
NetIQ® Identity Manager
Driver for REST Implementation Guide

November 2022

Legal Notice
For information about NetIQ trademarks, see https://www.netiq.com/company/legal/.

Copyright (C) 2020 NetIQ Corporation. All rights reserved.
2

https://www.netiq.com/company/legal/

Contents
About NetIQ Corporation 7
About This Guide 9
About this Book and the Library 11

1 Understanding the REST Driver 13
Key Terms. 13

Identity Manager . 14
Connected System . 14
Identity Vault . 14
Identity Manager Engine. 14
Driver Shim. 14
Driver Packages . 14
Remote Loader. 15

Driver Concepts. 15
Introduction . 15
How the Driver Works . 18
Understanding Driver Operation Data . 19

Support for Standard Driver Features . 21
Supported Operations . 22
Local Platforms. 22
Remote Platforms . 22
Supporting Driver Authentication . 22
Supporting Publish Mode . 23
Supporting Identity Manager Engine as a REST EndPoint . 24
Synchronizing Information . 25

2 Installing the Driver Files 27
Prerequisites for Driver Installation. 27
Installing the REST Driver Files . 27

3 Creating A New Driver Object 29
Creating the Driver Object in Designer . 29

Importing the Current Driver Packages . 29
Installing the Driver Packages . 31
Configuring the Driver Object. 41
Deploying the Driver Object . 42
Starting the Driver . 43

Activating the Driver . 44
Adding Packages to an Existing Driver. 44

4 Upgrading an Existing Driver 47
Supported Upgrade Paths . 47
Upgrading the Driver . 47
Contents 3

4 Con
. Upgrading the
Installed
Packages . 47
Applying the Driver Patch . 48

5 Customizing the Driver for RESTful Services 51
Modifying Java Extensions . 51
Modifying the JSON/XML Payload. 51
Using driver-operation-data. 52
Modifying JSON with Path Expressions . 52

JSON Path Expressions . 53
Usage of JSON Modifier for Publisher Polling . 55

REST Driver Pagination . 58
Supported Pagination techniques: . 58
Offset Pagination . 58
Cursor Pagination. 60

6 Securing Communication 65
Configuring the Publisher Channel . 65
Configuring the Subscriber Channel . 66

7 Managing the Driver 69

8 Use Case Based Deployment of REST Driver with Connected Applications 71
Sample Deployment of REST Driver for Salesforce . 71

Creating a Connected App for Identity Manager in Salesforce . 71
Terminologies of Querying Parameters used in Salesforce and Designer . 71
Sample Data Flow Between REST Driver and Salesforce . 73
Creating REST Driver Object for Connecting to Salesforce in Designer . 74

9 Troubleshooting the Driver 91
Hidden JSON Content in Output Transformation Policy Channels . 91
REST Driver Is Unable to Sync Configured Parameters and Passwords While Upgrading 91
Driver Shim Errors . 92
Troubleshooting Driver Processes . 92
Driver Reports an Error When a Password or an Attribute Value Contains the < Character 92

A Driver Properties 93
Driver Configuration . 93

Driver Module . 94
Authentication . 94
Startup Option . 94
Driver Parameters . 95
ECMAScript. .102
Global Configuration .102

Global Configuration Values. .103
Password Synchronization. .103
tents

Permission Collection and Reconciliation .104

B Using Java Extensions 105
Overview .105
Creating and Configuring Java Extensions. .106

C Trace Levels 109

D Supported JSON Format 111
Contents 5

6

About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in
your environment: Change, complexity and risk—and how we can help you control them.

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster
We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios
in which IT organizations like yours operate—day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion
We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and
you need someone that is truly easy to work with—for a change. Ultimately, when you succeed,
we all succeed.

Our Solutions
 Identity & Access Governance
 Access Management
 Security Management
 Systems & Application Management
 Workload Management
 Service Management
About NetIQ Corporation 7

Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. The documentation for this product is
available on the NetIQ Web site in HTML and PDF formats on a page that does not require you to log
in. If you have suggestions for documentation improvements, click Add Comment at the bottom of
any page in the HTML version of the documentation posted at www.netiq.com/documentation. You
can also email Documentation-Feedback@netiq.com. We value your input and look forward to
hearing from you.

Contacting the Online User Community
NetIQ Communities, the NetIQ online community, is a collaborative network connecting you to your
peers and NetIQ experts. By providing more immediate information, useful links to helpful
resources, and access to NetIQ experts, NetIQ Communities helps ensure you are mastering the
knowledge you need to realize the full potential of IT investments upon which you rely. For more
information, visit community.netiq.com.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
8 About NetIQ Corporation

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com

About This Guide

This guide explains how to install and configure the Identity Manager Driver for REST to establish
communication between the Identity Manager and the connected application. The guide includes
the following information:

 Chapter 1, “Understanding the REST Driver,” on page 13
 Chapter 2, “Installing the Driver Files,” on page 27
 Chapter 3, “Creating A New Driver Object,” on page 29
 Chapter 4, “Upgrading an Existing Driver,” on page 47
 Chapter 5, “Customizing the Driver for RESTful Services,” on page 51
 Chapter 6, “Securing Communication,” on page 65
 Chapter 7, “Managing the Driver,” on page 69
 Chapter 8, “Use Case Based Deployment of REST Driver with Connected Applications,” on

page 71
 Chapter 9, “Troubleshooting the Driver,” on page 91
 Appendix A, “Driver Properties,” on page 93
 Appendix B, “Using Java Extensions,” on page 105
 Appendix C, “Trace Levels,” on page 109
 Appendix D, “Supported JSON Format,” on page 111

Audience
This guide is intended for administrators implementing Identity Manager, application server
developers, Web services administrators, and consultants. You should also have an understanding of
DSML/SPML, REST, JSON, and HTML.

Feedback
We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates
For more information about the library for Identity Manager, see the following resources:

 Identity Manager documentation website (https://www.netiq.com/documentation/identity-
manager-48/)

 Identity Manager drivers documentation website (https://www.netiq.com/documentation/
identity-manager-48-drivers/)
About This Guide 9

https://www.netiq.com/documentation/identity-manager-48/
https://www.netiq.com/documentation/identity-manager-48-drivers/

10 About This Guide

About this Book and the Library

The Identity Manager Driver for REST Implementation Guide explains how to install and configure
the Identity Manager Driver for REST.

Intended Audience
This book provides information for administrators implementing Identity Manager, application
server developers, Web services administrators, and consultants, who also have an understanding of
DSML/SPML, REST, JSON and HTML.

Other Information in the Library
For more information about the library for Identity Manager, see the following resources:

 Identity Manager documentation website (https://www.netiq.com/documentation/identity-
manager-48/)

 Identity Manager drivers documentation website (https://www.netiq.com/documentation/
identity-manager-48-drivers/)
About this Book and the Library 11

https://www.netiq.com/documentation/identity-manager-48/
https://www.netiq.com/documentation/identity-manager-48-drivers/

12 About this Book and the Library

1 1Understanding the REST Driver

REST (Representational State Transfer) is an HTTP-based protocol used for Internet communication.
REST is the widely emerging standard for applications across World Wide Web, Software as a Service
(SaaS) applications, distributed systems, cloud-based services, web services and other business
critical applications. A RESTful service is implemented using the HTTP protocol and the principles of
REST.

The Identity Manager driver for REST enables identity provisioning and data synchronization
between an Identity Vault and any RESTful service.

The driver is not targeted to a specific Web service. The driver is a generic shim that handles the
HTTP transport of data between an Identity Vault and a RESTful service. For this driver, a RESTful
service is defined as an application that uses HTTP as the transport protocol. The REST driver
provides interfaces to transform events and data between Identity Vault and connected system. The
driver also exposes REST endpoints that enables Identity Manager to function as a RESTful service.

The driver provides the following key features:

 Supports Anonymous, Basic, and OAuth2.0 authentication
 Supports XML/JSON based requests between the Identity Manager and any RESTful services
 Provides interfaces to extend driver functionalities
 Exposes the REST endpoints that enables CRUD operation to be done in RESTful way on Identity

Vault
 Supports password synchronization

This section provides the following information for the REST driver:

 “Key Terms” on page 13
 “Driver Concepts” on page 15
 “Support for Standard Driver Features” on page 21

Key Terms
 “Identity Manager” on page 14
 “Connected System” on page 14
 “Identity Vault” on page 14
 “Identity Manager Engine” on page 14
 “Driver Shim” on page 14
 “Driver Packages” on page 14
 “Remote Loader” on page 15
Understanding the REST Driver 13

Identity Manager
NetIQ Identity Manager is a service that synchronizes data among servers in a set of connected
systems by using a robust set of configurable policies. Identity Manager uses the Identity Vault to
store shared information, and uses the Identity Manager engine for policy-based management of
the information as it changes in the vault or connected system. Identity Manager runs on the server
where the Identity Vault and the Identity Manager engine are located.

Connected System
A connected system is any system that can share data with Identity Manager through a driver. Any
RESTful service is a connected system for this driver.

Identity Vault
The Identity Vault is a persistent database powered by eDirectory and used by Identity Manager to
hold data for synchronization with a connected system. The vault can be viewed narrowly as a
private data store for Identity Manager or more broadly as a metadirectory that holds enterprise-
wide data. Data in the vault is available to any protocol supported by eDirectory, including the
NetWare Core Protocol (NCP), which is the traditional protocol used by iManager, and LDAP.

Because the vault is powered by eDirectory, Identity Manager can be easily integrated into your
corporate directory infrastructure by using your existing directory tree as the vault.

Identity Manager Engine
The Identity Manager engine is the core server that implements the event management and policies
of Identity Manager. The engine runs on the Java Virtual Machine in eDirectory.

Driver Shim
A driver shim is the component of a driver that converts the XML-based Identity Manager command
and event language (XDS) to the protocols and API calls needed to interact with a connected system.
The shim is called to execute commands on the connected system after the Output Transformation
runs. Commands are usually generated on the Subscriber channel but can be generated by
command write-back on the Publisher channel.

Driver Packages
The REST driver packages are available on the Package Update site. When you create a driver with
packages in Designer, Designer creates a set of policies and rules suitable for synchronizing with the
REST driver.

The REST driver packages are:

 NETQRESTBASE: A mandatory package for the REST driver containing basic driver settings with
handlers, to establish connection with the connected application.

 NETQRESTDCFG: An optional package with some basic default configuration, can be modified as
required to connect with the connected application accordingly.
14 Understanding the REST Driver

 NETQRESTJSON: Contains the default JSON policies for converting XDS to JSON format and vice
versa.

 NETQRESTPWD: Contains the policies for password synchronization.

Remote Loader
A Remote Loader enables a driver shim to execute outside of the Identity Manager engine (perhaps
remotely on a different machine). The Remote Loader is a service that executes the driver shim and
passes information between the shim and the Identity Manager engine.

For the REST driver, install the driver shim on the server where the Remote Loader is running. You
can choose to use SSL to encrypt the connection between the Identity Manager engine and the
Remote Loader. For more information, see “Configuring the Drivers to Run in Remote Mode with
SSL” in the NetIQ Identity Manager Setup Guide for Linux or “Configuring the Remote Loader and
Drivers” in the NetIQ Identity Manager Setup Guide for Windows.

Driver Concepts
This section contains the following information:

 “Introduction” on page 15
 “How the Driver Works” on page 18

Introduction
The following concepts are associated with the REST driver:

 “REST” on page 15
 “JSON” on page 16
 “Resource” on page 16
 “Resource Handler” on page 16
 “URL Placeholder” on page 17
 “XML” on page 17
 “HTTP” on page 18
 “HTTPS” on page 18

REST
REST is an HTTP-based protocol for exchanging messages over the network. Since REST is built on
HTTP protocol, it supports POST, PUT, GET, PATCH, DELETE methods to communicate with the
application logic.
Understanding the REST Driver 15

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#b192im1b
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#b192im1b
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

JSON
JSON (Java Script Object Notation) is a lightweight data-interchange format. JSON stores
information in a Key-Value pair format. The Identity Manager driver for REST uses JSON as a data
format for payload transfer. For more information about the JSON format used by the driver, see
Appendix D, “Supported JSON Format,” on page 111.

Resource
A resource is a user, group, or an object that the driver tries to synchronize with the Subscriber and
Publisher channels. To be more precise, a REST resource in the driver is a combination of the REST
application schema name and the Resource handler. For example, in the URL http://
ipaddress:port/User, User is an example of a REST resource that can be configured to use
Default as the Resource Handler. For more information, see “Resources” on page 100. To configure a
REST resource, Identity Manager provides Driver Configuration options.

Resource Handler
A Resource handler is the mapping of an Identity Manager operation with the REST method. To
configure a Resource handler, Identity Manager provides the Driver Configuration options. For more
information, see “Resources” on page 100.

A REST call invokes the REST method mapped with an Identity Manager operation. The REST driver
supports two Resource handler modes. They are:

 Default - Uses the default HTTP methods for configuring handlers and for managing operations
on respective resources. In this mode, the REST driver chooses the best possible mapping for
the corresponding Identity Manager operation. For example, an Identity Manager ADD
operation corresponds to a POST method and a MODIFY operation corresponds to PUT method
of the REST application.

The REST driver generates the complete URL of a REST method by combining the Base URL for
REST Resources and the Schema Name. For example, https:url.example.com/users, where
https:url.example.com is the base URL and users is the schema name. Table 1-1 lists the Identity
Manager operations, their corresponding default REST methods and the URLs.
16 Understanding the REST Driver

Table 1-1 Default Resource Handler

NOTE: In the GET method, the driver replaces the <filter> placeholder by ?search-
attr=<searchAttrName1> eq <value1>' and <searchAttrName2> eq
'<value2'>&read-attr='<readAttr1>’ and ‘<readAttr2>’ filter value.

 Custom - Uses the Resource Handler parameters in the Driver Configuration page to customize
the driver to suite your deployment scenario. In this mode, the driver generates the complete
URL of the REST method by combining the Base URL for REST Resources and the user specific
URL in the URL extension. For example, https:url.example.com/users

URL Placeholder
A URL placeholder is a variable defined in the URL extension within angular brackets. The attribute-
value pair in the URL token element of the driver-operation-data replaces this placeholder
value during the data transfer. For example, consider a sample URL http://ipaddress:port/
SchemaName/<association><api-version>. During the driver operation, the <api-
version> URL placeholder is replaced by the value in the element <url-token api-
version="1.0"/>.

XML
XML (Extensible Markup Language) is a generic subset of Standard Generalized Markup Language
(SGML) that allows for exchange of structured data on the Internet.

Identity Manager Operation REST Method URL

ADD POST http://ipaddress:port/
SchemaName<api-version>

MODIFY PUT http://ipaddress:port/
SchemaName/
<association><api-
version>

QUERY GET http://ipaddress:port/
SchemaName/
<association><filter><ap
i-version>

DELETE DELETE http://ipaddress:port/
SchemaName/
<association><api-
version>
Understanding the REST Driver 17

HTTP
HTTP is a protocol used to request and transmit data over the Internet or other computer network.
The protocol works well in an Internet infrastructure and with firewalls.

HTTP is a stateless request/response system because the connection is usually maintained only for
the immediate request. The client establishes a TCP connection with the server and sends it a
request command. The server then sends back its response.

HTTPS
HTTPS is the HTTP protocol over Secure Socket Layer (SSL) as a sub-layer under the regular HTTP
application layering. HTTPS encrypts and decrypts user page requests as well as the pages that are
returned by the Web server.

How the Driver Works
Figure 1-1 illustrates the data flow between Identity Manager and REST driver:

Figure 1-1 REST Driver Data Flow

The Identity Manager engine uses XDS, a specialized form of XML, to represent events in the Identity
Vault. Identity Manager passes the XDS to the driver policy, which consists of basic policies and
DirXML Script.

The driver uses a specialized form of XDS called <driver-operation-data>. The <driver-
operation-data> element encapsulates the metadata and payload for a REST request.

When an event occurs in the Identity Vault, Identity Manager creates an XDS command to represent
that event. Identity Manager passes the XDS command to the driver policy. The driver policy
transforms that XDS command with an output transformation policy.

Subscriber Channel

Publisher Channel

HTTP Requests

HTTP Response

JSON/
XML

JSON/
XML

XDS

XDS

HTTP Response

HTTP RequestsXDS

XDS

Subscriber
Transport

Publisher
Transport

Application

Identity M
anager Policy

and M
etadirectory Engine

converts xds to
json/xml and stores in
driver-operation-data

converts
driver-operation-data
json/xml to xds
18 Understanding the REST Driver

This output transformation policy generates the <driver-operation-data> that includes
commands, URIs, methods, and payload information for the REST request to successfully complete
on the Subscriber channel.

When the request completes, the driver processes responses and reports status of the completed
operation to the Identity Manager engine or the Identity Vault.

On the Publisher channel, the REST driver receives the REST request in <driver-operation-
data> format. Using the input policy, the driver converts the request to an XDS event and reports
back to the connected system.

Understanding Driver Operation Data
The driver shim applies special handling to Subscriber commands based on an XML element
embedded in the command, which appears in the driver shim as <driver-operation-data>. The
<driver-operation-data> element is added to the command from one of the Subscriber
channel policies.

The <driver-operation-data> element includes the metadata with the class-name, command,
REST method, and the URI. The command, the REST method, and the URI is required only if the
Resource handlers for the resources are not previously configured in the driver parameters. The
<request> tag includes the url-token associations, header content-type, and the data to be
transferred. The <value> tag includes the JSON payload information.

The <driver-operation-data> element for a REST request includes the following elements:

 <request>: Embeds the request information required to make the HTTP call.
 <url-token>: Includes the placeholder provided in the driver configuration for resource. For

example, during the driver configuration, version is the placeholder added to a resource URL /
User/<version>. The attribute-value pair in the URL token element replaces this placeholder.
For example, <url-token version="1.0"/>.

 <header>: Includes the additional headers that can be added to the REST request in addition to
the ones configured in the resource.

 <value>: Includes the XML or the JSON payload.

Below is a sample request to add new users with the same common name using the <driver-
operation-data> element:
Understanding the REST Driver 19

<driver-operation-data class-name="User" command="add">
 <request method="put" url="https://172.16.0.0:XXXX/User/rest123">
 <url-token association="rest123"/>
 <header content-type="application/json"/>
 <value>{"CN":[{"value":"rest6789"}],"Full
Name":[{"value":"rest6789 rest6789"}],"Given
Name":[{"value":"rest6789"}],","Surname":[{"value":"rest6789"}],"Login
Disabled":[{"value":"true"}]}
 </value>
 </request>
 <request method="put" url="https://172.16.0.0:XXXX/User/rest123">
 <url-token association="rest123"/>
 <header content-type="application/json"/>
 <value>{"CN":[{"value":"rest1234"}],"Full
Name":[{"value":"rest1234 rest1234"}],"Given
Name":[{"value":"rest1234"}],","Surname":[{"value":"rest1234"}],"Login
Disabled":[{"value":"true"}]}
 </value>
 </request>
</driver-operation-data>
You will get a response similar to the below sample for this request:

<input>
 <driver-operation-data class-name="User" command="add" remote-
host="172.16.0.0" url="http://172.16.0.0:XXXX/User">
 <header content-type="application/json"/>
 <response>
 <value>{"association":"noble2","CN":"noble2","Full
Name":"noble2","Given
Name":"noble2","nspmDistributionPassword":"novell@123","Surname":"noble2"}
 </value>
 </response>
 </driver-operation-data>
</input>

NOTE: The driver retains the <driver-operation-data> between any REST operations. The
connected application appends its response to the same <driver-operation-data> and returns
it back to the driver shim. A single <driver-operation-data> element is capable of
accommodating multiple requests that belong to the same class.

Response Headers
When a REST call is made to a REST service, a response is returned with tokens appended to the
header tag elements. These type of responses with tokens appended in the header tag are called
response headers.

The response-header tag in a driver trace is shown in the following example:
20 Understanding the REST Driver

<nds dtdversion="3.0">
 <source>
 <product build="XXXXXXX" version="1.1.2.0">Identity Manager REST
Driver</product>
 <contact>NetIQ Corporation.</contact>
 </source>
 <output>
 <status event-id="sles12sp2-name1-130177#20201015102623#1#2:45f7d829-
f562-4745-aa97-29d8f74562f5" level="success" type="driver-general">
 <driver-operation-data class-name="User" command="add" dest-
dn="\SLES12SP2_USRNAME_130177_TREE\data\users\netiq26" event-
id="sles12sp2-usrname-130177#20201015102623#1#2:45f7d829-f562-4745-aa97-
29d8f74562f5" src-dn="\SLES12SP2_USRNAME_130177_TREE\data\users\netiq26">
 <response>
 <url-token/>
 <content-type="application/json"/>
 <response-header Cache-Control="no-cache,must-revalidate,max-
age=0,no-store,private" Content-Type="application/json;charset=UTF-8"
Date="Thu, 15 Oct 2020 10:26:38 GMT" Expect-CT='max-age=86400, report-
uri="https://a.forcesslreports.com/Expect-CT-report/nullm"/>
 <value message="Created"
status="201">{"id":"0052v00000hxEXOAA2","success":true,"errors":[]}</
value>
 </response>
 </driver-operation-data>
 <operation-data association="" src-
dn="\SLES12SP2_USRNAME_130177_TREE\data\users\netiq26">
 <password-subscribe-status>
 <association/>
 </password-subscribe-status>
 </operation-data>
 </status>
 </output>
</nds>
In the above example, the tokens that are appended to the response-header tag are, Cache-
Control, Content-Type, Date, Expect-CT and report-uri.

Support for Standard Driver Features
The following sections provide information about how the REST driver supports the standard driver
features:

 “Supported Operations” on page 22
 “Local Platforms” on page 22
 “Remote Platforms” on page 22
 “Supporting Driver Authentication” on page 22
 “Supporting Publish Mode” on page 23
 “Supporting Identity Manager Engine as a REST EndPoint” on page 24
 “Synchronizing Information” on page 25
Understanding the REST Driver 21

Supported Operations
The REST driver performs the following operations on the Publisher and Subscriber channels:

 Publisher Channel: Add, Modify, Delete, and Query operations on User and Group objects, and
password synchronization.

 Subscriber Channel: Add, Modify, Delete, Migrate, and Query operations on User and Group
objects, Password Set/Reset operations only on User objects.

Local Platforms
A local installation is an installation of the driver on the Identity Manager server. The REST driver can
be installed on the operating systems supported for the Identity Manager server.

For information about the operating systems supported for the Identity Manager server, see the
NetIQ Identity Manager Technical Information website (https://www.netiq.com/products/identity-
manager/advanced/technical-information/).

Remote Platforms
The REST driver can use the Remote Loader service to run on a server other than the Identity
Manager server. The REST driver can be installed on the operating systems supported for the Remote
Loader.

For information about the supported operating systems, see the NetIQ Identity Manager Technical
Information website (https://www.netiq.com/products/identity-manager/advanced/technical-
information/).

Supporting Driver Authentication
The REST driver allows you to configure the following authentication methods. By default the REST
driver supports Basic authentication method. However, you can change the authentication method
using the Driver configuration.

 Anonymous: The driver uses anonymous authentication method for authenticating to a RESTful
service. On the Subscriber channel, this method allows valid connectivity between the REST
driver and any RESTful service that supports anonymous authentication method. On the
Publisher channel, the driver allows anonymous access to the Identity Vault for any RESTful
service.

 Basic: The driver uses the ID and password that you specify during driver configuration for
authenticating to the RESTful service. The driver considers the Publisher user credentials as the
basic authentication method credentials. In this authentication method, the driver uses these
credentials to connect to the endpoints exposed on the Publisher channel.

 OAuth2.0: The OAuth 2.0 is an open authentication protocol that enables any third-party
application to access data from an HTTP service to share data among various applications. The
driver supports OAuth2.0 authentication only on the Subscriber channel.
22 Understanding the REST Driver

https://www.netiq.com/products/identity-manager/advanced/technical-information/
https://www.netiq.com/products/identity-manager/advanced/technical-information/
https://www.netiq.com/products/identity-manager/advanced/technical-information/

Secured communication between client-server applications is established using authorization
tokens such as, JSON Web Tokens, Access Tokens and Refresh Tokens.
 JSON Web Token (JWT): JWT defines a compact and self-contained way for securely

transmitting information between parties. JWTs can be encrypted to provide secrecy
between client-server applications. For more information on JWT see, RFC7519.

 Access Token: Access tokens carry the necessary information to access a resource directly.
 Refresh Token: Refresh tokens carry the necessary information to get a new access token.

If an access token is expired, refresh token allows the application to obtain a new access
token without user's intervention. Refresh tokens have the potential for a longer lifetime,
whereas access tokens have a comparatively shorter lifetime.

IMPORTANT: For any operation performed on the connected application using OAuth 2.0, an
access token is sent for authorization of the user from the connected application. The access
token expires post the session idle time set for the connected application, or in case of a system
restart. The session idle time is configurable as per requirement. The connected application
displays Unauthozied Access error or an Invalid Session error for any request initiated with an
expired access token.The presence of a refresh token helps to re-establish the failed session
internally, by generating a new access token without the user having to log in again.

The resource owner grants authorization to a client application in cooperation with the
authorization server associated with the resource server. The resource owner grants
authorization to a client application using a in cooperation with the authorization server
associated with the resource server. When requesting for authorization, the client receives an
authorization grant from the resource owner. An authorization grant is an authorization
credential representing the resource owner authorization in the form of a JSON Web Token
(JWT). The two authorization grants supported by the REST driver are resource owner password
credentials and client credentials.
 Client Credentials - Uses the client ID and secret received while registering with the identity

provider.
 Resource Owner Password - Shares the resource owner credentials with the client

application. Uses the user name and password of the resource owner as authorization
grant to obtain an access token. For example, you can use your Twitter user name and
password to log in to a client application.

NOTE: Ensure that you set the appropriate query options while configuring the authorization
query in the driver parameters. For more information, see “Subscriber Settings” on page 95.

Supporting Publish Mode
The Identity Manager driver for REST supports Publish as Publisher option.

If Publish is selected, the driver exposes the REST endpoints to receive the events from the
connected RESTful service and then pushes the events to the Identity Vault.
Understanding the REST Driver 23

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Supporting Identity Manager Engine as a REST EndPoint
The REST driver exposes REST endpoints to the Identity Manager engine. This facilitates easy
communication between external applications and services with eDirectory and Identity Manager
engine via the REST API.

NOTE: The authentication header and content type are mandatory for REST methods.

Table 1-2 lists an example of POST REST method that the driver supports for a User class:

Table 1-2 POST Method

Table 1-3 lists an example of DELETE REST method that the driver supports:

Table 1-3 DELETE Method

Table 1-4 lists an example of PUT REST method that the driver supports:

METHOD: POST

User URI http://ipaddress:port/User

Payload {"association":”User2","Postal
Code":["324324324"],"Surname":["User2"],"CN":["Us
er2"]}

Authorization Basic c3lzdGVtL3N5c3RlbQ==

Content-Type application/json

Response 201 Created

METHOD: DELETE

User URI http://ipaddress:port/User/User2

Payload Not required

Authorization Basic c3lzdGVtL3N5c3RlbQ==

Content-Type application/json

Response 200 OK
24 Understanding the REST Driver

Table 1-4 PUT Method

Table 1-5 lists an example of GET REST method that the driver supports:

Table 1-5 GET Method

Synchronizing Information
Unlike most other drivers, the REST driver synchronizes protocols instead of objects. The driver
includes the following features:

 HTTP transport of data between the Identity Vault and a Web service
 SSL connections using the HTTPS protocol
 Subscriber HTTP and HTTPS proxy servers
 Potential to act as an HTTP or HTTPS listener for incoming connections on the Publisher channel
 Potential extensibility through customized Java code

For more information, see Appendix B, “Using Java Extensions,” on page 105.

METHOD: PUT

User URI http://ipaddress:portUser/User2

Authorization Basic c3lzdGVtL3N5c3RlbQ==

Content-Type application/json

Payload {"Title":[{"add":["Manager"]}]}

Response 204 No Content

METHOD: GET

User URI http://ipaddress:port/User?search-attr=given name
eq ‘test*user’ and cn eq ‘test*’&read-attr=title

Payload Not Applicable

Authorization Basic c3lzdGVtL3N5c3RlbQ==

Content-Type application/json

Response { "totalResults": 1, "results": [{ "src-dn": "\\GEN-
REST1\\system\\servers\\TestUser", "class-name":
"User", "Title": ["SE"] }]}
Understanding the REST Driver 25

26 Understanding the REST Driver

2 2Installing the Driver Files

You can install the REST driver on the Identity Manager server or on a remote server using the
Remote Loader.

To install the driver, you first need to install the driver files, install the driver packages, and then
modify the driver configuration to suit your environment. This section describes how to install the
driver files. For information on installing and configuring driver packages, see Chapter 3, “Creating A
New Driver Object,” on page 29.

 “Prerequisites for Driver Installation” on page 27
 “Installing the REST Driver Files” on page 27

Prerequisites for Driver Installation
The installation and configuration process for the driver requires Identity Manager and/or Remote
Loader, and Designer for Identity Manager. Before installing the driver, ensure that you download
the following software to your Identity Manager environment:

 Identity Manager 4.8 or later
 Designer 4.8 or later

Installing the REST Driver Files
You can install the REST driver files as a root user or as a non-root user in your system. The procedure
to install the driver files is similar for any connected application.

You must ensure that you have the required REST driver files such as,.zip,.rpm, and.jar etc.,
from the required driver build available in Micro Focus Download site to install the REST driver in
your system.

For example:

 .zip file: <IDM_REST_1100.zip>
 .rpm file: <netiq-DXMLRESTDrv.rpm>
 .jar file: <RESTUtils.jar>

This section explains the common procedure to install the driver files:

1 Download and unzip the contents of the <IDM_REST_1100.zip> file to a temporary location
on your computer.

2 Install the driver files (for IDM 4.7.4 and above) based on your user role.
To install as a:
 root user, see “Installing Driver Files as a Root User” on page 28.
 non-root user, see “Installing Driver Files as a Non-Root User” on page 28.
Installing the Driver Files 27

https://dl.netiq.com/index.jsp

Installing Driver Files as a Root User
1. Login as a root user on the server where you want apply the driver jar file.
2. Navigate to the extracted <IDM_REST_1100.zip> directory and perform one of the

following actions based on your platform:
 Linux: Install the new <netiq-DXMLRESTDrv.rpm> in your driver installation

directory by running the following command in a terminal window:
<rpm -Ivh (binaries-path)/netiq-DXMLRESTDrv.rpm>

 Windows: Copy the <RESTCommon.jar>, <RESTDriverShim.jar>,
<RESTUtil.jar> files to your driver installation folder. For example,
\NetIQ\IdentityManager\NDS (local installation) or
\Novell\RemoteLoader\64bit (remote installation).

Installing Driver Files as a Non-Root User
1. Verify that the /rpm directory exists and contains the _db.000 file.
2. The _db.000 file is created during a non-root installation of the Identity Manager engine.

The absence of this file indicates that the Identity Manager is not installed properly. In such
case, reinstall the Identity Manager to correctly place the file in the mentioned directory.

3. To set the root directory to the location of non-root in Identity Manager, enter the
following command in the command prompt:
ROOTDIR=<non-root eDirectory location>
This will set the environmental variables to the directory where Identity Manager is
installed as a non-root user.

4. For example, to install the REST driver rpm, use this command:
rpm --dbpath $ROOTDIR/rpm -Ivh --relocate=/usr=$ROOTDIR/opt/novell/
eDirectory --relocate=/etc=$ROOTDIR/etc --relocate=/opt/novell/
eDirectory=$ROOTDIR/opt/novell/eDirectory --relocate=/opt/novell/
dirxml=$ROOTDIR/opt/novell/dirxml --relocate=/var=$ROOTDIR/var --
badreloc --nodeps --replacefiles /home/user/netiq-DXMLRESTDrv.rpm

NOTE: In the above command /opt/novell/eDirectory is the location where non-
root Identity Manager is installed, and /home/user/ is the home directory of the non-
root user.

3 (Conditional) If the driver is running locally, start the Identity Manager and the driver instance.
4 (Conditional) If the driver is running with a Remote Loader instance, start the Remote Loader

instance and the driver instance.

You can also install the REST driver files on the Identity Manager server or a remote server that
supports Remote Loader configuration. For more information about installing Remote Loader, see
“Considerations for Installing Identity Manager Engine Components and Remote Loader” in the
NetIQ Identity Manager Setup Guide for Linux or “Planning to Install the Remote Loader” in the
NetIQ Identity Manager Setup Guide for Windows.
28 Installing the Driver Files

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#considerationsinstallenginecomponentsremoteloader
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#windowsinstallremoteloader
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

3 3Creating A New Driver Object

After the REST driver files are installed on the server where you want to run the driver (see
Chapter 2, “Installing the Driver Files,” on page 27), you can create the driver in Designer. You do so
by installing the driver packages and then modifying the driver configuration to suit your
environment.

The following sections provide instructions to create the driver:

 “Creating the Driver Object in Designer” on page 29
 “Activating the Driver” on page 44
 “Adding Packages to an Existing Driver” on page 44

Creating the Driver Object in Designer
The Designer tool helps you to create the REST driver object. You need to install the driver packages
and then modify the configuration to suit your environment. After you create and configure the
driver, you need to deploy it to the Identity Vault and start it.

 “Importing the Current Driver Packages” on page 29
 “Installing the Driver Packages” on page 31
 “Configuring the Driver Object” on page 41
 “Deploying the Driver Object” on page 42
 “Starting the Driver” on page 43

NOTE: NetIQ recommends that you use the new package management features provided in
Designer to create the REST driver. You should not create the driver objects by using the new Identity
Manager 4.0 and later or configuration files through iManager. This method of creating driver
objects is no longer supported.

Importing the Current Driver Packages
The driver packages contain the items required to create a driver, such as policies, entitlements,
filters, and Schema Mapping policies. These packages are only available in Designer and can be
updated after they are initially installed. You must have the most current version of the packages in
the Package Catalog before you can create a new driver object.

To verify that you have the most recent version of the driver packages in the Package Catalog:

1 Open Designer.
2 In the toolbar, click Help > Check for Package Updates.
Creating A New Driver Object 29

3 Click OK to update the packages
or
Click OK if the packages are up-to-date.

4 In the Outline view, right-click the Package Catalog.
5 Click Import Package.

6 Select any REST driver package
or
Click Select All to import all of the packages displayed.

By default, only the base packages are displayed. Deselect Show Base Packages Only to display
all packages.
30 Creating A New Driver Object

7 Click OK to import the selected packages, then click OK in the successfully imported packages
message.

8 After the current packages are imported, continue with “Installing the Driver Packages” on
page 31.

Installing the Driver Packages
After you have imported the current driver packages into the Package Catalog, you can install the
driver packages to create a new driver, or update the existing driver package. To install driver
packages, you have to set-up Identity Vault and the driver set.

Setting up Identity Vault

1 In Designer > Outline view, open your project.
2 Right click project > New > Identity Vault, or drag and drop Identity Vault from the Palette to

Modeler window.
The Add Server Association screen appears.

3 In the Add Server Association screen, select the following field values and click OK.

 Server DN
 Identity Manager Version
 Identity Manager Edition

The Identity Vault Credentials window appears.
4 In Identity Vault Credentials window, enter values as shown in the following table.
Creating A New Driver Object 31

5 Select Save Password, if you want to save your password for easy logins in the future.
6 Click OK.

The Identity Vault and the Driver Set appears in the Modeler window as shown in the following
image.

7 In the right pane, drag and drop the REST Server from the Tools tab to the Modeler.
8 In the Driver Configuration Wizard, select REST Base (Contains the base functionality for a

driver. You must install a driver base configuration package first).

NOTE: You can only select one base package.

9 Click Next.
10 Select the optional features to install for the REST driver, the options are:

 REST Default Package
 REST JSON Package: This package contains the default JSON configurations

Field Description

Host The identity vault hosting machine's IP address.

Username The name of the user, for example, Admin, if the user is an administrator.

Password Password of user to login to the identity vault.
32 Creating A New Driver Object

 REST Password Sync: This packages contains the policies that enable the REST driver to
synchronize passwords. If you want to synchronize passwords, verify that this option is
selected. For more information, see the NetIQ Identity Manager Password Management
Guide.

11 Click Next.
The package dependencies window appears.

12 (Conditional) Click OK to install the package dependency listed.
Creating A New Driver Object 33

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/password_management/password_management.pdf#netiqidmpasswordmanagement
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/password_management/password_management.pdf#netiqidmpasswordmanagement

NOTE: If there are any dependent packages associated with the selected package, you must
install them to proceed.

13 On the Driver Information page, specify a name for the driver, then click Next.

14 On the Install REST Base page, fill in the following fields for the Subscriber options, and click
Next.
34 Creating A New Driver Object

The Authentication Methods available are, Anonymous, Basic, and OAuth2.0, and the screen
defaults to Basic. Based on the selection you make the other fields appear.

NOTE: Fields marked with ** indicate common fields that appear for all Authentication
Methods.

 If you select Basic, the following fields appear:
 Authentication ID: Specify the authentication ID for Basic Authorization (on the HTTP

header) is used.
 Authentication Password: Specify the authentication password for Basic Authorization

(on the HTTP header) is used.
 Authorization Header Fields**: Click the icon to create authentication header fields.

Enter the required authentication header fields and supported values for the selected
authentication method.

 Truststore file**: Specify the path and the name of the keystore file that contains the
trusted certificates for the remote server to provide server authentication. For
example, C:\security\truststore. Leave this field blank when server
authentication is not used.
Creating A New Driver Object 35

 Set mutual authentication parameters**: Select Show if you want to set mutual
authentication information.
 Keystore file: Specify the path and the name of the keystore file that contains the

trusted certificates for the remote server to provide mutual authentication. For
example, C:\security\keystore. Leave this field blank when mutual
authentication is not used.

 Keystore password: Specify the password for the keystore file. Leave this field
blank when mutual authentication is not used.

 Http Connection Timeout**: Specify the HTTP connection time out value. The driver
waits for the time specified and terminates the HTTP connection. The timeout value
must be greater than zero.

 Proxy host and port**: Specify the host address and the host post when a proxy host
and port are used. For example: 192.168.0.0:port. Choose an unused port number on
your server. Otherwise, leave this field blank.

 HTTP errors to retry**: Specify the HTTP errors that must return a retry status. Error
codes must be a list of integers separated by spaces. For example, 307 408 503 504.

 Base URL for REST**: Specify the URL of the REST server or Web service.
 If you select OAuth2.0, the following fields appear:

 OAuth 2.0 Token Management: Select the token type as required. The available
options are, Generate Bearer Token, Generate JWT Token, Enter Bearer Token.
 Generate Bearer Token: It is an access token issued by servers to achieve multi-

server authentication.
If you select Generate Bearer Token, the following fields appear:

Field Description

Access Token URL Specify the URL of the server used for requesting token access.

User Name <username to login to the connected application>

User Password <password to login to connected application>

Authorization Query Options  grant_type: It is the method the application procures an access
token.
Enter the value as password.

 client_id: The client_id is a public identifier for the
connected application.
Enter the <client identification value>.
 For example:
<3MVG97quAmFZJfVwk3ylU.8elhRYBqG9h25m3TWewozjKn
FIY0HrhOEJl7LMET9HHocaHnTB1k04kophr1CgW>

 issuer: The authorization server's URL that uses the https
protocol.
36 Creating A New Driver Object

 Generate JWT Token: The JSON Web token is an access request token in the JSON
Web Token (JWT) format. It is an encrypted data string consisting of a header,
payload, and a signature, and is used to transfer authorization data in client-
server applications to authenticate the resource identity.
If you select Generate JWT Token, the following fields appear:

 Enter Bearer Token: Enter a bearer token if you already have one, and configure
the refresh_token and client_secret and set the passwords accordingly.

Secret Authorization Query
Options

NOTE: The * indicates mandatory
fields and ^ indicates non
mandatory fields.

These parameters are set to configure a refresh token. Though not
mandatory, if configured the set refresh token value is not overridden
with the new value when the access token expires. This may cause login
issues until the new refresh token is added.
 refresh_token^: Refresh Token is a web token to acquire new

access tokens when current access tokens expire or become
invalid. The authorization server of the connected system provides
refresh tokens to the Identity Manager to obtain new access token,
without user interaction in the backend.

 client_secret^: It is a secret pass phrase associated with the
refresh token.

Field Description

Authorization Query Options  client_id
 subject: The user’s unique identity for which the access token is

being requested.
 issuer
 client_auth_type: The client's authorization types configured

for granting access to the application.
 recipient_keystore: The keystore recipient alias used to look

up the digital signature which contains the public key in connected
application.

Secret Authorization Query
Options

 recipient_storepass: Password for the recipient keystore.
 recipient_keypass: Password for the recipient key value.
 refresh_token^
 client_secret^

Field Description
Creating A New Driver Object 37

If you select Enter Bearer Token, the following fields appear:

 If you select Anonymous: only Authorization Header Fields, Truststore file, Set mutual
authentication parameters, Http Connection Timeout, Proxy host and port, HTTP errors to
retry, and Base URL for REST Resources fields appear.

15 On the Install REST Base page, for the Publisher Options fill in the following fields, then click
Next.

Field Description

Bearer Token ID Enter the available bearer token.

Authorization Query Options  client_id
 issuer

Secret Authorization Query
Options

 refresh_token*: It is mandatory to configure for an available
bearer token.

 client_secret*

Field Description

Publisher Setting Specify the publisher setting for the REST driver. Based on the selection the
other fields appear. The available options are:
 Poll
 Publish
38 Creating A New Driver Object

These fields appear if
Publisher is selected.

Publisher Options:
 Listening IP address and port: Specify the IP address of the server where

this driver is installed and the port that this driver listens on. You can
specify 127.0.0.1, if there is only one network card installed in the server.
Choose an unused port number on your server. For example:
127.0.0.1:port. The driver listens on this address for incoming requests,
processes the requests, and returns a result.

 Authentication Method, Authentication ID and Authentication Password:
Select the authentication values respectively for the REST driver. The
authentication methods available are Anonymous and Basic. You need to
specify additional parameters depending upon the selected authentication
method.

For more information, see “Driver Configuration” on page 93.

Other options:
 KMO name: When this server is configured to accept HTTPS connections,

this is the KMO name in eDirectory. The KMO name is the name before the
- in the RDN. Leave this field blank when a keystore file is issued or when
HTTPS connections are not used.

 Keystore file: When this server is configured to accept HTTPS connections,
this is the path and the name of the keystore file. For example;
C:\security\keystore. Leave this field blank when a KMO name is
used or when HTTPS connections are not used.

 Keystore password: When this server is configured to accept HTTPS
connections, this is the keystore file password. Leave this field blank when
a KMO name is used or when HTTPS connections are not used.

 Server key alias: When this server is configured to accept HTTPS
connections, this is the key alias. Leave this field blank when a KMO name is
used or when HTTPS connections are not used.

 Server key password: When this server is configured to accept HTTPS
connections, this is the key alias password (not the keystore password).
Leave this field blank when a KMO name is used or when HTTPS
connections are not used.

 Require Mutual authentication: When using SSL, it is common to do only
server authentication. However, if you want to force both client and server
to present certificates during the handshake process, select Required.

 Heartbeat interval in minutes: Heartbeat is the interval to be specified for
data synchronization between Identity Manager and the connected system.
Leave this field blank to turn off the heartbeat.

Field Description
Creating A New Driver Object 39

16 (Conditional) Fill in the following fields for the Remote Loader information, then click Next.
To Connect To Remote Loader:
16a Select Yes or No to determine if the driver will use the Remote Loader.
16b If you select No, skip to Step 12.
16c If you select Yes, use the following information to complete the configuration of the

Remote Loader:

17 Review the summary of tasks that will be completed to create the driver, then click Finish.

These fields appear if Poll
is selected.

Configure Resource for poll:
 Schema name: Specify the class name of the user resource returned

present in application schema.
 Service Endpoints: Specify the REST URLs for the resource. Mention

queryable strings as %s.
 Method: Select the HTTP method to be used.
 Polling interval in minutes: Specify the polling interval in minutes. Default

is one minute.

Field Description

Host Name Specify the IP address or DNS name of the server where the Remote
Loader is installed and running.

Port Specify the port number for this driver. Each driver connects to the Remote
Loader on a separate port. The default value is 8090.

KMO Specify the key name of the Key Material Object that includes keys and
certificates for SSL. You use this parameter only when an SSL connection
exists between the Remote Loader and the Identity Manager engine.

NOTE: When this server is configured to accept HTTPS connections, this is
the KMO name in eDirectory. The KMO name is the name before the - in
the RDN. Leave this field blank when a keystore file is issued or when
HTTPS connections are not used.

Other Parameters Specify any other parameter required in the connection string. The
parameter must be a key-value pair. For example, paraName1=paraValue1

Remote Loader Password Specify a password to control access to the Remote Loader. It must be the
same password that is specified as the Remote Loader password on the
Remote Loader.

Driver Password Specify a password for the driver to authenticate to the Identity Manager
server. It must be the same password that is specified as the Driver Object
Password on the Remote Loader.

Field Description
40 Creating A New Driver Object

18 After you have installed the driver, you must change a few specific configurations based on your
environment. Proceed to “Configuring the Driver Object” on page 41.
 For more information, see:
 “Configuring the Remote Loader and Drivers” in the NetIQ Identity Manager Setup Guide

for Linux
 “Configuring the Remote Loader and Drivers” in the NetIQ Identity Manager Setup Guide

for Windows

Configuring the Driver Object
After the driver packages are installed, you need to configure the driver before it can run. You should
complete the following tasks to configure the driver:
Creating A New Driver Object 41

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configuringremoteloaderanddrivers
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

 Configure the driver parameters: There are many settings that can help you customize and
optimize the driver. The settings are divided into categories such as Driver Configuration, Engine
Control Values, and Global Configuration Values (GCVs). Although it is important for you to
understand all of the settings, your first priority should be to review the “Driver Parameters” on
page 95 located on the Driver Configuration page. The Driver Parameters let you configure the
publication method and other parameters associated with the Publisher channel.

 Customize the driver policies and filter: The driver policies and filter control data flow between
the Identity Vault and the application. You should ensure that the policies and filters reflect
your business needs. For instructions, see Chapter 5, “Customizing the Driver for RESTful
Services,” on page 51.

 Set Up a Secure HTTPS Connection: The connection between the driver and the RESTful
connected system can be configured to use a secure HTTPS connection rather than an HTTP
connection.

After completing the configuration tasks, continue with“Deploying the Driver Object” on page 42.

Deploying the Driver Object
After the driver object is created in Designer, it must be deployed into the Identity Vault.

1 In Designer, open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Live > Deploy.
3 If you are authenticated to the Identity Vault, skip to Step 4; otherwise, specify the following

information, then click OK.
42 Creating A New Driver Object

4 Read the deployment summary, then click Deploy.
5 Read the message, then click OK.
6 Click Define Security Equivalence to assign rights to the driver.

The driver requires rights to objects within the Identity Vault. The Admin user object is most
often used to supply these rights. However, you might want to create a DriversUser (for
example) and assign security equivalence to that user. Whatever rights that the driver needs to
have on the server, the DriversUser object must have the same security rights.
6a Click Add, then browse to and select the object with the correct rights.
6b Click OK twice.

For more information about defining a Security Equivalent User in objects for drivers in the
Identity Vault, see the NetIQ Identity Manager Security Guide

7 Click Exclude Administrative Roles to exclude users that should not be synchronized.
You should exclude any administrative User objects (for example, Admin and DriversUser) from
synchronization.
7a Click Add, then browse to and select the user object you want to exclude, then click OK.
7b Repeat Step 7a for each object you want to exclude, then click OK.

8 Click OK.
9 Continue with the next section,“Starting the Driver” on page 43.

Starting the Driver
When a driver is created, it is stopped by default. To make the driver work, you must start the driver.
Identity Manager is an event-driven system, so after the driver is started, it won’t do anything until
an event occurs. You can use iManager or dxevent commands to start the driver.

To start the driver using Designer:

1 In Designer, open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Live > Start Driver.

To start the driver using iManager:

1 Login to iManager,
2 Select Identity Manager Administration page, if not defaulted already.
3 Click Identity Manager Overview.
4 Browse to and select the driver set object that contains the driver you want to start.

Field Description

Host Specify the IP address or DNS name of the server hosting the Identity Vault.

Username Specify the DN of the user object used to authenticate to the Identity Vault.

Password Specify the user’s password.
Creating A New Driver Object 43

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/security/security.pdf#identitymanagersecurityguide

5 Click the driver set name to access the Driver Set Overview page.
6 Click the upper right corner of the driver, then click Start driver.

IMPORTANT: When you start the driver for the first time, don't add new users to the Publisher
channel until the first polling interval completes because the driver treats all users as existing users
and stores them in the change cache without sending them to the Identity Manager engine. It sends
the new users to the Identity Manager engine from the next polling interval. Therefore, ensure that
new users are added to the Publisher channel after the first polling cycle completes.

Activating the Driver
The Identity Manager driver for REST is part of the Identity Manager Integration Module for Tools.
This integration module includes the following drivers:

 Identity Manager driver for Delimited Text
 Identity Manager driver for SOAP
 Identity Manager driver for REST

This integration module requires a separate activation. After purchasing the integration module, you
will receive activation details in your NetIQ Customer Center.

If you create a new REST driver in a driver set that already includes an activated driver from this
integration module, the new driver inherits the activation from the driver set.

If you create the driver in a driver set that has not been previously activated with this integration
module, the driver will run in the evaluation mode for 90 days. You must activate the driver with this
integration module during the evaluation period; otherwise, the driver will be disabled.

If driver activation has expired, the trace displays an error message indicating that you need to
reactivate the driver to use it. For information on activation, refer to Activating Identity Manager in
the NetIQ Identity Manager Overview and Planning Guide.

Adding Packages to an Existing Driver
You can add new functionality to an existing driver by adding new packages to it.

1 Right-click the driver, then click Properties.
2 Click Packages, then upgrade the already installed REST Base package.

2a Select the package from the list of packages, then click the Select Operation cell.
2b Click Upgrade from the drop-down list, then click Apply.
2c Click OK to close the Package Management page.

You can upgrade the Password Synchronization package in a similar way.
3 Click the Add Packages icon .
4 Select the packages to install.
5 (Optional) If you want to see all available packages for the driver, clear the Show only applicable

package versions option, if you want to see all available packages for the driver, then click OK.
44 Creating A New Driver Object

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/idm_overview_planning/idm_overview_planning.pdf#activatingidentitymanager
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/idm_overview_planning/idm_overview_planning.pdf#netiqidentitymanageroverviewandplanning

This option is only displayed on drivers. By default, only the packages that can be installed on
the selected driver are displayed.

6 Click Apply to install all of the packages listed with the Install operation.
7 (Conditional) Fill in the fields with appropriate information to install the package you selected

for the driver, then click Next.
8 Read the summary of the installation, then click Finish.
9 Click OK to close the Package Management page after you have reviewed the installed

packages.
10 Modify the driver configuration settings. See “Configuring the Driver Object” on page 41.
11 Deploy the driver. See “Deploying the Driver Object” on page 42.
12 Start the driver. See “Starting the Driver” on page 43.
13 Repeat Step 1 through Step 9 for each driver where you want to add the new packages.
Creating A New Driver Object 45

46 Creating A New Driver Object

4 4Upgrading an Existing Driver

The following sections provide information to help you upgrade an existing driver:

 “Supported Upgrade Paths” on page 47
 “Upgrading the Driver” on page 47

Supported Upgrade Paths
You can upgrade from 1.0 version of the REST driver to 1.0.1.1 version.

Upgrading the Driver
The REST driver upgrade process involves upgrading the installed driver packages and updating the
driver files.

This section provides general instructions for updating a driver. For information about updating the
driver to a specific version, search for that driver patch in the NetIQ Patch Finder Download Page and
follow the instructions from the Readme file accompanying the driver patch release.

 “Upgrading the Installed Packages” on page 47
 “Applying the Driver Patch” on page 48

Upgrading the Installed Packages
1 Download the latest available packages.

To configure Designer to automatically read the package updates when a new version of a
package is available, click Windows > Preferences > NetIQ > Package Manager > Online Updates in
Designer. For more information about managing packages, see the NetIQ Designer for Identity
Manager Administration Guide.

2 Upgrade the installed packages.
2a Open the project containing the driver.
2b Right-click the driver for which you want to upgrade an installed package, then click Driver

> Properties.
2c Click Packages.

If there is a newer version of a package, there is check mark displayed in the Upgrades
column.

2d Click Select Operation for the package that indicates there is an upgrade available.
2e From the drop-down list, click Upgrade.
2f Select the version that you want to upgrade to, then click OK.
Upgrading an Existing Driver 47

http://download.novell.com/patch/finder/#bu=novell&bu=netiq&bu=suse&familyId=7365&productId=45026&dateRange=&startDate=&endDate=&priority=&architecture=&keywords=&xf=7365
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#bookinfo

NOTE: Designer lists all versions available for upgrade.

2g Click Apply.
2h (Conditional) Fill in the fields with appropriate information to upgrade the package, then

click Next.
Depending on which package you selected to upgrade, you must fill in the required
information to upgrade the package.

2i Read the summary of the packages that will be installed, then click Finish.
2j Review the upgraded package, then click OK to close the Package Management page.

For detailed information, see the “Upgrading Installed Packages” in the NetIQ Designer for
Identity Manager Administration Guide.

Applying the Driver Patch
The driver patch updates the driver files. You can install the patch as a root or non-root user.

 “Prerequisites” on page 48
 “Applying the Patch as a Root User” on page 48
 “Applying the Patch as a Non-Root User” on page 49

Prerequisites
Before installing the patch, complete the following steps:

1 Take a back-up of the current driver configuration.
2 (Conditional) If the driver is running with the Identity Manager engine, stop the Identity Vault

and the driver instance.
3 (Conditional) If the driver is running with a Remote Loader instance, start the Remote Loader

instance and the driver instance.
4 In a browser, navigate to the NetIQ Patch Finder Download Page.
5 Under Patches, click Search Patches.
6 Specify Identity Manager nn REST DRIVER nn in the search box.
7 Download and unzip the contents of the patch file to a temporary location on your server.

For example, IDM45_REST_1001.zip.

Applying the Patch as a Root User
In a root installation, the driver patch installs the driver files RPMs in the default locations on Linux.
On Windows, you need to manually copy the files to the default locations.

1 Update the driver files:
 Linux: To upgrade the existing RPM, log in as root and run the following command in a

command prompt:
rpm -Uvh <Driver Patch File Temporary Location>/linux/netiq-
DXMLRESTDrv.rpm
48 Upgrading an Existing Driver

http://download.novell.com/patch/finder/#bu=novell&bu=netiq&bu=suse&familyId=7365&productId=45026&dateRange=&startDate=&endDate=&priority=&architecture=&keywords=&xf=7365
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#packmanupgrade
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#bookinfo

For example, rpm -Uvh <IDM4.5_FanoutAgent_1110.zip>/linux/netiq-
DXMLRESTDrv.rpm

 Windows: Navigate to the <Extracted Driver Patch File Temporary
Location>\windows folder and copy the following files to <IdentityManager
installation>\NDS\lib or <IdentityManager
installation>\RemoteLoader\lib folder:
 RESTCommon.jar
 RESTDriverShim.jar
 RESTUtil.jar

2 (Conditional) Start the Remote Loader instance.
3 (Conditional) Start the REST driver.

Applying the Patch as a Non-Root User
1 Verify that <non-root eDirectory location>/rpm directory exists and contains the file,
_db.000.
If _db.000 is not present in this directory, the installation will not succeed.

2 To set the root directory to non-root eDirectory location, enter the following command in the
command prompt:

ROOTDIR=<non-root eDirectory location>
This will set the environmental variables to the directory where eDirectory is installed as a non-
root user.

3 To install the driver files, enter the following command:

rpm --dbpath $ROOTDIR/rpm -Uvh --relocate=/usr=$ROOTDIR/opt/novell/
eDirectory --relocate=/etc=$ROOTDIR/etc --relocate=/opt/novell/
eDirectory=$ROOTDIR/opt/novell/eDirectory --relocate=/opt/novell/
dirxml=$ROOTDIR/opt/novell/dirxml --relocate=/var=$ROOTDIR/var --
badreloc --nodeps --replacefiles <rpm-location>
For example, to install the REST driver RPM, use this command:

rpm --dbpath $ROOTDIR/rpm -Uvh --relocate=/usr=$ROOTDIR/opt/novell/
eDirectory --relocate=/etc=$ROOTDIR/etc --relocate=/opt/novell/
eDirectory=$ROOTDIR/opt/novell/eDirectory --relocate=/opt/novell/
dirxml=$ROOTDIR/opt/novell/dirxml --relocate=/var=$ROOTDIR/var --
badreloc --nodeps --replacefiles /home/user/novell-DXMLRESTDrv.rpm
Upgrading an Existing Driver 49

50 Upgrading an Existing Driver

5 5Customizing the Driver for RESTful Services

The following sections provide information to help you understand the available customization to
make the driver connect to any RESTful service:

 “Modifying Java Extensions” on page 51
 “Modifying the JSON/XML Payload” on page 51
 “Using driver-operation-data” on page 52
 “Modifying JSON with Path Expressions” on page 52
 “REST Driver Pagination” on page 58

Modifying Java Extensions
Use the java extensions to modify a REST request or response before it is submitted or received on
the Subscriber or Publisher channels. To create Java extensions, the modifier class file (for example
<SFDocModifier.jar>) must be available in the path /opt/novell/eDirectory/lib/
dirxml/classes.

You can modify the following requests and responses using Java extensions:

 Subscriber request document to the connected application.
 Subscriber response document for Identity Manager.
 Publisher request document sent through the Publisher channel to the connected application.
 Publisher response document received through the publisher channel to Identity Manager.

For more information, see Appendix B, “Using Java Extensions,” on page 105.

Modifying the JSON/XML Payload
After you install the default JSON package, you can transform the payload generated in the
<driver-operation-data> to a format supported by your RESTful service. You can modify the
JSON/XML payloads that are received in the Subscriber and Publisher channels through conversion
policies. The conversion policies modify the request and response documents to a compatible
format that is easily comprehended by both Identity Manager and the connected application..

The conversion can be done using any of the following three methods:

 Use the default XDS to JSON conversion policy to transform the payload generated in the
<driver-operation-data> to a format supported by your RESTful service.

 Create your own XDS to JSON conversion policy, and ensure to keep the payload in <driver-
operation-data> so that the driver transfers the same to the connected application. The
steps to disable an existing policy and add a new policy is shown below:

1. Select the REST Driver Object in designer.
Customizing the Driver for RESTful Services 51

2. Select Outline tab.
3. Select Output from the transformation diagram. This shows you all the output

transformation policies.
4. Navigate to the Policy Set tab and select the XDS-JSON policy (for example,

<NETQRESTJSON-otp-XDStoJSON>) you want to disable.

5. Click the icon to disable the policy as shown in the following image.

6. Click , in the Policy Set section to add the new policy.
7. Name the policy accordingly.
8. Double click the newly created policy, and navigate to XML Source tab in the right pane.
9. Paste the new xml content for this policy in the display area.

10. Save all your changes and deploy these policies to Identity Manager.
 Driver shim automatically performs the conversion without any conversion policies.

Using driver-operation-data
You can use the policies to add a new <driver-operation-data> element to the Subscriber
channel, or submit a new custom created <driver-operation-data> element. The <driver-
operation-data> element is processed irrespective of the configured handlers. For more
information, see “Understanding Driver Operation Data” on page 19.

Modifying JSON with Path Expressions
The payload generated in the <driver-operation-data> needs to be transformed into a format
supported by your RESTful service. You can modify the JSON payloads that are received in the
Subscriber and Publisher channels through conversion policies. The conversion policies modify the
request and response documents to a compatible format that is easily comprehended by both
52 Customizing the Driver for RESTful Services

Identity Manager and the connected application. The REST Driver requires JSON inputs to be in a
certain format, so in order to help the user to perform operations such as extracting a value, and
modifying the data using the following predefined functions that are available.

JSON Path Expressions
JSON Path expressions resemble XPath expressions for XML and provide a way to navigate the JSON
structure.

Following are the delimiters used in constructing JSON Path:

You can execute the above JSON path expressions using the available functions with examples given
below:

1. getJSONValue: This function parses the input JSON string and returns the JSON path
expressions.

Example:

Syntax: String getJsonValue(String jsonstring, String jsonPath)

Input parameters:
 jsonstring =
"emails": [
{
"value": "adrian.stephens@microfocus.com",
"primary": true
}
],
"name": {
"givenName": "Adrian",
"familyName": "Stephens"

Path expression Description

$ To provide the root object or array.

.property To access the specified property in a parent object.

[n] To access the n-th element from an array. Indexes are
0-based.

To access objects in JSON Array Ex: [id eq P000000]
Note:

Based on its attribute, we can filter JSON objects
contained within an array.

[property eq value] Iterates JSON object array and returns object whose
.property is equal to the specified value.
Customizing the Driver for RESTful Services 53

},
 jsonPath = $.name

Output:

Token Value: "{"givenName":"Adrian","familyName":"Stephens"}"
2. modifyJson: This function modifies the input JSON string with respect to the given JSON path

expressions according to the requirement.
Example:
Syntax: public static String modifyJson (String oldjson, String newjson)
Input parameters:
 oldjson =
"emails": [
{
"value": "adrian.stephens@microfocus.com",
"primary": true
}
],
"name": {
"givenName": "Adrian",
"familyName": "Stephens"
},

 newjson = {"givenName1":"$.name.givenName"}
Output:
Token Value: {"givenName1":"Adrian"}

3. createJson: This function helps to create a new JSON with respect to the given JSON path
expressions.
Example:
Syntax: public static String createJson (String newjson, String oldjson)
Input parameters:
 oldjson =
"emails": [
{
"value": "adrian.stephens@microfocus.com",
"primary": true
}
],
"name": {
"givenName": "Adrian",
"familyName": "Stephens"
},
54 Customizing the Driver for RESTful Services

 newjson =
{"$.name.firstname":"abc","$.name.givenName":"$.name.givenName","$.
emails[].value":"abc@mf.com"}

Output:
Token Value:
"{"emails":[{"value":"abc@mf.com"}],"name":{"firstname":"abc","givenNa
me":"Adrian"}}"

Following are JSON modifiers functions available in policy:

 JSONCreator (https://www.netiq.com/documentation/identity-manager-developer/driver-
developer-kit/rest-driver-developer-docs/com/novell/nds/dirxml/driver/rest/common/
JSONCreator.html?)

 JSONParser (https://www.netiq.com/documentation/identity-manager-developer/driver-
developer-kit/rest-driver-developer-docs/com/novell/nds/dirxml/driver/rest/common/
JSONParser.html?)

Usage of JSON Modifier for Publisher Polling
This section explains the procedure to use JSON modifier with an example:

1. Add the following paths in policy to call json modifier functions:

xmlns:jc=”https://www.netiq.com/documentation/identity-manager-developer/driver-
developer-kit/rest-driver-developer-docs/com/novell/nds/dirxml/driver/rest/common/
JSONCreator.html”.

xmlns:jp="https://www.netiq.com/documentation/identity-manager-developer/driver-
developer-kit/rest-driver-developer-docs/com/novell/nds/dirxml/driver/rest/common/
JSONParser.html”.

2. Verify that the HTTP response string length is greater than zero.
3. Extract the HTTP response and set it to a local variable.
4. Extract the Resource array from the response using the getJsonValue function.
5. Add modification rules for User and Group resources with the help of JSON path expressions.

Example : { "class-name" : "User","CN": "$.userName", "Surname": "$.name.familyName",
"workforceID": "$.id" }

6. Modify the resource according to the modification rules using modifyJsonArray function.
7. Use creation Rules to create new json with modified resource array.

Example: {"$.results" : "$"}. Here we are creating new json which has a result attribute
and its value is mapped to a modified json array.

8. Call createJson function and pass the above creation rules and modified JSON array.
9. Remove existing http response from driver operation data and add new modified json created

from createJson function.

Following policy illustrates the above steps:
Customizing the Driver for RESTful Services 55

https://www.netiq.com/documentation/identity-manager-developer/driver-developer-kit/rest-driver-developer-docs/com/novell/nds/dirxml/driver/rest/common/JSONParser.html?
https://www.netiq.com/documentation/identity-manager-developer/driver-developer-kit/rest-driver-developer-docs/com/novell/nds/dirxml/driver/rest/common/JSONCreator.html?

<arg-actions>
 <do-if>
 <arg-conditions>
 <and>
 <if-xpath op="true">string-length(./response/value/text())>0</if-
xpath>
 </and>
 </arg-conditions>
 <arg-actions>
 <do-set-local-variable name="httpResponse">
 <arg-string>
 <token-xpath expression="./response/value"/>
 </arg-string>
 </do-set-local-variable>
 <do-if>
 <arg-conditions>
 <and>
 <if-class-name op="equal">User</if-class-name>
 </and>
 </arg-conditions>
 <arg-actions>
 <do-set-local-variable name="modificationRules">
 <arg-string>
 <token-text>{"class-name" : "User","CN": "$.name", "Surname":
"$.lastName", "workforceID": "$.id"}</token-text>
 </arg-string>
 </do-set-local-variable>
 <do-set-local-variable name="responseArray">
 <arg-string>
 <token-xpath expression='jp:getJsonValue($httpResponse,
"$.users")'/>
 </arg-string>
 </do-set-local-variable>
 </arg-actions>
 </do-if>
 <do-if>
 <arg-conditions>
 <and>
 <if-class-name op="equal">Group</if-class-name>
 </and>
 </arg-conditions>
 <arg-actions>
 <do-set-local-variable name="modificationRules">
 <arg-string>
 <token-text>{ "CN" : "$.name", "Description" : "$.id", "class-
name" : "Group" }</token-text>
 </arg-string>
 </do-set-local-variable>
 <do-set-local-variable name="responseArray">
 <arg-string>
 <token-xpath expression='jp:getJsonValue($httpResponse,
"$.groups")'/>
 </arg-string>
 </do-set-local-variable>
 </arg-actions>
56 Customizing the Driver for RESTful Services

 <arg-actions/>
 </do-if>
 <do-set-local-variable name="modifiedArray">
 <arg-string>
 <token-xpath expression="jp:modifyJsonArray($responseArray,
$modificationRules)"/>
 </arg-string>
 </do-set-local-variable>
 <do-set-local-variable name="creationRules">
 <arg-string>
 <token-text xml:space="preserve">{"$.results" : "$"}</token-text>
 </arg-string>
 </do-set-local-variable>
 <do-set-local-variable name="modifiedHttpResponse">
 <arg-string>
 <token-xpath expression="jc:createJson($creationRules,
$modifiedArray)"/>
 </arg-string>
 </do-set-local-variable>
 <do-strip-xpath expression="./response/value/text()"/>
 <do-append-xml-text expression="./response/value">
 <arg-string>
 <token-local-variable name="modifiedHttpResponse"/>
 </arg-string>
 </do-append-xml-text>
 <do-set-local-variable name="xmlInput" notrace="true" scope="policy">
 <arg-string>
 <token-base64-encode charset="UTF-8">
 <token-replace-all regex="&lt;" replace-with="<">
 <token-xml-serialize>
 <token-xpath expression="."/>
 </token-xml-serialize>
 </token-replace-all>
 </token-base64-encode>
 </arg-string>
 </do-set-local-variable>
 <do-set-local-variable name="applicationContent" notrace="true"
scope="policy">
 <arg-string>
 <token-xpath expression="rs:jsonToXDS($xmlInput)"/>
 </arg-string>
 </do-set-local-variable>
 <do-if notrace="true">
 <arg-conditions>
 <and>
 <if-local-variable mode="nocase" name="applicationContent"
op="not-equal"/>
 </and>
 </arg-conditions>
 <arg-actions>
 <do-set-local-variable name="xdscontent" scope="policy">
 <arg-node-set>
 <token-xml-parse>
Customizing the Driver for RESTful Services 57

 <token-local-variable name="applicationContent"/>
 </token-xml-parse>
 </arg-node-set>
 </do-set-local-variable>
 <do-clone-xpath dest-expression=".." src-expression="$xdscontent/
input/modify"/>
 </arg-actions>
 <arg-actions/>
 </do-if>
 <do-strip-xpath expression="."/>
 </arg-actions>
 <arg-actions/>
 </do-if>
</arg-actions>

REST Driver Pagination
REST API pagination is the process that helps to divide the datasets into distinct pages. It is better to
break up the dataset into smaller chunks which will make the response quicker and it is easy to
handle.

Supported Pagination techniques:
There are three pagination techniques that can be used:

 Offset Pagination
 Cursor Pagination
 Custom Pagination

Offset Pagination
Pagination technique that uses an offset parameter to determine the starting point of the next set of
results.

To update the pagination details, perform the following steps:

1 In Identity Console, go to Drivers.
2 Select the driver that you want to perform pagination.
3 Navigate to Configuration.
4 Click Driver parameters drop-down and go to Publisher Settings.

Parameters Description

Offset Starting point

Limit Size of the page

Total results Response attribute in the dataset that gives the total
count or manually enter the total count.
58 Customizing the Driver for RESTful Services

5 Under Publisher Option, select Publisher setting to Poll Mode.
6 Under Optional Header Fields, select the Pagination Type to Offset Pagination.
7 Enter the required details in the following field:

7a Offset
7b Page Size
7c Total Count

8 Click Save.

Example
For the following SAP Cloud payload, enter the input parameters as given below:

Input Parameters:

 Offset = 1
 Page Size = 2
 Total Count = totalResults (or) 1209

SAP Cloud payload:

{
"schemas": [
"urn:ietf:params:scim:api:messages:2.0:ListResponse"
],
"totalResults": 1209,
"itemsPerPage": 100,
"Resources": [
{
"id": "P000000",
"userUuid": "93876fe3-8f0c-4d2c-9db2-caac1adf83e7",
"displayName": "Adrian Stephens",
"emails": [
{
"value": "adrian.stephens@microfocus.com",
"primary": true
}
],
"name": {
"givenName": "Adrian",
"familyName": "Stephens"
},
"urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {}
},
{
"id": "P000016",
"userUuid": "6bb51346-e077-43ef-810c-82bbb64313ec",
"displayName": "Abhishek Prasad",
"emails": [
{
"value": "abhishek.prasad@microfocus.com",
"primary": true
}

Customizing the Driver for RESTful Services 59

],
"name": {
"givenName": "Abhishek",
"familyName": "Prasad"
},
"urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {}
},
{
"id": "P000238",
"userUuid": "6055737e-7e18-4732-a9aa-29b4966a569c",
"userName": "tgarrison",
"displayName": "Tana Garrison",
"emails": [
{
"value": "tgarrison@extfocus.com",
"primary": true
}
],
"name": {
"givenName": "Tana",
"middleName": "s",
"familyName": "Garrison"
},
"urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {
"employeeNumber": "1850"
}
}
]
}

Cursor Pagination
This uses a cursor parameter to determine the starting point of the next set of results. The cursor can
be a unique identifier or a bookmark that points to a specific location in the result set.

The Cursor pagination is further divided into two according to the cursor placement on the dataset:

 Link-Header based Pagination
 Key set/Token Pagination

Link-Header based Pagination
Link-Header based pagination relies on HTTP headers to provide pagination meta data. The HTTP
Link entity-header field provides a means for serializing one or more links in HTTP headers.

To update the pagination details, perform the following steps:

1 In Identity Console, go to Drivers.
2 Select the driver that you want to perform pagination.
3 Navigate to Configuration.
4 Click Driver parameters drop-down and go to Publisher Settings.
5 Under Publisher Option, select Publisher setting to Poll Mode.
60 Customizing the Driver for RESTful Services

6 Under Optional Header Fields, select the Pagination Type to Cursor Pagination.
7 Select the Cursor location to Response Header.
8 Enter the required details in the following field:

8a Link Header Relation
8b Link Header Value
8c Absolute URL (Yes/No)
8d (optional) If it is not an Absolute URL, Specify first Page URL.
8e Page Size.

9 Click Save.

It is further explained by a syntax with an example below:

Syntax: Link: <uri-reference1>; param1=value1; param2="value2", <uri-reference2>;
param1=value1; param2="value2"

Example:

Enter the following Input Parameter:

 Link Header Relation = rel
 Link Header Value = “next”
 Absolute URL = Yes
 Page Size = 2

Link:

<https://api.github.com/repositories/1300192/issues?page=2>; rel="prev",
<https://api.github.com/repositories/1300192/issues?page=4>; rel="next",
<https://api.github.com/repositories/1300192/issues?page=515>; rel="last",
<https://api.github.com/repositories/1300192/issues?page=1>; rel="first".
After parsing the link header, it is stored as key value pair as shown below:

{ rel:
{ prev: 'https://api.github.com/repositories/1300192/issues?page=2',
next: 'https://api.github.com/repositories/1300192/issues?page=4',
last: 'https://api.github.com/repositories/1300192/issues?page=515',
first: 'https://api.github.com/repositories/1300192/issues?page=1'
}
}

Key set/Token pagination
In this technique the cursor is present in the response body.

Parameters Description

Param link relation

Value link relation value
Customizing the Driver for RESTful Services 61

To update the pagination details, perform the following steps:

1 In Identity Console, go to Drivers.
2 Select the driver that you want to perform pagination.
3 Navigate to Configuration.
4 Click Driver parameters drop-down and go to Publisher Settings.
5 Under Publisher Option, select Publisher setting to Poll Mode.
6 Under Optional Header Fields, select the Pagination Type to Cursor Pagination.
7 Select the Cursor location to Response Payload.
8 Enter the required details in the following field:

8a Cursor key
8b Terminating Key
8c Terminating Value
8d Absolute URL (Yes/No)
8e (optional) If it is not an Absolute URL, Specify first Page URL.
8f Page Size.

9 Click Save.

Example:
Enter the following Input Parameters:

 Cursor key = nextPageURL
 Terminating Key = nextPageURL
 Terminating Value = null
 Absolute URL = Yes
 Page Size = 2

Salesforce Payload:

Parameters Description

Cursor Key Attribute in response that contains the cursor

Terminating Key Attribute in response that indicates the last page

Terminating value Pagination is done when the Terminating key value
matches this value

Page size Number of records on given page
62 Customizing the Driver for RESTful Services

{
"currentPageUrl": "/services/data/v23.0/chatter/users",
"nextPageUrl": null,
"previousPageUrl": null,
"users": [
{
"companyName": "Open Text",
"firstName": Tana,
"id": "0055i000004C5CfAAK",
"lastName": "Garrison",
"name": "Tana Garrison",
"type": "User",
"url": "/services/data/v23.0/chatter/users/0055i000004C5CfAAK"
},
{
"companyName": "Open Text",
"firstName": "Adrian",
"id": "0055i000004C5CaAAK",
"lastName": "Stephens",
"name": "Adrian Stephens",
"type": "User",
"url": "/services/data/v23.0/chatter/users/0055i000004C5CaAAK"
},
{
"companyName": "Microfocus",
"firstName": "Tejas",
"id": "0055i000004HQiFAAW",
"lastName": "MP",
"name": "Tejas MP",
"type": "User",
"url": "/services/data/v23.0/chatter/users/0055i000004HQiFAAW"
},
{
"companyName": Microfocus,
"firstName": "Abhishek",
"id": "0055i000004HubrAAC",
"lastName": "Prasad",
"name": "Abhishek Prasad",
"type": "User",
"url": "/services/data/v23.0/chatter/users/0055i000004HubrAAC"
}
]
}

Custom Pagination
In some cases, the implementation details can vary depending on the specific inputs used. There is
custom pagination in which you must provide the interface that has to be implemented. The
implementation can be done by the following methods:

 init(String resourceUrl, HashMap<String, String> paginationParm) throws PaginationException;
Customizing the Driver for RESTful Services 63

 getFirstPageUrl() throws PaginationException;
 getNextPageUrl(String response, HashMap<String, String> responseHeaders) throws

PaginationException;

To update the pagination details, perform the following steps:

1 In Identity Console, go to Drivers.
2 Select the driver that you want to perform pagination.
3 Navigate to Configuration.
4 Click Driver parameters drop-down and go to Publisher Settings.
5 Under Publisher Option, select Publisher setting to Poll Mode.
6 Under Optional Header Fields, select the Pagination Type to Custom Pagination.
7 Enter the required details in the following field:

7a Java Class
7b Init Parameters

8 Click Save.

For more details check the following Section Appendix B, “Using Java Extensions,” on page 105 and
check the following JavaDocs (https://www.netiq.com/documentation/identity-manager-developer/
driver-developer-kit/rest-driver-developer-docs/) as well.
64 Customizing the Driver for RESTful Services

https://www.netiq.com/documentation/identity-manager-developer/driver-developer-kit/rest-driver-developer-docs/

6 6Securing Communication

If the remote Web service you are accessing allows HTTPS connections, you can configure the driver
to take advantage of this increased security.

IMPORTANT: Only certificates from a Java keystore are accepted. Make sure that the keystore for
the certificates is a Java keystore.

The following sections provide instructions for creating a secure connection:

 “Configuring the Publisher Channel” on page 65
 “Configuring the Subscriber Channel” on page 66

Configuring the Publisher Channel
The Publisher channel publishes the information from the RESTful service to the Identity Vault. To
establish a secure connection for the Publisher Channel, you need a keystore or a KMO containing a
certificate issued by the certificate authority that signed the server’s certificate.

1 Create a server certificate in iManager.:
1a In the Roles and Tasks view, click NetIQ Certificate Server > Create Server Certificate.
1b Browse to and select the server object where the REST driver is installed.
1c Specify a certificate nickname.
1d Select Standard as the creation method, then click Next.
1e Click Finish, then click Close.

2 Export a self-signed certificate from the certificate authority in eDirectory:
2a In the Roles and Tasks view, click Directory Administration > Modify Object.
2b Select your tree’s certificate authority object, then click OK.

It is usually found in the Security container and is named something like TREENAME
CA.Security.

2c Click Certificate > Self Signed Certificate.
2d Click Export.
2e When asked if you want to export the private key with the certificate, click No, then click

Next.
2f Based on the client to be accessing the Web service, select either File in binary DER format

or File in Base64 format for the certificate, then click Next.
If the client uses a Java-based keystore or trust store, then you can choose either format.

2g Click Save the exported certificate to a file.
2h Click Save, then browse to a known location on your computer.
2i Click Save, then click Close.
Securing Communication 65

3 Import the self-signed certificate into the client’s trust store:
The steps to import the certificate vary depending on the client that connects to the Publisher
channel’s HTTPS listener. If the client uses a typical Java keystore, you can perform the following
steps to create the keystore:
3a Use the keytool executable that is included with any Java JDK.

For more information on keytool, see Keytool - Key and Certificate Management Tool.
3b Enter the following command at a command prompt:

keytool -import -file name_of_cert_file -trustcacerts -noprompt -
keystore filename -storepass password
For example:

/opt/netiq/common/jre/bin/keytool -import -file tree_ca_root.b64 -
trustcacerts -noprompt -keystore dirxml.keystore -storepass novell
As an example, you can refer to the user friendly GUI application Portecle, to manage
keytools.

4 Configure the Publisher channel to use the server certificate you created in Step 1:
4a In iManager, in the Roles and Tasks view, click Identity Manager > Identity Manager

Overview.
4b Locate the driver set containing the REST driver, then click the driver’s icon to display the

Identity Manager Driver Overview page.
4c In the Identity Manager Driver Overview page, click the driver’s icon again, then scroll to

Publisher Settings.
4d In the KMO name setting, specify the certificate nickname you used in Step 1.

5 Click Apply, then click OK.

Configuring the Subscriber Channel
The Subscriber channel sends information from the Identity Vault to the Web service. To establish a
secure connection for the Subscriber channel, you need a trust store containing a certificate issued
by the certificate authority that signed the server’s certificate. See “Configuring the Publisher
Channel” on page 65 for an example.

1 Make sure you have a server certificate signed by a certificate authority.
2 Import the certificate into your trust store or create a new trust store by entering the following

command at the command prompt:

keytool -import -file name_of_cert_file -trustcacerts -noprompt -
keystore filename -storepass password
For example:

/opt/netiq/common/jre/bin/keytool -import -file tree_ca_root.b64 -
trustcacerts -noprompt -keystore dirxml.keystore -storepass novell
For more information on keytool, see Keytool - Key and Certificate Management Tool.
66 Securing Communication

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://portecle.sourceforge.net/
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html

3 Configure the Subscriber channel to use the trust store you created in Step 2:
3a In iManager, in the Roles and Tasks view, click Identity Manager > Identity Manager

Overview.
3b Locate the driver set containing the REST driver, then click the driver’s icon to display the

Identity Manager Driver Overview page.
3c On the Identity Manager Driver Overview page, click the driver’s icon again, then scroll to

Subscriber Settings.
3d In the Keystore File setting, specify the path to the trust store you created in Step 2.

4 Click Apply, then click OK.
Securing Communication 67

68 Securing Communication

7 7Managing the Driver

As you work with the REST driver, there are a variety of management tasks you might need to
perform, including the following:

 Starting, stopping, and restarting the driver
 Viewing driver version information
 Using Named Passwords to securely store passwords associated with the driver
 Monitoring the driver’s health status
 Backing up the driver
 Inspecting the driver’s cache files
 Viewing the driver’s statistics
 Using the DirXML Command Line utility to perform management tasks through scripts
 Securing the driver and its information

Because these tasks, as well as several others, are common to all Identity Manager drivers, they are
included in one reference, the NetIQ Identity Manager Driver Administration Guide.
Managing the Driver 69

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

70 Managing the Driver

8 8Use Case Based Deployment of REST Driver
with Connected Applications

You can configure a REST based driver in Identity Manager to connect to multiple REST based
external applications. The following section explains the configuration settings that are specific to
the connected application. The required parameters to be configured and their sample values are
specified which helps you to configure your REST based driver to establish connectivity between
Identity Manager and the connected application.

IMPORTANT: The configuration parameters, sample values and examples mentioned in this chapter
are for reference purposes only. You must ensure not to use them directly in your production
environment.

Sample Deployment of REST Driver for Salesforce
This section explains the specific configuration details required for deploying the driver with
Salesforce.

 “Creating a Connected App for Identity Manager in Salesforce” on page 71
 “Terminologies of Querying Parameters used in Salesforce and Designer” on page 71
 “Sample Data Flow Between REST Driver and Salesforce” on page 73
 “Creating REST Driver Object for Connecting to Salesforce in Designer” on page 74

Creating a Connected App for Identity Manager in Salesforce
Salesforce can be integrated with Identity Manager using API's and standard OAuth2.0 protocols. For
more information to create a connected app in Salesforce, see Connected Apps section in Salesforce
help pages.

Terminologies of Querying Parameters used in Salesforce and
Designer
The following table shows some of the naming conventions used in Salesforce and Designer with
descriptions which help you to configure the corresponding parameters accordingly. It is
recommended to keep the values of these parameters handy to configure the REST driver to connect
to Salesforce easily. For more information on the terminologies and conventions of Salesforce, see
Connected App and OAuth Terminology.
Use Case Based Deployment of REST Driver with Connected Applications 71

https://help.salesforce.com/articleView?id=connected_app_overview.htm&type=5
https://help.salesforce.com/articleView?id=remoteaccess_terminology.htm&type=5

Salesforce
Terminology

Designer Terminology Description

NA Access Token URL The URL of the server used for requesting token access.

Username User Name The username to login to Salesforce.

Password User Password The password to login to Salesforce.

grant_type grant_type

NOTE: To be
configured and
appears only for
Generate Bearer
Token option.

It is the method used by the application to procure an access
token.

Consumer Key client_id The client_id is a public identifier for Salesforce.

Server URL issuer The authorization server's URL that uses the https protocol.

User subject The user’s unique identity for which the access token is being
requested.

client_auth_type client_auth_type The client's authorization types configured for granting access to
the application.

Digital Signature recipient_keystore The keystore recipient alias used to look up the digital signature
which contains the public key in Salesforce. The following steps
explain how to create the recipient_keystore.

1. Create the digital signature, refer to Create a Private Key and
Self-Signed Digital Certificate.

2. Create a PKCS12 file from combining server key and server
certificate, as shown below,
openssl pkcs12 -inkey <server key> -in
<server certificate> -export -out
<filename>.pkcs12

3. Import the PKCS12 file into the recipient_keystore, as shown
below,
/opt/netiq/common/jre/bin/keytool -
importkeystore -srckeystore
<filename>.pkcs12 -srcstoretype pkcs12 -
destkeystore <recipient keystore>

Recipient
keystore
password

recipient_storepass Password for the recipient keystore.

Server certificate
password

recipient_keypass Password for the server certificate.
72 Use Case Based Deployment of REST Driver with Connected Applications

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_key_and_cert.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_key_and_cert.htm

Sample Data Flow Between REST Driver and Salesforce
The following operations can be performed on the subscriber channel:

 Operations performed on a user
 Adding a user: A user is added in Identity Manager and synced to Salesforce through the

REST driver. The details of the user such as, user's first name, last name, contact details,
email ID, location, department, user name, initial login password are added and
synchronized with Salesforce.
The REST end point for Salesforce to add a user: https://<tenant
name>.salesforce.com/services/data/<current version>/sobjects/User

IMPORTANT: Ensure to replace the variable values in the REST end point URL as per
Salesforce specifications. The sample values are shown as follows, and applicable for the
REST end point examples mentioned in other sections.
 <tenant name> with ap16, ap17, etc.
 <current version> with v20.0, v20.1, etc.
 <association> with salesforce-userid, salesforce-groupid, etc.

 Modifying a user: If there are any changes made to the user details such as, user's first
name, last name, contact details, email ID etc, they will be synchronized with Salesforce.
The REST end point for Salesforce to modify a user: <https://<tenant
name>.salesforce.com/services/data/<current version>/sobjects/User/
<salesforce-userid>

NOTE: The user can be disabled in case of separation or termination of their services.

 Operations performed on public groups
 Adding a group: A group is added in Identity Manager to manage multiple users with same

set of access permissions, rather than managing users individually.
The REST end point for Salesforce to add a group: <https://<tenant
name>.salesforce.com/services/data/<current version>/sobjects/Group

 Modifying a group
 Adding member to a group: A member is added to a group based on the user’s role,

department and access permissions that the user qualifies for, so that the access
permissions for that designated user role are provisioned accordingly.

Refresh Token refresh_token Refresh Token is a web token to acquire new access tokens when
current access tokens expire or become invalid. The authorization
server (Salesforce) provides refresh tokens to the Identity
Manager to obtain new access token without user interaction in
the backend.

Consumer Secret client_secret The client secret is used to establish the ownership of the
client_id.

Salesforce
Terminology

Designer Terminology Description
Use Case Based Deployment of REST Driver with Connected Applications 73

The REST end point for Salesforce to add a member to a group: <https://<tenant
name>.salesforce.com/services/data/<current version>/sobjects/
GroupMember

 Removing member from a group: A user can be removed from a group if the user’s
role or designation, or access permissions provided do not qualify a user to belong to
that group. This happens in case of a role or designation change of the user, or
separation or termination of the user.

 Renaming group object: The group name can be renamed as required.
The REST end point for Salesforce to rename a group: <https://<tenant
name>.salesforce.com/services/data/<current version>/sobjects/
Group/<salesforce-groupid>

 Deleting a group: Duplicate groups, redundant groups, empty groups or groups that are
not required can be deleted, and the group members will be moved to another group as
required.
The REST end point for Salesforce to delete a group: <https://<tenant
name>.salesforce.com/services/data/<current version>/sobjects/
Group/<salesforce-groupid>

Creating REST Driver Object for Connecting to Salesforce in
Designer
To begin with the configuration, you need to set up the REST driver object in the designer first, and
then configure the REST driver with the specific parameters to connect to Salesforce application.

The procedure to set up the REST driver in designer is similar for any connected application.
However, configuring the driver to an application depends on the configuration parameters required
for that specific application.

The generic steps to set up a driver object in designer is shown from step 1 to step 20, and the
configuration parameters specific to Salesforce is mentioned in step 21. If you are familiar with the
generic driver object set up, you can choose to skip to Step 21 on page 76 to see the configuration
parameters specific to Salesforce application.

1 Open Designer.
2 In the toolbar, click Help > Check for Package Updates.
3 Click OK to update the packages

or
Click OK if the packages are up-to-date.

4 In the Outline view, right-click the Package Catalog.
5 Click Import Package.
6 Select any REST driver package

or
Click Select All to import all of the packages displayed.
By default, only the base packages are displayed. Deselect Show Base Packages Only to display
all packages.
74 Use Case Based Deployment of REST Driver with Connected Applications

7 Click OK to import the selected packages, then click OK in the successfully imported packages
message.

8 In Designer > Outline view, open your project.
9 Right click project > New > Identity Vault, or drag and drop Identity Vault from the Palette to

Modeler window.
10 In the Add Server Association screen, select the following field values and click OK.

 Server DN
 Identity Manager Version
 Identity Manager Edition

The Identity Vault Credentials window appears.
11 In Identity Vault Credentials window, enter:

12 Select Save Password, if you want to save your password for easy logins in the future.
13 Click OK.

The Identity Vault and the Driver Set appears in the Modeler window.
14 In the right pane, drag and drop the REST Server from the Tools tab to the Modeler.
15 In the Driver Configuration Wizard, select REST Base (Contains the base functionality for a

driver. You must install a driver base configuration package first).

NOTE: You can only select one base package.

16 Click Next.
17 Select the optional features to install for the REST driver, the options are:

 REST Default Package
 REST JSON Package: This package contains the default JSON configurations
 REST Password Sync: This packages contains the policies that enable the REST driver to

synchronize passwords. If you want to synchronize passwords, verify that this option is
selected. For more information, see the NetIQ Identity Manager Password Management
Guide.

18 Click Next.
The package dependencies window appears.

19 (Conditional) Click OK to install the package dependency listed.

NOTE: If there are any dependent packages associated with the selected package, you must
install them to proceed.

Field Description

Host The identity vault hosting machine's IP address

Username The name of the user, for example, Admin, if the user is an administrator.

Password The password of the user to login to the identity vault
Use Case Based Deployment of REST Driver with Connected Applications 75

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/password_management/password_management.pdf#netiqidmpasswordmanagement
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/password_management/password_management.pdf#netiqidmpasswordmanagement

20 On the Driver Information page, specify a name for the driver, then click Next. The Subscriber
Options page appears.

21 Select OAuth 2.0 in the Authentication Method field, as the REST Driver will be configured to
connect to Salesforce with OAuth 2.0 as the authentication method.

22 In the OAuth2.0 Token Management field, select the option as required. The available options
are:
 Generate Bearer Token: The Bearer token is a security token without a signed digital server

certificate. Accessing Salesforce with a bearer token may restrict you to execute or perform
some operations in Salesforce. You may configure a bearer token if you need access to
perform minimal operations.
To configure REST Driver using Generate Bearer Token, see “Configuring REST Driver with
Bearer Token” on page 76.

 Generate JWT Token: A JSON Web Token (JWT) is signed by a digital server certificate for
enhanced security to connect to Salesforce. You can perform all operations without any
access restrictions when you configure a JWT Token. Select this option if you want to
configure the REST driver with a JWT Token.
To configure REST Driver using Generate JWT Token, see “Configuring REST Driver with JWT
Token” on page 79

 Enter Bearer Token: Select Enter Bearer Token if you already have one available or created
by an external application.
To configure REST Driver using an available bearer token, see “Configuring REST Driver with
an Available Bearer Token” on page 81

NOTE: Configuring a JWT Token is preferred over a Bearer Token, as it is more secured with a
digital server certificate, and enables you to perform all operations without any access
restrictions.

23 There are no publisher options to be specified in the subsequent Publisher Options screen, as
the publisher channel is not supported for Salesforce application, hence click Next.

24 Review the summary of tasks that will be completed to create the driver, then click Finish. The
configured driver appears in the designer screen.

25 After competing the above steps, refer to “Configuring Resources to Synchronize” on page 83,
to configure the resources to synchronize with Salesforce.

Configuring REST Driver with Bearer Token
Generate Bearer Token is an access token issued by servers (Salesforce) to achieve multi-server
authentication.
76 Use Case Based Deployment of REST Driver with Connected Applications

If you select Generate Bearer Token, the following fields appear. Enter the values as shown in the
following table.

IMPORTANT: For any operation performed on the Salesforce application using OAuth 2.0, an access
token is sent for authorization of the user from Salesforce. The access token expires post the session
idle time set for Salesforce, or in case of a system restart. The session idle time for access token
expiry is set to 4 hours in the Salesforce application by default. However, the session idle time is
configurable as per your requirement. Salesforce displays Unauthozied Access error or an Invalid
Session error for any request initiated with an expired access token. The presence of a refresh token
helps to re-establish the failed session internally by generating a new access token without the user
having to log in again.

NOTE: The * indicates mandatory fields and ^ indicates non mandatory fields.

Field Sample Field Value

Access Token URL <https://login.salesforce.com/
services/oauth2/token>
Use Case Based Deployment of REST Driver with Connected Applications 77

Authorization Query Options  grant_type: password
 client_id:

<3MVG97quAmFZJfVwk3ylU.8elhRYBqG9h
25m3TWewozjKnFIY0HrhOEJl7LMET9HHoc
aHnTB1k04kophr1CgW>

 issuer: <https://
login.salesforce.com>

 username: <username to login to
Salesforce>

NOTE: In case of a driver upgrade, the issuer field
does not auto populate the earlier configured value.
You must enter the issuer field manually.

Secret Authorization Query Options: These
parameters are set to configure a refresh token.
Though not mandatory, if configured the set refresh
token value is not overridden with the new value
when the access token expires. This may cause login
issues until the new refresh token is added.

 refresh_token^:
5Aep861Xq7VoDavIt6UxKW62EAmfy0hKFv
1T_X8yhb9PRQWtsOCrr97CYDrVasefykdl
_f.DTVaJGKxjmz50XjQ

 client_secret^:
E734505442694ECD0156D83F965B42C0F0
7601BB8BFDCA9879420C1FF23C8A87
IMPORTANT: When you upgrade the driver the
earlier configured client_secret value that
appears in the Authorization Query options is
migrated, but the field client_secret in
Secret Auth query options will be blank. Hence
it is recommended to delete the migrated client
secret from the Authorization query options and
manually enter it in the Secret Authorization
Query options section as the client_secret.

 password: <password to login to
Salesforce>

Truststore File: The path and the name of the
keystore file that contains the trusted certificates for
the remote server to achieve SSL handshake.

IMPORTANT: For Generate Bearer Token add the
public certificate to cacerts, present in /opt/
netiq/common/jre/lib/security/path. For
more information on securing communication using
Truststore file see, “Configuring the Subscriber
Channel” on page 66

</home/username/SFDer.jks>

NOTE: Create the truststore file in .jks format for
Salesforce.

Field Sample Field Value
78 Use Case Based Deployment of REST Driver with Connected Applications

Configuring REST Driver with JWT Token
The JSON Web token is an access request token in the JSON Web Token (JWT) format. It is an
encrypted data string consisting of a header, payload, and a signature, and is used to transfer
authorization data in client-server applications to authenticate the identity of the resource.

Set mutual authentication parameters^: Select Show
if you want to set mutual authentication information.

 Keystore file: Specify the path and the name of
the keystore file that contains the trusted
certificates for the remote server to provide
mutual authentication. For example,
C:\security\keystore. Leave this field
blank when mutual authentication is not used.

 Keystore password: Specify the password for
the keystore file. Leave this field blank when
mutual authentication is not used.

Http Connection Timeout^: Specify the HTTP errors
that must return a retry status. Error codes must be a
list of integers separated by spaces.

<307 408 503 504>, and specify the HTTP
connection time out value. The driver waits for the
time specified and terminates the HTTP connection.
The timeout value must be greater than 0.

Proxy host and port^: Specify the host address and
the host post when a proxy host and port are used.

192.168.0.0:port. Choose an unused port number on
your server. Otherwise, leave this field blank.

Set proxy authentication parameters^

Defaults to Hide. To specify the values select Show.

 User Name: <proxy username>
 Password: <password>

HTTP errors to retry^: Specify the HTTP errors that
must return a retry status. Error codes must be a list
of integers separated by spaces.

 <307 408 503 504>

Base URL for REST Resources*: The URL to which the
endpoint paths of Salesforce are appended.

<https://ap16.salesforce.com/>

Field Sample Field Value
Use Case Based Deployment of REST Driver with Connected Applications 79

If you select Generate JWT Token, the following fields appear:

Field Sample Field Value

Access Token URL <https://login.salesforce.com/
services/oauth2/token>

Authorization Query Options  client_id:
<3MVG97quAmFZJfVwk3ylU.8elhRYBqG9h
25m3TWewozjKnFIY0HrhOEJl7LMET9HHoc
aHnTB1k04kophr1CgW>

 subject:<username@microfocus.com>
 issuer: <https://

login.salesforce.com>

 client_auth_type: private_key_jwt
 recipient_keystore: </Soft/Certs/

recipient.jks>
 username: <username to login to

Salesforce>

Secret Authorization Query Options: These
parameters are set to configure a refresh token.
Though not mandatory, if configured the set refresh
token value is not overridden with the new value
when the access token expires. This may cause login
issues until the new refresh token is added.

 recipient_storepass: <novell>
 recipient_keypass: <novell>
 refresh_token^:

5Aep861Xq7VoDavIt6UxKW62EAmfy0hKFv
1T_X8yhb9PRQWtsOCrr97CYDrVasefykdl
_f.DTVaJGKxjmz50XjQ

 client_secret^:
E734505442694ECD0156D83F965B42C0F0
7601BB8BFDCA9879420C1FF23C8A87
IMPORTANT: When you upgrade the driver the
earlier configured client_secret value that
appears in the Authorization Query options is
migrated, but the field client_secret in
Secret Auth query options will be blank. Hence
it is recommended to delete the migrated client
secret from the Authorization Query Options
section and enter it manually in the Secret
Authorization Query Options section as the
client_secret.

 password: <password to login to
Salesforce>

Truststore File: The path and the name of the
keystore file that contains the trusted certificates for
the remote server to achieve SSL handshake. For
Generate Bearer Token add the public certificate to
cacerts, present in /opt/netiq/common/jre/
lib/security/path. For more information on
securing communication using Truststore file see,
“Configuring the Subscriber Channel” on page 66

</home/username/SFDer.jks>

NOTE: Create the truststore file in .jks format for
Salesforce.
80 Use Case Based Deployment of REST Driver with Connected Applications

Configuring REST Driver with an Available Bearer Token
Select Enter Bearer Token if you already have one available or created by an external application. It is
mandatory to configure refresh_token and client_secret if you select Enter Bearer Token.

Set mutual authentication parameters^: Select Show
if you want to set mutual authentication information.

 Keystore file: Specify the path and the name of
the keystore file that contains the trusted
certificates for the remote server to provide
mutual authentication. For example,
C:\security\keystore. Leave this field
blank when mutual authentication is not used.

 Keystore password: Specify the password for
the keystore file. Leave this field blank when
mutual authentication is not used.

Http Connection Timeout^: Specify the HTTP errors
that must return a retry status. Error codes must be a
list of integers separated by spaces.

<307 408 503 504>, and specify the HTTP
connection time out value. The driver waits for the
time specified and terminates the HTTP connection.
The timeout value must be greater than 0.

Proxy host and port^: Specify the host address and
the host post when a proxy host and port are used.

192.168.0.0:port. Choose an unused port number on
your server. Otherwise, leave this field blank.

Set proxy authentication parameters^

Defaults to Hide. To specify the values select Show.

 User Name: <proxy username>
 Password: <password>

HTTP errors to retry^: Specify the HTTP errors that
must return a retry status. Error codes must be a list
of integers separated by spaces.

 <307 408 503 504>

Base URL for REST Resources*: The URL to which the
endpoint paths of Salesforce are appended.

For example: <https://
ap16.salesforce.com/>

Field Sample Field Value
Use Case Based Deployment of REST Driver with Connected Applications 81

Field Sample Field Value

Authorization Query Options  client_id:
<3MVG97quAmFZJfVwk3ylU.8elhRYBqG9h
25m3TWewozjKnFIY0HrhOEJl7LMET9HHoc
aHnTB1k04kophr1CgW>

 issuer: <https://
login.salesforce.com>

Secret Authorization Query Options: These
parameters are set to configure a refresh token.
Though not mandatory, if configured the set refresh
token value is not overridden with the new value
when the access token expires. This may cause login
issues until the new refresh token is added.

 refresh_token*:
5Aep861Xq7VoDavIt6UxKW62EAmfy0hKFv
1T_X8yhb9PRQWtsOCrr97CYDrVasefykdl
_f.DTVaJGKxjmz50XjQ

 client_secret*:
E734505442694ECD0156D83F965B42C0F0
7601BB8BFDCA9879420C1FF23C8A87
IMPORTANT: When you upgrade the driver the
earlier configured client_secret value that
appears in the Authorization Query options is
migrated, but the field client_secret in
Secret Auth query options will be blank. Hence
it is recommended to delete the migrated client
secret from the Authorization Query Options
section and enter it manually in the Secret
Authorization Query Options section as the
client_secret.

Truststore File: The path and the name of the
keystore file that contains the trusted certificates for
the remote server to achieve SSL handshake. For
Generate Bearer Token add the public certificate to
cacerts, present in /opt/netiq/common/jre/
lib/security/path. For more information on
securing communication using Truststore file see,
“Configuring the Subscriber Channel” on page 66

</home/username/SFDer.jks>

NOTE: Create the truststore file in .jks format for
Salesforce.

Set mutual authentication parameters^: Select Show
if you want to set mutual authentication information.

 Keystore file: Specify the path and the name of
the keystore file that contains the trusted
certificates for the remote server to provide
mutual authentication. For example,
C:\security\keystore. Leave this field
blank when mutual authentication is not used.

 Keystore password: Specify the password for
the keystore file. Leave this field blank when
mutual authentication is not used.

Http Connection Timeout^: Specify the HTTP errors
that must return a retry status. Error codes must be a
list of integers separated by spaces.

<307 408 503 504>, and specify the HTTP
connection time out value. The driver waits for the
time specified and terminates the HTTP connection.
The timeout value must be greater than 0.

Proxy host and port^: Specify the host address and
the host post when a proxy host and port are used.

192.168.0.0:port. Choose an unused port number on
your server. Otherwise, leave this field blank.
82 Use Case Based Deployment of REST Driver with Connected Applications

Configuring Resources to Synchronize
Resources are configured to perform operations with the specified method of operation. These
operations and methods are appended to the base URL specified to perform the required operation
in Salesforce.

The steps to configure resources are as follows:

1 In Designer, double-click the connector.
2 In the Properties screen that appears, select Driver Configuration from the left pane.
3 In the Driver Configuration screen, select Driver Parameters tab.
4 Select Subscriber Options. The Resources section appears.
5 Add Configure Resource to Synchronize instance, by clicking the icon.

6 Provide a schema name, for example <User>, as shown in the image to configure handlers.
7 Set the Configure Handlers to Custom, and click instance_1 to add the schema name.
8 Add a Rest Handler Details instance by clicking the icon, and specify the details as shown in

the following table:

Set proxy authentication parameters^

Defaults to Hide. To specify the values select Show.

 User Name: <proxy username>
 Password: <password>

HTTP errors to retry^: Specify the HTTP errors that
must return a retry status. Error codes must be a list
of integers separated by spaces.

 <307 408 503 504>

Base URL for REST Resources*: The URL to which the
endpoint paths of Salesforce are appended.

For example: <https://
ap16.salesforce.com/>

Field Sample Field Value
Use Case Based Deployment of REST Driver with Connected Applications 83

Example: For adding a user, enter services/data/<v20.0>/sobjects/User as the URL
extension, set the Operation as ADD, and Method as POST. This URL extension is appended to
the base URL, so that the URL generated to perform the add user operation is https://
<ap17>.salesforce.com/services/data/<v20.0>/sobjects/User

NOTE: Ensure to replace the variable values in the URL as required.

9 Click OK.

Sample Configuration of Handlers

Field Description Sample value

URL extension Specify the customized URL extension to
be appended to the base URL (the object
entity on which the action is to be
performed), in this case the object entity
is User.

services/data/<v20.0>/sobjects/
User

 Operation Specify the type of operation to be
performed on the object entity.

The options are:
 Add: to add the object entity
 Modify: to modify a object entity
 Query: to fetch details about the

object entity
 Delete: to delete the object entity

Method Specify the method for the selected
operation

The options are:
 GET: the method to perform a fetch

operation
 POST: the method to perform a create

or add operation
 PUT: the method to update
 PATCH: the method to modify
 DELETE: the method to delete

REST Handler
Details

Sample URL Extension Operation Method REST end point URL

Add user services/data/
<v20.0>/sobjects/
User

Add POST <https://<tenant
name>.salesforce.com/
services/data/<v20.0>/
sobjects/User

Modify user services/data/
<v20.0>/sobjects/
User/
<association>

Modify PATCH <https://<tenant
name>.salesforce.com/
services/data/<v20.0>/
sobjects/User/<association>
84 Use Case Based Deployment of REST Driver with Connected Applications

Customizing REST Driver Options for Salesforce
This section explains about the policies that can be customized for transforming generic JSON data
to Salesforce specific JSON data. The policies that are based on certain rules, perform several actions
which can also be customized as required. The REST driver performs multiple transformation
operations for any REST based connected system. An example for Salesforce transformation policy is
shown below.

IMPORTANT: The below mentioned policies are examples and must be used for reference purposes
only. You must ensure not to use them directly in your production environment.

1 Select the REST Driver Object in designer.
2 Select Outline tab.
3 Select Input from the transformation diagram. This shows you all the input transformation

policies.
4 Select the NETQRESTDCFG-itp-AddAssociation policy from the Policy Set tab, and disable all the

rules that are present.
5 Create a new policy by clicking to add a new input transformation policy, and name it as

NETQREST-itp-UpdateAssociation. This policy will add the association to the new User or Group,
and must be imported into the Input Transformation on Publisher Channel.

6 After the policy is added, navigate to the XML Source tab.
7 Copy the following content into the display area.

Add group services/data/
<v20.0>/sobjects/
Group

Add POST <https://<tenant
name>.salesforce.com/
services/data/<v20.0>/
sobjects/Group

Modify group services/data/
<v20.0>/sobjects/
<association>

Add PATCH <https://<tenant
name>.salesforce.com/
services/data/<v20.0>/
sobjects/<association>

Delete group services/data/
<v20.0>/sobjects/
Group/
<association>

Delete DELETE <https://<tenant
name>.salesforce.com/
services/data/<v20.0>/
sobjects/Group/
<association>

REST Handler
Details

Sample URL Extension Operation Method REST end point URL
Use Case Based Deployment of REST Driver with Connected Applications 85

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE policy PUBLIC "policy-
builder-dtd"
"C:\netiq\idm\apps\Designer\plugins\com.novell.idm.policybuilder_4.0.0
.202002050656\DTD\dirxmlscript4.8.dtd"><policy xmlns:es="http://
www.novell.com/nxsl/ecmascript">
 <rule>
 <description>Check For Association - ADD</description>
 <conditions>
 <and>
 <if-operation op="equal">status</if-operation>
 <if-xpath op="true">driver-operation-data/
response/url-token[@association]</if-xpath>
 <if-xpath op="not-true">driver-operation-
data[@command='modify']</if-xpath>
 </and>
 </conditions>
 <actions>
 <do-set-local-variable name="vl-response">
 <arg-string>
 <token-xpath
expression=".[@level='success']/driver-operation-data[@command='add']/
response/value[last()]/text()"/>
 </arg-string>
 </do-set-local-variable>
 <do-set-local-variable name="vl-association">
 <arg-node-set>
 <token-split delimiter='"'>
 <token-local-variable name="vl-
response"/>
 </token-split>
 </arg-node-set>
 </do-set-local-variable>
 <do-add-association>
 <arg-dn>
 <token-xpath expression="driver-operation-
data/@dest-dn"/>
 </arg-dn>
 <arg-association>
 <token-xpath expression="$vl-
association[4]"/>
 </arg-association>
 </do-add-association>
 </actions>
 </rule>
</policy>

8 Click the Policy Builder tab. The new policy screen appears.
9 Save all your changes.

10 Similarly, customize the Output transformation policies by selecting Output in the
transformation diagram.

11 Add the following three rules to the NETQRESTJSON-otp-XDStoJSON policy xml, to appear above
the Translate XDS to JSON rule.
86 Use Case Based Deployment of REST Driver with Connected Applications

<rule>
 <description>Remove association and password</description>
 <comment xml:space="preserve">Remove association and
password</comment>
 <conditions>
 <and>
 <if-operation mode="nocase" op="equal">add</if-
operation>
 </and>
 </conditions>
 <actions>
 <do-strip-xpath expression="association"/>
 <do-strip-xpath expression="operation-data/password-
subscribe-status/association"/>
 <do-strip-xpath expression="password"/>
 </actions>
 </rule>
 <rule>
 <description>populate mandatory attributes</description>
 <comment xml:space="preserve">populate mandatory
attributes</comment>
 <conditions>
 <and>
 <if-operation mode="nocase" op="equal">add</if-
operation>
 <if-class-name mode="nocase" op="equal">User</
if-class-name>
 </and>
 </conditions>
 <actions>
 <do-add-dest-attr-value class-name="User"
name="TimeZoneSidKey">
 <arg-value type="string">
 <token-text xml:space="preserve">Asia/
Kolkata</token-text>
 </arg-value>
 </do-add-dest-attr-value>
 <do-add-dest-attr-value class-name="User"
name="LocaleSidKey">
 <arg-value type="string">
 <token-text xml:space="preserve">en_US</
token-text>
 </arg-value>
 </do-add-dest-attr-value>
 <do-add-dest-attr-value class-name="User"
name="EmailEncodingKey">
 <arg-value type="string">
 <token-text xml:space="preserve">ISO-8859-
1</token-text>
 </arg-value>
 </do-add-dest-attr-value>
 <do-add-dest-attr-value class-name="User"
name="ProfileId">
 <arg-value type="string">
 <token-text
Use Case Based Deployment of REST Driver with Connected Applications 87

xml:space="preserve">00e2v000004F2XO</token-text>
 </arg-value>
 </do-add-dest-attr-value>
 <do-add-dest-attr-value class-name="User"
name="LanguageLocaleKey">
 <arg-value type="string">
 <token-text xml:space="preserve">en_US</
token-text>
 </arg-value>
 </do-add-dest-attr-value>
 </actions>
 </rule>
 <rule>
 <description>remove attrs from event</description>
 <comment xml:space="preserve">remove attrs from event</
comment>
 <conditions>
 <and>
 <if-operation mode="nocase" op="equal">modify</
if-operation>
 </and>
 </conditions>
 <actions>
 <do-strip-xpath expression="modify-attr/remove-value/
value"/>
 <do-strip-xpath expression="modify-attr/remove-value"/
>
 </actions>
 </rule>

12 Select NETQRESTJSON-otp-XDStoJSON policy in the Policy window to create a new policy below
it.

13 Create a new policy by clicking in the Policy window, and name it NETQREST-otp-
datatransformation.

14 Double click the newly created NETQREST-otp-datatransformation policy, and navigate to XML
Source tab in the right pane.

15 Paste the following xml content for this policy in the display area.

<?xml version="1.0" encoding="UTF-8"?><policy>
 <rule>
 <description>remove array identifiers</description>
 <comment xml:space="preserve">remove array identifiers</
comment>
 <conditions>
 <and>
 <if-xpath op="true">../driver-operation-data/
request/value</if-xpath>
 </and>
 </conditions>
 <actions>
 <do-set-local-variable name="valueattribute"
scope="policy">
 <arg-string>
 <token-xpath expression="request/value"/>
88 Use Case Based Deployment of REST Driver with Connected Applications

 </arg-string>
 </do-set-local-variable>
 <do-strip-xpath expression="request/value"/>
 <do-append-xml-element expression="request"
name="value"/>
 <do-append-xml-text expression="request/value"
notrace="true">
 <arg-string>
 <token-replace-all regex='\"\}\,' replace-
with='",'>
 <token-replace-all regex="\}\}"
replace-with="}">
 <token-replace-all
regex='\{\"add\"\:' replace-with="">
 <token-replace-all
regex="\]" replace-with="">
 <token-replace-all
regex="\[" replace-with="">
 <token-local-
variable name="valueattribute"/>
 </token-replace-all>
 </token-replace-all>
 </token-replace-all>
 </token-replace-all>
 </token-replace-all>
 </arg-string>
 </do-append-xml-text>
 </actions>
 </rule>
</policy>

16 Save all your changes and deploy these policies to Identity Manager. This customized REST
driver will manage Salesforce system for all the use cases mentioned above.
Use Case Based Deployment of REST Driver with Connected Applications 89

90 Use Case Based Deployment of REST Driver with Connected Applications

9 9Troubleshooting the Driver

You can log Identity Manager events by using the Event Auditing Service. Using this service in
combination with the driver log level setting provides you with tracking control at a very granular
level. For more information, see the Administrator Guide to NetIQ Identity Reporting.

This section contains the following information on error messages:

 “Hidden JSON Content in Output Transformation Policy Channels” on page 91
 “REST Driver Is Unable to Sync Configured Parameters and Passwords While Upgrading” on

page 91
 “Driver Shim Errors” on page 92
 “Troubleshooting Driver Processes” on page 92
 “Driver Reports an Error When a Password or an Attribute Value Contains the < Character” on

page 92

Hidden JSON Content in Output Transformation Policy
Channels

For security reasons, the content of JSON in the traces are hidden by default. This is done as there
may be sensitive information and sensitive attribute values present in the JSON traces. This occurs
due to the presence of Is sensitive attribute in the output transformation policy channel which
suppresses the JSON content.

To troubleshoot and see the hidden JSON content, you must remove the Is sensitive attribute. To
disable this feature, you should not upgrade the NETQRESTJSON package which is optional.

REST Driver Is Unable to Sync Configured Parameters and
Passwords While Upgrading

While upgrading the REST driver, the configured parameters and passwords might not appear as
configured earlier. You must verify all the configuration screens for non-synced parameters and
passwords and enter them manually if required.
Troubleshooting the Driver 91

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/report_setup/report_setup.pdf#bookinfo

Driver Shim Errors
The following errors might occur in the core driver shim. Error messages that contain a numerical
code can have various messages, depending on the application or Web service.

 “Issues with commons-codec-1.3.jar” on page 92

Issues with commons-codec-1.3.jar
Explanation: The driver initialization fails if installed on Remote Loader set up.

Possible Cause: Unsupported version of commons-codec-1.3.jar.

Action: Replace the commons-codec-1.3.jar file with the latest version of commons-
codec-1.6.jar shipped along with the driver packages.

Troubleshooting Driver Processes
Viewing driver processes is necessary to analyze unexpected behavior. To view the driver processing
events, use DSTrace. You should only use it during testing and troubleshooting the driver. Running
DSTrace while the drivers are in production increases the utilization on the Identity Manager server
and can cause events to process very slowly. For more information, see “Viewing Identity Manager
Processes” in the NetIQ Identity Manager Driver Administration Guide.

Driver Reports an Error When a Password or an Attribute
Value Contains the < Character

Issue: The JSON converter does not accept the “<” character. However, this issue does not occur
with the ">" character:

Workaround: No workaround is available.
92 Troubleshooting the Driver

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

A ADriver Properties

This section provides information about the Driver Configuration and Global Configuration Values
properties for the REST driver. These are the only unique properties for drivers. All other driver
properties (Named Password, Engine Control Values, Log Level, and so forth) are common to all
drivers. Refer to “Driver Properties” in the NetIQ Identity Manager Driver Administration Guide for
information about the common properties.

The information is presented from the viewpoint of iManager. If a field is different in Designer, it is
marked with a Designer icon.

 “Driver Configuration” on page 93
 “Global Configuration Values” on page 103

Driver Configuration
In iManager:

1 Click to display the Identity Manager Administration page.
2 Open the driver set that contains the driver whose properties you want to edit:

2a In the Administration list, click Identity Manager Overview.
2b If the driver set is not listed on the Driver Sets tab, use the Search In field to search for and

display the driver set.
2c Click the driver set to open the Driver Set Overview page.

3 Locate the driver icon, then click the upper right corner of the driver icon to display the Actions
menu.

4 Click Edit Properties to display the driver’s properties page.
By default, the Driver Configuration page displays.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver icon or line, then select click Properties > Driver Configuration.

The Driver Configuration options are divided into the following sections:

 “Driver Module” on page 94
 “Authentication” on page 94
 “Startup Option” on page 94
 “Driver Parameters” on page 95
 “ECMAScript” on page 102
 “Global Configuration” on page 102
Driver Properties 93

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b94pq23
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

Driver Module
The driver module changes the driver from running locally to running remotely or the reverse.

Java: Use this option to specify the name of the Java class that is instantiated for the shim
component of the driver. This class can be located in the classes directory as a class file, or in the
lib directory as a .jar file. If this option is selected, the driver is running locally. Select this option
to run the driver locally.

The Java class name is: com.novell.nds.dirxml.driver.rest.RESTDriverShim
Native: This option is not used with the REST driver.

Connect to Remote Loader: Used when the driver is connecting remotely to the connected system.
Designer includes two suboptions:

 Remote Loader Client Configuration for Documentation: Includes information on the Remote
Loader client configuration when Designer generates documentation for the driver.

 Driver Object Password: Specifies a password for the Driver object. If you are using the Remote
Loader, you must enter a password on this page. Otherwise, the remote driver does not run.
The Remote Loader uses this password to authenticate itself to the remote driver shim.

Name: Displays the java class name.

Driver Object Password: Use this option to set a password for the driver object. If you are using the
Remote Loader, you must enter a password on this page or the remote driver does not run. This
password is used by the Remote Loader to authenticate itself to the remote driver shim.

Authentication
The authentication section describes the parameters required for authentication to the connected
system. This section is not applicable for the Identity Manager driver for REST. The authentication
method for REST driver is Anonymous, Basic or OAuth2.0.

Startup Option
The Startup Option section allows you to set the driver state when the Identity Manager server is
started.

Auto start: The driver starts every time the Identity Manager server is started.

Manual: The driver does not start when the Identity Manager server is started. The driver must be
started through Designer or iManager.

Disabled: The driver has a cache file that stores all of the events. When the driver is set to Disabled,
this file is deleted and no new events are stored in the file until the driver state is changed to Manual
or Auto Start.
94 Driver Properties

Driver Parameters
The Driver Parameters section lets you configure the driver-specific parameters. When you change
driver parameters, you tune driver behavior to align with your network environment.

The parameters are presented by category:

 “Driver Settings” on page 95
 “Subscriber Settings” on page 95
 “Resources” on page 100
 “Publisher Options” on page 100

Driver Settings
Custom Java Extensions: Select Show if you have developed custom Java classes to extend the driver
shim’s functionality. Otherwise, select Hide.

 Document Handling: Select Implemented if you have developed a custom Java class to process
data as XML documents. Otherwise, select None.
 Class: Specify the class by using a complete package identifier. For example,
com.novell.DocumentModifier.

 Init Parameter: Specify the parameter to pass to the init() method of the specified class.
The init method is responsible for parsing the information contained in this string. Leave
this field blank if the configuration string is not required for the class.

 Schema: Select Implemented if you have developed a custom Java class to provide the
application schema to the driver and specify the Class and Init Parameter values. Otherwise,
select None.

For more information, see Appendix B, “Using Java Extensions,” on page 105.

Subscriber Settings
Authentication Method: Select the method for authentication with the RESTful service. The
available options are:

 Anonymous: The user name and password is not required in Anonymous authentication
method.

 Basic: The driver uses the specified ID and password for authentication when processing the
requests.

 OAuth2.0: The driver uses the specified access token URL, ID and password for authentication
when processing the request.

If Anonymous is selected, fill in the following parameters:
Driver Properties 95

Parameters Description

Authorization Header Fields Click the icon to create authorization header
fields.

 Header Name: If the remote server requires an
authentication ID, specify the ID in the field.
Otherwise, leave the field empty.

 Header Value: Specify the authentication
password for the remote server if you specified
an header name. Otherwise, leave the field
empty.

Truststore file Specify the name and path of the keystore file
containing the trusted certificates used when the
remote server is configured to provide server
authentication. For example,
C:\security\truststore. Leave this field
empty when server authentication is not used.

Set mutual authentication parameter Specify Show to set mutual authentication
information. Specify Hide to not use mutual
authentication.

 Keystore file: Specify the path and the name of
the keystore file that contains the trusted
certificates for the remote server to provide
mutual authentication. For example,
C:\security\keystore. Leave this field
blank when mutual authentication is not used.

NOTE: From 1.1.2.0400 release, the value for
Keystore type must be pkcs12.

 Keystore password: Specify the password for
the keystore file. Leave this field blank when
mutual authentication is not used.

Http Connection Timeout Specify the HTTP connection timeout value. The
driver waits for the time specified and terminates the
HTTP connection. The timeout value must be greater
than zero.

Proxy host and port Specify the host address and the host port when a
proxy host and port are used. For example:
192.10.1.3:18180.

Or, if a proxy host and port are not used, leave this
field empty.

HTTP errors to retry Specify the HTTP errors that must return a retry
status. Error codes must be a list of integers
separated by spaces. For example, 307 408 503 504.
96 Driver Properties

If Basic is selected, fill in the following parameters:

Base URL for REST Resources Specify the common part of the REST resource URL.
This is the part of the URL remaining after excluding
the URL extension of the resource. For example,
http://ipaddress:port/.

Parameters Description

Authentication ID Specify the authentication ID used for basic
authorization on the HTTP header.

Authentication Password Specify the authentication password used for basic
authorization on the HTTP header.

Authorization Header Fields Click the icon to create authorization header
fields.

 Header Name: If the remote server requires an
authentication ID, specify the ID in the field.
Otherwise, leave the field empty.

 Header Value: Specify the authentication
password for the remote server if you specified
an header name. Otherwise, leave the field
empty.

Truststore file Specify the name and path of the keystore file
containing the trusted certificates used when the
remote server is configured to provide server
authentication. For example,
C:\security\truststore. Leave this field
empty when server authentication is not used.

Set mutual authentication parameters Specify Show to set mutual authentication
information. Specify Hide to not use mutual
authentication.

 Keystore file: Specify the path and the name of
the keystore file that contains the trusted
certificates for the remote server to provide
mutual authentication. For example,
C:\security\keystore. Leave this field
blank when mutual authentication is not used.

 Keystore password: Specify the password for
the keystore file. Leave this field blank when
mutual authentication is not used.

Http Connection Timeout Specify the HTTP connection timeout value. The
driver waits for the time specified and terminates the
HTTP connection. The timeout value must be greater
than zero.

Parameters Description
Driver Properties 97

If OAuth2.0 is selected, fill in the following parameters:

Proxy host and port Specify the host address and the host port when a
proxy host and port are used. For example:
192.10.1.3:18180.

Or, if a proxy host and port are not used, leave this
field empty.

HTTP errors to retry Specify the HTTP errors that must return a retry
status. Error codes must be a list of integers
separated by spaces. For example, 307 408 503 504.

Base URL for REST Resources Specify the common part of the REST resource URL.
This is the part of the URL remaining after excluding
the URL extension of the resource. For example,
http://ipaddress:port/.

Parameters Description

Access Token URL Specify the URL of the server used for requesting
token access.

User Name Specify the user name for authentication. This
parameter is optional.

User Password Specify the password for authentication. This
parameters is optional

Authorization Query Options Click the icon to create authentication query
options for OAuth2.0 authorization method. The
supported OAuth authorization types for REST driver
are Client Credentials and Resource Owner
Credentials. You can create any one of these
authorization types.

 Query Name: Specify the name of the query.
For example, grant_type. You also can
configure client_id, client_secret, and
resource as query names.

 Query Value: Specify the value for the query.
For example, client_crendentials or
password.

Parameters Description
98 Driver Properties

Authorization Header Fields Click the icon to create authorization header
fields.

 Header Name: If the remote server requires an
authentication ID, specify the ID in the field.
Otherwise, leave the field empty.

 Header Value: Specify the authentication
password for the remote server if you specified
an header name. Otherwise, leave the field
empty.

Truststore file Specify the name and path of the keystore file
containing the trusted certificates used when the
remote server is configured to provide server
authentication. For example,
C:\security\truststore. Leave this field
empty when server authentication is not used.

Set mutual authentication parameters Specify Show to set mutual authentication
information. Specify Hide to not use mutual
authentication.

 Keystore file: Specify the path and the name of
the keystore file that contains the trusted
certificates for the remote server to provide
mutual authentication. For example,
C:\security\keystore. Leave this field
blank when mutual authentication is not used.

 Keystore password: Specify the password for
the keystore file. Leave this field blank when
mutual authentication is not used.

Http Connection Timeout Specify the HTTP connection timeout value. The
driver waits for the time specified and terminates the
HTTP connection. The timeout value must be greater
than zero.

Proxy host and port Specify the host address and the host port when a
proxy host and port are used. For example:
192.10.1.3:18180.

Or, if a proxy host and port are not used, leave this
field empty.

HTTP errors to retry Specify the HTTP errors that must return a retry
status. Error codes must be a list of integers
separated by spaces. For example, 307 408 503 504.

Base URL for REST Resources Specify the common part of the REST resource URL.
This is the part of the URL remaining after excluding
the URL extension of the resource. For example,
http://ipaddress:port/.

Parameters Description
Driver Properties 99

Resources
Configure Resources to synchronize: Click the icon to add a class name of the user resource
present in application schema.

 Schema name: Specify the class name of the user resource in the application schema. For
example, Users, Groups, and Entitlement.

 Configure Handlers: Select the appropriate customer handlers. The available options are
Default and Custom.
If you select Custom, fill in the following parameters:

 Rest Handler Details: Click the icon to add rest custom handler information.

 URL Extension: Specify the relative URL extension where the resource is located. The driver
shim appends this URL extension to the base URL. The URL extension also includes the
necessary URL placeholder. A placeholder is defined as a variable embedded within the URL.
The driver-operation-data element replaces this with the URL token element during data
transformation.

For example, /Users/<version>. In this example, version is the placeholder and the driver
replaces this with the URL token element in the driver-operation-data element.

<driver-operation-data class-name="User" command="add" method="put"
uri="https://172.16.0.0:XXXX/User/rest123">
 <request>
 <url-token version="1.0"/>
 <header content-type="application/json"/>
 <value>{"CN":[{"value":"rest6789"}],"Full
Name":[{"value":"rest6789 rest6789"}],"Given
Name":[{"value":"rest6789"}],","Surname":[{"value":"rest6789"}],"Login
Disabled":[{"value":"true"}]}
 </value>
 </request>
</driver-operation-data>

 Operation: Select the required operation for Identity Manager operation.
 Method: Select the HTTP method to use. The options are: GET, POST,PATCH,PUT, and DELETE.
 Optional Header Fields: Click the icon to add optional header name and value.

Publisher Options
Publisher Settings: Specify the publisher settings. You can select either Publish Mode or Poll Mode
as the publisher setting. If Publish Mode is selected, the driver pushes the events to the Identity
Vault. In the Publish mode, the driver exposes the REST endpoints to receive the events. These
events are then pushed to the Identity Vault. If Poll Mode is selected, the driver periodically pulls the
data from the connected RESTful service.

In Publish Mode is selected, fill in the following parameters:
100 Driver Properties

Parameters Description

Listening IP address and port Specify the IP address of the server where the REST
driver is installed and the port number that this driver
listens on.

Authentication Method Select the authentication method as Anonymous or
Basic.

If Basic is selected, fill in the following parameters:

 Authentication ID: Specify the Authentication
ID of the remote server to validate incoming
requests.

If you imported a sample configuration file, this
field contains the IP address and port that you
specified in the wizard.

 Authentication Password: Specify the
authentication password of the remote server
to validate incoming requests.

KMO Name Specify the KMO name to be used in eDirectory.

When the server is configured to accept HTTPS
connections, this name becomes the KMO name in
eDirectory. The KMO name is the name before the “-”
(dash) in the RDN.

Leave this field empty when a keystore file is used or
when HTTPS connections are not used.

Keystore file Specify the keystore name and path to the keystore
file. This file is used when the server is configured to
accept HTTPS connections.

Keystore password Specify the keystore file password used with the
keystore file specified above when this server is
configured to accept HTTPS connections.

Server key alias Specify a Server key alias when this server is
configured to accept HTTPS connections.

Leave this field empty when a KMO name is used or
when HTTPS connections are not used.

Server key password When this server is configured to accept HTTPS
connections, this is the key alias password (not the
keystore password). Leave this field empty when a
KMO name is used or when HTTPS connections are
not used.

Require mutual authentication When using SSL, it is common to do only server
authentication. However, if you want to force both
client and server to present certificates during the
handshake process, you should require mutual
authentication.
Driver Properties 101

If Poll Mode is selected, fill in the following parameters:

If Anonymous is selected, the values you specified for authentication ID and authentication password
are cleared.

ECMAScript
Displays an ordered list of ECMAScript resource files. The files contain extension functions for the
driver that Identity Manager loads when the driver starts. You can add additional files, remove
existing files, or change the order the files are executed.

Global Configuration
Displays an ordered list of Global Configuration objects. The objects contain extension GCV
definitions for the driver that Identity Manager loads when the driver is started. You can add or
remove the Global Configuration objects, and you can change the order in which the objects are
executed.

Heartbeat interval in minutes Specify the heartbeat interval in seconds.

Leave this field empty to turn off the heartbeat.

Parameters Description

Configure Resource for poll Click the icon to add a class name of the user
resource present in application schema.

 Schema name: Specify the class name of the
user resource in the application schema.

 Service Endpoint: Specify the service end point
of the connected RESTful service for the
publisher polling. A generic example is http:/
/ip:port/schema. For users: http://
172.16.0.0:port/User?search-attr=.

 Method: Select the method.
 Optional Header Fields: Click the icon to add

optional header name and value.

Polling interval in minutes Specify the polling interval in minutes. Default is one
minute.

NOTE: The Subscriber Base URL is mandatory for the
driver authentication when using the poll mode.

Heartbeat interval in minutes Specify the heartbeat interval in minutes.

Leave this field empty to turn off the heartbeat.

Parameters Description
102 Driver Properties

Global Configuration Values
Global configuration values (GCVs) are values that can be used by the driver to control functionality.
GCVs are defined on the driver or on the driver set. Driver set GCVs can be used by all drivers in the
driver set. Driver GCVs can be used only by the driver on which they are defined.

The REST driver includes several predefined GCVs. You can also add your own if you discover you
need additional ones as you implement policies in the driver.

To access the driver’s GCVs in iManager:

1 Click to display the Identity Manager Administration page.
2 Open the driver set that contains the driver whose properties you want to edit:

2a In the Administration list, click Identity Manager Overview.
2b If the driver set is not listed on the Driver Sets tab, use the Search In field to search for and

display the driver set.
2c Click the driver set to open the Driver Set Overview page.

3 Locate the driver icon, click the upper right corner of the driver icon to display the Actions
menu, then click Edit Properties.
or
To add a GCV to the driver set, click Driver Set, then click Edit Driver Set properties.

To access the driver’s GCVs in Designer:

1 Open a project in the Modeler.

2 Right-click the driver icon or line, then select Properties > Global Configuration Values.
or

To add a GCV to the driver set, right-clickthe driver set icon , then click Properties > GCVs.

The global configuration values are organized as follows:

 “Password Synchronization” on page 103
 “Permission Collection and Reconciliation” on page 104

Password Synchronization
These GCVs enable password synchronization between the Identity Vault and the connected system.

In Designer, you must click the icon next to a GCV to edit it. This displays the Password
Synchronization Options dialog box for a better view of the relationship between the different GCVs.

In iManager, to edit the Password management options go to Driver Properties > Global
Configuration Values, and then edit it in your Password synchronization policy tab.

For more information about how to use the Password Management GCVs, see “Configuring
Password Flow” in the NetIQ Identity Manager Password Management Guide.

Application accepts passwords from Identity Manager: If True, allows passwords to flow from the
Identity Manager data store to the connected system.
Driver Properties 103

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/password_management/password_management.pdf#configuringpasswordflow
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/password_management/password_management.pdf#configuringpasswordflow
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/password_management/password_management.pdf#netiqidmpasswordmanagement

Identity Manager accepts passwords from application: If True, allows passwords to flow from the
connected system to Identity Manager.

Publish passwords to NDS password: Use the password from the connected system to set the non-
reversible NDS password in eDirectory.

Publish passwords to Distribution Password: Use the password from the connected system to set
the NMAS Distribution Password used for Identity Manager password synchronization.

Require password policy validation before publishing passwords: If True, applies NMAS password
policies during publish password operations. The password is not written to the data store if it does
not comply.

Reset user’s external system password to the Identity Manager password on failure: If True, on a
publish Distribution Password failure, attempts to reset the password in the connected system by
using the Distribution Password from the Identity Manager data store.

Notify the user of password synchronization failure via e-mail: If True, notifies the user by e-mail of
any password synchronization failures.

Permission Collection and Reconciliation
If you installed the Permission Collection and Reconciliation package, iManager and Designer display
the following options. For more information about permission reconciliation feature, see
“Synchronizing Permission Changes from the Connected Systems ”in the NetIQ Identity Manager
Driver Administration Guide.

Enable Permissions Collection and Reconciliation: Set the value of this parameter to true for
allowing permission collection and entitlement assignment. By default, the value is set to false,
which allows the driver to override any other conditions to reconcile custom entitlements.

Enable Permissions Reconciliation for all Custom entitlements: If the value of this parameter is set
to No, it allows you to select the custom entitlements for reconciling them. By default, it is set to Yes,
which allows reconciling of all custom entitlements.

Click the Add icon add custom entitlements you want to selectively onboard and specify
Assignment Attribute Name for them.
104 Driver Properties

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b1n9nq3m
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

B BUsing Java Extensions

The functionality of the REST driver can be extended by using Java. You use an API defined by Java
interfaces to create your own custom Java classes that have access to the data passing through the
Subscriber and Publisher channels. These classes read and interpret the data, and, optionally, modify
the data.

You can also configure Java extensions in the Java class that is available in the driver shim
(com.novell.nds.dirxml.driver.rest.RESTDriverShim). The Java class consists of four
empty functions. You need to enter the functions to perform operations as required. For more
information, see Driver Development Kit in the Identity Manager Developer Documentation page.

This section contains the following information on using Java extensions:

 “Overview” on page 105
 “Creating and Configuring Java Extensions” on page 106

Overview
If the application you are using with the REST driver uses non-XML data that is not supported by the
REST driver, you can create Java extensions to convert the non-XML data to the JSON format
supported by the REST driver.

As illustrated in Figure B-1, there are five points where functionality can be extended:

 Two in the Subscriber channel
 Two in the Publisher channel
 One to report the application schema
Using Java Extensions 105

https://www.netiq.com/documentation/identity-manager-developer/driver-developer-kit.html
https://www.netiq.com/documentation/identity-manager-developer/

Figure B-1 Using Java to Extend Functionality

The REST driver is designed to be flexible and extensible. For the Java programmer who wants to
extend or modify the capabilities of the driver, there are programming interfaces that can be used
for this purpose. These interfaces should be used only when you need to do transformations that
cannot be done in policies or style sheets.

The Javadoc describes these interfaces.

There are two Java interfaces that can be used to extend or customize the driver behavior. They are
DocumentModifiers and SchemaReporter.

DocumentModifiers is used to access and to modify the commands and events passing through the
driver shim, if this is desired. DocumentModifiers gives you access to the data as XML DOM
documents.

The other interface, SchemaReporter, can be used if you have a way of programatically determining
the classes and attributes used by the remote Web service. The advantage to this is that creating
schema mapping rules is easier if the schema can be dynamically determined.

Creating and Configuring Java Extensions
You should name your class by using any Java package and class name that is convenient for your
environment and your organization.

For example, if you were writing your own class that implemented the DocumentModifiers
interface, and you named your class MyDocumentModifiers within a package called
com.novell.idm, then you would perform the following steps to compile, jar, and deploy your
class:

1 Prepare your environment.
Make sure you have a current Java Development Kit (JDK) installed on your computer. Visit the
Java Web Site if you need to download one.

Subscriber Channel

Publisher Channel

HTTP Requests (POST)

HTTP Response

Bytes

Bytes

Convert XML
to/from bytes

remove/restore
operation-data.

XML

XML

HTTP ResponseBytes

HTTP Requests (POST)Bytes
Convert bytes
to/from XML

XML

XML

Subscriber
Transport

Publisher
Transport

A
pplication

Iddentity M
anager P

olicy
and M

etadirectory E
ngine
106 Using Java Extensions

http://www.novell.com/documentation/dirxmldrivers/javadoc/api/index.html
https://www.oracle.com/java/technologies/

2 Gather your source code in the proper directory structure as defined by your package naming.
In the example given above, you would have a com directory that contained a novell directory
that contained an idm directory. Within the idm directory, you would have a source file named
MyDocumentModifiers.java.

3 Make sure you have the jar files you need to compile your class.
At a minimum, you need RESTUtil.jar. If you are using XML documents within your class,
you also need nxsl.jar.

4 Put a copy of the required jar files in a convenient location like the root of your compile
directory just outside the com directory, then access a system command prompt or shell prompt
with that location as the current directory.

5 Compile your class by entering one of the following commands:
 For Windows: javac -classpath RESTUtil.jar;nxsl.jar
com\novell\idm*.java

 For Linux or UNIX: javac -classpath RESTUtil.jar:nxsl.jar com/novell/
idm/*.java

6 Create a Java archive file containing your class by entering one of the following commands:
 For Windows: jar cvf mydriverextensions.jar com\novell\idm*.class
 For Linux: jar cvf mydriverextensions.jar com/novell/idm/*.class

7 Place the jar file you created in Step 6 into the same directory that contains the
RESTShim.jar.
In Windows, this is often C:\Novell\NDS\lib.

8 In iManager, edit the driver settings.
8a Next to Custom Java Extension, select Show.
8b Next to Document Handling, select Implemented.
8c Specify com.novell.idm.MyDocumentModifiers as the value for Class and any string as the

value for Init Parameter.
The init parameter is the string that is passed to the init method of your class, so you can
put any information here that you want to use during your class initialization.

9 Restart the driver.

You can now use your custom class.
Using Java Extensions 107

108 Using Java Extensions

C CTrace Levels

The driver supports the following trace levels:

Table C-1 Supported Trace Levels

For information about setting driver trace levels, see “Viewing Identity Manager Processes” in the
NetIQ Identity Manager Driver Administration Guide.

Level Description

0 No debugging

1-3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous levels along with Remote Loader, driver, driver shim, and driver connection
messages, driver parameters, driver security, driver schema, request and response XML

5 Previous levels and driver shim debug level traces

6 Previous levels and all REST request

7 Previous levels and all REST responses from the connected system
Trace Levels 109

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

110 Trace Levels

D DSupported JSON Format

The Identity Manager driver for REST queries the exposed RESTful endpoints and the returns the
responses in JSON format.

The following is an example of the QUERY response in the supported JSON format.

{
 "totalResults": 1,
 "results": [
 {
 "src-dn": "\\SERVER-LINUX-TREE-45\\data\\users\\thomaswagner",
 "class-name": "User",
 "CN": [
 "thomaswagner"
],
 "Object Class": [
 "User",
 "Organizational Person",
 "Person",
 "ndsLoginProperties",
 "Top"
],
 "Password Allow Change": [
 "true"
],
 "Password Minimum Length": [
 "4"
],
 "Password Required": [
 "true"
],
 "Password Unique Required": [
 "false"
],
 "Public Key": [
 "AQAAAAQAAAAgAGAAAADWACc7sIe2QAUFVSU0FG"
],
 "Surname": [
 "thomaswagner"
],
 "Full Name": [
 "thomaswagner thomaswagner"
],
 "Revision": [
 "6"
],
 "Given Name": [
 "thomaswagner"
],
 "GUID": [
Supported JSON Format 111

 "OTGey593Bkx1sDkxnsufdw=="
],
 "DirXML-Associations": [
 {
 "nameSpace": "1",
 "volume": "\\SERVERL-LINUX-TREE-
45\\system\\driverset1\\REST-DRIVER-PUB",
 "path": "thomaswagner"
 },
 {
 "nameSpace": "1",
 "volume": "\\SERVERL-LINUX-TREE-
45\\system\\driverset1\\Data Collection Service Driver",
 "path": "39319ECB-9F77-064c-75B0-39319ECB9F77"
 }
],
 "creatorsName": [
 "CN=linux-yal5,OU=servers,O=system"
],
 "modifiersName": [
 "CN=linux-yal5,OU=servers,O=system"
]
 }
]
}

The following is an example of the ADD request in the supported JSON format.

{
 "cn": "Sam2",
 "title": [
 "Sr Engineer",
 "Manager",
 "Mr. "
],
 "streetAddress": [
 {
 "component": "566666"
 },
 {
 "component": "area numero",
 "postal code": "566666"
 }
]
}
The following is an example of the MODIFY request in the supported JSON format.
112 Supported JSON Format

{
 "cn": {
 "remove": "Sam1",
 "add": "Sam"
 },
 "title": {
 "add": [
 "Mr",
 "mr2"
]
 },
 "streetAddress": {
 "remove": [
 {
 "component1": "areanumero",
 "postalcode": "566666"
 }
],
 "add": [
 {
 "component2": " area numero ",
 "postalcode": "5555"
 }
]
 }
}
The following is an example of the GET response in the supported JSON format.

<nds dtdversion="4.0" ndsversion="8.x">
 <source>
 <product edition="Advanced" version="4.5.0.0">DirXML</product>
 <contact>NetIQ Corporation</contact>
 </source>
 <output>
 <status event-id="0" level="success"><driver-operation-data>
 <header Accept="application/json"/>
 <response> <value>{"totalResults":2,"results":
[{"keyvalue1":{"NAME":"thomas","VALUE":29},
"keyvalue2":{"NAME":"wagnor","VALUE":30}}, {"search-attr":[{"Surname":
"Thomas" }],"read-attr":["Surname","cn","Given Name"]}]}</value>
</response>
 </driver-operation-data>
 </status>
 </output>
</nds>
Supported JSON Format 113

114 Supported JSON Format

	NetIQ REST Driver Implementation Guide
	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	About This Guide
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	1 Understanding the REST Driver
	Key Terms
	Identity Manager
	Connected System
	Identity Vault
	Identity Manager Engine
	Driver Shim
	Driver Packages
	Remote Loader

	Driver Concepts
	Introduction
	How the Driver Works
	Understanding Driver Operation Data

	Support for Standard Driver Features
	Supported Operations
	Local Platforms
	Remote Platforms
	Supporting Driver Authentication
	Supporting Publish Mode
	Supporting Identity Manager Engine as a REST EndPoint
	Synchronizing Information

	2 Installing the Driver Files
	Prerequisites for Driver Installation
	Installing the REST Driver Files

	3 Creating A New Driver Object
	Creating the Driver Object in Designer
	Importing the Current Driver Packages
	Installing the Driver Packages
	Configuring the Driver Object
	Deploying the Driver Object
	Starting the Driver

	Activating the Driver
	Adding Packages to an Existing Driver

	4 Upgrading an Existing Driver
	Supported Upgrade Paths
	Upgrading the Driver
	Upgrading the Installed Packages
	Applying the Driver Patch

	5 Customizing the Driver for RESTful Services
	Modifying Java Extensions
	Modifying the JSON/XML Payload
	Using driver-operation-data
	Modifying JSON with Path Expressions
	JSON Path Expressions
	Usage of JSON Modifier for Publisher Polling

	REST Driver Pagination
	Supported Pagination techniques:
	Offset Pagination
	Cursor Pagination

	6 Securing Communication
	Configuring the Publisher Channel
	Configuring the Subscriber Channel

	7 Managing the Driver
	8 Use Case Based Deployment of REST Driver with Connected Applications
	Sample Deployment of REST Driver for Salesforce
	Creating a Connected App for Identity Manager in Salesforce
	Terminologies of Querying Parameters used in Salesforce and Designer
	Sample Data Flow Between REST Driver and Salesforce
	Creating REST Driver Object for Connecting to Salesforce in Designer

	9 Troubleshooting the Driver
	Hidden JSON Content in Output Transformation Policy Channels
	REST Driver Is Unable to Sync Configured Parameters and Passwords While Upgrading
	Driver Shim Errors
	Issues with commons-codec-1.3.jar

	Troubleshooting Driver Processes
	Driver Reports an Error When a Password or an Attribute Value Contains the < Character

	A Driver Properties
	Driver Configuration
	Driver Module
	Authentication
	Startup Option
	Driver Parameters
	ECMAScript
	Global Configuration

	Global Configuration Values
	Password Synchronization
	Permission Collection and Reconciliation

	B Using Java Extensions
	Overview
	Creating and Configuring Java Extensions

	C Trace Levels
	D Supported JSON Format

