Novell
Developer Kit

www.novell.com

‘ XML INTERFACES FOR C++
March 1, 2006

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to http://www.novell.com/info/exports/ (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 1993-2001 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ (http://www.novell.com/company/legal/patents/) and
one or more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.

AppTester is a registered trademark of Novell, Inc., in the United States.

ASM is a trademark of Novell, Inc.

Beagle is a trademark of Novell, Inc.

BorderManager is a registered trademark of Novell, Inc.

BrainShare is a registered service mark of Novell, Inc., in the United States and other countries.
C3PO is a trademark of Novell, Inc.

Certified Novell Engineer is a service mark of Novell, Inc.

Client32 is a trademark of Novell, Inc.

CNE is a registered service mark of Novell, Inc.

ConsoleOne is a registered trademark of Novell, Inc.

Controlled Access Printer is a trademark of Novell, Inc.

Custom 3rd-Party Object is a trademark of Novell, Inc.

DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

Excelerator is a trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

exteNd Workbench is a trademark of Novell, Inc.

FAN-OUT FAILOVER is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.

Hot Fix is a trademark of Novell, Inc.

Hula is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

Internetwork Packet Exchange is a trademark of Novell, Inc.

IPX is a trademark of Novell, Inc.

IPX/SPX is a trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

Link Support Layer is a trademark of Novell, Inc.

LSL is a trademark of Novell, Inc.

ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.

Mono is a registered trademark of Novell, Inc.

MSL is a trademark of Novell, Inc.

My World is a registered trademark of Novell, Inc., in the United States.

NCP is a trademark of Novell, Inc.

NDPS is a registered trademark of Novell, Inc.

NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.

NE2000 is a trademark of Novell, Inc.

NetMail is a registered trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

NetWare Core Protocol is a trademark of Novell, Inc.

NetWare Loadable Module is a trademark of Novell, Inc.

NetWare Management Portal is a trademark of Novell, Inc.

NetWare Name Service is a trademark of Novell, Inc.

NetWare Peripheral Architecture is a trademark of Novell, Inc.

NetWare Requester is a trademark of Novell, Inc.

NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.

NetWare SQL is a trademark of Novell, Inc.

NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.

NMAS is a trademark of Novell, Inc.

NMS is a trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.

Novell Authorized Service Center is a service mark of Novell, Inc.

Novell Certificate Server is a trademark of Novell, Inc.

Novell Client is a trademark of Novell, Inc.

Novell Cluster Services is a trademark of Novell, Inc.

Novell Directory Services is a registered trademark of Novell, Inc.

Novell Distributed Print Services is a trademark of Novell, Inc.

Novell iFolder is a registered trademark of Novell, Inc.

Novell Labs is a trademark of Novell, Inc.

Novell SecretStore is a registered trademark of Novell, Inc.

Novell Security Attributes is a trademark of Novell, Inc.

Novell Storage Services is a trademark of Novell, Inc.

Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.

Nsure is a registered trademark of Novell, Inc.

Nterprise is a registered trademark of Novell, Inc., in the United States.

Nterprise Branch Office is a trademark of Novell, Inc.

ODI is a trademark of Novell, Inc.

Open Data-Link Interface is a trademark of Novell, Inc.

Packet Burst is a trademark of Novell, Inc.

PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.

QuickFinder is a trademark of Novell, Inc.

Red Box is a trademark of Novell, Inc.

Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.

SFT and SFT III are trademarks of Novell, Inc.

SPX is a trademark of Novell, Inc.

Storage Management Services is a trademark of Novell, Inc.

SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.

Topology Specific Module is a trademark of Novell, Inc.

Transaction Tracking System is a trademark of Novell, Inc.

TSM is a trademark of Novell, Inc.

TTS is a trademark of Novell, Inc.

Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.

VLM is a trademark of Novell, Inc.

Yes Certified is a trademark of Novell, Inc.

ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

Contents

About This Guide

1 XmlIDocument Interface

1.1
1.2
1.3
1.4
1.5

C++ Utility FUNCHIONS
Java Utility Classesot
getDOCUMENt
getDocumentBytes
getDocumentinputSource e
getDoCUMENt S AX . .
GetXMLWVII T . . . e
releaseXmIWriter
WriteDOCUMENt.

2 Document Object Model (DOM) Interfaces

2.1

22

NOGE . ..
appendChild.
cloneNode
AeS IOy . . oo
getAttributes.
getChildNOdes
getFirstChild.
getlastChild.
getlastError.
getNextSIbling
getNodeName
GetNOdE T YPE . . . oo
getNodeValue e
getOwnerDocumeNt.
getParentNoOde.
getPreviousSIbliNgo
hasChildNOdES
INSertBefOre
removeChild.
replaceChild.
setNodeValue
DocumeNt . . .
createAttribute
createCDATASECHON.
createComMMENt o
createDocumentFragment. e
createElement
createEntityReference
createProcessinglnstruction
createTextNOde e
enableEXCeptions e
GetDOC Y. . . oo
getDocumentElement

13

15

15
15
16
16
17
18
19
20
21
22
23
24

8

2.3

24

2.5

2.6

27

2.8

2.9

2.10

2.1

2.12

2.13

2.14

getElementsByTagName 60

getimplementation 61
Element . .. 61
getAttribUte . . . 62
getAttributeNoOde. 63
getElementsByTagName e 64
getTagName. 65
NOrMaAliZe e 66
removeAttribute 67
removeAttributeNode 68
SetAttribULE . . . 69
setAttributeNode. 70
AT . 71
getNaME . . o 72
getSpecified 73
getValueo 74
SetValue . ..o 75
CharacterData e 75
appendData 76
deleteData 77
getData. 78
getlength . .o 79
insertData 80
replaceData 81
setData 82
substringData 83
T Xt o 83
SPI T Xt .« . e 85
ProcessingInstruction 85
getData. e 86
getTarget . .. 87
setData. 88
DOCUMENE TP . . e 88
getENtities. 89
getName . . .o 90
getNotations 91
DOMImplementation. e 91
hasFeature 92
ENtity. .o 92
getNotationName 94
getPuUbliCld . .. 95
getSystemId . . . 96
NOtation e 96
getPublicld 97
getSystemld . . . 98
NamedNOdeMap e 98
getlength . ..o 99
getNameditem 100
M . 101
removedNameditem 102
setNamedltem e 103
NodeList 103
AEStrOY . . 104
getlength . .o 105
M. 106
DOMEXCEPtON e 106
eSOy . . oo 107

XML Interfaces for C++

GetCOde . . o 108

getMessage 109
3 Simple API for XML (SAX) Interfaces 111
3.1 AttributeList 111
getlength. . .. 113
getNaME . . 114
GOETY P o 115
GOITY P oo 116
getValue. 117
getValue. . . . 118
3.2 DocumentHandler e 118
Characters 120
COMMEBNE . . Lottt e e e e e e e 121
enableEXCeptioNS e 122
endDoCUMENt 123
endElement 124
ignorableWhitespace 125
processingInstruction. e 126
setDocumentLocator e 127
StartDOCUMENt 128
startElement. 129
3.3 DTDHaNdIEr. 129
enableEXCePioNS 131
notationDecCl. 132
unparsedEntityDecl e 133
3.4 EntityResolver 134
resolVeENtity 135
3.5 ErrorHandler 135
1= o 137
fatalErmOr . . 138
1122 L0110 T 139
3.6 INPUISOUICE 139
getByteStream 140
getCharacterStream 141
getENCOdiNg. . ..o o e 142
getPublicld e 143
getSystemld. 144
readByteChunK 145
SetByteStream 146
setCharacterStream. e 147
SEtENCOING oo 148
setPubliCld 149
SetSystemId. 150
R A 1o o | (o 150
eSOy . . .o 152
getColumnNUMber. 153
getlineNumber 154
getPublicld 155
getSystemld. 156
3.8 Parser .. 156
enableEXceptions 157
= =T 158
setDocumentHandler. 159
setDTDHaNdIer 160

setEntityResolver. 161

setErrorHandler 162

Setlocale ... 163

3.9 SAXEXCEPHON. . ..o e 163
AESHIOY . . o e 164
GEtMESSagE . . . 165

3.10 SAXParseEXCeption e 165
getloCator. e 166
SEILOCAtOr. . . . 167

4 Serialized XML Interface 169
getDisableTextEscapingo 170
getDoctypePuUbIiC e 171
getDOCtype Sy S emM . . . 172
GEtENCOdING . ..o 173
getENdian e 174
getindent e e 175
getStandalone 176
getWriteDeclaration. 177
setDisableTextEsScaping 178
setDoctypePubliC. 179
SetDOCtypPeSYStEemM . . . e 180
SEtENCOAING. . . . o 181
SetENdian 182
SetiNdent 183
setStandalone e 184
setWriteDeclaration 185
WEIE . o et 186

5 UTF Converter Interface 187
UTFCoNnverter 8lo16. e e 188
UTFConverter 16108, e e e 189
UTFCoONVerer _free e e e e 190

6 Base64 Encoding Interface 191
Baseb64Codec _deCode i e e 192
Base64Codec _decodeFree. e 193
BaseB4Codec eNCOTEo e 194
Base64Codec _encodeFree. e 195

7 Driver Filter Interface 197
getClassFilter e 198
PasSSALtribULE 199
PASSCIaSS . . . i 200

8 Factory Interface 201
8.1 DOM . . 201
8.2 SAX L 201
8.3 Serialized 201

10 XML Interfaces for C++

ByteArrayOutputStream_destroy. e
ByteArrayOutputStream_getBytes() e
ByteArrayOutputStream_getDataSize().
ByteArrayOutputStream _New e
Document_destroylnstance.
Document_NeW e
DriverFilter_destroy e
DriverFilter new. e
FileOutputStream_destroy.
FileOutputStream_newFromFILE i
FileOutputStream_newFromName
InputSource_destroy
INPUESOUNCE _NEW. . . .
Parser_destroy e
Parser NEW . .. e
SAXEXCEPHON NEWttt
SAXParseEXCeptioN_NEW i
TrACE NMBW . . o oot
Trace _destroy
XmIDocument_destroy e
XmIDocument_newFromBytes
XmIDocument_newFromDOM. e
XmiDocument_newFromSAX e

9 OutputStream.h

10 Trace Interface

1

A

getTracelevel.
PUSNINAENt e
POPINAENt . . . o e
resetindent e

NdsDtd Interface

NASDEd_getStrings oo
NdsDtd_newlnputDocument. e
NdsDtd_newOutputDoCUMENt e
NdsDtd_addStatus

Revision History

227

228
229
230
231

233

234
235
236
237
238
239
240
241
242
243
244
245

247

248
251
252
253

255

1"

12 XML Interfaces for C++

About This Guide

This guide describes the interfaces that are included in the DirXML developer's kit for manipulating
XML documents in C++ (using SAX, DOM, and serialized methods). It contains functions and
methods for performing the following manipulations on the documents:

» Converting data between UTF-8 and UTF-16 encoding

* Filtering data

* Encoding with Base64

* Creating new instances of the XML objects

» Writing to output streams

* Writing messages to DSTrace and a DirXML log file
This guide contains the following sections:

* “XmlDocument Interface” on page 15

* “Document Object Model (DOM) Interfaces” on page 25
+ “Simple API for XML (SAX) Interfaces” on page 111
+ “Serialized XML Interface” on page 169

» “UTF Converter Interface” on page 187

» “Base64 Encoding Interface” on page 191

* “Driver Filter Interface” on page 197

» “Factory Interface” on page 201

* “OutputStream.h” on page 227

* “Trace Interface” on page 233

* “NdsDtd Interface” on page 247

» “Revision History” on page 255

Feedback

We want to hear your comments and suggestions about this manual. Please use the User Comments
feature at the bottom of each page of the online documentation.

Documentation Updates

For the most recent version of Novell Identity Manager (DirXML) Driver Kit, visit the Novell
Identity manager (DirXML) Driver Kit NDK page (http://developer.novell.com/ndk/dirxml.htm).

Additional Information

For the related developer support postings for DirXML, see the Developer Support Forums (http://
developer.novell.com/ndk/devforums.htm).

13

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™_etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

14 XML Interfaces for C++

XmIDocument Interface

The XmIDocument interface provides access to the XML document through three views: a DOM
tree view, a serialized stream view, and a SAX event view. The DirXML engine uses this interface to
pass XML documents to and retrieve documents from the driver. Your driver should use this
interface to pass XML documents to and retrieve documents from the DirXML engine.

This interface is different from the other interfaces in the Nativelnterface.h file:

* You do not need to implement the methods in the XmlIDocument interface. An implementation
is provided.

* You do not need to use all of them. You need to select the view you are going to use to
manipulate the XML documents, and use only those methods.

The following sections describe what is available for each view in the DirXML developer kit:

» Section 1.1, “DOM,” on page 15

* Section 1.2, “SAX.,” on page 15

» Section 1.3, “Serialized,” on page 16

» Section 1.4, “C++ Utility Functions,” on page 16
» Section 1.5, “Java Ultility Classes,” on page 17

1.1 DOM

For the DOM (Document Object Model) view, the XmlDocument interface has the following
method:

» getDocument (page 18)

For C++, after retrieving the document, there is no standard interface for manipulating documents in
DOM. The dom.h file mirrors the Java interface and includes documentation about these methods.
For more information, see Chapter 2, “Document Object Model (DOM) Interfaces,” on

page 25XML Interfaces for C++.

For Java, see the com.novell.xml.dom package (../../dirxmlbk/api/com/novell/xml/dom/package-
summary.html).

1.2 SAX

For the SAX (Simple API for XML) event view, the XmlDocument interface has the following
methods:

+ getDocumentSAX (page 21)
» getDocumentInputSource (page 20)

For C++, after retrieving the document, there is no standard interface for manipulating documents in
SAX. The sax.h file mirrors the Java interface and includes documentation about these methods. For
more information, see Chapter 3, “Simple API for XML (SAX) Interfaces,” on page 111.

XmlIDocument Interface

15

For Java, see the com.novell.xml.sax package (../../dirxmlbk/api/com/novell/xml/sax/package-
summary.html).

1.3 Serialized

For the serialized stream view, the XmlIDocument interface has the following methods:

» getDocumentBytes (page 19)
» getXMLWriter (page 22)
* releaseXmlWriter (page 23)

» writeDocument (page 24)
The serialization is written to an OutputStream interface.

* In C++, a FileOutputStream implementation and a ByteArrayOutputStream implementation are
available. The serialization can be written in various character encodings: UTF-8, UTF-16, US-
ASCII, and ISO-8859-1.

* In Java, the serialization can be written in various character encodings such as UTF-8, UTF-16,
US-ASCII, and ISO-8859-1 through 9, 14 and 15. Any other encoding supported in the Java
environment is available, but unencodable characters will not be correctly escaped in the
serialized XML.

For C++, see Chapter 4, “Serialized XML Interface,” on page 169.

For Java, see com.novell.nds.dirxml.driver. XmlDocument (../../dirxmlbk/api/com/novell/nds/
dirxml/driver/XmlDocument.html).

1.4 C++ Utility Functions

For C++, the DirXML developer kit also provides access to the following.

Header File Description

OutputStream.h Defines an interface modeled on java.io.OutputStream for writing to a byte
sink.

UTFConverter.h Converts between UTF-8 and UTF-16 encoding.

XMLWriter.h Creates an XMLWriter.

Base64Code.h Defines an interface for encoding binary data. Attributes which contain binary

data (octet syntax type) must be encoded in an XML document.
DriverFilter.h Defines an interface for using the driver filter to filter classes and attributes.

InterfaceFactory.h Defines an interface for constructing XML document objects in all views:
DOM, SAX, and serialized.

NdsDtd.h Contains helper functions for creating input and output documents.

Trace.h Enables a DirXML driver to write debug messages to the DSTrace console
and to the DirXML log file.

For more information, see XML Interfaces for C++.

16 XML Interfaces for C++

1.5 Java Utility Classes

The DirXML developer kit also provides access to the following Java utility classes.

Class Description

ClassFilter Allows use of the publisher or subscriber filter passed to the init method.
DelimitedText Provides methods for representing a delimited text file as XML.

DriverFilter Allows use of the publisher or subscriber filter passed to the init method.
ThreadBridge Provides a method of calling methods on a different thread.

Trace Enables a DirXML driver to write debug messages to the DSTrace console

and to the DirXML log file.

XdsQueryProcessor Provides a query processor to use within XSLT style sheets which are rules
or by functions called from an XSLTstyle sheet which are used as rules.

For more information, see the com.novell.nds.dirxml.driver package (../../dirxmlbk/api/com/novell/
nds/dirxml/driver/package-summary.html).

XmIDocument Interface 17

getDocument

Returns the XML document as a DOM tree.

NDS Version: 8.5

Syntax

C++

#include "NativeInterface.h"

Document * METHOD CALL getDocument (
void) ;

Java

public Document getDocument ()

Remarks

The returned document belongs to the XmlDocument object. You should not try to delete it.

18 XML Interfaces for C++

getDocumentBytes

Returns the XML document as a serialized byte array.

NDS Version: 8.5

Syntax

C++

#include "NativeInterface.h"

const unsigned char * METHOD CALL getDocumentBytes (

const unicode *encoding,

int endian,

int *length) ;
Java

public byte[] getDocumentBytes (
java.lang.String encoding)

Parameters

encoding
Points a standard encoding string such as "ASCII", "US-ASCII", "UTF-8", or "UTF-16".

endian

Specifies the byte-order: 0=little-endian, 1=big endian, if necessary.

length

Points to a variable which receives the length of the array, specified in bytes.

Remarks

This method returns zero if there is no data or the desired encoding is not supported. "US-ASCII",
UTF-8", and "UTF-16" are always supported.

XmlIDocument Interface

19

getDocumentinputSource

Returns a SAX input source object to use with the parser returned from the getDocmentSAX
method.

NDS Version: 8.5

Syntax

C++

#include "NativeInterface.h"

InputSource * METHOD CALL getDocumentInputSource (
void) ;

Java

public InputSource getDocumentInputSource ()

Remarks

The returned InputSource must only be used with the parser returned from the getDocumentSAX
method.

The InputSource belongs to the XmlIDocument object. You should not try to delete it.

20 XML Interfaces for C++

getDocumentSAX

Returns a SAX parser interface through which the caller can get a series of events describing the
document.

NDS Version: 8.5

Syntax
C++
#include "NativeInterface.h"

Parser * METHOD CALL getDocumentSAX (
void) ;

Java

public Parser getDocumentSAX ()

Remarks

The caller must also call the getDocumentInputSource method to get the InputSource to use with the
parser's parse method.

XmlIDocument Interface 21

getXMLWriter

Returns an XmlWriter interface that can be used to serialize an XML document.

NDS Version: 8.5

Syntax

C++

#include "NativeInterface.h"

XmlWriter * METHOD CALL getXmlWriter (
OutputStream *outputStream) ;

Java

public XmlWriter getXmlWriter (
java.io.OutputStream outputStream,

java.lang.String encoding)
throws java.io.UnsupportedEncodingException
Parameters
outputStream

Points to the stream to which to write. This parameter cannot be zero (0).

encoding

Specifies the character encoding to use in writing to the outputStream such as "ASCII", "US-
ASCII", "UTE-8", or "UTF-16".
Remarks

The XmlIWriter interface has methods for closely controlling how the XML is output. For example,
if the document contains only text, the XML output escaping can be disabled.

After you set the various attributes, calling the XmlWriter's write method causes the serialization to
occur.

22 XML Interfaces for C++

releaseXmliWriter

Notifies the XmlDocument object that it can free the XmlIWriter object because the XmlWriter
object returned from getXMLWriter.

NDS Version: 8.5

Syntax
C++
#include "NativeInterface.h"

void METHOD CALL releaseXmlWriter (
void) ;

Remarks

This method must be called before the OutputStream that is passed to the getXmlWriter method is
released. This method is not needed in Java.

XmIDocument Interface 23

writeDocument

Serializes the document to the specified output stream using the default settings.

NDS Version: 8.5

Syntax

C++

#include "NativeInterface.h"

int METHOD CALL writeDocument (

OutputStream *outputStream,
const unicode *encoding,
int endian) ;

Java

public void writeDocument (
java.io.OutputStream document,
java.lang.String encoding)

throws java.ilo.IOException,
java.io.UnsupportedEncodingException

Parameters

outputStream

Specifies the stream to which to write. This parameter cannot be zero (0).

encoding

Specifies the character encoding to use. If encoding is set to zero (0), the default encoding,
UTEF-8, is used.

endian

Specifies the byte-order: 0=little-endian, 1=big endian.

Remarks

A non-zero return value indicates success.

This is an overloaded method in Java. The writeDocument method can also write the contents to an
XML writer.

24 XML Interfaces for C++

Document Object Model (DOM)
Interfaces

The following C++ interfaces and methods are patterned after the Java implementation of the W3C
DOM (Document Object Model) Level 1. For complete documentation of this interface, see the web
site of the W3C Organization (http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html).

» Section 2.1, “Node,” on page 27

» Section 2.2, “Document,” on page 48

* Section 2.3, “Element,” on page 61

» Section 2.4, “Attr,” on page 71

» Section 2.5, “CharacterData,” on page 75

+ Section 2.6, “Text,” on page 83

» Section 2.7, “Processinglnstruction,” on page 85

» Section 2.8, “DocumentType,” on page 88

+ Section 2.9, “DOMImplementation,” on page 91

» Section 2.10, “Entity,” on page 92

» Section 2.11, “Notation,” on page 96

+ Section 2.12, “NamedNodeMap,” on page 98

* Section 2.13, “NodeList,” on page 103

+ Section 2.14, “DOMException,” on page 106
Because this interface supports C as well as C++, both return values and exceptions are supported.

To enable exceptions for C++, you must call the enableExceptions method in the Document
interface with a non-zero value.

All methods that are defined in the Java interfaces with a void return are defined in this interface to
return a pointer to a DOMException interface.

* If the return pointer is null, there was no error.

+ If the return pointer is not null, the DOMException interface can be queried for the error.

For all other methods, if the return pointer is null, there was an error. Call the getLastError method
of the Document interface to receive a DOMException interface that you can query for the error.

The DOM methods are grouped by the type of node the method interacts with. The Node interface
has methods for general manipulation of nodes. Some of the methods return structures that can be
manipulated with the following interfaces.

Method Returned Structure Interface

getChildNodes NodelList Section 2.13, “NodelList,” on page 103

Document Object Model (DOM) Interfaces

25

Method Returned Structure Interface

appendChild DOMEXxception Section 2.14, “DOMException,” on page 106
getLastError

insertBefore

removeChild

replaceChild

setNodeValue

getAttributes NamedNodeMap Section 2.12, “NamedNodeMap,” on page 98

Some node types have specialized interfaces. The table below lists these nodes and their interfaces:

Node Type Interface

Attribute Section 2.4, “Attr,” on page 71

Document Section 2.2, “Document,” on page 48

Document Type Section 2.8, “DocumentType,” on page 88
Element Section 2.3, “Element,” on page 61

Entity Section 2.10, “Entity,” on page 92

Notation Section 2.11, “Notation,” on page 96

Processing Instruction Section 2.7, “Processinglnstruction,” on page 85
Text Section 2.6, “Text,” on page 83

Some node types do not have a specialized interface. The following node types must be manipulated
with the Node interface or the inherited interface from the parent node interface.

CDATASection Interface. The CDATASection interface inherits from the Text interface. CDATA
sections are used to escape blocks of text containing characters that would otherwise be regarded as
markup. The only delimiter that is recognized in a CDATA section is the “]]>” string that ends the
CDATA section. CDATA sections can not be nested. The primary purpose is for including material
such as XML fragments, without needing to escape all the delimiters.

The DOMString attribute of the Text node holds the text that is contained by the CDATA section.
The text may contain characters that need to be escaped outside of CDATA sections and that,
depending on the character encoding (“charset”) chosen for serialization, it may be impossible to
write out some characters as part of a CDATA section.

The CDATASection interface inherits the CharacterData interface through the Text interface.
Adjacent CDATASection nodes are not merged by use of the Element.normalize() method.

Comment Interface. The Comment interface inherits from the CharacterData interface and
represents the contents of a comment. In other words, a comment node represents all the characters
between the starting *<!-- and ending ’-->’. This is the definition of a comment in XML, and, in
practice, HTML, although some HTML tools may implement the full SGML comment structure.

EntityReference Interface. The EntityReference interface inherits from the Node interface. Entity
reference objects may be inserted into the structure model when an entity reference is in the source
document, or when the user wishes to insert an entity reference. Character references and references

26 XML Interfaces for C++

to predefined entities are considered to be expanded by the HTML or XML processor so that
characters are represented by their Unicode equivalent rather than by an entity reference. Moreover,
the XML processor may completely expand references to entities while building the structure
model, instead of providing EntityReference objects. If it does provide such objects, then for a given
EntityReference node, it may be that there is no Entity node representing the referenced entity; but if
such an Entity exists, then the child list of the EntityReference node is the same as that of the Entity
node. As with the Entity node, all descendants of the EntityReference are read-only.

The resolution of the children of the EntityReference (the replacement value of the referenced
Entity) may be lazily evaluated; actions by the user (such as calling the childNodes method on the
EntityReference node) are assumed to trigger the evaluation.

Document Fragment. The DocumentFragment interface inherits from the Node interface and is a
“lightweight” or “minimal” Document object and allows you to extract a portion of a document’s
tree or to create a new fragment of a document.

Imagine implementing a user command like cut or rearranging a document by moving fragments
around. It is desirable to have an object which can hold such fragments, and it is quite natural to use
a Node for this purpose. While it is true that a Document object could fulfil this role, a Document
object can potentially be a heavyweight object, depending on the underlying implementation. What
is really needed for this is a very lightweight object. DocumentFragment is such an object and is
created with the createDocumentFragment method of the Document interface.

Various operations—such as inserting nodes as children of another Node—may take
DocumentFragment objects as arguments; this results in all the child nodes of the
DocumentFragment being moved to the child list of this node.

The children of a DocumentFragment node are zero or more nodes, representing the tops of any sub-
trees defining the structure of the document. DocumentFragment nodes do not need to be well-
formed XML documents (although they do need to follow the rules imposed upon well-formed
XML parsed entities, which can have multiple top nodes). For example, a DocumentFragment might
have only one child and that child node could be a Text node. Such a structure model represents
neither an HTML document nor a well-formed XML document.

When a DocumentFragment is inserted into a Document (or indeed any other Node that may take
children), the children of the DocumentFragment and not the DocumentFragment itself are inserted
into the Node. This makes the DocumentFragment very useful when the user wishes to create nodes
that are siblings; the DocumentFragment acts as the parent of these nodes so that the user can use the
standard methods from the Node interface, such as the insertBefore method and the appendChild
method.

2.1 Node

The Node interface is the primary data type for the entire Document Object Model.It represents a
single node in the document tree. While all objects implementing the Node interface expose
methods for dealing with children, not all objects implementing the Node interface may have
children. For example, Text nodes may not have children, and adding children to such nodes results
in a DOMException being raised.

The attributes (nodeName, nodeValue, and attributes) are included as a mechanism to get at node
information without casting down to the specific derived interface. In cases where there is no
obvious mapping of these attributes for a specific nodeType (for example, nodeValue for an Element

Document Object Model (DOM) Interfaces

27

or attributes for a Comment), these attributes return NULL. The specialized interfaces may contain
additional and more convenient mechanisms to get and set the relevant information.

NOTE: This C++ binding adds the following methods to the DOM Level 1 specified methods:

void enableExceptions (int enable);
DOMException * getLastError ();
void destroy () ;

28 XML Interfaces for C++

appendChild

Adds the newChild node to the end of the list of children of this node.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Node, appendChild, Node *)

METHOD PARMI (Node * newChild)
END METHOD

C++

Node * METHOD CALL appendChild (
Node *newChild) ;

Parameters

newChild
(IN) Points to the new child node to add.

Return Values

If unsuccessful, registers or throws a DOMException.

Returns NO_MODIFICATION ALLOWED ERR if Node is read-only.

Returns WRONG_DOCUMENT _ERR if this Node is of a type that does not allow children of the

newChild type, or if newChild is one of this Node’s ancestors.

Returns HIERARCHY REQUEST ERR if newChild is of a type that is not allowed as a child of

this Node.

Remarks

If the newChild node is already in the tree, it is first removed.

Document Object Model (DOM) Interfaces

29

cloneNode

Returns a duplicate of this node.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Node, cloneNode, Node ¥*)

METHOD PARMI (int deep)
END METHOD

C++

Node * METHOD CALL cloneNode (

int deep) ;
Parameters
deep

(IN) Specifies whether only the node or all subordinate nodes are cloned. If non-zero, specifies
to recursively clone the subtree under the node.

Remarks

This method serves as a generic copy constructor for nodes. The duplicate node has no parent. For
example, the getParentNode method returns NULL.

Cloning an Element copies all attributes and their values, including those generated by an XML
processor to represent defaulted attributes. This method does not copy any text it contains unless it is
a deep clone, since the text is contained in a child Text node. Cloning any other type of node simply
returns a copy of this node.

30 XML Interfaces for C++

destroy

Deletes this node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, destroy, void)
END METHOD

C++

void METHOD CALL destroy ();

Remarks

If this node is currently in the tree, then this method is equivalent to calling the removeChild method
on the node’s parent and then the destroy method on this node. If this node is a Document object, the
entire tree is destroyed.

This method is a C++ extension to DOM Level 1.

Document Object Model (DOM) Interfaces 31

getAttributes

Returns a NamedNodeMap with a list of the attributes of the node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, getAttributes, NamedNodeMap *)
END METHOD

C++

NamedNodeMap * METHOD CALL getAttributes ();

Return Values

Returns a NamedNodeMap if the node is an element; otherwise returns NULL.

Remarks

The returned NamedNodeMap belongs to the node. No attempt must be made to delete it.

Only elements have attributes. For example, if the node is a document, a text or a CDATA node, this
method returns NULL.

>

For the methods available to manipulate the NamedNodeMap, see Section 2.12, “NamedNodeMap,’
on page 98.

32 XML Interfaces for C++

getChildNodes

Returns a NodeList with the children of the node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, getChildNodes, NodeList *)
END METHOD

C++

NodeList * METHOD CALL getChildNodes ()

Return Values

Returns a NodeList. If the node has no children, it returns an empty NodeList.

Remarks

The returned NodeList must be deleted when it is no longer needed. This must be done by calling
the NodeList::destroy method.

If this Node is deleted before the NodeList is destroyed, the NodeList becomes invalid, and results
are unpredictable.

For the methods available to manipulate the NodeList, see Section 2.13, “NodeList,” on page 103.

Document Object Model (DOM) Interfaces

33

getFirstChild

Returns the first child of the node.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Node, getFirstChild, Node *)
END METHOD

C++

Node * METHOD CALL getFirstChild ();

Return Values

Returns the first child of the node or NULL if the node has no children.

34 XML Interfaces for C++

getLastChild

Returns the last child of this node.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Node, getLastChild, Node *)
END METHOD

C++

Node * METHOD CALL getLastChild ();

Return Values

Returns the last child of the node or NULL if the node has no children.

Document Object Model (DOM) Interfaces

35

getLastError

Returns the DOMException generated by the last operation on this node. If no exception was
generated, returns NULL.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Node, getLastError, DOMException *)
END METHOD

C++

DOMException * METHOD CALL getLastError ();

Remarks

The DOMException returned by this method belongs to the Node. No attempt should be made to
delete it.

This method is a C++ extension to DOM Level 1.

36 XML Interfaces for C++

getNextSibling

Returns the node immediately following this node.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Node, getNextSibling, Node ¥*)
END METHOD

C++

Node * METHOD CALL getNextSibling ();

Return Values

Returns the node following this node or NULL if no following node exists.

Document Object Model (DOM) Interfaces

37

getNodeName

Returns the name of this node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, getNodeName, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getNodeName ();

Return Values

Returns the Unicode name of the node or 0 (zero) if the node does not have a name.

Remarks

Not all node types have a name.

38 XML Interfaces for C++

getNodeType

Returns the type of this node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, getNodeType, short)
END METHOD
C++

short METHOD CALL getNodeType ()

Return Values

Returns a value from 1 through 12 that specifies the type of node.

Remarks

NodeType defines the types of nodes.

enum NodeType

{

ELEMENT NODE= 1,

ATTRIBUTE NODE= 2,

TEXT NODE= 3,

CDATA SECTION NODE= 4,
ENTITY REFERENCE NODE= 5,
ENTITY NODE= 6,

PROCESSING INSTRUCTION NODE= 7,
COMMENT NODE= 8,

DOCUMENT NODE= 9,
DOCUMENT TYPE NODE= 10,
DOCUMENT FRAGMENT NODE= 11,
NOTATION NODE= 12

}i

Document Object Model (DOM) Interfaces

39

getNodeValue

Returns the value of this node

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, getNodeValue, const unicode ¥*)
END METHOD

C++

const unicode * METHOD CALL getNodeValue ();

Return Values

Returns the Unicode value of the node or 0 (zero) if the node has no value.

Remarks

Not all node types have values.

40 XML Interfaces for C++

getOwnerDocument

Returns the Document object associated with the node.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Node, getOwnerDocument, Document *)
END METHOD

C++

Document * METHOD CALL getOwnerDocument ();

Return Values

Returns the Document object to which the node belongs or NULL if the node is the Document

object.

Remarks

The Document object is used to create new nodes.

Document Object Model (DOM) Interfaces

4

getParentNode

Returns the parent of the node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, getParentNode, Node *)
END METHOD

C++

Node * METHOD CALL getParentNode ();

Return Values

Returns the parent node, or NULL if the node does not have a parent.

Remarks

All nodes, except Document, DocumentFragment, and Attr, may have a parent. However, if a node
has been created but not yet added to the tree, this method returns NULL for the parent.

42 XML Interfaces for C++

getPreviousSibling

Returns the node immediately preceding this node.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Node, getPreviousSibling, Node *)
END METHOD

C++

Node * METHOD CALL getPreviousSibling ();

Return Values

Returns the node preceding this node or NULL if no previous node exists.

Document Object Model (DOM) Interfaces

43

hasChildNodes

Returns non-zero if this node has children.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, hasChildNodes, int)
END METHOD

C++

int METHOD CALL hasChildNodes () ;

Remarks

This is a convenience method to allow easy determination of whether a node has any children.

44 XML Interfaces for C++

insertBefore

Inserts the newChild node before the specified node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, insertBefore, Node *)
METHOD PARMI (Node * newChild)
METHOD PARM (Node * refChild)

END METHOD

C++

Node * METHOD CALL insertBefore (
Node *newChild,
Node *refChild) ;

Parameters

newChild
(IN) Points to the new child node to add to the document.

refChild

(IN) Points to the child node before which the new child node is inserted. If this parameter is
NULL, the new node is inserted as the last child.

Return Values

DOMException registered or thrown.
Returns NO_MODIFICATION _ALLOWED ERR if Node is read only.

Returns WRONG_DOCUMENT _ERR if this Node is of a type that does not allow children of the
newChild type, or if newChild is one of this Node’s ancestors.

Returns HIERARCHY REQUEST ERR if newChild is of a type that is not allowed as a child of
this Node.

Returns NOT_FOUND_ERR if refChild is not a child of this Node.

Remarks

If the newChild node is a DocumentFragment object, all of its children are inserted, in the same
order, before the refChild node. If the newChild node is already in the tree, it is first removed.

Document Object Model (DOM) Interfaces

45

removeChild

Removes the child indicated by oldChild from the list of children and returns it.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Node, removeChild, Node *)

METHOD PARMI (Node * oldChild)
END METHOD

C++

Node * METHOD CALL removeChild (
Node *0ldChild) ;

Parameters

oldChild
(IN) Points to the child node to remove.

Return Values

If successful, returns the old child node. If unsuccessful, registers or throws a DOMException.
Returns NO_MODIFICATION ALLOWED ERR if Node is read-only.
Returns NOT_FOUND_ERR if 0ldChild is not a child of the Node.

Remarks

The destroy() method must be called on the returned node.

46 XML Interfaces for C++

replaceChild

Replaces the oldChild node with the newChild node in the list of children and returns the oldChild
node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, replaceChild, Node *)
METHOD PARMI (Node * newChild)
METHOD PARM (Node * oldChild)

END METHOD

C++

Node * METHOD CALL replaceChild (
Node *newChild,
Node *0ldChild) ;

Parameters

newChild

(IN) Points to the node that will replace an existing node.

oldChild
(IN) Points to the node that is to be replaced.

Return Values

If successful, returns the oldChild node. If unsuccessful, registers or throws a DOMException.
Returns NO_MODIFICATION _ALLOWED ERR if Node is read-only.

Returns WRONG_DOCUMENT _ERR if this Node is of a type that does not allow children of the
newChild type, or if newChild is one of this Node’s ancestors

Returns HIERARCHY REQUEST ERR if newChild is of a type that is not allowed as a child of
this Node.

Returns NOT_FOUND_ERR if refChild is not a child of this Node.

Remarks

If the newChild node is already in the tree, it is first removed.

The destroy() method must be called on the returned node.

Document Object Model (DOM) Interfaces

47

setNodeValue

Sets the value of the node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, setNodeValue, DOMException *)
METHOD PARMI (const unicode * value)
END METHOD

C++

DOMException * METHOD CALL setNodeValue (
const unicode *value) ;

Parameters

value

Points to the value for the node.

Return Values

Returns or throws a DOMException.

If the Node is read-only, returns NO_MODIFICATION ALLOWED_ERR.

Remarks

This method returns an error if the node is read-only.

2.2 Document

The Document interface inherits from the Node interface and represents the entire HTML or XML
document. Conceptually, it is the root of the document tree and provides the primary access to the
document’s data.

Since the other nodes such as elements, text nodes, comments, and processing instructions cannot
exist outside the context of a Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have a ownerDocument attribute which
associates them with the Document within whose context they were created.

48 XML Interfaces for C++

createAttribute

Creates an Attribute node of the given name.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Document, createAttribute, Attr *)

METHOD PARMI (const unicode * name)
END METHOD

C++

Attr * METHOD CALL createAttribute (
const unicode *name) ;

Parameters

name

(IN) Points to the name of the attribute.

Return Values

If unsuccessful, registers or throws a DOMException.

Returns INVALID CHARACTER ERROR if the attribute name is invalid.

Remarks

The Attr instance can be set on an Element using the setAttribute method.

Document Object Model (DOM) Interfaces

49

createCDATASection

Creates a CDATASection node whose value is the specified string.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Document, createCDATASection, CDATASection *)
METHOD PARMI (const unicode * data)
METHOD PARM (int offset)
METHOD PARM (int length)

END METHOD

C++

CDATASection * METHOD CALL createCDATASection (

const unicode *data,
int offset,
int length);
Parameters
data

(IN) Points to the string to place in the CDATASection node.

offset
?

length
(IN) Specifies, in bytes, the length of the string.

50 XML Interfaces for C++

createComment

Creates a Comment node from the specified string.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Document, createComment, Comment *)

METHOD PARMI (const unicode * data)
END METHOD

C++

Comment * METHOD CALL createComment (
const unicode *data) ;

Parameters

data

(IN) Points the string to place in the Comment node.

Remarks

Does the string need to begin and end with the XML markings for a comment or does this method
add the markings?

Document Object Model (DOM) Interfaces 51

createDocumentFragment

Creates an empty DocumentFragment object.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Document, createDocumentFragment, DocumentFragment *)
END METHOD

C++

DocumentFragment * METHOD CALL createDocumentFragment ();

Remarks

Use any of the other create... methods of the Document interface to add nodes to the
DocumentFragment.

52 XML Interfaces for C++

createElement

Creates an element of the type specified.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Document, createElement, Element *)

METHOD PARMI (const unicode * tagName)
END METHOD

C++

Element * METHOD CALL createElement (
const unicode *tagName) ;

Parameters

tagName

(IN) Points to the name of the element to create.

Return Values

If unsuccessful, registers or throws a DOMException.

Returns INVALID _CHARACTER ERROR if tagName is invalid.

Remarks

The instance returned implements the Element interface, so attributes can be specified directly on
the returned object.

Document Object Model (DOM) Interfaces 53

createEntityReference

Creates an EntityReference object.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Document, createEntityReference, EntityReference ¥*)

METHOD PARMI (const unicode * name)
END METHOD

C++

EntityReference * METHOD CALL createEntityReference (
const unicode *name) ;

Parameters

name

(IN) Points to the name of the Entity Reference.

Return Values

If unsuccessful, registers or throws a DOMException.

Returns INVALID CHARACTER_ERROR if the name is invalid.

54 XML Interfaces for C++

createProcessinglnstruction

Creates a ProcessingInstruction node from the specified target and data strings.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Document, createProcessingInstruction, ProcessingInstruction

*)
METHOD PARMI (const unicode * target)
METHOD PARM (const unicode * data)
END METHOD

C++

ProcessingInstruction * METHOD CALL createProcessinglInstruction

const unicode *target,
const unicode *data) ;
Parameters
target

(IN) Points to the processing instruction target.

data
(IN) Points to the data string.

Return Values

If unsuccessful, registers or throws a DOMException.

Returns INVALID CHARACTER_ERROR if the target or data is invalid.

Document Object Model (DOM) Interfaces

55

createTextNode

Creates a Text node from the specified string.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Document, createTextNode, Text *)
METHOD PARMI (const unicode * data)
METHOD PARM (int offset)

METHOD PARM (int length)

END METHOD

C++

Text * METHOD CALL createTextNode (

const unicode *data,
int offset,
int length);
Parameters
data

(IN) Points to the text string to place in the Text node.

offset
?

length
(IN) Specifies, in bytes, the length of the string?

56 XML Interfaces for C++

enableExceptions

Enables the throwing of C++ exceptions for all nodes created by this Document and for all nodes in
this Document object’s tree.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Node, enableExceptions, int)

METHOD PARMI (int enable)
END METHOD

C++

int METHOD CALL enableExceptions (
int enable) ;

Parameters

enable

(IN) Specifies whether to enable the throwing of C++ exceptions: 0=disable and 1=enable.

Remarks

This method is a C++ extension to DOM Level 1.

Document Object Model (DOM) Interfaces 57

getDoctype

Returns the DocumentType node associated with this document.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Document, getDoctype, DocumentType *)
END METHOD

C++

DocumentType * METHOD CALL getDoctype ();

Remarks

The DOM level does not support editing the Document Type Declaration; therefore, the
DocumentType cannot be altered in any way.

For documents without a Document Type Declaration, this method returns NULL.

58 XML Interfaces for C++

getDocumentElement

Returns the first child element of the Document.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Document, getDocumentElement, Element *)
END METHOD

C++

Element * METHOD CALL getDocumentElement ();

Remarks

This is a convenience method that allows direct access to the child node that is the root element of
the document. If there is more than one element as a child of the Document object then the first
element child is returned. If there is no document element, null is returned.

Document Object Model (DOM) Interfaces

59

getElementsByTagName

Returns a NodeList of all the Elements with a given tag name in the order in which they would be
encountered in a preordered traversal of the Document tree.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Document, getElementsByTagName, NodelList *)
METHOD PARMI (const unicode * tagName)
END METHOD

C++

NodeList * METHOD CALL getElementsByTagName (
const unicode *tagName) ;

Parameters

tagName

(IN) Points to the name of the element type to include in the NodeList?

Remarks

The returned NodeList must be deleted when it is no longer needed. This must be done by calling
the NodeList::destroy method.

If this Node is deleted before the NodeList is destroyed, the NodeList becomes invalid and results
are unpredictable.

60 XML Interfaces for C++

getimplementation

Returns the DOMImplementation object that handles this document.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Document, getImplementation, DOMImplementation *)
END METHOD

C++

DOMImplementation * MEHTOD CALL getImplementation ():

Remarks

A DOM application may use objects from multiple implementations.

2.3 Element

The Element interface inherits from the Node interface.

By far the vast majority of objects (apart from text) that authors encounter when traversing a
document are Element nodes. Assume the following XML document:

<elementExample id="demo">
<subelementl/>
<subelement2>
<subsubelement/>
</subelement2>
</elementExample>

When represented using DOM, the top node is an Element node for “elementExample,” which
contains two child Element nodes, one for “subelement1” and one for “subelement2”. The
“subelement]” node contains no child nodes.

Elements may have attributes associated with them. Since the Element interface inherits from Node,
the generic Node interface method getAttributes may be used to retrieve the set of all attributes for
an element. The Element interface contains methods to retrieve either an Attr object by name or an
attribute value by name. In XML, where an attribute value may contain entity references, an Attr
object should be retrieved to examine the possibly fairly complex sub-tree representing the attribute
value. On the other hand, in HTML, where all attributes have simple string values, methods to
directly access an attribute value can safely be used as a convenience.

Document Object Model (DOM) Interfaces

61

getAttribute

Returns the value of the specified attribute name.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Element, getAttribute, const unicode *)

METHOD PARMI (const unicode * name)//the name of the attribute
END METHOD

C++

const unicode * METHOD CALL getAttribute (
const unicode *name) ;

Parameters

name

(IN) Points to the name of the attribute whose value is to be returned.

Remarks

If the element does not have an attribute with the passed name, null is returned.

62 XML Interfaces for C++

getAttributeNode

Retrieves an Attribute node by name.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Element, getAttributeNode, Attr *)

METHOD PARMI (const unicode * name)
END METHOD

C++

Attr * METHOD CALL getAttributeNode (
const unicode *name) ;

Parameters

name

(IN) Points to the name of the attribute.

Remarks

This method returns null if the element does not contain an attribute by the passed name.

Document Object Model (DOM) Interfaces 63

getElementsByTagName

Returns a NodeList of all descendant elements with a given tag name, in the order in which they
would be encountered in a preordered traversal of the Element tree.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Document, getElementsByTagName, NodelList *)
METHOD PARMI (const unicode * tagName)
END METHOD

C++
NodeList * METHOD CALL getElementsByTagName (

const unicode *tagName) ;

Parameters

tagName

23 30

(IN) Points to the name of the element to find. The special tag name value matches all tags.

Remarks

The returned NodeList must be deleted when it is no longer needed. This must be done by calling
the NodeList::destroy method.

If this Node is deleted before the NodeList is destroyed, the NodeList becomes invalid and results
are unpredictable.

64 XML Interfaces for C++

getTagName

Returns the name of the element.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Element, getTagName, const unicode ¥*)
END METHOD

C++

const unicode * METHOD CALL getTagName ();

Return Values

Returns the tag name of the element.

Document Object Model (DOM) Interfaces 65

normalize

Puts all Text nodes in the full depth of the subtree underneath this Element into a “normal” form
where only markup (for example tags, comments, processing instructions, CDATA sections, and
entity references) separates Text nodes. When a document is normalized, there are no adjacent Text
nodes.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Element, normalize, DOMException *)
END METHOD

C++

DOMException * METHOD CALL normalize ();

Remarks

This method can be used to ensure that the DOM view of a document is the same if it were saved
and re-loaded. It is useful when operations (such as XPointer lookups) that depend on a particular
document tree structure are to be used.

66 XML Interfaces for C++

removeAttribute

Removes an attribute by name.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Element, removeAttribute, DOMException *)

METHOD PARMI (const unicode * name)
END METHOD

C++

DOMException * METHOD CALL removeAttribute (
const unicode *name) ;

Parameters

name

(IN) Points to the name of the attribute to remove from the element.

Return Values

If unsuccessful, returns or throws a DOMException.

Returns NO_MODIFICATION ALLOWED ERR if the Node is read-only.

Remarks

If the removed attribute has a default value, the attribute is immediately replaced.

Document Object Model (DOM) Interfaces

67

removeAttributeNode

Removes the specified attribute.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Element, removeAttributeNode, Attr *)

METHOD PARMI (Attr * oldAttr)
END METHOD

C++

Attr * METHOD CALL removeAttributeNode (
Attr *oldAttr);

Parameters
oldAttr

(IN) Points to the Attr node to remove.
Return Values

If unsuccessful, registers or throws a DOMException.
Returns NO_MODIFICATION ALLOWED ERR if Node is read-only.

Returns NOT _FOUND_ERR if oldAttr is not an attribute of this Node.

68 XML Interfaces for C++

setAttribute

Adds an attribute with the specified value to the element.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Element, setAttribute, DOMException *)
METHOD PARMI (const unicode * name)
METHOD PARM (const unicode * value)

END METHOD

C++

DOMException * METHOD CALL setAttribute (

const unicode *name,
const unicode *value) ;
Parameters
name

(IN) Points to the name of the attribute.

value

(IN) Points to the value for the attribute.

Return Values

If unsuccessful, registers or throws a DOMException.
Returns NO_MODIFICATION _ALLOWED ERR if the Node is read-only.

Returns INVALID CHARACTER_ERR if name is invalid.

Remarks

If an attribute with the specified name is already present in the element, its value is changed to be
that of the value parameter. This value is a simple string. It is not parsed as it is being set. Any
markup (such as syntax to be recognized as an entity reference) is treated as literal text and needs to
be appropriately escaped by the implementation when it is written out.

In order to assign an attribute value that contains entity references, the user must create an Attr node
plus any Text and EntityReference nodes, build the appropriate subtree, and use the
setAttributeNode method to assign it as the value of an attribute.

Document Object Model (DOM) Interfaces

69

setAttributeNode

Adds a new attribute to an element.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Element, setAttributeNode, Attr *)
METHODiPARMl (Attr * newAttr)
END METHOD

C++
Attr * METHOD CALL setAttributeNode (
Attr *newAttr) ;

Parameters

newAttr
(IN) Points to the Attr node to add.

Return Values

If unsuccessful, registers or throws a DOMException.
Returns NO_MODIFICATION ALLOWED ERR if Node is read-only.

Returns WRONG_DOCUMENT _ERR if this Node is of a type that does not allow children of the
newChild type or if newChild is one of this Node’s ancestors.

Returns INUSE_ATTRIBUTE_ ERR if newAttr is an Attr that already belongs to another Element.

Remarks

If an attribute with that name is already present in the element, this attribute is replaced by the new
one.

If the new Attr replaces an existing Attr node, the previously existing Attr node is returned (and
must be destroyed); otherwise null is returned.

To create an attribute node, use Document::createAttribute method.
To set the attribute's value, use Attr::setValue method.

To add the attribute to an element, use Element::setAttributeNode method.

70 XML Interfaces for C++

2.4 Attr

The Attr interface inherits from the Node interface and represents an attribute in an Element
object.Typically the allowable values for the attribute are defined in a document type definition. See
the nds.dtd for the DirXML document type definition.

Attr objects inherit the Node interface, but since they are not actually child nodes of the element
they describe, the DOM does not consider them part of the document tree. Thus, the Node attributes
parentNode, previousSibling, and nextSibling have a NULL value for Attr objects. The DOM takes
the view that attributes are properties of elements rather than having a separate identity from the
elements they are associated with. This makes it more efficient to implement such features as default
attributes associated with all elements of a given type.

Attr nodes may not be immediate children of a DocumentFragment. However, they can be
associated with Element nodes contained within a DocumentFragment. In short, users and
implementors of the DOM need to be aware that Attr nodes have some things in common with other
objects inheriting the Node interface, but they also are quite distinct.

The attribute’s effective value is determined as follows:

+ If this attribute has been explicitly assigned any value, that value is the attribute’s effective
value.

« if there is a declaration for this attribute, and that declaration includes a default value, then that
default value is the attribute’s effective value;

« If these is no default value, the attribute does not exist on this element in the structure model
until it has been explicitly added.

The nodeValue attribute on the Attr instance can also be used to retrieve the string version of the
attribute’s value(s).

In XML, where the value of an attribute can contain entity references, the child nodes of the Attr
node provide a representation in which entity references are not expanded. These child nodes may
be either Text or EntityReference nodes. Because the attribute type may be unknown, there are no
tokenized attribute values.

Document Object Model (DOM) Interfaces

7

getName

Returns the name of the attribute.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Attr, getName, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getName ();

72 XML Interfaces for C++

getSpecified

Indicates whether the attribute was explicitly given a value in the original document.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Attr, getSpecified, int)
END METHOD

C++

int METHOD CALL getSpecified ();

Remarks

If this attribute was explicitly given a value in the original document, this is TRUE; otherwise it is
FALSE.

The implementation is in charge of this attribute, not the user. If the user changes the value of the
attribute (even if it ends up having the same value as the default value), then the specified flag is
automatically flipped to TRUE. To re-specify the attribute as the default value from the DTD, the
user must delete the attribute. The implementation will then make a new attribute available with the
specified flag set to FALSE and the default value (if one exists).

Document Object Model (DOM) Interfaces 73

getValue

Returns the value of the attribute as a string. Character and general entity references are replaced
with their values.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Attr, getValue, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getValue ();

74 XML Interfaces for C++

setValue

Creates a Text node with the unparsed contents of the string.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Attr, setValue, DOMException *)

METHOD PARMI (const unicode * value)
END METHOD

C++

DOMException * METHOD CALL setValue (
const unicode *value) ;

Parameters

value

(IN) Points to the new attribute value.

Return Values

If unsuccessful, returns or throws a DOMException.

Returns NO_MODIFICATION ALLOWED ERR if Node is read-only.

2.5 CharacterData

The CharacterData interface inherits from the Node interface and extends Node with a set of
attributes and methods for accessing character data in the DOM. For clarity this set is defined here
rather than on each object that uses these attributes and methods. No DOM objects correspond
directly to CharacterData, though Text and others do inherit the interface from it. All offsets in this

interface start from 0.

Document Object Model (DOM) Interfaces

75

appendData

Appends the string to the end of the character data of the node.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (CharacterData, appendData, DOMException *)

METHOD PARMI (const unicode * arg)
END METHOD

C++

DOMException * METHOD CALL appendData (
const unicode *arg);

Parameters

arg

(IN) Points to the string to append to the character data.

Return Values

If unsuccessful, returns or throws a DOMException.

Returns NO_MODIFICATION ALLOWED ERR if the Node is read-only.

76 XML Interfaces for C++

deleteData

Removes a range of characters from the node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (CharacterData, deleteData, DOMException *)
METHOD PARMI (int offset)
METHOD PARM (int count)

END METHOD

C++

DOMException * METHOD CALL deleteData (
int offset,

int count) ;
Parameters
offset

(IN) Specifies the offset where characters should be removed.

count

(IN) Specifies the number of characters to delete.

Return Values

If unsuccessful, returns or throws a DOMException.
Returns NO_MODIFICATION _ALLOWED ERR if the Node is read-only.

Returns INDEX SIZE ERR if the specified count is negative or if the specified offset is negative or
greater than the number of characters in data.

Document Object Model (DOM) Interfaces 77

getData

Returns the character data of the node that implements this interface.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (CharacterData, getData, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getData ();

Remarks

The DOM implementation cannot put arbitrary limits on the amount of data that can be stored in a
CharacterData node. However, implementation limits may mean that the entirety of a node’s data
may not fit into a single string. In such cases the user may call substringData to retrieve the data in
appropriately sized pieces.

78 XML Interfaces for C++

getLength

Returns the number of characters that are available through getData() and the substringData()

method below.
Syntax

Defining Macros for C++

#include "dom.h"

METHOD (CharacterData, getlength,
END METHOD

C++

int METHOD CALL getLength ();

Remarks

int)

This method can have a value of zero, for example, when the CharacterData nodes are empty.

Document Object Model (DOM) Interfaces

79

insertData

Inserts a string at the specified character offset.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (CharacterData, insertData, DOMException *)
METHODiPARMl (int offset)
METHOD PARM (const unicode * arg)

END METHOD

C++

DOMException * METHOD CALL insertData (

int offset,
const unicode *arg);
Parameters
offset

(IN) Points to the character offset where the data is to be inserted.

arg

(IN) Points to the string to insert.

Return Values

If unsuccessful, returns or throws a DOMException.
Returns NO_MODIFICATION ALLOWED ERR if the Node is read-only.

Returns INDEX SIZE ERR if the specified offset is negative or greater than the number of
characters in data

80 XML Interfaces for C++

replaceData

Replaces the characters starting at the specified character offset within the specified string.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (CharacterData, replaceData, DOMException ¥*)
METHOD PARMI (int offset)
METHOD PARM (int count)
METHOD PARM (const unicode * arg)

END METHOD

C++

DOMException * METHOD CALL replaceData (

int offset,
int count,
const unicode *arg);
Parameters
offset

(IN) Specifies the character offset where the replacement should begin.

count

(IN) Specifies the number of characters to replace.

arg

(IN) Points to the string to use for the replacement characters.

Return Values

If unsuccessful, returns or throws a DOMException.
Returns NO_ MODIFICATION ALLOWED ERR if the Node is read-only.

Returns INDEX_SIZE ERR if the specified count is negative or if the specified offset is negative or
greater than the number of characters in data.

Document Object Model (DOM) Interfaces

81

setData

Sets the character data of the node that implements this interface.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (CharacterData, setData, DOMException *)

METHOD PARMI (const unicode * data)
END METHOD

C++

DOMException * METHOD CALL setData (
const unicode *data) ;

Parameters

data
(IN) Points to the character data for the node.

Return Values

If unsuccessful, returns or throws a DOMException.

Returns NO_MODIFICATION ALLOWED ERR if Node is read-only.

82 XML Interfaces for C++

substringData

Extracts a range of data from the node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (CharacterData, substringData, const unicode *)
METHOD PARMI (int offset)
METHOD PARM (int count)

END METHOD

C++

const unicode * METHOD CALL substringData (
int offset,

int count) ;
Parameters
offset

(IN) Specifies the start offset of the substring to extract.

count

(IN) Specifies the number of characters to extract.

Return Values

If unsuccessful, registers or throws a DOMException.
Returns INDEX_SIZE ERR if

» The specified offset is negative or greater than the number of characters in data

* The specified count is negative.

2.6 Text

The Text interface inherits from the CharacterData interface and represents the textual content
(termed character data in XML) of an Element or Attr. If there is no markup inside an element’s
content, the text is contained in a single object implementing the Text interface that is the only child
of the element. If there is markup, it is parsed into a list of elements and Text nodes that form the list
of children of the element.

When a document is first made available via the DOM, there is only one Text node for each block of
text. Users may create adjacent Text nodes that represent the contents of a given element without
any intervening markup, but they should be aware that there is no way to represent the separations
between these nodes in XML or HTML, so they will not (in general) persist between DOM editing

Document Object Model (DOM) Interfaces

83

sessions. The normalize method on Element merges any such adjacent Text objects into a single
node for each block of text; this is recommended before employing operations that depend on a
particular document structure, such as navigation with XPointers.

84 XML Interfaces for C++

splitText

Breaks this Text node into two Text nodes at the specified offset, keeping both in the tree as siblings.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (Text, splitText, Text *)

METHOD PARMI (int offset)
END METHOD

C++

Text * METHOD CALL splitText (
int offset);

Parameters

offset
(IN) Specifies at which offset to split node, starting from 0.

Return Values

Registers or throws a DOMException.

Returns NO_MODIFICATION ALLOWED ERR if the Node is read-only.

Returns INDEX SIZE ERR if the specified offset is negative or greater than the number of

characters in data.

Remarks

A split text node contains all the content up to the offset point. A new Text node, which is inserted as
the next sibling of this node, contains all the content at and after the offset point.

2.7 Processinglnstruction

The ProcessingInstruction interface inherits from the Node interface and represents a “processing
instruction,” used in XML as a way to keep processor-specific information in the text of the

document.

Document Object Model (DOM) Interfaces

85

getData

Returns the content of this Processinglnstruction node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (ProcessingInstruction, getData, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getData ();

Remarks

Returns the data from the first non-white space character after the target to the character
immediately preceding the 7>.

86 XML Interfaces for C++

getTarget

Returns the target of this ProcessingInstruction node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (ProcessingInstruction, getTarget, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getTarget ();

Remarks

XML defines the target of a ProcessingInstruction node as the first token following the markup that
begins the processing instruction.

Document Object Model (DOM) Interfaces 87

setData

Sets the content of this ProcessingInstruction node.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (ProcessingInstruction, setData, DOMException *)
METHOD PARMI (const unicode * data)
END METHOD

C++

DOMException * METHOD CALL setData (
const unicode *data) ;

Parameters

data

Points to the processing instructions.

Return Values

Returns or throws a DOMException.

Returns NO_MODIFICATION ALLOWED ERR if the Node is read-only.

Remarks

Sets the contents from the first non-white space character after the target to the character
immediately preceding the 7>.

2.8 DocumentType

The DocumentType interface inherits from the Node interface and provides an interface to the list of
entities that are defined for the document. Each Document has a doctype attribute whose value is
either null or a DocumentType object. The DocumentType interface in the DOM Level 1 Core
specifies an interface to the list of entities that are defined for the document, and little else because
the effect of name spaces and the various XML scheme efforts on DTD representation are not yet
clearly defined.

The DOM Level 1 specification doesn’t support editing DocumentType nodes.

88 XML Interfaces for C++

getEntities

Returns a NamedNodeMap containing the general entities, both external and internal, declared in
the DTD.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (DocumentType, getEntities, NamedNodeMap *)
END METHOD

C++

NamedNodeMap * METHOD CALL getEntities ();

Remarks

Duplicate entities are discarded. Every Node in this map also implements the Entity interface.

The returned NamedNodeMap belongs to this node. No attempt must be made to delete it.

Document Object Model (DOM) Interfaces

89

getName

Returns the name of the DTD, which is the name immediately following the DOCTYPE keyword.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (DocumentType, getName, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getName ();

90 XML Interfaces for C++

getNotations

Returns a NamedNodeMap containing the notations declared in the DTD.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (DocumentType, getNotations, NamedNodeMap *)
END METHOD

C++

NamedNodeMap * MEHTOD CALL getNotations ();

Remarks

Duplicate notations are discarded. Every Node in this map also implements the Notation interface.

The returned NamedNodeMap belongs to this node. No attempt must be made to delete it.

2.9 DOMImplementation

The DOMImplementation interface provides a number of methods for performing operations that
are independent of any particular instance of the document object model.

The DOM Level 1 does not specify a way of creating a document instance, and hence document
creation is an operation specific to an implementation. Future levels of the DOM specification are
expected to provide methods for creating documents directly.

Document Object Model (DOM) Interfaces

91

hasFeature

Discovers if the DOM implementation implements a specific feature.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (DOMImplementation, hasFeature, int)
METHOD PARMI (const unicode * feature)
METHOD PARM (const unicode * version)

END METHOD

C++

int METHOD CALL hasFeature (

const unicode *feature,
const unicode *version) ;
Parameters
feature

(IN) Points to the package name of the feature to test. In Level 1, the legal values for feature are
“HTML” and “XML” (case insensitive).

version

(IN) Points to the version number of the package name to test. In Level 1, the legal value is the
string “1.0”. If the version is not specified, supporting any version of the feature will cause the
method to return non-zero (TRUE).

Return Values

Returns non-zero if the feature is supported.

Returns zero (0) if the feature is not supported.

2.10 Entity

The Entity interface inherits from the Node interface and represents an entity, either parsed or
unparsed, in an XML document.This interface models the entity itself not the entity declaration.
Entity declaration modeling has been left for a later level of the DOM specification.

The nodeName attribute that is inherited from Node contains the name of the entity.

An XML processor may choose to completely expand entities before the structure model is passed
to the DOM; in this case there will be no EntityReference nodes in the document tree.

92 XML Interfaces for C++

XML does not mandate that a non-validating XML processor read and process entity declarations
made in the external subset or declared in external parameter entities. This means that parsed entities
declared in the external subset need not be expanded by some classes of applications, and that the
replacement value of the entity may not be available. When the replacement value is available, the
corresponding Entity node’s child list represents the structure of that replacement text. Otherwise,
the child list is empty.

The resolution of the children of the Entity (the replacement value) may be lazily evaluated; actions
by the user (such as calling the childNodes method on the Entity Node) are assumed to trigger the
evaluation.

The DOM Level 1 does not support editing Entity nodes; if a user wants to make changes to the
contents of an Entity, every related EntityReference node has to be replaced in the structure model
by a clone of the Entity’s contents, and then the desired changes must be made to each of those
clones instead. All the descendants of an Entity node are read-only.

An Entity node does not have a parent.

Document Object Model (DOM) Interfaces

93

getNotationName

For unparsed entities, returns the name of the notation for the entity.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Entity, getNotationName, const unicode ¥*)
END METHOD

C++

const unicode * METHOD CALL getNotationName ();

Remarks

For parsed entities, this method returns null.

94 XML Interfaces for C++

getPublicld

Returns the public identifier associated with the entity, if specified.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Entity, getPublicId, const unicode ¥*)
END METHOD

C++

const unicode * METHOD CALL getPublicId ();

Remarks

If the public identifier was not specified, this method returns null.

Document Object Model (DOM) Interfaces

95

getSystemid

Returns the system identifier associated with the entity, if specified.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Entity, getSystemId, const unicode ¥*)
END METHOD

C++

const unicode * METHOD CALL getSystemId ();

Remarks

If the system identifier was not specified, this method returns null.

2.11 Notation

The Notation interface inherits from the Node interface and represents a notation declared in the
DTD. A notation does one of the following:

* Declares, by name, the format of an unparsed entity (see section 4.7 of the XML 1.0
specification).

» Makes a formal declaration of Processing Instruction targets (see section 2.6 of the XML 1.0
specification).

The nodeName attribute inherited from Node is set to the declared name of the notation.
Notation nodes are read-only.

A Notation node does not have a parent.

96 XML Interfaces for C++

getPublicld

Returns the public identifier of this notation.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Entity, getPublicId, const unicode ¥*)
END METHOD

C++

const unicode * METHOD CALL getPublicId ();

Remarks

If a public identifier was not specified, this method returns null.

Document Object Model (DOM) Interfaces

97

getSystemid

Returns the system identifier of this notation.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (Entity, getSystemId, const unicode ¥*)
END METHOD

C++

const unicode * METHOD CALL getSystemId ();

Remarks

If a system identifier was not specified, this method returns null.

2.12 NamedNodeMap

Objects implementing the NamedNodeMap interface represent collections of nodes that can be
accessed by name. NamedNodeMap does not inherit from NodeList.

NamedNodeMaps are not maintained in any particular order. Objects contained in an object
implementing NamedNodeMap may also be accessed by an ordinal index, but this is simply to allow
convenient enumeration of the contents of a NamedNodeMap and does not imply that the DOM
specifies an order to these Nodes.

98 XML Interfaces for C++

getLength

Returns the number of nodes in the map.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (NamedNodeMap, getLength, int)
END METHOD

C++

int METHOD CALL getLength ();

Remarks

The range of valid child node indices is 0 to length-1, inclusive.

Document Object Model (DOM) Interfaces

99

getNamedIitem

Retrieves a node specified by name.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (NamedNodeMap, getNamedItem, Node *)

METHOD PARMI (const unicode * name)
END METHOD

C++

Node * METHOD CALL getNamedItem (
const unicode *name) ;

Parameters

name

Points to the name of the node to retrieve.

100 XML Interfaces for C++

item

Returns the “index”th item in the map.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (NamedNodeMap, item, Node *)

METHOD PARMI (int index)
END METHOD

C++

Node * MEHTOD CALL item (

int index) ;
Parameters
index

(IN) Specifies the index number of a node in the map.

Remarks

If the index is greater than or equal to the number of nodes in the map, this method returns null.

Document Object Model (DOM) Interfaces 101

removedNamedltem

Removes a node from the NamedNodeMap using the node's specified by name.

Syntax

Defining Macros for C++

#include "dom.h"
METHOD (NamedNodeMap, removeNamedItem, Node ¥*)

METHOD PARMI (const unicode * name)
END METHOD

C++

Node * METHOD CALL removeNamedItem (
const unicode *name) ;

Parameters

name

(IN) Points to the name of the node to remove.

Return Values

Registers or throws a DOMException.
Returns NO_MODIFICATION _ALLOWED _ ERR if the NamedNodeMap is read-only.

Returns NOT_FOUND_ERR if no Node with name is in the map.

Remarks

If the removed node is an Attr with a default value, the node is immediately replaced.

102 XML Interfaces for C++

setNamedIitem

Adds a node to a NamedNodeMap using the node's nodeName attribute.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (NamedNodeMap, setNamedItem, Node *)
METHODiPARMl (Node * argqg)
END METHOD

C++
Node * MEHTOD CALL setNamedItem (

Node *arg);

Parameters

arg
(IN) Points to the nodeName of the node to add.

Return Values

Registers or throws a DOMException.
Returns NO_MODIFICATION ALLOWED _ ERR if NamedNodeMap is read-only.

Returns WRONG_DOCUMENT _ERR if arg was created with a different Document than the
NamedNodeMap belongs to.

Returns INUSE_ATTRIBUTE_ ERR if arg is an Attr that already belongs to another Element.

Remarks

As the node name attribute is used to derive the name which the node must be stored under, multiple
nodes of certain types (those that have a “special” string value) cannot be stored in a
NamedNodeMap because the names would clash.

2.13 Nodelist

The NodeList interface provides the abstraction of an ordered collection of nodes, without defining
or constraining how this collection is implemented.

The items in the NodeList are accessible with an integral index, starting from 0.

This interface contains one extension to DOM Level 1, the destroy method.

Document Object Model (DOM) Interfaces 103

destroy

Deletes the NodeList.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (Node, destroy, void)
END METHOD

C++

void METHOD CALL destroy ();

Remarks

This method must be called when the NodeList is no longer needed.

This method is a C++ extension to DOM Level 1.

104 XML Interfaces for C++

getLength

Returns the number of nodes in the list.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (NodelList, getLength, int)
END METHOD

C++

int METHOD CALL getLength ();

Remarks

The range of valid child node indices is 0 to length-1, inclusive.

Document Object Model (DOM) Interfaces 105

item

Returns the “index’’th item in the list.

Syntax

Defining Macros for C++

#include "dom.h"

METHOD (NodeList, item, Node *)
METHODiPARMl (int index)
END METHOD

C++
Node * METHOD CALL item (

int index) ;

Parameters
int

(IN) Specifies the index of the node to return.

Remarks

If the index is greater than or equal to the number of nodes in the list, this method returns null.

2.14 DOMEXxception

DOM operations only raise exceptions in “exceptional” circumstances, for example when an
operation is impossible to perform (either for logical reasons, because data is lost, or because the
implementation has become unstable). In general, DOM methods return specific error values in
ordinary processing situation, such as out-of-bound errors when using NodeList.

Implementations may raise other exceptions under other circumstances. For example,
implementations may raise an implementation-dependent exception if a null argument is passed.

Some languages and object systems do not support the concept of exceptions. For such systems,
error conditions may be indicated using native error reporting mechanisms. For some bindings, for
example, methods may return error codes similar to those listed in the corresponding method
descriptions.

106 XML Interfaces for C++

destroy

Deletes this exception.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (DOMException, destroy, void)
END METHOD

C++

void METHOD CALL destroy ();

Remarks

This is a C++ extension to DOM Level 1.

Document Object Model (DOM) Interfaces 107

getCode

Returns the DOM-defined exception code associated with this exception.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (DOMException, getCode, int)
END METHOD

C++

int METHOD CALL getCode ();

108 XML Interfaces for C++

getMessage

Returns the text message associated with the exception.

Syntax
Defining Macros for C++
#include "dom.h"

METHOD (DOMException, getMessage, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getMessage ();

Remarks

This method returns null if no message was associated with the exception.

This method is a C++ extension to DOM Level 1.

Document Object Model (DOM) Interfaces 109

110 XML Interfaces for C++

Simple API for XML (SAX)
Interfaces

The following C++ interfaces and methods for receiving information about XML documents are
patterned after the Java implementation of version 1 of the Simple API for XML (SAX) event
interface. For additional documentation about this interface, see Megginson Technologies (http://
www.megginson.com/SAX/index.html).

Exceptions are not enabled by default. Instead, the methods return a pointer to a SAXException
interface. If the method returns null, there was no error.

The Parser, DocumentHandler and DTDHandler interfaces have a method to enable exceptions. To
enable exceptions for C++, you must call the enableExceptions method with a non-zero value.

* If exceptions have not been implemented in C++, these methods return 0.

+ If they have been implemented in C++, these methods return the exception-enabled state.
Since C++ allows overloading, C++ methods use the same name as the Java methods.
The SAX parser implements the following interfaces:

 Section 3.1, “AttributeList,” on page 111

» Section 3.7, “Locator,” on page 150

* Section 3.8, “Parser,” on page 156

» Section 3.9, “SAXException,” on page 163

» Section 3.10, “SAXParseException,” on page 165

The SAX application implements the following interfaces:

* Section 3.2, “DocumentHandler,” on page 118
» Section 3.3, “DTDHandler,” on page 129

» Section 3.4, “EntityResolver,” on page 134

* Section 3.5, “ErrorHandler,” on page 135

Section 3.6, “InputSource,” on page 139
» Section 3.9, “SAXException,” on page 163
* Section 3.10, “SAXParseException,” on page 165

3.1 AttributeList

The AttributeList interface allows access to an element’s attribute specifications.

The SAX parser implements this interface and passes an instance to the SAX application as the
second argument of each startElement event.

The instance provided returns valid results only during the scope of the startElement invocation. To
save it for future use, the application must make a copy; the AttributeListlmpl helper class provides
a convenient constructor for making a copy.

Simple API for XML (SAX) Interfaces

111

An AttributeList includes only attributes that have been specified or have default values; #IMPLIED
attributes will not be included.

There are two ways for the SAX application to obtain information from the AttributeList. First, it
can iterate through the entire list. The following code sample illustrates this:

SAXException * startElement (const unicode * name, Attributelist *

atts) {

for (int 1 = 0; i < atts->getlLength(); i++) {
const unicode * name = atts->getName (i) ;
const unicode * type = atts->getType(i);
const unicode * value = atts->getValue(i);

[...]
}
}

The result of the getLength method will be zero if there are no attributes.

As an alternative, the application can request the value or type of specific attributes. The following
code illustrates this method.

SAXException * startElement (const unicode * name, Attributelist *
atts) {

const unicode * identifier = atts->getValue(L"id");
const unicode * label = atts->getValue (L"label");
[...]

}

DirXML provides an implementation of AttributeList via the C++ class AttributeListImpl.

112 XML Interfaces for C++

getLength

Returns the number of attributes in the list.

Syntax
Defining Macros for C++
#include "sax.h"

METHOD (Attributelist, getLength,
END METHOD

C++

int METHOD CALL getLength ();

Remarks

If the element has no attributes, this method returns zero.

int)

Simple API for XML (SAX) Interfaces 113

getName

Returns the name of an attribute in this list by specifying its position.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Attributelist, getName, const unicode *)
METHODiPARMl (int index)
END METHOD

C++

const unicode * METHOD CALL getName (

int index) ;
Parameters
index

(IN) Specifies the attribute's index in the 0-based index of attributes.

Remarks

This method returns null if the specified index is out of range.

114 XML Interfaces for C++

getType

Returns the type of an attribute in the list by specifying its position.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Attributelist, getType, const unicode *)
METHOD PARMI (int index)
END METHOD

C++

const unicode * MEHTOD CALL getType (

int index) ;
Parameters
index

(IN) Specifies the attribute's index in the 0-based index of attributes.

Remarks

This method returns null if the specified index is out of range.

The attribute type is one of the strings "CDATA", "ID", "IDREF", "IDREFS", "NMTOKEN",
"NMTOKENS", "ENTITY", "ENTITIES" or "NOTATION" (always in upper case).

Simple API for XML (SAX) Interfaces 115

getType

Returns the type of an attribute in the list by specifying its name.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (Attributelist, getType, const unicode *)

METHOD PARMI (const unicode * name)//name of attribute
END METHOD

C++

const unicode * METHOD CALL getType (
const unicode *name) ;

Parameters

name

(IN) Points to the name of the attribute.

Remarks

This method returns null if the passed name doesn’t match an attribute in the list.

The attribute type is one of the strings "CDATA", "ID", "IDREF", "IDREFS", "NMTOKEN",
"NMTOKENS", "ENTITY", "ENTITIES" or "NOTATION" (always in upper case).

116 XML Interfaces for C++

getValue

Returns the value of an attribute in the list by specifying its position.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Attributelist, getValue, const unicode *)
METHODiPARMl (int index)
END METHOD

C++

const unicode * METHOD CALL getValue (

int index) ;
Parameters
index

(IN) Specifies the attribute's index in the 0-based index of attributes.

Remarks

This method returns null if the specified index is out of range.

If the attribute value is a list of tokens (IDREFS, ENTITIES, or NMTOKENS), the tokens are
concatenated into a single string separated by whitespace.

Simple API for XML (SAX) Interfaces 117

getValue

Returns the value of an attribute in the list by specifying its name.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Attributelist, getValue, const unicode *)
METHOD PARMI (const unicode * name)//name of attribute
END METHOD

C++
const unicode * MEHTOD CALL getValue (

const unicode *name) ;

Parameters

name

(IN) Points to the name of the attribute.

Remarks

This method returns null if the passed name doesn’t match an attribute in the list.

If the attribute value is a list of tokens (IDREFS, ENTITIES, or NMTOKENS), the tokens will be
concatenated into a single string separated by whitespace.

3.2 DocumentHandler

This interface receives notification of general document events.

This is the main interface that most SAX applications implement. If the application needs to be
informed of basic parsing events, it implements this interface and registers an instance with the SAX
parser using the setDocumentHandler method. The parser uses the instance to report basic
document-related events like the start and end of elements and character data.

The order of events in this interface is very important, and mirrors the order of information in the
document itself. For example, all of an element’s content (character data, processing instructions,
and/or subelements) will appear, in order, between the startElement event and the corresponding
endElement event.

Application writers who do not want to implement the entire interface can derive a class from
HandlerBase, which implements the default functionality; parser writers can instantiate
HandlerBase to obtain a default handler. The application can find the location of any document
event using the Locator interface supplied by the Parser through the setDocumentLocator method.

This specification extends the Java org.xml.sax.DocumentHandler with the following methods:

118 XML Interfaces for C++

SAXException * comment (const unicode * data);
int enableExceptions (int enable);

Simple API for XML (SAX) Interfaces 119

characters

Receives notification of character data.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DocumentHandler, characters, SAXException ¥*)
METHOD PARMI (const unicode ch[])
METHOD PARM (int start)
METHOD PARM (int length)

END METHOD

C++

SAXException * METHOD CALL characters (

const unicode chl[],
int start,
int length) ;
Parameters
ch

Specifies the character array.

start

Specifies the first character.

length

Specifies the number of characters.

Remarks

The Parser calls this method to report each chunk of character data. SAX parsers may return all
contiguous character data in a single chunk, or they may split it into several chunks. However, all of
the characters in any single event must come from the same external entity, so that the Locator
provides useful information.

The application must not attempt to read from the array outside of the specified range.

Some parsers report whitespace using the ignorableWhitespace method rather than this one
(validating parsers must do so).

120 XML Interfaces for C++

comment

Receives notification of a comment.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (DocumentHandler, comment, SAXException *)

METHOD PARMI (const unicode * data)
END METHOD

C++

SAXException * METHOD CALL comment (
const unicode *data) ;

Parameters

data

Points to the comment string.

Remarks

The parser invokes this method once for each comment found. This method does not exist in the
Java interface.

Simple API for XML (SAX) Interfaces 121

enableExceptions

Enables the throwing of C++ exceptions for all methods in this interface.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (DocumentHandler, enableExceptions, int)

METHOD PARMI (int enable)
END METHOD

C++

int METHOD CALL enableExceptions (

int enable) ;
Parameters
enable

(IN) Specifies whether C++ exceptions are enabled: 0= disabled, 1=enabled.

Remarks

This is a C++ extension to the interface.

122 XML Interfaces for C++

endDocument

Receives notification of the end of a document.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DocumentHandler, endDocument, SAXException *)
END METHOD

C++

SAXException * METHOD CALL endDocument ();

Remarks
The SAX parser invokes this method only once, and it will be the last method invoked during the

parse. The parser shall not invoke this method until it has either abandoned parsing (because of an
unrecoverable error) or reached the end of input.

Simple API for XML (SAX) Interfaces 123

endElement

Receives notification of the end of an element.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DocumentHandler, endElement, SAXException ¥*)
METHOD PARMI (const unicode * name)
END METHOD

C++

SAXException * METHOD CALL endElement (
const unicode *name) ;

Parameters
name

(IN) Points to the name of the element.
Remarks

The SAX parser invokes this method at the end of every element in the XML document; there will
be a corresponding startElement() event for every endElement() event (even when the element is

empty).

If the element name has a name space prefix, the prefix will still be attached to the name.

124 XML Interfaces for C++

ignorableWhitespace

Receives notification of ignorable whitespace in element content.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DocumentHandler, ignorableWhitespace,
METHOD PARMI (const unicode ch[])

METHOD PARM (int start)
METHOD PARM (int length)
END METHOD

C++

SAXException * METHOD CALL ignorableWhitespace

const unicode chl[],

int start,

int length);
Parameters

ch

Specifies the character array.

start

Specifies the first character.

length

Specifies the number of characters.

Remarks

SAXException *)

Validating parsers must use this method to report each chunk of ignorable whitespace (see the W3C
XML 1.0 Recommendation, Section 2.10). Non-validating parsers may also use this method if they

are capable of parsing and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several
chunks. However, all of the characters in any single event must come from the same external entity,

so that the Locator provides useful information.

The application must not attempt to read from the array outside of the specified range.

Simple API for XML (SAX) Interfaces 125

processinglinstruction

Receives notification of a processing instruction.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DocumentHandler, processingInstruction, SAXException *)
METHOD PARMI (const unicode * target)
METHOD PARM (const unicode * data)

END METHOD

C++

SAXException * METHOD CALL processingInstruction (

const unicode *target,
const unicode *data) ;
Parameters
target

Points to the processing instruction target.

data
Points to the data string.

Remarks

The parser invokes this method once for each processing instruction found. Processing instructions
may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, Section 2.8) or a text declaration
(XML 1.0, Section 4.3.1) using this method.

126 XML Interfaces for C++

setDocumentLocator

Receives an object for locating the origin of SAX document events.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DocumentHandler, setDocumentLocator, void)
METHOD_ PARMI (Locator * locator)
END METHOD

C++

void METHOD CALL setDocumentLocator (
Locator *locator) ;

Parameters

locator

(IN) Points to a locator object.

Remarks

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator. If it does
s0, it must supply the locator to the application by invoking this method before invoking any of the
other methods in the DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event, even
if the parser is not reporting an error. Typically, the application will use this information for
reporting its own errors (such as character content that does not match an application’s business
rules). The information returned by the locator is probably not sufficient for use with a search
engine.

The locator will return correct information only during the invocation of the events in this interface.
The application should not attempt to use it at any other time.

Simple API for XML (SAX) Interfaces 127

startDocument

Receives notification of the beginning of a document.

Syntax
Defining Macros for C++
#include "sax.h"

METHOD (DocumentHandler, startDocument, SAXException *)
END METHOD

C++

SAXException * METHOD CALL startDocument ();

Remarks

The SAX parser invokes this method only once, before any other methods in this interface or in
DTDHandler (except for the setDocumentLocator method).

128 XML Interfaces for C++

startElement

Receives notification of the beginning of an element.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DocumentHandler, startElement,
METHOD PARMI (const unicode * name)
METHOD PARM (Attributelist * atts)

END METHOD

C++

SAXException * METHOD CALL startElement

const unicode *name,
Attributelist *atts);

Parameters

name

(IN) Points to the name of the element.

atts
(IN) Points to the attribute list for the element.

Remarks

SAXException *)

(

The Parser invokes this method at the beginning of every element in the XML document; there will
be a corresponding endElement event for every startElement event (even when the element is
empty). All of the element’s content will be reported, in order, before the corresponding

endElement() event.

If the element name has a name space prefix, the prefix will still be attached. The attribute list
provided will contain only attributes with explicit values (specified or defaulted); #IMPLIED

attributes will be omitted.

3.3 DTDHandler

This interface receives notification of basic DTD-related events.

If a SAX application needs information about notations and unparsed entities, then the application
implements this interface and registers an instance with the SAX parser using the parser’s
setDTDHandler method. The parser uses the instance to report notation and unparsed entity

declarations to the application.

Simple API for XML (SAX) Interfaces 129

The SAX parser may report these events in any order, regardless of the order in which the notations
and unparsed entities were declared; however, all DTD events must be reported after the document
handler’s startDocument event, and before the first startElement event.

It is up to the application to store the information for future use (perhaps in a hash table or object
tree). If the application encounters attributes of type “NOTATION”, “ENTITY”, or “ENTITIES”, it
can use the information that it obtained through this interface to find the entity and/or notation
corresponding with the attribute value.

The specification extends the Java org.xml.sax.DTDHandler with the following methods:

int enableExceptions (int enable);

130 XML Interfaces for C++

enableExceptions

Enables the throwing of C++ exceptions for all methods in this interface.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DTDHandler, enableExceptions, int)
METHODiPARMl (int enable)
END METHOD

C++

int METHOD CALL enableExceptions (

int enable) ;
Parameters
enable

(IN) Specifies whether C++ exceptions are enabled: 0= disabled, 1=enabled.

Remarks

This is a C++ extension to the SAX specification.

Simple API for XML (SAX) Interfaces 131

notationDecl

Receives notification of a notation declaration event.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (DTDHandler, notationDecl, SAXException *)
METHOD PARMI (const unicode * name)
METHOD PARM (const unicode * publicId)
METHOD PARM (const unicode * systemId)

END METHOD

C++

SAXException * METHOD CALL notationDecl (

const unicode *name,
const unicode *publicId,
const unicode *systemId) ;
Parameters
name

Points to the name for this notation.

publicld

Points to the public identifier for this notation.

systemld

Points to the system identifier for this notation.

Remarks

The application is responsible to record the notation for later reference, if necessary.

If a system identifier is present, and it is a URL, the SAX parser must resolve it fully before passing
it to the application.

132 XML Interfaces for C++

unparsedEntityDecl

Receives notification of an unparsed entity declaration event.

Syntax

Defining Macros for C++

#include

"sax.h"

METHOD (DTDHandler, unparsedEntityDecl, SAXException *)
METHOD PARMI (const unicode * name)
METHOD PARM (
METHOD PARM (
METHOD PARM (

END METHOD

C++

SAXException * METHOD CALL unparsedEntityDecl

const
const
const
const

unicode
unicode
unicode
unicode

Parameters

name

const unicode * publicId)
const unicode * systemId)
const unicode * notationName)

*name,
*publicId,
*systemId,
*notationName) ;

Points to the name of the entity declaration.

publicld

Points to the public identifier for this entity.

systemld

Points to the system identifier for this entity.

notationName

Points to entity name.

Remarks

(

The notation name corresponds to a notation reported by the notationDecl() event. The application is
responsible to record the entity for later reference, if necessary.

If the system identifier is a URL, the parser must resolve it fully before passing it to the application.

Simple API for XML (SAX) Interfaces 133

3.4 EntityResolver

If a SAX application needs to implement customized handling for external entities, it must
implement this interface and register an instance with the SAX parser using the parser’s
setEntityResolver method.

The parser then allows the application to intercept any external entities (including the external DTD
subset and external parameter entities, if any) before including them.

Many SAX applications will not need to implement this interface, but it will be especially useful for
applications that build XML documents from databases or other specialized input sources, or for
applications that use URI types other than URLSs.

134 XML Interfaces for C++

resolveEntity

Allows the application to resolve external entities.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (EntityResolver, resolveEntity, InputSource *)
METHOD_ PARMI (const unicode * publicId)
METHOD PARM (const unicode * systemId)

END METHOD

C++

InputSource * METHOD CALL resolveEntity (

const unicode *publicId,
const unicode *systemId) ;
Parameters
publicld

Points to the entity's public identifier.

systemld

Points to the entity's system identifier.

Remarks

The parser calls this method before opening any external entity except the top-level document entity
(including the external DTD subset, external entities referenced within the DTD, and external
entities referenced within the document element). The application may request that the parser
resolve the entity itself, that it use an alternative URI, or that it use an entirely different input source.

Application writers can use this method to redirect external system identifiers

» To use secure or local URIs
» To look up public identifiers in a catalogue

» To read an entity from a database or other input source (including, for example, a dialog box).

If the system identifier is a URL, the SAX parser must resolve it fully before reporting it to the
application.

3.5 ErrorHandler

This interface is the basic interface for SAX error handlers.

Simple API for XML (SAX) Interfaces 135

Ifa SAX application needs to implement customized error handling, it must implement this interface
and then register an instance with the SAX parser using the parser’s setErrorHandler method. The
parser will then report all errors and warnings through this interface.

The parser shall use this interface instead of throwing an exception: it is up to the application
whether to throw an exception for different types of errors and warnings. There is no requirement
that the parser continue to provide useful information after a call to fatalError; in other words, a
SAX driver class could catch an exception and report a fatalError.

136 XML Interfaces for C++

error

Receives notification of a recoverable error.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (ErrorHandler, error, void)

METHOD PARMI (SAXParseException * exception)
END METHOD

C++

void METHOD CALL error (
SAXParseException *exception);

Parameters

exception

Points to the SAX exception.

Remarks

This corresponds to the definition of “error” in Section 1.2 of the W3C XML 1.0 Recommendation.
For example, a validating parser would use this callback to report the violation of a validity

constraint. The default behavior is to take no action.

The SAX parser must continue to provide normal parsing events after invoking this method. The
application should be able to process the document through to the end. If the application cannot do
s0, then the parser should report a fatal error even if the XML 1.0 Recommendation does not require

it to do so.

Simple API for XML (SAX) Interfaces 137

fatalError

Receives notification of a non-recoverable error.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (ErrorHandler, fatalError, void)
METHOD PARMI (SAXParseException * exception)
END METHOD

C++
void METHOD CALL fatalError (

SAXParseException *exception);

Parameters

exception

Points to the SAX exception.

Remarks

This corresponds to the definition of “fatal error” in Section 1.2 of the W3C XML 1.0
Recommendation. For example, a parser would use this callback to report the violation of a well-
formedness constraint.

The application must assume that the document is unusable after the parser has invoked this method,
and should continue (if at all) only for the sake of collecting addition error messages. SAX parsers
are free to stop reporting any other events once this method has been invoked.

138 XML Interfaces for C++

warning

Receives notification of a warning.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (ErrorHandler, warning, void)
METHOD PARM1 (SAXParseException * exception)
END METHOD

C++
void METHOD CALL warning (

SAXParseException *exception);

Parameters

exception

Points to the SAX exception.

Remarks

SAX parsers use this method to report conditions that are not errors or fatal errors as defined by the
XML 1.0 Recommendation. The default behavior is to take no action.

The SAX parser must continue to provide normal parsing of events after invoking this method. The
application should still be able to process the document through to the end.

3.6 InputSource

The InputSource interface allows a SAX application to encapsulate information about an input
source in a single object, which may include a public identifier, a system identifier, a byte stream
(possibly with a specified encoding), and/or a character stream.

There are two places that the application will deliver this input source to the parser: as the argument
to the Parser.parse method, or as the return value of the EntityResolver.resolveEntity method.

An InputSource object belongs to the application: the SAX parser shall never modify it in any way.
It can only modify a copy, if necessary.

This interface diverges from the Java interface because of the lack of a common stream functionality
in C++.

The primary divergence is the readByteChunk method which the SAX parser can call to read a
chunk of the data stream at a time.

DirXML provides an implementation with the C++ InputSourcelmpl class accessed through the
interface.h file.

Simple API for XML (SAX) Interfaces

139

getByteStream

Gets the byte stream for this input source.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (InputSource, getByteStream, const unsigned char ¥*)

METHOD PARMI (int * length)
END METHOD

C++

const unsigned char * METHOD CALL getByteStream (
int *length) ;

Parameters

length
(OUT) Points to a variable that receives the length of the array.

Remarks

This method returns null if no byte stream was set for the input source.

The getEncoding method will return the character encoding for this byte stream, or null if unknown.

140 XML Interfaces for C++

getCharacterStream

Gets the character stream for this input source.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (InputSource, getCharacterStream, const unicode *)//array or
characters or 0

METHOD PARMI (int * length)
END METHOD

C++

const unicode * METHOD CALL getCharacterStream (
int *length) ;

Parameters

length
(OUT) Points to the length of the array in characters.

Remarks

This method returns null if no character stream was set.

Simple API for XML (SAX) Interfaces 141

getEncoding

Gets the character encoding for a byte stream or URI.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (InputSource, getEncoding, const unicode *)
END METHOD

C++

const unicode * METHOD CALL ();

Remarks

This method returns null if no encoding was set.

142 XML Interfaces for C++

getPublicld

Gets the public identifier for this input source.

Syntax
Defining Macros for C++
#include "sax.h"

METHOD (InputSource, getPublicId, const char *)
END METHOD

C++

const char * METHOD CALL getPublicId ();

Remarks

This method returns null if no public identifier was supplied.

Simple API for XML (SAX) Interfaces 143

getSystemid

Gets the system identifier for this input source.

Syntax
Defining Macros for C++
#include "sax.h"

METHOD (InputSource, getSystemld, const char *)
END METHOD

C++

const char * METHOD CALL getSystemId ();

Remarks

This method returns null if no system identifier was supplied.

If the system identifier is a URL, it will be fully resolved.

144 XML Interfaces for C++

readByteChunk

Returns the number of bytes passed from the input source.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (InputSource, readByteChunk, int)
METHOD PARMI1 (int count)
METHOD PARM (unsigned char * buffer)
END METHOD

C++

int METHOD CALL readByteChunk (

int count,
unsigned char *puffer);
Parameters
count

(IN) Specifies the number of bytes to read.

buffer
(OUT) Points to the buffer for the returned bytes.

Remarks

The passed buffer must be at least as large as the count parameter.

When the return value is less than count, the source is exhausted.

Simple API for XML (SAX) Interfaces 145

setByteStream

Sets the byte stream for this input source.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (InputSource, setByteStream, void)
METHOD PARM1 (const unsigned char * byteStream)
METHOD PARM (int length)

END METHOD

C++

void METHOD CALL setByteStream (

const unsigned char *byteStream,
int length) ;
Parameters
byteStream

(IN) Points to an array of bytes.

length
(IN) Specifies the length of the array in bytes.

Remarks

The SAX parser ignores the byte stream if there is also a character stream specified. However, the
parser will use a byte stream in preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the
setEncoding method.

146 XML Interfaces for C++

setCharacterStream

Sets the character stream for this input source.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (InputSource, setCharacterStream, void)
METHOD PARMI1 (const unicode * charStream)
METHOD PARM (int length)

END METHOD

C++

void METHOD CALL setCharacterStream (

const unicode *charStream,
int length) ;
Parameters
charStream

(IN) Points to an array of characters.

length
(IN) Specifies the length of the array in characters.

Remarks

If there is a character stream specified, the SAX parser will ignore any byte stream and will not
attempt to open a URI connection to the system identifier.

Simple API for XML (SAX) Interfaces 147

setEncoding

Sets the character encoding.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (InputSource, setEncoding, void)

METHOD PARMI (const unicode * encoding)
END METHOD

C++

void METHOD CALL setEncoding (
const unicode *encoding) ;

Parameters

encoding

(IN) Points to the encoding string to use for this input source.

Remarks

The encoding must be a string acceptable for an XML encoding declaration (see Section 4.3.3 of the
XML 1.0 Recommendation).

This method has no effect when the application provides a character stream.

148 XML Interfaces for C++

setPublicld

Sets the public identifier for this input source.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (InputSource, setPublicId, void)

METHOD PARMI (const char * publicId)
END METHOD

C++

void METHOD CALL setPublicId (
const char *publicId);

Parameters

publicld

(IN) Points to the public identifier to use for the input source.

Remarks

The public identifier is always optional. If the application writer includes one, it will be provided as

part of the location information.

Simple API for XML (SAX) Interfaces 149

setSystemld

Sets the system identifier for this input source.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (InputSource, setSystemId, void)
METHOD PARMI (const char * systemId)
END METHOD

C++
void METHOD CALL setSystemId (

const char *systemId) ;

Parameters

systemId

(IN) Points to the system identifier to use for the input source.

Remarks

The system identifier is optional if there is a byte stream or a character stream. However, it is still
useful to provide one, since the application can use it to resolve relative URIs and can include it in
error messages and warnings. The parser will attempt to open a connection to the URI only if there
is no byte stream or character stream specified.

If the application knows the character encoding of the object pointed to by the system identifier, it
can register the encoding using the setEncoding method.

If the system identifier is a URL, it must be fully resolved.

3.7 Locator

The Locator interface associates a SAX event with a document location.

If a SAX parser provides location information to the SAX application, it does so by implementing
this interface and then passing an instance to the application using the document handler’s
setDocumentLocator method. The application can use the object to obtain the location of any other
document handler event in the XML source document.

The results returned by the object are valid only during the scope of each document handler method;
the application will receive unpredictable results if it attempts to use the locator at any other time.

SAX parsers are not required to supply a locator, but they are very strong encouraged to do so. If the
parser supplies a locator, it must do so before reporting any other document events. If no locator has
been set by the time the application receives the startDocument event, the application should assume
that a locator is not available.

150 XML Interfaces for C++

This specification extends the Java org.xml.sax.Locator with the following methods:
void destroy ();

The destroy method is required so that SAXParseException implementations can destroy the
Locator object that they may have.

Simple API for XML (SAX) Interfaces 151

destroy

Destroys this locator object.

Syntax
Defining Macros for C++
#include "sax.h"

METHOD (Locator, destroy, void)
END METHOD

C++

void METHOD CALL destroy ();

Remarks

This method must not be called by an application. This method must only be called by an
implementation of SAXParseException.

152 XML Interfaces for C++

getColumnNumber

Returns the column number where the current document event ends.

Syntax
Defining Macros for C++
#include "sax.h"

METHOD (Locator, getColumnNumber, int)
END METHOD

C++

int METHOD CALL getColumnNumber ();

Remarks

This method returns -1 if the column number is not available.

The column number is the first character after the text associated with the document event. The first

column in a line is position 1.

Simple API for XML (SAX) Interfaces 153

getLineNumber

Returns the line number where the current document event ends.

Syntax
Defining Macros for C++
#include "sax.h"

METHOD (Locator, getLineNumber, int)
END METHOD

C++

int METHOD CALL getLineNumber ();

Remarks

This method returns -1 if the line number is not available.

The line position is the first character after the text associated with the document event.

154 XML Interfaces for C++

getPublicld

Returns the public identifier for the current document event.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Locator, getPublicId, const unicode *)
END METHOD

C++

const unicode * MEHTOD CALL getPublicId ();

Remarks

This method returns null if no public identifier is available.

Simple API for XML (SAX) Interfaces 155

getSystemid

Returns the system identifier for the current document event.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Locator, getSystemId, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getSystemId ();

Remarks

This method returns null if no system identifier is available.

If the system identifier is a URL, the parser must resolve it fully before passing it to the application.

3.8 Parser
The Parser interface is the basic interface for SAX (Simple API for XML) parsers.

All SAX parsers must implement this basic interface; it allows applications to register handlers for
different types of events and to initiate a parse from a URI, or a character stream.

All SAX parsers must also implement a zero-argument constructor (though other constructors are
also allowed).

SAX parsers are reusable but not re-entrant; the application may reuse a parser object (possibly with
a different input source) once the first parse has completed successfully, but it may not invoke the
parse() methods recursively within a parse.

The SAX Parser interface is useful for any reporting of XML structure events. For example, this
interface can convert a DOM tree to a series of SAX events.

This specification extends the Java org.xml.sax.DocumentHandler with the following methods:

int enableExceptions (int enable);

156 XML Interfaces for C++

enableExceptions

Enables the throwing of C++ exceptions for all methods in this interface.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (Parser, enableExceptions, int)

METHOD PARMI (int enable)
END METHOD

C++

int METHOD CALL enableExceptions (

int enable) ;
Parameters
enable

(IN) Specifies whether C++ exceptions are enabled: 0= disabled, 1=enabled.

Remarks

This method is a C++ extension.

Simple API for XML (SAX) Interfaces 157

parse

Parses an XML document.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Parser, parse, SAXException ¥*)
METHOD PARMI (InputSource * inputSource)
END METHOD

C++
SAXException * METHOD CALL parse (

InputSource *inputSource) ;

Parameters

inputSource

(IN) Points to the input source for the top level of the XML document.

Remarks

The application can use this method to instruct the SAX parser to begin parsing an XML document
from any valid input source (a character stream, a byte stream, or a URI).

Applications may not invoke this method while a parse is in progress. They should create a new
Parser instead for each additional XML document. Once a parse is complete, an application may
reuse the same Parser object, possibly with a different input source.

Objects other than “parsers” may implement this interface. For example, to convert a DOM tree to
SAX events a converter might implement this interface and ignore the InputSource argument.

158 XML Interfaces for C++

setDocumentHandler

Allows an application to register a document event handler.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (Parser, setDocumentHandler, void)

METHOD PARMI (DocumentHandler * handler)
END METHOD

C++

void METHOD CALL setDocumentHandler (
DocumentHandler *handler) ;

Parameters

handler

(IN) Points to the application's document handler.

Remarks

If the application does not register a document handler, all document events reported by the SAX
parser will be silently ignored. This is the default behavior implemented by HandlerBase.

Applications may register a new or different handler in the middle of a parse, and the SAX parser

must begin using the new handler immediately.

Simple API for XML (SAX) Interfaces 159

setDTDHandler

Allows an application to register a DTD event handler.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Parser, setDTDHandler, void)
METHOD PARMI (DTDHandler * handler)
END METHOD

C++

void METHOD CALL setDTDHandler (
DTDHandler *handler) ;

Parameters
handler

(IN) Points to the application's DTD handler.
Remarks

If the application does not register a DTD handler, all DTD events reported by the SAX parser will
be silently ignored. This is the default behavior implemented by HandlerBase.

Applications may register a new or different handler in the middle of a parse, and the SAX parser
must begin using the new handler immediately.

160 XML Interfaces for C++

setEntityResolver

Allows an application to register a custom entity resolver.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (Parser, setEntityResolver, void)

METHOD PARMI (EntityResolver * resolver)
END METHOD

C++

void METHOD CALL setEntityResolver (
EntityResolver *resolver) ;

Parameters

resolver

(IN) Points to the application's entity resolver.

Remarks

If the application does not register an entity resolver, the SAX parser will resolve system identifiers
and open connections to entities itself. This is the default behavior implemented in HandlerBase.

Applications may register a new or different entity resolver in the middle of a parse, and the SAX

parser must begin using the new resolver immediately.

Simple API for XML (SAX) Interfaces 161

setErrorHandler

Allows an application to register an error event handler.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Parser, setErrorHandler, void)
METHOD PARMI (ErrorHandler * handler)
END METHOD

C++

void METHOD CALL setErrorHandler (
ErrorHandler *handler) ;

Parameters

handler

(IN) Points to the application's error event handler.

Remarks

If the application does not register an error event handler, all error events reported by the SAX
parser will be silently ignored, except for fatalError, which will throw a SAXException. This is the
default behavior implemented by HandlerBase.

Applications may register a new or different handler in the middle of a parse, and the SAX parser
must begin using the new handler immediately.

162 XML Interfaces for C++

setLocale

Allows an application to request a locale for errors and warnings.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (Parser, setLocale, SAXException *)
METHOD_ PARMI (const unicode * locale)
END METHOD

C++
SAXException * METHOD CALL setLocale (

const unicode *locale) ;

Parameters

locale

Points to a standard locale string.

Remarks

SAX parsers are not required to provide localization for errors and warnings; if they cannot support
the requested locale, however, they must throw a SAX exception. Applications may not request a
locale change in the middle of a parse.

3.9 SAXException

The SAXException interface encapsulates a general SAX error or warning.

This interface can contain basic error or warning information from either the XML parser or the
application. A parser writer or application writer can subclass it to provide additional functionality.
SAX handlers may throw this exception or any exception subclassed from it.

If the application needs to pass through other types of exceptions, it must wrap those exceptions in a
SAXException or an exception derived from a SAXException.

If the parser or application needs to include information about a specific location in an XML
document, it should use the SAXParseException subclass.

Simple API for XML (SAX) Interfaces 163

destroy

Destroys this SAXException.

Syntax
Defining Macros for C++
#include "sax.h"

METHOD (SAXException, destroy, void)
END METHOD

C++

void METHOD CALL destroy ();

164 XML Interfaces for C++

getMessage

Returns the text message associated with this exception.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (SAXException, getMessage, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getMessage ();

Remarks

This method returns null if no text is associated with the exception.

3.10 SAXParseException

The SAXParseException interface encapsulates an XML parse error or warning.

The methods include information for locating the error in the original XML document. Although the
application will receive a SAXParseException as the argument to the handlers in the ErrorHandler
interface, the application is not actually required to throw the exception; instead, it can simply read
the information in it and take a different action.

Simple API for XML (SAX) Interfaces 165

getLocator

Gets the Locator set by the parser.

Syntax

Defining Macros for C++

#include "sax.h"

METHOD (SAXParseException, getLocator, Locator *)
END METHOD

C++

Locator * METHOD CALL getLocator ();

Remarks

This method returns null if the parser has not set a Locator object.

166 XML Interfaces for C++

setLocator

Allows a parser to set a Locator object with information on the exception.

Syntax

Defining Macros for C++

#include "sax.h"
METHOD (SAXParseException, setLocator, void)

METHOD_ PARMI (Locator * locator)
END METHOD

C++

void METHOD CALL setLocator (
Locator *locator) ;

Parameters

locator

(IN) Points to the locator object.

Simple API for XML (SAX) Interfaces 167

168 XML Interfaces for C++

Serialized XML Interface

This interface allows control over the serialization of an XML document. Of the three interfaces for
handling XML documents, the serialized interface is the slowest. You should use this interface only
if your application cannot use the SAX or DOM interface.

The prototypes for the following functions and methods are defined in the XMLWriter.h file:

» “getDisableTextEscaping” on page 170
+ “getDoctypePublic” on page 171

» “getDoctypeSystem” on page 172

» “getEncoding” on page 173

» “getEndian” on page 174

» “getIndent” on page 175

» “getStandalone” on page 176

» “getWriteDeclaration” on page 177

» “setDisableTextEscaping” on page 178
» “setDoctypePublic” on page 179

* “setDoctypeSystem” on page 180

+ “setEncoding” on page 181

+ “setEndian” on page 182

+ “setIndent” on page 183

» “setStandalone” on page 184

» “setWriteDeclaration” on page 185

* “write” on page 186

Serialized XML Interface 169

getDisableTextEscaping

Returns whether XML text escaping is disabled for this XmlWriter.

Syntax
Defining Macros for C++
#include "XMLWriter.h"

METHOD (XmlWriter, getDisableTextEscaping, int)
END METHOD

C++

int METHOD CALL getDisableTextEscaping ();

Return Values

Returns zero if text escaping is enabled.

Returns non-zero if text escaping is disabled.

Remarks

Disabling text escaping means that no character references or entity references will be output for
text nodes.

170 XML Interfaces for C++

getDoctypePublic

Returns the public id to use for the DOCTYPE.

Syntax
Defining Macros for C++
#include "XMLWriter.h"

METHOD (XmlWriter, getDoctypePublic, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getDoctypePublic ();

Return Values

Returns 0 if no public identifier has been set.

Returns non-zero if the DOCTYPE public identifier has been set.

Serialized XML Interface 171

getDoctypeSystem

Returns the system identifier to use for the DOCTYPE.

Syntax

Defining Macros for C++

#include "XMLWriter.h"

METHOD (XmlWriter, getDoctypeSystem, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getDoctypeSystem () ;

Return Values

Returns zero if a system identifier has not been set.

Returns non-zero if a system identifier has been set.

Remarks

If the system identifier is non-null and non-empty, then a DOCTYPE declaration will be output.

172 XML Interfaces for C++

getEncoding

Returns the string with name of the character encoding to use.
Syntax

Defining Macros for C++

#include "XMLWriter.h"

METHOD (XmlWriter, getEncoding, const unicode *)
END METHOD

C++

const unicode * METHOD CALL getEncoding ();

Return Values

Returns 0 if the XML Writer has not set character encoding.

Serialized XML Interface 173

getEndian

Returns the type of byte-ordering.

Syntax

Defining Macros for C++

#include "XMLWriter.h"

METHOD (XmlWriter, getEndian, int)
END METHOD

C++

int METHOD CALL getEndian ();

Return Values

Returns non-zero if big-endian (Motorola) byte-ordering will be used with encodings for which it
matters (for example, UTF-16).

Returns zero if little-endian (Intel) ordering will be used.

174 XML Interfaces for C++

getindent

Returns whether extra white space will be output for readability.

Syntax
Defining Macros for C++
#include "XMLWriter.h"

METHOD (XmlWriter, getIndent, int)
END METHOD

C++

int METHOD CALL getIndent ();

Return Values

Returns zero if extra white space will not be output.

Returns non-zero if extra white space will be output.

Serialized XML Interface 175

getStandalone

Returns whether a “standalone=yes” declaration will be output in the XML declaration.

Syntax

Defining Macros for C++

#include "XMLWriter.h"

METHOD (XmlWriter, getStandalone, int)
END METHOD

C++

int METHOD CALL getStandalone ();

Remarks

XML declaration must be enable for output before a standalone declaration can be output.

176 XML Interfaces for C++

getWriteDeclaration

Returns whether the XML Writer will output an XML declaration.

Syntax
Defining Macros for C++
#include "XMLWriter.h"

METHOD (XmlWriter, getWriteDeclaration, int)
END METHOD

C++

int METHOD CALL getWriteDeclaration ();

Return Values

Returns zero if the writer will not output an XML declaration.

Returns non-zero if the writer will output an XML declaration.

Serialized XML Interface 177

setDisableTextEscaping

Sets whether XML text escaping should be disabled for this XmlWriter.

Syntax

Defining Macros for C++

#include "XMLWriter.h"
METHOD (XmlWriter, setDisableTextEscaping, void)

METHOD PARMI (int disableTextEscaping)
END METHOD

C++

void METHOD CALL setDisableTextEscapting (
int disableTextExcaping) ;

Parameters

disableTextEscaping

(IN) Specifies whether to disable XML text escaping: zero = enable and non-zero = disable.

Remarks

Disabling text escaping means that no character references or entity references will be output for
text nodes.

178 XML Interfaces for C++

setDoctypePublic

Sets the public identifier to use for the DOCTYPE.

Syntax

Defining Macros for C++

#include "XMLWriter.h"
METHOD (XmlWriter, setDoctypePublic, wvoid)

METHOD PARMI (const unicode * doctypePublic)
END METHOD

C++

void METHOD CALL setDoctypePublic (
const unicode *doctypePublic) ;

Parameters

doctypePublic

(IN) Points to the public identifier for the DOCTYPE. If one has not been defined, the public

identifier can be set to 0.

Remarks

The public identifier will only be used if there is also a system identifier.

Serialized XML Interface 179

setDoctypeSystem

Sets the system identifier to use for the DOCTYPE.

Syntax

Defining Macros for C++

#include "XMLWriter.h"
METHOD (XmlWriter, setDoctypeSystem, void)

METHOD PARMI (const unicode * doctypeSystem)
END METHOD

C++

void METHOD CALL setDoctypeSystem (
const unicode *doctypeSystem) ;

Parameters

doctypeSystem

(IN) Points to the system identifier for the DOCTYPE. If one has not been defined, the system
identifier can be set to 0.

Remarks

If the system identifier is non-null and non-empty, then a DOCTYPE declaration will be output.

180 XML Interfaces for C++

setEncoding

Sets the name of the character encoding to use.

Syntax
Defining Macros for C++
#include "XMLWriter.h"
METHOD (XmlWriter, setEncoding, void)

METHOD PARMI (const unicode * encoding)
END METHOD

C++

void METHOD CALL setEncoding (
const unicode *encoding) ;

Parameters

encoding

(IN) Points to the encoding string to use.

Remarks

The XML Writer is not required to set an encoding string.

Serialized XML Interface 181

setEndian

Sets the type of byte-ordering

Syntax

Defining Macros for C++

#include "XMLWriter.h"
METHOD (XmlWriter, setEndian, void)

METHOD PARMI (int endian)
END METHOD

C++

void METHOD CALL setEndian (

int endian) ;
Parameters
endian

(IN) Specifies the byte-order: zero = little-endian and non-zero = big-endian.

182 XML Interfaces for C++

setindent

Sets whether extra white space may be output for readability.

Syntax

Defining Macros for C++

#include "XMLWriter.h"
METHOD (XmlWriter, setIndent, void)

METHOD PARMI (int indent)
END METHOD

C++

void METHOD CALL setIndent (
int indent) ;

Parameters

indent

(IN) Specifies whether extra white space is output: zero = disable extra and non-zero = enable

extra.

Serialized XML Interface 183

setStandalone

Sets whether a “standalone=yes” declaration should be output in any XML declaration that is
output.

Syntax
Defining Macros for C++
#include "XMLWriter.h"
METHOD (XmlWriter, setStandalone, void)

METHOD PARMI (int standalone)
END METHOD

C++

void METHOD CALL setStandalone (
int standalone) ;

Parameters

standalone

(IN) Specifies whether a standalone declaration should be output: zero = disable output and
non-zero = enable output.

Remarks

XML declaration must be enable for output before a standalone declaration can be output.

184 XML Interfaces for C++

setWriteDeclaration

Sets whether the XML Writer should output an XML declaration.

Syntax

Defining Macros for C++

#include "XMLWriter.h"
METHOD (XmlWriter, setWriteDeclaration, void)

METHOD PARMI (int writeDeclaration)
END METHOD

C++

void METHOD CALL setWriteDeclaration (
int writeDeclaration);

Parameters

writeDeclaration

(IN) Specifies whether the XML Writer outputs an XML declaration: zero = disable output and

non-zero = enable output.

Serialized XML Interface 185

write

Serializes the XML data associated with the writer.
Syntax

Defining Macros for C++

#include "XMLWriter.h"

METHOD (XmlWriter, write, int)
END METHOD

C++

int METHOD CALL write ();

Return Values

Zero indicates failure.

Non-zero indicates success.

186 XML Interfaces for C++

UTF Converter Interface

The following interfaces allows an application to convert strings between UTF 8 and UTF 16:

* “UTFConverter_8to16” on page 188
* “UTFConverter 16to8” on page 189
* “UTFConverter_free” on page 190

UTF Converter Interface 187

UTFConverter_8to16

Converts a NULL-terminated UTF-8 string to a NULL-terminated UTF-16 string

Syntax

C++

#include "UTFConverter.h"
DIRXML EXPORT

unicode * IFAPI UTFConverter 8tol6 (
const char *utf8);

Parameters

utf8
(IN) Points to the NULL-terminated UTF-8 string to convert.

Return Values

If successful, returns a pointer to the converted string.

If an error occurs, returns NULL.

Remarks

The returned string must be freed with a call to the UTFConverter free method.

188 XML Interfaces for C++

UTFConverter_16to8

Converts a NULL-terminated UTF-16 string to a NULL-terminated UTF-8 string.

Syntax

C++

#include "UTFConverter.h"
DIRXML EXPORT

char * IFAPI UTFConverter 16to8 (
const unicode *utflo);

Parameters
utfl16

(IN) Points to the NULL-terminated UTF-16 to convert.
Return Values

If successful, returns a pointer to the converted string.

If an error occurs, returns NULL.

Remarks

The returned string must be freed with a call to the UTFConverter free method.

UTF Converter Interface 189

UTFConverter_free

Frees a string returned from the UTFConverter 16to8 or the UTFConverter 8to16 method.

Syntax

C++

#include "UTFConverter.h"
DIRXML EXPORT

void IFAPI UTFConverter free(
void *encodedData) ;

Parameters

encodedData

(IN) Points to the NULL-terminated string returned by the UTFConverter 16to8 or the
UTFConverter_8tol6 method.

190 XML Interfaces for C++

Base64 Encoding Interface

The Base64 Encoding interface contains the following collection of functions to encode and decode
to and from base64 encoding:

» “Base64Codec_decode” on page 192

» “Base64Codec_decodeFree” on page 193

» “Base64Codec_encode” on page 194

» “Base64Codec_encodeFree” on page 195

Base64 Encoding Interface 191

Base64Codec_decode

Decodes binary data from a UTF-16 string containing the data encoded in base64.

Syntax

C++

#include "Base64Codec.h"

DIRXML EXPORT
unsigned char * IFAPI Baseb64Codec_ decode (

const unicode *encodedData,
int *decodedLength) ;
Parameters
encodedData

(IN) Points to a UTF-16 string containing base64-encoded data.

decodedLength
(OUT) Points to a variable that receives the length of the decoded data.

Return Values

If successful, returns a pointer to an array of bytes containing decoded data.

If the input data is malfromed, returns zero.

Remarks

The returned array must be freed with a call to the base64DecodeFree function.

192 XML Interfaces for C++

Base64Codec_decodeFree

Frees a string returned from the base64Decode function.

Syntax

C++

#include "Base64Codec.h"
DIRXML EXPORT

void IFAPI Base64Codec_decodeFree (
unsigned char *decodedData) ;

Parameters

decodeData

(IN) Points to an array which was returned from the base64Decode function.

Base64 Encoding Interface 193

Base64Codec_encode

Encodes an array of bytes as a NULL-terminated string of UTF-16 characters using base64
encoding.

Syntax
C++
#include "Base64Codec.h"

DIRXML EXPORT
unicode * IFAPI Baseb64Codec_encode (

unsigned char *data,
int off,
int len);
Parameters
data

(IN) Points to the array of bytes to encode.

off
(IN) Specifies the starting offset in the array.

len

(IN) Specifies the number of bytes to encode.

Return Values

If successful, returns a pointer to a UTF-16 string.

Remarks

The returned string must be freed with a call to the base64EncodeFree method.

194 XML Interfaces for C++

Base64Codec_encodeFree

Frees a string returned from the base64Encode function.

Syntax

C++

#include "Base64Codec.h"
DIRXML EXPORT

void IFAPI Base64Codec_encodeFree (
unicode *encodedData) ;

Parameters

encodedData

(IN) Points to the UTF-16 string returned from the base64Encode function.

Base64 Encoding Interface 195

196 XML Interfaces for C++

Driver Filter Interface

The following DriverFilter and ClassFilter interfaces allow an application to obtain information
about the Subscriber or Publisher filter. The application can then use that information to filter the

data before sending information to DirXML.
» “getClassFilter” on page 198
» “passAttribute” on page 199
» “passClass” on page 200

See also the driver filter methods in InterfaceFactory.h (see Chapter 8, “Factory Interface,” on
page 201).

Driver Filter Interface 197

getClasskFilter

Returns the class filter for the specified class.

Syntax

C++

#include "DriverFilter.h"

ClassFilter * DriverFilter::getClassFilter (
const unicode *className) ;

Parameters

className

(IN) Points to the name of the class.

Return Values

Returns zero if the specified class is not in the filter.

198 XML Interfaces for C++

passAttribute

Returns whether the specified attribute is in the filter.

Syntax
C++
#include "DriverFilter.h"

int ClassFilter::passAttribute (
const unicode *attrName) ;

Parameters

attrName
(IN) Points to the name of the attribute to test.

Return Values

Returns zero if the specified attribute is not in the filter.

Returns non-zero if the specified attribute is in the filter.

Driver Filter Interface 199

passClass

Returns whether the specified class is in the filter.

Syntax
C++
#include "DriverFilter.h"

int DriverFilter::passClass (
const unicode *className) ;

Parameters

className

(IN) Points to the name of the class.

Return Values

Returns zero if the specified class is not in the filter.

Returns non-zero if the specified class is in the filter.

200 XML Interfaces for C++

Factory Interface

The factory interface creates implementations of the following XML interfaces:

* Section 8.1, “DOM,” on page 201
» Section 8.2, “SAX,” on page 201
* Section 8.3, “Serialized,” on page 201

8.1 DOM

The following functions or methods are used with DOM:

* Document_destroylnstance (page 207)

* Document_new (page 208)

* DriverFilter new (page 210)

* DriverFilter destroy (page 209)

* XmlDocument newFromDOM (page 224)
* XmlDocument_destroy (page 222)

8.2 SAX

The following functions or methods are used with SAX:

 InputSource destroy (page 214)

* InputSource new (page 215)

» Parser destroy (page 216)

* Parser new (page 217)

* SAXException new (page 218)

» SAXParseException_new (page 219)

* XmlDocument destroy (page 222)

* XmlIDocument newFromSAX (page 225)

8.3 Serialized

The following functions or methods are used with serialized:

* ByteArrayOutputStream_destroy (page 203)

* ByteArrayOutputStream_getBytes() (page 204)

* ByteArrayOutputStream_getDataSize() (page 205)
* ByteArrayOutputStream new (page 206)

* FileOutputStream_destroy (page 211)

* FileOutputStream newFromFILE (page 212)

Factory Interface 201

* FileOutputStream newFromName (page 213)
* XmlDocument destroy (page 222)
* XmlIDocument newFromBytes (page 223)

202 XML Interfaces for C++

ByteArrayOutputStream_destroy

Destroys a ByteArrayOutputStream object returned from FileOutputStream newFromName or
FileOutputStream_newFromFILE method.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

void IFAPI ByteArrayOutputStream destroy (
OutputStream *outputStream) ;

Parameters

outputStream

(IN) Points to the output stream to destroy.

Factory Interface 203

ByteArrayOutputStream_getBytes()

Returns the data in the ByteArrayOutputStream.

Syntax

C++

#include "InterfaceFactory.h"

DIRXML EXPORT
int IFAPI ByteArrayOutputStream getBytes (

OutputStream *outputStream,
unsigned char *buffer);
Parameters
outputStream

(IN) Points to the pointer returned by the ByteArrayOutputStream new method.

buffer
(OUT) Points to the buffer for the data.

Return Values

Returns the amount of data returned in the passed buffer.

Remarks

Notes: The passed buffer must be at least as large as the value returned from
ByteArrayOutputStream_getDataSize().

204 XML Interfaces for C++

ByteArrayOutputStream_getDataSize()

Returns the size of the data in the ByteArrayOutputStream

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

int IFAPI ByteArrayOutputStream getDataSize (
OutputStream *outputStream) ;

Parameters

outputStream

(IN) Points to the pointer returned by the ByteArrayOutputStream new method.

Remarks

See also the ByteArrayOutputStream_getBytes method.

Factory Interface 205

ByteArrayOutputStream_new

Creates a ByteArrayOutputStreamObject object with the passed initial buffer size and with the
passed growIncrement.

Syntax

C++

#include "InterfaceFactory.h"

DIRXML EXPORT
OutputStream * IFAPI ByteArrayOutputStream new (

int initialSize,
int growIncrement) ;
Parameters
initialSize

(IN) Specifies the initial buffer size. To use the default value, set to zero.

growlncrement

(IN) Specifies the amount to grow the buffer when neede. To use the default value, set to zero.

Remarks

What are the defaults?

206 XML Interfaces for C++

Document_destroylnstance

Destroys an interface returned from the Document new method.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

void IFAPI Document destroyInstance (
NAMESPACE (DOM) Document *document) ;

Parameters

document

(IN) Points to the document interface to destroy.

Factory Interface 207

Document_new

Returns a new DOM Document instance

Syntax

C++

#include "InterfaceFactory.h"

DIRXML EXPORT
NAMESPACE (DOM) Document * IFAPI Document new ();

Return Values

Returns a pointer to a document interface.

Remarks

The returned document must be freed by calling the destroy method or the
Document_destroyInstance method when finished.

208 XML Interfaces for C++

DriverFilter_destroy

Destroys a driver filter instance returned from the DriverFilter new method.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

void IFAPI DriverFilter destroy (
DriverFilter *driverFilter);

Parameters

driverFilter

(IN) Points to the driver filter instance to destroy.

Factory Interface 209

DriverFilter _new

Creates a new DriverFilter instance based on the DOM representation of an XDS driver filter
element.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

DriverFilter * IFAPI DriverFilter new (
NAMESPACE (DOM) Element *driverFilterElement) ;

Parameters

driverFilterElement

(IN) Points to an XDS driver filter element.

Return Values

If successful, returns a pointer to a driver filter interface.

If the driver filter element is invalid, returns zero.

Remarks

See also Chapter 7, “Driver Filter Interface,” on page 197.

210 XML Interfaces for C++

FileOutputStream_destroy

Destroys a FileOutputStream object returned from the FileOutputStream newFromFILE or
FileOutputStream newFromName method.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

void IFAPI FileOutputStream destroy (
OutputStream *outputStream) ;

Parameters

outputStream

(IN) Points to the out put stream to destroy.

Factory Interface 211

FileOutputStream_newFromFILE

Creates a FileOutputStream object from a FILE pointer.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

OutputStream * IFAPI FileOutputStream newFromFILE (
FILE *file);

Parameters
file

(IN) Points to a FILE structure to create into an output stream object.
Remarks

This method should be used with the XmlDocument::writeDocument or the
XmlDocument::getXmlWriter method from Nativelnterface.h.

The passed FILE must be opened for writing.

212 XML Interfaces for C++

FileOutputStream_newFromName

Creates a FileOutputStream object from a file name.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

OutputStream * IFAPI FileOutputStream newFromName (
const char *filename) ;

Parameters
filename

(IN) Points to the file to create into an output stream object.

Remarks

This method should be used with XmlDocument::writeDocument or XmlDocument::getXmlWriter
method from Nativelngerface.h.

The passed file name will be opened using fopen(), mode "wb+".

Factory Interface 213

InputSource_destroy

Destroys a SAX input source instance returned from the InputSource new method.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

void IFAPI InputSource destroy (
NAMESPACE (SAX) InputSource *inputSource) ;

Parameters

inputSource

(IN) Points to the input source to destroy.

214 XML Interfaces for C++

InputSource _new
Returns a new SAX input source instance for use with an instance of the SAX parser.
Syntax

C++

#include "InterfaceFactory.h"

DIRXML EXPORT
NAMESPACE (SAX) InputSource * IFAPI InputSource new ();

Remarks

The returned interface must be freed by calling the InputSource destroy method when finished.

Factory Interface 215

Parser_destroy

Destroys a SAX Parser instance returned from the Parser new method.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

void IFAPI Parser destroy (
NAMESPACE (SAX) Parser *parser) ;

Parameters

parser

(IN) Points to the parser interface to destroy.

216 XML Interfaces for C++

Parser_new
Returns a new SAX parser instance.
Syntax

C++

#include "InterfaceFactory.h"

DIRXML EXPORT
NAMESPACE (SAX) Parser * IFAPI Parser new ();

Return Values

Returns a pointer to a SAX parser interface.

Remarks

The returned interface must be freed by calling the Parser destroy method when finished.

Factory Interface 217

SAXException_new

Creates a new SAXException instance.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

SAXException * IFAPI SAXException new (
const unicode *message) ;

Parameters

message

(IN) Points to the unicode message for the SAX exception.

Return Values

Returns a pointer to a SAXException interface.

Remarks
This method is provided as a convenience for SAX Parser, SAX DocumentHandler, and

DTDHandler implementations. For more information, see Chapter 3, “Simple API for XML (SAX)
Interfaces,” on page 111.

218 XML Interfaces for C++

SAXParseException_new

Creates a new SAXExceptionParse instance.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

SAXParseException * IFAPI SAXParseException new (
const unicode *message) ;

Parameters

message

(IN) Points to the unicode message for the exception.

Return Values

Returns a pointer to a SAXParseException interface.

Remarks

This method is provided as a convenience for SAX Parser implemententations (see Section 3.10,
“SAXParseException,” on page 165).

Factory Interface 219

Trace_new

Creates a new trace instance with the passed identifying label.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

Trace * IFAPI Trace new (
const char *identifier);

Parameters

identifier

(IN) Points to a string that will appear at start of each trace message.

Return Values

Returns a pointer to the trace instance.

Remarks

This method .

220 XML Interfaces for C++

Trace_destroy

Destroys the trace instance created with the Trace new method.

Syntax

C++
#include "InterfaceFactory.h"

DIRXML EXPORT
void * IFAPI Trace destroy (

Trace *trace);
Parameters
trace

(IN) Points to the trace instance to destroy.

Return Values

Returns a pointer to the trace instance.

Factory Interface 221

XmiDocument_destroy

Destroys an XML document instance returned from the XmlDocument newFromSAX or
XmlDocument_newFromDOM method.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

void IFAPI XmlDocument destroy (
XmlDocument *xmlDocument) ;

Parameters

xmlDocument

(IN) Points to the interface to destroy.

222 XML Interfaces for C++

XmiDocument_newFromBytes

Creates a new XML document instance from an array of bytes

Syntax

C++

#include "InterfaceFactory.h"

DIRXML EXPORT
XmlDocument * IFAPI XmlDocument newFromBytes (

const unsigned char *bytes,
int length,
const unicode *encoding,
int endian) ;
Parameters
bytes
(IN) Points to an array of bytes with a serialized XML document.
length
(IN) Specifies the length of the byte array.
encoding
(IN) Points to a NULL-terminated unicode string that specifies the character encoding of the
byte array.
endian

(IN) Specifies the byte-order of the encoding in the array: zero for Intel and non-zero for
Motorola.

Remarks

The returned instance must be destroyed by calling the XmlDocument_destroy method.

The XmlDocument instance does not take ownership of the passed byte array and so it must be freed
after the XmIDocument instance is destroyed.

Factory Interface 223

XmiDocument_newFromDOM

Creates a new XML document instance from a DOM tree.

Syntax

C++

#include "InterfaceFactory.h"
DIRXML EXPORT

XmlDocument * IFAPI XmlDocument newEFromDOM (
NAMESPACE (DOM) Document *document) ;

Parameters

document

(IN) Points to a DOM document interface.

Return Values

Returns a pointer to an XML document interface.

Remarks
The getDocument method in Nativelnterface.h returns an instace of a DOM document interface.
The returned instance must be destroyed with a call to XmIDocument_destroy/()

The XmIDocument instance does NOT take ownership of the passed DOM Document instance and
so it must be freed AFTER the XmlIDocument instance is destroyed.

224 XML Interfaces for C++

XmiDocument_newFromSAX

Creates a new XML document instance from a SAX Parser and a SAX InputSource.

Syntax

C++

#include "InterfaceFactory.h"

DIRXML EXPORT

XmlDocument * IFAPI XmlDocument newFromSAX (
NAMESPACE (SAX) Parser *parser,
NAMESPACE (SAX) InputSource *inputSource) ;

Parameters

parser
(IN) Points to a SAX parser interface

inputSource

(IN) Points to a SAX input source interface.

Return Values

Returns a pointer to an XML document interface.

Remarks

In Nativelnterface.h, the getDocumentSAX method returns a SAX parser and the
getDocumentInputSource method returns an input source.

The returned instance must be destroyed by calling the XmlDocument destroy method.

The XML document instance does not take ownership of the passed SAX parser instance or the
passed SAX input source instance and so they must be freed after the XML document instance is
destroyed.

Factory Interface 225

226 XML Interfaces for C++

OutputStream.h

The following methods provide an interface for writing bytes to a byte sink:

* “close” on page 228
* “flush” on page 229
* “write” on page 230

* “write” on page 231

OutputStream.h 227

close

Flushes any unwritten bytes and closes the stream.

Syntax

C++

#include "OutputStream.h"

void OutputStream::close ();

228 XML Interfaces for C++

flush

Flushes any unwritten bytes to the stream.

Syntax

C++

#include "OutputStream.h"

void OutputStream::flush ();

OutputStream.h 229

write
Writes bytes to the stream.
Syntax

C++

#include "OutputStream.h"

int OutputStream::write (

const unsigned char *bytes,
int length) ;
Parameters
bytes

(IN) Points to the array of bytes to write.

length
(IN) Specifies the length of the byte array.

Return Values

Returns the number of bytes written.

230 XML Interfaces for C++

write

Writes a single byte to the stream.

Syntax
C++
#include "OutputStream.h"

int OutputStream::write (
unsigned char byte);

Parameters

byte
(IN) Specifies the byte to write.

Return Values

Returns the number of bytes written, either 0 or 1.

OutputStream.h 231

232 XML Interfaces for C++

Trace Interface

The following Trace interface allows a DirXML driver to writing messages to DSTrace. See also the
Trace new and Trace destroy methods (in Chapter 8, “Factory Interface,” on page 201), which
create and destroy the trace object.

For DirXML trace messages to display, the DSTrace facility must be enabled for DirXML messages.
Bring up the DSTrace screen on the NDS server, selcet "DirXML" and "DirXML Driver" messages,
and restart NDS.

» “getTraceLevel” on page 234

» “pushIndent” on page 235

* “poplndent” on page 236

» “resetIndent” on page 237

* “trace” on page 238

* “trace” on page 239

* “trace” on page 240

* “trace” on page 241

* “trace” on page 242

» “trace” on page 243

* “trace” on page 244

* “trace” on page 245

Trace Interface 233

getTracelLevel

Returns the current trace level.

Syntax
C++
#include "Trace.h"

int Trace::getTracelevel (
void) ;

Remarks

This method returns one of the following levels:

Level Description

NO_TRACE=0 Display no trace messages
DEFAULT_TRACE=1 Display trace messages
XML_TRACE=2 Display XML documents

234 XML Interfaces for C++

pushindent

Configures trace to indent the messages following the identifier string by the specified number of
tabs.

Syntax

C++

#include "Trace.h"

void Trace: :pushIndent (

int tabCount) ;
Parameters
tabCount

(IN) Specifies the number of tabs to indent.

Trace Interface 235

popindent
Restores the indent state after a pushIndent call.
Syntax

C++

#include "Trace.h"

voilid Trace::poplIndent (
void) ;

236 XML Interfaces for C++

resetindent
Resets the indent state to 0 regardless of any pushed levels.
Syntax

C++

#include "Trace.h"

void Trace::resetIndent (
void) ;

Trace Interface 237

trace

Displays a unicode message if the current trace level is greater than or equal to the
DEFAULT TRACE level.

Syntax
C++
#include "Trace.h"

void Trace::trace(
const unicode *message) ;

Parameters

message

(IN) Points to the message to display.

238 XML Interfaces for C++

trace

Displays a unicode message if the current trace level is greater than the specified level.

Syntax

C++

#include "Trace.h"

void Trace::trace(

const unicode *message,
int level);
Parameters
message

(IN) Points to the message to display.

level

(IN) Specifies the trace level.

Remarks

The DirXML trace facility supports the following levels.

Level Description

NO_TRACE=0 Display no trace messages
DEFAULT_TRACE=1 Display trace messages
XML_TRACE=2 Display XML documents

Trace Interface 239

trace

Displays a character string message if the current trace level is greater than or equal to the
DEFAULT TRACE level.

Syntax
C++
#include "Trace.h"

void Trace::trace(
const char *message) ;

Parameters

message

(IN) Points to the message to display.

240 XML Interfaces for C++

trace

Displays a character string message if the current trace level is greater than the specified level.

Syntax

C++

#include "Trace.h"

void Trace::trace(

const char *message,
int level);
Parameters
message

(IN) Points to the message to display.

level

(IN) Specifies the trace level.

Remarks

The trace facility supports the following levels.

Level Description

NO_TRACE=0 Display no trace messages
DEFAULT_TRACE=1 Display trace messages
XML_TRACE=2 Display XML documents

Trace Interface 241

trace

Displays an XML document of type Document if the current trace level is XML _TRACE or greater.

Syntax
C++
#include "Trace.h"

void Trace::trace(
Document *document) ;

Parameters

document

(IN) Points to the XML document to display.

242 XML Interfaces for C++

trace

Displays an XML document of type Document if the current trace level is greater than or equal to

the specified level.

Syntax

C++

#include "Trace.h"

void Trace::trace(

Document *document
int level);
Parameters
document

(IN) Points to the XML document to display.

int

(IN) Specifies the trace level.

Remarks

The trace facility supports the following levels.

Level Description

NO_TRACE=0 Display no trace messages
DEFAULT_TRACE=1 Display trace messages
XML_TRACE=2 Display XML documents

Trace Interface 243

trace

Displays an XML document of type XmlDocument if the current trace level is XML TRACE or
greater.

Syntax
C++
#include "Trace.h"

void Trace::trace(
XmlDocument *document) ;

Parameters

document

(IN) Points to the XML document to display.

244 XML Interfaces for C++

trace

Displays an XML document of type XmlDocument if the current trace level is greater than or equal

to the specified level.

Syntax

C++

#include "Trace.h"

void Trace::trace(

XmlDocument *document
int level);
Parameters
document

(IN) Points to the XML document to display.

int

(IN) Specifies the trace level.

Remarks

What levels are supported?

Trace Interface 245

246 XML Interfaces for C++

NdsDtd Interface

The following NdsDtd interfaces contains helper functions for creating input and output documents:

* “NdsDtd_getStrings” on page 248

» “NdsDtd_newInputDocument” on page 251

* “NdsDtd_newOutputDocument” on page 252
* “NdsDtd_addStatus” on page 253

NdsDtd Interface 247

NdsDtd_getStrings

Returns a read-only pointer to an NdsDtd structure.

Syntax

C++

#include

"NdsDtd.h"

DIRXML EXPORT
const NdsDtd * NDAPI

Remarks

NdsDtd getStrings();

The NdsDtd structure has the following format.

struct NdsDtd

{

//element tags

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

248 XML Interfaces for C++

unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode

b e S S S S S e S S N S S S I I S S e

TAG_NDS;
TAG_SOURCE;
TAG_INPUT;
TAG_OUTPUT;
TAG_PRODUCT;
TAG_CONTACT;
TAG_ADD;

TAG_MODIFY;
TAG_DELETE;
TAG_RENAME;
TAG_MOVE;

TAG_QUERY;

TAG_QUERY SCHEMA;
TAG_ADD_ASSOCIATION;

TAG_MODIFY ASSOCIATION;
TAG_REMOVE ASSOCIATION;

TAG _INIT PARAMS;
TAG_STATUS;
TAG_CHECK_PASSWORD;
TAG_INSTANCE;
TAG_SCHEMA DEF;
TAG_VALUE;
TAG_COMPONENT;
TAG_ASSOCIATION;
TAG_PARENT;
TAG_SEARCH CLASS;
TAG_SEARCH ATTR;
TAG_READ ATTR;
TAG_READ PARENT;
TAG ADD ATTR;
TAG_PASSWORD;
TAG_MODIFY ATTR;

//<nds>

//<source>
//<input>
//<output>
//<product>
//<contact>
//<add>

//<modify>
//<delete>
//<rename>

/ /<move>

//<query>
//<query-schema>
//<add-association>
//<modify-association>
//<remove-association>
//<init-params>
//<status>
//<check-password>
//<instance>
//<schema-def>
//<value>
//<component>
//<association>
//<parent>
//<search-class>
//<search-attr>
//<read-attr>
//<read-parent>
//<add-attr>
//<password>
//<modify-attr>

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

//attribute names

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode

unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode

b T S S S S S S e S S S R S S

b R S S S N S N R e S N S N N S

TAG_REMOVE_ VALUE;
TAG_REMOVE ALL VALUES;
TAG_ADD VALUE;
TAG_NEW_NAME;
TAG_ATTR;
TAG_AUTHENTICATION INFO;
TAG _DRIVER FILTER;
TAG_DRIVER_OPTIONS;
TAG_SUBSCRIBER OPTIONS;
TAG_PUBLISHER OPTIONS;
TAG _DRIVER_STATE;
TAG_SUBSCRIBER STATE;
TAG_PUBLISHER_STATE;
TAG_SERVER;

TAG_USER;
TAG_ALLOW_CLASS;
TAG_ALLOW_ATTR;
TAG_DRIVER_CONFIG;
TAG_CONFIG_OBJECT;
TAG_CLASS_DEF;
TAG_ATTR_DEF;

ATTR_NDSVERSION;
ATTR_DTDVERSION;
ATTR_VERSION;

ATTR ASN1ID;

ATTR TYPE;
ATTR_ASSOCIATION REF;
ATTR _NAMING;

ATTR TIMESTAMP;

ATTR NAME;
ATTR_STATE;
ATTR_SRC_DN;
ATTR_SRC_ENTRY ID;
ATTR DEST_DN;

ATTR _DEST ENTRY ID;
ATTR _CLASS_NAME;
ATTR_SCOPE;
ATTR_EVENT ID;
ATTR_ATTR_NAME;

ATTR TEMPLATE_ DN;
ATTR_OLD_SRC_DN;
ATTR_REMOVE OLD NAME;
ATTR LEVEL;

ATTR DISPLAY NAME;
ATTR_HIERARCHICAL;
ATTR_APPLICATION NAME;
ATTR_CONTAINER;

ATTR REQUIRED;
ATTR_MULTI VALUED;
ATTR _CASE_SENSITIVE;
ATTR_READ ONLY;

//<remove-value>
//<remove-all-values>
//<add-value>
//<new-name>

//<attr>
//<authentication-info>
//<driver-filter>
//<driver-options>
//<subscriber-options>
//<publisher-options>
//<driver-state>
//<subscriber-state>
//<publisher-state>
//<server>

//<user>
//<allow-class>
//<allow-attr>
//<driver-config>
//<config-object>
//<class-def>
//<attr-def>

//ndsversion
//dtdversion
//version
//asnlid

//type
//association-ref
//naming
//timestamp
//name

//state

//src—-dn
//src-entry-id
//dest-dn
//dest-entry-id
//class—-name
//scope
//event-id
//attr-name
//template-dn
//src-old-src-dn
//remove-old-name
//level
//display-name
//hierarchical
//application-name
//container
//required
//multi-valued
//case-sensitive
//read-only

NdsDtd Interface

249

//attribute values

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

}s

unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode
unicode

b T S S S S S N R e T S S S S S S . e S N R S N N

VAL NOT ASSOCIATED;
VAL ASSOCIATED;

VAL DISABLED;

VAL MIGRATE;

VAL PENDING;

VAL MANUAL;

VAL ENTRY;

VAL SUBORDINATES;
VAL SUBTREE;

VAL FATAL;

VAL ERROR;

VAL WARNING;

VAL SUCCESS;

VAL RETRY;

VAL STRING;

VAL TELENUMBER;

VAL INT;

VAL STATE;

VAL COUNTER;

VAL DN;

VAL INTERVAL;

VAL OCTET;

VAL TIME;

VAL STRUCTURED;

VAL DEFAULT;

VAL XML;

VAL TRUE;

VAL FALSE;

VAL DOT;

VAL QUALIFIED DOT;
VAL SLASH;

VAL QUALIFIED SLASH;
VAL LDAP;

VAL SUBSCRIBER;

VAL PUBLISHER;

VAL CURRENT NDS_VERSION;
VAL CURRENT DTD VERSION;

typedef struct NdsDtd NdsDtd;

250 XML Interfaces for C++

//"not-associated"
//"associated"
//"disabled"
//"migrate"
//"pending"
//"manual"
//"entry"
//"subordinates"
//"subtree"
//"fatal"
//"error"
//"warning"
//"success"
//"retry"
//"string"
//"teleNumber"
//"int"
//"state"
//"counter"
//"dn"
//"interval"
//"octet"
//"time"
//"structured"
//"default"
//"xml"

//"true"
//"false"
//"dot"
//"qualified-dot"
//"slash"
//"qualified-slash"
//"1ldap"
//"subscriber"
//"publisher"
//"8.5"

//"1.o"

NdsDtd_newlnputDocument

Creates a new <input> document and returns a pointer to the <input> element.

Syntax

C++

#include "NdsDtd.h"

DIRXML EXPORT
NAMESPACE (DOM) Element * NDAPI NdsDtd newInputDocument (
void) ;

Remarks

The method returns a pointer to the <input> element in the new document or 0 if error occurs
creating the document.

The created document has the following format:
<nds ndsversion="8.5" dtdversion="1.0"><input/></nds>

The caller is responsible for destroying the returned document. The document can be obtained by
calling the getOwnerDocument method on the returned element.

NdsDtd Interface 251

NdsDtd _newOutputDocument

Creates a new <output> document returns a pointer to the <output> element.

Syntax

C++

#include "NdsDtd.h"

DIRXML EXPORT
NAMESPACE (DOM) Element * NDAPI NdsDtd newOutputDocument (
void) ;

Remarks

This method returns a pointer to the <output> element in the new document or 0 if an occurs error
creating the document.

The created document has the following format:
<nds ndsversion="8.5" dtdversion="1.0"><output/></nds>

The caller is responsible for destroying the returned document. The document can be obtained by
calling the getOwnerDocument method on the returned element.

252 XML Interfaces for C++

NdsDtd_addStatus

Adds a <status> element to the input or output document.

Syntax

C++

#include "NdsDtd.h"

DIRXML EXPORT
NAMESPACE (DOM) Element * NDAPI NdsDtd addStatus (
NAMESPACE (DOM) Element *statusParent,

int statuslevel,
const unicode *message,
const unicode *eventId) ;
Parameters
statusParent

(IN) Points to the <input> or <output> element to which the <status> element is to be added

statusLevel

(IN) Specifies the status level for the <status> element. The following values are supported:

STATUS LEVEL FATAL (0)
STATUS LEVEL ERROR (1)
STATUS_LEVEL WARNING (2)
STATUS_LEVEL_SUCCESS (3)
STATUS_LEVEL RETRY (4)

message

(IN) Points to null-terminated message string. It may be set to 0.

eventlD

(IN) Points to a null-terminated event ID string. It may be set to 0. For an output document, it

should be set to the event ID string sent with the requesting input document.

Remarks

This method returns a pointer to the new <status> element or 0 if an error occurs.

The status element will have the level attribute set based on the statusLevel parameter. It may have

an eventld attribute or a text node child with any message passed.

NdsDtd Interface 253

254 XML Interfaces for C++

Revision History

The following table lists all changes made to the XML Interfaces for C++ documentation:

March 1, 2006 Made minor technical edits.
October 5, 2005 Transitioned to revised Novell documentation standards.
September 2000 Added information about the XmIDocument, Trace, and NdsDtd interfaces.

May 2000 Published on the NDK as a Leading Edge component.

Revision History 255

