
Release Notes
NetIQ Identity Manager -
Administrator’s Guide to Form
Builder
May 2020

About Form Builder
The NetIQ Form Builder is a new interface that enables you to quickly design the forms. The interface displays
the required form components, form component organization, and form component control type. The Form
Builder provides a simple and easy-to-use graphical user interface. It is a platform for identity management
solution developers and administrators to build their own complex forms for automating provisioning for
business process applications. You can quickly drag and drop the form components onto the form component
area to design new forms. The form components placed in the form component area determine the
appearance of the form. The forms are stored in the JSON format. You can directly edit the forms in the JSON
editor. NetIQ Form Builder combines JavaScript forms with REST API Data Management platform for form-
based progressive web applications.

Figure 1 Form Builder
1

This release of Identity Manager supports form creation through both the legacy method and the Form Builder.
NetIQ recommends you to use the Form Builder.

The Form Builder provides the following advantages:

 Allows the forms to be used by multiple provisioning request definition (PRDs).
 Provides drag and drop features to enable you to quickly create modern and responsive forms.
 Simplifies the connections between forms and REST APIs.
 Provides multiple components (widgets).
 Supports all widgets available in the legacy forms.

Currently, Designer does not support migration of legacy forms to JSON forms. You must migrate the forms
manually. To migrate a legacy form to a JSON form, perform the following actions:

1. Back up the workflows that use the legacy form.
2. Create a JSON form in the Form Builder.
3. Add the existing data item mappings to the newly created JSON form.
4. Deploy the JSON form to the Identity Vault by using Designer.

How does the Form Builder Work?
The Form Builder uses the JSON schema to render the form dynamically within Identity Applications. The
schema automatically generates the corresponding APIs to receive the data when the form is submitted. You
can preview the saved forms before deploying them and make the necessary changes. Identity Manager stores
the forms in the JSON format on your file system.

Figure 2 Form Creation Flow

Launching Form Builder
Perform the following actions in Designer to launch the Form Builder.

1 From the Provisioning view, right-click the Provisioning Request Definitions node and select New.
2 Specify the Identifier (CN), Display Name, and Description.
2 May 2020

3 Click Next.
4 Select Create a provisioning request definition using one of the templates, choose the desired template

from the Available Templates list, and click Next, then click Finish.
5 In the page that opens, ensure that JSON Forms Selection is selected. Save the workflow.

This will display the JSON Forms tab.
6 Click the JSON Forms tab.

The Form Builder is launched.

Creating a Form
You can create a new form (approval, request, or template) for the Provisioning Request Definition from the
Workflow Forms container located in the User Application driver or directly in the Form Builder.

Figure 3 Creating a form

1 Navigate to the Workflow Forms in the Outline view of Designer and right-click one of the following
options to select the type of form you wish to create:
 Approval Forms
 Request Forms
 Template Forms

Alternatively, click + New Form in the Form Builder page and select the type of form you wish to create.
For example: Approval Form or Request Form

2 In the New Workflow Forms window, specify the Form Identifier that uniquely identities the form and click
Finish.
The Form Builder is launched.

3 Click .
4 In the New Form dialog box, select a template and click Create.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 3

5 Drag and drop the required components to design the form. For more information, see Form
Components.

NOTE: Few fields are pre-populated based on your selection of the form type. You can edit or delete these
fields as required.

6 Create the form and save it.
The form is saved in the same location in the Workflow Forms container under the type of the form that
you chose to create. For example, an approval form is saved under Approval Forms container.
After saving the form, deploy the form to the Identity Vault through Designer. For more information,
seeAbout Forms in the NetIQ Identity Manager - Administrator’s Guide to Designing the Identity
Applications.

Exploring the Form Builder User Interface
The Form Builder enables you to quickly create forms and resources by using a simple drag-and-drop user
interface. You can create, modify, copy, and delete a form in the Form Builder.

Figure 4 Form Builder

To design a form, drag and drop the required form components and provide the details. For more information
about each component and the corresponding input fields, see “Form Components” on page 6. Once the form
is submitted, it is sent to the client in the JSON format. At the client side, the Form Renderer renders the form.

NOTE: The field events other than OnLoad and OnChange are not directly supported from Form Builder.

The Form Builder page consists of the following components:

 Toolbar
 Form Components
4 May 2020

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#aboutprdforms
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Toolbar
The toolbar consists of the following elements:

Table 1 Toolbar with description

Button Description

Form Templates Form Templates has replaced the New Form option in
Identity Manager 4.8.1. Starting from this release, you can
use a template to create new forms.

Click to create a new form from existing templates
(Request or Approval form). For more information, see
“Creating and Editing Request or Approval Forms” on
page 21.

Form Builder Click to expand the menu layout.

JS Editor Click to edit the form in the JS editor. The editor enables
you to write your logic to change the custom default value
and calculate the value using JSON arrays. For more
information, see “Editing a form in JS Editor” on page 24.

Form JSON Click to edit the form in the JSON editor. The editor
provides a JSON representation describing a fully-featured
form. You can also use the editor to duplicate and edit an
existing form.

For more information, see “Editing a Form in the JSON
Editor” on page 23.

Preview Click to preview the designed form.

Localization Select the language you want the fields in the form to be
rendered in form renderer (Identity Applications).

External Scripts If you wish to add a JavaScript to the form from an external
source, specify the URL of the external script here.

Save Click to save the form as a template. Forms are saved as
XML documents in the project directory. Templates are
available only within the project in which you create them.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 5

Form Components
Form components collects data and serves as the display or user interface within the system. It helps you to
define the type of widget that is required to enter data and automatically adds a property to the resource
endpoint to interact with the Form component.

The Form Builder page consists of the following elements:

Basic Components
The following elements are displayed when you select Basic Components.

Settings Click to perform the following actions:

 Change Language: Allows you to select the supported
language in Form Builder.

 Preview Settings: Enabling this option enables the
buttons in the preview mode. This allows you to
approve or deny the form. It is recommended to
perform this action (approve or deny) only through
Identity Applications.

 About: Displays the version number of the build.
 Debug Mode: Displays the code and helps to

troubleshoot errors.

Offline - Online toggle On enabling this option, the preview of the form functions
is similar to the Form Renderer. For more information see
“Offline - Online Toggle” on page 33.

Button Description
6 May 2020

Figure 5 Basic Components

 Text Field - Used for adding short and general text input. For more information, see Textfield.
 Number - Used when the field is limited to a number type. For more information, see Number.
 Text Area - Has the same options as the Text Field element. The only difference is that it provides a multi-

line input field to be used in case of longer text. For more information, see Text Area.
 Checkbox- Used for a boolean value input. For more information, see Checkbox.
 Select Boxes - Works similar to the Radio component. However, it allows you to check multiple values. For

more information, see Select Boxes.
 Time - Used to enter the time format.
 Select - Displays the values as a drop-down list. For more information, see Select.
 Radio - Used when you need to choose from a list of options. For more information, see Radio.
 Content - Used to provide non-field information. For more information, see Content.
 Button - Used to perform various actions within the form. For more information, see Button.

Advanced
The following elements are displayed when you select Advanced.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 7

https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#textfield
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#number
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#textarea
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#checkbox
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#selectboxes
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#select
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#radio
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#content-component
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#button

Figure 6 Advanced

 Email - Used to add an email address field for your form. It has a custom validation setting that validates
the entered email address. For more information, see Email.

 Url - Used to add a URL in the form.
 Data Item Mapping - Used to map data from the data flow into fields in a form (pre-activity mapping) and

to map data from the form back to the data flow (post-activity mapping). For more information, see
Defining the Data Item Mappings in the NetIQ Identity Manager - Administrator’s Guide to Designing the
Identity Applications.

 Phone Number - Used to add a phone number field in the form. For more information, see Phone Number.
 Date/Time - Used to input dates, time, or both. For more information, see Date/Time.
 Day - Used to enter the values for the month, day, and year. The day component, by default, takes the

value in month/day/year format. However, the order of the fields can be changed. Select the Day First
check box in the Display tab if you want the day field before the month field.

 Tags - Used to add custom tags.
 Currency - Used when a field should display currency amounts on a form. For more information, see

Currency.
 HTML Element - Used to display a single HTML element in a form. For more information, see HTML

Element.
 Signature - Allows you to sign the field with either their finger on a touch enables device or with the

mouse pointer. For more information, see Signature.
 Survey - Used to ask multiple questions with the same context of answers or values. For more information,

see Survey.
 Dynamic Entity - This is a multi select drop-down field. This widget allows you to select more than one

entity in an entity type. For example, user, group.
8 May 2020

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#prdefdefiningdataitemmappings
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#email
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#phonenumber
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#datetime
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#currency
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#html-element-component
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#html-element-component
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#signature
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#survey

Figure 7 Dynamic Entity

The following fields are populated in the Data tab:
Entity Key: Specify the entity key for the entity type. For example, for the entity type User, the entity key is
user.
Display Expression Attribute: Specify the attributes of the entity type you want to be displayed. You can
add multiple display attributes. For example, for the entity type User, the Display Expression Attribute can
be FirstName, LastName.

Service ID: Select the service ID. For example, IDM or IG.
Limit: Specify the number of entities that you want to be displayed. The default value is 20.
Default Value: Specify the value to be displayed in the field before user interaction. Having a default value
overrides the placeholder text.
Refresh On: Refreshes data when another field changes.

NOTE: When the Form Builder is Online, a couple of additional fields are displayed in the Data tab. For
more information, see “Offline - Online Toggle” on page 33.

For more information about the fields populated in the Display tab, see “Display” on page 17.
For more information about Custom Default Value and Calculated Value, see “Custom Default Value” on
page 19 and “Calculated Value” on page 19.
For more information about the fields populated in the other tabs, see “Validation” on page 20, “API” on
page 20, “Conditional” on page 20, and “Logic” on page 21.
For more information about each tab for the selected component, see “General Settings for the Selected
Component” on page 17.

Entity Type Display Expression Attribute

User FirstName, LastName
NetIQ Identity Manager - Administrator’s Guide to Form Builder 9

 DN Query - Allows you to search and retrieve DNs from the Identity Vault. However, with the DNQuery,
the object selector content can be driven by the result of a directory abstraction layer Queries object
rather than from properties.
This widget is used to define a condition on how you want the results to be displayed.
You must ensure that the query, parameter, and key you specify is present in Designer.

Figure 8 DN Query

The following fields are populated in the Data tab:
Service ID: Select the required service ID. For example, IDM or IGA.
Parameters: Specify the parameter key and its value. You can have multiple keys for a parameter, and you
can have multiple values for a key.

NOTE: You must provide the parameter value (static value) while configuring this component. Dynamic
parameter value such as data.<other dynamic value> is not supported. To use the dynamic
parameter value, you can use the IDVault.globalquery in the Select component.

Query Key: Specify the key of the DAL Queries object.
Return Attributes: Specify the attributes of the entity type you want to be displayed. You can add multiple
display attributes.
Default Value: Specify the value to be displayed in the field before user interaction. Having a default value
overrides the placeholder text.
Refresh On: Refreshes data when another field changes.
For more information on the fields populated in the Display tab, see “Display” on page 17.

NOTE: When the Form Builder is Online, a couple of additional fields are displayed in the Data tab. For
more information, see “Offline - Online Toggle” on page 33.
10 May 2020

For more information about Custom Default Value and Calculated Value, see “Custom Default Value” on
page 19 and “Calculated Value” on page 19.
For more information about the fields populated in the other tabs, see “Validation” on page 20, “API” on
page 20, “Conditional” on page 20 and “Logic” on page 21.
For more information about each tab for the selected component, see “General Settings for the Selected
Component” on page 17.

 Title Element - Used to design a title. You can use the “Custom Default Value” on page 19 option for
dynamic value settings.

Figure 9 Title Element - Data

For more information about the fields populated in the other tabs, see “Display” on page 17, “Data” on
page 19, “Validation” on page 20, “API” on page 20, “Conditional” on page 20 and “Logic” on page 21.

 Tree Element - Used to design a hierarchy. You are allowed to configure nodes that helps to modify the
design of the form in the desired format.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 11

Figure 10 Tree Element - Data Source JSON

NOTE: The Preview area displays how the form would render on making the changes or edits to any field.

The following fields are populated in the Data tab.
Data Source Type: Select the type of data source, that is JSON or URL.
The following fields appear when the Data Source Type is JSON:
Data Source Raw JSON: Each node configuration is displayed in a JSON file. You must have the following
details mentioned:
dn: It is a unique ID that defines the selected node. The value must be a string. This is the data value for
the tree element that you add and is passed to the workflow.
name: Enter the name you wish to be displayed on the User Interface. The value must be a string.
data: (Optional) This saves the metadata to the existing field.
subcontainers: It defines the child node.The value must be an array of JSON. Each element of the array is
an object following the same structure as that of a node.
icon: The image class to be used for displaying icon on each node. The value must be a string. If you do not
define the value, the node uses the image class selected in Default Icon Class under the Display tab.
12 May 2020

NOTE: All nodes must follow either JSON or customized data structure. The parent and child cannot be of
different structure.
If JSON does not follow the default structure, it must be mapped accordingly.

Mapper keys for URL response: Allows you to map the JSON parameters with the URL element
parameters.
You can use the Mapper keys for URL response/ Raw JSON setting to customize the field names provided
under Data Source RAW JSON.
For example, if you want the field names as ["id","display","description","child","icon"], then modify the
details under Mapper keys for URL response/ Raw JSON as follows:
{
 dn: "id",
 name: "display",
 data: "description",
 subContainers: "child",
 icon: "icon"
}
The following fields appear when the Data Source Type is URL:
HTTP method: Select the required http method. For example, GET, POST.
Service ID: Select the appropriate service ID. For example, IDM, IG.
Data Source URL: The URL that returns a JSON array to use as the data source.
Mapper keys for URL response: Allows you to map the JSON parameters with the URL element
parameters.
Request Headers: Set any headers that should be sent along with the request to the URL. This is useful for
authentication.You can have multiple keys for a parameter, and you can have multiple values for a key.
Request payload: Enter the request body for the root node in the request payload field. The request body
contains the node details that will be used to load the node. It applies in case of POST method.
lazy parameter: Enter the parameter name that will be used to load a sub-node. The lazy parameter such
as nodeid is appended in the data source URL provided by the user. It applies in case of GET method (Lazy
Loading).
Default Value: The entered value is displayed in the field before user interaction. Having a default value
overrides the placeholder text.
Refresh On: Refreshes data when another field changes.
Clear Value On Refresh: This text appears below the input field.
For more information about Custom Default Value and Calculated Value, see “Custom Default Value” on
page 19 and “Calculated Value” on page 19.
For more information about each tab for the selected component, see “General Settings for the Selected
Component” on page 17.
For more information about the fields populated in the other tabs, see “Display” on page 17, “Validation”
on page 20, “API” on page 20, “Conditional” on page 20 and “Logic” on page 21.

 DN Display - Used to display a read-only DN. It can display the full DN or a set of attributes associated with
the DN depending on the properties you set.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 13

This is similar to Dynamic Entity mentioned in the “Advanced” on page 7 tab, except that you need to
provide a ‘DN'. You must enter a valid DN as DN validation is not done.

Figure 11 DN Display

The following fields are populated in the Data tab:
Entity key for DN Expression: Represents the type of entity used for DN display. Leave this value blank if
you want to display the full DN or CN value retrieved from the Identity Vault, else enter an entity.
The entity you choose must:
 Have the directory abstraction layer View property set to True.
 Be the entity of the DN you are working with.

Display Expression: Represents the attribute used for DN display. It also displays multiple attributes,
provided the attribute is separated by comma. Leave this value blank if you want to display the full DN or
CN value. If you want to mask the DN by displaying attributes, you must first specify an Entity key for DN
expression.
For example, to show the user entity’s first and last name attributes, construct an expression like this:
FirstName LastName.
Ensure the attribute’s View, Read, Search, and Required properties are set to True in the directory
abstraction layer. For more information, see Attribute Properties in the NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity Applications.
DN: Enter the respective DN.
Default Value: The entered value is displayed in the field before user interaction. Having a default value
overrides the placeholder text.
Refresh On: Refreshes data when another field changes.
Clear Value On Refresh: When Refresh On field is changed, clear this components value.
For more information on each tabs for the selected component, see “General Settings for the Selected
Component” on page 17.
14 May 2020

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/identity_apps_design/data/dal-property-ref.html#dalattributeprops

NOTE: When the Form Builder is Online, a couple of additional fields are displayed in the Data tab. For
more information, see “Offline - Online Toggle” on page 33.

 Permission Request DN - Used to provide permission for a default role and resource approval template.

Figure 12 Permission Request DN

In the Display tab, based on the selected Permission Request type, the label is automatically populated.
For more information on the fields populated in the Display, Data, Validation, API, Conditional, Logic and
Layout tabs, see Display, Data, Validation, API, Conditional, Logic, and Layout.

 Label Element - Allows you to create and design the labels used in the forms.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 15

https://wwwtest.netiq.com/documentation/identity-manager-48/form_builder-481/data/form_builder-481.html#t4cjoqto2pr3

Figure 13 Label Element

For more information on the fields populated in the Display, Data, Validation, API, Conditional, Logic and
Layout tabs, see Display, Data, Validation, API, Conditional, Logic, and Layout.

Layout
These elements are used to change the general layout of the form.

The following elements are displayed when you select Layout.

Figure 14 Layout

 Columns
 Field Set
 Panel
 Table
16 May 2020

https://wwwtest.netiq.com/documentation/identity-manager-48/form_builder-481/data/form_builder-481.html#t4cjoqto2pr3
https://help.form.io/userguide/layout-components/#columns
https://help.form.io/userguide/layout-components/#field-set
https://help.form.io/userguide/layout-components/#panels-1
https://help.form.io/userguide/layout-components/#table-1

 Tabs
 Well

Data
The following elements are displayed when you select Data.

Figure 15 Data

 Hidden
 Container
 Data Grid
 Data Map
 Edit Grid

General Settings for the Selected Component
When you drag and drop a component on the Form Builder interface, the following general settings are
displayed for most of the components.

These settings allow you to change the Title, description of the project, enter required values (can be
predefined as well) and so on, depending on the tabs you select.

The following sections provide examples of the elements displayed in each tab for a selected component.

Component Details

Display

The following elements are listed in the Display tab for the Text Field component. This tab consists of elements
that defines how the form would appear upon rendering.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 17

https://help.form.io/userguide/layout-components/#well-1
https://help.form.io/userguide/form-components/#hidden
https://help.form.io/userguide/data-components/#container
https://help.form.io/userguide/data-components/#datagrid
https://help.form.io/userguide/data-components/#editgrid

Figure 16 Display tab for Text Field component

 Label
 Hide Label
 Label Position
 Widget - It is the display user interface, used to input the value of the field.
 Placeholder
 Description
 Tooltip
 Error Label
 Input Mask
 Allow Multiple Masks
 Prefix
 Suffix
 Custom CSS Class
 Tab Index
 Multiple Values
 Protected
 Hidden
 Hide Input
 Disabled
 Initial Focus
18 May 2020

https://help.form.io/userguide/form-components/#label
https://help.form.io/userguide/form-components/#hide-label
https://help.form.io/userguide/form-components/#label-position
https://help.form.io/userguide/form-components/#placeholder
https://help.form.io/userguide/form-components/#description
https://help.form.io/userguide/form-components/#tooltip
https://help.form.io/userguide/form-components/#error-label
https://help.form.io/userguide/form-components/#input-mask
https://help.form.io/userguide/form-components/#allow-multiple-masks
https://help.form.io/userguide/form-components/#prefix
https://help.form.io/userguide/form-components/#suffix
https://help.form.io/userguide/form-components/#custom-css-class
https://help.form.io/userguide/form-components/#tab-index
https://help.form.io/userguide/form-components/#multiple-values
https://help.form.io/userguide/form-components/#protected
https://help.form.io/userguide/form-components/#hidden
https://help.form.io/userguide/form-components/#hide-input
https://help.form.io/userguide/form-components/#disabled
https://help.form.io/userguide/form-components/#initial-focus

 Table View
 Always Enabled - The field will always be enabled for editing.

Data

The following elements are listed in the Data tab for the Number component. This tab consists of elements that
define the default values and format of the component to be displayed on the form.

Figure 17 Data tab for Number component

 Use Delimiter
 Decimal Places
 Require Decimal
 Default Value
 Redraw On (https://help.form.io/userguide/form-building/component-settings#redraw-on)

NOTE: Refresh On functionality is no longer available in the Data tab of any Form Builder component, except
the Select component. After updating to Designer 4.8.8, make sure to select the Redraw On option if your JSON
form uses the Refresh On option. Redraw On updates the form field when the form or a specific field on the
form changes.

Custom Default Value

The variables listed here can be used to customize and write the JavaScript or JSONLogic.

If you have specified the Data Item Mapping Value in Designer, the Custom Default Value will overwrite the Data
Mapping Value. In other words, the Custom Default Value takes precedence.

Calculated Value

The variables listed here allows you to calculate the values based on the values in other fields of the form. For
more information, see Calculated Values.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 19

https://help.form.io/userguide/form-building/component-settings#redraw-on
https://help.form.io/userguide/form-components/#table-view
https://help.form.io/userguide/form-components/#use-delimeter
https://help.form.io/userguide/form-components/#decimal-places
https://help.form.io/userguide/form-components/#require-decimals
https://help.form.io/userguide/form-components/#default-value
https://help.form.io/userguide/form-components/#calculated-values

Validation

The following elements are listed in the Validation tab for majority of the selected components. This tab
consists of elements that define the required fields that needs to be displayed on the form.

 Required
 Custom Validation

API

The following elements are listed in the API tab for the Tree Element component. This tab consists of elements
that define the property name and configure any custom properties for the selected component.

NOTE: Every component must have a unique Property Name.

Figure 18 API tab for Tree Element component

 Property Name
 Field Tags
 Custom Properties

Conditional

The following figure displays the Conditional tab for the Text Area component. This tab consists of elements
that determine when the fields should be hidden or displayed on the form. For more information, see
Conditional Components.

Figure 19 Conditional tab for Text Area component
20 May 2020

https://help.form.io/userguide/form-components/#required
https://help.form.io/userguide/form-components/#custom-validation
https://help.form.io/userguide/form-components/#property-name
https://help.form.io/userguide/form-components/#field-tags
https://help.form.io/userguide/form-components/#custom-properties
https://help.form.io/userguide/form-components/#conditional-components-1

Figure 20 Conditional tab for Text Area component

Logic

The Logic tab allows you to define and configure multiple logic and action for the selected component. This
helps you to design a form which can perform certain defined actions for the defined logic. The following figure
displays the Logic tab for the DN Query component.

Figure 21 Logic tab for DN Query component

Layout

Applies to Form Builder 4.8.1 and onwards.

The Layout tab allows you to define the HTML attributes and map those attributes with the component’s input
element. You cannot edit the component type from the values you specify in this tab. For example, if you select
a Text Field component, you cannot change the component type to a different value such as a Checkbox.

Figure 22 Layout tab for Data Item Mapping component

Creating and Editing Request or Approval Forms
 “Creating a Form” on page 22
 “Editing a Form” on page 23
 “Migrating Legacy Forms to New Forms” on page 29
NetIQ Identity Manager - Administrator’s Guide to Form Builder 21

Creating a Form
You can create a new form (approval, request, or template) for the Provisioning Request Definition from the
Workflow Forms container located in the User Application driver or directly in the Form Builder.

Figure 23 Creating a Form

1 Navigate to the Workflow Forms in the Outline view of designer and right-click one of the following
options to select the type of form you wish to create and select New:
 Approval Forms
 Request Forms
 Template Forms

2 In the New Workflow Forms window, specify the Form Identifier that uniquely identities the form and click
Finish.
The Form Builder is launched.
Alternatively, click + Form Templates in the Form Builder page, select the type of form you wish to create
(for example: Approval Form or Request Form) and click Create.

NOTE:
 Form Templates has replaced the New Form option in Identity Manager 4.8.1. Starting from this

release, you can use a template to create new forms.
 If you try to design a new form when an existing form is open in the Form Builder, a pop-up message

is displayed. Click OK to overwrite the existing form. To return to the old form, click Cancel.

3 Drag and drop the required components to design the form. For more information, see Form
Components.

NOTE: Few fields are pre-populated based on your selection of the form type. You can edit or delete these
fields as required.
22 May 2020

4 Create the form and save it.
The form is saved in the same location in the Workflow Forms container under the type of the form that
you chose to create. For example, an approval form is saved under Approval Forms container.

After saving the form, deploy the form using Designer. For more information, see About Forms in the NetIQ
Identity Manager - Administrator’s Guide to Designing the Identity Applications.

Editing a Form
You can edit a form through the following ways:

 “Editing a Form Using the Form Builder User Interface” on page 23
 “Editing a Form in the JSON Editor” on page 23
 “Editing a form in JS Editor” on page 24

Editing a Form Using the Form Builder User Interface
Perform the following actions to edit a form component in a form:

1 Click the icon next to the component that you want to edit.
2 Make the necessary edits in the Settings form.

NOTE: You can edit, copy, paste and remove the fields, on each field on the form.

3 Click Save.

Editing a Form in the JSON Editor
All forms rendered within the Form Builder platform uses JSON Schema. When you add new components onto
a form, you are essentially defining a JSON schema in the background. The Form Builder uses this schema to
invoke the REST APIs needed to support the form. This section provides a detailed explanation of the structure
of the JSON schema and the components that can be rendered within a form.

TIP: Do not directly edit the form in the JSON editor unless you are very comfortable using the editor. You must
take a backup of the form before editing it.

The example form described in the “Example of Creating a Forms” on page 30 can be designed using the JSON
editor as well. The JSON version of the designed form is shown in the figure.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 23

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#aboutprdforms
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Figure 24 Sample request form in JSON Editor

You can use the same JSON schema to duplicate the form. You can make edits to the form using the JSON
editor directly.

For more information, see Workspaces, Perspectives, and Views in the Understanding Designer for Identity
Manager guide.

Sample template

A sample example JSON form is available in the JSONsampletemplate.txt file. Copy the JSON form and
paste it in your JSON editor and make edits or additions to view how the changes appear in the form.

Editing a form in JS Editor
Form Builder provides a global JS Editor which enables you to add or modify the JavaScript methods for all the
form fields at one place. From this page, you can add or modify (invoke the API) the required HTTP method
(GET or POST) and apply the value to the required field. You need to select from the listed APIs.

Forms can connect to REST servers which are integrated with OSP and defined as part of ServiceRegistry in
Forms. Identity Manager service is registered by default.

The JS Editor automatically populates the method to set Custom Default Value and Calculated Values for all the
configured fields in the form. You must use this editor to write your own javascript logic for these methods. For
any common javascript methods, you must create ECMA script objects and access the methods.
24 May 2020

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_intro/designer_intro.pdf#projmanageoverview
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_intro/designer_intro.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_intro/designer_intro.pdf#bookinfo

For example, while setting the value for a field, the value variable is used by default. However, if you use the
asynchronous javascript, you must use the instance.setFieldValue(data) value. For all the form fields,
it is instance.setFieldValue(value) except Radio, Select Boxes, and Select fields for which the
instance.setFieldValue function and its parameters are described as follows:

instance.setFieldValue (response,valueProperty,labelProperty,defaultValueToSet),
where:

 response {Array}: is an array of objects or strings to be set.
 valueProperty {String}: is the value for each option to be set. It is expected that each object in

response array has this property.
 labelProperty {String}: displays label for the options. It is expected that each object in response array

has this property.
 defaultValueToSet {String|Number}: when set as string, it selects the corresponding item in the

response array that has same valueProperty as the <string>. When set as number, it sets response
[<number>] as default selected option. This parameter is optional.

The example of the form described in the “Example of Creating a Forms” on page 30 can be edited using the JS
editor as well. The JS version of the designed form is shown in the figure.

On this page, you can include the REST API functions using the REST API icon. For more information, see “REST
API” on page 25. Similarly, see “Identity Manager Macros” on page 26 for more information on using the
Identity Vault functions.

For more information, see Workspaces, Perspectives, and Views in the Understanding Designer for Identity
Manager guide.

REST API

The JS editor provides option to include the Identity Manager Dashboard functions in the form. It lists all the
REST APIs available in the Identity Manager Dashboard.

The JS editor provides option to include GET and POST (REST APIs) functions in the form. Click the icon for
the supported GET and POST functions to be displayed. You can select the required function to apply the
selected value to the required field.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 25

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_intro/designer_intro.pdf#projmanageoverview
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_intro/designer_intro.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_intro/designer_intro.pdf#bookinfo

A snippet of the supported functions is shown in the figure.

Identity Manager Macros

The JS Editor provides an option to include the Identity Vault functions in the form, similar to building the

legacy forms using Designer. Click the icon for the list of supported Identity Vault functions. You can select
the required function to design the form accordingly. Migration from legacy to JSON forms will continue to use
the Identity Vault APIs.

Although new forms understand only REST APIs, Identity Manager Macros are provided that internally call
REST APIs. This approach is similar to building legacy forms in Designer. This eases the form development for
developers who are comfortable using these macros while building the legacy forms.

Example: get(dn, entity-type, attribute)
This corresponds to the following IDVault.get() function that you can use for retrieving data from the
Identity Vault:

IDVault.get(service-id, api-endpoint, dn, entity-type, attribute)
26 May 2020

Where,

service-id: Indicates the service identity, such as IDM.

api-endpoint: Indicates the REST endpoint that is called internally. Form Builder populates this field
automatically.

dn: Specify the distinguished name (DN) of the entity.

entity-type: Specify the entity type, such as user, group, or resource.

attribute: Specify the attributes of the given entity you want to fetch from the Identity Vault.

A snippet of the supported functions is shown in the figure.

Using Macros to set the Form Fields

Let’s understand how to set options or values dynamically for the Radio, Select, and Select Box elements from a
macro or API in the below example.

For Radio element:
NetIQ Identity Manager - Administrator’s Guide to Form Builder 27

function radio2_CalculateValue () {
 IDVault.globalList('IDM','/rest/access/entities/globalList','provisioning-
category','en')
.then((data)=>{
 instance.setFieldValue(data,'key','value','nrf'); //Pass the data that you
want to set in the field as a parameter to this function.
})
.catch((error)=>{ })

}
For Select element:

function select2_CalculateValue () {
 IDVault.globalList('IDM','/rest/access/entities/globalList','provisioning-
category')
 .then((data)=>{
 instance.setFieldValue(data,'key','value',1); //Pass the data that
you want to set in the field as a parameter to this function.
})
.catch((error)=>{ })
}
For Select Box element:

function selectBoxes2_CalculateValue () {
IDVault.globalList('IDM','/rest/access/entities/globalList','provisioning-
category')
.then((data)=>{
console.log(data)
 instance.setFieldValue(data,'key','value',{'nrf':true,'groups':true}); //Pass
the data that you want to set in the field as a parameter to this function.
})
.catch((error)=>{ })
}

NOTE: In Select Boxes, Select, and Radio elements, when you use macros from JS Editor for custom default
value and calculate value, you must add component.defaultValue as the 4th argument for
instance.setFieldValue function for setting the default value from Data item mapping in workflow. For
select element, for example:

function select2_CustomDefaultValue () {
 IDVault.globalList('IDM','/rest/access/entities/globalList','provisioning-
category')
 .then((data)=>{
 instance.setFieldValue(data,'key','value',component.defaultValue); //Pass
the data that you want to set in the field as a parameter to this function.
})
.catch((error)=>{ })
}

28 May 2020

Using Identity Vault Functions to Pre-set the Form Fields

You can pre-load the form fields with data fetched from Identity Vault. The workflow script engine’s
IDVault.get() function helps you to retrieve the attribute values for a given entity from the Identity Vault.
You can also retrieve values for multiple attributes for the same entity and set more than one form field, such
as a user's telephone number and last name. The following sample expression uses the IDVault.get()
function with the entity.instance.root.getComponent('key') method to illustrate this
implementation:

function textArea2_CalculateValue () {
IDVault.get('IDM','/rest/access/entities/list','cn=uaadmin,ou=sa,o=data', 'user',
['TelephoneNumber','LastName'])

.then(function (response){

 instance.setValue(response['TelephoneNumber'][0]);

instance.root.getComponent('lastName').setValue(response['LastName'][0]);
});
The IDVault.get() function retrieves the user's attributes from Identity Vault, namely TelephoneNumber
and LastName. It then sets the text field to TelephoneNumber and the lastName with the LastName retrieved
in the previous call.

Migrating Legacy Forms to New Forms
Currently, there is no tool to migrate the legacy forms to the new forms. The only way to accomplish it is by
manually creating a new form in the Form Builder and then mapping the data items of the existing form to the
new form.

NOTE: When you select the JSON Forms Selection check box, Designer deletes all the legacy forms associated
with PRDs and the data item mapping fields. This data cannot be retrieved once it is lost. To prevent the data
loss, you must back up your workflows before selecting this tab.

1 Take a backup of the legacy Provisioning Request Definition by making a copy of the workflow and/or
exporting the Provisioning Request Definition to a file.

2 Create a new form in the Form Builder. For more information, see Creating a Form.
3 Associate the new form with your existing workflow.

3a In Designer, open the editor for the legacy Provisioning Request Definition to be converted to the
new forms and select JSON Forms Selection check box in the Overview tab.

3b Click OK in the warning dialog box. Save the changes.
3c Navigate to the JSON Forms tab and associate the form that you created in Step 2 to the specified

workflow activity.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 29

Figure 25 Associating a form

3d Locate the Form ID list and select the newly created form from the list.
The new form is associated with the PRD.

4 Perform the Data Item Mapping for the new form.
4a Go to the Workflow tab to display the Workflow page.
4b In the workflow, right click the Start activity icon or the activity icon to which you wish to associate

the form to display the Data Item Mapping view for the selected activity.
4c In the Data Item Mapping view, perform the data item mapping.

The values in the Target Form Field are pre-populated from the new form.
5 Deploy the Provisioning Request Definition to the Identity Vault.

Repeat Steps 1-5 for each form that you want to add to the Provisioning Request Definition.

Rendering the New Forms
The forms created in the Form Builder are rendered through the Form Renderer. The Form Renderer provides a
better look and feel to the forms in the Identity Applications user interface. Identity Applications continues to
render the legacy forms in the Dojo framework. Currently, you cannot render a legacy form in the Form
Renderer.

Example of Creating a Forms
This section provides details about creating a from by way of an example.

Let us take an example of creating a hospital registration form that patients use to request for an appointment
with a doctor.

Create an Approval from using Form Builder as mentioned in “Creating and Editing Request or Approval Forms”
on page 21.

Let us discuss on the widgets required to design the following hospital registration form.
30 May 2020

Select the required widgets to design the form. The following components are used to create the registration
form.

The Table widget in the Layout component is used to create a tabular layout in the form.

Select the Text Field component and in the Display tab, enter the Label as Name. All the other values are as per
default values. Save the changes.

Field Name Component/Widget Used Reference

Name Text Field (Basic) For more information, see Text Field.

Type of patient with options Radio (Basic) For more information, see Radio.

Select Specialty Dynamic Entity (Advanced) For more information, see Dynamic
Entity in “Advanced” on page 7.

Select Hospital Select (Basic) For more information, see Select.

List of Doctors DN Query (Advanced) For more information, see DN Query in
“Advanced” on page 7.

Appointment Data Date/Time (Advanced) For more information, see Date/Time.

Mobile Number Number (Basic) For more information, see Number.

Age and Address Text Field (Basic) For more information, see Text Field.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 31

https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#textfield
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#radio
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#select
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#datetime
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#number
https://www.netiq.com/documentation/identity-manager-48/FormioHelp/userguide/form-components/#textarea

Figure 26 Text Field

Similarly, select the Radio component for the options to appear in a radio button format. Select the Dynamic
Entity component to create a multi select drop-down field. Select the Select component to display a drop down
option for the hospital branches to appear in the form. Select the DN Query component to provide the list of
doctors from the selected department. Select the Date/Time component to selected the appointment date and
time, and select the Number component to display the contact details.

You can move the designed fields across the forms by dragging and dropping. You must save all changes. The

Preview of each field is displayed on the right hand side while designing. Click to view the complete
designed form.

You can create or make edits to an existing form using the JSON or JS editor. Form more information, see
“Editing a Form in the JSON Editor” on page 23 and “Editing a form in JS Editor” on page 24.

Appendix
This section provides details on the mapping table between the legacy form widgets and the new Form builder
widgets.

Mapping Table Between Legacy Widgets and Form Builder Widgets
The following table lists the legacy widgets and the corresponding widgets that are introduced in the New
Form Builder.

Legacy Widgets Form Builder Widgets

Title HTML element

Text Text field

Text area Text area

Static list Select

Global list Select with Global List API
32 May 2020

The Submit, Cancel, Approve and Deny actions can be performed by defining an appropriate logic in the Form
Builder. This can be done by calling an appropriate API for that action. To do so, you must define the API in the
Button Custom Logic field on the Display tab.

Offline - Online Toggle
When the Online option is enabled for a form, the Preview displays the form in the same way that the form will
be rendered in the Identity Applications Dashboard. Note that form association with the PRD does not work in
preview. You need to manually configure the service registry for the form to function in the same way as it
would render in the identity Application Dashboard. When the form is Online, it retrieves all the entity saved in
the Identity Vault and it is populated (as drop-down menu) in the required fields. Hence, you do not need to
manually enter the required entity or entity keys.

After you upgrade Designer from 4.8 to 4.8.1 version and launch Form Builder, the ServiceRegistry.json
is created in the netiq\idm\apps\Designer48\configuration\ directory.

When the form is Offline, the Form Builder is unable to auto populate the entity. The values (entity or entity
keys) needs to be entered manually.

NOTE: The Form Builder preview renders only the form data and does not take care of honoring any script or
styling added through workflow directly. However, these are honored accurately when the form actually
renders in Form Renderer component.

Pick list Dynamic Entity/Select/Multivalued Select

Label Label

checkboxPicklist Select boxes

mvCheckbox Select boxes

True/False check box Check box

Radio buttons Radio

True/False Radio button Radio

True/False drop-down Select

mvEditor Tags/Multivalued Textfield

DN Maker Tree with TextField

DN lookup Dynamic Entity/Select using conditional log

DNquery DN Query or Select with Global Query API

DNDisplay DN Display

HTML HTML element

nrfRequestDN PermissionRequestDn

nrfResourceRequestDN PermissionRequestDn

Date Day

Legacy Widgets Form Builder Widgets
NetIQ Identity Manager - Administrator’s Guide to Form Builder 33

Perform the following actions to configure the service registry in order to make the form online:

1 (Conditional) If you are using Form Builder 4.8, navigate to
netiq\idm\apps\Designer48\plugins\<name of the form
builder><com.mf.linux.gtk.formbuilder_4.0.0.xxxxxxxxxxxx>\lib\commons\ServiceR
egistry.json.

2 (Conditional) If you are using Form Builder 4.8.1 and onwards, navigate to
netiq\idm\apps\Designer48\configuration\ServiceRegistry.json.

3 Open the ServiceRegistry.json in an editor, such as Notepad++. In the FormsBackedUrl field,
enter the IP address or DNS name of the machine where Identity Applications is installed.

NOTE: If DNS name is provided, make sure the DNS name is configured to a valid IP address.

{
 "FormsBackedUrl":"https://<IP address or DNS of the Identity Applications
server>:8600/WFHandler",

}
4 Save the changes.
5 Launch the form and make the form online. That is, enable the Online toggle. The Identity Applications

login page appears. Enter the login credentials. The form designed using Form Builder is now available
online. This helps to auto-populate the entity, parameters, and parameter keys.

When the form is online, few widgets display additional fields. For example, Dynamic Entity, DN Query. For
more information, see the following sections.

(Widget Changes When the Form is Online) Dynamic Entity widget when the form is Online

Dynamic Entity

The functionality of Dynamic Entity when the form is offline is discussed in “Advanced” on page 7 section.

When the form is Online (enabled), few additional fields are displayed as shown in figure.

Figure 27 Dynamic Entity when form is Online
34 May 2020

The Entity Type and the Entity Attribute fields are the new additional fields. As the form is online, the entity
and attributes are retrieved from the Identity Vault. Hence, the Entity Type option appear as a drop-down. On
selecting the Entity Type, the Entity Key is auto-populated and the corresponding attributes can be selected.
You need not enter the Entity key and Display Attributes values manually.

DN Query

The functionality of DN Query when the form is offline is discussed in “Advanced” on page 7 section.

When the form is Online (enabled), few additional fields are displayed as shown in figure.

Figure 28 DN Query when the form is Online

The Query List and the Entity Attribute fields are the new additional fields. As the form is Online, the queries
and attributes are retrieved from the Identity Vault. Hence, the Query Type option appear as a drop down. On
selecting the Query Type, the Query Key is auto populated and the corresponding Entity Attributes can be
selected. You need not enter the Query Key and Entity Attribute values manually.

Associating a New Form to a PRD
The provisioning request definition editor of Designer enables you to create provisioning request definitions
that bind corporate resources or roles to a workflow. The editor includes an Overview tab that defines the basic
information about the provisioning request definition (for example, the name of the provisioning request
definition, the category to which it belongs, and who can access it). Selecting the JSON Forms Selection check
box enables you to associate the forms created using Form Builder.

NOTE: When you select the JSON Forms Selection check box, Designer deletes all the legacy forms associated
with the PRDs and the data item mapping fields. This data cannot be retrieved once it is lost. To prevent
the data loss, you must back up your workflows before selecting this tab.

 When you deselect the JSON Forms Selection check box, all the form associations are removed from the
PRDs. However, the forms are still available under Workflow Forms.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 35

After you create a form in the Form Builder, you need to associate it with the PRD. Perform the following steps
to associate a form to the PRD:

1 Navigate to the JSON Forms tab and click it.
2 Select the newly-created form from the Form ID list for the activity that will use the form.
3 Save the changes.

The new form is associated with the PRD.

Localizing a Form

After creating the form, click the icon to localize the form to the desired language. The purpose of a form
created can vary. Hence, you are allowed to provide the input for each field in the desired language. Specify
the required details in the selected language and save the changes. The form fields is displayed with the
relevant changes.

Troubleshooting
 “NullPointerException Displayed When Launching the Form Builder” on page 36
 “Unable to Create a Form Containing Select Field with Global List Macro” on page 37
 “Edit, Paste below, Copy, and Remove Icons Are Not Displayed In The Form Builder View” on page 37
 “Custom Default Value for Check Box Does Not Work As Expected” on page 37
 “Data Item Mapping Not Working for Title Element” on page 38
 “Copy of a Form Does Not Reflect the New Name In Form Builder” on page 38
 “Fields in JS Editor Disappear When a Component is Removed From the Form Builder” on page 38
 “The Select Field in a JSON Form Does Not Show All Search Results That Match the Keywords” on page 38
 “Multiple Values Check Box for Some Components Does Not Work” on page 39
 “A JSON Form With Multiple Tabs Layout Does Not Open Properly in the Dashboard” on page 39

NullPointerException Displayed When Launching the Form Builder
After upgrading to Designer 4.8.8, you may encounter Java.lang.NullPointerException when the
Designer tries to launch Form Builder. This error is displayed while creating a new JSON form or opening a
custom JSON form under the Workflow Forms container.

Workaround: To resolve the error, restart Designer.
36 May 2020

Unable to Create a Form Containing Select Field with Global List Macro
Create a form using the Select field in Designer. In the Data tab, select 'Data Source Type' as RawJson and
provide the item template as {{ item.value }}. In JS editor, for the select field custom
calculated method, add a global list macro. Deploy the form with a PRD.

Perform the following steps in JS Editor, if the form in Identity Manager Dashboard does not contain the global
list macro for the Select field.

1 Navigate to customDefaultValue (Not calculateValue).
2 Add the following code:

IDVault.globalList('IDM', '/rest/access/entities/globalList', 'provisioning-
 category').then((response) => {
 instance.setFieldValue(response,'key','value');
 });

Edit, Paste below, Copy, and Remove Icons Are Not Displayed In The Form
Builder View
When you try to modify a form element for which the Refresh On and Clear Value on Refresh fields are set, the
Edit, Paste below, Copy, and Remove icons are not displayed.

For example:

1 In Form Builder, drag-and-drop two elements, say Text Field and Number in your form.
2 Navigate to the Data tab for the Text Field component. Set to Refresh On and Clear Value on Refresh when

there is a change in the Number field.
3 Save the changes.
4 In Form Builder view, enter value in the Number field. The Text Field gets refreshed (as expected), but now

when you try to modify the text field element, the icons are not displayed.

Workaround: There are two ways to workaround this issue: Rearrange the order of the elements in the Form
Builder view; or Navigate to Form Json or JS Editor view and then return to Form Builder view.

Custom Default Value for Check Box Does Not Work As Expected
When you try to modify the value of the Checkbox component, the modified value will not be reflected on the
form.

For example:

1 In the Form Builder, drag-and-drop the Checkbox element.
2 Navigate to the Data tab.
3 Click Custom Default Value and set the value to true in the JavaScript field.
4 Observe the changes in the Form Builder view. The changes are not reflected.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 37

Workaround: Perform the following steps:

1 In the Data tab, click Calculated Value and change the value to true in the JavaScript field.
2 Select the Allow the calculated value to be overridden manually check box.
3 Save the form.

Data Item Mapping Not Working for Title Element
While creating a form with Title Element, if you retain any content in the Title Content field, you will not be able
to enter value for ‘title’ form field through Data Item Mapping in Designer.

Workaround: Using Form Builder, modify Title Element component by keeping the Title Content field as blank.

Copy of a Form Does Not Reflect the New Name In Form Builder
When you copy and paste a workflow form in Designer, the name given to the copied form does not change in
the JSON form.

Workaround: You must open the copied form using Form Builder and modify the name using the Edit option.

Fields in JS Editor Disappear When a Component is Removed From the Form
Builder
When you remove one or more components among many other components from the Form Builder view and
switch to the JS Editor, the JS Editor appears blank.

Workaround: Instead of switching to the JS Editor directly, navigate to the Form Json and then to the JS Editor.

The Select Field in a JSON Form Does Not Show All Search Results That Match
the Keywords
The Select element in Form Builder has in-built search functionality. When enabled, the Select drop-down
allows users to search from a static list of options. However, the number of search results displayed is
restricted to four. As a result, not all of the matching results are shown when a user enters a keyword.

Workaround: Perform the following steps:

1. Open the form in Form Builder.
2. Click Edit in the Select component.
3. Click Data and add the following line in the Custom default options to change the number of search

results:

{
 "searchResultLimit": <value>
}
Where, <value> denotes the maximum number of search results that you want to display in the Select
field.
38 May 2020

Multiple Values Check Box for Some Components Does Not Work
Issue: When the Multiple Values check box in a Number component is selected, the form builder stops
responding, and as a result, the data does not get saved. Other form components that offer the multiple input
functionality, such as Currency, Phone Number, and Tags, have the same issue.

Workaround: You can provide multiple input capability by placing the same component inside a Data Grid. The
Data Grid has an Add Another button that duplicates the fields set inside the Data Grid. The following figure
shows a sample data grid, Children with multiple components in a line item grid. Users can click the Add
Another button to enter more than one value in each field.

A JSON Form With Multiple Tabs Layout Does Not Open Properly in the
Dashboard
Issue: While requesting a PRD in Identity Applications Dashboard, if the associated JSON form has multiple
tabs, the application only renders the first tab (Tab 1) correctly. The remaining tabs do not load. An excerpt
from a sample JSON form with three tabs shows that the "components": [] attribute is missing in Tab 2 and
Tab 3.

{
 "components": [
 {
 "label": "Tabs",
 "renderAllTabsContent": false,
 "components": [
 {
 "label": "Tab 1",
 "key": "tab2",
 "components": []
 },
 {
 "label": "Tab 2",
 "key": "tab2"
 },
 {
 "label": "Tab 3",
 "key": "tab3"
 }
],
Workaround: The following procedure shows how to add the missing attribute to the additional tabs:

1. Open the JSON form in Form Builder.
NetIQ Identity Manager - Administrator’s Guide to Form Builder 39

2. Click .
3. Add the "components": [] attribute to both Tab 1 and Tab 2.

{
 "components": [
 {
 "label": "Tabs",
 "renderAllTabsContent": false,
 "components": [
 {
 "label": "Tab 1",
 "key": "tab2",
 "components": []
 },
 {
 "label": "Tab 2",
 "key": "tab2",
 "components": []
 },
 {
 "label": "Tab 3",
 "key": "tab3",
 "components": []
 }
],

4. Save the form.
5. Go to Designer and deploy the form to your Identity Vault.

Contact Information
Our goal is to provide documentation that meets your needs. If you have suggestions for improvements, please
email Documentation-Feedback@netiq.com. We value your input and look forward to hearing from you.

For detailed contact information, see the Support Contact Information website.

For general corporate and product information, see the NetIQ Corporate website.

For interactive conversations with your peers and NetIQ experts, become an active member of our community.
The NetIQ online community provides product information, useful links to helpful resources, blogs, and social
media channels.

Legal Notice
For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions,
U.S. Government rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

Copyright © 2020 NetIQ Corporation. All Rights Reserved.
40 May 2020

http://www.netiq.com/support/process.asp#phone
http://www.netiq.com/
https://www.netiq.com/communities/
https://www.netiq.com/company/legal/
mailto:Documentation-Feedback@netiq.com

	NetIQ Identity Manager - Administrator’s Guide to Form Builder
	About Form Builder
	How does the Form Builder Work?
	Launching Form Builder
	Creating a Form

	Exploring the Form Builder User Interface
	Toolbar
	Form Components
	General Settings for the Selected Component

	Creating and Editing Request or Approval Forms
	Creating a Form
	Editing a Form
	Migrating Legacy Forms to New Forms

	Rendering the New Forms
	Example of Creating a Forms
	Appendix
	Mapping Table Between Legacy Widgets and Form Builder Widgets
	Offline - Online Toggle
	Associating a New Form to a PRD

	Localizing a Form
	Troubleshooting
	NullPointerException Displayed When Launching the Form Builder
	Unable to Create a Form Containing Select Field with Global List Macro
	Edit, Paste below, Copy, and Remove Icons Are Not Displayed In The Form Builder View
	Custom Default Value for Check Box Does Not Work As Expected
	Data Item Mapping Not Working for Title Element
	Copy of a Form Does Not Reflect the New Name In Form Builder
	Fields in JS Editor Disappear When a Component is Removed From the Form Builder
	The Select Field in a JSON Form Does Not Show All Search Results That Match the Keywords
	Multiple Values Check Box for Some Components Does Not Work
	A JSON Form With Multiple Tabs Layout Does Not Open Properly in the Dashboard

	Contact Information
	Legal Notice

