Instead of proc_, the more common abbreviation is sp_. This prefix is reserved for system-stored
procedures on Microsoft SQL Server. Also, this prefix forces lookup of a procedure first in the master
database before evaluating any qualifiers (for example, database or owner). To maximize procedure
lookup efficiency, this prefix has been deliberately avoided.

The following table indicates identifier naming conventions for indexes, triggers, stored procedures,
functions, and constraints:

Table 3-3 Identifier Naming Conventions

Database Object Naming Convention Examples

stored procedure/ proc_procedure-or-function-name proc_idu

function

index idx_unqualified-table-name_sequence-number idx_indirectlog_
1

trigger tgr_unqualified-table-name_triggering-statement- tgr_usr_i_1

type_sequence-number

primary key constraint pk_unqualified-table-name_column-name pk_usr_idu
foreign key constraint fk_unqualified-table-name_column-name fk_usr_idu
check constraint chk_unqualified-table-name_column-name chk_usr_idu

Other conventions:
+ All database identifiers are lowercase.

This is the most commonly used case convention between databases.
¢ String field lengths are 64 characters.

Fields of this length can hold most eDirectory attribute values. You might want to refine field
lengths to enhance storage efficiency.

26 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

3.2

3.3

¢ For performance reasons, primary key columns use native, scalar numeric types whenever
possible (such as BIGINT as opposed to NUMERIC).

¢ The record_id column in event log tables has the maximum numeric range permitted by each
database to avoid overflow.

¢ Identity columns and sequence objects do not cache values. Some databases throw away cached
values when a rollback occurs. This action can cause large gaps in identity column or sequence
values.

Installing IBM DB2 Universal Database (UDB)

IMPORTANT: For IBM DB2, you must manually create operating system user accounts before
running the provided SQL scripts.

Because the process to create user accounts differs between operating systems, Step 1 below is OS-
specific. These instructions are for a Windows NT operating environment. If you rerun the SQL
scripts, repeat only Step 2 through Step 4.

The directory context for DB2 is found in the install-
dir\DirxXMLUtilities\jdbc\sql\db2_udb\install directory on Windows or install-dir/lib/
dirxml/rules/jdbc/sql/db2_udb/install directory on UNIX/Linux platforms.
1 Create user accounts for users idm, indirect and direct.
Use novell as the password in User Manager for Domains.
Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Adjust the file path to idm_db2.jar in the 1_install.sql installation script. The file path to
idm_db2.jar should reflect the location of this file on your client machine.

3 Execute the 1_install.sql script from the Command Line Processor (CLP.)

For example: db2 -f 1_install.sql

IMPORTANT: The scripts won't execute in the Command Center interface beyond version 7.
The scripts use \ as the line continuation character. Later versions of the Command Center don’t
recognize this character.

4 For versions 9 or later, execute the 2_install_9.sql script.

For example: db2 -f 2 install 9.sqgl

Installing Informix Dynamic Server (IDS)

For Informix Dynamic Server, you must manually create an operating system user account before
running the provided SQL scripts.

Because the process of creating user accounts differs between operating systems, Step 1 below is OS-
specific. These instructions are for a Windows operating environment. If you rerun the SQL scripts,
you should repeat only Steps 2 through 4.

Installing and Configuring Database Objects 27

28

3.4

3.5

The directory context for Informix SQL scripts is found in the install-
dir\DirXMLUtilities\jdbc\sql\informix ids\install on Windows or install-dir/lib/
dirxml/rules/jdbc/sql/informix_ids/install directory on UNIX/Linux platforms.
1 In Windows, create a user account for user idm.
Use novell as the password in User Manager for Domains.
Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Start a client such as SQL Editor or DBAccess.

3 Log in to your server as the informix user or another user with DBA (database administrator)
privileges.

By default, the password for the informix user is informix. If you execute scripts as a user
other than informix, change all references to informix in the scripts prior to execution.

4 Open and execute 1_install_9.sql from either the ansi (transactional, ANSI-compliant), 1og
(transactional, non-ANSI-compliant), or no_log (non-transactional, non-ANSI-compliant)
subdirectory, depending upon which type of database you want to create.

5 For version 11 or later, open and execute 2_install 10.sqgl from either the ansi (transactional,
ANSI-compliant), log (transactional, non-ANSI-compliant), or no_log (non-transactional, non-
ANSI-compliant) subdirectory, depending upon which type of database you want to create.

Installing Microsoft SQL Server

The directory context for Microsoft SQL Server scripts is found in the install-
dir\DirxXMLUtilities\jdbc\sqgl\mssqgl\install directory on Windows or install-dir/lib/
dirxml/rules/jdbc/sql/mssql/install directory on UNIX/Linux platforms.
1 Start a client. For example, Microsoft SQL Server Management Studio.
2 Log in to your database server as the sa user.
By default, the sa user has no password.
3 Execute the installation script.
For version 2005, execute 1_install 2005.sqgl.
For version 2008, execute 1_install 2005.sqgl.

For version 2008 R2, execute 1_install 2005.sqgl.

Installing MySQL

The directory context for MySQL SQL scripts is found in the install-
dir\DirxXMLUtilities\jdbc\sql\mysql\install directory on Windows or install-dir/1lib/
dirxml/rules/jdbc/sgl/mysqgl/install directory on UNIX /Linux platforms.

1 From a MySQL client, such as mysq]l, log in as root user or another user with administrative
privileges.
For example, from the command line, execute
mysql -u root -p

By default, the root user has no password.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

3.6

3.7

2 Execute the installation script 1_install_innodb.sgl or 1_install myisam.sgl, depending
upon which table type you wish to use. For version 5.5.15 use the scripts in subdirectory 5.

For example: mysgl> \. c:\1_install innodb.sqgl

Don’t use a semicolon to terminate this statement.

Installing Oracle

The directory context for Oracle SQL scripts is found in the install-
dir\DirxXMLUtilities\jdbc\sqgl\oracle\install directory on Windows or install-dir/lib/
dirxml/rules/jdbc/sql/oracle/install directory on UNIX/ Linux platforms.

1 From an Oracle client, such as SQL Plus, log in as the SYSTEM user.

By default, the password for SYSTEM is MANAGER. If you execute scripts as a user other than
SYSTEM with password MANAGER, change all references to SYSTEM in the scripts prior to execution.

2 Execute the installation script 1_install.sql.

For example: SQL> @c:\1_install.sgl

Installing PostgreSQL 8

The directory context for PostgreSQL scripts is found in the install-
dir\DirxXMLUtilities\jdbc\sqgl\postgres\install directory on Windows or install-dir/lib/
dirxml/rules/jdbc/sql/postgres/install directory on UNIX/Linux platforms. The directory
context for executing Postgres commands is postgres-install-dir/pgsqgl/bin.
1 Create the idm database.
For example, from the UNIX command line, execute the following command:
./createdb idm
2 From a Postgres client such as psql, log in as user postgres to the idm database.
For example, from the UNIX command line, execute the following command:
./psgl -d idm postgres
By default, the Postgres user has no password.
3 From inside psql, execute the script 1_install_8.sql. For example:
idm=# \1 1 install 8.sqgl
4 Update the pg_hba. conf file.

As of version 8, this can be done through pg AdminlIl. After you start, go to Tools > Connect to
connect to the server, select the IDM database, then go to Tools > Server Configuration >
pg_hba.conf. In the pgAdminlll pg_hba.conf editor, the IP~-ADDRESS and IP-MASK columns
in the file are combined into a single field: IP-Address. Place both the I>~ADDRESS and IP-
MASK values in that field, separated by a single whitespace character.

For example, add entries for the idm database user. Adjust the I>-ADDRESS and IP-MASK as

necessary:

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD# allow
driver user idm to connect to database idm

host idm idm <ip-address> <net-mask> password

Installing and Configuring Database Objects 29

5 Restart the Postgres server to effect changes made to the pg_hba. conf file.

6 (Conditional) If you are using pgAdminlll, in the pg_hba.conf editor select the disk icon (save
file) in the toolbar. When prompted, press Yes.

3.8 Installing PostgreSQL 9

The directory context for PostgreSQL scripts is found in the install-
dir\DirxXMLUtilities\jdbc\sqgl\postgres\install directory on Windows or install-dir/1ib/
dirxml/rules/jdbc/sql/postgres/install directory on UNIX/Linux platforms. The directory
context for executing Postgres commands is postgres-install-dir/pgsql/bin.
1 Create the database idm.
For example, from the UNIX command line, execute the following command:
./createdb idm
2 Install the plpgsgl procedural language to database idm.
For example, from the UNIX command line, execute the following command:
./createlang plpgsgl idm
3 From a Postgres client such as psql, log on as user postgres to the idm database.
For example, from the UNIX command line, execute the following command:
./psgl -d idm postgres
By default, the Postgres user has no password.
4 From inside psql, execute the script 1_install_8.sqgl. For example:
idm=# \i 1 install 8.sql
5 Update the pg_hba. conf file.
For example, add entries for the idm database user. Adjust the IP-ADDRESS and IP-MASK as

necessary:

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD# allow
driver user idm to connect to database idm

host idm idm <ip-address> <net-mask> password

6 Restart the Postgres server to effect changes made to the pg_hba. conf file.

3.9 Installing Sybase Adaptive Server Enterprise (ASE)

The directory context for Sybase SQL scripts is found in the install-
dir\DirxXMLUtilities\jdbc\sql\sybase_ase\install directory on Windows or install-dir/
lib/dirxml/rules/jdbc/sql/sybase_ase/install directory on UNIX/Linux platforms.

1 From a Sybase client, such as isql, log in as the sa user and execute the 1_install.sql
installation script.
For example, from the command line, execute:
isgl -U sa -P -i 1 install.sql

By default, the sa account has no password.

30 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

3.10

Testing the Database Object Installation

Test scripts for each database are located in the following directories:

Table 3-4 Location of Database Scripts

Database

Test SQL Scripts Location

IBM DB2 Universal
Database

Informix Dynamic Server

Microsoft SQL Server

MySQL

UNIX/Linux: install-dir/lib/dirxml/rules/jdbc/sql/
db2 udb/test

Windows: install-
dir\DirXMLUtilities\jdbc\sgl\db2 udb\test

UNIX/Linux: The test scripts are located in the following
directories:

¢ install-dir/lib/dirxml/rules/jdbc/sql/
informix_ids/test/log

¢ install-dir/lib/dirxml/rules/jdbc/sql/
informix_ ids/test/no log

Windows: The test scripts are located in the following directories:

¢ install-
dir\DirXMLUtilities\jdbc\sqgl\informix ids\lo
g\test

¢ install-
dir\DirXMLUtilities\jdbc\sgl\informix ids\no
_log\test

Informix: Informix ANSI test scripts are located in the 1og
subdirectory.

UNIX/Linux: The test scripts are located in the following
directories:

¢ install-dir/lib/dirxml/rules/jdbc/sql/mssqgl/
3or4/test

¢ install-dir/lib/dirxml/rules/jdbc/sql/mssqgl/
5/test

Windows: install-
dir\DirXMLUtilities\jdbc\sqgl\mssgl\test

UNIX/Linux: The test scripts are located in the following
directories:

¢ install-dir/lib/dirxml/rules/jdbc/sql/mysqgl/
3or4/test

¢ install-dir/lib/dirxml/rules/jdbc/sql/mysql/
5/test

Windows: install-
dir\DirXMLUtilities\jdbc\sqgl\mysqgl\test

Installing and Configuring Database Objects

31

32

Database Test SQL Scripts Location

Oracle UNIX/Linux: install-dir/lib/dirxml/rules/jdbc/sql/
oracle/test

Windows: install-
dir\DirXMLUtilities\jdbc\sgl\oracle\test

PostgreSQL UNIX/Linux: install-dir/lib/dirxml/rules/jdbc/sql/
postgres/test

Windows: install-
dir\DirXMLUtilities\jdbc\sqgl\postgres\test

Sybase Adaptive Server UNIX/Linux: install-dir/lib/dirxml/rules/jdbc/sql/
Enterprise sybase_ase/test

Windows: install-
dir\DirXMLUtilities\jdbc\sgl\sybase ase\test

You should try the test scripts before starting the sample driver.
If you encounter issues while testing, see the following sections:

¢ Section 15.4, “Recognizing Publication Events,” on page 182.

¢ Section 15.5, “Executing Test Scripts,” on page 182.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

4.1

411

Creating a New Driver Object

After the JDBC driver files are installed on the server where you want to run the driver object (see
Chapter 2, “Installing the Driver Files,” on page 23), you can create a driver object in the Identity
Vault. You do so by installing the driver packages and then modifying the driver configuration to suit
your environment. The following sections provide instructions:

¢ Section 4.1, “Creating the Driver Object in Designer,” on page 33

¢ Section 4.2, “Activating the Driver,” on page 39

¢ Section 4.3, “JDBC Driver Settings,” on page 40

Creating the Driver Object in Designer

You create the JDBC driver by installing the driver packages and then modifying the configuration to
suit your environment. After you create and configure the driver object, you need to deploy it to the
Identity Vault and start it.

¢ Section 4.1.1, “Importing the Current Driver Packages,” on page 33

¢ Section 4.1.2, “Installing the Driver Packages,” on page 34

¢ Section 4.1.3, “Configuring the Driver Object,” on page 38

¢ Section 4.1.4, “Deploying the Driver Object,” on page 38

¢ Section 4.1.5, “Starting the Driver Object,” on page 39

NOTE: You should not create driver objects by using the Identity Manager 4.0 and later
configuration files through iManager. This method of creating driver objects is no longer supported.
To create drivers, you need to use the new package management features provided in Designer.

Importing the Current Driver Packages

The driver packages contain the items required to create a driver object, such as policies,
entitlements, filters, and Schema Mapping policies. These packages are only available in Designer.
You can upgrade any package that is installed if there is a newer version of the package available. For
more information on upgrading packages, see “Upgrading Installed Packages” in the Designer 4.0.2
for Identity Manager 4.0.2 Administration Guide.

Before creating a driver object in Designer, you need to verify that you have all the required packages
already imported in the Package Catalog of Designer. Designer prompts you for importing the
required packages when it creates the driver object.

You can create packages based on the schema for your environment, keeping in mind the data
synchronization model (direct/indirect) and its dependent packages.

Creating a New Driver Object 33

https://www.netiq.com/documentation/idm402/pdfdoc/designer_admin/designer_admin.pdf#packmanupgrade
https://www.netiq.com/documentation/idm402/pdfdoc/designer_admin/designer_admin.pdf#Front
https://www.netiq.com/documentation/idm402/pdfdoc/designer_admin/designer_admin.pdf#Front

To verify you have the most recent version of the driver packages in the Package Catalog;:

1 Open Designer.
2 In the toolbar, click Help > Check for Package Updates.
3 Click OK to update the packages

or

Click OK if the packages are up-to-date.
4 In the Outline view, right-click the Package Catalog.
5 Click Import Package.

= Project | o= Cutline &2 |E| W EE O

= (Bl Identity Vault
B server
& Driver Set
2 Default Motification Collection

You can download the new packages from the Designer 4.0.2 Auto-update site (http://
cdn.novell.com/cached/designer/packages/idm/updatesitel_0_0/).

6 Select any JDBC driver packages
or
Click Select All to import all of the packages displayed.

By default, only the base packages are displayed. Deselect Show Base Packages Only to display all
packages.

7 Click OK to import the selected packages, then click OK in the successfully imported packages
message.

8 After the current packages are imported, continue with Section 4.1.2, “Installing the Driver
Packages,” on page 34.

4.1.2 Installing the Driver Packages

34

After you have imported the current driver packages into the Package Catalog, you can install the
driver packages to create a new driver.
1 In Designer, open your project.

2 In the Modeler, right-click the driver set where you want to create the driver, then click New >
Driver.

3 Select an appropriate JDBC Base Database Package, such as Oracle Base, then click Next.
4 Select the optional features to install for the JDBC driver, then click Next.
All options are selected by default. The options are:

Entitlements Support: These packages contain the policies that provision the user accounts on
the connected database. For more information, see the Identity Manager 4.0.2 Entitlements Guide.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://cdn.novell.com/cached/designer/packages/idm/updatesite1_0_0/
https://www.netiq.com/documentation/idm402/pdfdoc/idm_entitlements/idm_entitlements.pdf#bookinfo

Data Collection: These packages contain the policies that enable the driver to collect data for
reports. If you are using the Identity Reporting Module, ensure that this option is selected. For
more information, see the Identity Reporting Module Guide.

Account Tracking: These packages contain the policies that enable account tracking information
for reports. If you are using the Identity Reporting Module, ensure that this option is selected.
For more information, see the Identity Reporting Module Guide.

The Account Tracking feature was introduced with the Novell Compliance Management
Platform. The Compliance Management Platform helps you mitigate risk, simplify business
governance, and ensures compliance throughout the enterprise. The platform enables you to
provision users based on how you do business, secure both Web and Client applications by
granting access to users based upon provisioning policy, and monitor and validate user and
system activity in real time with automated, policy-based corrective actions for non-compliant
activities. For more information, see the Novell Compliance Management Platform product
page (http://www.novell.com/products/compliancemanagementplatform/).

Synchronization Mode: These packages contain the GCVs and sample policies. If you choose
the direct/indirect synchronization mode, ensure that you don’t change this setting on the driver
creation and configuration pages.

By default, the Show only Applicable packages versions option is selected.

IMPORTANT: The JDBC packages provide examples of the core functions of the JDBC driver.
These examples help you customize the driver for your environment. You can add new policies
and settings to the driver to meet your business requirements. The final implementation can be
packaged and deployed in Identity Manager.

5 (Conditional) If there are package dependencies for the packages you selected to install for this
driver, you must install them to install the selected package. Click OK to install the package
dependency listed.

€ Package Dependencies ﬁ|

@ The following operations must also be performed to complete the reguested operation
for package 'PeopleSoft Base',

Select OK to accept the required operations.

Cperation Marre Wersion Package Type
Instal Zp Common Settings 1.0.0 Driver Set
I oK l [Cancel]

6 (Conditional) If more than one type of package dependency must be installed, you are presented
with separate configuration pages for each package. Continue to click OK to install any
additional package dependencies.

7 (Conditional) The Common Settings page is displayed only if the Common Settings package is
installed as a dependency. On the Install Common Settings page, specify the common settings
for User and Group containers:

Creating a New Driver Object 35

http://www.novell.com/products/compliancemanagementplatform/
http://www.novell.com/products/compliancemanagementplatform/
https://www.netiq.com/documentation/idm402/pdfdoc/reporting/reporting.pdf#front
https://www.netiq.com/documentation/idm402/pdfdoc/reporting/reporting.pdf#front

36

10

11
12

13
14

User Container: Select the Identity Vault container where the user accounts will be added in the
Identity Vault. This value becomes the default for all drivers in the driver set.

Group Container: Select the Identity Vault container where the groups will be added in the
Identity Vault. This value becomes the default for all drivers in the driver set.

Click Next.
When all dependencies are installed, the components must be configured.

On the Driver Information page, specify a name for the driver that is unique within the driver
set, then click Next.

On the Application Authentication page, fill in the following information for the connected
database:

Version: Specify the version of the connected database.

Synchronization Model: Specify the mode of data synchronization based on the selected
package.

Data Flow: Specify whether the authoritative source of data is the database, Identity Manager,
or bidirectional.

IMPORTANT: Ensure that you don’t change the setting for Synchronization Model and Data Flow
options that you selected earlier in the Package Configuration Wizard.

JDBC Implementation: Specify the database connection details.

Connection Information: Specify the database information for the driver to use to connect to the
database, such as the IP address, port, and name of the database.

Authentication ID: Specify the authentication ID for the connected database.
Password: Specify the password for the driver to connect to the database.
For more information, see Section 4.3, “JDBC Driver Settings,” on page 40.
Click Next.

Fill in the following fields for Remote Loader information:

Connect To Remote Loader: Select Yes or No to determine if the driver will use the Remote
Loader. For more information, see the Identity Manager 4.0.2 Remote Loader Guide.

If you select No, skip to Step 13. If you select Yes, use the following information to complete the
configuration of the Remote Loader:

Host Name: Specify the IP address or DNS name of the server where the Remote Loader is
installed and running.

Port (Connection): Specify the port number for this driver object. Each driver object connects to
the Remote Loader on a separate port. The default value is 8090.

Remote Loader Password: Specify a password to control access to the Remote Loader. It must be
the same password that is specified as the Remote Loader password on the Remote Loader.

Driver Password: Specify a password for the driver object to authenticate to the Metadirectory
server. It must be the same password that is specified as the Driver Object password on the
Remote Loader.

Click Next.

(Conditional) This page is displayed only if you selected to install the Data Collection and
Account Tracking groups of packages. On the JDBC Managed System Information page, fill in
the following fields to define your connected database application:

Name: Specify a descriptive name for the connected database application. The name is
displayed in reports.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

https://www.netiq.com/documentation/idm402/pdfdoc/idm_remoteloader/idm_remoteloader.pdf#bookinfo

15
16

17
18

19
20

21

Description: Specify a brief description for the connected database application. The description
is displayed in reports.

Location: Specify the physical location of the connected database application. The location is
displayed in reports.

Vendor: Specify the vendor of the connected database application. This information is displayed
in reports.

Version: Specify the version of the connected database application. The version is displayed in
reports.

Click Next.

(Conditional) This page is displayed only if you selected to install the Managed System packages
and the Account Tracking packages. On the Install JDBC Managed System Information page, fill
in the following fields to define the classification of the connected database application:

Classification: Select the classification of the connected database application. This information is
displayed in the reports. Your options are:

¢ Mission-Critical
¢ Vital
¢ Not-Critical
¢ Other
If you select Other, you must specify a custom classification for the JDBC system.

Environment: Select the type of environment the connected database application provides. The
options are:

¢ Development
¢ Test
¢ Staging

*

Production

Other

If you select Other, you must specify a custom classification for the database application.
Click Next.

(Conditional) This page is displayed only if you selected to install the Data Collection and
Account Tracking groups of packages. Fill in the following fields to define the ownership of the
connected database application:

*

Business Owner: Select a user object in the Identity Vault that is the business owner of the
database application. This can only be a user object, not a role, group, or container.

Application Owner: Select a user object in the Identity Vault that is the application owner of the
database application. This can only be a user object, not a role, group, or container.

Click Next.

On the Entitlements Information page, specify a name for the Account Entitlement Value field,
then click Next.

(Conditional) This page is displayed only if you selected to install the Account Tracking groups
of packages. On the Account Tracking page, fill in the following fields:

Connected Database: Specify the connected database application.

Synchronization Model: Specify the mode of data synchronization.

Creating a New Driver Object 37

38

413

4.1.4

NOTE: Ensure that you don’t change the setting that you selected earlier in the Package
Configuration Wizard. If you change it after installing the package in a driver object, make sure
that you change the SyncModel in the Publication Mode GCV.

Object Class: This field is populated based on your selection in the Synchronization Model.
Specify the table or view in the connected database for which account tracking is enabled. By
default, the value is usr.

Realm: Specify the name of the realm that uniquely identifies the location of user accounts in the
connected database. For example, mysql.indirect.usr, where MySQL is the database name
with the indirect data synchronization model, and user is the table or view in the connected
database for which account tracking is enabled.

22 Click Next.
23 Review the summary of tasks that will be completed to create the driver, then click Finish.

24 After you have installed the driver object, you must change the configuration for your
environment. Proceed to Section 4.1.3, “Configuring the Driver Object,” on page 38.

Configuring the Driver Object

After importing the packages and creating the driver object, you need to configure the driver to make
it operational. There are many settings that can help you customize and optimize the driver.
Although it is important for you to understand all of the settings, your first priority should be to
configure the driver parameters located on the Driver Configuration page. For information about the
driver parameters, see Chapter 5, “Configuring the JDBC Driver,” on page 41. After completing the
configuration tasks, continue with the next section, Deploying the Driver Object.

NOTE: If the connected system is MS SQL Server database and if you have chosen a direct
Synchronization Model option, ensure that you change the Key-Gen-Method option to Subscriber
Generated in the Subscriber channel.

Deploying the Driver Object

After the driver object is created in Designer, it must be deployed into the Identity Vault.
1 In Designer, open your project.

2 In the Modeler, right-click the driver icon m or the driver line, then select Live > Deploy.

3 If you are authenticated to the Identity Vault, skip to Step 5; otherwise, specify the following
information:

Host: Specify the IP address or DNS name of the server hosting the Identity Vault.
Username: Specify the DN of the user object used to authenticate to the Identity Vault.
Password: Specify the user’s password.

Click OK.

Read the deployment summary, then click Deploy.

Read the successful message, then click OK.

~N o 0o b~

Click Define Security Equivalence to assign rights to the driver object:

The driver object requires rights to objects within the Identity Vault. The Admin user object is
most often used to supply these rights. However, you might want to create a DriversUser (for
example) and assign security equivalence to that user. For receiving events from the Identity
Vault, ensure that driver object’s Security Equals DN has the following rights in the Identity Vault:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

4.1.5

4.2

Entry Rights: The rights to create entries in the Identity Vault.

Attributes Rights: The rights to modify the attributes in the Identity Vault.
7a Click Add, then browse to and select the object with the correct rights.
7b Click OK twice.

For more information about defining a Security Equivalent User in objects for drivers in the
Identity Vault, see “Establishing a Security Equivalent User” in the Identity Manager 4.0.2
Security Guide.

8 Click Exclude Administrative Roles to exclude users that should not be synchronized:

You should exclude any administrative User objects (for example, Admin and DriversUser) from
synchronization.

8a Click Add, then browse to and select the user object you want to exclude.
8b Click OK.
8c Repeat Step 8a and Step 8b for each object you want to exclude.
8d Click OK.
9 Click OK.

Starting the Driver Object

When a driver is created, it is stopped by default. To make the driver work, you must start the driver.
Identity Manager is an event-driven system, so after the driver is started, it won’t do anything until
an event occurs. You can use iManager or dxevent commands to start the driver.

To start the driver:

1 If you are using the Remote Loader with the driver, make sure the Remote Loader driver
instance is running.

For instructions, see “Starting the Remote Loader” in the Identity Manager 4.0.2 Remote Loader
Guide.

2 In Designer, open your project.

3 In the Modeler, right-click the driver icon m or the driver line, then select Live > Start Driver.
4 Continue with Section 4.2, “Activating the Driver,” on page 39.

Activating the Driver

If you created the driver in a driver set that has not been activated, you must activate the driver
within 90 days. Otherwise, the driver stops working.

If driver activation has expired, the following error message is displayed in the ndstrace window:

DirXML Log Event -------------------

Driver: \META-RHEL6\system\DriverSet\eDirDriver-BulkOperations

Channel: Subscriber

Status: Error

Message: Code(-9075) Shutting down because DirXML engine evaluation period
has expired. Activation is required for further use.

To use the driver, you must reactivate it.

For information on activation, refer to “Activating Novell Identity Manager Products” in the Identity
Manager 4.0.2 Integrated Installation Guide.

Creating a New Driver Object 39

https://www.netiq.com/documentation/idm402/idm_security/?page=/documentation/idm402/idm_security/data/front.html
https://www.netiq.com/documentation/idm402/idm_security/?page=/documentation/idm402/idm_security/data/front.html
https://www.netiq.com/documentation/idm402/pdfdoc/idm_remoteloader/idm_remoteloader.pdf#bs35pkr
https://www.netiq.com/documentation/idm402/pdfdoc/idm_remoteloader/idm_remoteloader.pdf#bookinfo
https://www.netiq.com/documentation/idm402/pdfdoc/idm_remoteloader/idm_remoteloader.pdf#bookinfo
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#bpo948h
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front
https://www.netiq.com/documentation/idm402/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front

4.3 JDBC Driver Settings

You can change the driver options to align with your connected database.The following table
summarizes the JDBC driver settings:

Table 4-1 JDBC Driver Settings

Setting Description

Driver name The name of the driver that you want to display in
the driver set.

Target database The database that the driver connects to.

Driver is local/remote Whether the driver runs locally or remotely on a
Remote Loader.

Synchronization model Whether the driver uses views to synchronize
directly to existing tables of arbitrary structure or
synchronize to intermediate staging tables of a
particular structure.

Third-party JDBC The class of the third-party JDBC file specific to the
implementation database being synchronized with Identity
Manager. For more information, see
Section 13.3.3, “JDBC Driver Class Names,” on
page 156.

Data flow Whether the authoritative source of data is the
database, Identity Manager, or bidirectional (both
the database and Identity Manager).

Database host IP address The IP address of the database host.

Database port The port that the driver shim uses to communicate
with the database. If you don't provide a port
number, the Driver Configuration Wizard provides a
default port number for the database that you
selected at install time.

User container DN The distinguished name (complete context) of the
container where the database users are published.
For example: data\company\users.

Group container DN The distinguished name (complete context) of the
container where the database groups are
published. For example: data\company\groups.

Publication mode Whether publication is triggered (default) or
triggerless.

40 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

5 Configuring the JDBC Driver

5.1

¢ Section 5.1, “Smart Configuration,” on page 41

¢ Section 5.2, “Configuration Parameters,” on page 43

¢ Section 5.3, “Driver Parameters,” on page 45

¢ Section 5.4, “Subscription Parameters,” on page 67

¢ Section 5.5, “Publication Parameters,” on page 75

¢ Section 5.6, “Trace Levels,” on page 84

¢ Section 5.7, “Configuring Third-Party JDBC Drivers,” on page 85

¢ Section 5.8, “Configuring jTDS Support for the JDBC Driver,” on page 86

Smart Configuration

The JDBC driver can recognize the supported set of third-party JDBC drivers and databases. Also, the
driver can dynamically and automatically configure the majority of driver compatibility parameters
so you don’t need to understand and explicitly set such parameters.

These features are implemented via the following four types of XML descriptor files, which describe
a third-party JDBC driver or database to the JDBC driver.

¢ Third-party JDBC driver
¢ Third-party JDBC driver import
¢ Database

¢ Database import

In addition to predefined descriptor files, you can create custom descriptor files for a database or
third-party JDBC driver.

¢ Section 5.1.1, “Specifying Custom Descriptor Files,” on page 42

¢ Section 5.1.2, “Reserved Filenames for Descriptor Files,” on page 42

¢ Section 5.1.3, “Import Descriptor Files,” on page 42

¢ Section 5.1.4, “Descriptor File Locations,” on page 42

¢ Section 5.1.5, “Precedence,” on page 43

¢ Section 5.1.6, “Custom Descriptor Best Practices,” on page 43

¢ Section 5.1.7, “Descriptor File DTDs,” on page 43

Configuring the JDBC Driver 41

5.1.1 Specifying Custom Descriptor Files

You can force the driver to use a custom descriptor file for a database or third-party JDBC driver. To
specify a custom database descriptor file, see “Database Descriptor Filename” on page 58. To specify
a custom third-party driver descriptor file, see “JDBC Driver Descriptor Filename” on page 58. This is
useful when multiple descriptor files exist for the same database or third-party JDBC driver. For the
custom descriptor file to take effect, set the driver parameter as the jdbc-driver-descriptor.

5.1.2 Reserved Filenames for Descriptor Files

Descriptor filenames that ship with the driver begin with the underscore character (_). Such
filenames are reserved to ensure that descriptor files that ship with the driver do not conflict with
custom descriptor files. Obviously, custom descriptor filenames must not begin with the underscore
character.

5.1.3 Import Descriptor Files

Import descriptor files allow multiple, nonimport descriptor files to share content. This functionality
reduces the size of nonimport descriptor files, minimizes the need for repetition of content, and
increases maintainability. Import files cannot be imported across major types. That is, JDBC driver
descriptors cannot import database imports, and database descriptors cannot import JDBC driver
imports.

Furthermore, custom nonimport descriptors cannot import reserved descriptor imports. For
example, if a custom third-party JDBC driver descriptor file named custom.xml tries to import a
reserved third-party JDBC driver descriptor named _reserved.xml, an error is issued. These
limitations accomplish the following:

¢ Ensure that no dependencies exist between reserved and custom import files

+ Allow extension of existing reserved descriptor files in later versions of the driver

5.1.4 Descriptor File Locations

Descriptor files must be located in a . jar file whose name begins with the prefix “jdbc” (case-
insensitive) and resides in the runtime classpath.

The following table identifies where to place descriptors within a descriptor . jar file:

Table 5-1 Where to Place Descriptors

Descriptor Type Directory Path

Third-party JDBC driver com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver

Third-party JDBC driver import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver/import

Database com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db

Database import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db/import

42 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

5.15

5.1.6

5.1.7

5.2

Reserved descriptor files are located in the JDBCConfig. jar file. To ensure that these reserved files

are not overwritten when the JDBC driver is updated, place custom descriptors in a different . jar
file.

Precedence

Parameters explicitly specified through a management console, such as iManager, always have
precedence over parameters specified through descriptor files. Descriptor file parameters only take
effect when a parameter is not set through the management console.

Parameters and other information specified in a nonimportable descriptor file always have
precedence over information specified in descriptor import files. If a parameter or other information
is duplicated within a descriptor file, the first instance of the parameter or information takes
precedence over subsequent instances.

Among import files, precedence is determined by import order. Import files declared earlier in the
import list take precedence over those that follow.

Custom Descriptor Best Practices

¢ Do not begin custom descriptor files name with the underscore (_) character.

¢ Place custom descriptor files in a jar file other than JDBCConfig. jar, and begin the filename
with the prefix “jdbc” (case-insensitive).

¢ Do not use custom descriptors to import reserved import files (filenames that begin with the
underscore character).

Descriptor File DTDs

The following sections contain DTDs for all descriptor file types. These DTDs can help you construct
custom descriptor files.

Table 5-2 Where to Find Descriptor DTDs

Descriptor Type Appendix

Third-party JDBC driver Appendix H, “Third-Party JDBC Driver Descriptor DTD,” on page 207

Third-party JDBC driver Appendix |, “Third-Party JDBC Driver Descriptor Import DTD,” on page 209
import

Database Appendix J, “Database Descriptor DTD,” on page 211

Database import Appendix K, “Database Descriptor Import DTD,” on page 213

Configuration Parameters

¢ Section 5.2.1, “Viewing Driver Parameters,” on page 44
¢ Section 5.2.2, “Deprecated Parameters,” on page 44

¢ Section 5.2.3, “Authentication Parameters,” on page 44

Configuring the JDBC Driver 43

44

5.2.1

5.2.2

5.2.3

Viewing Driver Parameters

1 IniManager, click Identity Manager > Identity Manager Overview.
2 Locate the driver set containing the driver, then click the driver’s icon and edit properties.

iManager displays the driver’s configuration parameters.
Deprecated Parameters
The following parameters have been deprecated since version 1.6:

Table 5-3 Deprecated Parameters

Tag Name Justification

connection-tester-class The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however,
discouraged.

S

connection-test-stmt The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however,
discouraged.

S

reconnect-interval The reconnect interval is now fixed at 30 seconds on both channels.

Authentication Parameters

After you import the driver, provide authentication information for the target database.

¢ “Authentication ID” on page 44
¢ “Authentication Context” on page 45

¢ “Application Password” on page 45

Authentication ID

An Authentication ID is the name of the driver’s database user/login account.The installation SQL
script for each database provides information on the database privileges required for this account to
authenticate to a supported database. The scripts are located in the install-
dir\DirxXMLUtilities\jdbc\sql\abbreviated-database-name\install directory.

This value can be referenced in the Connection Properties parameter value via the token
{susername}. See “Connection Properties” on page 56.

The default value for the sample configuration is idm.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

5.3

Authentication Context

The authentication context is the JDBC URL of the target database.

URL format and content are proprietary. They differ among third-party JDBC drivers. However, they
have some similarities in content. Each URL, whatever the format, usually includes an IP address or
DNS name, port number, and a database identifier. For the exact syntax and the content requirements
of your driver, consult your third-party driver documentation.

For a list of JDBC URL syntaxes for supported third-party drivers, see “JDBC URL Syntaxes” on
page 155.

IMPORTANT: Changing anything in this value other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

Application Password

An application password is the password for the driver’s database user/login account. The default
value for the sample driver configuration is novell.

This value can be referenced in the Connection Properties parameter value via the token
{spassword}. See “Connection Properties” on page 56.

Driver Parameters

The Driver Parameters section lets you configure the driver-specific parameters. When you change
driver parameters, you tune driver behavior to align with your network environment. The following
table summarizes all driver-level parameters and their properties:

Table 5-4 Driver Parameters and Properties

Default

Display Name Tag Name Sample Value value Required

Third-Party JDBC jdbc-class oracle.jdbc.driver.OracleDri (none) yes

Driver Class Name ver

Preserve white space preserve- yes no yes

in SQL statements? sglwhitespace

Synchronization Filter sync-filter schema (include by (none) no
schema membership)

Time Syntax time-syntax 1 (integer) 1 (integer) no

State directory state-dir . (current directory) . (current no

directory)

Use Minimal Number of use-single-connection 0 (no) (dynamic®) ho

Connections?

Connection connection-init USE idm (none) no

Initialization

Statements

Configuring the JDBC Driver 45

46

Default

Display Name Tag Name Sample Value Value Required
Connection Properties connection-properties ~ USER={$username}; (dynamic®) ho
PASSWORD={$password}
JDBC Driver Descriptor jdbc-driver-descriptor ora_client_thin.xml (none) no
Filename
Database Descriptor database-descriptor ora_10g.xml (none) no
Filename
Enable Referential enable-refs 1 (yes) 1 (yes) no
Attribute Support?
Enable Meta-ldentifier ~enable-meta-identifiers 1 (yes) 1 (yes) no
Support?
Use Manual use-manual- 1 (yes) (dynamic?) ho
Transactions? transactions
Transaction Isolation transaction-isolation- read committed (dynamic®) no
Level level
Reuse Statements? reuse-statements 1 (reuse) (dynamic®) ~ no
Number of Returned handle-stmt-results one (dynamic®) no
Result Sets
Enable Statement- enable-locking 1 (yes) 0 (no) no
Level Locking?
Force Username Case force-username-case upper (to uppercase) (none) no
Left Outer Join left-outer-join-operator (+) (dynamic®) ho
Operator
Retrieve Minimal minimal-metadata 0 (no) (dynamic®) ho
Metadata
Function Return function-return-method result set (dynamic®) ho
Method
Supports Schemas in ~ supports-schemas-in- 1 (yes) (dynamic3) no
Metadata Retrieval? metadata-retrieval
Sort Column Names By column-position- com.novell.nds.dirxml.drive (gynamic3) no
comparator r.jdbc.util.config.comp.Strin
gByteComparator
(hexadecimal value)
Schema Name sync-schema indirect (none) yesl
Include Filter include-table-filter IDM_.* (none) no
Expression
Exclude Filter exclude-table-filter BIN\$.{22}==\$0 (none) no
Expression
Table/View Names sync-tables usr (none) yesl
Lock Statement lock-generator-class no

Generator Class

com.novell.nds.dirxml.drive (gynamic®)

r.jdbc.db.lock.OraLockGen

erator

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

53.1

! One of these mutually exclusive parameters must be present if the Synchronization Filter parameter
is not present. See “Synchronization Filter” on page 51. % This default is derived dynamically at

runtime from descriptor files and database metadata. ® This default is derived dynamically from
descriptor files at runtime.

Driver parameters fall into the following subcategories:

¢ Section 5.3.1, “Uncategorized Parameters,” on page 47
¢ Section 5.3.2, “Database Scoping Parameters,” on page 51
¢ Section 5.3.3, “Connectivity Parameters,” on page 55

¢ Section 5.3.4, “Compatibility Parameters,” on page 57

Uncategorized Parameters

¢ “Third-Party JDBC Driver Class Name” on page 47
¢ “Time Syntax” on page 47
¢ “State Directory” on page 49

Third-Party JDBC Driver Class Name

This parameter is the fully-qualified Java class name of your third-party JDBC driver.

The following table lists the properties of this parameter:

Table 5-5 Third-Party JDBC Driver Class Name: Properties

Property Value

Tag Name jdbc-class

Required? yes

Case-Sensitive? yes

Sample Value oracle.jdbc.driver.OracleDriver
Default Value (none)

For a list of supported third-party JDBC driver classnames, see “JDBC Driver Class Names” on
page 156.

Time Syntax

The Time Syntax parameter specifies the format of time-related data types that the driver returns.
The format can be any of the following options:

¢ “Return Database Time, Date, and Timestamp Values as 32-Bit Integers” on page 48

¢ “Return Database Time, Date, and Timestamp Values as Canonical Strings” on page 48

¢ “Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():;java.lang.String” on page 48

Configuring the JDBC Driver a7

48

Return Database Time, Date, and Timestamp Values as 32-Bit Integers
This is the default.

eDirectory Time and Timestamp syntaxes are composed of unsigned, 32-bit integers that express the
number of whole seconds that have elapsed since 12:00 a.m., January 1st, 1970 UTC. The maximum
range of this data type is approximately 136 years. When interpreted as unsigned integers (as
originally intended), these syntaxes are capable of expressing dates and times to the second in the
range of 1970 to 2106. When interpreted as a signed integer, these syntaxes are capable of expressing
dates and times to the second in the range of 1901 to 2038.

This option has two problems:

¢ Identity Vault Time and Timestamp syntaxes cannot express as large a date range as database
Date or Timestamp syntaxes.

¢ Identity Vault Time and Timestamp syntaxes are granular to the second. Database Timestamp
syntaxes are often granular to the nanosecond.

The second and third options overcome these two limitations.

Map the database Time, Date, and Timestamp values to eDirectory attributes of type Time or
Timestamp.

Return Database Time, Date, and Timestamp Values as Canonical Strings

The following table shows abstract database data types and their corresponding canonical string
representations:

Table 5-6 Database Types and Canonical String Representations

JDBC Data Type Canonical String Formatl
java.sgl.Time HHMMSS

java.sgl.Date CCYYMMDD

java.sgl.Timestamp CCYYMMDDHHMMSSNNNNNNNNN

C = century, Y = year, M = month D = day, H = hour, M= minute, S = second, N = nano

These fixed-length formats collate in chronological order on any platform in any locale. Even though
the precision of nanoseconds varies by database, the length of Timestamps does not.

Map the database Time, Date, and Timestamp values to attributes of type Numeric String.
Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String

The following table shows abstract database data types and their corresponding Java String
representations:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Table 5-7 Database Types and Java String Formats

JDBC Data Type Java String Formatl
java.sql.Time hh:mm:ss

java.sgl.Date yyyy-mm-dd
java.sgl.Timestamp yyyy-mm-dd hh:mm:ss fffffffff

y= year, m= month, d= day, h= hour, m= minute, s= second, f=nano

These fixed-length formats collate in chronological order on any platform in any locale. The precision
of nanoseconds, and therefore the length of Timestamps, varies by database.

Map the database Time, Date, and Timestamp values to attributes of type Case Ignore/Case Exact
String.

The following table lists the properties of the Time Syntax parameter:

Table 5-8 Time Syntax: Properties

Property Value

Tag Name time-syntax

Required? no

Default Value 1 (integer)

Legal Values 1 (integer) 2 (canonical string) 3 (java string)
Schema-Dependent? True

State Directory

The State Directory parameter specifies where a driver instance should store state data. State data is
currently used for triggerless publication. See “Triggerless Publication Parameters” on page 80. State
data might be used to store additional state information in the future.

Each driver instance has two state files. State filenames follow the formats jdbc driver-instance-
guid.db and jdbc_driver-instance-guid.lg. For example, jdbc_bd2a3dds5-d571-4171-al195-
28869577b87e.db and jdbc_bd2a3dd5-d571-4171-a195-28869577b87e. 1g are state filenames.

State files are named to be unique. These names are not intuitive. The names begin with jdbc_ and
end in .1g or .db. The rest of the filename is the driver's GUID value (that is why the filename is
unique) which can be looked up by using a directory browser as the GUID attribute of the driver
object.

Defunct state files (those belonging to deleted drivers) in the state directory are deleted each time a
driver instance with the same state directory is started.

Configuring the JDBC Driver 49

50

Changes That Can Force Triggerless Publisher Resynchronization

If you delete state files, the triggerless publisher will build new state files by resynchronizing. If you
move the JDBC driver without moving the state files, the triggerless publisher builds new state files
by resynchronizing. Changing to and from the Remote Loader is a move. Therefore, if you move the
JDBC driver using triggerless publication and want to avoid a full resync, also move all jdbc_*.1g
and jdbc_ *.db files in the state directory.

If more than two files exist in the specified state directory, you must look up the GUID to know which
files belong to the driver instance being moved. To identify a driver instance’s state files, you can use
DSTrace. For convenience, the Identity Manager engine traces each driver's GUID in DSTrace on
startup.

If no value is provided for the state directory parameter, or the value is a period (.), the state directory
is the current directory. The current directory depends upon the following;:

¢ The platform that the driver is running on

¢ Whether the driver is running locally or remotely

When a process is started, a default directory in the file system is assigned to it. The default directory
is the current directory. If you don't supply a value, the default State Directory is the current directory
(the one that the process is running in).

Table 5-9 Default Directories

Platform or Environment Default Directory

Linux and Solaris, for the Remote Loader /opt/novell/dirxml

Linux and Solaris, for Identity Manager (local; not /var/opt/novell/eDirectory/data/dib/
on the Remote Loader)

Windows, for the Remote Loader novell\remoteloader

Windows, for Identity Manager (local; not on the c:\novell\nds\dibfiles
Remote Loader)

The current directory might be different for a custom installation.

No data is lost when resynchronization occurs, although additional data might remain. For example,
because deletes are not captured, users that were deleted in the database during the move will not be
disabled/deleted (depending upon the policy).

Moving the driver is not to be undertaken whimsically. As a rule of thumb, don't move the driver
unless you must do so.

Properties

The following table lists the properties of the State Directory parameter:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

5.3.2

Table 5-10 State Directory: Properties

Property Value

Tag Name state-dir

Required? no

Case-Sensitive? platform-dependent
Sample Value c:\novel\nds\DIBFiles
Default Value . (current directory)

Database Scoping Parameters

¢ “Synchronization Filter” on page 51

¢ “Schema Name” on page 53

¢ “Include Filter Expression” on page 54
¢ “Exclude Filter Expression” on page 54

¢ “Table/View Names” on page 54

Synchronization Filter

The Synchronization Filter parameter determines which database objects, such as tables and views,
are members of the synchronization schema (the set of tables/views visible to the driver at runtime).
With the addition of this parameter, the driver can now run in two modes: schema-aware or schema-
unaware.

Schema-Unaware Mode

When the Synchronization Filter parameter is present and set to empty (exclude all tables/views), the
driver is schema-unaware. It does not retrieve table/view metadata on startup. Therefore, no
metadata methods are required. See Appendix F, “java.sql.DatabaseMetaData Methods,” on

page 199.

When it is schema-unaware, the synchronization schema can be empty. Both the Schema Name and
Sync Tables/Views parameters are completely ignored. Neither is required. Both can be absent,
present, valued or valueless. See “Schema Name” on page 53 and “Table/View Names” on page 54.

In schema-unaware mode, the driver acts as a passthrough agent for embedded SQL. In this state,
standard XDS events (for example, Add, Modify, and Delete) are ignored. See Chapter 11,
“Embedded SQL Statements in XDS Events,” on page 117. Also, triggered or triggerless publication
no longer work.

Schema-Aware Mode

When the Synchronization Filter parameter is not present or set to a value other than empty (exclude
all tables/views), the driver is schema-aware. It retrieves table/view metadata on a limited number of
tables/views to facilitate data synchronization. You can cache metadata on all tables/views owned by
a single database user (include by schema membership), or cache metadata on an explicit list of table/

Configuring the JDBC Driver 51

52

view names (include by table/view name). When schema-aware, the driver retrieves database table/
view metadata on startup. For a list of required metadata methods, see Appendix F,
“java.sql.DatabaseMetaData Methods,” on page 199.

When schema-aware, parameter Schema Name or Table/View Names must be present and have a
value. Because these two parameters are mutually exclusive, only one parameter can have a value.
See “Schema Name” on page 53 and “Table/View Names” on page 54.

The following table lists the parameters that require the driver to be schema-aware. When the driver
is schema-unaware, these parameters do not have any effect on driver behavior.

Table 5-11 Schema-Dependent Parameters

Parameter

Lock Statement Generator Class
Enable Referential Attribute Support?
Enable Meta-Identifier Support?

Left Outer Join Operator

Retrieve Minimal Metadata

Supports Schemas in Metadata Retrieval?
Sort Column Names By

Disable Statement-Level Locking
Check Update Counts?

Add Default Values on Insert?
Generation/Retrieval Method (Table-Global)
Retrieval Timing (Table-Global)
Retrieval Timing

Disable Publisher?

Disable Statement-Level Locking?
Publication Mode

Enable Future Event Processing?
Event Log Table Name

Delete Processed Rows?

Allow Loopback?

Startup Option

Polling Interval (In Seconds)
Publication Time of Day

Post Polling Statements

Batch Size

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

The following table lists the properties of the Synchronization Filter parameter:

Table 5-12 Synchronization Filter: Properties

Property Value

Tag Name sync-filter

Required? no

Case-Sensitive? no

Sample Value list

Legal Values empty (exclude all tables/views), schema (include by schema membership),

list (include by table/view name)

Default Value: (none)

Schema Name

The Schema Name parameter identifies the database schema being synchronized. A database schema
is analogous to the name of the owner of the tables or views being synchronized. For example, to
synchronize two tables, usr and grp, each belonging to database user idm, you enter idm as this
parameter’s value. For more information about the Schema Name use cases, see Section C.2, “Schema
Name Use Cases,” on page 189.

When using this parameter instead of Table/View Names, names of database objects are implicitly
schema-qualified by the driver. As such, parameters referencing stored procedure, function, or table
names do not need to be schema-qualified unless they reside in a schema other than the one specified
here. In particular, Method and Timing (Table-Local) and Event Log Table Name are affected. See
“Table/View Names” on page 54, “Method and Timing (Table-Local)” on page 72, and “Event Log
Table Name” on page 79.

The following table lists the properties of the Schema Name parameter:

Table 5-13 Schema Name: Properties

Property Value

Tag Name sync-schema

Required? yes

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 145.
Sample Value indirect

Default Value: (none)

When the Schema Name parameter is used without the Synchronization Filter parameter, the Table/
View Names parameter must be left empty or omitted from a configuration. See “Synchronization
Filter” on page 51 and “Table/View Names” on page 54.

Changing the value of the Schema Name parameter forces a resync of all objects when triggerless
publication is used.

Configuring the JDBC Driver 53

Include Filter Expression

The Include Filter Expression parameter is only operative when the Schema Name parameter is used.
See “Schema Name” on page 53.

The following table lists the properties of the Include Filter Expression parameter:

Table 5-14 Include Filter Expression: Properties

Property Value

Tag Name include-table-filter

Required? no

Case-Sensitive? yes

Sample Value idm_.* (all table/view names starting with “idm_")
Default Value (none)

Legal Values (any legal Java regular expression)

Exclude Filter Expression

This parameter is only operative when the Schema Name parameter is used. See “Schema Name” on
page 53.

The following table lists the properties of the Exclude Filter Expression parameter:

Table 5-15 Exclude Filter Expression: Properties

Property Value

Tag Name exclude-table-filter

Required? no

Case-Sensitive? yes

Sample Value bin.* (all table/view names starting with “bin”)
Default Value (none)

Legal Values (any legal Java regular expression)

Table/View Names

The Table/View Names parameter allows you to create a logical database schema by listing the names
of the logical database classes to synchronize. Logical database class names are the names of parent
tables and views. It is incorrect to list child table names.

This parameter is particularly useful for synchronizing with databases that do not support the
concept of schema, such as MySQL, or when a database schema contains a large number of tables or
views of which only a few are of interest. Reducing the number of table/view definitions cached by
the driver can shorten startup time as well as reduce runtime memory utilization.

54 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

5.3.3

When using this parameter instead of Schema Name, you probably need to schema-qualify other
parameters that reference stored procedure, function, or table names. In particular, the Method and
Timing (Table-Local) and Event Log Table Name parameters are affected. See “Schema Name” on
page 53, “Method and Timing (Table-Local)” on page 72 and “Event Log Table Name” on page 79.

The following table lists the properties of the Table/View Names parameter:

Table 5-16 Table/View Names: Properties

Property Value

Tag Name sync-tables

Required? yes

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 145.
Delimiters semicolon, white space, comma

Sample Value indirect.usr; indirect.grp

Default Value (none)

When this parameter is used without the Synchronization Filter parameter, the Schema Name
parameter must be left empty or omitted from a configuration. See “Synchronization Filter” on
page 51 and “Schema Name” on page 53.

Changing anything in the Table/View Name parameter other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

Connectivity Parameters

¢ “Use Minimal Number of Connections?” on page 55
¢ “Connection Initialization Statements” on page 56

¢ “Connection Properties” on page 56

Use Minimal Number of Connections?

The Use Minimal Number of Connections? parameter specifies whether the driver should use two
instead of three database connections.

By default, the driver uses three connections: one for subscription, and two for publication. The
Publisher channel uses one of its two connections to query for events and the other to facilitate query-
back operations.

When this parameter is set to Boolean True, the number of required database connections is reduced
to two. One connection is shared between the Subscriber and Publisher channels. It is used to process
subscription and publication query-back events. The other is used to query for publication events.

In previous versions, the driver was able to support bidirectional synchronization by using a single
connection. The publication algorithm was redesigned to increase performance, enable support for
future event processing, and to overcome limitations of the previous algorithm at the expense of
requiring an additional connection.

Configuring the JDBC Driver 55

56

Table 5-17 Use Minimal Number of Connections?: Properties

Property Value

Tag Name use-single-connection

Required? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is Boolean False.

Setting this parameter to Boolean True reduces performance.

Connection Initialization Statements

The Connection Initialization Statements parameter specifies what SQL statements, if any, should be
executed immediately after connecting to the target database. Connection initialization statements
are useful for changing database contexts and setting session properties. These statements are
executed each time the driver, irrespective of channel, connects or reconnects to the target database.

The following table lists the properties of this parameter:

Table 5-18 Connection Initialization Statements: Properties

Property Value

Tag Name connection-init

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 145.
Delimiters semicolon

Sample Value USE idm; SET CHAINED OFF

Default Value (none)

Schema-Dependent False

Connection Properties

The Connection Properties parameter specifies authentication properties. This parameter is useful for
specifying properties that cannot be set via the JDBC URL specified in the Authentication Context
parameter. See “Authentication Context” on page 45.

The primary purpose of this parameter is to enable encrypted transport for third-party JDBC drivers.
For a list of relevant connection properties, see “Sybase Adaptive Server Enterprise JConnect JDBC
Driver” on page 166 and “Oracle Thin Client JDBC Driver” on page 162.

Connection properties are specified as key-value pairs. The key is specified as the value to the left of
the “=" character. The value is the value to the right of the “=" character. You can specify multiple key-

"

value pairs, but each pair must be delimited by the “;” character.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

5.3.4

When you use the Connection Properties parameter, authentication information can be passed via
the JDBC URL specified in the Authentication Context parameter or here. See “Authentication
Context” on page 45.

If specified as connection properties, value tokens can be used as placeholders for the database
username specified in the Authentication ID parameter and the password specified in the
Application Password parameter. See “Authentication ID” on page 44 and “Application Password”
on page 45. For username, the token is { Susername}. For password, the token is {$password}.

The following table lists the properties of this parameter:

Table 5-19 Connection Properties: Properties

Property Value

Tag Name connection-properties

Required? no

Case-Sensitive? third-party JDBC driver-dependent

Delimiters semicolon

Sample Value user={$username}; password={$password}; oracle.jdbc.defaultNChar=true
Default Value (none)

Schema-Dependent False

Compatibility Parameters

¢ “JDBC Driver Descriptor Filename” on page 58

¢ “Database Descriptor Filename” on page 58

¢ “Use Manual Transactions?” on page 59

¢ “Transaction Isolation Level” on page 59

¢ “Reuse Statements?” on page 60

¢ “Number of Returned Result Sets” on page 61

¢ “Enable Statement-Level Locking?” on page 61

¢ “Lock Statement Generator Class” on page 62

¢ “Enable Referential Attribute Support?” on page 62
¢ “Enable Meta-Identifier Support?” on page 63

¢ “Force Username Case” on page 63

¢ “Left Outer Join Operator” on page 64

¢ “Retrieve Minimal Metadata” on page 64

¢ “Function Return Method” on page 65

¢ “Supports Schemas in Metadata Retrieval?” on page 65
¢ “Sort Column Names By” on page 66

¢ “Preserve white space in SQL statements?” on page 67

Configuring the JDBC Driver

57

58

JDBC Driver Descriptor Filename

The JDBC Driver Descriptor Filename parameter specifies the third-party JDBC descriptor file to use.
Descriptor file names must not be prefixed with the underscore character (for example,
_mysqgl_jdriver.xml) because such filenames are reserved. Place descriptor files in a jar file
beginning with the case-insensitive prefix jdbc’ (for example jdbcCustomConfig. jar) in the jar file's
com/novell/nds/dirxml/driver/jdbc/db/descriptor/db directory.

The following table lists the properties of this parameter:

Table 5-20 JDBC Driver Descriptor Filename: Properties

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_jdbc_driver_descriptor.xml
Default Value (none)

Schema-Dependent False

Database Descriptor Filename

The Database Descriptor Filename parameter specifies the database descriptor file to use. Do not use
the underscore character in prefixes to Descriptor filenames (for example, mysgl.xml). Such names
are reserved. Place Descriptor files in a jar file beginning with the case-insensitive prefix “jdbc” (for
example, JDBCCustomConfig.jar). Also, place Descriptor files in the jar file’s com/novell/nds/
dirxml/driver/jdbc/db/descriptor/db directory.

The following table lists the properties of this parameter:

Table 5-21 Database Descriptor Filename: Properties

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_database_descriptor.xml
Default Value (none)

Schema-Dependent False

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Use Manual Transactions?

The Use Manual Transactions? parameter specifies whether to use manual or user-defined
transactions.

This parameter is primarily used to enable interoperability with MySQL MyISAM table types, which
do not support transactions.

When set to Boolean True, the driver uses manual transactions. When set to Boolean False, each
statement executed by the driver is executed autonomously (automatically).

The following table lists the properties of this parameter:

Table 5-22 Use Manual Transactions?: Properties

Property Value

Tag Name use-manual-transactions
Required? no

Case-Sensitive? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files and database metadata at
runtime.

To ensure data integrity, set this parameter to Boolean True whenever possible.

Transaction Isolation Level

The Transaction Isolation Level parameter sets the transaction isolation level for connections that the
driver uses. Six values exist:

¢ unsupported

¢ none

¢ read uncommitted

¢ read committed

¢ repeatable read

¢ serializable

Five of the values correspond to the public constants defined in the java.sql Interface Connection
(http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

Because some third-party drivers do not support setting a connection’s transaction isolation level to
none, the driver also supports the additional non-standardized value of unsupported. PostgreSQL
online documentation (http://www.postgresql.org/docs/current/static/transaction-iso.html) has one
of the better, concise primers on what each isolation level actually means.

Configuring the JDBC Driver 59

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://www.postgresql.org/docs/current/static/transaction-iso.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

60

IMPORTANT: The list of supported isolation levels varies by database. For a list of supported
transaction isolation levels for supported databases, see “Supported Transaction Isolation Levels” on
page 145.

We recommend using a transaction isolation level of read committed because it is the minimum
isolation level that prevents the driver from seeing uncommitted changes (dirty reads).

The following table lists the properties of this parameter:

Table 5-23 Transaction Isolation Level: Properties

Property Value

Tag Name transaction-isolation-level

Required? no

Case-Sensitive? no

Default Value (dynamic)

Legal Values unsupported, none, read uncommitted, read committed, repeatable

read, serializable

Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is read committed.

Reuse Statements?

The Reuse Statements? parameter specifies whether one or more java.sql.Statement items are active
at a time on a given connection. See java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/Statement.html).

This parameter is primarily used to enable interoperability with Microsoft SQL Server 2000 Driver for
JDBC.

When set to Boolean True, the driver allocates a Java SQL Statement once and then reuses it. When set
to Boolean False, the driver allocates/deallocates statement objects each time they are used, ensuring
that no more than one statement is active at a time on a given connection.

The following table lists the properties of this parameter:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

Table 5-24 Reuse Statements?: Properties

Property Value

Tag Name reuse-statements

Required? no

Case-Sensitive? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

The Default Vault is derived dynamically from descriptor files at runtime. Otherwise, the default
value is Boolean True.

Setting this parameter to Boolean False degrades performance.

Number of Returned Result Sets

The Number of Returned Result Sets parameter specifies how many java.sql.Result objects can be
returned from an arbitrary SQL statement. See java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/
api/java/sql/ResultSet.html).

This parameter is primarily used to avoid infinite loop conditions in “Oracle Thin Client JDBC
Driver” on page 162 when evaluating the results of arbitrary SQL statements.

The following table lists the properties of this parameter:

Table 5-25 Number of Returned Result Sets: Properties

Property Value

Tag Name handle-stmt-results

Required? no

Sample Value one

Default Value (dynamic)

Legal Values none, no (none) single, one (one) multiple, many, yes (multiple)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is multiple, many, or yes.

Enable Statement-Level Locking?

The Enable Statement-Level Locking? parameter specifies whether the driver explicitly locks
database resources before executing SQL statements.

The following table lists the properties of this parameter:

Configuring the JDBC Driver 61

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

62

Table 5-26 Enable Statement-Level Locking?: Properties

Property Value

Tag Name enable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Lock Statement Generator Class

The Lock Statement Generator Class parameter specifies which DBLockStatementGenerator
implementation to use to generate the SQL statements necessary to explicitly lock database resources
for a pending SQL statement. Information on the DBLockStatementGenerator interface is in the Java
documents that ship with the driver.

The following table lists the properties of this parameter:

Table 5-27 Lock Statement Generator Class: Properties

Property Value

Tag Name lock-generator-class

Required? no

Sample Value com.novell.nds.dirxml.driver.jdbc.db.lock.OraLockGenerator
Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)

Schema-Dependent True

Th Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is com.novell.nds.dirxml.driver.jdbc.db.lock.DBLockGenerator.

Enable Referential Attribute Support?

The Enable Referential Attribute Support? parameter toggles whether the driver recognizes foreign
key constraints between logical database classes. These are used to denote containment. Foreign key
constraints between parent and child tables within a logical database class are unaffected.

When set to Boolean True, foreign key columns are interpreted as referential. When set to Boolean
False, foreign key columns are interpreted as non-referential.

The primary purpose of this parameter is to ensure backward compatibility with the 1.0 version of
the driver. For 1.0 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Table 5-28 Enable Referential Attribute Support?: Properties

Property Value

Tag Name enable-refs

Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Enable Meta-ldentifier Support?

The Enable Meta-Identifier Support? parameter toggles whether the driver interprets view column
name prefixes such as pk_ and fk_ strictly as metadata. When interpreted as metadata, such prefixes
are not considered part of the view column name.

For example, when meta-identifier support is enabled, column pk_idu has an effective column name
of idu, prohibiting the existence of another column with the same effective name in the same view.
When meta-identifier support is disabled, column pk_idu has the effective column name of pk_idu,
allowing the existence of another column named idu. Furthermore, when meta-identifier support is
enabled, a view with a primary key named pk_idu would conflict with a table having a primary key
column named idu. When meta-identifier support is disabled, they would not conflict.

When set to Boolean True, view column prefixes are interpreted as metadata. When set to Boolean
False, view column name prefixes are interpreted as part of the column name proper.

The primary purpose of this parameter is to ensure backward compatibility with the 1.5 version of
the driver. For 1.5 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Table 5-29 Enable Meta-Identifier Support?: Properties

Property Value

Tag Name enable-meta-identifiers
Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Force Username Case

The Force Username Case parameter changes the case of the driver’s username used to authenticate
to the target database.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 158.

The following table lists the properties of this parameter:

Configuring the JDBC Driver 63

64

Table 5-30 Force Username Case: Properties

Property Value
Tag Name force-username-case
Required? no

Default Value

Legal Values

Schema-Dependent

(don’t force)

lower (to lowercase), mixed (to mixed case), upper (to uppercase),
don't force (default)

False

Left Outer Join Operator

The Left Outer Join Operator parameter specifies the left outer join operator used in the triggerless
publication query. It might be used for other purposes in the future.

The following table lists the properties of this parameter:

Table 5-31 Left Outer Join Operator: Properties

Property Value

Tag Name left-outer-join-operator
Required? no

Default Value (dynamic)

Legal Values

Schema-Dependent

*= (+) LEFT OUTER JOIN

True

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is LEFT OUTER JOIN.

Retrieve Minimal Metadata

When set to Boolean True, the driver calls only required metadata methods. When set to Boolean
False, the driver calls required and optional metadata methods. For a list of required and optional
metadata methods, refer to Appendix F, “java.sql.DatabaseMetaData Methods,” on page 199.
Optional metadata methods are required for multivalue and referential attribute synchronization.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Table 5-32 Retrieve Minimal Metadata: Properties

Property Value

Tag Name minimal-metadata

Required? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is Boolean False.

Setting this value to Boolean True improves startup time and third-party JDBC driver compatibility at
the expense of functionality.

Function Return Method

The Function Return Method parameter specifies how data is retrieved from database functions.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC driver.
See “Informix JDBC Driver” on page 158.

When set to result set, function results are retrieved through a result set. When set to return
value, the function result is retrieved as a single, scalar return value.

Table 5-33 Function Return Method: Properties

Property Value

Tag Name function-return-method

Required? no

Default Value (dynamic)

Legal Values result set, return value (scalar return value)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime.

Supports Schemas in Metadata Retrieval?

The Supports Schemas in Metadata Retrieval? parameter specifies whether schema names should be
used when retrieving database metadata.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 158.

When set to Boolean True, schema names are used. When set to Boolean False, they are not.

Configuring the JDBC Driver 65

66

Table 5-34 Supports Schemas in Metadata Retrieval?: Properties

Property Value

Tag Name supports-schemas-in-metadata-retrieval
Required? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is Boolean True.

Sort Column Names By

The Sort Column Names By parameter specifies how column position is to be determined for legacy
databases that do not support sorting by column names.

The primary purpose of this parameter is to enable interoperability with legacy databases, such as
DB2/AS5400.

Sorting columns names by hexadecimal value ensures that if a driver instance is relocated to a
different server, it continues to function without modification. Sorting column names by platform or
locale string collation order is more intuitive, but might require configuration changes if a driver
instance is relocated to a different server. In particular, log table column order and compound
column name order might change. In the case of the latter, Schema-Mapping policies and object
association values might need to be updated. In the case of the former, log table columns might have
to be renamed.

It is also possible to specify any fully-qualified Java class name as long as the following occur:

¢ The Java class name implements the java.util. Comparator (http://java.sun.com/j2se/1.5.0/docs/
api/java/util/Comparator.html) interface.

¢ The Java class name accepts java.lang.String (http://java.sun.com/j2se/1.5.0/docs/api/java/lang/
String.html) arguments.

¢ The class is in the runtime classpath.

Table 5-35 Sort Column Names By: Properties

Property Value

Tag Name column-position-comparator

Required? no

Default Value (dynamic)

Legal Values com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteCompara

tor (hexadecimal value),
com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringComparator
(string collation order), (any java.util. Comparator that accepts
java.lang.String arguments)

Schema-Dependent True

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

2.4

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator.

IMPORTANT: After you set this parameter for a given configuration, don’t change the parameter.

Preserve white space in SQL statements?

The Preserve white space in SQL statements? parameter specifies whether trailing spaces in the field
names of the SQL statements should be removed or not.

The primary purpose of this parameter is to remove the unintentional trailing spaces from the field
names.

If the option is set to no, the trailing spaces are removed from the fields. Set the option to yes, if you
do not want to remove the trailing whitespaces.

Table 5-36 Preserve white space in SQL statements?: Properties

Property Value

Tag Name preserve-sql-whitespace
Required? yes

Default Value no

Legal Values yes, no
Schema-Dependent False

NOTE: When the Preserve white space in SQL statements? parameter is set to no, ensure that you do
not add trailing spaces, because extra spaces are removed while formatting.

Subscription Parameters

The following table summarizes Subscriber-level parameters and their properties:

Table 5-37 Subscriber-Level Parameters and Properties

Display Name Tag Name Sample Value Default Value cheequwe
Disable Subscriber? disable 1 (yes) 0 (no) no
Generation/Retrieval key-gen-method auto none
Method (Table-Global) (subscription

event)
Retrieval Timing (Table- key-gen-timing after (after row insertion) before (before no
Global) row insertion)
Method and Timing key-gen usr("?=indirect.proc_idu()", (none) no
(Table-Local) before)

Configuring the JDBC Driver 67

Display Name Tag Name Sample Value Default Value Eequwe
Disable Statement-Level disable-locking 1 (yes) 0 (no) no
Locking?
Check Update Counts? check-update- 0 (no) 1 (yes) no
count
Add Default Values on add-default- 0 (no) (dynamic) no
Insert? values-on-view-
insert

This default for the Add Default Values on Insert property is derived dynamically from descriptor
files at runtime.

Subscription parameters are in two subcategories:

¢ Section 5.4.1, “Uncategorized Parameters,” on page 68

¢ Section 5.4.2, “Primary Key Parameters,” on page 70

5.4.1 Uncategorized Parameters

¢ “Disable Subscriber?” on page 68

¢ “Disable Statement-Level Locking?” on page 69
¢ “Check Update Counts?” on page 69

¢ “Add Default Values on Insert?” on page 69

Disable Subscriber?

The Disable Subscriber? parameter specifies whether the Subscriber channel is disabled.

When this parameter is set to Boolean True, the Subscriber channel is disabled. When the parameter
is set to Boolean False, the Subscriber channel is active.

Table 5-38 Disable Subscriber?: Properties

Property Value

Tag Name disable

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

68 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources are explicitly
locked on this channel before each SQL statement is executed. This parameter is active only if Enable
Statement-Level Locking? is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Table 5-39 Disable Statement-Level Locking?: Properties

Property Value

Tag Name disable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Check Update Counts?

The Check Update Counts? parameter specifies whether the Subscriber channel checks to see if a
table was actually updated when INSERT, UPDATE, and DELETE statements executed against a table.

When set to Boolean True, update counts are checked. If nothing is updated, an exception is thrown.
When set to Boolean False, update counts are ignored.

When statements are redefined in before-trigger logic, set his parameter to Boolean False

When using Microsoft SQL Server, use the default value, because errors in trigger logic (that might
roll back a transaction) are not propagated back to the Subscriber channel.

Table 5-40 Check Update Counts?: Properties

Property Value

Tag Name check-update-count

Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Add Default Values on Insert?

The Add Default Values on Insert? parameter specifies whether the Subscriber channel provides
default values when executing an INSERT statement against a view.

The primary purpose of this parameter is to enable interoperability with Microsoft SQL Server 2000.
This database requires that view columns constrained NOT NULL have a non-NULL value in an INSERT
statement.

Configuring the JDBC Driver 69

70

5.4.2

When this parameter is set to Boolean True, default values are provided for INSERT statements
executed against views, and explicit values are not already available. When this parameter is set to
Boolean False, default values are not provided.

Table 5-41 Add Default Values on Insert?: Properties

Property Value

Tag Name add-default-values-on-view-insert
Required? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

The Default Value property is derived dynamically from descriptor files at runtime.

Primary Key Parameters

¢ “Generation/Retrieval Method (Table-Global)” on page 71

¢ “Retrieval Timing (Table-Global)” on page 71

¢ “Method and Timing (Table-Local)” on page 72
When processing <add> events, which map to INSERT statements, the Subscriber channel uses
primary key values to create Identity Manager associations. These parameters specify how and when
the Subscriber channel obtains the primary key values necessary to construct association values. How

primary key values are obtained is the primary key generation/retrieval method. The retrieval timing
indicates when primary key values are retrieved.

The following table identifies the supported methods and timings:

Table 5-42 Supported Methods and Timings

Method i'l;:rsneipt?(;nb)efore (row ;I;]i?eipﬁq(;na)fter (row
None (subscription event) Y N

Driver (Subscriber-generated) Y Y

Auto (auto-generated/identity column) N2 Y

(stored procedure/function) Y Y

! The Subscriber channel automatically overrides this timing and changes it to before.

2 The Subscriber channel automatically overrides this timing and changes it to after.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Generation/Retrieval Method (Table-Global)

The Generation/Retrieval Method (Table-Global) parameter specifies how primary key values are
generated or retrieved for all parent tables and views. The Method and Timing parameter overrides
this parameter on a per-table/view basis. See “Method and Timing (Table-Local)” on page 72.

When this parameter is set to none, primary key values are assumed to already exist in the
subscription event. When this parameter is set to driver, primary key values are generated by one of
the following:

¢ Using a SELECT (MAX (pk_columname) +1) statement if retrieval timing is set to before

¢ Using a SELECT MAX (pk_columname) statement if retrieval timing is set to after

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

When this parameter is set to auto, primary key values are retrieved via the
java.sql.Statement.getGeneratedKeys () : java.sqgl.ResultSet method. The MySQL
Connector/] JDBC driver is the only supported third-party JDBC driver that currently implements
this method. See “MySQL Connector/] JDBC Driver” on page 161.

Table 5-43 Generation/Retrieval Method (Table-Global): Properties

Property Value

Tag Name key-gen-method

Required? no

Default Value none (subscription event)

Legal Values none (subscription event), driver (Subscriber-generated), auto (auto-

generated/identity column)

Schema-Dependent True

Retrieval Timing (Table-Global)

The Retrieval Timing (Table-Global) parameter specifies when the Subscriber channel retrieves
primary key values for all parent tables and views. The Method and Timing (Table-Local) parameter
overrides this parameter. See “Method and Timing (Table-Local)” on page 72.

When this parameter is set to before, primary key values are retrieved before insertion. When this
parameter is set to after, primary key values are retrieved after insertion.

Table 5-44 Retrieval Timing (Table-Global): Properties

Property Value

Tag Name key-gen-timing

Required? no

Default Value before (before row insertion)

Legal Values before (before row insertion), after (after row insertion)
Schema-Dependent True

Configuring the JDBC Driver 71

72

Method and Timing (Table-Local)

The Method and Timing (Table-Local) parameter specifies the primary key generation/retrieval
method and retrieval timing on a per parent table/view basis. It essentially maps a generation/
retrieval method and retrieval timing to a table or view name. The syntax for this parameter mirrors a
procedural programming language method call with multiple arguments (such as method-
name(argument1, argument2)).

When using the Table/View Names parameter, you probably need to explicitly schema-qualify any
tables, views, stored procedures or functions referenced in this parameter’s value. When you use the
Schema Name parameter, then tables, views, stored procedures, or functions referenced in this
parameter’s value are implicitly schema-qualified with that schema name. If tables, views, stored
procedures, or functions referenced in this parameter’s value are located in a different schema than
the implicit schema, they must be schema-qualified.

¢ “BNF” on page 72
¢ “Generation or Retrieval Method” on page 72

¢ “Retrieval Timing” on page 74

BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNFE.html)) notation for this parameter’s value is the following:

<key-gen> ::= <table-or-view-name> " (" <generation-retrieval-methods>,
<retrieval-timing> ")" {[<delimiter>] <key-gens>}
<generation-retrieval-method> ::= none | driver | auto |

"mn <procedure-signatures """ |
mnn <function-signatures """

<table-or-view-name> ::= <legal-undelimited-database-table-or-view-
identifiers>

<delimiter> ::= ";" | ", " | <white-space>

<procedure-signature> ::= <schema-qualifier> "." <stored-routine-

name>" ("<argument-list>")"

<function-signature> ::= "?=" <procedure-signature>

<schema-qualifier> ::= <legal-undelimited-database-username-identifiers>

<stored-routine-name> ::= <legal-undelimited-database-stored-routine
-identifiers>

<argument-list> ::= <column-name>{"," <column-names}

<column-name> ::= <column-from-table-or-view-name-previously-specified>

Generation or Retrieval Method

The generation or retrieval method specifies how primary key values are to be generated, if
necessary, and retrieved. The possible methods are None, Driver, Auto, and Stored Procedure/
Function:

None: By default, the Subscriber channel assumes that the Identity Vault is the authoritative source
of primary key values and that the requisite values are already present in a given <add> event. If this
is the case, no primary values need to be generated because they already exist. They only need to be
retrieved from the current <add> event. This method is desirable when an eDirectory attribute, such
as GUID, is explicitly schema-mapped to a parent table or view’s primary key column.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

Assuming the existence of a table named usr and a view named view_usr where the Identity Vault is
the authoritative source of primary key values, this parameter’s value would be similar to the
following:

usr (none) ; view_usr (none)

When you use this method, we recommend mapping GUID rather than CN to a parent table or
view’s primary key column.

Driver: This method assumes that the driver is the authoritative source of primary key values for the
specified parent table or view.

When prototyping or in the initial stages of deployment, it is often desirable to have the Subscriber
channel generate primary key values before a stored procedure or function is written. You can also
use this method against databases that do not support stored procedures or functions. When you use
this method in a production environment, however, all SQL statements generated by an <add> event
should be contained in a serializable transaction. For additional information, refer to “Transaction
Isolation Level” on page 59.

Instead of making all transactions serializable, you can also set individual transaction isolation levels
by using embedded SQL attributes. For additional information, refer to Section 11.6, “Transaction
Isolation Level,” on page 123.

For any numeric column types, the Subscriber channel uses the following to generate primary key
values:

¢ A simple SELECT (MAX+1) statement for before timing

¢ A SELECT MAX ()statement for after timing

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

Assuming the existence of a table named usr and a view named view_usr, where the database is the
authoritative source of primary key values, this parameter’s value would be similar to the following:

usr (driver); view usr(driver)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Auto: This method assumes that the database is the authoritative source of primary key values for
the specified parent table or view.

Some databases support identity columns that automatically generate primary key values for
inserted rows. This method retrieves auto-generated primary key values through the JDBC 3
interface method java.sql.Statement.getGeneratedKeys () : java.sqgl.ResultSet. The MySQL
Connector/] JDBC driver is the only supported third-party JDBC driver that currently implements
this method. See “MySQL Connector/] JDBC Driver” on page 161.

Assuming the existence of a table named usr and a view named view_usr, where the database is the
authoritative source of primary key values, this parameter’s value would be similar to the following:

usr (auto) ; view_usr (auto)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Stored-Procedure/Function: This method assumes that the stored-procedure / function is the
authoritative source of primary key values for the specified parent table or view.

Configuring the JDBC Driver 73

74

Assuming

¢ The existence of a table named usr with a primary key column named idu
¢ A view named view_usr with a primary key values named pk_idu

¢ The existence of a database function func_last usr idu and stored procedure
sp_last view usr pk_ idu that both return the last generated primary key value for their
respective table/view

This parameter’s value would be similar to the following:
usr ("?=func_last usr idu()"); view usr("sp last view usr pk idu(pk_idu)")

In the previous examples, a parameter is passed to the stored procedure. Parameters can also be
passed to functions, but this is not usually necessary. Unlike functions, stored procedures usually
return values through parameters. For stored procedures, primary key columns must be passed as IN
OUT parameters. Non-key columns must be passed as IN parameters.

For both stored procedures and functions, parameter order, number and data type must correspond
to the order, number and data type of the parameters expected by the procedure or function.

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Retrieval Timing
The Retrieval Timing parameter specifies when primary key values are retrieved.

An <add> event always results in at least one INSERT statement against a parent table or view. This
portion of this parameter specifies when primary key values are to be retrieved relative to the initial
INSERT statement.

Before: This is the default setting. When this setting is specified, primary key values are retrieved
before the initial INSERT statement.

This retrieval timing is supported for all generation/retrieval methods except auto. Retrieval timing
is required for the none method.

After: When this setting is specified, primary key values are retrieved after the initial INSERT
statement.

This retrieval timing is supported for all generation/retrieval methods except none. Retrieval timing
is required for the auto method.

The following examples augment the previous ones by adding retrieval timing information:
usr (none, before); view_usr(none, before)

usr (driver, before); view usr(driver, after)

usr (auto, after); view usr(auto, after)

usr ("?=func_last _usr idu()", before); view usr("sp last view usr pk idu(pk idu)",
after)

The following table lists the properties of this parameter:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

5.5

Table 5-45 Retrieval Timing: Properties

Property Value
Tag Name key-gen
Required? no

Case-Sensitive?
Sample Value
Default Value
Legal Values

Schema-Dependent

See “Undelimited Identifier Case Sensitivity” on page 145.

usr("“?=proc_idu()", before)

(none)

(any string adhering to the BNF)

True

Publication Parameters

The following table summarizes publisher-level parameters and their properties:

Table 5-46 Publisher-Level Parameters and Properties

Display Name Tag Name Sample Value Default Value cF;equwe

Disable Publisher? disable 1 (yes) 0 (no) no

Disable Statement-Level disable-locking 1 (yes) 0 (no) no

Locking?

Publication Mode publication-mode 2 (triggerless) 1 (triggered) no

Event Log Table Name log-table indirect_process (none) yesl

Delete Processed delete-from-log 0 (no) 1 (yes) no

Rows?

Allow Loopback? allow-loopback 1 (yes) 0 (no) no

Enable Future Event handle-future-events 1 (yes) 0 (no) no

Processing?

Startup Option startup-option no

Polling Interval (In polling-interval 60 10 no2

Seconds)

Publication Time of Day time-of-day 15:30:00 (none) no2

Post Polling Statements post-poll-stmt DELETE FROM (none) no
direct.direct_process

Batch Size batch-size 16 1 no

Query Limit (default query limit 1000 10000 no

10000)

Heartbeat Interval (In pub-heartbeat-interval 10 0 no

Minutes)

Configuring the JDBC Driver

75

5.5.1

! Required for triggered publication mode. 2 These parameters are mutually exclusive.
Publication parameters fall into four major subcategories:

¢ Section 5.5.1, “Uncategorized Parameters,” on page 76
¢ Section 5.5.2, “Triggered Publication Parameters,” on page 78
¢ Section 5.5.3, “Triggerless Publication Parameters,” on page 80

¢ Section 5.5.4, “Polling Parameters,” on page 81

Uncategorized Parameters

¢ “Disable Publisher?” on page 76
¢ “Disable Statement-Level Locking?” on page 76
¢ “Publication Mode” on page 77

¢ “Enable Future Event Processing?” on page 77

Disable Publisher?

The Disable Publisher? parameter specifies whether the Publisher channel is disabled. When
disabled, the Publisher channel does not query for database events. Unlike the Disable Subscriber?
parameter, you can still issue database queries on the Publisher channel to facilitate alternative
publication algorithms.

When this parameter is set to Boolean True, the Publisher channel is disabled. When this parameter is
set to Boolean False, the Publisher channel is active.

Table 5-47 Disable Publisher?: Properties

Property Value

Tag Name disable

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources should be
explicitly locked on this channel before each SQL statement is executed. This parameter is only active
if the Enable Statement-Level Locking? parameter is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

76 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Table 5-48 Disable Statement-Level Locking?: Properties

Property Value

Tag Name disable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Publication Mode

The Publication Mode parameter specifies which publication algorithm is used.

When set to 1 (triggered), the Publisher channel polls the event log table for events. When set to 2
(triggerless), the Publisher channel searches all tables/views in the synchronization schema for
changes, and synthesizes events.

The following table lists the properties of this parameter:

Table 5-49 Publication Mode: Properties

Property Value

Tag Name publication-mode
Required? no

Default Value 1 (triggered)

Legal Values 1 (triggered) 2 (triggerless)
Schema-Dependent True

Enable Future Event Processing?

For triggered publication, Enable Future Event Processing? specifies whether rows in the event log
table are ordered and processed by insertion order (the record_id column) or chronologically (the
event time column).

When this parameter is set to Boolean False, rows in the event log table are published by order of
insertion. When this parameter is set to Boolean True, rows in the event log table are published
chronologically.

For triggerless publication, Enable Future Event Processing specifies whether database local time is
published with each event. This additional information can be used to force a retry of future-dated
events. In order for this to work, a column specifying when an event should be processed must be
part of each logical database class utilizing this feature and placed in the Publisher filter as a
notification-only attribute.

Database local time is published as an attribute on each XDS event (for example, add, modify, delete).
The attribute name is jdbc:database-local-time, where the jdbc namespace prefix is bound to
urn:dirxml:jdbc. The format is the Java string representation of a java.sql.Timestamp: yyyy-mm-dd

Configuring the JDBC Driver 77

hh:mm:ss.f£££££££F. Depending upon the value of the Time Syntax parameter, the value indicating
when an event should be processed can be published as an integer, as a canonical string, or as a Java
string. See “Time Syntax” on page 47.

Regardless of the publication syntax, this value can be parsed and compared to the database local
time value. The following table maps the time syntax to the appropriate parse method.

Table 5-50 Mapping Time Syntax to Parse Methods

Time Syntax Parse Method

integer java.sqgl.Timestamp(long) (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Timestamp.html)

canonical string com.novell.nds.dirxml.driver.jdbc.db.DSTime(java.lang.String, java.lang.String,
java.lang.String, java.lang.String)

java string java.sqgl.Timestamp.valueOf(java.lang.String):java.sql. Timestamp (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

After both time values are in a common Timstamp object representation, they can be compared by
using the following methods:

¢ com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil.before(java.sql. Timestamp,
java.sql.Timestamp):boolean

¢ com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil.after(java.sql. Timestamp,
java.sql.Timestamp):boolean

An example policy is provided in Appendix L, “Policy Example: Triggerless Future Event
Processing,” on page 215.

When this parameter is set to Boolean True, local database time is published with each event. When
this parameter is set to Boolean False, this information is omitted.

The following table lists the properties of this parameter:

Table 5-51 Enable Future Event Processing?: Properties

Property Value

Tag Name handle-future-events

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

5.5.2 Triggered Publication Parameters

The JDBC driver can use any of four triggered publication parameters.

¢ “Event Log Table Name” on page 79
¢ “Delete Processed Rows?” on page 79

¢ “Allow Loopback?” on page 80

78 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

Event Log Table Name

The Event Log Table Name parameter specifies the name of the event log table where publication
events are stored.

The table specified here must conform to the definition of Chapter 10, “The Event Log Table,” on
page 105.

When using “Table/View Names” on page 54, you should explicitly schema-qualify this table name.
When you use “Schema Name” on page 53, this table name is implicitly schema-qualified with that
schema name. If this table is located in a schema other than the implicit schema, it must be schema-
qualified.

The following table lists the properties of this parameter:

Table 5-52 Event Log Table Name: Properties

Property Value

Tag Name log-table

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 145.
Sample Value eventlog

Default Value (none)

Schema-Dependent True

This parameter is required if “Publication Mode” on page 77 is set to 1 (triggered publication).

Delete Processed Rows?

The Delete Processed Rows? parameter specifies whether processed rows are deleted from the event
log table.

When this parameter is set to a Boolean True, processed rows are deleted. When this parameter is set
to Boolean False, processed row’s status field values are updated.

To mitigate the performance hit caused when processed rows remain in the event log table, we
recommend periodically moving the rows into a history table. Do one of the following:

¢ Call a clean-up stored procedure via the parameter “Post Polling Statements” on page 82.

¢ Place a before-delete trigger on the event log table to intercept delete events executed against the
event log table and to move deleted rows to a history table before they are deleted from the
event log table.

The following table lists the properties of this parameter:

Configuring the JDBC Driver 79

Table 5-53 Delete Processed Rows?: Properties

Property Value

Tag Name delete-from-log

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Setting this parameter to Boolean False degrades publication performance unless processed rows are
periodically removed from the event log table.

Allow Loopback?

The Allow Loopback? parameter specifies whether events caused by the driver’s database user
account should be published.

When this parameter is set to Boolean True, loopback events are published. When this parameter is
set to Boolean False, loopback events are ignored.

The following table lists the properties of this parameter:

Table 5-54 Allow Loopback?: Properties

Property Value

Tag Name allow-loopback

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Setting this parameter to Boolean True might degrade performance because extraneous events might
be published.

5.5.3 Triggerless Publication Parameters

The Startup Option parameter specifies what happens when a triggerless publisher starts.

Table 5-55 Startup Option: Settings and Results

Setting Result

1 All objects are assumed to have changed and are republished.
2 Past and present changes are ignored.
3 All past and present changes are published.

80 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

The following table lists the properties of this parameter:

Table 5-56 Startup Option: Properties

Property Value

Tag Name startup-option

Required? no

Default Value 1 (process all changes)

Legal Values 1 (resync all objects) 2 (process future changes only) 3 (process all
changes)

Schema-Dependent True

The following configuration changes can force a full resynchronization:
¢ Changing anything in the Authentication Context parameter other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

¢ Changing the value of the Schema Name parameter or the Table/View Names parameter forces a
resynchronization of all objects when triggerless publication is used.

¢ Changing the State Directory parameter value.

¢ Moving or deleting state files. See “Changes That Can Force Triggerless Publisher
Resynchronization” on page 50.

¢ Changing the table/view structure in the database (in particular, changing the position or type of
key columns).

5.5.4 Polling Parameters

¢ “Polling Interval (In Seconds)” on page 81

¢ “Publication Time of Day” on page 82

¢ “Post Polling Statements” on page 82

¢ “Batch Size” on page 83

¢ “Query Limit (default 10000)” on page 84

¢ “Heartbeat Interval (In Minutes)” on page 84

Polling Interval (In Seconds)

The Polling Interval (In Seconds) parameter specifies how many seconds of inactivity elapse between
polling cycles.

The following table lists the properties of this parameter:

Configuring the JDBC Driver 81

Table 5-57 Polling Interval (In Seconds): Properties

Property Value

Tag Name polling-interval
Required? no

Default Value 10 (seconds)
Legal Values 1-604800 (1 week)
Schema-Dependent True

We recommend that you set this value to no less than 10 seconds.

Publication Time of Day

The Publication Time of Day parameter specifies at what time, each day, publication begins. Time is
understood to mean server local time (the time on the server where the driver is running). You can
specify a single time each day, or multiple times.

The following table lists the properties of this parameter:

Table 5-58 Publication Time of Day: Properties

Property Value

Tag Name time-of-day
Required? no

Sample Value (Single time) 13:00:00 (1PM)

Sample Value (Multiple times) 13:00:00 (1 PM), 16:00:00 (4 PM), 20:00:00 (8PM)

Default Value (none)
Legal Values hh:mm:ss (h = hour, m = minute, s = second)
Schema-Dependent True

This parameter overrides the parameter Polling Interval (In Seconds). See “Polling Interval (In
Seconds)” on page 81.

Post Polling Statements

The Post Polling Statements parameter specifies the SQL statements that are executed at the end of
each active polling cycle. An active polling cycle is one where some publication activity has occurred.

The primary purpose of this parameter is to allow cleanup of the event log table following
publication activity.

You should explicitly schema-qualify any database objects (for example, tables, stored procedures,
and functions) referenced in these statements.

The following table lists the properties of this parameter:

82 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Table 5-59 Post Polling Statements: Properties

Property Value
Tag Name post-poll-stmt
Required? no

Case-Sensitive?
Delimiters
Sample Value
Default Value
Legal Values

Schema-Dependent

See “Undelimited Identifier Case Sensitivity” on page 145.
semicolon

DELETE FROM direct.direct_process

(none)

(any set of legal SQL statements)

True

Batch Size

The Batch Size parameter specifies how many events are sent in a single publication document.

Basically, the larger the batch, the better the performance.

¢ Larger batches necessitate fewer trips across the network in both directions.

¢ More events in a single document require fewer trips from the Publisher channel to the Identity
Manager engine (assuming that query-back events are not being used).

¢ Larger batches minimize the number of trips from the Publisher channel to the database
(assuming that the third-party JDBC driver and database support batch processing).

¢ Larger batches require fewer commits to state files in the local file system.

Commits can also be costly.

This parameter defines an upper bound. The Publisher channel might override the specified value
under certain conditions. The upper bound of 128 was chosen to minimize the likelihood of
overflowing the Java heap and to mitigate delaying termination of the Publisher thread on driver

shutdown.

The following table lists the properties of this parameter:

Table 5-60 Batch Size: Properties

Property Value

Tag Name batch-size
Required? no

Default Value 1

Legal Values 1to 128
Schema-Dependent True

Configuring the JDBC Driver 83

84

5.6

Query Limit (default 10000)

The Query Limit specifies the maximum number of events that should read from connected system
per polling cycle. The default is 10000 events.

Table 5-61 Query Limit (default 10000): Properties

Property Value

Tag Name query limit

Required? yes

Default Value 10000

Legal Values 0to 2,147,483,647 (java.lang.Integer.MAX_VALUE)
Schema-Dependent False

Heartbeat Interval (In Minutes)

The Heartbeat Interval (In Minutes) parameter specifies how many minutes the Publisher channel
can be inactive before it sends a heartbeat document. In practice, more than the number of minutes
specified can elapse. That is, this parameter defines a lower bound. The Publisher channel sends a
heartbeat document only if the Publisher channel has been inactive for the specified number of
minutes. Any publication document sent is, in effect, a heartbeat document.

The following table lists the properties of this parameter:

Table 5-62 Heartbeat Interval (In Minutes): Properties

Property Value

Tag Name pub-heartbeat-interval

Required? no

Default Value 0

Legal Values 0to 2,147,483,647 (java.lang.Integer.MAX_VALUE)
Schema-Dependent False

Trace Levels

To see debugging output from the driver, add a DirXML-DriverTraceLevel attribute value from 1 to 7
on the driver set containing the driver instance. This attribute is commonly confused with the

DirXML-XSL TraceLevel attribute. For more information on driver set trace levels, refer to “Viewing
Identity Manager Processes” in the NetIQ Identity Manager 4.0.2 Common Driver Administration Guide.

The driver supports the following seven trace levels:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

https://www.netiq.com/documentation/idm402/pdfdoc/idm_common_driver/idm_common_driver.pdf#b1rc1vm
https://www.netiq.com/documentation/idm402/pdfdoc/idm_common_driver/idm_common_driver.pdf#b1rc1vm
https://www.netiq.com/documentation/idm402/pdfdoc/idm_common_driver/idm_common_driver.pdf#Bktitle

5.7

Table 5-63 Supported Trace Levels

Level Description

1 Minimal tracing

2 Database properties

3 Connection status, SQL statements, event log records

4 Verbose output

5 Database resource allocation/deallocation; state file contents

6 JDBC API (invoked methods, passed arguments, returned values, etc.)
7 Third-party driver

Levels 6 and 7 are particularly useful for debugging third-party drivers.

Configuring Third-Party JDBC Drivers

The following guidelines help you configure third-party drivers. For specific configuration
instructions, refer to your third-party driver’s documentation.

+ Use the latest version of the driver.

¢ Third-party driver behavior might be configurable.

In many cases, incompatibility issues can be resolved by adjusting the driver’s JDBC URL
properties.

¢+ When you work with international characters, you often must explicitly specify to third-party
drivers the character encoding that the database uses.

Do this by appending a property string to the end of the driver’s JDBC URL.

Properties usually consist of a property keyword and character encoding value (for example,
jdbe:odbe:mssql; charSet=Big5). The property keyword might vary among third-party
drivers.

The possible character encoding values are defined by Sun. For more information, refer to Sun’s
Supported Encoding Web site (http://java.sun.com/j2se/1.5.0/docs/guide/intl/
encoding.doc.html).

The following table lists the recommended settings for maximum driver compatibility. These settings
are useful when you use an unsupported third-party driver during initial configuration.

Configuring the JDBC Driver 85

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

Table 5-64 Recommended Settings for Third-Party JDBC Drivers

Parameter Name Compatibility Value
Synchronization filter empty

Reuse statements? 0 (no)

Use manual transactions? 0 (no)

Use minimal number of connections? yes

Retrieve minimal metadata? 1 (yes)

Number of returned result sets one

5.8 Configuring jJTDS Support for the JDBC Driver

The JDBC driver can be configured to support jTDS classes. The jTDS classes (jJTDS jar files) improve
the performance of the driver. The following table defines the set of databases and the driver classes
that support the jTDS jar files:

Database Name Class Name Connection URL Jar File Name

MS SQL version 2000/ net.sourceforge.jt jdbc:jtds:sglserve jtds-1.2.2.jar
2005 ds.jdbc.Driver r://
<servers>:<portl1433
>;DatabaseName=<da

tabase>
Sybase net.sourceforge.jt jdbc:jtds:sybase:/ jtds-1.2.2.jar
ds.jdbc.Driver /

<servers>:<port5000
>;DatabaseName=<da
tabase>

Use the latest jTDS jar file available (jtds-1.2.2.jar).

Place the jar file in the specific directory path for the platform being used. For information on placing
the jar files, refer to Section 13.3.4, “Supported Third-Party Jar File Placement,” on page 156.

86 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

6.1

6.2

6.3

Upgrading an Existing Driver

The following sections provide information to help you upgrade an existing driver to version 4.0.2:

¢ Section 6.1, “Supported Upgrade Paths,” on page 87
¢ Section 6.2, “What's New in Version 4.0.2,” on page 87
¢ Section 6.3, “Upgrade Procedure,” on page 87

Supported Upgrade Paths

You can upgrade from any Identity Manager 3.x version of the JDBC driver. Upgrading a pre-3.x
version of the driver directly to version 4.0.2 is not supported.

If you are upgrading a JDBC driver to 4.0.2 from a previous version and are using MySQL,
PostgreSQL, Informix, and Sybase databases, refer to the information provided in the following
TID's:

+ MySQL (http://download.novell.com/Download?buildid=7tIReq_V2E4)

¢ PostgreSQL, Informix, and Sybase (http://download.novell.com/
Download?buildid=lcA2jv110zk)

What's New in Version 4.0.2

Version 4.0.2 of the driver does not include any new features.

Upgrade Procedure

The process for upgrading the JDBC driver is the same as for other Identity Manager drivers. For

detailed instructions, see “Upgrading Drivers to Packages” in the Identity Manager 4.0.2 Upgrade and

Migration Guide.

Upgrading an Existing Driver

87

http://download.novell.com/Download?buildid=7tIReq_V2E4
http://download.novell.com/Download?buildid=lcA2jv1IOzk
https://www.netiq.com/documentation/idm402/pdfdoc/idm_upgrade/idm_upgrade.pdf#bqk8uci
https://www.netiq.com/documentation/idm402/pdfdoc/idm_upgrade/idm_upgrade.pdf#Front
https://www.netiq.com/documentation/idm402/pdfdoc/idm_upgrade/idm_upgrade.pdf#Front

88 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

7 Managing the Driver

As you work with the JDBC driver, there are a variety of management tasks you might need to
perform, including the following;:

*

*

*

*

*

Starting, stopping, and restarting the driver

Viewing driver version information

Using Named Passwords to securely store passwords associated with the driver
Monitoring the driver’s health status

Backing up the driver

Inspecting the driver’s cache files

Viewing the driver’s statistics

Using the DirXML Command Line utility to perform management tasks through scripts
Securing the driver and its information

Synchronizing objects

Migrating and resynchronizing data

Activating the driver

Because these tasks, as well as several others, are common to all Identity Manager drivers, they are
included in one reference, the NetIQ Identity Manager 4.0.2 Common Driver Administration Guide.

Managing the Driver

89

https://www.netiq.com/documentation/idm402/pdfdoc/idm_common_driver/idm_common_driver.pdf#Bktitle

90 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

8 Schema Mapping

8.1

8.2

8.3

¢ Section 8.1, “High-Level View,” on page 91

¢ Section 8.2, “Logical Database Classes,” on page 91

¢ Section 8.3, “Indirect Synchronization,” on page 91

¢ Section 8.4, “Direct Synchronization,” on page 98

¢ Section 8.5, “Synchronizing Primary Key Columns,” on page 101

¢ Section 8.6, “Synchronizing Multiple Classes,” on page 102

¢ Section 8.7, “Mapping Multivalue Attributes to Single-Value Database Fields,” on page 102

High-Level View

The following table shows a high-level view of how the driver maps Novell Identity Vault objects to
database objects.

Table 8-1 Mapping Identity Vault Objects to Database Objects

Identity Vault Object Database Object
Tree Schema

Class Table/View
Attribute Column
Association Primary Key

Logical Database Classes

A logical database class is the set of tables or the view used to represent an eDirectory™ class in a

database. A logical database class can consist of a single view or one parent table and zero or more
child tables.

The name of a logical database class is the name of the parent table or view.

Indirect Synchronization

In an indirect synchronization model, the driver maps the following:

Schema Mapping 91

Table 8-2 Mappings in Indirect Synchronization

Identity Vault Object Database Object

Classes Tables

Attributes Columns

1 Class 1 parent table
and

0 or more child tables

Single-value attribute Parent table column
Multivalue attribute Parent table column (holding delimited values)
or

Child table column (preferred)

¢ Section 8.3.1, “Mapping eDirectory Classes to Logical Database Classes,” on page 92
¢ Section 8.3.2, “Parent Tables,” on page 93

¢ Section 8.3.3, “Parent Table Columns,” on page 94

¢ Section 8.3.4, “Child Tables,” on page 95

¢ Section 8.3.5, “Referential Attributes,” on page 96

¢ Section 8.3.6, “Single-Value Referential Attributes,” on page 96

¢ Section 8.3.7, “Multivalue Referential Attributes,” on page 97

8.3.1 Mapping eDirectory Classes to Logical Database Classes

In the following example, the logical database class usr consists of the following:

¢ One parent table usr

¢ Two child tables: usr phone and usr faxno.
Logical class usr is mapped to the eDirectory class User.

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,
fname VARCHAR?2 (64) ,
lname CHAR (64) ,

pwdminlen NUMBER (4) ,
pwdexptime DATE,
disabled NUMBER (1) ,
username VARCHAR?2 (64) ,
loginame VARCHAR2 (64) ,

photo LONG RAW,
manager INTEGER,
CONSTRAINT pk usr_ idu PRIMARY KEY (idu),

CONSTRAINT fk usr manager FOREIGN KEY (manager)
REFERENCES indirect.usr(idu)

92 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

8.3.2

CREATE TABLE indirect.usr phone

(

)

idu

INTEGER NOT NULL,

phoneno VARCHAR2 (64) NOT NULL,
CONSTRAINT fk phone idu FOREIGN KEY (idu)

REFERENCES indirect.usr (idu)

CREATE TABLE indirect.usr fax

(

)

idu

INTEGER NOT NULL,

faxno VARCHAR2(64) NOT NULL,
CONSTRAINT fk fax idu FOREIGN KEY (idu)

REFERENCES indirect.usr (idu)

<rule name="Schema Mapping Rule">
<attr-name-map>

<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>

</class-name>

<attr-name class-name="User">
<nds-name>Given Name</nds-names>
<app-name>fname</app-name>

</attr-names>

<attr-name class-name="User">
<nds-name>Surname</nds-name>
<app-name>lname</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Password Expiration Time</nds-names>
<app-name>pwdexptime</app-name>

</attr-names>

<attr-name class-name="User">
<nds-name>jpegPhoto</nds-name>
<app-name>photo</app-name>

</attr-names>

<attr-name class-name="User">
<nds-name>manager</nds-name>
<app-names>manager</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Password Minimum Length</nds-name>
<app-name>pwdminlen</app-name>

</attr-names

<attr-name class-name="User">
<nds-name>Facsimile Telephone Number</nds-name>
<app-name>usr fax.faxno</app-name>

</attr-names>

<attr-name class-name="User">
<nds-name>Telephone Number</nds-name>
<app-name>usr_ phone.phoneno</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Login Disabled</nds-name>
<app-name>disabled</app-name>

</attr-names

</attr-name-map>
</rules>

Parent Tables

Parent tables are tables with an explicit primary key constraint that contains one or more columns. In
a parent table, an explicit primary key constraint is required so that the driver knows which fields to
include in an association value.

Schema Mapping 93

8.3.3

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,

CONSTRAINT pk usr idu PRIMARY KEY (idu)
)

The following table contains sample data for table indirect.usr.

idu fname Iname

1 John Doe

The resulting association for this row is
idu=1, table=usr, schema=indirect

The case of database identifiers in association values is determined dynamically from database
metadata at runtime.

Parent Table Columns

Parent table columns can contain only one value. As such, they are ideal for mapping single-value
eDirectory attributes, such as mapping the single-value eDirectory attribute Password Minimum
Length to the single-value parent table column pwdminlen.

Parent table columns are implicitly prefixed with the schema name and name of the parent table. It is
not necessary to explicitly table-prefix parent table columns. For example, indirect.usr. fname is
equivalent to £name for schema mapping purposes.

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>Given Name</nds-name>
<app-name>fname</app-name>
</attr-names>
</attr-name-map>
</rule>

Large binary and string data types should usually be mapped to parent table columns. To map to a
child table column, data types must be comparable in SQL statements. Large data types usually
cannot be compared in SQL statements.

Large binary and string data types can be mapped to child table columns if the following occur:

¢ Each <remove-value> event on these types is transformed in a policy into a <remove-all-
values>element

¢ An <add-values element follows each <remove-values event

94 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

8.3.4

Child Tables

A child table is a table that has a foreign key constraint on its parent table’s primary key, linking the
two tables together. The columns that comprise the child table’s foreign key can have different names
than the columns in the parent table’s primary key.

The following example shows the relationship between parent table usr and child tables usr_phone
and usr_faxno:

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,

CONSTRAINT pk usr_idu PRIMARY KEY (idu)
)

CREATE TABLE indirect.usr phone
(

idu INTEGER NOT NULL,
phoneno VARCHAR2 (64) NOT NULL,
CONSTRAINT fk_phone_idu FOREIGN KEY (idu) REFERENCES indirect.usr (idu)

)

CREATE TABLE indirect.usr fax
(

idu INTEGER NOT NULL,
faxno VARCHAR2(64) NOT NULL,
CONSTRAINT fk fax_ idu FOREIGN KEY (idu) REFERENCES indirect.usr (idu)

)
In a child table, constrain all columns NOT NULL.

The first constrained column in a child table identifies the parent table. In the above example, the
constrained column in child table usr_phone is idu. The only purpose of this column is to relate
tables usr_phone and usr. Because constrained columns do not contain any useful information, omit
them from publication triggers and Schema Mapping policies.

The unconstrained column is the column of interest. It represents a single, multivalue attribute. In the
above example, the unconstrained columns are phoneno and faxno. Because unconstrained columns
can hold multiple values, they are ideal for mapping multivalue eDirectory attributes (for example,
mapping the multivalue eDirectory attribute Telephone Number to usrphone . phoneno).

The following table contains sample data for indirect.usr_phone.

Table 8-3 Sample Data

idu phoneno
1 111-1111
1 222-2222

Like parent table columns, child table columns are implicitly schema-prefixed. Unlike parent table
columns, however, a child table column name must be explicitly prefixed with the child table name
(for example, usr_phone .phoneno). Otherwise, the driver implicitly interprets column phoneno (the
parent table column) as usr . phoneno, not the child table column usr_phone . phoneno.

Schema Mapping 95

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-names>indirect.usr</app-name>
</class-name>
<attr-name class-name="User"s>
<nds-name>Facsimile Telephone Number</nds-name>
<app-name>usr fax.faxno</app-name>
</attr-names>
<attr-name class-name="User">
<nds-name>Telephone Number</nds-name>
<app-name>usr phone.phoneno</app-name>
</attr-name>
</attr-name-map>
</rule>

Map each multivalue eDirectory attribute to a different child table.

8.3.5 Referential Attributes

You can represent referential containment in the database by using foreign key constraints.
Referential attributes are columns within a logical database class that refer to the primary key
columns of parent tables in the same logical database class or those of other logical database classes.

8.3.6 Single-Value Referential Attributes

You can relate two parent tables through a single-value parent table column. This column must have
a foreign key constraint pointing to the other parent table’s primary key. The following example
relates a single parent table usr to itself:

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,

manager INTEGER,

CONSTRAINT pk usr idu PRIMARY KEY (idu),

CONSTRAINT fk usr manager FOREIGN KEY (manager) REFERENCES

indirect.usr (idu)

)

NOTE: Single-valued referential columns should be nullable.

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>manager</nds-name>
<app-name>manager</app-name>
</attr-names>
</attr-name-map>
</rules>

In the above example, each user can have only one manager who himself is a user.

96 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

8.3.7 Multivalue Referential Attributes

You can relate two parent tables through a common child table. This child table must have a column
constrained by a foreign key pointing to the other parent table’s primary key. The following example
relates two parent tables usr and grp through a common child table member.

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)

CREATE TABLE indirect.grp

(

idg INTEGER NOT NULL,

CONSTRAINT pk grp idg PRIMARY KEY (idg)
)

CREATE TABLE indirect.grp member
(

idg INTEGER NOT NULL,

idu INTEGER NOT NULL,

CONSTRAINT fk member idg FOREIGN KEY (idg) REFERENCES indirect.grp(idg),
CONSTRAINT fk member idu FOREIGN KEY (idu) REFERENCES indirect.usr (idu)

)

Constrain all columns in a child table NOT NULL.

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>Group</nds-name>
<app-names>indirect.grp</app-name>
</class-name>
<class-names>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="Group">
<nds-names>Member</nds-name>
<app-name>grp member.idu</app-names>
</attr-names>
</attr-name-map>
</rule>

The first constrained column in a child table determines which logical database class the child table
grp_member belongs to. In the above example, grp_member is considered to be part of logical
database class grp. grp_member is said to be a proper child of grp. The second constrained column in
a child table is the multivalue referential attribute.

In the following example, the order of the constrained columns has been reversed so that
grp_member is part of class usr. To more accurately reflect the relationship, table grp member has
been renamed to usr mbr of.

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,

CONSTRAINT pk usr_ idu PRIMARY KEY (idu)

Schema Mapping 97

CREATE TABLE indirect.grp
(

idg INTEGER NOT NULL,

CONSTRAINT pk_grp idg PRIMARY KEY (idg)
)

CREATE TABLE indirect.usr mbr of
(

idu INTEGER NOT NULL,

idg INTEGER NOT NULL,

CONSTRAINT fk mbr of idu FOREIGN KEY (idu) REFERENCES indirect.usr (idu)
ON DELETE CASCADE,

CONSTRAINT fk mbr of idg FOREIGN KEY (idg)

REFERENCES indirect.grp(idg) ON DELETE CASCADE

)

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>Group</nds-name>
<app-names>indirect.grp</app-name>
</class-name>
<class-name>
<nds-name>User</nds-name>
<app-names>indirect.usr</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>Group Membership</nds-name>
<app-name>usr mbr_ of.idg</app-namex>
</attr-names>
</attr-name-map>
</rule>

In databases that have no awareness of column position (such as DB2/AS5400), order is determined by
sorting column names by string or hexadecimal value. For additional information, see “Sort Column
Names By” on page 66.

In general, it is necessary to synchronize only bidirectional, multivalue, referential attributes as part
of one class or the other, not both. If you want to synchronize referential attributes for both classes,
construct two child tables, one for each class. For example, if you want to synchronize eDirectory
attributes Group Membership and Member, you need two child tables.

In practice, when you synchronize User and Group classes, we recommend that you synchronize the
Group Membership attribute of class User instead of the Member attribute of class Group.
Synchronizing the group memberships of a user is usually more efficient than synchronizing all
members of a group.

8.4 Direct Synchronization

In a direct synchronization model, the driver maps the following:

Table 8-4 Mappings in Direct Synchronization

Identity Vault Object Database Object
Classes Views

Attributes View Columns
Class View

98 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

8.4.1

Identity Vault Object Database Object

Single-value attribute View Column

Multivalue attribute View Column

The update capabilities of views vary between databases. Most databases allow views to be updated
when they are comprised of a single base table. (That is, they do not join multiple tables.) If views are
read-only, they cannot be used for subscription. Some databases allow update logic to be defined on
views in instead-of-triggers, which allow a view to join multiple base tables and still be updateable.

For a list of databases that support instead-of-triggers, see “Database Features” on page 142. Instead-
of-trigger logic can be simulated, regardless of database capability using embedded SQL. See
Section 11.4, “Virtual Triggers,” on page 121.

¢ Section 8.4.1, “View Column Meta-Identifiers,” on page 99

¢ Section 8.4.2, “Primary Key Columns,” on page 101

¢ Section 8.4.3, “Schema Mapping,” on page 101

View Column Meta-Identifiers

A view is a logical table. Unlike tables, views do not physically exist in the database. As such, views
usually cannot have traditional primary key/foreign key constraints. To simulate these constructs, the
JDBC driver embeds constraints and other metadata in view column names. The difference between
these constraints and traditional ones is that the former are not enforced at the database level. They
are an application-level construct.

For example, to identify to the driver which fields to use when constructing association values, place
a primary key constraint on a parent table. The corollary to this for a view is to prefix one or more
column names with pk_ (case-insensitive).

The following table lists the constraint prefixes that can be embedded in view column names.

Table 8-5 Constraint Prefixes

Constraint Prefixes (case- .
Interpretation

insensitive)

pk_ primary key
fk_ foreign key
sV_ single-value
mv_ multivalue

The following example views contain all of these constraint prefixes. These are examples and not the
actual samples. Therefore, they should not be used in the driver implementation. The real samples
are bundled with the Identity Manager media.

Schema Mapping 99

100

CREATE VIEW direct.view usr
(

pk_idu, -- primary key column; implicitly single-valued
sv_fname, -- single-valued column

mv_phoneno, -- multi-valued column

fk idu manager, -- self-referential foreign key column; refers

-- to primary key column idu in view usr;
-- implicitly single-valued
fk mv__idg mbr of -- extra-referential foreign key column; refers
-- to primary key column idg in view grp;
-- multi-valued
)
AS

CREATE VIEW direct.view grp

(
pk_idg, -- primary key column; implicitly single-valued
fk mv__idu_ mbr -- extra-referential foreign key column; refers
-- to primary key column idu in view usr;
-- multi-valued

AS

BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html)) notation for view column meta-identifiers:

<view-column-name> ::= [<meta-info>] <column-namex>
<column-name> ::= <legal-unquoted-database-identifier>
<meta-info> ::= <referential> | <non-referentials
<non-referential> ::= [<single-value> | <multiple-values]
<single-value> ::= "sv_"

<multiple-value> ::= "mv_"

<referential> ::= <primary-key> | <foreign-key>

"ok " [<single-value>] [<column-group-ids>]

<primary-key> -
[<referenced-column-name>]

<column-group-id> ::= <non-negative-integer> " "
<referenced-column-name> ::= " " <column-name> "_ "
<foreign-key> ::= "fk " [<non-referential>] [<column-group-ids>]

<referenced-column-names>

Normalized Forms

By default, all view column names are single-valued. Therefore, explicitly specifying the sv_ prefix in
a view column name is redundant. For example, sv_fname and fname are equivalent forms of the
same column name.

Also, primary key column names implicitly refer to themselves. Therefore, it is redundant to specify
the referenced column name. For example, pk_idu is equivalent to pk__idu__ idu.

The JDBC driver uses two normalized forms of view meta-identifiers:

+ Database native form

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

8.4.2

8.4.3

8.5

Database native form is the column name as declared in the database. This form is usually much
more verbose than schema mapping form, and contains all necessary meta information.

¢ Schema mapping form

Schema mapping form is returned when the driver returns the application schema. This form is
much more concise than database native form because much of the meta information included
in database native form is represented in XDS XML and not in the identifier.

The referential prefixes pk_ and fk_ are the only meta information preserved in schema
mapping form. This limitation ensures backward compatibility.

The following table provides examples of each form:

Table 8-6 Example Normalized Forms of View Meta-Identifiers

Database Native Form Schema Mapping Form
pk_idu pk_idu

sv_fname fname

mv_phoneno phoneno
fk_mv__idg__mbr_of fk_mbr_of

Equivalent Forms

A view column name without meta information is called its “effective” name, which is similar to a
directory object’s “effective” rights. For the driver, view column name equivalency is determined
without respect to meta information by default. For example, pk_idu is equivalent to idu, and
fk_mv__idg mbr_ of is equivalent to mbr_of. Any variant form of a view meta column identifier
can be passed to the driver at runtime. For backward compatibility reasons, meta information can be
treated as part of the effective view column name. See “Enable Meta-Identifier Support?” on page 63.

Primary Key Columns

Primary key column names must be unique among all views in the synchronization schema.

Schema Mapping

Schema mapping conventions for views and view columns are equivalent to that used for parent
tables and parent table columns.

Synchronizing Primary Key Columns

When the database is the authoritative source of primary key columns, generally omit the columns
from the Publisher and Subscriber filters, Schema Mapping policies, and publication triggers.

When the Identity Vault is the authoritative source of primary key columns, include the columns in
the Subscriber filter and Schema Mapping policies, but omit the columns from the Publisher filter
and publication triggers. Also, GUID rather than CN is recommended for use as a primary key. CN is
a multivalue attribute and can change. GUID has a single value and is static.

Schema Mapping 101

102

8.6

8.7

Synchronizing Multiple Classes

When synchronizing multiple eDirectory classes, synchronize each class to a different parent table or
view. Each logical database class must have a unique primary key column name. The Publisher
channel uses this common column name to identify all rows in the event log table pertaining to a
single logical database class. For example, both the logical database classes usr and grp have a
unique primary key column name.

CREATE TABLE usr

(
idu INTEGER NOT NULL,
lname VARCHAR2 (64) NOT NULL,

CONSTRAINT pk usr idu PRIMARY KEY (idu)
)i
CREATE TABLE grp

(
idg INTEGER NOT NULL,

CONSTRAINT pk grp idg PRIMARY KEY (idg)
)i

Ma||odping Multivalue Attributes to Single-Value Database
Fields

By default, the driver assumes that all eDirectory attributes mapped to parent table columns or view
columns have a single value. Because the driver is unaware of the eDirectory schema, it has no way of
knowing whether an eDirectory attribute has a single value or has multiple values. Accordingly,
multivalue and single-value attribute mappings are handled identically.

The driver implements the Most Recently Touched (MRT) algorithm with regard to single-value
parent table or view columns. An MRT algorithm ensures that the most recently added attribute
value or most recently deleted attribute value is stored in the database. The algorithm is adequate if
the attribute in question has a single value.

If the attribute has multiple values, the algorithm has some undesirable consequences. When a value
is deleted from a multivalue attribute, the database field it is mapped to is set to NULL and remains

NULL until another value is added. The preferred solution to this undesirable behavior is to extend the
eDirectory schema so that only single-value attributes are mapping to parent table or view columns.

Other solutions include the following:

¢ For indirect synchronization, map each multivalue attribute to its own child table.

¢ For both direct or indirect synchronization, use a policy to delimit multiple values before
inserting them into a table or view column.

¢ Implement a first or last value per replica policy in style sheets by using methods provided in
the com.novell .nds.indirect.driver.jdbc.util.MappingPolicy class. Under a first-value-
per-replica (FPR) policy, the first attribute value on the eDirectory replica is always
synchronized. Under a last-value-per-replica (LPR) policy, the last attribute value on a replica is
always synchronized. By using global configuration values, you can configure the sample driver
configuration to use either FPR or LPR mapping policies. Multivalue to single-value attribute
mapping policies are contained in the Subscriber Command Transformation policy container.
The sample driver configuration maps the multivalue eDirectory attributes Given Name and
Surname to the single-value columns fname and 1name respectively.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

9.1

Mapping XDS Events to SQL Statements

¢ Section 9.1, “Mapping XDS Events for Indirect Synchronization,” on page 103

¢ Section 9.2, “Mapping XDS Events for Direct Synchronization,” on page 104

Mapping XDS Events for Indirect Synchronization

The following table summarizes how the Subscriber channel maps XDS events to DML SQL
statements for indirect synchronization:

Table 9-1 Mapping XDS Events for Indirect Synchronization

XML Event SQL Equivalent

<add> + 0 or more select statements, depending upon the matching
policy.
1 parent table insert statement for all single value <add-
attr> elements.
0 or 1 stored procedure/function calls to retrieve primary key
values before or after the parent table insert statement.
1 child table insert statement for each multivalue <add-
attr> element.

<modify> 1 parent table update statement for each single value <add-
value> Or <remove-value> element.
1 child table insert statement for each multivalue <add-
value> element.
1 child table delete statement for each <remove-value>
element.

<delete> 1 parent table delete statement.
1 delete statement for each child table.

<query> 1 parent table select statement.

<move> <rename> <modify-
passwords> <check-object-
passwords>

1 select statement for each childtable.

0 statements unless bound to embedded SQL statements.

Mapping XDS Events to SQL Statements

103

104

9.2 Mapping XDS Events for Direct Synchronization

The following table summarizes how the Subscriber channel maps XDS events to DML SQL
statements for direct synchronization:

Table 9-2 Mapping XDS Events for Direct Synchronization

XML Event SQL Equivalent
<add> + 0 or more select statements, depending upon the matching
policy.
+ 1 view insert statement for all single value <add-attr>
element.

+ 0 or 1 stored procedure/function call to retrieve primary key
values before or after the view insert statement.

+ 1 view insert statement for each multivalue <add-attr>
element.
<modify> + 1 view update statement for each single value <add-value>

or <remove-value> element.

+ 1 view insert statement for each multivalue <add-value>
element.

+ 1 view delete statement for each <remove-value> element.

<delete> + 1 view delete statement.

<query> + 1 view select statement.

<move> <rename> <modify- + 0 statements unless bound to embedded SQL statements.
passwords> <check-object-

passwords>

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

The Event Log Table

The event log table stores publication events. This section describes the structure and capabilities of
the event log table.

You can customize the name of the event log table and its columns to avoid conflicts with reserved
database keywords. The order, number, and data types of its columns, however, are fixed. In
databases that are unaware of column position, order is determined by the Sort Column Names By
parameter. See “Sort Column Names By” on page 66.

Events in this table can be ordered either by order of insertion (the record_id column) or
chronologically (the event_time column). Ordering events chronologically allows event processing
to be delayed. To order publication events chronologically, set the Enable Future Event Processing
parameter to Boolean True. See “Enable Future Event Processing?” on page 77.

¢ Section 10.1, “Event Log Columns,” on page 105

¢ Section 10.2, “Event Types,” on page 108

10.1 Event Log Columns

This section describes columns in the event log table. Columns are ordered by position.

¢ Section 10.1.1, “record_id,” on page 105

¢ Section 10.1.2, “table_key,” on page 106

¢ Section 10.1.3, “status,” on page 106

¢ Section 10.1.4, “event_type,” on page 107

¢ Section 10.1.5, “event_time,” on page 107

¢ Section 10.1.6, “perpetrator,” on page 107

¢ Section 10.1.7, “table_name,” on page 107

¢ Section 10.1.8, “column_name,” on page 107
¢ Section 10.1.9, “old_value,” on page 108

¢ Section 10.1.10, “new_value,” on page 108

10.1.1 record_id

The record_id column is used to uniquely identify rows in the event log table and order publication
events. This column must contain sequential, ascending, positive, unique integer values. Gaps
between record_id values no longer prematurely end a polling cycle.

The Event Log Table 105

10.1.2

10.1.3

table_key

Format values for this column are exactly the same in all triggers for a logical database class. The BNF
or Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html) of
this parameter is defined below:

<table-key> ::= <unique-row-identifiers {"+"
<unique-row-identifiers}

<unique-row-identifier> ::= <primary-key-column-names> "=" <value>

For example, for the usr table referenced throughout this chapter, this column’s value might be
idu=1.

For the view_usr view referenced throughout this chapter, this column’s value might be
pk_empno=1.

For a hypothetical compound primary key (one containing multiple columns), this column’s value
might be pkey1=valuel+pkey2=value2.

If primary key values placed in the table key field contain any of the special characters {,; '+ "=\ <
>}, where { and } contain the set of special characters, delimit the value with double quotes. You also

need to escape the double quote character " as \ " and the literal escape character \ as \\ when they

are contained inside a pair of double quotes.

For a hypothetical primary key containing special characters, this column’s value might be pkey=",
i '+ \" = \\ < >".(Note the double quotes and escaped characters.)

Differences in padding or formatting might result in out-of-order event processing. For performance
reasons, remove any unnecessary white space from numeric values. For example, idu=1 is preferred
over idu= 1.

status

The status column indicates the state of a given row. The following table lists permitted values:

Table 10-1 Permitted Values for Status Columns

Character Value Interpretation

N new
S success
W warning
E error
F fatal

To be processed, all rows inserted into the event log table must have a status value of N. The
remainder of the status characters are used solely by the Publisher channel to designate processed
rows. All other characters are reserved for future use.

Status values are case sensitive.

106 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

10.1.4

10.1.5

10.1.6

10.1.7

10.1.8

event_type

Values in this column must be between 1 and 8. All other numbers are reserved for future use.

The following table describes each event type:

Table 10-2 Event Types

Event Type Interpretation

1 insert field

2 update field

3 update field (remove all values)
4 delete row

5 insert row (query-back)

6 update row (query-back)

7 insert field (query-back)

8 update field (query-back)

For additional information on this field, see Section 10.2, “Event Types,” on page 108.

event_time

This column serves as an alternative ordering column to record_id. It contains the effective date of
the event. It must not be NULL. For this column to become the ordering column, set the Enable Future
Event Processing parameter to Boolean True. See “Enable Future Event Processing?” on page 77.

perpetrator

This column identifies the database user who instigated the event. A NULL value is interpreted as a
user other than the driver user. Rows with a NULL value or value not equal to the driver’s database
username are published. Rows with a value equal to the driver’s database username are not
published unless the Allow Loopback Publisher parameter is set to Boolean True. See “Allow
Loopback?” on page 80.

table_name

The name of the table or view where the event occurred.

column_name

The name of the column that was changed. This column is used only for per-field (1-3, 7-8) event
types. Nevertheless, it must always be present in the event log table. If it is missing, the Publisher
channel cannot start.

The Event Log Table 107

10.1.9 old value

The field’s old value. This column is used only for per-field, non-query-back event types (1-3).
Nevertheless, it must always be present in the event log table. If it is missing, the Publisher channel
cannot start.

10.1.10 new_value

The field’s new value. This column is used only by per-field, non-query-back event types (1-3).
Nevertheless, it must always be present in the event log table. If it is missing, the Publisher channel
cannot start.

10.2 Event Types

108

The following table describes each event type:

Table 10-3 Event Types

Event Type Interpretation

1 insert field

update field

update field (remove all values)
delete row

insert row (query-back)

update row (query-back)

N o g b~ W N

insert field (query-back)

[ee]

update field (query-back)

Event types are in four major categories. Some categories overlap. The following table describes each
category and indicates which event types are members:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Table 10-4 Event Categories and Types

Event Category Event Types
Per-field (attribute) 1,2,3,7,8
Per-row (object) 4,56
Non-query-back 1,2,3,4
Query-back 5,6,7,8

Per-field, non-query-back 1,2,3

Per-field, query-back 7,8
Per-row, non-query-back 4
Per-row, query-back 56

In general, a combination of event types from each category yields the best trade-off in terms of
space, time, implementation complexity, and performance.

Per-field event types are more granular, require more space, and are more complex to implement
than per-row event types. Per-row events are less granular, require less space, and are easier to
implement than per-field event types.

Query-back event types use less space but require more time to process than non-query-back event
types. Non-query-back event types use more space but require less time to process than query-back
event types.

Query-back event types take precedence over their non-query-back counterparts. Non-query-back
events are ignored if a query-back event is logged for the same field or object. For example, if an
event of type 2 (update-field, non-query-back) and 8 (update-field, query-back) are logged on the
same field, the type 2 event is ignored in favor of the type 8 event.

Furthermore, query-back row event types take precedence over query-back field event types. For
example, if an event type 8 (update field, query-back) and a event type 6 (update row query-back) are
logged on the same object, the type 8 event is ignored in favor of the type 6 event.

Query-back events are ignored by the Publisher if the database object no longer exists. They are
dependent upon the database object still being available at processing time. Therefore, logged query-
back adds and modifies (event types 5, 6, 7, 8) have no effect once the database object they refer to is
deleted.

The following table shows the basic correlation between publication event types and the XDS XML
generated by the Publisher channel.

Table 10-5 Basic Correlation of Publication Event Types

Event Type Resulting XDS
insert <add>

update <modify>
delete <delete>

The following example illustrates XML that the Publisher channel generates for events logged on the
usr table for each possible event type.

The Event Log Table 109

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,
fname VARCHAR2 (64),
photo LONGRAW,

CONSTRAINT pk usr idu PRIMARY KEY (idu)
)i

The following table shows the initial contents of usr after a new row has been inserted:

Table 10-6 An Inserted Row in the usr Table

idu fname Iname photo

1 Jack Frost OxAAAA

The following table shows the current contents of usr after the row has been updated:

Table 10-7 An Updated Row in the usx Table

idu fname Iname photo

1 John Doe 0xBBBB

Insert Field

The table below shows the contents of the event log table after a new row is inserted into table usr.
The value for column photo has been Base64-encoded. The Base64-encoded equivalent of OXAAAA is

qqo=.

Table 10-8 Event Log Table: Insert Field

event_type table table_key column_name old_value new_value
1 usr idu=1 fname NULL Jack
1 usr idu=1 Iname NULL Frost
1 usr idu=1 photo NULL qgo=

The Publisher channel generates the following XML:

<add class-name="usr">
<association>idu=1, table=usr, schema=indirect
</associations>
<add-attr attr-name="fname">
<value type="string">Jack</value>
</add-attr>
<add-attr attr-name="lname">
<value type="string"s>Frost</value>
</add-attr>
<add-attr attr-name="photo">
<value type="octet">ggo=</value>
</add-attr>
</add>

110 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Update Field

The following table shows the contents of the event log table after the row in table usr has been

updated. The values for column photo has been Base64-encoded. The Base64-encoded equivalent of

0xBBBB is u7s=.

Table 10-9 Event Log Table: Update Field

event_type table table_key column_name old_value new_value
2 usr idu=1 fname Jack John

2 usr idu=1 Iname Frost Doe

2 usr idu=1 photo qgo= u7s=

The Publisher channel generates the following XML:

<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-value>
<value type="string">Jack</value>
</remove-value>
<add-value>
<value type="string">John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="lname">
<remove-value>
<value type="string"s>Frost</value>
</remove-value>
<add-value>
<value type="string"sDoe</value>
</add-value>
</modify-attrs>
<modify-attr attr-name="photo"s>
<remove-value>
<value type="octet">ggo=</value>
</remove-value>
<add-value>
<value type="octet">u7s=</value>
</add-value>
</modify-attr>
</modifys>

Update Field (Remove-All-Values)

The following table shows the contents of the event log table after the row in table usr has been

updated. The value for column photo has been Base64-encoded.

Table 10-10 Ewvent Log Table: Update Field (Remove-All-Values

event_type table table_key column_name new_value
3 usr idu=1 fname John

3 usr idu=1 Iname Doe

3 usr idu=1 photo u7s=

The Event Log Table

111

The Publisher channel generates the following XML:

<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-all-values/>
<add-value>
<value type="string">John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="lname">
<remove-all-values/>
<add-value>
<value type="string">Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-all-values/>
<add-value>
<value type="octet"s>u7s=</value>
</add-value>
</modify-attr>
</modify>

Delete Row
The table below shows the contents of the event log table after the row in table usr has been deleted.

Table 10-11 Event Log Table: Delete Row

event_type table table_key column_name old_value new_value

4 usr idu=1 NULL NULL NULL

The Publisher channel generates the following XML:
<delete class-name="usr">
<association>idu=1, table=usr, schema=indirect

</association>
</delete>

Insert Row (Query-Back)

The following table shows the contents of the event log table after a new row is inserted into table
usr.

Table 10-12 Event Log Table: Insert Row (Query-Back)

event_type table table_key column_name old_value new_value

5 usr idu=1 NULL NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.

112 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

<add class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<add-attr attr-name="fname">
<value type="string">John</value>
</add-attr>
<add-attr attr-name="lname">
<value type="string"s>Doe</value>
</add-attr>
<add-attr attr-name="photo">
<value type="octet">u7s=</value>
</add-attr>
</add>

Update Row (Query-Back)

The table below shows the contents of the event log table after the row in table usr has been updated.

Table 10-13 Event Log Table: Update Row (Query-Back)

event_type table table_key column_name old_value

new_value

6 usr idu=1 NULL NULL

NULL

The Publisher channel generates the following XML. The values reflect the current contents of table

usr, not the initial contents.

<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-all-values/>
<add-value>
<value type="string">John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="lname">
<remove-all-values/>
<add-value>
<value type="string">Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-all-values/>
<add-value>
<value type="octet"s>u7s=</value>
</add-value>
</modify-attr>
</modify>

Insert Field (Query-Back)

The following table shows the contents of the event log table after a new row is inserted into table

usr. Old and new values are omitted because they are not used.

The Event Log Table

113

Table 10-14 Event Log Table: Insert Field (Query-Back)

event_type table table_key column_name old_value new_value
7 usr idu=1 fname NULL NULL
7 usr idu=1 Iname NULL NULL
7 usr idu=1 photo NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.

<add class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<add-attr attr-name="fname">
<value type="string"sJohn</value>
</add-attr>
<add-attr attr-name="lname">
<value type="string"sDoe</valuex>
</add-attr>
<add-attr attr-name="photo">
<value type="octet">u7s=</value>
</add-attr>
</add>

Update Field (Query-Back)

The following table shows the contents of the event log table after the row in table usr has been
updated. Old and new values are omitted because they are not used.

Table 10-15 Event Log Table: Update Field (Query-Back)

event_type table table_key column_name old_value new_value
8 usr idu=1 fname NULL NULL
8 usr idu=1 Iname NULL NULL
8 usr idu=1 photo NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.

114 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-all-values/>
<add-value>
<value type="string"sJohn</values>
</add-value>
</modify-attrs>
<modify-attr attr-name="lname">
<remove-all-values/>
<add-value>
<value type="string"s>Doe</value>
</add-value>
</modify-attrs>
<modify-attr attr-name="photo">
<remove-all-values/>
<add-value>
<value type="octet">u7s=</value>
</add-value>
</modify-attrs>
</modifys>

The Event Log Table

115

116 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Embedded SQL Statements in XDS
Events

Embedded SQL allows you to embed SQL statements in XDS-formatted XML documents. You can
use embedded SQL statements along with XDS events or use them alone. When embedded SQL
statements are used alone, embedded SQL processing does not require that the driver know anything
about tables/view in the target database. Therefore, the driver can run in schema-unaware mode. See
“Synchronization Filter” on page 51. When using embedded SQL alone, you must establish
associations manually. The driver won’t establish them for you.

When used in conjunction with XDS events, embedded SQL can act as a virtual database trigger. In
the same way that you can install database triggers on a table and cause side effects in a database
when certain SQL statements are executed, embedded SQL can cause side effects in a database in
response to certain XDS events.

All examples in this section reference the following indirect.usr table.

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,
fname VARCHAR?2 (64),
lname VARCHAR2 (64),

CONSTRAINT pk_usr idu PRIMARY KEY (idu)

¢ Section 11.1, “Common Uses of Embedded SQL,” on page 118

¢ Section 11.2, “Embedded SQL Basics,” on page 118

¢ Section 11.3, “Token Substitution,” on page 119

¢ Section 11.4, “Virtual Triggers,” on page 121

¢ Section 11.5, “Manual vs. Automatic Transactions,” on page 122

¢ Section 11.6, “Transaction Isolation Level,” on page 123

¢ Section 11.7, “Statement Type,” on page 124

¢ Section 11.8, “SQL Queries,” on page 125

¢ Section 11.9, “Data Definition Language (DDL) Statements,” on page 127

¢ Section 11.10, “Logical Operations,” on page 127

¢ Section 11.11, “Implementing Password Set with Embedded SQL,” on page 128
¢ Section 11.12, “Implementing Modify Password with Embedded SQL,” on page 128
¢ Section 11.13, “Implementing Check Object Password,” on page 129

¢ Section 11.14, “Calling Stored Procedures and Functions,” on page 129

¢ Section 11.15, “Best Practices,” on page 138

Embedded SQL Statements in XDS Events 117

111

11.2

11.2.1

11.2.2

11.2.3

Common Uses of Embedded SQL

You can accomplish the following by embedding SQL in XDS events:

+ Create database users or roles.
¢ Set, check, or modify user passwords.
¢ Manage database user or role privileges.

For examples of each, consult the User DDL Command Transformation style sheet on the Subscriber
channel in the example driver configuration.

Embedded SQL Basics

¢ Section 11.2.1, “Elements,” on page 118
¢ Section 11.2.2, “Namespaces,” on page 118
¢ Section 11.2.3, “Embedded SQL Example,” on page 118

Elements

SQL is embedded in XDS events through the <jdbc:statement> and <jdbc:sgl> elements. The
<jdbc:statement> element can contain one or more <jdbc:sgl> elements.

Namespaces

The namespace prefix jdbc used throughout this section is implicitly bound to the namespace
urn:dirxml : jdbc when referenced outside of an XML document.

You must use namespace-prefixed embedded SQL elements and attributes. Otherwise, the driver
does not recognize them. In all examples in this section, the prefix used is jdbc. In practice, the prefix
can be whatever you want it to be, as long as it is bound to the namespace value urn:dirxml:jdbc.

The following XML example illustrates how to use and properly namespace-prefix embedded SQL
elements. In the following example, the namespace declaration and namespace prefixes are bolded:

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<values>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = 'John' </jdbc:sqgl>
</jdbc:statement>
</input>

Embedded SQL Example

The following XML example illustrates how to use the <jdbc:statement> and <jdbc:sgl> elements
and their interpretation. In the following example, embedded SQL elements are bolded:

118 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<values>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = 'John' </jdbc:sql>
</jdbc:statement>
</input>

Because the Subscriber channel resolves <add> events to one or more INSERT statements, the XML
shown above resolves to:

SET AUTOCOMMIT OFF
INSERT INTO indirect.usr (lname)VALUES ('Doe') ;

COMMIT; --explicit commit
UPDATE indirect.usr SET fname = 'John';
COMMIT; --explicit commit

11.3 Token Substitution

Rather than require you to parse field values from an association, the Subscriber channel supports
token substitution in embedded SQL statements. In the following examples, tokens and the values
they reference are bolded:

<input xmlns:jdbc="urn:dirxml:jdbc">
<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect</association>
<modify-attr name="lname">
<add-value>
<value>DoeRaeMe</value>
</add-value>
</modify-attrs>
</modify>
<jdbc:statement>
<jdbc:sqgl>UPDATE indirect.usr SET fname = ’‘John’ WHERE
idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

Token placeholders must adhere to the XSLT attribute value template syntax {$field-name}. Also, the
referenced association element must precede the <jdbc:statement> element in the XDS document,
or must be present as a child of the <jdbc: statement > element. Alternatively, instead of copying the
association element as child of the <jdbc: statement > element, you could copy the src-entry-id of
the element containing the association element onto the <jdbc:statement> element. Both approaches
are bolded in the following examples:

<input xmlns:jdbc="urn:dirxml:jdbc">
<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect</association>
<modify-attr name="lname">
<add-value>
<value>DoeRaeMe</value>
</add-value>
</modify-attrs>
</modify>
<jdbc:statement>
<association>idu=1, table=usr, schema=indirect</association>
<jdbc:sql>UPDATE indirect.usr SET fname = ’'John’ WHERE
idu = {$idu}</jdbc:sgl>
</jdbc:statement>

</input>

Embedded SQL Statements in XDS Events 119

120

<input xmlns:jdbc="urn:dirxml:jdbc">
<modify class-name="usr" src-entry-id="0">

<association>idu=1, table=usr, schema=indirect</association>
<modify-attr name="lname">

<add-value>

<values>DoeRaeMe</value>

</add-value>

</modify-attr>

</modify>
<jdbc:statement src-entry-id="0">
<jdbc:sqgl>UPDATE indirect.usr SET fname = ‘John’ WHERE

idu = {$idu}</jdbc:sgl>
</jdbc:statement>
</input>

The {$field-name} token must refer to one of the naming RDN attribute names in the association
value. The above examples have only one naming attribute: idu.

An <add> event is the only event where an association element is not required to precede embedded
SQL statements with tokens because the association has not been created yet. Additionally, any
embedded SQL statements using tokens must follow, not precede, the <add> event. For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<values>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sqgl>UPDATE indirect.usr SET fname = ’‘John’ WHERE
idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

To prevent tracing of sensitive information, you can use the {$$password} token to refer to the
contents of the immediately preceding <passwords> element within the same document. In the
following example, the password token and the value it refers to are bolded:

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<password>some password</passwords>
<add-attr name="fname">
<values>John</value>
</add-attr>
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CREATE USER jdoe IDENTIFIED BY
{$$password}</jdbc:sql>
</jdbc:statement>
</input>

Furthermore, you can also refer to the driver’s database authentication password specified by the

Application Password parameter as {$$$driver-password}. See “Application Password” on
page 45. Named password substitution is not yet supported.

Just as with association elements, the referenced password element must precede the
<jdbc:statement> element in the XDS document or must be present as a child of the
<jdbc:statement> element. Alternatively, instead of copying the password element as child of the
<jdbc:statement> element, you could copy the src-entry-id of the element containing the
password element onto the <jdbc : statement > element. Both approaches are bolded in the following
examples:

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<password>some passwords</passwords>
<add-attr name="fname">
<valuesJohn</value>
</add-attr>
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement>
<password>some password</password>
<jdbc:sqgql>CREATE USER jdoe IDENTIFIED BY
{$Spassword}</jdbc:sql>
</jdbc:statement>
</input>

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" src-entry-id="0">
<password>some password</passwords
<add-attr name="fname">
<values>John</value>
</add-attr>
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement src-entry-id="0">
<jdbc:sqgl>CREATE USER jdoe IDENTIFIED BY
{$spassword}</jdbc:sql>
</jdbc:statement>
</input>

11.4 Virtual Triggers

In the same way that database triggers can fire before or after a triggering statement, embedded SQL
can be positioned before or after the triggering XDS event. The following examples show how you
can embed SQL before or after an XDS event.

Virtual Before Trigger

<input xmlns:jdbc"urn:dirxml:jdbc">
<jdbc:statement>
<association>idu=1, table=usr, schema=indirect</association>
<jdbc:sgl>UPDATE indirect.usr SET fname = 'John' WHERE
idu = {$idu}</jdbc:SQL>
</jdbc:statement>
<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect</association>
<modify-attr name="lname">
<remove-all-values/>
<add-value>
<values>Doe</value>
</add-value>
</modify-attrs>
</modify>
</input>

This XML resolves to:

Embedded SQL Statements in XDS Events 121

SET AUTOCOMMIT OFF

UPDATE indirect.usr SET fname = 'John' WHERE idu = 1;
COMMIT; --explicit commit
UPDATE indirect.usr SET lname = 'Doe' WHERE idu = 1;
COMMIT; --explicit commit

Virtual After Trigger

<input xmlns:jdbc"urn:dirxml:jdbc">
<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect</association>
<modify-attr name="lname">
<remove-all-values/>
<add-value>
<value>Doe</value>
</add-value>
</modify-attrs>
</modify>
<jdbc:statement>
<jdbc:sqgl>UPDATE indirect.usr SET fname = 'John' WHERE idu =
{$idu}</jdbc:sql>
</jdbc:statement>

</input>

This XML resolves to:

SET AUTOCOMMIT OFF

UPDATE indirect.usr SET lname = 'Doe' WHERE idu = 1;
COMMIT; --explicit commit

UPDATE indirect.usr SET fname = 'John' WHERE idu = 1;
COMMIT; --explicit commit

11.5 Manual vs. Automatic Transactions

You can manually group embedded SQL and XDS events by using two custom attributes:

¢ jdbc:transaction-type

¢ jdbc:transaction-id

jdbc:transaction-type

This attribute has two values: manual and auto. By default, most XDS events of interest (<add>,
<modify>, and <deletes>) are implicitly set to the manual transaction type. The manual setting
enables XDS events to resolve to a transaction consisting of one or more SQL statement.

By default, embedded SQL events are set to auto transaction type because some SQL statements, such
as DDL statements, cannot usually be included in a manual transaction. In the following example, the
attribute is in bold text.

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" jdbc:transaction-type="auto">
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = ’'John’ WHERE
idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

This XML resolves to:

122 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

11.6

SET AUTOCOMMIT ON

INSERT INTO indirect.usr (lname) VALUES(’Doe’) ;

-- implicit commit

UPDATE indirect.usr SET fname = ’‘John’ WHERE idu = 1;
-- implicit commit

jdbc:transaction-id

The Subscriber channel ignores this attribute unless the element’s jdbc: transaction-type attribute
value defaults to or is explicitly set to manual. The following XML shows an example of a manual
transaction. The attribute is in bold text.

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" jdbc:transaction-id="0">
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement jdbc:transaction-type="manual"
jdbc:transaction-id="0">
<jdbc:sql>UPDATE indirect.usr SET fname = ’'John’ WHERE
idu = {$idu}</jdbc:sgl>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT OFF

INSERT INTO indirect.usr (lname) VALUES('Doe’) ;

UPDATE indirect.usr SET fname = ’‘John’ WHERE idu = 1;
COMMIT; -- explicit commit

Transaction Isolation Level

In addition to grouping statements, you can use transactions to preserve the integrity of data in a
database. Transactions can lock data to prevent concurrent access or modification. The isolation level
of a transaction determines how locks are set. Usually, the default isolation level that the driver uses
is sufficient and should not be altered.

The custom attribute jdbc:isolation-level allows you to adjust the isolation transaction level if
necessary. The java.sql.Connection parameter defines five possible values in the interface. See
java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

¢ none

¢ read uncommitted

¢ read committed

¢ repeatable read

¢ serializable
The driver’s default transaction isolation level is read committed unless overridden by a descriptor
file. In manual transactions, place the jdbc:isolation-level attribute on the first element in the

transaction. This attribute is ignored on subsequent elements. In the following example. the attribute
is in bold text.

Embedded SQL Statements in XDS Events 123

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

11.7

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" jdbc:transaction-id="0"
jdbc:isolation-level="serializable">
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement jdbc:transaction-type="manual"
jdbc:transaction-id="0">
<jdbc:sql>UPDATE indirect.usr SET fname = ’‘John’
WHERE idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT OFF

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

INSERT INTO indirect.usr (lname) VALUES(’Doe’) ;

UPDATE indirect.usr SET fname = ’‘John’ WHERE idu = 1;
COMMIT; -- explicit commit

Statement Type

The Subscriber channel executes embedded SQL statements, but it doesn’t understand them. The
JDBC 1 interface defines several methods for executing different types of SQL statements. The
following table contains these methods:

Table 11-1 Methods for Executing SQL Statements

Statement Type Method Executed

SELECT java.sgl.Statement.executeQuery(String query):java.sql.ResultSet
INSERT java.sgl.Statement.executeUpdate(String update):int

UPDATE java.sgl.Statement.executeUpdate(String update):int

DELETE java.sgl.Statement.executeUpdate(String update):int

CALL or EXECUTE SELECT java.sgl.Statement.execute(String sql):boolean

INSERT UPDATE DELETE

The simplest solution is to map all SQL statements to the java.sgl.Statement.execute (String
sql) :boolean method. By default, the Subscriber channel uses this method.

Some third-party drivers, particularly Oracle’s JDBC drivers, incorrectly implement the methods
used to determine the number of result sets that this method generates. Consequently, the driver can
get caught in an infinite loop leading to high CPU utilization. To circumvent this problem, you can
use the jdbc: type attribute on any <jdbc:statement> element to map the SQL statements
contained in it to the following methods instead of the default method:

* java.sqgl.Statement.executeQuery (String query) :java.sqgl.ResultSet

¢ java.sgl.Statement.executeUpdate (String update) :int
The jdbc: type attribute has two values: update and query. For INSERT, UPDATE, or DELETE
statements, set the value to update. For SELECT statements, set the value to query. In the absence of

this attribute, the driver maps all SQL statements to the default method. If placed on any element
other than <jdbc: statements, this attribute is ignored.

124 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Recommendations:

+ Place the jdbc: type="query” attribute value on all SELECT statements.
¢ Place the jdbc:type="update” attribute value on all INSERT, UPDATE, and DELETE statements.

¢ Place no attribute value on stored procedure/function calls.
The following XML shows an example of the jdbc:type attribute. The attribute is in bold text.

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<valuesDoe</value>
</add-attr>

</add>
<jdbc:statement jdbec:type="update">
<jdbc:sqgl>UPDATE indirect.usr SET fname = ’‘John’

WHERE idu = {$idu}</jdbc:sqgl>
</jdbc:statement>
</input>

11.8 SQL Queries

To fully support the query capabilities of a database and avoid the difficulty of translating native SQL
queries into an XDS format, the driver supports native SQL query processing. You can embed select
statements in XDS documents in exactly the same way as any other SQL statement.

For example, assume that the table usr has the following contents:

Table 11-2 Example Contents

idu fname Iname

1 John Doe

The XML document below results in an output document containing a single result set.

<input xmlns:jdbc="urn:dirxml:jdbc">
<jdbc:statement jdbc:type="query">
<jdbc:sql>SELECT * FROM indirect.usr</jdbc:sql>
</jdbc:statement>
</input>

Embedded SQL Statements in XDS Events 125

126

<output xmlns:jdbc="urn:dirxml:jdbc">
<jdbc:result-set jdbc:number-of-rows="1">
<jdbc:row jdbc:number="1">
<jdbc:column jdbc:name="idu"
jdbc:position="1"
jdbc:type="java.sql.Types.BIGINT
<jdbc:value>l</jdbc:value>
</jdbc:column>
<jdbc:column jdbc:name="fname"
jdbc:position="2"
jdbc:type="java.sql.Types.VARCHAR>
<jdbc:value>John</jdbc:value>
</jdbc:column>
<jdbc:column jdbc:name="lname"
jdbc:position="3"
jdbc:type="java.sql.Types.VARCHAR>
<jdbc:value>Doe</jdbc:value>
</jdbc:column>
</jdbc:row>
</jdbc:result-set>
<status level="success"/>
</outputs>

SQL queries always produce a single <jdbc:result-set> element whether or not the result set
contains any rows. If the result set is empty, the jdbc:number-of - rows attribute is set to zero.

You can embed more than one query in a document. SQL queries don’t require that the referenced
tables/views in the synchronization schema be visible to the driver. However, XDS queries do.

If you are building an event to be sent via the Command Processor instead of part of the regular event
flow, you need to build the XML in a nodeset variable and use the Parse XML token before issuing the
command. For more information, see “XML Parse” in the Policies in Designer 4.0.2.

Example logic XML:

<policy xmlns:cmd="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.XdsCommandProcessor">
<rule>
<descriptions>generate SQL Select Statement</descriptions
<conditions>
<and>
<if-class-name op="equal">User</if-class-name>
</and>
</conditions>
<actions>
<do-set-local-variable name="sglstatement">
<arg-node-set>
<token-xml-parse>
<token-text xml:space="preserve"><input
xmlns:jdbc="urn:dirxml:jdbc"><jdbc:statement jdbc:type="query"><jdbc:sqgl></
token-text>
<token-text xml:space="preserve">SELECT * FROM lab.users;</token-texts>
<token-text xml:space="preserve"></jdbc:sgl></
jdbc:statement></input></token-text>
</token-xml-parse>
</arg-node-set>
</do-set-local-variables>
<do-trace-message color="yellow" level="1">
<arg-string>
<token-xpath expression="cmd:execute ($destCommandProcessor,
$sglstatement) " />
</arg-string>
</do-trace-message>
<do-veto/>
</actions>
</rules>
</policy

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

https://www.netiq.com/documentation/idm402/pdfdoc/policy_designer/policy_designer.pdf#tokenxmlparse
https://www.netiq.com/documentation/idm402/pdfdoc/policy_designer/policy_designer.pdf#bookinfo

NOTE: The queries on the Publisher channel with srcCommandProcessor are scheduled for
execution on the Subscriber channel and the script processing does not wait for the result to become
available.

11.9 Data Definition Language (DDL) Statements

Generally, it is not possible to run a Data Definition Language (DDL) statement in a database trigger
because most databases do not allow mixed DML and DDL transactions. Although virtual triggers
do not overcome this transactional limitation, they do allow DDL statements to be executed as a side
effect of an XDS event.

For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="fname">
<values>John</value>
</add-attr>
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CREATE USER jdoe IDENTIFIED BY novell</jdbc:sqgl>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT OFF

INSERT INTO indirect.usr (fname, lname) VALUES(’John’, ’‘Doe’);

COMMIT; -- explicit commit

SET AUTOCOMMIT ON

CREATE USER jdoe IDENTIFIED BY novell;

-- implicit commit

Using the jdbc:transaction-id and jdbc: transaction-type attributes to group DML and DDL
statements into a single transaction causes the transaction to be rolled back on most databases.
Because DDL statements are generally executed as separate transactions, it is possible that the
insert statement in the above example might succeed and the create user statement might roll back.

It is not possible, however, that the insert statement fails and the create user statement succeeds.
The driver stops executing chained transactions at the point where the first transaction is rolled back.

11.10 Logical Operations

Because it is not generally possible to mix DML and DDL statements in a single transaction, a single
event can consist of one or more transactions. You can use the jdbc:op-id and jdbc:op-type to
group multiple transactions together into a single logical operation. When grouped in this way;, all
members of the operation are handled as a single unit with regard to status. If one member has an
error, all members return the same status level. Similarly, all members share the same status type.

Embedded SQL Statements in XDS Events 127

11.11

11.12

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" jdbc:op-id="0"
jdbc:op-type="password-set-operation">
<add-attr name="fname">
<values>John</values>
</add-attr>
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
<password>Doe{$idu}</passwords>
</add>
<jdbc:statement jdbc:op-id="0">
<jdbc:sql>CREATE USER jdoe IDENTIFIED BY {$$password}
</jdbc:sqgl>
</jdbc:statement>
</input>

The jdbc: op-type attribute is ignored on all elements except the first element in a logical operation.

Implementing Password Set with Embedded SQL

Initially setting a password is usually accomplished by creating a database user account. Assuming
that an <add> event is generated on the Subscriber channel, the following is an example of the output
generated by XSLT style sheets that implement password set as a side effect of an XDS <add> event:

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" jdbc:op-id="0"
jdbc:op-type="password-set-operation">
<add-attr name="fname">
<values>John</value>
</add-attr>
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
<password>Doe{$idu}</password>
</add>
<jdbc:statement jdbc:op-id="0">
<jdbc:sqgl>CREATE USER jdoe IDENTIFIED BY {$$password}
</jdbc:sqgl>
</jdbc:statement>
</input>

The <add> event is logically bound to the CREATE USER DDL statement by the jdbc:op-id and
jdbc : op-type attributes.

The User DDL Command Transformation style sheet in the example.xml configuration file contains
sample XSLT templates that bind user account creation DDL statements to <add> events for all
databases that support them.

Implementing Modify Password with Embedded SQL

Modifying a password is usually accomplished by altering an existing database user account.
Assuming that a <modify-password> event is generated on the Subscriber channel, the following is
an example of the output generated by XSLT style sheets that implement modify-password:

128 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

11.13

11.14

<input xmlns:jdbc="urn:dirxml:jdbc">
<modify-password jdbc:op-id="0"
jdbc:op-type="password-set-operation">
<passwords>new password</password>
</modify-passwords>
<jdbc:statement jdbc:op-id="0">
<jdbc:sqgl>ALTER USER jdoe IDENTIFIED BY {Spassword}
</jdbc:sqgl>
</jdbc:statement>
</input>

NOTE: Some databases, such as Sybase Adaptive Server Enterprise and Microsoft SQL Server,
differentiate between user account names and login account names. Therefore, you might need to
supply the login name instead of the username.

The <modify-passwords> event is logically bound to the ALTER USER DDL statement by the jdbc:op-
id and jdbc:op-type attributes.

The User DDL Command Transformation style sheet in the example .xml configuration contains
sample XSLT templates that bind password maintenance DDL statements to <modify-passwords>
events for all databases that support them.

Implementing Check Object Password

Unlike password set, check object password does not require embedded SQL statements or
attributes. Only a user account name is required. This could be obtained from an association value
(assuming that associations are being maintained manually), a directory attribute, or a database field.
If stored in the directory or database, a query must be issued to retrieve the value.

The example .xml configuration file stores database user account names in database fields.

NOTE: Some databases, such as Sybase Adpative Server Enterprise and Microsoft SQL Server,
differentiate between user account names and login account names. Therefore, you might need to
store two names, not just one.

To implement check object password, append a dest -dn attribute value to the <check-object-
passwords> event. In the following example, the dest-dn attribute is bolded:

<input xmlns:jdbc="urn:dirxml:jdbc">
<check-object-password dest-dn="jdoe">
<password>whatever</passwords>
</check-object-passwords>
</input>

Calling Stored Procedures and Functions

The JDBC driver enables you to use stored procedures. The ability to use the <jdbc:call-
procedure> and <jdbc:call-function> elements to call stored procedures from a policy has been
tested only against Oracle and is supported only on that platform.

¢ Section 11.14.1, “Using Embedded SQL to Call Stored Procedures or Functions,” on page 130
¢ Section 11.14.2, “Using the jdbc:call-procedure Element,” on page 131
¢ Section 11.14.3, “Using the jdbc:call-function Element,” on page 134

Embedded SQL Statements in XDS Events 129

11.14.1 Using Embedded SQL to Call Stored Procedures or Functions

You can call stored procedures or functions in one of two ways:

¢ Call the procedure or function by using a Statement object.

¢ Call the procedure by using a Callable Statement object.

Example 1. Calling a Stored Procedure by Using a Statement

<!-- call syntax is Oracle -->
<jdbc:statement>

<jdbc:sqgl>CALL schema.procedure-name</jdbc:sqgl/>
</jdbc:statement>

Example 2: Calling a Stored Procedure as a CallableStatement

<!-- call syntax is vendor agnostic -->

<jdbc:statement>

<jdbc:call-procedure jdbc:name="schema.procedure-name"/>
</jdbc:statement>

Example 3: Calling a Function by Using a Statement

<!-- call syntax is Informix -->
<jdbc:statement>
<jdbc:sgl>EXECUTE FUNCTION schema.function-name</jdbc:sqgl/>

</jdbc:statement>

Example 4: Calling a Function as a CallableStatement

<!-- call syntax is vendor agnostic -->
<jdbc:statement>

<jdbc:call-function jdbc:name="schema.function-name"/>
</jdbc:statement>

The principle advantage of using the CallableStatement interface is that you do not need to know the
proprietary call syntaxes of each database vendor or JDBC implementation. Other advantages
include the following:
¢ It's much easier to build procedure or function calls in the Policy Builder.
* You can differentiate between Null and empty string parameter values.
* You can call functions on all database platforms.
Oracle, for instance, doesn't support calling functions by using a statement.

* You can retrieve Out parameter values from stored procedure calls.

130 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

11.14.2

Using the jdbc:call-procedure Element

Stored procedures do not necessarily require parameters. Only a name is required. If a database
supports schemas, we recommend that you schema-qualify the name. If a schema qualifier isn't
provided, how names are resolved depends upon your third-party JDBC implementation and might
change, depending upon driver configuration settings.

The jdbc:call-procedure element must be wrapped in a jdbc:statement element.

¢ “Specifying a Procedure Name” on page 131

¢ “Passing In or In Out Parameter Values” on page 131

¢ “Handling Out or In Out Parameters” on page 132

¢ “Example Complex Stored Procedure Calls” on page 133

Specifying a Procedure Name

<jdbc:call-procedure jdbc:name="schema.procedure-name" />

Passing In or In Out Parameter Values

The number of jdbc:param elements specified must match the number of param elements declared in
the procedure. Only jdbc:param elements corresponding to In or In Out procedure parameters can
have values. Out parameters (those that can't be passed values) must be represented by an empty
jdbc:param element.

¢ “Calling a Procedure with No Parameters” on page 131

¢ “Calling a Procedure with a Null Parameter” on page 131

¢ “Calling a Procedure with an Empty String Parameter” on page 131
¢ “Calling a Procedure with a Literal Value” on page 132

¢ “Calling a Procedure with an Out Parameter” on page 132

Calling a Procedure with No Parameters

<jdbc:statement>
<jdbc:call-procedure jdbc:name="schema.procedure-name"/>
</jdbc:statement>

Calling a Procedure with a Null Parameter

<jdbc:call-procedure jdbc:name="schema.procedure-name">
<!-- no value element = pass null -->
<jdbc:param/>

</jdbc:call-procedure>

Calling a Procedure with an Empty String Parameter

<jdbc:call-procedure jdbc:name="schema.procedure-name">
<!-- empty value element = pass empty string -->
<jdbc:param>
<jdbc:value/>
</jdbc:param>
<jdbc:param>

Literals can be passed only to procedure parameters declared as In or In Out. Passed literals must be
type-compatible with declared procedure parameters.

Embedded SQL Statements in XDS Events 131

132

Calling a Procedure with a Literal Value

<jdbc:call-procedure jdbc:name="schema.procedure-name">
<!-- non-empty value element = pass literal -->
<jdbc:param>
<jdbc:value>literal</jdbc:values>
</jdbc:param>
<jdbc:param>

Calling a Procedure with an Out Parameter

Assuming that a procedure has two parameters, the first Out and the second In, you invoke the
procedure as follows:

<jdbc:call-procedure jdbc:name="schema.procedure-name">

<!-- the OUT param place -->
<jdbc:param/>
<!-- the IN param -->

<jdbc:params>
<jdbc:value>literal</jdbc:values>
</jdbc:param>
<jdbc:param>

Handling Out or In Out Parameters

Stored procedures with Out or In Out parameters can return values. These values are returned by the
driver and are accessible to policies. Out or In Out parameters values are returned at the same
position as their corresponding declared parameter.

Also, to facilitate correlation of procedure calls and output parameter values, Out parameters contain
the same event-ID value as the procedure call that generated them. This is particularly useful when
multiple calls are made in the same document.

¢ “Null or No Return Value” on page 132
¢ “Empty String Return Value” on page 132
¢ “Literal Return Value” on page 133

Null or No Return Value
Assuming that a procedure has a single Out or In parameter, the following output is generated:

<output>
<!-- no value element = OUT param returned null or IN param -->
<jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
<jdbc:param/>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output>

Empty String Return Value
Assuming that a procedure has a single Out or In Out parameter, the following output is generated:

<output>
<!-- empty value element = returned empty string -->
<jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
<jdbc:param>
<jdbc:value/>
</jdbc:param>
</jdbc:out-parameterss>
<status event-id="0" level="success"/>
</output>

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Literal Return Value
Assuming that a procedure has a single Out or In Out parameter, the following output is generated:

<output>
<!-- no-empty value element = returned literal value -->
<jdbc:out-parameters event-id="0" jdbc:number-of-params="2">
<jdbc:param>
<jdbc:value>literal<jdbc:value>
</jdbc:param>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output>

Example Complex Stored Procedure Calls

¢ “Procedure Declaration” on page 133
¢ “Procedure Call from Policy” on page 133
¢ “Procedure Output to Policy” on page 134

Procedure Declaration

This procedure uses Oracle PSQL syntax.

CREATE PROCEDURE indirect.pl (il IN VARCHAR2, io2 IN OUT VARCHAR2, o3 OUT INTEGER,
i4 IN VARCHAR2)

AS

BEGIN
SELECT 'literal' INTO io2 FROM DUAL;
SELECT 1 INTO o3 FROM DUAL;

END p1l;

Procedure Call from Policy

<inputs>
<jdbc:statement event-id="0">
<jdbc:call-procedure jdbc:name="indirect.pl">

<!-- 11 IN VARCHAR2 -->
<jdbc:params>
<!-- pass empty string -->

<jdbc:value/>
</jdbc:param>
l-- io2 IN OUT VARCHAR2 -->
<jdbc:params>
<!-- pass literal -->
<jdbc:value>literal</jdbc:values>
</jdbc:param>

<!-- 03 OUT INTEGER -->
<!-- param placeholder -->
<jdbc:param/>

<!-- 04 IN VARCHAR2 -->
<!-- pass null -->

<jdbc:param/>
</jdbc:call-procedure>
</jdbc:statement>
</input>

Embedded SQL Statements in XDS Events 133

Procedure Output to Policy

<output>
<jdbc:out-parameters event-id="0" jdbc:number-of-params="2">
<jdbc:param/>
<jdbc:param jdbc:name="I02"
jdbc:param-type="INOUT"
jdbc:position="2"
jdbc:sqgl-type="java.sql.Types.VARCHAR" >
<jdbc:value>literal</jdbc:values>
</jdbc:params>
<jdbc:param jdbc:name="03"
jdbc:param-type="0UT"
jdbc:position="3"
jdbc:sgl-type="java.sql.Types.DECIMAL" >
<jdbc:value>1</jdbc:value>
</jdbc:param>
<jdbc:param/>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</outputs>

11.14.3 Using the jdbc:call-function Element

Functions do not necessarily require parameters. Only a name is required. If a database supports
schemas, we recommend that you schema-qualify the name. If a schema qualifier isn't provided, how
names are resolved depends upon your third-party JDBC implementation and might change
depending upon driver configuration settings.

The jdbc:call-function element must be wrapped in a jdbc:statement element.

¢ “Specifying a Function Name” on page 134

¢ “Passing In Parameter Values” on page 134

¢ “Calling a Function with No Parameter” on page 134

¢ “Calling a Function with a Null Parameter” on page 135

¢ “Calling a Function with an Empty String Parameter” on page 135
¢ “Calling a Function with a Literal Value” on page 135

¢ “Handling Function Results” on page 135

¢ “Example Complex Function Calls” on page 137

Specifying a Function Name

<jdbc:call-function jdbc:name="schema.function-name"/>

Passing In Parameter Values

The number of jdbc:param elements specified must match the number of params declared in the
function.

Calling a Function with No Parameter

<jdbc:call-function jdbc:name="schema.function-name"/>

134 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Calling a Function with a Null Parameter

<jdbc:call-function jdbc:name="schema.function-name">
<!-- no value element = null -->
<jdbc:param/>

</jdbc:call-procedure>

Calling a Function with an Empty String Parameter

<jdbc:call-function jdbc:name="schema.function-name">
<!-- empty value element = pass empty string -->
<jdbc:params>
<jdbc:value/>
</jdbc:param>
<jdbc:param>

Literals can be passed to function parameters declared as In. Passed literals must be type-compatible
with declared function parameters.

Calling a Function with a Literal Value

<jdbc:call-function jdbc:name="schema.function-name">
<!-- non-empty value element = pass literal -->
<jdbc:params>
<jdbc:value>literal</jdbc:values>
</jdbc:param>
<jdbc:param>

Handling Function Results

Unlike stored procedures, functions do not support Out or In Out parameters. They can, however,
return a single, scalar value (such as an integer or string) or return a result set. Also, to facilitate
correlation of function calls and results, results contain the same event-id value as the function call
that generated them. This is particularly useful when multiple calls are made in the same document.

¢ “Scalar Return Value” on page 135

¢ “Empty Set” on page 136

¢ “Non-Empty Results Set” on page 136

¢ “Multiple Result Sets” on page 136

¢ “Oracle Results Set” on page 136

¢ “Returning Result Sets as Out Parameters” on page 136

¢ “Special Attributes” on page 137

Scalar Return Value

Scalar return values are returned by using the same syntax as stored procedure Out parameters. The
scalar return value is always returned in the first parameter position.

<output>

<jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
<jdbc:param jdbc:name="return value"

Embedded SQL Statements in XDS Events 135

136

jdbc:param-type="0UT"
jdbc:position="1"
jdbc:sqgl-type="java.sql.Types.VARCHAR" >
<jdbc:value>1l</jdbc:value>
</jdbc:param>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output

Empty Set

Assuming that a function returns no results set or an empty result set, the following output is
generated:

<output>
<jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
<status event-id="0" level="success"/>

</output>

Non-Empty Results Set
Assuming a function returns a non-empty result set, output similar to the following is generated:

<output>
<jdbc:result-set event-id="0" jdbc:number-of-rows="1">
<jdbc:row jdbc:number="1">
<jdbc:column jdbc:name="SYSDATE"
jdbc:position="1
jdbc:type="java.sql.Types.TIMESTAMP" >
<jdbc:value>2007-01-03 14:52:20.0</jdbc:value>
</jdbc:column>
</jdbc:rows>
</jdbc:result-set>
<status event-id="0" level="success"/>
</outputs>

Multiple Result Sets

Multiple result sets are returned in the order returned by the function. They all share a common
event-id value.

<output>
<jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
<jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
<status event-id="0" level="success"/>

</outputs>

Oracle Results Set

Oracle's JDBC implementation uses a proprietary mechanism to return a single result set from a
function. To return a result set from an Oracle function, you need to explicitly set the jdbc:return-type
value to OracleTypes.CURSOR on the jdbc:call-function element.

Returning Result Sets as Out Parameters

See the special attribute “jdbc:return-format” on page 137.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Special Attributes

jdbc:return-format

This attribute can be placed on the jdbc:call-function element to format the first row of a returned
results set as stored procedure Out parameters of the result.

This works only when the jdbc:return-type attribute isn't used.

<inputs>
<jdbc:statement>
<jdbc:call-function jdbc:name="schema.function-name"
jdbc:return-format="return value">
</jdbc:call-functions>
</jdbc:statement>
</input>

jdbc:return-type

This attribute can be placed on the jdbc:call-function element to allow Oracle functions to return a
result set.

<input>
<jdbc:statement>
<jdbc:call-function jdbc:name="schema.function"
jdbc:return-type="0OracleTypes.CURSOR" >
</jdbc:call-function>
</jdbc:statement >
</input>

Example Complex Function Calls

¢ “Function Declaration” on page 137
¢ “Function Call from a Policy” on page 137

¢ “Function Results to a Policy” on page 138

Function Declaration
This declaration is for Oracle PSQL syntax.

CREATE OR REPLACE FUNCTION indirect.f1(il IN VARCHAR2, i2 IN INTEGER)
RETURN VARCHAR2
AS
o_idu VARCHAR2 (32) ;
BEGIN
SELECT 'literal' INTO o idu FROM DUAL;
RETURN o idu;
END f1;

Function Call from a Policy

<inputs>
<jdbc:statement>

Embedded SQL Statements in XDS Events

137

<jdbc:call-function jdbc:name="indirect.fl">
<jdbc:param>
<jdbc:value>literal</jdbc:values>
</jdbc:param>
<jdbc:param>
<jdbc:value>1l</jdbc:value>
</jdbc:params>
</jdbc:call-function>
</jdbc:statement>
</input>

Function Results to a Policy

<output>
<jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
<jdbc:param jdbc:name="return value"
jdbc:param-type="0UT"
jdbc:position="1"
jdbc:sgl-type="java.sql.Types.VARCHAR" >
<jdbc:value>literal</jdbc:value>
</jdbc:param>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output>

11.15 Best Practices

For performance reasons, it is better to call a single stored procedure/function that contains multiple
SQL statements than to embed multiple statements in an XDS document.

In the following examples, the single stored procedure or function is preferred.

Single Stored Procedure

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="fname">
<values>John</value>
</add-attr>
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CALL PROCEDURE set name ('John', 'Doe')</jdbc:sql>
</jdbc:statement>
</input>

138 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Multiple Embedded Statements

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<valuesDoe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sqgl>UPDATE indirect.usr SET fname = 'John' WHERE idu
{$idu}</jdbc:sql>
</jdbc:statement>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET lname = 'Doe' WHERE idu
{$idu}</jdbc:sql>
</jdbc:statement>
</input>

The syntax used to call stored procedures or functions varies by database. For additional information,
see “Syntaxes for Calling Stored Procedures and Functions” on page 144.

Embedded SQL Statements in XDS Events 139

140 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

12.1

12.2

Supported Databases

¢ Section 12.1, “Database Interoperability,” on page 141

¢ Section 12.2, “Supported Databases,” on page 141

¢ Section 12.3, “Database Characteristics,” on page 142

Database Interoperability

The Identity Manager Driver for JDBC is designed to interoperate with a specific set of JDBC driver
implementations, instead of a specific set of databases. Consequently, the list of supported databases
is primarily driven by the capabilities of supported third-party JDBC drivers. A secondary factor is

testing resources.

Supported Databases

The following databases or database versions have been tested and are recommended for use with

this product:

Table 12-1 Supported Databases

Database

Minor Version

IBM DB2 Universal Database (UDB) 9
Informix Dynamic Server (IDS)
Microsoft SQL Server 2005

Microsoft SQL Server 2008

Microsoft SQL Server 2008 R2
MySQL 5

Oracle 10g

Oracle 11i

PostgreSQL 8

PostgreSQL 9

Sybase Adaptive Server Enterprise (ASE) 15

9.0 or later
11.0 or later

Service Pack 1 or later

5.5.x or later

Release 1 (10.0.2) or later
Release 1 (11.1) or later
8.4.x or later

9.0.x or later

15.0 or later

Supported Databases

141

12.3

12.3.1

You can use the JDBC driver with other databases or database versions. However, Novell does not
support them. To interoperate with the JDBC driver, a database must meet the following
requirements:

*

*

Support the SQL-92 entry level grammar.
Be JDBC-accessible.

Database Characteristics

Section 12.3.1, “Database Features,” on page 142

Section 12.3.2, “Current Time Stamp Statements,” on page 143

Section 12.3.3, “Syntaxes for Calling Stored Procedures and Functions,” on page 144
Section 12.3.4, “Left Outer Join Operators,” on page 144

Section 12.3.5, “Undelimited Identifier Case Sensitivity,” on page 145
Section 12.3.6, “Supported Transaction Isolation Levels,” on page 145
Section 12.3.7, “Commit Keywords,” on page 146

Section 12.3.8, “IBM DB2 Universal Database (UDB),” on page 146
Section 12.3.9, “Informix Dynamic Server (IDS),” on page 147

Section 12.3.10, “Microsoft SQL Server,” on page 148

Section 12.3.11, “MySQL,” on page 148

Section 12.3.12, “Oracle,” on page 149

Section 12.3.13, “PostgreSQL,” on page 150

Section 12.3.14, “Sybase Adaptive Server Enterprise (ASE),” on page 151

Database Features

Table 12-2 Database Features

Stored Instead-
Schema . Identity Sequence Function . Of-
Database Views Columns s Erocedure Triggers Trigger
S
IBM DB2 Y Y Y N \Z \Z Y Y
UDB 9.x
Informix IDS 'Y Y Y2 N Y3 Y Y Y
11.x
MS SQL Y Y Y N Y Y Y Y
2005, 2008
and 2008 R2
MySQL Y Y v4 N Y Y Y N
5.5.x
Oracle 10g Y Y N Y Y Y Y Y
and 11i

142 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

12.3.2

Instead-

. Stored ;
Database Schema Views dentity ~ Sequence Procedure Function Triggers Of.'
S Columns s s Trigger

S

Postgres Y Y Y5 Y Y Y6 A

8.4.x and

9.0.x

Sybase ASE Y Y Y N Y Y N

15.0

! DB2 natively supports stored procedures or functions written in Java. To write procedures by using
the native SQL procedural language, install a C compiler on the database server.

2 The Informix identity column keyword is SERIALS.

3 Informix stored procedures cannot return values through OUT parameters.

% The MySQL identity column keyword is AUTO_INCREMENT.

5You can use a Postgres sequence object to provide default values for primary key columns,

effectively simulating an identity column.

SPostgres has a native construct called rules. This construct can be used to effectively simulate
triggers and instead-of-triggers. It also supports the use of triggers or instead-of-triggers written in a

variety of procedural programming languages.

Current Time Stamp Statements

The following table lists SQL statements used to retrieve the current date and time by database:

Table 12-3 Time Stamp Statements

. ANSI-
Database Current Time Stamp Statement Compliant
IBM DB2 SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH No
ubB FIRST 1 ROW ONLY

Informix IDS SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM

INFORMIX.SYSTABLES

MSSQL SELECT (CURRENT_TIMESTAMP)
MySQL SELECT (CURRENT_TIMESTAMP)
Oracle SELECT (SYSDATE) FROM SYS.DUAL

PostgreSQL SELECT (CURRENT_TIMESTAMP)
Sybase ASE SELECT GETDATE()

No

Yes
Yes
No

Yes

No

Supported Databases

143

12.3.3 Syntaxes for Calling Stored Procedures and Functions

The following table lists the syntaxes for calling a stored procedure or function by database vendor.
There’s also a vendor-neutral JDBC escape syntax (see JDBC Escape Syntax (http://edocs.bea.com/
wls/docs81/jdbc_drivers/sqlescape.html)). Whenever possible, it is more secure to call a stored
procedure or function by using the jdbc:call-function or jdbc:call-procedure syntax. See Section 11.14,
“Calling Stored Procedures and Functions,” on page 129.) Other syntaxes should be used only when
specifying procedure or function calls in driver parameters (for example, “Post Polling Statements”
on page 82 and “Connection Initialization Statements” on page 56).

Table 12-4 Calling a Stored Procedure or Function

Database Stored Procedure/Function JDBC Call Syntax

IBM DB2 UDB {call schema-name.procedure-name(parameter-list)}

Informix IDS EXECUTE [PROCEDURE | FUNCTION] schema-name.routine-name(parameter-list)

MSSQL EXECUTE schema-name.procedure-name(parameter-list)
MySQL CALL schema-name.procedure-name(parameter-list)
Oracle! CALL schema-name.procedure-name(parameter-list)

PostgreSQL SELECT schema-name.procedure-name(parameter-list)

Sybase ASE EXECUTE schema-name.procedure-name(parameter-list)

! Oracle’s JDBC implementation does not support calling functions as a string.

12.3.4 Left Outer Join Operators

The following table lists outer join operators by database.

Table 12-5 Outer Join Operators

Database Left Outer Join Operator ANSI-Compliant
IBM DB2 UDB LEFT OUTER JOIN Yes

Informix IDS LEFT OUTER JOIN Yes

MSSQL 2005 LEFT OUTER JOIN Yes

MySQL LEFT OUTER JOIN Yes

Oracle LEFT OUTER JOIN Yes

PostgreSQL LEFT OUTER JOIN Yes

Sybase ASE *= No

144 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://edocs.bea.com/wls/docs81/jdbc_drivers/sqlescape.html

12.3.5

12.3.6

Undelimited Identifier Case Sensitivity

Table 12-6 Case Sensitivity for Undelimited Identifiers

Database Case-Sensitive?

IBM DB2UDB No

Informix IDS No
MSSQL No
MySQL Yes
Oracle No

PostgreSQL No

Sybase ASE Yes

Supported Transaction Isolation Levels

Table 12-7 Supported Transaction Isolation Levels

Database None

Read
Uncommitte
d

Read
Committe
d

Repeatabl
e Read

Serializab

le

URL

IBM DB2 N
ubB

MySQL N
(InnoDB*
Table Type)

Oracle N

PostgreSQL N

Y

Yl

Y

Yl

Y

Setting JDBC Transaction
Isolation Levels (http://
publib.boulder.ibm.com/
infocenter/db2help/
index.jsp?topic=/
com.ibm.db2.udb.doc/ad/
tjvjdiso.htm)

InnoDB Transaction Isolation
Levels (http://
dev.mysql.com/doc/mysql/
en/innodb-transaction-
isolation.html)

JDBC Transaction
Optimization (http:/
www.oracle.com/technology/
oramag/oracle/02-jul/
042special_jdbc.html)

Transaction Isolation (http://
www.postgresql.org/docs/
current/static/transaction-
iso.html)

! This is the default isolation level for this database. > Can be set, but it is aliased to a supported

isolation level.

Supported Databases

145

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://www.oracle.com/technology/oramag/oracle/02-jul/o42special_jdbc.html
http://www.oracle.com/technology/oramag/oracle/02-jul/o42special_jdbc.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

12.3.7 Commit Keywords

The following table identifies the commit keywords for supported databases:

Table 12-8 Commit Keywords

Database Commit Keyword

IBM DB2 UDB COMMIT

Informix IDS COMMIT WORK!

MSSQL GO
MySQL COMMIT
Oracle COMMIT

PostgreSQL COMMIT
Sybase ASE GO

! For logging and ANSI-compliant databases. Non-logging databases do not support transactions.

12.3.8 IBM DB2 Universal Database (UDB)

¢ “Database Properties” on page 146
¢ “Dynamic Defaults” on page 146

¢ “Known Issues” on page 147

Database Properties

Table 12-9 Properties for IBM DB2 UDB

Property Value

Current Timestamp SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH
Statement FIRST 1 ROW ONLY

Case-Sensitive? No
Commit Keyword COMMIT

Left Outer Join LEFT OUTER JOIN
Operator

Dynamic Defaults

The following table lists database compatibility parameters that the JDBC driver implicitly sets at
runtime. Do not explicitly override these settings.

146 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

12.3.9

Table 12-10 Dynamically Configured IBM DB2 Universal Database Settings

Display Name Tag Name Value

Current Timestamp current-timestamp- SELECT (CURRENT TIMESTAMP) FROM
Statement: stmt SYSIBM.SYSDUMMY1 FETCH FIRST 1 ROW ONLY

Timestamp Translator time-translator-class com.novell.nds.dirxml.driver.jdbc.db.DB2Timestamp
class:

Known Issues

The timestamp format is proprietary. See “Known Issues” on page 151.

Informix Dynamic Server (IDS)

¢ “Database Properties” on page 147
¢ “Dynamic Defaults” on page 147

¢ “Known Issues” on page 148

Database Properties

Table 12-11 Settings for Informix Dynamic Server

Property Value

Current Timestamp SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM
Statement INFORMIX.SYSTABLES

Case-Sensitive? No

Commit Keyword COMMIT WORKZ

Left Outer Join LEFT OUTER JOIN
Operator

! For logging and ANSI-compliant databases. Nonlogging databases do not support transactions.

Dynamic Defaults

The following table lists database compatibility parameters that the JDBC driver implicitly sets at
runtime. Do not explicitly overwrite these settings.

Table 12-12 Dynamically Configured Informix Dynamic Server Settings

Display Name Tag Name Value

Current Timestamp current-timestamp- SELECT FIRST 1 (CURRENT YEAR TO
Statement: stmt FRACTION(5)) FROM INFORMIX.SYSTABLES

Supported Databases

147

12.3.10

12.3.11

Known Issues

¢ NUMERIC or DECIMAL columns cannot be used as primary keys unless the scale (the number of
digits to the right of the decimal point) is explicitly set to 0 when the table is created. By default,
the scale is set to 255.

¢ DBAs cannot grant privileges to objects they don’t own.

Microsoft SQL Server

¢ “Database Properties” on page 148
¢ “Dynamic Defaults” on page 148

Database Properties

Table 12-13 Settings for Microsoft SQL Server

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Case-Sensitive? No
Commit Keyword GO
Left Outer Join Operator LEFT OUTER JOIN

(2005,2008,2008 R2)

Dynamic Defaults

The following table lists database compatibility parameters that the JDBC driver implicitly sets at
runtime. Do not explicitly overwrite these settings.

Table 12-14 Dynamically Configured Microsoft SQL Server Settings

Display Name Tag Name Value

Add default values on insert? add-default-values-on-view-insert True

Left outer-join operator left-outer-join-operator LEFT OUTER JOIN
(2005,2008,2008 R2)

MySQL

¢ “Database Properties” on page 149
¢ “Dynamic Defaults” on page 149

¢ “Known Issues” on page 149

148 Identity Manager 4.0.2 Driver for JIDBC Implementation Guide

Database Properties

Table 12-15 Settings for MySQL

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Case-Sensitive? Yes
Commit Keyword COMMIT
Left Outer Join Operator LEFT OUTER JOIN

Dynamic Defaults

The following table lists database compatibility parameters that are dynamically configured at
runtime for this database.

Table 12-16 Dynamically Configured MySQL Settings

Display Name Tag Name Value
Supports schemas in metadata supports-schemas-in-metadata-retrieval false
retrieval?

Known Issues

¢ TIMESTAMP columns, when they are updated after being initially set to 0 or NULL, are always set
to the current date and time. To compensate for this behavior, we recommend that you map
Identity Vault Time and Timestamp syntaxes to DATETIME columns.

12.3.12 Oracle

¢ “Database Properties” on page 149
¢ “Dynamic Defaults” on page 150

¢ “Limitations” on page 150
Database Properties

Table 12-17 Settings for Oracle

Property Value

Current Timestamp Statement SELECT (SYSDATE) FROM SYS.DUAL

Case-Sensitive? No
Commit Keyword COMMIT
Left Outer Join Operator)

Supported Databases 149

Dynamic Defaults

The following table lists database compatibility parameters that the JDBC driver implicitly sets at
runtime. Do not explicitly overwrite these settings.

Table 12-18 Dynamically Configured Oracle Settings

Display Name Tag Name Value

Left outer-join operator left-outer-join-operator +)

Exclude filter expression exclude-table-filter BIN\$.{22}==\%0

Lock statement generator lock-generator-class com.novell.nds.dirxml.driver.jdbc.db.lock.
class OraLockGenerator

The default exclusion filter omits dropped tables (that are visible in Oracle 10g) from the
synchronization schema.

Limitations

LONG, LONG RAW, and BLOB columns cannot be referenced in a trigger. You can’t reference columns of
these types by using the :NEW qualifier in a trigger, including instead-of-triggers.

12.3.13 PostgreSQL

¢ “Database Properties” on page 150

¢ “Known Issues” on page 150

Database Properties

Table 12-19 Settings for PostgreSQL

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Case-Sensitive? No
Commit Keyword COMMIT
Left Outer Join Operator LEFT OUTER JOIN

Known Issues

PostgreSQL does not support <check-object-passwords> events. You control authentication by
manually inserting entries into the pg_hba . conf file.

150 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

12.3.14

Sybase Adaptive Server Enterprise (ASE)

¢ “Database Properties” on page 151
¢ “Dynamic Defaults” on page 151

¢ “Known Issues” on page 151

Database Properties

Table 12-20 Settings for Sybase ASE

Property Value

Current Timestamp Statement SELECT GETDATE()
Case-Sensitive? Yes

Commit Keyword GO

Left Outer Join Operator *=

Dynamic Defaults

The following table lists database compatibility parameters that the JDBC driver implicitly sets at

runtime. Do not explicitly overwrite these settings.

Table 12-21 Dynamically Configured Sybase ASE Settings

Display Name Tag Name

Value

Current timestamp
statement

current-timestamp-stmt

Left outer-join operator left-outer-join-operator

Timestamp Translator time-translator-class

class

SELECT GETDATE()

*=

com.novell.nds.dirxml.driver.jdbc.db.SybaseTi
mestamp

Known Issues

¢ Padding and truncation of binary values.

To ensure ANSI-compliant padding and truncation behavior for binary values, make sure that
binary column types (other than IMAGE) meet the following criteria:

¢ They are exactly the size of the eDirectory™ attribute that maps to them.

¢ They are constrained NOT NULL.

¢ They are added to the Publisher and Subscriber Creation policies.

If they are constrained NULL, trailing zeros, which are significant to eDirectory, are truncated. If
binary columns exceed the size of their respective eDirectory attributes, extra Os are appended to

the value.

The recommended solution is to use only the IMAGE data type when synchronizing binary

values.

Supported Databases 151

¢ DATETIME fractions of a second are rounded. Sybase Timestamps are at best accurate to 1/300t of
a second (approximately.003 seconds). The database server rounds to the nearest 1/300" of a
second as opposed to the nearest 1/1000" of a second (.001 seconds or 1 millisecond).

¢ Timestamp formats are proprietary.

152 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

3 Third-Party JDBC Drivers

13.1

13.2

¢ Section 13.1, “Third-Party JDBC Driver Interoperability,” on page 153

¢ Section 13.2, “Third-Party JDBC Driver Types,” on page 153

¢ Section 13.3, “Supported Third-Party JDBC Drivers (Recommended),” on page 154

¢ Section 13.4, “Supported Third-Party JDBC Drivers (Not Recommended),” on page 167
¢ Section 13.5, “Deprecated Third-Party JDBC Drivers,” on page 173

¢ Section 13.6, “Other Third-Party JDBC Drivers,” on page 174

¢ Section 13.7, “Security Issues,” on page 175

Third-Party JDBC Driver Interoperability

The Identity Manager JDBC driver is designed to interoperate with a specific set of third-party JDBC
drivers, instead of a specific set of databases. In fact, the third-party JDBC driver, not the database, is
the primary determinant of whether the JDBC driver works against any given database. As a general
rule, if the JDBC driver interoperates well with a given third-party JDBC driver, it interoperates well
with databases and database versions that the third-party driver supports.

We strongly recommend that you use the third-party JDBC drivers supplied by major enterprise
database vendors whenever possible, such as those listed in Section 13.3, “Supported Third-Party
JDBC Drivers (Recommended),” on page 154. They are usually free, mature, and known to
interoperate well with the JDBC driver and the databases they target. You can use other third-party
drivers, but Novell does not support them.

In general, most third-party drivers are backward compatible. However, even if they are backward
compatible, they are generally not forward compatible. Anytime a database server is upgraded, the
third-party driver used with this product should probably be updated as well.

Also, as a general rule, we recommend that you use the latest version of a third-party driver, unless
otherwise noted.

Third-Party JDBC Driver Types

The following sections describe four third-party JDBC driver types and explains the recommended
type for use with the Identity Manager JDBC driver:

¢ Section 13.2.1, “Driver Types,” on page 154
¢ Section 13.2.2, “Which Type To Use?,” on page 154

Third-Party JDBC Drivers 153

13.2.1 Driver Types

There are four types of third-party drivers:

¢ Type 1: A third-party JDBC driver that is partially Java and communicates indirectly with a
database server through a native ODBC driver.

Type 1 drivers serve as a JDBC-ODBC bridge. Sun provides a JDBC-ODBC bridge driver for
experimental use and for situations when no other type of third-party JDBC driver is available.

¢ Type 2: A third-party JDBC driver that is part Java and communicates indirectly with a database
server through its native client APIs.

¢ Type 3: A third-party JDBC driver that is pure Java and communicates indirectly with a
database server through a middleware server.

¢ Type 4: A third-party JDBC driver that is pure Java and communicates directly with a database
server.

13.2.2 Which Type To Use?

Type 3 and 4 drivers are generally more stable than type 1 and 2 drivers. Type 1 and 2 drivers are
generally faster than type 3 and 4 drivers. Type 2 and 3 drivers are generally more secure than type 1
and 4 drivers.

Because Identity Manager uses a directory as its datastore, and because databases are usually
significantly faster than directories, performance isn’t a primary concern. Stability, however, is an
issue. For this reason, we recommend that you use a type 3 or 4 third-party JDBC driver whenever
possible.

Because third-party code is being executed within the environment, it is recommended to always use
the Remote Loader to execute third-party code on its own to ensure the integrity of the directory
process. This also makes upgrades of the shim or third-party code simple and safe because the
directory does not need to be restarted.

13.3 Supported Third-Party JDBC Drivers (Recommended)

This section discusses supported third-party drivers. Using one of these supported drivers is
recommended.

¢ Section 13.3.1, “Third-Party JDBC Driver Features,” on page 155

¢ Section 13.3.2, “JDBC URL Syntaxes,” on page 155

¢ Section 13.3.3, “JDBC Driver Class Names,” on page 156

¢ Section 13.3.4, “Supported Third-Party Jar File Placement,” on page 156

¢ Section 13.3.5, “IBM DB2 Universal Database Type 4 JDBC Driver,” on page 156

¢ Section 13.3.6, “Informix JDBC Driver,” on page 158

¢ Section 13.3.7, “TDS JDBC Driver,” on page 159

¢ Section 13.3.8, “MySQL Connector/] JDBC Driver,” on page 161

¢ Section 13.3.9, “Oracle Thin Client JDBC Driver,” on page 162

¢ Section 13.3.10, “Oracle OCI JDBC Driver,” on page 164

¢ Section 13.3.11, “PostgreSQL JDBC Driver,” on page 165

¢ Section 13.3.12, “Sybase Adaptive Server Enterprise JConnect JDBC Driver,” on page 166

154 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Additional drivers are supported but not recommended. For a list of these drivers, see Section 13.4,
“Supported Third-Party JDBC Drivers (Not Recommended),” on page 167.

13.3.1 Third-Party JDBC Driver Features

The following table summarizes third-party JDBC driver features:

Table 13-1 Third-Party JDBC Driver Features

Driver Supports Encrypted Supports Retrieval of Auto-
Transport? Generated Keys?

IBM DB2 UDB Type 4 No No

Informix No No

MySQL Connector/J Yes Yes

jTDS Yes Yes

Oracle Thin Client Yes No

Oracle OCI Yes No

PostgreSQL Yes, for JDBC 3 (Java 1.4) No
versions and later

Sybase jConnect Yes No

13.3.2 JDBC URL Syntaxes

The following table lists URL syntaxes for supported third-party JDBC drivers:

Table 13-2 URL Syntaxes

Third-Party JDBC Driver JDBC URL Syntax

IBM DB2 UDB Type 4, Universal jdbc:db2://ip-address:50000/database-name

Informix jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

jTDS jdbc:jtds:sqlserver://ip-address/database-name
MySQL Connector/J jdbc:mysql://ip-address:3306/database-name
Oracle OCI jdbc:oracle:oci8:@tns-name

Oracle Thin Client jdbc:oracle:thin:@ip-address:1521:sid
PostgreSQL jdbc:postgresql://ip-address:5432/database-name
Sybase jConnect jdbc:sybase:Tds:ip-address:2048/database-name

This information is used in conjunction with the Authentication Context parameter. For information
on this parameter, see “Authentication Context” on page 45.

Third-Party JDBC Drivers 155

13.3.3 JDBC Driver Class Names

The following table lists the fully qualified Java class names of supported third-party JDBC drivers:

Table 13-3 Class Names of Third-Party JDBC Drivers

Third-Party JDBC Driver Class Name

IBM DB2 UDB Type 4, Universal com.ibm.db2.jcc.DB2Driver
Informix com.informix.jdbc.IfxDriver

jTDS net.sourceforge.jtds.jdbc.Driver
MySQL Connector/J org.gjt.mm.mysql.Driver

Oracle OCI oracle.jdbc.driver.OracleDriver
Oracle Thin Client oracle.jdbc.driver.OracleDriver
PostgreSQL org.postgresql.Driver

Sybase jConnect 6.0 com.sybase.jdbc3.jdbc.SybDriver
Sybase jConnect 7.0 com.sybase.jdbc4.jdbc.SybDriver

This information is used in conjunction with the JDBC Driver Class Name parameter. For information
on this parameter, see “Third-Party JDBC Driver Class Name” on page 47.

13.3.4 Supported Third-Party Jar File Placement

The following tables identify the paths where third-party JDBC driver jar files should be placed on an
Identity Manager or Remote Loader server, assuming default installation paths.

Table 13-4 Locations for jar Files: Identity Manager Server

Platform Directory Path
Solaris, Linux, or AlX /opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8.x)
Windows novell\NDS\1ib

Table 13-5 Locations for jar Files: Remote Loader Server

Platform Directory Path
Solaris, Linux, or AIX /opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8.x)
Windows novell\RemoteLoader\1lib

13.3.5 IBM DB2 Universal Database Type 4 JDBC Driver

¢ “Driver Information” on page 157

¢ “Compeatibility” on page 157

156 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

¢ “Security” on page 157

¢ “Known Issues” on page 158

Driver Information

Table 13-6 IBM DB2 Driver: Type 4

Supported Database Versions

Class Name

Type
URL Syntax

Download Instructions

Filename

Documentation URLs

IBM DB2 9.7 or later

com.ibm.db2.jcc.DB2Driver

4

jdbc:db2://ip-address:50000/database-name

Download as part of the latest FixPack (recommended).
IBM Support & Downloads (http://www.ibm.com/support/us/)
or

Copy the file from the database server.
file:///database-installation-directory/java

db2jcc.jar,db2jcc_license cu.jar,db2jcc javax.jar
(optional)

DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2help)

DB2 Universal JDBC Driver (http://publib.boulder.ibm.com/infocenter/
db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm)

Security under the DB2 Universal JDBC Driver (http://
publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/
com.ibm.db2.udb.doc/ad/cjvjcsec.htm)

Unlike the type 3 driver, the type 4 driver has only a minimal set of defined error codes. This absence
inhibits the JDBC driver’s ability to distinguish between connectivity, retry, authentication, and fatal

error conditions.

Compatibility

The IBM DB2 driver is backward compatible. Database server updates are frequent. Driver updates

are infrequent.

Security

The IBM DB2 driver supports a variety of authentication security mechanisms but does not support

encrypted transport.

Third-Party JDBC Drivers 157

http://www.ibm.com/support/us/
http://publib.boulder.ibm.com/infocenter/db2help
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/cjvjcsec.htm

Known Issues

It's very difficult to diagnose and remedy Java-related errors on the database server.

Numerous error conditions and error codes can arise when you attempt to install and execute user-
defined stored procedures and functions written in Java. Diagnosing these can be time consuming
and frustrating. A log file (db2diag.log on the database server) can often provide additional
debugging information. In addition, all error codes are documented and available online.

13.3.6 Informix JDBC Driver

¢ “Driver Information” on page 158

¢ “Compatibility” on page 158

¢ “Security” on page 158

¢ “Required Parameter Settings for ANSI-Compliant Databases” on page 159
¢ “Dynamic Parameter Defaults” on page 159

¢ “Known Issues” on page 159

Driver Information

Table 13-7 Informix [DBC Driver

Supported Database Versions Dynamic Server 11.5 or later

Class Name com.informix.jdbc.IfxDriver

Type 4

URL Syntax jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

Download Instructions Download URL (http://www-306.ibm.com/software/data/informix/tools/
jdbc)

Filenames (11) ifxjdbc. jar, jdbex. jar (optional)

Documentation URLs Informix Information Center (http://publib.boulder.ibm.com/infocenter/
ids9help/index.jsp)

Informix JDBC Driver (http://www-306.ibm.com/software/data/informix/
pubs/library/jdbc_2.html)

Compatibility

The Informix driver is backward compatible. Database server updates and driver updates are
infrequent.

Security

The Informix driver does not support encrypted transport.

158 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://www-306.ibm.com/software/data/informix/tools/jdbc
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp
http://www-306.ibm.com/software/data/informix/pubs/library/jdbc_2.html

13.3.7

Required Parameter Settings for ANSI-Compliant Databases

The following table lists driver parameters that must be explicitly set for the JDBC driver to
interoperate with the Informix driver against ANSI-compliant databases.

Table 13-8 Driver Settings for ANSI-Compliant Databases

Display Name Tag Name Value

Supports schemas in metadata retrieval? supports-schemas-in-metadata-retrieval false

See “Supports Schemas in Metadata
Retrieval?” on page 65.

Force username case: force-username-case upper

See “Force Username Case” on page 63.

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the JDBC driver implicitly sets at
runtime. Do not override these settings.

Table 13-9 Informix [DBC Settings Not to Override

Display Name Tag Name Value

Function return method: function-return-method result set

See “Function Return Method” on
page 65.

Known Issues

¢ Schema names cannot be used to retrieve metadata against an ANSI-compliant database. Set the
driver compatibility parameter “Supports Schemas in Metadata Retrieval?” on page 65 to
Boolean False. The database objects available for metadata retrieval are those visible to the
database user who authenticated to the database. Schema qualifiers cannot be used to identify
database objects. Therefore, to avoid naming collisions (such as ownerl.tablel, owner2.tablel),
give the database authentication user only SELECT privileges on objects being synchronized.

¢ When used against ANSI-compliant databases, usernames must be in uppercase. Set the driver
compatibility parameter “Force Username Case” on page 63 to upper.

jTDS JDBC Driver

¢ “Driver Information” on page 160
¢ “Limitations” on page 160

¢ “Compatibility” on page 160

¢ “Security” on page 160

¢ “URL Properties” on page 160

Third-Party JDBC Drivers 159

160

Driver Information

Table 13-10 jTDS Driver Settings

Supported Database Versions: Microsoft SQL Server 2005 Service Pack 1 or later, 2008 and 2008 R2,
Sybase Adaptive Server Enterprise (ASE) 15 or later

Class Name net.sourceforge.jtds.jdbc.Driver
Type 4 (2 if NTLM or SSO authentication is enabled)
URL Syntax jdbc:jtds:sqlserver://ip-address/database-name

jdbc:jtds:sybase://ip-address/database-name

Download Instructions The jTDS Project (http://jtds.sourceforge.net/)
Filenames jtds-<versions>.jar
Limitations

The jTDS JDBC driver does not support views or stored procedures. Novell recommends that you
use the Microsoft 2000 JDBC driver when Subscribing to views.

Compatibility
The jTDS driver works with all versions of Microsoft SQL Server. It also supports all versions of

Sybase ASE, but it hasn’t been tested by Novell against that database server yet. Driver updates are
infrequent.

Security

The jTDS driver supports encrypted transport.

URL Properties

Delimit URL properties by using a semicolon (;).

The following table lists values for the domain URL property for the jTDS driver.

Table 13-11 Values for the Domain URL Property

Legal Value Description

<any-domain-name> When a domain name is specified, either NTLM or SSO authentication can
be used. NTLM authentication is selected when a username and password
are supplied. SSO authentication is selected when a username and
password are not supplied.

<no-value> JDBC authentication is used.

The following table lists values for the SSL URL property for the jTDS driver.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://jtds.sourceforge.net/

13.3.8

Table 13-12 Values for the SSL URL Property

Legal Value Description

off SSL is not used. This is the default.

request SSL is used if the server supports it.

require SSL is required. An exception is thrown if the server doesn’t support it.

authenticate SSL is required. An exception is thrown if the server doesn’t support it. In
addition, the server’s certificate must be signed by a trusted certificate
authority.

MySQL Connector/J JDBC Driver

¢ “Driver Information” on page 161

¢ “Compeatibility” on page 161

¢ “Security” on page 162

¢ “Required Parameter Settings for MyISAM Tables” on page 162

Driver Information

Table 13-13 MySQL Connector/] JDBC Driver Settings

Supported Database Versions
Class Name

Type

URL Syntax

Download Instructions

Filename

Documentation URLs

5.5.15 or later

org.gjt.mm.mysql.Driver

4
jdbc:mysql://ip-address:3306/database-name

Download and extract. The jar file is located in the extract-dir/mysq|-
connector-java-version directory.

MySQL Connector/J (http://www.mysql.com/products/connector/j/)
mysqgl-connector-java-version-bin.jar

MySQL Connector/J Documentation (http://dev.mysql.com/doc/
refman/5.0/en/java-connector.html)

Connecting Over SSL (http://dev.mysqgl.com/doc/refman/5.0/en/cj-
using-ssl.html)

Also see “Generation/Retrieval Method (Table-Global)” on page 71.

Compatibility

The Connector/] driver is backward compatible. Database server updates are frequent. Driver

updates are infrequent.

Third-Party JDBC Drivers

161

http://www.mysql.com/products/connector/j/
http://dev.mysql.com/doc/refman/5.0/en/java-connector.html
http://dev.mysql.com/doc/refman/5.0/en/cj-using-ssl.html

Security

The Connector/] driver supports JSSE (Java Secure Sockets Extension) SSL-encrypted transport.

Required Parameter Settings for MyISAM Tables

The following table lists driver parameters that you must set so that the JDBC driver can interoperate
with the Connector/J driver against MyISAM tables.

Table 13-14 Settings for MyISAM Tables

Display Name Tag Name Value

Use manual transactions? use-manual-transactions false

13.3.9 Oracle Thin Client JDBC Driver

¢ “Driver Information” on page 162

¢ “Compatibility” on page 163

¢ “Security” on page 163

¢ “Dynamic Parameter Defaults” on page 163
¢ “Connection Properties” on page 163

¢ “Known Issues” on page 163

Driver Information

Table 13-15 Oracle Thin Client Settings

Supported Database Versions 10g (Release 1 (10.0.2) or later), 11g (Release 1 (11.1) or later)

Class Name oracle.jdbc.driver.OracleDriver

Type 4

URL Syntax jdbc:oracle:thin:@ip-address:1521:sid
Download Instructions Register for free and download.

For 10g, register at Oracle Technology Network (http://
www.oracle.com/technetwork/database/enterprise-edition/jdbc-10201-
088211.html).

For 119, register at Oracle Technology Network (http://
www.oracle.com/technetwork/database/enterprise-edition/jdbc-
112010-090769.html).

Filenames classesl2.jar, ojdbc6.jar, ojdbcl4d.jar, ojdbc5.jar,
orail8n.jar (optional)

Filenames for different JVM versions (http://www.oracle.com/
technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07)

162 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-10201-088211.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

Documentation URLs

Oracle Advanced Security (http://www.stanford.edu/dept/itss/docs/

oracle/10g/java.101/b10979/clientsec.htm)

JDBC FAQ (http://www.oracle.com/technology/tech/java/sqlj_jdbc/

htdocs/jdbc_fag.htm)

Compatibility

The Thin Client driver is backward compatible. Database server updates and driver updates are

infrequent.

Oracle releases thin client drivers for various JVMs. Even though all of them work with this product,

we recommend that you use the 1.6 version.

Security

The Thin Client driver supports Oracle Advanced Security encrypted transport.

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the JDBC driver implicitly sets at

runtime. Do not explicitly override these settings.

Table 13-16 Oracle Thin Client Settings Not to Override

Display Name Tag Name

Value

Number of returned result sets:

handle-stmt-results

single

Connection Properties

The following table lists important connection properties for this driver.

Table 13-17 Oracle Thin Client: Connection Properties

Property

Significance

includeSynonyms

ORACLE.NET.ENCRYPTION_CLIENT

ORACLE.NET.ENCRYPTION_TYPES_CLIENT

ORACLE.NET.CRYPTO_CHECKSUM_CLIENT

If the value of this property is true, synonym
column metadata is available.

Defines the level of security that the client
wants to negotiate with the server.

Defines the encryption algorithm to be used.

Defines the level of security that it wants to
negotiate with the server for data integrity.

ORACLE.NET.CRYPTO_CHEKSUM_TYPES_CLIENT Defines the data integrity algorithm to be used.

Known Issues

¢ High CPU utilization triggered by execution of embedded SQL statements:

Third-Party JDBC Drivers

163

http://www.stanford.edu/dept/itss/docs/oracle/10g/java.101/b10979/clientsec.htm
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm

The most common problem experienced with this driver is high CPU utilitization. As a result,
this driver always indicates that more results are available from calls to method
java.sql.Statement.execute (String stmt), which can lead to an infinite loop condition.
This condition occurs only if all the following happen:

¢ A value other than single, no, or one in the driver compatibility parameter “Number of
Returned Result Sets” on page 61 is being executed.

¢ An embedded SQL statement is being executed.
¢ The type of statement is not explicitly specified.

To avoid the conditions that produce high CPU utilization:
¢ Do not explicitly set this parameter. Defer to the dynamic default value.

¢ Always place a jdbc: type attribute on embedded <jdbc:statement> elements.

NOTE: The jdbc namespace prefix must map to urn:dirxml: jdbc.

¢ Can't retrieve synonym column metadata.
The connection property includeSynonyms must be set to true.
¢ Can’t see synonym table primary key constraint.

The only known solution to this problem is to use a view.

13.3.10 Oracle OCI JDBC Driver

164

Table 13-18 Oracle OCI JDBC Driver Settings

Supported Database Versions 10g (Release 1 (10.0.2) or later), 11g (Release 1 (11.1) or later)

Class Name oracle.jdbc.driver.OracleDriver

Type 2

URL Syntax jdbc:oracle:oci8: @tns-name

Download Instructions The SQLNet infrastructure is the main requirement for OCI. SQLNet

can run on any platform that Oracle supports, not just Linux.

For Linux, register for free and download the following:

¢ The Oracle Instant Client (instantclient-basic-1inux32-
10.2.0.1-20050713.zip) from Instant Client Downloads
(http://www.oracle.com/technology/software/tech/oci/
instantclient/htdocs/linuxsoft.html).

¢ The Oracle SQLPIlus binary (instantclient-sglplus-
1inux32-10.2.0.1-20050713.zip) from Instant Client
Downloads (http://www.oracle.com/technology/software/tech/oci/
instantclient/htdocs/linuxsoft.html).

Filenames ojdbcl4.jar, orail8n.jar (optional)

Filenames for different JVM versions (http://www.oracle.com/
technology/tech/java/sqlj_jdbc/htdocs/jdbc_fag.htm#02_07)

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07

Documentation URLS Oracle Call Interface (http://www.oracle.com/technology/tech/oci/
index.html)

OCI FAQ (http://www.oracle.com/technology/tech/oci/htdocs/
oci_fag.html)

Oracle Advanced Security (http://www.stanford.edu/dept/itss/docs/
oracle/10g/java.101/b10979/clientsec.htm)

Instant Client (http://www.oracle.com/technology/tech/oci/instantclient/
index.html)

Instant Client (http://download-west.oracle.com/docs/cd/B12037_01/
java.101/b10979/instclient.ntm#CHDGDIGG)

You can install SQLNet by doing either of the following:

¢ Use the Instant Client, which bypasses unneeded components of the full version.

¢ Download the full package from Oracle.

If the database is running on the same server as Identity Manager, you don’t need to install SQLNet
because SQLNet comes as standard on the database server.

The Oracle OCI driver is essentially the same as the Thin Client driver. See Section 13.3.9, “Oracle
Thin Client JDBC Driver,” on page 162. The OCI client differs in the following ways:

¢ The OCI Client supports clustering, failover, and high availability.
¢ The OCI Client has additional security options.

For information on setting up the Oracle OCI Client, see Appendix M, “Setting Up an OCI Client on
Linux,” on page 217.

13.3.11 PostgreSQL JDBC Driver

¢ “Driver Information” on page 165
¢ “Compatibility” on page 166
¢ “Security” on page 166

Driver Information

Table 13-19 PostgreSQL JDBC Driver Settings

Supported Database Versions 8.4.3 or later, 9.0.4 or later

Class Name org.postgresql.Driver

Type 4

URL Syntax jdbc:postgresql://ip-address:5432/database-name

Download Instructions JDBC Driver Download (http://jdbc.postgresql.org/download.html)

Third-Party JDBC Drivers 165

http://www.oracle.com/technology/tech/oci/index.html
http://www.oracle.com/technology/tech/oci/htdocs/oci_faq.html
http://www.stanford.edu/dept/itss/docs/oracle/10g/java.101/b10979/clientsec.htm
http://www.oracle.com/technology/tech/oci/instantclient/index.html
http://download-west.oracle.com/docs/cd/B12037_01/java.101/b10979/instclient.htm#CHDGDIGG
http://jdbc.postgresql.org/download.html

13.3.12

Documentation URLS JDBC Driver Documentation (http://jdbc.postgresqgl.org/
documentation/docs.html)

Using SSL (http://jdbc.postgresqgl.org/documentation/80/ssl.html)

The filename of the PostgreSQL varies by database version.

Compatibility

The latest builds of the PostgreSQL driver are backward compatible through server version 8.4.3.
Database server updates and driver updates are frequent.

Security

The PostgreSQL driver supports SSL-encrypted transport for JDBC 3 driver versions.

Sybase Adaptive Server Enterprise JConnect JDBC Driver

¢ “Driver Information” on page 166
¢ “Compatibility” on page 166
¢ “Security” on page 167

¢ “Connection Properties” on page 167

Driver Information

Table 13-20 Sybase Adaptive Server Enterprise Driver Settings

Supported Database Versions Adaptive Server Enterprise 15.0 or later

Class Name com.sybase.jdbc3.jdbc.SybDriver (for jconn3.jar)
com.sybase.jdbc4.jdbc.SybDriver (for jconn4.jar)

Type 4

URL Syntax jdbc:sybase:Tds:ip-address:2048/database-name

Download Instructions Sybase Downloads (http://www.sybase.com/downloads)
Filenames jconn3.jar or jconn4.jar

Documentation URLs jConnect Documentation (http://sybooks.sybase.com/onlinebooks/

group-jc/jcg0600e/pridbc)

For JDBC 3 (Java 1.4) versions and later.

Compatibility

The Adaptive Server driver is backward compatible. Database server updates and driver updates are
infrequent.

166 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://jdbc.postgresql.org/documentation/docs.html
http://jdbc.postgresql.org/documentation/80/ssl.html
http://www.sybase.com/downloads
http://sybooks.sybase.com/onlinebooks/group-jc/jcg0600e/prjdbc

13.4

13.4.1

13.4.2

Security

The Adaptive Server driver supports SSL-encrypted transport. To enable SSL encryption, you must

specify a custom socket implementation via the SYBSOCKET_FACTORY connection property. For

additional information on how to set connection properties, see “Connection Properties” on page 56.

Connection Properties

The SYBSOCKET_FACTORY property can be used to specify the class name of a custom socket

implementation that supports encrypted transport.

Supported Third-Party JDBC Drivers (Not Recommended)

This section identifies third-party JDBC drivers that are supported but whose use with the Identity

Manager JDBC driver is not recommended:

¢ Section 13.4.1, “Third-Party JDBC Driver Features,” on page 167

¢ Section 13.4.2, “JDBC URL Syntaxes,” on page 167

¢ Section 13.4.3, “JDBC Driver Class Names,” on page 168

¢ Section 13.4.4, “IBM DB2 Universal Database JDBC Driver,” on page 168
¢ Section 13.4.5, “Microsoft SQL Server 2005 Driver for JDBC,” on page 169
¢ Section 13.4.6, “Microsoft SQL Server 2008 JDBC Driver,” on page 171

¢ Section 13.4.7, “Microsoft SQL Server 2008 R2 JDBC Driver,” on page 172

For information about supported third-party drivers that are recommended, see Section 13.4,
“Supported Third-Party JDBC Drivers (Not Recommended),” on page 167.

Third-Party JDBC Driver Features

The following table summarizes third-party JDBC driver features:

Table 13-21 Third-Party [DBC Driver Features

Supports Encrypted

Supports Retrieval of Auto-

Driver Transport? Generated Keys?
IBM DB2 UDB Type 3 No No
Microsoft 2005 Yes Yes
Microsoft 2008 Yes Yes
Microsoft 2008 R2 Yes Yes

JDBC URL Syntaxes

The following table lists URL syntaxes for supported third-party JDBC drivers:

Third-Party JDBC Drivers

167

13.4.3

13.4.4

168

Table 13-22 URL Syntaxes

Third-Party JDBC Driver

JDBC URL Syntax

IBM DB2 UDB Type 3
Microsoft SQL Server 2005

Microsoft SQL Server 2008

Microsoft SQL Server 2008 R2

jdbc:db2://ip-address:6789/database-name

jdbc:microsoft:sqglserver://ip-address-or-dns-
name:1433;DatabaseName=database-name

jdbc:sqlserver://ip-address-or-dns-
name:1433;databaseName=database-name

jdbc:sqlserver://ip-address-or-dns-
name:1433;databaseName=database-name

This information is used in conjunction with the Authentication Context parameter. For information
on this parameter, see “Authentication Context” on page 45.

JDBC Driver Class Names

The following table lists the fully-qualified Java class names of supported third-party JDBC drivers:

Table 13-23 Class Names of Third-Party [DBC Drivers

Third-Party JDBC Driver

Class Name

IBM DB2 UDB Type 3
Microsoft 2005
Microsoft 2008
Microsoft 2008 R2

COM.ibm.db2.jdbc.net.DB2Driver
com.microsoft.sqglserver.jdbc.SQLServerDriver
com.microsoft.sqglserver.jdbc.SQLServerDriver

com.microsoft.sqglserver.jdbc.SQLServerDriver

This information is used in conjunction with the JDBC Driver Class Name parameter. For information
on this parameter, see “Third-Party JDBC Driver Class Name” on page 47.

IBM DB2 Universal Database JDBC Driver

¢ “Driver Information” on page 168

¢ “Compeatibility” on page 169

¢ “Security” on page 169

¢ “Known Issues” on page 169

Driver Information

Table 13-24 IBM DB2 Driver Settings

Type 4 Driver

Supported Database Versions

Class Name

9.x

com.ibm.db2.jcc.DB2Driver

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Type 4 Driver

URL Syntax jdbc:db2://ip-address:50000/database-name
Download Instructions Copy the file from the database server.

file:///database-installation-directory/java

File Name db2jcc.jar
Documentation URLS DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2v7luw)

JDBC Programming (http://publib.boulder.ibm.com/infocenter/
db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/
db2a0159.htm)

Compatibility

The IBM DB2 driver can best be characterized as version-hypersensitive. It is not compatible across
major or minor versions of DB2, including FixPacks. For this reason, we recommend that you use the
file installed on the database server.

The IBM DB2 driver must be updated on the Identity Manager or Remote Loader server every time
the target database is updated, even if only at the FixPack level.

Security

The IBM DB2 driver does not support encrypted transport.

Known Issues

¢ A version mismatch usually results in connectivity-related failures.

The most common problem experienced with the IBM DB2 driver is because of a driver/database
version mismatch. The symptom of a version mismatch is connectivity-related failures such as
CLIO601E Invalid statement handle or statement is closed. To remedy the problem,
overwrite the db2java. zip file on the Identity Manager or Remote Loader server with the
version installed on the database server.

¢ It's very difficult to diagnose and remedy Java-related errors on the database server.

Numerous error conditions and error-codes can arise when you attempt to install and execute
user-defined stored procedures and functions written in Java. Diagnosing them can be time
consuming and frustrating. A log file (db2diag. log on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

13.4.5 Microsoft SQL Server 2005 Driver for JDBC

¢ “Driver Information” on page 170
¢ “Compatibility” on page 170

¢ “Security” on page 170

¢ “URL Properties” on page 170

Third-Party JDBC Drivers 169

http://publib.boulder.ibm.com/infocenter/db2v7luw
http://publib.boulder.ibm.com/infocenter/db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/db2a0159.htm

¢ “Dynamic Parameter Defaults” on page 170

¢ “Known Issues” on page 171

Driver Information

Table 13-25 Microsoft SQL Server 2005 Driver Settings

Supported Database Versions: 2005

Class Name com.microsoft.jdbc.sglserver.SQLServerDriver
Type 4
URL Syntax jdbc:sqlserver://ip-address-or-dns-

name:1433;databaseName=database-name

Download Instructions Microsoft JDBC Downloads (http://www.microsoft.com/downloads/
results.aspx?sortCriteria=date&OSID=&productID=&Categoryl|D=&fre
etext=jdbc&DisplayLang=en&DisplayEnglishAlso=)

Filenames sqljdbc4.jar

Compatibility

The SQL Server 2005 driver works only with SQL Server 2005. Database server and driver updates
are infrequent.

Security

The SQL Server 2005 driver supports encrypted transport.

URL Properties

Delimit URL properties by using a semicolon (;).

Table 13-26 Values for the SelectMethod URL Property

Legal Value Description

direct The default value. Doesn'’t allow for multiple active statements on a single
connection

cursor Allows for multiple active statements on a single connection

The filename, URL syntax, and classname differ (often subtly) from those of the 2000 driver.

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the JDBC driver implicitly sets at
runtime. Do not explicitly override these settings.

170 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://www.microsoft.com/downloads/results.aspx?sortCriteria=date&OSID=&productID=&CategoryID=&freetext=jdbc&DisplayLang=en&DisplayEnglishAlso=

Table 13-27 SQL Server 2000 Settings Not to Override

Display Name Tag Name Value

Reuse Statements? reuse-statements false

Known Issues

+ Can’t start a manual transaction because of cloned connections.

An implementation anomaly that doesn’t allow concurrent statements to be active on the same
connection causes the most common problem experienced with the SQL Server 2005 driver.
Unlike other third-party implementations, the SQL Server 2005 driver can have only one
java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html) object active
at a time on a given connection.

If you attempt to use more than one statement object, the following error is issued: Can’t start
manual transaction mode because there are cloned connections. This error can occur
only if the driver compatibility parameter “Reuse Statements?” on page 60 is set to Boolean True.
As a best practice, never explicitly set this parameter. Instead, defer to the dynamic default
value.

An alternative is to place the delimited property ; SelectMethod=cursor at the end of the URL
string. For additional information on this issue, consult the following support article:

¢ Article 313181 (http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B313181) by
Microsoft

* Association values that contain UNIQUEIDENTIFIER columns are inconsistent between driver
versions.

Earlier versions of the SQL Server 2005 driver returned a non-standard java.sql.Types (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html) value for native UNIQUEIDENTIFIER
columns. To compensate, the JDBC driver mapped that non-standard type to the standard type
java.sql.Types.BINARY (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html) because it
best mirrored the native database type, which is a 16-byte value. This mapping results in a
Base64-encoded association value.

Later versions of the SQL Server 2005 driver return a standard type java.sql. CHAR (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html). This mapping results in a non-Base64-
encoded association value, effectively invalidating all associations generated by using earlier
versions of the SQL Server 2005 driver. This change effectively breaks backward compatibility.

The best solution to this problem is to continue using the earlier version of the SQL Server 2005
driver. If you must upgrade, remove all invalidated associations and reassociate all previously
associated objects.

13.4.6 Microsoft SQL Server 2008 JDBC Driver

¢ “Driver Information” on page 172
¢ “Compatibility” on page 172

¢ “Security” on page 172

¢ “URL Properties” on page 172

Third-Party JDBC Drivers 171

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B313181
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

Driver Information

Table 13-28 Microsoft SQL Server 2008 Driver Settings

Supported Database Versions 2008

Class Name com.microsoft.sqglserver.jdbc.SQLServerDriver
Type 4 (2 if integrated security is enabled)
URL Syntax jdbc:sqlserver://ip-address-or-dns-

name:1433;databaseName=database-name

Download Instructions Microsoft SQL Server 2008 JDBC Driver (http://msdn2.microsoft.com/
en-us/data/aa937724.aspx)

Filenames sgljdbc.jar

The filename, URL syntax, and classname differ (often subtly) from those of the 2000 driver.

Compatibility

The SQL Server 2008 driver works only with SQL Server 2005. Database server and driver updates
are infrequent.

Security

The SQL Server 2008 driver supports encrypted transport.

URL Properties

Delimit URL properties by using a semicolon (;).

The following table lists values for the integratedSecurity URL property for the SQL Server 2005
driver.

Table 13-29 Values for the integratedSecurity URL Property

Legal Value Description
false The default value. JDBC authentication is used.
true Windows process-level authentication is used.

13.4.7 Microsoft SQL Server 2008 R2 JDBC Driver

¢ “Driver Information” on page 173
¢ “Compatibility” on page 173

¢ “Security” on page 173

¢ “URL Properties” on page 173

172 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://msdn2.microsoft.com/en-us/data/aa937724.aspx

Driver Information

Table 13-30 Microsoft SQL Server 2008 Driver Settings

Supported Database Versions: 2008 R2

Class Name com.microsoft.sqglserver.jdbc.SQLServerDriver
Type 4 (2 if integrated security is enabled)
URL Syntax jdbc:sqlserver://ip-address-or-dns-

name:1433;databaseName=database-name

Download Instructions Microsoft SQL Server 2008 JDBC Driver (http://msdn2.microsoft.com/
en-us/data/aa937724.aspx)

Filenames sgljdbc.jar

The filename, URL syntax, and classname differ (often subtly) from those of the 2000 driver.

Compatibility

The SQL Server 2008 R2 driver works only with SQL Server 2008. Database server and driver updates
are infrequent.

Security

The SQL Server 2008 driver supports encrypted transport.

URL Properties

Delimit URL properties by using a semicolon (;).

The following table lists values for the integratedSecurity URL property for the SQL Server 2008
driver.

Table 13-31 Values for the integratedSecurity URL Property

Legal Value Description
false The default value. JDBC authentication is used.
true Windows process-level authentication is used.

13.5 Deprecated Third-Party JDBC Drivers

The BEA WebLogic jDriver for Microsoft SQL Server is no longer supported.

Third-Party JDBC Drivers 173

http://msdn2.microsoft.com/en-us/data/aa937724.aspx

13.6

13.6.1

13.6.2

Other Third-Party JDBC Drivers

This section lists an unsupported driver of interest (IBM Toolbox for Java/[TOpen) and discusses how
to assess the feasibility of using unsupported third-party JDBC drivers with this product.

¢ Section 13.6.1, “IBM Toolbox for Java/JTOpen,” on page 174
¢ Section 13.6.2, “Minimum Third-Party JDBC Driver Requirements,” on page 174
¢ Section 13.6.3, “Considerations When Using Other Third-Party JDBC Drivers,” on page 175

IBM Toolbox for Java/JTOpen

Table 13-32 Settings for IBM Toolbox for Java/]TOpen

Database IBM Toolbox for Java/JTOpen

* iSeries Toolbox for Java (alias)

* AS/400 Toolbox for Java (alias)

Class Name com.ibm.as400.access.AS400JDBCDriver
Type 4

URL Syntax jdbc:as400://ip-address/database-name
Download Instructions Download URLs for JTOpen

* JTOpen (http://jt400.sourceforge.net)

* Toolbox for Java/JTOpen (http://www-03.ibm.com/servers/
eserver/iseries/toolbox/downloads.html)

Filenames jt400.jar

Documentation URLs Toolbox for Java/JTOpen (http://www-03.ibm.com/servers/eserver/
iseries/toolbox/)

If you use the IBM Toolbox for Java/JTOpen driver, you must manually enter values for the JDBC
Driver Class Name and Authentication Context parameters. The settings are not automatically
populated. See “Third-Party JDBC Driver Class Name” on page 47 and “Authentication Context” on
page 45.

Minimum Third-Party JDBC Driver Requirements

The JDBC driver might not interoperate with all third-party JDBC drivers. If you use an unsupported
third-party JDBC driver, it must meet the following requirements:

¢ Support required metadata methods
For a current list of the required and optional java.sql.DatabaseMetaData method calls that the
JDBC driver makes, see Appendix F, “java.sql.DatabaseMetaData Methods,” on page 199.

¢ Support other required JDBC methods

For a list of required JDBC methods that the JDBC driver uses, refer to Appendix G, “JDBC
Interface Methods,” on page 201. You can use this list in collaboration with third-party driver
documentation to identify potential incompatibilities.

174 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://jt400.sourceforge.net
http://www-03.ibm.com/servers/eserver/iseries/toolbox/downloads.html
http://www-03.ibm.com/servers/eserver/iseries/toolbox/

13.6.3 Considerations When Using Other Third-Party JDBC Drivers

¢ Because the JDBC driver is directly dependent upon third-party JDBC driver implementations,
bugs in those implementations might cause this product to malfunction.
To assist you in debugging third-party JDBC drivers, the JDBC driver supports the following;:
¢ Tracing at the JDBC APl level (level 6)
¢ Third-party JDBC driver (level 7) tracing
¢ Stored procedure or function support is a likely point of failure.
* You probably need to write a custom driver descriptor file.

Specifically, you need to categorize error codes and SQL states for the third-party driver that you
are using.

13.7 Security Issues

To ensure that a secure connection exists between the Identity Manager JDBC driver and a third-
party driver, we recommend the following;:

¢ Run the JDBC driver remotely on the database server.
¢ Use SSL to encrypt communications between the Identity Manager server and the database

server.

If you cannot run the JDBC driver remotely, you might want to use a type 2 or type 3 JDBC driver.
These driver types often facilitate a greater degree of security through middleware servers or client
APIs unavailable to other JDBC driver types. Some type 4 drivers support encrypted transport, but
encryption is the exception rather than the rule.

Third-Party JDBC Drivers 175

176 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

14.1

The Association Utility

The Association utility normalizes associations of objects associated under the 1.0 or later versions of

the JDBC driver. It also provides several other features that simplify driver administration.

This version of the utility is compatible with the 1.0 and later versions of the JDBC driver, and
supersedes all previous versions.

¢ Section 14.1, “Independent Operations,” on page 177
¢ Section 14.2, “Before You Begin,” on page 178
¢ Section 14.3, “Using the Association Utility,” on page 178

¢ Section 14.4, “Parameters for Searching and Replacing,” on page 179

Independent Operations

The Association utility supports seven independent operations:

Table 14-1 Independent Operations

Operation Description Eﬁr?gt-ivg;i;ﬁty
1 Lists objects associated with a driver (default). Read-only
2 Lists objects that have multiple associations to a driver. Read-only
3 Lists objects that have invalid associations to a driver. Read-only

An association is invalid if:
+ |tis malformed.
For example, the association is missing the schema RDN, missing
the table RDN, or the schema keyword is misspelled.

+ |t contains database identifiers that do not map to identifiers in the
target database.

For example, an association includes a mapping to a table that
does not exist.

* |t maps to no row or multiple rows.
An association is broken if it doesn’t map to a row. Also,
associations aren't unique if they map to more than one row.

4 Lists objects that need to be normalized. Read-only

A normalized association is valid, correctly ordered, and uses the
correct case. Normal case is uppercase for case-insensitive databases
and mixed case for case-sensitive databases.

The Association Utility

177

14.2

14.3

Read-Write

Operation Description Functionality

5 Normalizes object associations listed during operation 4. Write
6 Lists object associations to be modified. Read-only

Allows for global replacement of schema, table, and column names
based on search criteria.

This operation requires two parameters (oldRDN and newRDN). See
“Parameters for Searching and Replacing” on page 179.

7 Modifies object associations listed during operation 6. Write

This operation requires two parameters (oldRDN and newRDN). See
“Parameters for Searching and Replacing” on page 179.

Before You Begin

Modifying associations can cause problems. If associations are corrupted, Identity Manager ceases to
function. Therefore, use write operations only when necessary. To avoid unintentionally corrupting
an association, the Association utility creates an undo ldiff file for all write operations.

Review the following cautions before using the utility:
¢ The Association utility, like the driver, assumes that database identifiers are undelimited
(unquoted and contain no special characters).
¢ Update all object associations related to a driver at the same time.
Updating associations at the same time is extremely important.

To see all of the objects associated with a particular driver, run the Association utility on the
Identity Manager server associated with a particular driver instance.

The LDAP search base must contain all of the objects associated with a particular driver.

To ensure complete containment, we recommend that you use your tree’s root container as the
search base.

¢ Make sure that the JDBC URL of the target database supplied to this utility is the same as the
URL that the driver uses. Pointing this utility at a case-insensitive database when the database is
actually case-sensitive might result in associations being normalized to the wrong case.

¢ Because the Association utility runs locally, it uses an unsecured connection. Therefore, the
Identity Vault LDAP server must be temporarily configured to accept clear text passwords.
Depending upon the third-party JDBC driver you are using, the database connection established
by this utility might not be secure.

We recommend changing the driver’s authentication password on the database after you run
this utility.

Using the Association Utility

Run the Association utility once for each instance of the driver installed on an Identity Manager
server. In the install-dir\DirXMLUtilities\jdbc\util directory, a batch file association.bat
or shell script association. sh (depending upon your platform) starts the utility.

A properties file containing association utility parameters is provided for each supported database.
These files are in the install-dir\DirXMLUtilities\jdbc\util directory.

178 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

14.4

Table 14-2 Properties Files

Database

Properties Filename

IBM DB2 Universal Database

Informix Dynamic Server

Microsoft SQL Server
MySQL
Oracle

PostgreSQL

Sybase Adaptive Server Enterprise

properties db2.txt

properties ifx ansi.txtl
properties ifx log.txt
properties ifx no log.txt

properties ms.txt
properties my.txt
properties ora.txt
properties pg.txt

properties syb.txt

This utility does not work with Informix ANSI-compliant databases.

1 Stop the driver.

2 Use association.bat or association.sh to run the Association utility to identify and remove

extraneous associations (operations 2 and 3).

No object associated by this product should have multiple associations. Manually remove
extraneous associations on a per object basis. Operation 3 might help you identify which of the
multiple associations is actually valid. After you know this, you can probably discard the
extraneous associations.

Run the Association utility to identify and fix invalid associations (operation 3 and possibly
operations 6 and 7).

As a general rule, if the problem is isolated, manually edit each invalid association. If the
problem is repetitive and affects a large number of associations, consider using operations 6 and
7. This utility can replace bad identifiers on a global basis, but cannot insert or remove them
where they do not already exist. See Section 14.4, “Parameters for Searching and Replacing,” on
page 179 for information about search parameters.

4 Run the Association utility to normalize associations (operations 4 and 5).

Parameters for Searching and Replacing

The Association utility requires two parameters (0ldRDN and newRDN) for operations 6 and 7 in
order to search and replace.

The first value (for example, schema) in the parameter is the search criterion. The second value (for
example, old) is the replacement value. Under certain scenarios, you can use the wildcard character *
to generalize the search criterion or replacement value.

Three types of search and replace operations are possible:

The Association Utility

179

180

Table 14-3 Search and Replace Operations

Option Description Example

Replace the schema name Replace schema ol1d with schema new. 0ldRDN: schema=0ld
Wildcards are supported on the right side newRDN: schema=new
only.

Replace the table name Replace table o1d with table new. OldRDN: table=0ld

Wildcards are not supported.

Replace the column name Replace column old with column new.
Wildcards are required on the right side,
but they aren’t supported on the left side.

newRDN: table=new

OldRDN: old=*
newRDN: new=*

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

5 Troubleshooting the JDBC Driver

15.1

15.2

+ Section 15.1, “The Dirxml-Accounts Attribute Shows Incorrect Value When a User is Enabled or
Disabled in the Identity Vault on the DB2 and Oracle Database Drivers,” on page 181

¢ Section 15.2, “Password Changes for Users Are Not Synchronized from the Identity Vault for the
Oracle Database Driver,” on page 181

¢ Section 15.3, “Adding Users on the Subscriber Channel for the Sybase Driver in Direct Mode
Causes Error,” on page 182

¢ Section 15.4, “Recognizing Publication Events,” on page 182
¢ Section 15.5, “Executing Test Scripts,” on page 182

¢ Section 15.6, “Troubleshooting Driver Processes,” on page 182

The Dirxml-Accounts Attribute Shows Incorrect Value
When a User is Enabled or Disabled in the Identity Vault on
the DB2 and Oracle Database Drivers

This issue is observed with certain settings on these drivers:

DB2 driver: With the Allow Loopback option set to Yes on the Publisher channel in the Indirect Triggered
mode.

To work around this issue, disable the Allow Loopback option.
Oracle Driver: With the Direct Triggerless mode.

There is no workaround.

Password Changes for Users Are Not Synchronized from
the Identity Vault for the Oracle Database Driver

The Oracle Database driver created with an Indirect/Direct Synchronization sample package used an
incorrect query to create or change the name and password of the users. The 4.0.2 driver patch 2 fixed
this issue, but after upgrading to patch 2, if the password is reset for an existing user, it fails with an
error and displays the following message:

User does not exist.

To workaround this issue, after upgrading the driver, delete the existing user from the Oracle
database and synchronize it from the Identity Vault.

Troubleshooting the JDBC Driver 181

15.3

15.4

15.5

15.6

Adding Users on the Subscriber Channel for the Sybase
Driver in Direct Mode Causes Error

To avoid this error, change the driver settings as follows:

* Set the Generation/retrieval method (table-global) to Subscriber-generated.
¢ Set the Retrieval timing (table-global) to after row insertion.
¢ Leave the Method and timing (table-local) as blank

When you change the value for the Method and timing option, you need to edit the sample procedures
appropriately. For example, if you set it to view_usr("indirect.proc_idu(pk_idu)");
view_grp("indirect.proc_idg(pk_idg)”), you must edit the indirect.proc_idu and
indirect.proc_idg procedures so that unique values are returned for the idg and idu columns
respectively.

Recognizing Publication Events

Publication events might not be recognized by the Publisher channel unless you explicitly commit
changes. For the commit keywords of supported databases, see Section 12.3.7, “Commit Keywords,”
on page 146.

Executing Test Scripts

The test scripts should be executed by a user other than the driver’s idm database user account. If you
execute them as the idm user, events are ignored by the driver’s Publisher channel, unless publication
loopback is allowed. For additional information on allowing or disallowing publication loopback,
refer to “Allow Loopback?” on page 80.

Troubleshooting Driver Processes

Viewing driver processes is necessary to analyze unexpected behavior. To view the driver processing
events, use DSTrace. You should only use it during testing and troubleshooting the driver. Running
DSTrace while the drivers are in production increases the utilization on the Identity Manager server
and can cause events to process very slowly. For more information, see “Viewing Identity Manager
Processes” in the NetIQ Identity Manager 4.0.2 Common Driver Administration Guide.

182 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

https://www.netiq.com/documentation/idm402/pdfdoc/idm_common_driver/idm_common_driver.pdf#b1rc1vm
https://www.netiq.com/documentation/idm402/pdfdoc/idm_common_driver/idm_common_driver.pdf#b1rc1vm
https://www.netiq.com/documentation/idm402/pdfdoc/idm_common_driver/idm_common_driver.pdf#Bktitle

Al

A2

A3

Uninstalling the Driver

¢ Section A.1, “Deleting Identity Manager Driver Objects,” on page 183
¢ Section A.2, “Running the Product Uninstaller,” on page 183

¢ Section A.3, “Executing Database Uninstallation Scripts,” on page 183

Novell recommends that you install and uninstall preconfigured drivers and database scripts as a
unit. To prevent unintentional mismatching, database scripts and preconfigured drivers contain
headers with a version number, the target database name, and the database version.

Deleting Identity Manager Driver Objects

When you are deleting Novell Identity Vault objects, you must delete all child objects before you can
delete a parent object. For example, you must delete all rules and style sheets on the Publisher
channel before you can delete the Publisher object. Similarly, you must delete both the Publisher and
Subscriber objects before you can delete the Driver object.

To remove a driver object from an Identity Vault:

1 In Novell iManager, click Identity Manager > Identity Manager Overview.
2 Select a driver set.

3 On the Identity Manager Overview page, click Delete Driver.

4 Select the driver that you want to delete, then click OK.

Running the Product Uninstaller

Uninstallation procedures vary by platform.

To uninstall the Identity Manager JDBC driver on Windows, use Add or Remove Programs in the
Control Panel.

Executing Database Uninstallation Scripts

This section provides helps you execute database uninstallation SQL scripts.

¢ Section A.3.1, “IBM DB2 Universal Database (UDB) Uninstallation,” on page 184
¢ Section A.3.2, “Informix Dynamic Server (IDS) Uninstallation,” on page 184

¢ Section A.3.3, “Microsoft SQL Server Uninstallation,” on page 184

¢ Section A.3.4, “MySQL Uninstallation,” on page 185

*

Section A.3.5, “Oracle Uninstallation,” on page 185

Uninstalling the Driver 183

¢ Section A.3.6, “PostgreSQL Uninstallation,” on page 185
¢ Section A.3.7, “Sybase Adaptive Server Enterprise (ASE) Uninstallation,” on page 186

A.3.1 IBM DB2 Universal Database (UDB) Uninstallation

The directory context for DB2 is install-dir\DirXMLUtilities\jdbc\sql\db2_udbl\install.

1 Drop the idm, indirect, and direct operating system user accounts.

2 If you haven't already done so, change the name of the administrator account name and
password in the installation scripts.

3 Using the Command Line Processor (CLP), execute the uninstall.sql script.
For example: db2 -f uninstall.sql

This script won’t execute in the Command Center interface beyond version 7 because the script
uses the \ line continuation character. Later versions of the Command Center don’t recognize
this character.

4 Delete the idm_db2.jar file.

A.3.2 Informix Dynamic Server (IDS) Uninstallation

The directory context for Informix SQL scripts is install-
dir\DirXMLUtilities\jdbc\sgl\informix ids\install.
1 Drop the idm operating system user account.
2 Start a client such as SQL Editor.

3 Log on to your server as user informix or another user with DBA (database administrator)
privileges.

By default, the password for informix is informix.

If you execute scripts as a user other than informix, change all references to informix in the
install scripts prior to execution.

4 If you aren’t using the informix account with the default password, change the name of the
DBA account name and password in the installation scripts.

5 Open and execute uninstall.sql from the ansi (transactional, ANSI-compliant), 1og
(transactional, non-ANSI-compliant), or no_log (non-transactional, non-ANSI-compliant)
subdirectory, depending upon which type of database you installed.

A.3.3 Microsoft SQL Server Uninstallation

The directory context for Microsoft SQL Server scripts is install-
dir\DirXMLUtilities\jdbc\sgl\mssgl\install.
1 Start a client such as Query Analyzer.
2 Log on to your database server as user sa.
By default, the sa user has no password.
3 Open and execute the first installation script, uninstall.sql.

The execute hotkey in Query Analyzer is F5.

184 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

A.3.4 MySQL Uninstallation

The directory context for MySQL SQL scripts is install-
dir\DirXMLUtilities\jdbc\sgl\mysgl\install.

A35

A.3.6

1 From a MySQL client, such as mysq]l, log on as user root or another user with administrative

2

privileges.

For example, from the command line execute mysgl -u root -p
By default, the root user has no password.

Execute the uninstall. sgl uninstallation script.

For example: mysgl> \. c:\uninstall.sqgl

Don’t use a semicolon to terminate this statement.

Oracle Uninstallation

The directory context for Oracle SQL scripts is install-
dir\DirXMILUtilities\jdbc\sgl\oracle\install.

1

2

From an Oracle client, such as SQL Plus, log on as user SYSTEM.

By default, the password for SYSTEM is MANAGER..

If you execute scripts as a user other than SYSTEM with password MANAGER, change all

references to SYSTEM in the scripts prior to execution.
Execute the uninstallation script uninstall.sql.

For example: SQL> @c:\uninstall.sql

PostgreSQL Uninstallation

The directory context for PostgreSQL scripts is install-
dir\DirxXMLUtilities\jdbc\sql\postgres\install. The directory context for executing Postgres
commands is postgres-install-dir/pgsql/bin.

1

From a Postgres client such as psql, log on as user postgres to the idm database.
For example, from the UNIXC command line, execute . /psql -d idm postgres
By default, the Postgres user has no password.

From inside psql, execute the script uninstall.sql.

For example: idm=# \i uninstall.sql

Drop the database idm.

For example, from the UNIX command line, execute . /dropdb idm

Remove or comment out entries for the idm user in the pg_hba. conf file.

For example:

#host idm idm 255.255.255.255 255.255.255.0

Restart the Postgres server to effect changes made to the pg_hba. conf file.

Uninstalling the Driver

185

A.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation

The directory context for Sybase SQL scripts is install-
dir\DirXMLUtilities\jdbc\sgl\sybase ase\install.
1 From a Sybase client, such as isql, log on as user sa.
2 Execute the installation script uninstall.sqgl.
For example, from the command line, execute isql -U sa -P -i uninstall.sql

By default, the sa account has no password.

186 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

B Known Issues and Limitations

¢ Section B.1, “Known Issues,” on page 187

¢ Section B.2, “Limitations,” on page 187

B.1 Known Issues

¢ Identity Vault Time and Timestamp syntaxes are inadequate for expressing the range and
granularity of their database counterparts. This is a publication problem because database time-
related types typically have a wider range and greater degree of granularity (typically
nanoseconds). The converse is not true. For more information, see “Time Syntax” on page 47.

¢ The JDBC driver is unable to parse proprietary database time stamp formats. Some databases,
such as Sybase and DB2, have proprietary time stamp formats that the java.sql.Timestamp
(http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html) class can’t parse. When
synchronizing time stamp columns from these databases, the JDBC driver, by default, assumes
that time stamp values placed in the event log table are in ODBC canonical format (that is, yyyy-
mm-dd hh:mm:ss.fEE£E£EEF). The recommended method for enabling the JDBC driver to
handle proprietary database time stamp formats is to implement a custom
DBTimestampTranslator class. This interface is documented in the JavaDoc Tool that ships with
the JDBC driver. Using this approach avoids the problem of reformatting time stamps in the
database before they are inserted into the event log table or reformatted in style sheets. The
JDBC driver ships with default implementations for the native DB2 time stamp format and the
Sybase style 109 time stamp format.

¢ Statements executed against the database server might block indefinitely.

Typically, blocking is caused by a database resource being exclusively locked. Because the
locking mechanisms and locking SQL vary by database, the general solution to this problem is to
implement a custom DBLockStatementGenerator class. For additional information, see “Lock
Statement Generator Class” on page 62. The JDBC driver ships with a default implementation
for Oracle.

Many factors can cause blocking. To mitigate the likelihood of blocking, we recommend that you
do not set the Transaction Isolation Level parameter to a level greater than read committed.

The JDBC interface defines a method java.sql.Statement.setQueryTimeout(int):void (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html) that allows a statement to time out
after a specified number of seconds. Unfortunately, implementations of this method between
third-party JDBC drivers range from not being implemented to having bugs. For this reason, this
method was deemed unsuitable as a general-purpose solution.

B.2 Limitations

¢ The JDBC driver does not support the use of delimited (quoted) database identifiers (for
example, “names with spaces”).

Known Issues and Limitations 187

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

¢ JDBC 2 data types are not supported, with the exception of Large Object data types (LOBs) such
as CLOB and BLOB.

¢ JDBC 3 data types are not supported.

¢ PostgreSQL does not support <check-object-passwords> events. Authentication is controlled
by manually inserting entries into the pg_hba . conf file.

188 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Cl

C.2

Best Practices

The following section lists important best practices for using the JDBC driver. You can find additional
information in Chapter 5, “Configuring the JDBC Driver,” on page 41.

Tips for Synchronizing Millions of User Records on the
Publisher Channel

For successfully synchronizing millions of user records, change the following settings using Designer
or iManager:

1 Click the driver set that contains this driver and change the Java Maximum heap size to 256 MB.
This change will be applicable to all the drivers under this driver set.

2 Under the Driver Settings, change the Show the compatibility parameters? option to show to display
the Show backward compatibility parameters? option. Change it to show, then change the Enable the
Table Referential attribute support? to No.

3 Under the Publisher Settings, change the Show polling-related parameters? option to show to
display the Batch Size, then change it to 128.

Schema Name Use Cases

In the Schema Name under schema-aware mode the driver qualifies the tables according to the
following rules:

¢ Every table that contains a primary key constraint is considered as an object class. For example,
the following usr table created by the SQL code is considered as an object class by the driver
shim if the Schema Name is set to indirect.

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,

fname VARCHAR?2 (64) ,

lname CHAR (64) ,

CONSTRAINT pk usr idu PRIMARY KEY (idu),

)

The above table will contain two single-valued attributes; fname and 1name. The driver will
build its associations based on the value of the column referenced in the primary key constraint,
which in this case is column idu.

¢ Every table that only has a Foreign Key constraint is considered as a multi-valued attribute of
the class that holds the primary key pointed by the said foreign key constraint. In the following
example, if the driver parameter, Schema Name is set to indirect, then the usr_phone.phoneno
table is considered a multi-valued attribute belonging to the class usr.

Best Practices 189

190

NOTE: The child table usr_phone only has a foreign key constraint to the parent table usr. The
table usr is considered an object class since it has a primary key constraint.

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,

fname VARCHAR2 (64) ,

lname CHAR (64) ,

CONSTRAINT pk usr_ idu PRIMARY KEY (idu),

)
CREATE TABLE indirect.usr_phone

(
idu INTEGER NOT NULL,
phoneno VARCHAR2 (64) NOT NULL,
CONSTRAINT fk_phone_idu FOREIGN KEY (idu)
REFERENCES indirect.usr (idu) ON DELETE CASCADE
)

DN-type references between the two objects will have different requirements based on whether
the reference points back to the same object class or to a different object class. DN-type
references also change depending on whether the DN attribute is single valued or multi-valued.

If the attribute is single-valued and points back to the same object class, then the table that
contains that class will have a foreign key constraint to itself and uses a local column to store the
value. An example is the manager attribute in eDirectory. In the example below, if the driver
parameter Schema Name is set to indirect, then the attribute manager will be a DN-type
attribute that points to another row inside the usr table.

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,

fname VARCHAR2 (64) ,

lname CHAR (64) ,

manager INTEGER,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu),

CONSTRAINT fk usr manager FOREIGN KEY (manager)
REFERENCES indirect.usr(idu) ON DELETE SET NULL
)

If the attribute is multi-valued and points back to the same object class, then we need a child
table with columns, each having its own foreign key constraint to the same parent table. An
example is the directReports attribute in eDirectory. In the following example, if the driver
parameter Schema Name is set to indirect, then the attribute usr_directReports.repname
will be a DN-type attribute that points to one or more rows inside the usr table.

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,

fname VARCHAR?2 (64) ,

lname CHAR (64) ,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu),

)
CREATE TABLE indirect.usr directReports
(
idu INTEGER NOT NULL,
repname VARCHAR2 (64) NOT NULL,
CONSTRAINT fk directReports idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu) ON DELETE CASCADE,
CONSTRAINT fk directReports_ repname FOREIGN KEY (idu)
REFERENCES indirect.usr (idu) ON DELETE CASCADE
)

If the attribute is single-valued and points to a different object class, then the table that contains
that class will have a foreign key constraint to the table for the other object class, and a local
column to store that value. An example is the Host Server attribute in eDirectory. In the

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

following example, if the driver parameter Schema Name is set to indirect, then the attribute
hostsrv will be a DN-type attribute that points to a row inside the server table. In this
example, both the volume table and the server table represent object classes.

CREATE TABLE indirect.volume
(

idv INTEGER NOT NULL,

vname VARCHAR?2 (64) ,

hostsrv INTEGER,

CONSTRAINT pk_volume_idv PRIMARY KEY (idv),

CONSTRAINT fk volume hostsrv FOREIGN KEY (ids)
REFERENCES indirect.server(ids) ON DELETE SET NULL
)
CREATE TABLE indirect.server
(
ids INTEGER NOT NULL,
srvname VARCHAR?2 (64) ,
CONSTRAINT pk server ids PRIMARY KEY (ids)
)

¢ If the attribute is multi-valued and points to a different object class, then we need a child table
with two columns, each having a foreign key constraint to a different parent table. An example is
the Group Membership attribute in eDirectory. In the following example, if the driver parameter
Schema Name is set to indirect, then the attribute usr_mbr_of.idu will be a DN-type attribute
that points to a row inside the grp table. In this example, both the usr table and the grp table
represent object classes.

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,

fname VARCHAR2 (64) ,

lname CHAR (64) ,

CONSTRAINT pk usr_ idu PRIMARY KEY (idu),

)
CREATE TABLE indirect.grp
(
idg INTEGER NOT NULL,
for insert INTEGER,
CONSTRAINT pk grp idg PRIMARY KEY (idg)
)
CREATE TABLE indirect.usr mbr of
(
idu INTEGER NOT NULL,
idg INTEGER NOT NULL,
CONSTRAINT fk mbr of idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu) ON DELETE CASCADE,
CONSTRAINT fk mbr of idg FOREIGN KEY (idg)
REFERENCES indirect.grp(idg) ON DELETE CASCADE
)

Security/Performance:

¢ For performance and security reasons, run the driver remotely on the database server whenever
possible. Be sure to enable SSL encryption between the Identity Vault and the Remote Loader
service.

+ You should enable SSL encryption for third-party drivers whenever the JDBC driver is not
running remotely on the database server. For information on the security capabilities of
supported third-party drivers, see Chapter 13, “Third-Party JDBC Drivers,” on page 153.

¢ In a production environment, turn off tracing.
Other:

¢ For direct synchronization, prefix one or more view column names with “pk_" (case-
insensitive).

Best Practices 191

192

For both direct and indirect synchronization, use different primary key column names between
logical database classes.

Delimit (double-quote) primary key values placed in the event log table_key field if they
contain the following characters:, ;' +=\ " <> This caution is usually an issue only if the primary
key column is a binary type.

When an Identity Vault is the authoritative source of primary key values, GUID rather than CN
is recommended for use as a primary key. Unlike CN, GUID is single-valued and does not
change.

From publication triggers, omit foreign key columns that link child and parent tables.

If primary key columns are static (they do not change), do not include them in publication
triggers.

Place the jdbc: type="query" attribute value on all embedded SELECT statements. Place the
jdbc: type="update" attribute value on all embedded INSERT, UPDATE and DELETE statements.

To avoid issues that arise when you run a sql query that has a reserved word as a column name,
specify a fully qualified name for the column.

For example, when you use group as a column name under usr table, group being is a sql
keyword, your query might not be properly executed. To avoid this, specify a fully qualified
name such as usr.group (<Tablename>.<Columnname>) for the column.

By design, the driver doesn't allow primary keys on child tables in the Synch Schema mode. To
comply with standard database best practices, if you add a primary key on all tables including
the child tables containing multi-valued attributes, the driver doesn't work properly in this
mode. You must operate the driver in the Synch Tables/Views mode to allow primary keys on
child tables. The Synch Tables/Views mode prevents the driver from adding the child tables to
the list of synchronized tables.

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

D FAQ

D.1

D.2

¢ Section D.1, “Can’t See Tables or Views,” on page 193

¢ Section D.2, “Synchronizing with Tables,” on page 193

¢ Section D.3, “Processing Rows in the Event Log Table,” on page 194
¢ Section D.4, “Managing Database User Accounts,” on page 194

¢ Section D.5, “Synchronizing Large Data Types,” on page 194

¢ Section D.6, “Slow Publication,” on page 194

¢ Section D.7, “Synchronizing Multiple Classes,” on page 195

¢ Section D.8, “Encrypted Transport,” on page 195

¢ Section D.9, “Mapping Multivalue Attributes,” on page 195

¢ Section D.10, “Synchronizing Garbage Strings,” on page 195

¢ Section D.11, “Running Multiple JDBC Driver Instances,” on page 195

Can't See Tables or Views

Question: Why can’t the driver see my tables or views?

Answer: The driver is capable of synchronizing only tables that have explicit primary key constraints
and views that contain one or more columns prefixed with “pk " (case-insensitive). The driver uses
these constraints to determine which fields to use when constructing associations. As such, the driver
ignores any unconstrained tables. If you are trying to synchronize with tables or views that lack the
necessary constraints, either add them or synchronize to intermediate tables with the required
constraints.

Another possibility is that the driver lacks the necessary database privileges to see the tables. Usually,
visibility is determined by the presence or absence of the SELECT privilege.

Synchronizing with Tables

Question: How do I synchronize with tables located in multiple schemas?
Answer: Do one of the following;:

¢ Alias the tables into the synchronization schema.

¢ Synchronize to intermediate tables in the synchronization schema and move the data across
schema boundaries.

¢ Use a view.
¢ Create a virtual schema by using the Table/View Names parameter.

See “Table/View Names” on page 54.

FAQ 193

D.3

D.4

D.5

D.6

Processing Rows in the Event Log Table

Question: Why isn’t the driver processing rows in the Event Log Table?
Answer: Do the following;:
1 Check the perpetrator field of the rows in question and make sure that the value is set to
something other than the driver’s database username.

The Publisher channel checks the perpetrator field to detect loopback events if the Publisher
channel Allow Loopback parameter is set to Boolean False (the default). See “Allow Loopback?”
on page 80.

When the Allow Loopback parameter is set to Boolean False, the Publisher channel ignores all
records where the perpetrator field value is equal to the driver’s database username. The
driver’s database username is specified by using the Authentication ID parameter. See
“Authentication ID” on page 44.

2 Ensure that the record’s status field is set to N (new).
Records with status fields set to something other than N will not be processed.
3 Make sure to explicitly commit changes.

Changes are often tentative until explicitly committed.

Managing Database User Accounts

Question: Can the driver manage database user accounts?

Answer: Yes. You can manage database accounts by using embedded SQL. For more information, see
Chapter 11, “Embedded SQL Statements in XDS Events,” on page 117.

Synchronizing Large Data Types

Question: Can the driver synchronize large binary and string data types?

Answer: Yes. Large binary and string data types can be subscribed and published. Publish large
binary and string data types by using query-back event types. For additional information, see
Section 10.2, “Event Types,” on page 108.

Slow Publication

Question: Why is publication slow?

Answer: If the event log table contains a large number of rows, index the table. Example indexes are
provided in all database installation scripts. By using trace level 3, you can view the statements that
the driver uses to maintain the event log.

You can further refine indexes in the installation scripts to enhance publication performance. Placing
indexes in a different tablespace or physical disk than the event log table also enhances publication
performance.

Furthermore, in a production environment, set the Delete Processed Rows parameter to Boolean
False, unless processed rows are being periodically moved to another table. See “Delete Processed
Rows?” on page 79.

194 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

D.7

D.8

D.9

D.10

D.11

Synchronizing Multiple Classes

Question: Can the driver synchronize multiple classes?

Answer: Yes. However, primary key column names must be unique between logical database classes.
For example, if class1 is mapped to tablel with primary key column name key1, and class2 is mapped
to table2 with primary key column name key2, then the name of keyl cannot equal key?2.

This requirement can always be satisfied, no matter which synchronization model is employed.

Encrypted Transport

Question: Does the driver support encrypted transport?

Answer: No. How the driver communicates with a given database depends upon the third-party
driver being used. Some third-party drivers support encrypted transport, but others do not. Even if
encrypted transport is supported, no standardized way exists to enable encryption between third-
party JDBC drivers.

The general solution for this problem is to remotely run the JDBC driver and your third-party driver.
This method allows both the JDBC driver and the third-party driver to run locally on the database
server. Then all data traveling across the network between the Metadirectory engine and the JDBC
driver are SSL encrypted.

Another possibility is to use a type 3 or type 2 third-party JDBC driver. Database middleware and
client APIs usually provide encrypted transport mechanisms.

Mapping Multivalue Attributes

Question: How do I map multivalue attributes to single-value database fields?

Answer: See Section 8.7, “Mapping Multivalue Attributes to Single-Value Database Fields,” on
page 102.

Synchronizing Garbage Strings

Question: Why is the driver synchronizing garbage strings?

Answer: The database and the third-party driver are probably using incompatible character
encoding. Adjust the character encoding that your third-party driver uses.

For more information, refer to Character Encoding Values (http://java.sun.com/j2se/1.5.0/docs/guide/
intl/encoding.doc.html), defined by Sun.

Running Multiple JDBC Driver Instances

Question: How do I run multiple JDBC driver instances in the same driver set? The instances require
different versions of the same third-party JBDC driver (for example, the Oracle JDBC driver or the
IBM DB2 Type 3 JDBC driver).

Answer: Use the Remote Loader to load each JDBC driver instance in a separate Java Virtual Machine
(JVM). When run locally in the same JVM, different versions of the same third-party classes collide.

FAQ 195

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

196 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Supported Data Types

The JDBC driver can synchronize all JDBC 1 data types and a small subset of JDBC 2 data types. How
JDBC data types map to a database’s native data types depends on the third-party driver.

The following list includes the supported JDBC 1 java.sql.Types (http://java.sun.com/j2se/1.5.0/docs/
api/java/sql/Types.html).

Numeric Types:

¢ java.sql
¢ java.sql
¢ java.sql
¢ java.sql
¢ java.sql
¢ java.sql
¢ java.sql
¢ java.sql
¢ java.sql
¢ java.sql
String Types:
¢ java.sql
¢ java.sql
¢ java.sql
Time Types:
¢ java.sql
¢ java.sql
¢ java.sql
Binary Types:
¢ java.sql
¢ java.sql

¢ java.sql

.Types.
.Types.
.Types.
.Types.
.Types.
.Types.
.Types.
.Types.
.Types.
.Types.

.Types.
.Types.

.Types.

.Types.
.Types.
.Types.

.Types.
.Types.
.Types.

BIGINT
BIT
DECIMAL
DOUBLE
NUMERIC
REAL
FLOAT
INTEGER
SMALLINT
TINYINT

CHAR
LONGCHAR

VARCHAR

DATE
TIME
TIMESTAMP

BINARY
VARBINARY
LONGVARBINARY

The following list includes the supported JDBC 2 java.sql.Types (http://java.sun.com/j2se/1.5.0/docs/
api/java/sql/Types.html).

Supported Data Types

197

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

Large Object (LOB) Types:

¢ java.sqgl.Types.CLOB
¢ java.sql.Types.BLOB

198 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

java.sqgl.DatabaseMetaData Methods

This section lists the required and optional java.sql.DatabaseMetaData (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/DatabaseMetaData.html) methods.

The following JDBC 1 methods are required only if the Synchronization Filter parameter is set to
something other than Exclude all tables/views:

*

*

*

*

getColumns(java.lang.String catalog, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String columnNamePattern):java.sql.ResultSet

getPrimaryKeys(java.lang.String catalog, java.lang.String schema, java.lang.String
table):;java.sql.ResultSet

getTables(java.lang.String catalog, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String[] types);java.sql.ResultSet

storesLowerCaseldentifiers():boolean
storesMixedCaseldentifiers():boolean

storesUpperCaseldentifiers():boolean

Optional JDBC 1 methods:

*

*

*

dataDefinitionCausesTransactionCommit():boolean
dataDefinitionlgnoredInTransactions():boolean

getColumnPrivileges(String catalog, String schema, String table, String
columnNamePattern):java.sql.ResultSet

getDatabaseProductName();java.lang.String
getDatabaseProductVersion():java.lang.String
getDriverMajorVersion():int
getDriverMinorVersion():int
getDriverName();java.lang.String
getDriverVersion():java.lang.String

getExportedKeys(java.lang.String catalog, java.lang.String schema, java.lang.String
table):java.sql.ResultSet

getMaxStatements():int
getMaxConnections():int
getMaxColumnsInSelect():int

getProcedureColumns(String catalog, String schemaPattern, String procedureNamePattern,
String columnNamePattern):java.sql.ResultSet

getSchemas():java.sql.ResultSet
getTableTypes():;java.sql.ResultSet

java.sgl.DatabaseMetaData Methods 199

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html

200

*

*

*

getUserName():java.lang.String

supportsColumnAliasing():bolean
supportsDataDefinitionAndDataManiuplationTransactions():boolean
supportsDataManipulationTransactionsOnly():boolean
supportsLimitedOuterJoins():boolean
supportsMultipleTransactions():boolean
supportsSchemasInDataManipulation():boolean
supportsSchemasInProcedureCalls():boolean
supportsTransactionlsolationLevel(int level):boolean

supportsTransactions():boolean

Optional JDBC 2 methods:

*

supportsBatchUpdates():boolean

Optional JDBC 3 methods:

*

supportsGetGeneratedKeys():boolean

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

JDBC Interface Methods

This section lists the JDBC interface methods (other than java.sql.DatabaseMetaData (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html) methods) that the JDBC driver
uses. Methods are organized by class.

Often, third-party JDBC driver vendors list defects or known issues by method. You can use the
following methods in collaboration with third-party JDBC driver documentation to troubleshoot or
anticipate potential interoperability problems.

¢ java.sql.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html)

¢ java.sql.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
CallableStatement.html)

¢ java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html)

¢ java.sql.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
PreparedStatement.html)

¢ java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html)

¢ java.sql.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
ResultSetMetaData.html)

¢ java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html)
¢ java.sql.Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

The following table lists java.sql.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
DriverManager.html) methods that the JDBC driver uses:

Table G-1 java.sql.DriverManager Methods

JDBC

. o
Method Signature version Required?
getConnection(String url, java.util.Properties info):java.sql.Connection 1 yes!
getConnection(String url, java.util.Properties info):java.sql.Connection 1 yesl
setLogStream(java.io.PrintStream out):void 1 no

1Use one method or the other.

The following table lists java.sql.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
CallableStatement.html) methods that the JDBC driver uses:

JDBC Interface Methods 201

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html

Table G-2 java.sql.CallableStatement Methods

Method Signature ‘\]/ErBs(i:on Required?
getBigDecimal(int parameterindex, int scale):java.math.BigDecimal 1 yes
getBoolean(int parameterindex):boolean 1 yes
getBoolean(String parameterName):boolean 3 no
getByte(int parameterindex):byte 1 yes
getByte(String parameterName):byte 3 no
getBytes(int parameterindex):byte[] 1 yes
getBytes(String parameterName):byte[] 3 no
getDate(int parameterindex):java.sql.Date 1 yes
getDate(String parameterName):java.sql.Date 3 no
getDouble(int parameterindex):double 1 yes
getDouble(String parameterName):double 3 no
getFloat(int parameterindex):float 1 yes
getFloat(String parameterName):float 3 no
getint(int parameterindex):int 1 yes
int getint(String parameterName) 3 no
getLong(int parameterindex):long 1 yes
getLong(String parameterName):long 3 no
getShort(int parameterindex):short 1 yes
getShort(String parameterName):short 3 no
getString(int parameterindex):String 1 yes
getString(String parameterName):String 3 no
getTime(int parameterindex):java.sql.Time 1 yes
getTime(String parameterName):java.sqgl.Time 3 no
getTimestamp(int parameterindex):java.sql. Timestamp 1 yes
getTimestamp(String parameterName):java.sql.Timestamp 3 no
registerOutParameter(int parameterindex, int sqlType):void 1 yes
wasNull():boolean 1 yes

The following table lists java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Connection.html) methods that the JDBC driver uses:

202 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

Table G-3 java.sql.Connection Methods

Method Signature igrBs?on Required?
close():void 1 yes
commit():void 1 no
createStatement():java.sql.Statement 1 yes
getAutoCommit():boolean 1 no
getMetaData():java.sql.DatabaseMetaData 1 yes
getTransactionlsolation():int 1 no
getWarnings():java.sql.SQLWarning 1 no
isClosed():boolean 1 no
prepareCall(String sql):java.sql.CallableStatement 1 no
prepareStatement(String sql):java.sql.PreparedStatement 1 yes
rollback():void 1 no
setAutoCommit(boolean autoCommit):void 1 no
setTransactionlsolation(int level):void 1 no

The following table lists java.sql.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/

PreparedStatement.html) methods that the JDBC driver uses:

Table G-4 java.sql.PreparedStatement Methods

JDBC

Method Signature version Required?
clearParameters() :void 1 no
execute():boolean 1 yes
executeQuery():java.sqgl.ResultSet 1 yes
executeUpdate():int 1 yes
setBigDecimal(int parameterindex, java.math.BigDecimal x):void 1 yes
setBoolean(int parameterindex, boolean x):void 1 yes
setByte(int parameterindex, byte x):void 1 yes
setBytes(int parameterindex, byte x[]):void 1 yes
setDate(int parameterindex, java.sql.Date x):void 1 yes
setDouble(int parameterindex, double x):void 1 yes
setFloat(int parameterindex, float x):void 1 yes
setint(int parameterindex, int x):void 1 yes
setLong(int parameterindex, long x):void 1 yes

JDBC Interface Methods

203

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html

204

JDBC

Method Signature version Required?
setNull(int parameterindex, int sqlType):void 1 yes
setShort(int parameterindex, short x):void 1 yes
setString(int parameterindex, String x):void 1 yes
setTime(int parameterindex, java.sql.Time x):void 1 yes
setTimestamp(int parameterindex, java.sqgl.Timestamp x):void 1 yes

The following table lists java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/

ResultSet.html) methods that the JDBC driver uses:

Table G-5 java.sql.ResultSet Methods

JDBC

Method Signature version Required?
close():void 1 yes
getBigDecimal(int columnindex, int scale):java.math.BigDecimal 1 yes
getBigDecimal(String columnName, int scale):java.math.BigDecimal 1 yes
getBinaryStream(int columnindex):java.io.InputStream 1 yes
getBinaryStream(String columnName)java.io.lnputStream 1 yes
getBoolean(int columnindex):boolean 1 yes
getBoolean(String columnName):boolean 1 yes
getByte(int columnindex):byte 1 yes
getByte(String columnName):byte 1 yes
getBytes(int columnindex):byte[] 1 yes
getBytes(String columnName):byte[] 1 yes
getDate(int columnindex):java.sqgl.Date 1 yes
getDate(String columnName)java.sql.Date 1 yes
getFloat(int columnindex):float 1 yes
getFloat(String columnName):float 1 yes
getint(int columnindex):int 1 yes
getint(String columnName):int 1 yes
getLong(int columnindex):long 1 yes
getLong(String columnName):long 1 yes
getMetaData():java.sqgl.ResultSetMetaData 1 no
getShort(int columnindex):short 1 yes
getShort(String columnName):short 1 yes

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

JDBC

Method Signature Required?

Version
getString(int columnindex):String 1 yes
getString(String columnName):String 1 yes
getTime(int columnindex):java.sqgl.Time 1 yes
getTime(String columnName):java.sgl.Time 1 yes
getTimestamp(int columnindex):java.sqgl.Timestamp 1 yes
getTimestamp(String columnName):java.sql.Timestamp 1 yes
getWarnings():java.sql.SQLWarning 1 no

The following table lists java.sql.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/

ResultSetMetaData.html) methods that the JDBC driver uses:

Table G-6 java.sql.ResultSetMetaData Methods

Method Signature i]/SrBs%n Required?
getColumnCount():int 1 yes
getColumnName(int column):String 1 no
getColumnType(int column):int 1 no

The following table lists java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Statement.html) methods that the JDBC driver uses:

Table G-7 java.sql.Statement Methods

Method Signature JVEEs%n Required?
addBatch(java.lang.String sql):void 2 no
clearBatch():void 2 no
clearWarnings():void 1 no
close():void 1 yes
execute(java.lang.String sql):boolean 1 yes
executeBatch():int[] 2 no
executeUpdate(String sql):int 1 yes
executeQuery(String sql):java.sql.ResultSet 1 yes
getGeneratedKeys():java.sql.ResultSet 3 no
getMoreResults():boolean 1 no
getResultSet():java.sqgl.ResultSet 1 yes
getUpdateCount():int 1 no

JDBC Interface Methods

205

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

206

Method Signature

JDBC
Version

Required?

getWarnings():java.sql.SQLWarning

1

no

The following table lists java.sql. Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/

Timestamp.html) methods that the JDBC driver uses:

Table G-8 java.sql. Timestamp Methods

JDBC

Method Signature Version Required?
getNanos():int 1 yes
getTime():long 1 yes
setNanos(int n):void 1 yes
setTime(long time):void 1 yes
toString ():String 1 yes

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

Third-Party JDBC Driver Descriptor
DTD

This section contains the DTD for third-party JDBC descriptor files.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT actions (exec-sgl | check-for-closed-connection | fetch
metadata | rollback)*>
IELEMENT add-default-values-on-view-insert (#PCDATA) >
IELEMENT authentication (regular-expression | sgl-state | error-code
sgl-state-class | error-code-range | actions)*>
IELEMENT check-for-closed-connection EMPTY>
IELEMENT column-position-comparator (#PCDATA) >\
!ELEMENT connection-properties (property*)>
IELEMENT connectivity (regular-expression | sgl-state | error-code |
sqgl-state-class | error-code-range | actions)*>
< !ELEMENT current-timestamp-stmt (#PCDATA) >
< !|ELEMENT error-code (value)>
<!ATTLIST error-code
description CDATA #IMPLIED
>

ANNNAN—NNA

N

I|ELEMENT error-code-range (from, to)s>
IATTLIST error-code-range
description CDATA #IMPLIED

N

|ELEMENT errors (connectivity | authentication | retry | fatal)*>
IELEMENT exclude-table-filter (#PCDATA)>

|ELEMENT exec-sql (#PCDATA) >

IELEMENT fatal (regular-expression | sql-state | error-code | sql
state-class | error-code-range | actions)*>

I|ELEMENT fetch-metadata EMPTY>

!ELEMENT from (#PCDATA) >

IELEMENT function-return-method (#PCDATA) >

IELEMENT handle-stmt-results (#PCDATA) >

IELEMENT identity (name?, target-database?, jdbc-type?, jdbc-class?) >
I|ELEMENT import (#PCDATA) >

IELEMENT imports (import*)s>

IELEMENT include-table-filter (#PCDATA)>

I|ELEMENT jdbc-class (#PCDATA) >

IELEMENT jdbc-driver (imports?, identity, (metadata-override |
connection-properties | sqgl-type-map | options | errors)*)s>
|ELEMENT jdbc-type (#PCDATA) >

|ELEMENT key (#PCDATA) >

I|ELEMENT left-outer-join-operator (#PCDATA) >

!ELEMENT lock-generator-class (#PCDATA) >

|ELEMENT metadata-override (supports-schemas-in-procedure-calls?) >\
IELEMENT minimal-metadata (#PCDATA) >

|ELEMENT name (#PCDATA) >

|ELEMENT options (lock-generator-class | supports-schemas-in
metadata-retrieval | time-translator-class | column-position
comparator | use-manual-transactions | minimal-metadata | transaction
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>

< !|ELEMENT property (key, wvalue)>

<!ELEMENT regular-expression (value)>

AN NN ANV

NNNNNNNANNNNA

ANNNNANNANNNANNA

Third-Party JDBC Driver Descriptor DTD

207

208

<!ELEMENT retry (regular-expression | sgl-state | error-code | sql
state-class | error-code-range | actions)*>

<!ELEMENT reuse-statements (#PCDATA) >

|ELEMENT rollback EMPTY>

I|ELEMENT sqgl-state (value)>

IATTLIST sqgl-state

description CDATA #IMPLIED

>

AANAY

N

!ELEMENT sqgl-state-class (value)>
IATTLIST sgl-state-class
description CDATA #IMPLIED

N

IELEMENT sqgl-type-map (type*)>

!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
I|ELEMENT supports-schemas-in-procedure-calls (#PCDATA) >
I|ELEMENT target-database (#PCDATA) >

IELEMENT time-translator-class (#PCDATA) >

!ELEMENT to (#PCDATA) >

!ELEMENT transaction-isolation-level (#PCDATA) >
I|ELEMENT type (from, to)s>

IELEMENT use-manual-transactions (#PCDATA) >

I|ELEMENT use-single-connection (#PCDATA) >

IELEMENT value (#PCDATA) >

NNNNNANNNANNNNNANYV

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Third-Party JDBC Driver Descriptor
Import DTD

This section contains the DTD for third-party JDBC descriptor import files.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT actions (exec-sgl | check-for-closed-connection | fetch-metadata |
rollback) *>
<!ELEMENT add-default-values-on-view-insert (#PCDATA) >
<!ELEMENT authentication (regular-expression | sgl-state | error-code | sqgl-state-
class | error-code-range | actions)*>
<!ELEMENT check-for-closed-connection EMPTY>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT connection-properties (property*)>
<!ELEMENT connectivity (regular-expression | sqgl-state | error-code | sgl-state-
class | error-code-range | actions)*>
< !ELEMENT current-timestamp-stmt (#PCDATA) >
< !|ELEMENT error-code (value)>
<!ATTLIST error-code
description CDATA #IMPLIED
>
I|ELEMENT error-code-range (from, to)s>
IATTLIST error-code-range
description CDATA #IMPLIED

ANAY

>
<!ELEMENT errors (connectivity | authentication | retry | fatal)*>
<!ELEMENT exclude-table-filter (#PCDATA)>
< |ELEMENT exec-sgl (#PCDATA) >
<!ELEMENT fatal (regular-expression | sqgl-state | error-code | sgl-state-class |
error-code-range | actions)*>
<!ELEMENT fetch-metadata EMPTY>
<!ELEMENT from (#PCDATA) >
<!ELEMENT function-return-method (#PCDATA) >
<!ELEMENT handle-stmt-results (#PCDATA) >
<!ELEMENT include-table-filter (#PCDATA) >
<!ELEMENT jdbc-driver (metadata-override | connection-properties | sgl-type-map |
options | errors)*>
<!ELEMENT key (#PCDATA) >
<!ELEMENT left-outer-join-operator (#PCDATA) >\
< !ELEMENT lock-generator-class (#PCDATA) >
< !ELEMENT metadata-override (supports-schemas-in-procedure-calls?)>
< !ELEMENT minimal-metadata (#PCDATA) >
<!ELEMENT options (lock-generator-class | supports-schemas-in-metadata-retrieval |
time-translator-class | column-position-comparator | use-manual-transactions |
minimal-metadata | transaction-isolation-level | use-single-connection | exclude-
table-filter | include-table-filter | left-outer-join-operator | current-
timestamp-stmt | add-default-values-on-view-insert | reuse-statements | function-
return-method | handle-stmt-results)*>
< !|ELEMENT property (key, wvalue)>
<!ELEMENT regular-expression (value)>
<!ELEMENT retry (regular-expression | sgl-state | error-code | sgl-state-class |
error-code-range | actions)*>
<!ELEMENT reuse-statements (#PCDATA) >
< !ELEMENT rollback EMPTY>
<!ELEMENT sqgl-state (value)>
<!ATTLIST sgl-state

description CDATA #IMPLIED

Third-Party JDBC Driver Descriptor Import DTD 209

210

AN NV

ANNNNANNANNNNANNANYV

!ELEMENT
!ATTLIST

sgl-state-class (value)>
sqgql-state-class

description CDATA #IMPLIED

!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT

sqgl-type-map (type*) >
supports-schemas-in-metadata-retrieval (#PCDATA) >
supports-schemas-in-procedure-calls (#PCDATA) >
time-translator-class (#PCDATA) >

to (#PCDATA) >

transaction-isolation-level (#PCDATA) >

type (from, to)s>

use-manual-transactions (#PCDATA) >
use-single-connection (#PCDATA) >

value (#PCDATA) >

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Database Descriptor DTD

This section contains the DTD for database descriptor files.

<?xml version="1.0" encoding="UTF-8"?>
add-default-values-on-view-insert (#PCDATA) >

ANNNNANNNNANNANNNNANNANNNNAN

<

time-translator-class | column-position-comparator | use-manual-transactions |

!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT

column-position-comparator (#PCDATA) >
current-timestamp-stmt (#PCDATA) >

database (imports?, identity, options?)s>

exclude-table-filter (#PCDATA) >
function-return-method (#PCDATA) >
handle-stmt-results (#PCDATA) >
include-table-filter (#PCDATA) >

identity (name?, regex-name?, regex-version?)>

import (#PCDATA) >

imports (import*) >
left-outer-join-operator (#PCDATA) >
lock-generator-class (#PCDATA) >
minimal-metadata (#PCDATA) >

name (#PCDATA) >

options (lock-generator-class | supports-schemas-in-metadata-retrieval

minimal-metadata | transaction-isolation-level | use-single-connection | exclude-
table-filter | include-table-filter | left-outer-join-operator | current-
timestamp-stmt | add-default-values-on-view-insert | reuse-statements | function-
return-method | handle-stmt-results) *>

ANNNNNNNANA

!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT
!ELEMENT

regex-name (#PCDATA) >

regex-version (#PCDATA) >
reuse-statements (#PCDATA) >\
supports-schemas-in-metadata-retrieval
time-translator-class (#PCDATA) >
transaction-isolation-level (#PCDATA) >
use-manual-transactions (#PCDATA) >
use-single-connection (#PCDATA) >

(#PCDATA) >

Database Descriptor DTD

211

212 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Database Descriptor Import DTD

This section contains the DTD for database descriptor import files.

<?xml version="1.0" encoding="UTF-8"?>

!ELEMENT add-default-values-on-view-insert (#PCDATA) >

IELEMENT column-position-comparator (#PCDATA) >

I|ELEMENT current-timestamp-stmt (#PCDATA) >

|ELEMENT exclude-table-filter (#PCDATA)>

!ELEMENT function-return-method (#PCDATA) >

!ELEMENT handle-stmt-results (#PCDATA)>

IELEMENT include-table-filter (#PCDATA) >

I|ELEMENT database (options?)>

!ELEMENT left-outer-join-operator (#PCDATA)>

!ELEMENT lock-generator-class (#PCDATA) >

!ELEMENT minimal-metadata (#PCDATA)>

IELEMENT options (lock-generator-class | supports-schemas-in
metadata-retrieval | time-translator-class | column-position-comparator | use-
manual-transactions | minimal-metadata | transaction-isolation-level | use-single-
connection | exclude-table-filter include-table-filter | left-outer-join-
operator | current-timestamp-stmt add-default-values-on-view-insert | reuse-
statements | function-return-method | handle-stmt-results)*>

<!ELEMENT reuse-statements (#PCDATA)>

<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>

<!ELEMENT time-translator-class (#PCDATA) >

<!ELEMENT transaction-isolation-level (#PCDATA)>

<

<

ANNNNNNNANNANNNNANA

I|ELEMENT use-manual-transactions (#PCDATA) >
I|ELEMENT use-single-connection (#PCDATA) >

Database Descriptor Import DTD 213

214 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Policy Example: Triggerless Future
Event Processing

The following example assumes that a “commence” attribute exists and does the following:

¢ Holds the time stamp value indicating when an event should be processed

¢ Contains an integer or Java string time stamp value. See “Time Syntax” on page 47.

<policy xmlns:Timestamp="http://www.novell.com/nxsl/java/java.sqgl.Timestamp"
xmlns:TimestampUtil="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil™"
xmlns:jdbc="urn:dirxml:jdbc">
<rule>
<description>Get commencement date from datasource.</descriptions
<conditions>
<and>
<if-xpath op="true">.</if-xpath>
</and>
</conditions>
<actions>
<do-set-local-variable name="commence">
<arg-string>
<token-src-attr class-name="User" name="commence"/>
</arg-string>
</do-set-local-variable>
</actions>
</rule>

<rule>
<description>Break if commencement date unavailable.</descriptions
<conditions>
<and>
<if-local-variable name="commence" op="equal"/>
</and>
</conditions>
<actions>
<do-break/>
</actions>
</rules>

<rule>
<descriptions>Parse times.</description>
<conditions>
<and>
<if-xpath op="true">.</if-xpath>
</and>
</conditions>
<actionss>
<do-set-local-variable name="dbTime">
<arg-object>
<token-xpath expression="Timestamp:valueOf (@jdbc:database-local-time)"/>
</arg-object>
</do-set-local-variable>
<do-set-local-variable name="eventTime">
<arg-object>
<token-xpath expression="Timestamp:valueOf ($Scommence)"/>
</arg-object>

Policy Example: Triggerless Future Event Processing

215

216

</do-set-local-variable>
</actions>
</rule>
<rule>
<description>Is commencement date after database time?</description>
<conditions>
<and>
<if-xpath op="true"s>.</if-xpath>
</and>
</conditions>
<actions>
<do-set-local-variable name="after">
<arg-strings>
<token-xpath expression="TimestampUtil:after ($eventTime, $dbTime)"/>
</arg-string>
</do-set-local-variable>
</actions>
</rule>

<rule>
<descriptionsRetry if future event.</descriptions>
<conditions>
<and>
<if-local-variable name="after" op="equal">true</if-local-variable>
</and>
</conditions>
<actions>
<do-status level="retry">
<arg-string>
<token-text xml:space="preserve">Future event detected.</token-text>
</arg-string>
</do-status>
</actions>
</rule>
</policy>

Identity Manager 4.0.2 Driver for JDBC Implementation Guide

M.1

M.2

Setting Up an OCI Client on Linux

*

*

*

Section M.1, “Downloading the Instant Client,” on page 217
Section M.2, “Setting Up the OCI Client,” on page 217
Section M.3, “Configuring the OCI Driver,” on page 218

Downloading the Instant Client

1

2

Download the Oracle Instant Client (instantclient-basic-1inux32-11.1.0.7.zip).

The file is available from Instant Client Downloads (http://www.oracle.com/technology/
software/tech/oci/instantclient/htdocs/linuxsoft.html).

Download the Oracle SQL Plus binary (instantclient-sglplus-linux32-11.1.0.7.zip).

The file is available from Instant Client Downloads (http://www.oracle.com/technology/
software/tech/oci/instantclient/htdocs/linuxsoft.html).

Setting Up the OCI Client

Set up the Oracle Instant Client on the machine where the JDBC driver is running (not on the
machine where Oracle is running).

1

Log into Linux as root, and create the following structure:

/oracle /oracle/client /oracle/client/bin /oracle/client/1lib /oracle/client/
network/admin

2 Unzip all files from instantclient-basic-1linux32-11.1.0.7.zip to /oracle/client/1ib.

w

~N o o b~

Unzip all files from instantclient-sglplus-1linux32-11.1.0.7.zip to /oracle/client/
bin.

Copy libsglplus.so from /oracle/client/bin to /oracle/client/1ib.

Copy libsglplusic.so from /oracle/client/binto /oracle/client/1lib.

Using chmod, ensure that the file sqlplus in /oracle/client/bin is executable.
Copy a valid tnsnames.ora into /oracle/client /network/admin.

If you don’t have a tnsnames . ora file, use the Oracle configuration tool to create one.
Make sure that the tnsnames.ora filename is in lowercase.

Modify the profile.local file by adding the following lines:

export LD LIBRARY PATH=$LD LIBRARY PATH:/oracle/client/lib
export TNS_ ADMIN=/oracle/client/network/admin

export PATH=$SPATH:/oracle/client/lib

Setting Up an OCI Client on Linux 217

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html

M.3

10

11

The profile.local file is in the /etc folder. If the file doesn’t exist, create one. The file can
consist of only the three export lines.

The profile.local file extends the LD_LIBRARY_PATH, sets TNS_ADMIN, and extends the
PATH. This file is read when the server boots.

Ensure that the exports in the profile.local file are always valid.

Copy the classesl2.jar and ojdbcl4.jar and ojdbe5. jar or ojdbeé . jar to the Identity
Manager classes directory.

These .jar files are supplied with the Instant Client.
The Identity Manager classes directory is the directory where your driver is located.

Start SQL Plus with the following example command (assuming that the directory is /oracle/
client/bin):

./sqlplus username/passwordesid

Configuring the OCI Driver

To configure the driver, customize the driver’'s URL syntax. See Table 13-18 on page 164.

An example URL syntax is jdbc:oracle:oci8:@QORACLEI10. In this example, ORACLE10 is the
connection string in the tnsnames. ora file.

Figure M-1 Example tnsnames.ora File

218 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

Sybase Chain Modes and the
ldentity Manager JDBC driver

Sybase can execute stored procedures in two distinct modes: chained and unchained. Depending
upon the configuration of the Identity Manager JDBC driver and stored procedures in a database,
various problems can arise. This section can help you understand and resolve those problems.

¢ Section N.1, “Error Codes,” on page 219

¢ Section N.2, “Procedures and Modes,” on page 220

Error Codes

¢ “Error 226: SET CHAINED command not allowed within multi-statement transaction” on
page 219

¢ “Error 7112: Stored procedure 'x' may be run only in chained transaction mode” on page 219

¢ “Error 7113: Stored procedure 'x' may be run only in unchained transaction mode” on page 220

Error 226: SET CHAINED command not allowed within multi-statement
transaction

Effect: Throws the exception of com.sybase.jdbc2.jdbc.SybSQLException with error
code 226 and an SQL state of ZZZZZ.

Cause: This exception is usually caused by a defect in older versions of jConnect.

Solution: Download and upgrade to the latest version. Downloads are available at the
jConnect for JDBC Web page (http://www.sybase.com/products/
informationmanagement/softwaredeveloperkit/jconnect).

Error 7112: Stored procedure 'x' may be run only in chained transaction mode

Effect: Throws the exception of com.sybase.jdbc2.jdbc.SybSQLException with error
code 7712 and an SQL state of ZZZZZ.

Cause: The stored procedure was created in chained mode, or later altered to run in
chained mode, but the driver is currently running in unchained mode. The
probable cause is that the Use Manual Transactions? parameter is set to False.
Another possibility is that the transaction type has been overridden to auto in a

policy.

Sybase Chain Modes and the Identity Manager JDBC driver 219

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

N.2

N.2.1

Solution: Do one of the following:
¢ Use stored procedure sp_procxmode to change the stored procedure's
mode to unchained or anymode (preferred).

¢ Change the driver's Use Manual Transactions? parameter to True, or change
the policy transaction type to manual.

Error 7113: Stored procedure 'x' may be run only in unchained transaction mode

Effect: Throws the exception com.sybase.jdbc2.jdbc.SybSQLException with error code
7713 and an SQL state of ZZZZ7.

Cause: The stored procedure was created in unchained mode, or later altered to run in
unchained mode, but the driver is currently running in chained mode. The
probable cause is that the Use Manual Transactions? parameter is set to True.
Another possibility is that the transaction type has been overridden to manual in

policy.
Solution: Do one of the following:
¢ Use stored procedure sp_procxmode to change the stored procedure's
mode to chained or anymode (preferred).

¢ Change the driver's Use Manual Transactions? parameter to False, or change
the policy transaction type to auto.

If you set use-manual-transactions to False, all transactions consist of a maximum
of one statement.

Procedures and Modes

¢ Section N.2.1, “Using Stored Procedure sp_proxmode,” on page 220
¢ Section N.2.2, “Chained and Unchained Modes,” on page 221
¢ Section N.2.3, “Managing Transactions in a Policy,” on page 221

¢ Section N.2.4, “Useful Links,” on page 221

Using Stored Procedure sp_proxmode

The preferred way to avoid errors 7112 and 7113 is to alter all stored procedures invoked directly or
indirectly by the driver (via triggers, for example) to run in both chained and unchained mode. To
alter a procedure, invoke the sp_procxmode procedure with two arguments:.

¢ The procedure name
+ The mode

The following example illustrates how to invoke the sp_procxmode procedure from the isql
command line:

client:sp procxmode my procedure, anymode go

Of course, not all customers are willing to alter stored procedure modes. Altering a procedure's mode
might alter its runtime behavior, which could alter the behavior of other applications that invoke the
procedure.

220 Identity Manager 4.0.2 Driver for JDBC Implementation Guide

N.2.2

N.2.3

N.2.4

Chained and Unchained Modes

Unchained mode is Sybase's native way of executing SQL. A second mode, chained mode, was later
added to make the database compatible with SQL standards.

Table N-1 Modes and Compatibility

Mode Compatibility
Chained SQL-compatible mode
Unchained Sybase native mode

Sybase provides a third-party JDBC driver called jConnect. The default mode of jConnect is
unchained. Whenever the method Connection.setAutoCommit(boolean autoCommit):void is
invoked, jConnect switches modes. See java.sql Interface Connection (http://java.sun.com/j2se/1.4.2/
docs/api/java/sql/Connection.html).

Table N-2 Methods and Switches

Method Effect
Connection.setAutoCommit(true) Switches to unchained mode
Connection.setAutoCommit(false) Switches to chained mode

If the Use Manual Transactions? parameter is set to False, the driver invokes
Connection.setAutoCommit(true). That is, the driver enters unchained mode. This is the normal
processing mode for SELECT statements and SQL embedded in a policy where the transaction type is
set to auto. See Section 11.5, “Manual vs. Automatic Transactions,” on page 122. When the driver is
in this state, any chained stored procedures invoked directly or indirectly by the driver yield the 7112
error.

If the Use Manual Transactions? parameter is set to True, the driver invokes
Connection.setAutoCommit(false). That is, the driver enters chained mode. This is the normal
processing mode for all statements except SELECT statements and SQL embedded in a policy where
the transaction type is set to manual. See Section 11.5, “Manual vs. Automatic Transactions,” on
page 122. When the driver is in this state, any unchained stored procedures invoked directly or
indirectly by the driver yield the 7113 error.

Managing Transactions in a Policy

For information on managing transactions in a policy, see Section 11.5, “Manual vs. Automatic
Transactions,” on page 122

Useful Links

¢ Transaction modes and stored procedures (http://manuals.sybase.com/onlinebooks/group-as/
asg1250e/sqlug/@Generic__BookTextView/55096;hf=0;pt=55096#X) in the Transact-SQL User’s
Guide

¢ Selecting the transaction mode and isolation level (http://manuals.sybase.com/onlinebooks/
group-as/asg1250e/sqlug/@Generic__BookTextView/53713;pt=53001) in the Transact-SQL User’s
Guide

Sybase Chain Modes and the Identity Manager JDBC driver 221

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/55096;hf=0;pt=55096#X
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/53713;pt=53001

222 ldentity Manager 4.0.2 Driver for JDBC Implementation Guide

	Identity Manager 4.0.2 Driver for JDBC Implementation Guide
	About This Guide
	1 Introducing the Identity Manager Driver for JDBC
	1.1 Driver Concepts
	1.1.1 JDBC
	1.1.2 Identity Manager JDBC driver
	1.1.3 Third-Party JDBC Driver
	1.1.4 Identity Vault
	1.1.5 Directory Schema
	1.1.6 Application Schema
	1.1.7 Database Schema
	1.1.8 Synchronization Schema
	1.1.9 Logical Database Class
	1.1.10 XDS

	1.2 Database Concepts
	1.2.1 Structured Query Language
	1.2.2 Data Manipulation Language
	1.2.3 Data Definition Language
	1.2.4 View
	1.2.5 Identity Columns/Sequences
	1.2.6 Transaction
	1.2.7 Stored Procedures or Functions
	1.2.8 Trigger
	1.2.9 Instead-Of-Trigger

	1.3 Driver Features
	1.3.1 Local and Remote Platforms
	1.3.2 Password Synchronization
	1.3.3 Data Synchronization Models
	1.3.4 Triggerless vs. Triggered Publication

	2 Installing the Driver Files
	2.1 Installing the Driver Files
	2.2 Installing JDBC Driver Jar Files

	3 Installing and Configuring Database Objects
	3.1 SQL Script Conventions
	3.2 Installing IBM DB2 Universal Database (UDB)
	3.3 Installing Informix Dynamic Server (IDS)
	3.4 Installing Microsoft SQL Server
	3.5 Installing MySQL
	3.6 Installing Oracle
	3.7 Installing PostgreSQL 8
	3.8 Installing PostgreSQL 9
	3.9 Installing Sybase Adaptive Server Enterprise (ASE)
	3.10 Testing the Database Object Installation

	4 Creating a New Driver Object
	4.1 Creating the Driver Object in Designer
	4.1.1 Importing the Current Driver Packages
	4.1.2 Installing the Driver Packages
	4.1.3 Configuring the Driver Object
	4.1.4 Deploying the Driver Object
	4.1.5 Starting the Driver Object

	4.2 Activating the Driver
	4.3 JDBC Driver Settings

	5 Configuring the JDBC Driver
	5.1 Smart Configuration
	5.1.1 Specifying Custom Descriptor Files
	5.1.2 Reserved Filenames for Descriptor Files
	5.1.3 Import Descriptor Files
	5.1.4 Descriptor File Locations
	5.1.5 Precedence
	5.1.6 Custom Descriptor Best Practices
	5.1.7 Descriptor File DTDs

	5.2 Configuration Parameters
	5.2.1 Viewing Driver Parameters
	5.2.2 Deprecated Parameters
	5.2.3 Authentication Parameters

	5.3 Driver Parameters
	5.3.1 Uncategorized Parameters
	5.3.2 Database Scoping Parameters
	5.3.3 Connectivity Parameters
	5.3.4 Compatibility Parameters

	5.4 Subscription Parameters
	5.4.1 Uncategorized Parameters
	5.4.2 Primary Key Parameters

	5.5 Publication Parameters
	5.5.1 Uncategorized Parameters
	5.5.2 Triggered Publication Parameters
	5.5.3 Triggerless Publication Parameters
	5.5.4 Polling Parameters

	5.6 Trace Levels
	5.7 Configuring Third-Party JDBC Drivers
	5.8 Configuring jTDS Support for the JDBC Driver

	6 Upgrading an Existing Driver
	6.1 Supported Upgrade Paths
	6.2 What’s New in Version 4.0.2
	6.3 Upgrade Procedure

	7 Managing the Driver
	8 Schema Mapping
	8.1 High-Level View
	8.2 Logical Database Classes
	8.3 Indirect Synchronization
	8.3.1 Mapping eDirectory Classes to Logical Database Classes
	8.3.2 Parent Tables
	8.3.3 Parent Table Columns
	8.3.4 Child Tables
	8.3.5 Referential Attributes
	8.3.6 Single-Value Referential Attributes
	8.3.7 Multivalue Referential Attributes

	8.4 Direct Synchronization
	8.4.1 View Column Meta-Identifiers
	8.4.2 Primary Key Columns
	8.4.3 Schema Mapping

	8.5 Synchronizing Primary Key Columns
	8.6 Synchronizing Multiple Classes
	8.7 Mapping Multivalue Attributes to Single-Value Database Fields

	9 Mapping XDS Events to SQL Statements
	9.1 Mapping XDS Events for Indirect Synchronization
	9.2 Mapping XDS Events for Direct Synchronization

	10 The Event Log Table
	10.1 Event Log Columns
	10.1.1 record_id
	10.1.2 table_key
	10.1.3 status
	10.1.4 event_type
	10.1.5 event_time
	10.1.6 perpetrator
	10.1.7 table_name
	10.1.8 column_name
	10.1.9 old_value
	10.1.10 new_value

	10.2 Event Types

	11 Embedded SQL Statements in XDS Events
	11.1 Common Uses of Embedded SQL
	11.2 Embedded SQL Basics
	11.2.1 Elements
	11.2.2 Namespaces
	11.2.3 Embedded SQL Example

	11.3 Token Substitution
	11.4 Virtual Triggers
	11.5 Manual vs. Automatic Transactions
	11.6 Transaction Isolation Level
	11.7 Statement Type
	11.8 SQL Queries
	11.9 Data Definition Language (DDL) Statements
	11.10 Logical Operations
	11.11 Implementing Password Set with Embedded SQL
	11.12 Implementing Modify Password with Embedded SQL
	11.13 Implementing Check Object Password
	11.14 Calling Stored Procedures and Functions
	11.14.1 Using Embedded SQL to Call Stored Procedures or Functions
	11.14.2 Using the jdbc:call-procedure Element
	11.14.3 Using the jdbc:call-function Element

	11.15 Best Practices

	12 Supported Databases
	12.1 Database Interoperability
	12.2 Supported Databases
	12.3 Database Characteristics
	12.3.1 Database Features
	12.3.2 Current Time Stamp Statements
	12.3.3 Syntaxes for Calling Stored Procedures and Functions
	12.3.4 Left Outer Join Operators
	12.3.5 Undelimited Identifier Case Sensitivity
	12.3.6 Supported Transaction Isolation Levels
	12.3.7 Commit Keywords
	12.3.8 IBM DB2 Universal Database (UDB)
	12.3.9 Informix Dynamic Server (IDS)
	12.3.10 Microsoft SQL Server
	12.3.11 MySQL
	12.3.12 Oracle
	12.3.13 PostgreSQL
	12.3.14 Sybase Adaptive Server Enterprise (ASE)

	13 Third-Party JDBC Drivers
	13.1 Third-Party JDBC Driver Interoperability
	13.2 Third-Party JDBC Driver Types
	13.2.1 Driver Types
	13.2.2 Which Type To Use?

	13.3 Supported Third-Party JDBC Drivers (Recommended)
	13.3.1 Third-Party JDBC Driver Features
	13.3.2 JDBC URL Syntaxes
	13.3.3 JDBC Driver Class Names
	13.3.4 Supported Third-Party Jar File Placement
	13.3.5 IBM DB2 Universal Database Type 4 JDBC Driver
	13.3.6 Informix JDBC Driver
	13.3.7 jTDS JDBC Driver
	13.3.8 MySQL Connector/J JDBC Driver
	13.3.9 Oracle Thin Client JDBC Driver
	13.3.10 Oracle OCI JDBC Driver
	13.3.11 PostgreSQL JDBC Driver
	13.3.12 Sybase Adaptive Server Enterprise JConnect JDBC Driver

	13.4 Supported Third-Party JDBC Drivers (Not Recommended)
	13.4.1 Third-Party JDBC Driver Features
	13.4.2 JDBC URL Syntaxes
	13.4.3 JDBC Driver Class Names
	13.4.4 IBM DB2 Universal Database JDBC Driver
	13.4.5 Microsoft SQL Server 2005 Driver for JDBC
	13.4.6 Microsoft SQL Server 2008 JDBC Driver
	13.4.7 Microsoft SQL Server 2008 R2 JDBC Driver

	13.5 Deprecated Third-Party JDBC Drivers
	13.6 Other Third-Party JDBC Drivers
	13.6.1 IBM Toolbox for Java/JTOpen
	13.6.2 Minimum Third-Party JDBC Driver Requirements
	13.6.3 Considerations When Using Other Third-Party JDBC Drivers

	13.7 Security Issues

	14 The Association Utility
	14.1 Independent Operations
	14.2 Before You Begin
	14.3 Using the Association Utility
	14.4 Parameters for Searching and Replacing

	15 Troubleshooting the JDBC Driver
	15.1 The Dirxml-Accounts Attribute Shows Incorrect Value When a User is Enabled or Disabled in the Identity Vault on the DB2 and Oracle Database Drivers
	15.2 Password Changes for Users Are Not Synchronized from the Identity Vault for the Oracle Database Driver
	15.3 Adding Users on the Subscriber Channel for the Sybase Driver in Direct Mode Causes Error
	15.4 Recognizing Publication Events
	15.5 Executing Test Scripts
	15.6 Troubleshooting Driver Processes

	A Uninstalling the Driver
	A.1 Deleting Identity Manager Driver Objects
	A.2 Running the Product Uninstaller
	A.3 Executing Database Uninstallation Scripts
	A.3.1 IBM DB2 Universal Database (UDB) Uninstallation
	A.3.2 Informix Dynamic Server (IDS) Uninstallation
	A.3.3 Microsoft SQL Server Uninstallation
	A.3.4 MySQL Uninstallation
	A.3.5 Oracle Uninstallation
	A.3.6 PostgreSQL Uninstallation
	A.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation

	B Known Issues and Limitations
	B.1 Known Issues
	B.2 Limitations

	C Best Practices
	C.1 Tips for Synchronizing Millions of User Records on the Publisher Channel
	C.2 Schema Name Use Cases

	D FAQ
	D.1 Can’t See Tables or Views
	D.2 Synchronizing with Tables
	D.3 Processing Rows in the Event Log Table
	D.4 Managing Database User Accounts
	D.5 Synchronizing Large Data Types
	D.6 Slow Publication
	D.7 Synchronizing Multiple Classes
	D.8 Encrypted Transport
	D.9 Mapping Multivalue Attributes
	D.10 Synchronizing Garbage Strings
	D.11 Running Multiple JDBC Driver Instances

	E Supported Data Types
	F java.sql.DatabaseMetaData Methods
	G JDBC Interface Methods
	H Third-Party JDBC Driver Descriptor DTD
	I Third-Party JDBC Driver Descriptor Import DTD
	J Database Descriptor DTD
	K Database Descriptor Import DTD
	L Policy Example: Triggerless Future Event Processing
	M Setting Up an OCI Client on Linux
	M.1 Downloading the Instant Client
	M.2 Setting Up the OCI Client
	M.3 Configuring the OCI Driver

	N Sybase Chain Modes and the Identity Manager JDBC driver
	N.1 Error Codes
	N.2 Procedures and Modes
	N.2.1 Using Stored Procedure sp_proxmode
	N.2.2 Chained and Unchained Modes
	N.2.3 Managing Transactions in a Policy
	N.2.4 Useful Links

