dNetlo.

Contents

Binding to an Object Using
the DRA ADSI Provider in a
PowerShell Script

Checking for Errors in a
PowerShell Script

Creating an Object
Deleting an Object

Determining the Properties
of an Object

Enumerating Objects

Getting Object Properties
with the GetInfoEx Method

Setting Object Properties

Working with Resource
Objects

Writing DRA Triggers and
Custom Policies as
PowerShell Scripts

Issuing Request through
PowerShell Using DRA
COM Obijects

DRA PowerShell Usage
and Examples

August 2018

This paper highlights how to use PowerShell to write DRA
Triggers, DRA Custom Palicies, standalone scripts that use the
DRA ADSI Provider, and scripts that issue requests directly to
DRA servers. Detailed information regarding the use of
PowerShell can be found at the Microsoft Developer Network
web site. This paper does not discuss the REST features
allowing access to DRA servers.

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government
rights, patent policy, and FIPS compliance, see https://www.netig.com/company/legall.

Copyright © 2018 NetlQ Corporation. All Rights Reserved.

Binding to an Object Using the DRA ADSI Provider in a
PowerShell Script

When you run a DRA server on a 64-bit Windows platform, you must use the version of PowerShell
located in the \Windows\SysWOW64\ folder.

To bind to the Users generic container object in the NQTraining domain, use the following PowerShell
statement.

$obj Cont ai ner = [ADSI] " OnePoi nt://neti gwi n2k8r 20/ CN=User s, DC=nqt r ai ni ng, DC=I ab"

NOTE: Specifying net i gwi n2k8r 20 identifies net i gwi n2k8r 20 as the DRA server to which the request
will be directed. If a DRA server is omitted along with the training “/”, the ADSI provider will choose a
DRA server from among the available DRA servers.

Checking for Errors in a PowerShell Script

By using the trap construct, you can implement behavior in DRA Triggers and Custom Policies
corresponding to the “On Error Resume Next” mechanism offered by the VBScript engine. Specifically,
by including the following at the beginning of your PowerShell scripts, terminating and non-terminating
errors can be ignored but logged.

$ErrorActionPreference = "SilentlyContinue"

$Error.dear()

trap { continue }

NOTE: Depending on the status of the PowerShell environment on a particular DRA server, you may
not need to assign a value to $ActionPreference.

Error is a PowerShell object you do not need to declare. It functions to record errors that occur as a
PowerShell Trigger or Custom Policy executes. Error can be accessed in much the same way as an
array. For example, $Error[0] .

NOTE: The trap construct may not be able to recognize all errors. In particular, executing a statement
such as $v = 1/ 0 will result in an unrecoverable error.

Creating an Object

The following fragment shows how a new user object can be created using the DRA ADSI Provider:

netiqwi n2k8r20 below identifies a DRA server. |If a server nane is onitted, the
provider will choose # a DRA server fromanong the servers in the nulti-naster set
supporting the domain

PowerShell Usage and Examples

https://www.netiq.com/company/legal/
https://www.netiq.com/company/legal/

$obj Cont ai ner = [ADSI]" OnePoi nt://netigw n2k8r 20/ cn=User s, DC=nqt r ai ni ng, DC=I ab"
$obj User = $obj Cont ai ner. Create("user", "cn=Jack Jones")

$obj User. Put ("user Princi pal Name", "jjones@entral.cont)

$obj User. Put ("sAMAccount Nane", "jjones")

Additional attributes and their values can also be specified using the Put nethod.

Note that when specifying values for passwords, you nust use the Put Encrypted
met hod.

$password = ' P@sword'
$obj User . Put Encrypt ed(" user Password", "P@swOrd") # currently not functioning
obj User. Set | nfo()

Deleting an Object

The statements below fail, even though the three statements succeed if OnePoint is changed to LDAP,
after removing the DRA server name.

$obj Cont ai ner = [ADSI] "OnePoi nt : // neti qwi n2k8r 20/ cn=User s, DC=nqt r ai ni ng, DC=I ab"

$obj Cont ai ner. Del ete("user"”, "cn=user1x") # currently not functioning-functions w
LDAP provi der

$obj Cont ai ner. Del ete("contact", "cn=cntctl") # currently not functioning-functions
w/ LDAP provi der

Determining the Properties of an Object

The statements below retrieve and display the sAMAccountName and userPrincipalName for a user
account.

$obj Ulx = [ADSI] " OnePoi nt://neti gwi n2k8r 20/ cn=user 1x, CN=User s, DC=nqt r ai ni ng, DC=I ab"
$sam = $obj Ulx. Get (' sAMAccount Nane')
$sam

$up = $obj Ulx. Get (' user Pri nci pal Narre')

Sup

Directory and Resource Administrator - PowerShell Usage and Examples 3

Enumerating Objects

Object enumeration involving ADSI filters seems not to function correctly. Please see the DRA SDK for
examples.

Getting Object Properties with the GetinfoEx Method

Please see the DRA SDK for examples that can be rewritten as PowerShell scripts.

Setting Object Properties

The following is an example of a fragment that modifies the value of the initials attribute of a user
account.

$obj Ulx = [ADSI]" nePoi nt:// neti qwi n2k8r 2/ cn=Bob
Sl ydel |, CN=User s, DC=nqt r ai ni ng, DC=I ab"

$initials = $obj Ulx. Get('initials")
$initials = $initials. ToUpper();

$obj Ulx. Put ("initials', $initials)

$obj Ulx. Set | nf o()

Working with Resource Objects

Please see the DRA SDK for examples that can be rewritten as PowerShell scripts.

Writing DRA Triggers and Custom Policies as PowerShell Scripts

DRA 8.7 supports Triggers and Custom Policies as PowerShell scripts. These scripts execute on DRA
servers using the PowerShell engine installed on those servers. PowerShell Triggers and Custom
Policies succeed or fail depending on a Boolean value that is returned. For example:

return $true # returns control to the DRA server signaling success
return $false # returns control to the DRA server signaling failure

To prevent the execution of malicious scripts, PowerShell enforces an execution policy. By default, the
execution policy is set to Restricted, which means that PowerShell scripts will not run. You can
determine the current execution policy by using the following cmdlet:

Get - Execut i onPol i cy
The execution policies you can use are:
Restricted: Scripts will not run.

RemoteSigned: Scripts created locally will run, but those downloaded from the Internet will not run
unless they are digitally signed by a trusted publisher.

AllSigned: Scripts will only run if they have been signed by a trusted publisher.

Unrestricted: Scripts will run regardless of their origin and whether they are signed.

PowerShell Usage and Examples

NOTE: You can set PowerShell's execution policy by using the following cmdlet:

Set - Executi onPol i cy <policy name>

The examples and fragments described in this paper were executed on a DRA server after the following
PowerShell cmdlet had been executed at a PowerShell command prompt as an administrator of the
DRA server:

Set - Executi onPolicy Unrestricted

When PowerShell DRA Triggers and Custom Policies execute, InVarSet requires no declaration and is
initialized to the contents of the VarSet object.

Varset exposes following methods:

Object, I nVar Set . Get (<stri ng key>): Retrieves a val ue from InVarSet. Null is returned if the key
does not exist in the varset.

Void | nVar Set . Put (string key, val ue):Adds or updates a val ue in inVarSet. If key already exists
in InVarSet, its value will be updated, if not it will be added.

Void I nVar Set . Put (string key, string[] val ue):Adds or updates astring[] inInVarSet. If the
key already, its value will be updated, if not it will be added.

Void I nVar Set . Put (string key, object[] val ue):Adds or updates an obj ect [] in InVarSet. If key
already exists, its value will be updated, if not it will be added.

Void | nVar Set . Put Encrypt ed(string key, object val ue):Adds or updates an encrypted value in
the VarSet. If key already exists, its value will be updated, if not it will be added.

Void | nVar Set . Renove(string key) :::Removes a key and all subkeys from InVarSet.

Void | nVar Set . d ear () : Removes all keys and values from InVarSet. In practice, this method will
rarely be used in a Trigger or Custom Policy.

Void | nVar Set . DunpToFi | e(string fil ename): Writes InVarSet data to a human-readable log file.

The statements below could be collected into a file having a . ps1 extension and installed as a DRA
Pre-Task Trigger for the operation UserCreate. This text is just intended to illustrate some of the
features of PowerShell Triggers and Custom Policies and does not represent any sort of
recommendation.

Error recovery in PowerShell Triggers and Custom Policies can be handl ed using

the PowerShell "try/catch/finally" nechanism In addition, using the next three
l'ines can

of fer behavior simlar to the error recovery nechani smcurrently supporting
VBScript triggers.

$Error ActionPreference = "SilentlyContinue"
$Error. d ear ()
trap { continue }

Creating a File where text can be directed. (Al though you can use this approach to
col | ect debugging # data, conflicts can arise if nmultiple instances of a trigger
execute at the same tine.)

Set - Cont ent -Val ue "DRAPretask" -Path C:.\DRAPretask. txt

Directory and Resource Administrator - PowerShell Usage and Examples 5

6

Creating an event source for a Wndows log. (D recting debugging text to a W ndows
| og, avoids

potential conflicts since the operating systemnanages | og output even if multiple
i nst ances

of a trigger execute at the sane tine.)
New- Event Log - LogNane Application -Source DRATri ggers

Wite-EventLog -LogNane Application -Source DRATriggers -Eventld 1001 - Message "From
Pr et askA"

$zero = 0

$v = 1/ $zero

#$Er r or . Count

#$Error[0]

Add- Content -Val ue $Error.Count -Path C: \DRAPretask.txt

Add- Content -Value $Error[0] -Path C: \DRAPretask.txt

$gsScri pt Nane = "PreTaskA. psl”;

$gsErrorMsgFirstLine = "Automation trigger script: " + $gsScript Nang;
$FirstArg = ""

$initials =""

$lnVarset. Put ("Qut.ErrorMsg. Script", $gsErrorMsgFirstLine + " exiting at the
begi nning!'!1");

return $fal se

#For retrieving the conmandl i ne agrunents

$CmdLi neArgs = $I nVar Set . Get (" OrdLi ne")

Add- Cont ent -Val ue $CndLi neArgs -Path C:\ DRAPr et ask. t xt
#To retrieve the nunber of arguments in the argument string
$nunber = $I nVar Set . Get (" OmdLi ne. numAr gs")

#Addi ng the content into file

Add- Cont ent -Val ue $nunber -Path C:\DRAPretask. txt

$I nVar Set . DunpToFi | e(" C: \ vsdunp. t xt")

return $True

i f ($nunmber -ne 0) {

#To retrieve an individual argument and also if required to retrieve nultiple
argunent s

$FirstArg = $InVar Set. Get (" CndLi ne. ar g0")
$initials = $InVar Set. Get (" CndLi ne. argl")

Add- Content -Value $FirstArg -Path C.\DRAPret ask. txt

PowerShell Usage and Examples

$Message = "From PretaskA: FirstArg: " + $FirstArg

Wite-EventLog -LogNarme Application -Source DRATriggers -Eventld 1001 - Message
$Message

}

$lnVarset. Put ("Qut.ErrorMsg. Script", $gsErrorMsgFirstLine + " before return
falsel");

return $Fal se
if($FirstArg -ne "Arg0ox") {

$l nVarset. Put ("Qut. ErrorMsg. Script", $gsErrorMsgFirstLine + " before ArgOx
check!");

return $FALSE

}
$sOperationNane = $l nVarset. Get ("I n. Operati onNane");
i f($sOperationNane.length -eq 0) {
$sErrorMsgText = " QperationName not retrieved from $lnVarset.";
$lnVarset. Put ("Qut. ErrorMsg. Script", $gsErrorMsgFirstLine + $sErrorMsgText);
return $Fal se;
}

Updating the description property value based on arguments
$lnVarset. put ("I n.Properties.description", $FirstArg)

Add- Content -Value " Here 1" -Path C:\DRAPretask. txt
#Updating the initials property val ue

$InVarset.put("In. Properties.initials", $initials)

Add- Content -Value " Here 2" -Path C: \DRAPretask. txt

$l nVar set . Put (" Qut. War ni ngMsg. Script", $gsErrorMsgFirstLine + " Wrning message
text herel!l!l");

$Message = "From PretaskA: Warning:
text here!!!™

+ $gsErrorMsgFirstLine + " Warning nessage

Wite-EventLog -LogName Application -Source DRATriggers -Eventld 1001 - Message
$Message

return $True
$sNewNanme = "";
if($Invarset.Get("In.Properties.sn"))
{
if($InvVarset.Get("In.Properties.givenNane")) {
$sNewNanme = $InVarset.Get("In.Properties.sn"). Trim() + ", " +
$lnVarset. Get ("In.Properties.givenName"). Trimn()

Directory and Resource Administrator - PowerShell Usage and Examples 7

$Invarset. put ("In.Properties.cn", $sNewNane)

}
el se
{
$sNewNarme = $InVarset. Get ("I n.Properties.sn").Trin();
}
$l nVar set . Put (" Qut. War ni ngMsg. Script", $gsErrorMsgFirstLine + " Warni ng nessage
text!!!1");

Add- Content -Value " Before dunp" -Path C: \DRAPretask.txt
$I nVar Set . DunpToFi | e(" C \ vsdunp. txt")

return $True;

}

el se

{

return $True;

}

Issuing Request through PowerShell Using DRA COM Objects

The example script below instantiates several DRA COM objects installed on DRA servers and DRA
client computers and uses them to retrieve several attributes of a user object.

CGet an instance of a DRA Connector

$sServer = "netigwi n2k8r 20"

$gWebDcom = New Obj ect - Conthj ect "McsWebDcom Connect or. 1"

Get an instance of an EAServe object. $sServer in the next

statenent identifies a conputer running the NetlQ Administration Service
$gEaServer Obj ect = $gWebDcom Cet EaSer ver ($sSer ver)

Create an instance of the VarSet object to be used to contain inputs to a DRA
request

$Var SetIn = New Cbj ect - Conbj ect "Net| QDRAVar Set . Var Set . 1"

Issue the Put nethod on VarSetln. This nethod accepts two paraneters.
The first is a string that specifies the nane for the item called a
key. The second specifies its val ue.

$Var Set I n. put ("Cient. Version.Build", [long]0)

$Var Set I n. put ("C i ent. Version. Magjor", [long]8)

$Var SetIn.put ("Cient.Version.Mnor", [long]70)

$Var Set I n. put ("Cient. Version. Rel ease", [|ong]696)

$Var Set I n. put (" Local el D', [l ong] 1033)

PowerShell Usage and Examples

$Var Set I n. put (" Oper ati onNarme", "User Getlnfo")

$Var Set I n. put (" Properties. $McsFri endl yNanme", "")

$Var Set I n. put (" Properties. $McsFri endl yPath", "")

$Var Set I n. put (" Properties. $McsLocal Account™, "")

$Var Set I n. put (" Properties. Account Di sabl ed", "")

$Var Set I n. put (" Properties. Account ExpirationDate", "")
$Var Set I n. put (" Properties.|sAccount Locked", "")

$Var Set I n. put (" Properties. di spl ayNarre", "")

$Var Set I n. put (" Properties. manager", "")

$Var Set I n. put (" Properties. sAMAccount Nare", "")

$Var Set I n. put (" Properties. userPrinci pal Nane", "")
$Var Set I n. put ("User", "OnePoint://CN=Bob Slydell,CN=Users, DC=nqt r ai ni ng, DC=I ab")
$Var Set | n. put (" Vi si bl eProperties", $true)

#Submit the varset

$vsQut = $gEaServer bj ect . Scri pt Submi t ($Var Set | n)

if ($vsQut.get("Errors.nunkrrors”) -gt 0) {

write-host $vsQut.get("Errors. nunErrors") errors occurred!"

return
}
$vsQut . get (" Properti es. sSAMAccount Namre")
$vsQut . get ("Properties. userPrinci pal Narme")
$vsQut . get (" Properti es. di spl aynane")

$vsQut . get ("Properties. | sAccount Locked")

As with earlier DRA releases, the Creat eScri pt sExt . dl | extension can be copied to the \NetlIQ\DRA
folder and registered by an Administrator account on 64-bit platforms. You can select Varset text lines
and use the extension appearing in the Tools menu to create VBScript text. That text can be
transformed to PowerShell by using the conventions shown in the example above.

Directory and Resource Administrator - PowerShell Usage and Examples

9

	DRA PowerShell Usage and Examples
	Binding to an Object Using the DRA ADSI Provider in a PowerShell Script
	Checking for Errors in a PowerShell Script
	Creating an Object
	Deleting an Object
	Determining the Properties of an Object
	Enumerating Objects
	Getting Object Properties with the GetInfoEx Method
	Setting Object Properties
	Working with Resource Objects
	Writing DRA Triggers and Custom Policies as PowerShell Scripts
	Issuing Request through PowerShell Using DRA COM Objects

