NetlQe Identity Manager

Understanding Policies

February 2017

“dNetia

Legal Notice

For information about NetlQ legal notices, disclaimers, warranties, export and other use restrictions, U.S. Government
restricted rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

Copyright (C) 2017 NetlQ Corporation. All rights reserved.

https://www.netiq.com/company/legal/

Contents

About this Book and the Library 5
About NetlQ Corporation 7
1 Overview 9
What Are POliCIES? . . . o e 9
2 Upgrading Identity Manager Policies 11
Methods for Upgrading the Driver Configuration File 11
Installing a New Driver and Moving the Existing Policies from the Old Driver 11
Overlay the New Driver Configuration File Over an Existing Driver. 11
Recommended Driver Configuration Upgrade Procedure it 12
Upgrading the Driver Configuration in DeSIigner e 12
Upgrading the Driver Configuration iniManager e e 14

3 Understanding Types of Policies 17
Identity Manager Architecture in Relationto Policies i e e 17
USINg FIBEIS . . .o e e e 20
How Policies FUNCLION.o e e e e e 20
Detecting Changes and Sending Them to the Identity Vault 21
Filtering Information e 21

Using Policies to Apply Changeso e e e 21

POlICY TYPES . ot 22
Event Transformation PoOliCy e e 23
Matching PoliCIES o 26
Creation POlICY 27
Placement POIICYo e 30
Command Transformation Policy 33
Schema Mapping PoliCY. 36
Output Transformation PoOliCY. e e e 38

Input Transformation POlICY 40

Start Up PoOlICIES.o 42
Shut-Down PolICIES 43
Defining POlICIES 43
Policy Builder and DiIrXML SCriptot e e 43

4 Understanding Policy Components 45
DIPXIML SO Pt .« . oo e e e 45
Naming Conventions for POIICIESo e 45
Naming Convention for Driver Policy Objects e 45
Naming Convention for Policy Objects in Libraries i, 46
Variables . . 47
Variable EXPanSiONt e 48
Date/Time Parametersottt e 48
Regular EXPresSIONS o e 49
XPath 1.0 EXPreSSIONS oottt e e e e e e e e 50
NESIE GrOUPS . . .ttt e e e e e e e 53

Contents 3

4

5

6

Contents

Downloading Identity Manager Policies 55

Defining Policies by Using XSLT Style Sheets 57
Managing XSLT Style Sheets in Designer e e 57
Adding an XSLT Style Sheetin DeSigNer.ottt e 57
Modifying an XSLT Style Sheet in Designer. e e e 59
Deleting an XSLT Style Sheet in DeSIigNner.ot 59
Managing XSLT Style Sheets iniManager 59
Adding an XSLT Policy iniManager. 59
Modifying an XSLT Style SheetiniManager e 60
Deleting an XSLT Style SheetiniManager e 60
Prepopulated Information in the XSLT Style Sheet. e 60
Using the Parameters that Identity Manager Passest 61
Using EXtENSIiON FUNCHIONSot e e e e e e e e 63
Creating a Password: Example Creation Policy i i 64
Creating an Identity Vault User: Example Creation Policy 65

About this Book and the Library

NetlQ Identity Manager is a data sharing and synchronization service that enables applications,
directories, and databases to share information. It links scattered information and enables you to
establish policies that govern automatic updates to designated systems when identity changes occur.

Identity Manager provides the foundation for account provisioning, security, single sign-on, user self-
service, authentication, authorization, automated workflows, and Web services. It allows you to
integrate, manage, and control your distributed identity information so you can securely deliver the
right resources to the right people.

Intended Audience

This guide is intended for Identity Manager administrators.

Other Information in the Library

The library provides the following information resources:

Identity Manager Setup Guide

Provides overview of Identity Manager and its components. This book also provides detailed
planning and installation information for Identity Manager.

Designer Administration Guide

Provides information about designing, testing, documenting, and deploying Identity Manager
solutions in a highly productive environment.

User Application: Administration Guide
Describes how to administer the Identity Manager User Application.

User Application: User Guide

Describes the user interface of the Identity Manager User Application and how you can use the
features it offers, including identity self-service, the Work Dashboard, role and resource
management, and compliance management.

User Application: Design Guide

Describes how to use the Designer to create User Application components, including how to
work with the Provisioning view, the directory abstraction layer editor, the provisioning request
definition editor, the provisioning team editor, and the role catalog.

Identity Reporting Module Guide

Describes the Identity Reporting Module for Identity Manager 4.0 and how you can use the
features it offers, including the Reporting Module user interface and custom report definitions, as
well as providing installation instructions.

Analyzer Administration Guide
Describes how to administer Analyzer for Identity Manager.

About this Book and the Library 5

6

Identity Manager Common Driver Administration Guide
Provides information about administration tasks that are common to all Identity Manager drivers.

Identity Manager Driver Guides
Provides implementation information about Identity Manager drivers.

About this Book and the Library

About NetlQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in your
environment: Change, complexity and risk—and how we can help you control them.

Our Viewpoint

Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster

We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy

Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios in
which IT organizations like yours operate — day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion

We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and you
need someone that is truly easy to work with — for a change. Ultimately, when you succeed, we
all succeed.

Our Solutions

+ Identity & Access Governance

+ Access Management

+ Security Management

+ Systems & Application Management
+ Workload Management

+ Service Management

About NetlQ Corporation 7

8

Contacting Sales Support

For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Worldwide: www.netig.com/about_netig/officelocations.asp
United States and Canada: 1-888-323-6768
Email: info@netig.com
Web Site: www.netig.com

Contacting Technical Support

For specific product issues, contact our Technical Support team.

Worldwide: www.netig.com/support/contactinfo.asp
North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netig.com

Web Site: www.netig.com/support

Contacting Documentation Support

Our goal is to provide documentation that meets your needs. If you have suggestions for
improvements, click Add Comment at the bottom of any page in the HTML versions of the
documentation posted at www.netig.com/documentation. You can also email Documentation-
Feedback@netig.com. We value your input and look forward to hearing from you.

Contacting the Online User Community

Qmunity, the NetlQ online community, is a collaborative network connecting you to your peers and
NetlQ experts. By providing more immediate information, useful links to helpful resources, and
access to NetlQ experts, Qmunity helps ensure you are mastering the knowledge you need to realize
the full potential of IT investments upon which you rely. For more information, visit http://
community.netig.com.

About NetlQ Corporation

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com
http://community.netiq.com

Overview

Policies are what Identity Manager uses to synchronize data to the different systems. They are the
foundation of Identity Manager. Understanding policies and how they work is important to
successfully working with Identity Manager.

*

“What Are Policies?” on page 9

For administration information about policies, see

*

*

*

*

NetlQ Identity Manager - Using Designer to Create Policies
NetlQ Identity Manager Policies in iManager Guide
NetlQ ldentity Manager Credential Provisioning Guide

Identity Manager DTD Reference Documentation

What Are Policies?

At a high level, a policy is the set of rules that enables you to manage the way Identity Manager sends
and receives updates. The driver sends changes from the connected system to the Identity Vault,
where policies are used to manipulate the data to achieve the desired results.

As part of understanding how policies work, it is important to understand the components of policies.

*

*

Policies are made up of rules.

Arule is a set of conditions, see “Conditions” that must be met before a defined action, see
“Actions” occurs.

Actions can have dynamic arguments that derive from tokens that are expanded at run time.
Tokens are broken up into two classifications: nouns and verbs.

+ Noun tokens, see “Noun Tokens” expand to values that are derived from the current
operation, the source or destination data stores, or some external source.

+ Verb tokens, see “Verb Tokens” modify the concatenated results of other tokens that are
subordinate to them.

Regular expressions (see “Regular Expressions” on page 49) and XPath 1.0 expressions (see
“XPath 1.0 Expressions” on page 50) are commonly used in the rules to create the desired
results for the policies.

A policy operates on an XDS document and its primary purpose is to examine and modify that
document.

An operation is any element in the XDS document that is a child of the input element and the
output element. The elements are part of the NetlQ nds. dt d; for more information, see Identity
Manager DTD Reference Documentation (http://www.netiq.com/documentation/identity-
manager-developer/dtd-documentation.html).

An operation usually represents an event, a command, or a status.

Overview

9

https://www.netiq.com/documentation/identity-manager-developer/dtd-documentation.html
http://www.netiq.com/documentation/identity-manager-developer/dtd-documentation.html
http://www.netiq.com/documentation/identity-manager-developer/dtd-documentation.html
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_imanager/policy_imanager.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_credprov/policy_credprov.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#conditionoverview
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#actionsoverview
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#nounoverview
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#verbsoverview

10

*

The policy is applied separately to each operation. As the policy is applied to each operation in
turn, that operation becomes the current operation. Each rule is applied sequentially to the
current operation. All of the rules are applied to the current operation unless an action is
executed by a prior rule that causes subsequent rules to no longer be applied.

A policy can also get additional context from outside of the document and cause side effects that
are not reflected in the result document.

For detailed information, see the following sections in this guide:

*

*

*

*

Overview

Chapter 2, “Upgrading Identity Manager Policies,” on page 11

Chapter 3, “Understanding Types of Policies,” on page 17

Chapter 4, “Understanding Policy Components,” on page 45

Chapter 6, “Defining Policies by Using XSLT Style Sheets,” on page 57

Upgrading Identity Manager Policies

If you have a prior version of Identity Manager installed, continue with this section. If you have
installed Identity Manager for the first time, skip to Chapter 3, “Understanding Types of Policies,” on
page 17.

+ “Methods for Upgrading the Driver Configuration File” on page 11
+ “Recommended Driver Configuration Upgrade Procedure” on page 12

Methods for Upgrading the Driver Configuration File

There are multiple ways of upgrading an existing driver and its policies. There is no simple method,
because there is no merge process in Identity Manager to merge customized policies. When a driver
is upgraded, any policy that has the same name as a policy in the new driver is over written. If the
policies have been customized, they are overwritten and the customization is lost.

There are many different ways of upgrading to address this issue, but this section discusses two of
the upgrade methods. There are pros and cons to each upgrade method.

+ ‘“Installing a New Driver and Moving the Existing Policies from the OId Driver” on page 11
+ “Overlay the New Driver Configuration File Over an Existing Driver” on page 11

Installing a New Driver and Moving the Existing Policies
from the Old Driver

The pros to this method are:
+ Any existing policies are not overwritten.
The cons to this method are:

+ All associations for synchronized objects are lost and must be re-created, expanded, and
reloaded.

+ The amount of time it takes to make the associations again. If you have a policy that depends
upon a specific association, that policy does not work.

+ Complexity of making sure policies and rules are restored correctly.

Overlay the New Driver Configuration File Over an Existing
Driver

The impact of this method depends upon how your policies are configured.
The pros are:

+ If your policies have different names than the policies in the driver configuration file, they are not
overwritten.

+ The associations for the synchronized objects stay the same and do not need to be re-created.

Upgrading Identity Manager Policies 11

12

The cons are:

+ If your policies have the same name as policies in the driver configuration file, they are
overwritten.

This is the recommended upgrade option. However, in order for this upgrade method to work, some
methodology needs to be in place for creating policies.

+ You should follow the same procedures when developing policies as when you upgrade the
policies.

+ Existing NetlQ policies or rules should never be modified.

+ If you do not use a default policy, disable the policy, but do not delete it.

+ Create new policies or rules to achieve the desired result for your business needs.

¢ Use a standard naming model for naming the policies in your company.

+ Name your policies with a prefix of the policy set where the policy is stored. This allows you to
know which policy set to attach the policy to.

If you have these methodologies in place, use “Recommended Driver Configuration Upgrade
Procedure” on page 12, to upgrade the driver configuration.

Recommended Driver Configuration Upgrade
Procedure

This is NetlQ’s recommended driver configuration upgrade procedure. Make sure you do the
procedure in a lab environment. The procedure can be performed in Designer or iManager.

+ “Upgrading the Driver Configuration in Designer” on page 12

+ “Upgrading the Driver Configuration in iManager” on page 14

Upgrading the Driver Configuration in Designer

The upgrade procedure has three different tasks that need to be completed:

+ “Creating an Export of the Driver” on page 12
+ “Overlay the New Driver Configuration File Over the Existing Driver” on page 13
+ “Restoring Custom Policies and Rules to the Driver” on page 13

Creating an Export of the Driver

Creating an export of the driver makes a backup of your current configuration. Make sure you have a
backup before upgrading.

1 Verify that your project in Designer has the most current version of your driver. For instructions,
see the NetlQ Designer for Identity Manager Administration Guide.

In the Modeler, right-click the driver line of the driver you are upgrading.

Select Export to a Configuration File.

Browse to a location to save the configuration file, then click Save.

a h~ W N

Click OK on the results page.

Upgrading Identity Manager Policies

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/designer_admin/designer_admin.pdf#bookinfo

Overlay the New Driver Configuration File Over the Existing Driver

1 In the Modeler, right-click the driver line of the driver you are upgrading.
2 Select Run Configuration Wizard.
3 Click Yes on the warning page.
The warning is informing you that all of the driver setting and policies are reset.

IMPORTANT: Make sure that your customized policies have different names, from the default
policies, so you do not lose any data.

4 Browse to and select the driver configuration for the driver are upgrading, then click Run.
5 Specify the information for the driver, then click Next.

There might be more than one page of information to specify.
6 Click OK on the results page.

Restoring Custom Policies and Rules to the Driver

You can add policies into the policy set in two different ways:

+ “Adding a Customized Policy Through the Outline View” on page 13
+ “Adding a Customized Policy Through the Show Policy Flow View” on page 13

Adding a Customized Policy Through the Outline View

1 Inthe Outline view, select the upgraded driver to display the Policy Set view.

2 Right-click the policy set where you need to restore the customized policy to the driver, then
select New > From Copy.

Browse to and select the customized policy, then click OK.

Specify the name of the customized policy, then click OK.

Click Yes in the file conflict message to save your project.

After the Policy Builder opens the policy, verify that the information is correct in the copied policy.

o 01~ W

~

Repeat Step 2 through Step 6 for each customized policy you need to restore to the driver.
8 Start the driver and test the driver.
9 After you verify that the policies work, move the driver to the production environment.

Adding a Customized Policy Through the Show Policy Flow View

1 Inthe Outline view, select the upgraded driver, then click the Show Policy Flow icon.

2 Right-click the policy set where you need to restore the customized policy to the driver, then
select Add Policy > Copy Existing.

Browse to and select the customized policy, then click OK.

Specify the name of the customized policy, then click OK.

Click Yes in the file conflict message to save your project.

After the Policy Builder opens the policy, verify that the information is correct in the copied policy.

~N o o0 b~ W

Repeat Step 2 through Step 6 for each customized policy you need to restore to the driver.

Upgrading Identity Manager Policies 13

8 Start the driver and test the driver.
9 After you verify that the policies work, move the driver to the production environment.

Upgrading the Driver Configuration in iManager

The upgrade procedure has three different tasks that need to be completed:

+ “Creating an Export of the Driver” on page 14
+ “Overlaying the New Driver Configuration File Over the Existing Driver” on page 14

+ “Restoring Custom Policies and Rules Back to the Driver” on page 14

Creating an Export of the Driver

Creating an export of the driver makes a backup of your current configuration. Make sure you have a
backup before upgrading.

1 IniManager, select Identity Manager > Identity Manager Overview.

2 Click search to find the Driver Set object that holds the driver you want to upgrade.

3 Click the driver you want to upgrade, then click Export.

4 Click Next, then select Export all contained policies, linked to the configuration or not.
5 Click Next, then click Save As.

6 Select Save to Disk, then click OK.

7 Click Finish.

Overlaying the New Driver Configuration File Over the Existing
Driver

In iManager, select Identity Manager > Identity Manager Overview.

Click Add Driver, then click Next on the New Driver Wizard page.

Select the driver configuration you want to overlay, then click Next.

In the Existing drivers field, browse to and select the driver you want to upgrade.

Specify the information for the driver, the click Next.

o O~ W N P

On the summary page, select Update everything about that driver and policy libraries.

IMPORTANT: Make sure that any customized policies have a different name from the default, so
you do not lose any data.

7 Click Next, then click Finish on the Summary page.

Restoring Custom Policies and Rules Back to the Driver

1 IniManager, select Identity Manager > Identity Manager Overview.
2 Click search to find the Driver Set object, then click the upgraded driver.

3 Select the policy set where you need to restore the customized policy to the driver, then click
Insert.

4 Select Use an existing policy, then browse to and select the custom policy.

14 Upgrading Identity Manager Policies

5 Click OK, then click Close.

6 Repeat Step 3 through Step 5 for each custom policy you need to restore to the driver.
7 Start the driver and test the driver.

8 After you verify that the policies work, move the driver to the production environment.

Upgrading Identity Manager Policies 15

16 Upgrading Identity Manager Policies

Understanding Types of Policies

This section contains an overview of policies and filters, and their function in an Identity Manager
environment. The following topics are covered:

*

*

*

*

*

“Identity Manager Architecture in Relation to Policies” on page 17
“Using Filters” on page 20

“How Policies Function” on page 20

“Policy Types” on page 22

“Defining Policies” on page 43

ldentity Manager Architecture in Relation to Policies

Identity Manager provides for the clean movement of data between the Identity Vault and any
application, directory, or database. To accomplish this, Identity Manager has a well-defined interface
that translates the Identity Vault data and events into XML format. This interface allows the data to
flow in and out of the directory.

The following figure illustrates the basic Identity Manager components and their relationships.

Understanding Types of Policies

17

Figure 3-1 ldentity Manager Components

18 Understanding Types of Policies

Publisher

[N

State used

File by most drivers

Driver Shim

(Local or at the
Remote Loader)

Output
Transform

Schema
Mapping,

Schema
Mapping

Outbound
ociation

Reference

Processor

Inbound
Assouiatl

1
Reference
Processor

Ast
o

Pre-fi
S
Processor
S

Post-filter
As:
Processor

Ci
and |
ociatiol

Creation
Merge
Processor

Placement

e | < m—
Processor

Notify and Reset
Publisher Filter

T
Sy ore
Publisher Filter
n

Schema
Mapping

Associatior

Outbound

Reference
Processor

Input
\Transform,

Schema
Mapping

Inbound
Association

Reference
Processor

n

Notify and Reset
Subscri ter

Command
Transform

Placement

Creation

Association

Processor

Event
Sequencer

Event
Transform

Understanding Types of Policies

Out-of-Band Requests — Publisher
- Query (Request & Response)

- Direct Command from Policy

- Status Message

Out-of-Band requests can
be issued by any condition
or action in a rule.

Subscriber

Not part of
the channel
thread

19

The Metadirectory engine is the key module in the Identity Manager architecture. It provides the
interface that allows Identity Manager drivers to synchronize information with the Identity Vault,
allowing even disparate data systems to connect and share data.

The Metadirectory engine exposes the ldentity Vault data and the Identity Vault events by using an
XML format. The Metadirectory engine employs a rules processor and a data transformation engine
to manipulate the data as it flows between two systems. Access to the rules processor and
transformation engine is provided through control points called Policy Sets. Policy Sets can contain
zero or more policies.

A policy implements business rules and processes primarily by transforming an event on a channel
input into a set of commands on the channel output. The way each driver synchronizes data and
events is configured by the administrator through a series of policies. For example, if a Creation
Policy specifies that a User object must have a value for the Given Name attribute, any attempt to
create a User object without a given name value is rejected.

Using Filters

Filters specify the object classes and the attributes for which the Metadirectory engine processes
events and how changes to those classes and attributes are handled.

Filters only pass events occurring on objects whose base class matches one of those classes
specified by the filter. Filters do not pass events occurring on objects that are a subordinate class of a
class specified in the filter unless the subordinate class is also specified. There is a separate filter
setting for each channel, which allows the control of the synchronization direction and the
authoritative data source for each class and attribute.

NOTE: In the Identity Vault, a base class is the object class that is used to create an entry. You must
specify that class in the filter, rather than a super class from which the base class inherits or the
auxiliary classes from which additional attributes might come.

For example, if the User class with the Surname and Given Name attributes is set to synchronize in
the filter, the Metadirectory engine passes on any changes to these attributes. However, if the entry’s
Telephone Number attribute is modified, the Metadirectory engine drops this event because the
Telephone Number attribute is not in the filter.

Filters must be configured to include the following:

+ Attributes that are to be synchronized
+ Attributes that are not synchronized, but are used to trigger policies to do something

See “Controlling the Flow of Objects with the Filter” in NetlQ Identity Manager - Using Designer to
Create Policies for information on defining filters.

How Policies Function

At a high level, a policy is a set of rules that enables you to customize the way Identity Manager
sends and receives updates. The driver sends changes from the connected system to the Identity
Vault, where policies are used to manipulate the data to achieve the desired results.

+ “Detecting Changes and Sending Them to the Identity Vault” on page 21

+ “Filtering Information” on page 21

+ “Using Policies to Apply Changes” on page 21

Understanding Types of Policies

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#foverview
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bookinfo

Detecting Changes and Sending Them to the Identity Vault

When a driver is written, an attempt is made to include the ability to synchronize anything a company
deploying the driver might use. The developer writes the driver to detect any relevant changes in the
connected system, then pass these changes to the Identity Vault.

Changes are contained in an XML document, formatted according to the Identity Manager
specification. The following snippet contains one of these XML documents:

<nds dtdversi on="2.0" ndsversion="8.7.3">

<sour ce>
<product version="2.0">D r XM_</ pr oduct >
<cont act >Novel |, Inc.</contact>

</ sour ce>

<i nput >

<add cl ass-name="User" event-id="0" src-dn="\ACVE\ Sal es\ Smi t h"
src-entry-id="33071">
<add-attr attr-nanme="Surnane">
<val ue ti mestanp="1040071990#3" type="string">Sm t h</val ue>
</ add-attr>
<add-attr attr-name="Tel ephone Nunber">
<val ue ti mestanp="1040072034#1" type="tel eNunber">111-1111</val ue>
</ add-attr>
</ add>
</i nput >
</ nds>

Filtering Information

Drivers are designed to report any relevant changes, then enable you to filter the information, so only
the information you desire enters your environment.

For example, if a company doesn’t need information about groups, it can implement a filter to block all
operations regarding groups in either the Identity Vault or the connected system. If the company does
need information about users and groups, it can implement a filter to allow both types of objects to
synchronize between the Identity Vault and the connected system.

Defining filters to allow the synchronization of only objects that are interesting to you is the first step in
driver customization.

The next step defines what Identity Manager does with the objects that are allowed by the filter. As an
example, refer to the add operation in the XML document above. A user named Smith with a
telephone number of 111-1111 was added to the connected system. Assuming you allow this
operation, Identity Manager needs to decide what to do with this user.

Using Policies to Apply Changes

To make changes, Identity Manager applies a set of policies, in a specific order.

First, a Matching policy answers the question, “Is this object already in the data store?” To answer
this, you need to define the characteristics that are unique to an object. A common attribute to check
might be an e-mail address, because these are usually unique. You can define a policy that says “If
two objects have the same e-mail address, they are the same object.”

If a match is found, Identity Manager notes this in an attribute called an association. An association is
a unique value that enables Identity Manager to associate objects in connected systems.

Understanding Types of Policies 21

In circumstances where a match is not found, a Creation policy is called. The Creation policy tells
Identity Manager under what conditions you want objects to be created. You can make the existence
certain attributes mandatory in the creation rule. If these attributes do not exist, Identity Manager
blocks the creation of the object until the required information is provided.

After the object is created, a Placement policy tells Identity Manager where to put it. You can specify
that objects should be created in a hierarchical structure identical to the system they came from, or
you can place them somewhere completely different, based on an attribute value.

If you want to place users in a hierarchy according to a location attribute on the object, and name
them according to the Full Name, you can require these attributes in the Creation policy. This ensures
that the attribute exists so your placement strategy works correctly.

There are many other things you can do with policies. Using the Policy Builder, you can easily
generate unique values, add and remove attributes, generate events and commands, send e-mail,
and more. Even more advanced transformations are available by using XSLT to directly transform the
XML document that carries information between applications.

Continue to “Policy Types” on page 22 to learn more about the different types of policies, then move
on to NetlQ Identity Manager - Using Designer to Create Policies to learn using the Policy Builder.

Policy Types

There are several different types of policies you can define on both the Subscriber and Publisher
channels. Each policy is applied at a different step in the data transformation, and some policies are
only applied when a certain action occurs. For example, a Creation policy is applied only when a new
object is created.

The different policy types and their order of execution on the channel are:

+ “Event Transformation Policy” on page 23

+ “Matching Policies” on page 26

+ “Creation Policy” on page 27

+ “Placement Policy” on page 30

¢ “Command Transformation Policy” on page 33
+ “Schema Mapping Policy” on page 36

+ “Output Transformation Policy” on page 38

+ “Input Transformation Policy” on page 40

+ “Start Up Policies” on page 42

¢ “Shut-Down Policies” on page 43

22 Understanding Types of Policies

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bookinfo

Figure 3-2 Order of Execution of the Policies

Output

Scherna Mapping
Publisher
Evert

Command __

o |
[S g Placement| |
H H
H |
H H
H |
H

Matching Creation

Creation Matching

Placement »ﬂd} m

i
L
' Command

Identity Yault

Event Transformation Policy

Event Transformation policies alter the Metadirectory engine's view of the events that happen in the
Identity Vault or the connected application. The most common tasks performed in an Event
Transformation policy are changing an event and custom filtering, such as scope filtering and event-
type filtering.

Changing an event includes performing an action to change an object, either in the source or
destination directories, but not adding anything to the existing operation event.

For example, a policy could remove the association in the publisher event transform when a delete is
detected and then remove the delete event, or detect events in the subscriber event transform and
write back modifications to the Identity Vault. This type of policy should not be used to add destination
attributes to the operation, as this policy is not used in merge operations.

Scope filtering removes unwanted events based on event location or an attribute value. For example,
a policy could remove the event if the object is not in a specific container, or if the department attribute
is not equal to a specific value, or if the user is not a member of a specific group.

Event-type filtering removes unwanted events based on event type. For example, a policy could
remove all delete events.

Examples:

+ “Scope Filtering: Example 1" on page 24
+ “Scope Filtering: Example 2” on page 24
+ “Type Filtering: Example 1” on page 25
+ “Type Filtering: Example 2” on page 25

Understanding Types of Policies 23

24

Scope Filtering: Example 1

This example DirXML Script policy allows events only for users who are contained within the Users
subtree, are not disabled, and do not contain the word Consultant or Manager in the Title attribute. It
also generates a status document indicating when an operation has been blocked. To view the policy
in XML, see Event_Transformation_Scopel.xml (../samples/Event_Transformation_Scopel.xml).

<pol i cy>
<rul e>
<descri pti on>Scope Filtering</description>
<condi ti ons>
<or >
<i f-cl ass-nane op="equal ">User</if-cl ass- nane>
</ or>
<or >
<if-src-dn op="not-in-subtree">Users</if-src-dn>
<if-attr name="Logi n Di sabl ed" op="equal ">True</if-attr>
<if-attr node="regex" name="Title" op="equal ">. *Consultant.*
<[if-attr>
<if-attr nopde="regex" name="Title" op="equal ">. *Manager.*
</[if-attr>
</ or>
</ condi tions>
<actions>
<do-status | evel ="error">
<arg-string>
<t oken-t ext >User doesn’t neet required conditions</
t oken-t ext >
</ arg-string>
</ do- st at us>
<do-vet o/ >
</ actions>
</rul e>
</ policy>

Scope Filtering: Example 2

This DirXML Script policy vetoes all operations on User objects except for modifies of already
associated objects. To view the policy in XML, see Event_Transformation_Scope2.xml. (../policy/
samples/Event_Transformation_Scope2.xml).

<pol i cy>
<rul e>
<description>Veto all operation on User except nodifies of already
associ at ed obj ects</description>
<condi ti ons>
<or >
<i f-class-nanme op="equal ">User</if-class-nanme>
</or>
<or >
<if-operation op="not-equal ">nmodi fy</if-operation>
<if-association op="not-associated"/>
</ or>
</ conditions>
<actions>
<do- vet o/ >
</ actions>
</rul e>
</ policy>

Understanding Types of Policies

../samples/Event_Transformation_Scope1.xml
../policy/samples/Event_Transformation_Scope2.xml

Type Filtering: Example 1

The first rule of this example DirXML Script policy allows only objects in the Employee and Contracto

r

containers to be synchronized. The second rule blocks all Rename and Move operations. To view the

policy in XML, see Event_Transformation_Typel.xml (../samples/Event_Transformation_Typel.xml)

<pol i cy>
<rul e>
<descri ption>Only synchroni ze the Enpl oyee and Contractor subtrees
</ descri ption>
<condi ti ons>
<and>
<i f-src-dn op="not-in-contai ner">Enpl oyees
</if-src-dn>
<i f-src-dn op="not-in-container">Contractors
</if-src-dn></and></conditions>
<actions>
<do-status | evel ="warni ng">
<arg-string>

<t oken-text xnl:space="preserve">Change i gnored: Qut of scope

</t oken-text >
</arg-string>
</ do- st at us><do- vet o/ >
</ actions>
</rul e>
<rul e>
<descri ption>Don't synchroni ze noves or renanes
</ descri ption>
<condi ti ons>
<0r >
<i f-operation op="equal ">nove
</if-operation>
<i f-operation op="equal ">renamne
</if-operation>
</ or>
</conditions>
<actions>
<do- status | evel ="war ni ng" >
<arg-string>
<t oken-text xml:space="preserve">Change ignored: W don't
like you to do that.
</t oken-text></arg-string>
</ do- st at us>
<do-vet o/ >
</ actions>
</rul e>
</ policy>

Type Filtering: Example 2

This DirXML Script policy blocks all Add events. To view the policy in XML, see
Event_Transformation_Type2.xml (../samples/Event_Transformation_Type2.xml).

Understanding Types of Policies

25

../samples/Event_Transformation_Type1.xml
../samples/Event_Transformation_Type2.xml

<pol i cy>
<rul e>
<descri ption>Type Filtering</description>
<condi ti ons>
<and>
<i f-operation op="equal ">add</if-operation>
</ and>
</conditions>
<actions>
<do-status | evel ="warni ng">
<arg-string>
<t oken-t ext >Change i gnored: Adds are not all owed. </token-text>
</arg-string>
</ do- st at us>
<do-vet o/ >
</ actions>
</rul e>
</ policy>

Matching Policies

Matching policies, such as Subscriber Matching and Publisher Matching, look for an object in the
destination data store that corresponds to an unassociated object in the source datastore. It is
important to note that Matching policies are not always needed or desired.

For example, a Matching policy might not be desired when performing an initial migration if there are
no preexisting or corresponding objects.

A Matching policy must be carefully crafted to ensure that the Matching policy doesn't find false
matches.

+ “Match by Internet E-Mail Address: Example” on page 26
+ “Match by Name: Example” on page 27

Match by Internet E-Mail Address: Example

This example DirXML Script policy matches users based on the Internet E-mail Address. To view the
policy in XML, see Matchingl.xml (../samples/Matchingl.xml).

<pol i cy>
<rul e>
<descri pti on>Match Users based on emai| address</description>
<condi ti ons>
<and>
<i f-cl ass-nanme op="equal ">User</if-cl ass- nane>
</ and>
</ condi tions>
<actions>
<do- f i nd- mat chi ng- obj ect >
<ar g-dn>
<t oken-t ext >ou=peopl e, o=novel | </ t oken-t ext >
</ arg-dn>
<arg-match-attr name="Internet EMail Address"/>
</ do-fi nd- mat chi ng- obj ect >
</ actions>
</rul e>
</ policy>

26 Understanding Types of Policies

../samples/Matching1.xml

Match by Name: Example

This example DirXML Script policy matches a Group object based on its Common Name attribute. To
view the policy in XML, see Matching2.xml (../samples/Matching2.xml).

<?xm version="1.0" encodi ng="UTF-8"?>

<pol i cy>
<rul e>
<descri pti on>Match G oup by Common Name</description>
<condi ti ons>
<0r >
<if-cl ass-name op="equal ">G oup</if-class-nanme>
</ or>
</ condi ti ons>
<actions>
<do-fi nd- mat chi ng- obj ect scope="subtree">
<arg-match-attr nanme="CN'/>
</ do- fi nd- mat chi ng- obj ect >
</ actions>
</rul e>
</ policy>

Creation Policy

Creation policies, such as the Subscriber Creation policy and the Publisher Creation policy, define the
conditions that must be met to create a new object.

For example, you create a new user in the Identity Vault, but you give the new User object only a
name and ID. This creation is mirrored in the Identity Vault tree, but the addition is not immediately
reflected in applications connected to the Identity Vault because you have a Creation policy
specifying that only User objects with a more complete definition are allowed.

A Creation policy can be the same for both the Subscriber and the Publisher, or it can be different.

Template objects can be specified for use in the creation process when the object is to be created in
the Identity Vault.

Creation policies are commonly used to:

+ Veto creation of objects that don’t qualify, possibly because of a missing attribute.
+ Provide default attribute values.
+ Provide a default password.

Examples:

+ “Required Attributes: Example” on page 27

+ “Default Attribute Values: Example” on page 28
+ “Default Password: Example” on page 29

+ “Specify Template: Example” on page 29

Required Attributes: Example
The first rule of this example DirXML Script policy requires that a User object contain a CN, Given
Name, Surname, and Internet EMail Address attribute before the user can be created. The second

rule requires an OU attribute for all Organizational Unit objects. The final rule vetoes all User objects
with a name of Fred. To view the policy in XML, see Createl.xml (../samples/Createl.xml).

Understanding Types of Policies 27

../samples/Matching2.xml
../samples/Create1.xml

28

<pol i cy>
<rul e>
<description>Veto if required attributes CN, G ven Name, Surnane and
Internet EMail Address not avail abl e</description>
<condi ti ons>
<or >
<i f-cl ass-name op="equal ">User</if-cl ass-nanme>
</ or>
</ condi tions>
<actions>
<do-veto-if-op-attr-not-avail abl e name="CN'/ >
<do-veto-if-op-attr-not-avail abl e name="G ven Nane"/>
<do-veto-if-op-attr-not-avail abl e name="Sur name"/ >

<do-veto-if-op-attr-not-avail able name="Internet EMi
Addr ess"/ >

</ actions>
</rul e>
<rul e>
<descri pti on>0Organi zational Unit Required Attributes</description>
<condi ti ons>
<0r >

<i f-cl ass-name op="equal ">Organi zational Unit</if-
cl ass- name>

</ or>
</ condi tions>
<actions>
<do-veto-if-op-attr-not-avail abl e name="QU'/ >
</ actions>
</rul e>
<rul e>
<descri ption>Conditionally veto guys named "Fred"</description>
<condi ti ons>
<and>

<i f-gl obal -variabl e name="no-fred" op="equal ">true</if-gl obal -variabl e>
<if-op-attr name="G ven Name" op="equal ">Fred</if-op-attr>
</ and>

</ condi ti ons>
<actions>
<do-status | evel ="warni ng">
<arg-string>
<t oken-text xm:space="preserve" xmns:xm ="http://ww. w3. org/ XM./ 1998/
nanespace” >Vet oed "Fred"</token-text>
</ arg-string>
</ do- st at us>
<do-vet o/ >
</ actions>
</rul e>
</ policy>

Default Attribute Values: Example

This example DirXML Script policy adds a default value for a user’s Description attribute. To view the
policy in XML, see Create2.xml (../samples/Create2.xml).

Understanding Types of Policies

../samples/Create2.xml

<pol i cy>
<rul e>
<descri ption>Default Description of New Enpl oyee</descri ption>
<condi ti ons>
<or >
<i f-cl ass-name op="equal ">User</if-cl ass-nane>
</ or>
</ condi tions>
<actions>
<do-set-defaul t-attr-val ue name="Descri ption">
<arg-val ue type="string">
<t oken-t ext >New Enpl oyee</t oken-t ext >
</ arg-val ue>
</ do-set-default-attr-val ue>
</ acti ons>
</rul e>
</ policy>

Default Password: Example

This example DirXML Script policy provides creates a password value comprised of the first two
characters of the first name and the first six characters of the last name, all in lowercase. To view the
policy in XML, see Create3.xml (../samples/Create3.xml)

<pol i cy>
<rul e>
<descri ption>Default Password of [2] FN+[6] LN</descri ption>
<condi ti ons>
<and>
<if-class-name op="equal ">User</if-class-nanme>
<i f-password op="not -avail abl e"/>
</ and>
</ condi ti ons>
<actions>
<do- set - dest - passwor d>
<arg-string>
<t oken- | ower - case>
<t oken-substring | engt h="2">
<t oken-op-attr name="G ven Name"/>
</t oken-substri ng>
<t oken-substring | ength="6">
<t oken-op-attr name="Sur nanme"/>
</t oken- substring>
</ t oken-| ower - case>
</arg-string>
</ do- set - dest - passwor d>
</ actions>
</rul e>
</ policy>

Specify Template: Example
This example DirXML Script policy specifies a template object if a user’s Title attribute indicates that

the user is a Manager (contains “Manager”). To view the policy in XML, see Create4.xml (../samples/
Create4.xml).

Understanding Types of Policies 29

../samples/Create4.xml
../samples/Create3.xml

30

<pol i cy>
<rul e>
<descri pti on>Assi gn Manager Tenplate if Title contains
Manager </ descri pti on>
<condi ti ons>
<and>
<i f-cl ass-name op="equal ">User</if-cl ass-nane>
<if-op-attr name="Title" op="available"/>
<if-op-attr nmode="regex" name="Title"
op="equal ">. *Manager. *</if-op-attr>
</ and>
</ condi ti ons>
<actions>
<do- set - op-tenpl at e-dn>
<arg-dn>
<t oken-t ext >User s\ Manager
Tenpl at e</ t oken-t ext >
</ arg-dn>
</ do- set - op-tenpl at e-dn>
</ acti ons>
</rul e>
</ policy>

Placement Policy

Placement policies determine where new objects are placed and what they are named in the Identity
Vault and the connected application.

A Placement policy is required on the Publisher channel if you want object creation to occur in the
Identity Vault. A Placement policy might not be necessary on the Subscriber channel even if you want
object creations to occur in the connected application, depending on the nature of the destination
data store. For example, no Placement policy is needed when synchronizing to a relational database
because rows in a relational database do not have a location or a name.

+ “Placement By Attribute Value: Example 1” on page 30
+ “Placement By Attribute Value: Example 2” on page 31

+ “Placement By Name: Example” on page 32

Placement By Attribute Value: Example 1

This example DirXML Script policy creates the user in a specific container based on the value of the
Department attribute. To view the policy in XML, see Placementl.xml (../samples/Placementl.xml).

<pol i cy>
<rul e>
<descri pti on>Department Engi neering</description>
<condi ti ons>
<and>
<i f-class-nane op="equal ">User</if-cl ass-nane>
<if-op-attr node="regex" name="Departnment"
op="equal ">. *Engi neering. *</if-op-attr>
</ and>
</ condi ti ons>
<actions>
<do- set - op- dest - dn>
<ar g- dn>
<t oken-t ext >Eng</t oken-t ext >

Understanding Types of Policies

../samples/Placement1.xml

<t oken-t ext >\ </ t oken- t ext >
<t oken-op-attr nanme="CN'/>
</ arg-dn>
</ do- set - op- dest - dn>
</actions>
</rul e>
<rul e>
<descri ption>Department HR</description>
<condi ti ons>
<and>
<i f-cl ass-name op="equal ">User</if-cl ass-name>
<if-op-attr node="regex" name="Department"
op="equal "> *HR *</if-op-attr>
</ and>
</conditions>
<actions>
<do- set - op- dest - dn>
<ar g-dn>
<t oken-t ext >HR</ t oken-t ext >
<t oken-t ext >\ </t oken-t ext >
<t oken-op-attr nanme="CN'/>
</ arg-dn>
</ do- set - op- dest - dn>
</ actions>
</rul e>
</ pol i cy>

Placement By Attribute Value: Example 2

This DirXML Script policy determines placement of a User or Organization Unit by the src-dn in the
input document. To view the policy in XML, see Placement2.xml (../samples/Placement2.xml).

<pol i cy>
<rul e>
<descri pti on>Publ i sher Pl acerment Rul e</ descri pti on>
<condi ti ons>
<or >
<i f-cl ass-name op="equal ">User</if-cl ass-nane>
<i f-class-name op="equal ">Organi zational Unit</if-class-
name>
</ or>
<or >
<if-src-dn op="in-subtree">o=peopl e, o=novel | </
i f-src-dn>
</ or>
</condi tions>
<actions>
<do- set - op- dest - dn>
<ar g-dn>
<t oken-t ext >Peopl e</ t oken-t ext >
<t oken-t ext >\ </ t oken- t ext >
<t oken- unnat ched-src-dn convert="true"/>
</ arg-dn>
</ do- set - op- dest - dn>
</ actions>
</rul e>
</ policy>

Understanding Types of Policies 31

../samples/Placement2.xml

32

Placement By Name: Example

This example DirXML Script policy creates the user in a specific container based on the first letter of
the user’s last name. Users with a last name beginning with A-l are placed in the container Users1,
while J-R are placed in Users2, and S-Z in Users3. To view the policy in XML, see Placement3.xml (../
samples/Placement3.xml).

<pol i cy>
<rul e>
<description>Surname - Ato | in Usersl</description>
<condi ti ons>
<and>
<if-class-name op="equal ">User</if-cl ass-nane>
<if-op-attr node="regex" name="Surname" op="equal ">[A-
I].*</if-op-attr>
</ and>
</ condi tions>
<actions>
<do- set - op- dest - dn>
<ar g-dn>
<t oken-t ext >User s1</t oken-t ext >
<t oken-t ext >\ </ t oken-t ext >
<t oken-op-attr name="CN'/>
</ arg-dn>
</ do- set - op- dest - dn>
</ acti ons>
</rul e>
<rul e>
<description>Surname - J to R in Users2</description>
<condi ti ons>
<and>
<i f-cl ass-nanme op="equal ">User</if-cl ass-nane>
<if-op-attr node="regex" nane="Surnane"
op="equal ">[J-R].*</if-op-attr>
</ and>
</ condi tions>
<actions>
<do- set - op- dest - dn>
<ar g- dn>
<t oken-t ext >User s2</ t oken-t ext >
<t oken-t ext >\ </ t oken- t ext >
<t oken-op-attr name="CN'/>
</ arg-dn>
</ do- set - op- dest - dn>
</ actions>
</rul e>
<rul e>
<description>Surname - Sto Z in Users3</description>
<condi ti ons>
<and>
<i f-cl ass-nane op="equal ">User</if-cl ass-nane>
<if-op-attr node="regex" nane="Surnane"

Understanding Types of Policies

../samples/Placement3.xml

op="equal ">[S-Z].*</if-op-attr>
</ and>
</conditions>
<actions>
<do- set - op- dest - dn>
<ar g-dn>
<t oken-t ext >User s3</t oken-t ext >
<t oken-t ext >\ </t oken-t ext >
<t oken-op-attr nanme="CN'/>
</ arg-dn>
</ do- set - op- dest - dn>
</ acti ons>
</rul e>
</ policy>

Command Transformation Policy

Command Transformation policies alter the commands that Identity Manager is sending to the
destination data store by either substituting or adding commands. Intercepting a Delete command
and replacing it with Modify, Move, or Disable command is an example of substituting commands in a
Command Transformation policy. Creating a Modify command based on the attribute value of an Add
command is a common example of adding commands in a Command Transformation policy.

In the most general terms, Command Transformation policies are used to alter the commands that
Identity Manager executes as a result of the default processing of events that were submitted to the
Metadirectory engine.

It is also common practice to include policies here that do not fit neatly into the descriptions of any
other policy.

+ “Convert Delete to Modify: Example” on page 33
+ “Create Additional Operation: Example” on page 34
+ “Setting Password Expiration Time: Example” on page 35

Convert Delete to Modify: Example

This DirXML Script policy converts a Delete operation to a Modify operation of the Login Disabled
attribute. To view the policy in XML, see Comanndl.xml (../samples/Command1.xml).

Understanding Types of Policies 33

../samples/Command1.xml

34

<pol i cy>

<rul e>
<descri ption>Convert User Delete to Mdify</description>
<condi ti ons>
<and>
<i f-operation op="equal ">del ete</if-operation>
<i f-cl ass-nanme op="equal ">User</if-cl ass-name>
</ and>
</conditions>
<actions>
<do-set-dest-attr-val ue name="Logi n D sabl ed">
<arg-val ue type="state">
<t oken-t ext >t rue</t oken-t ext >
</ arg-val ue>
</ do-set-dest-attr-val ue>
<do-vet o/ >
</ actions>
</rul e>
</ pol i cy>

Create Additional Operation: Example

This DirXML Script policy determines if the destination container for the user already exists. If the
container doesn't exist, the policy creates an Add operation to create the Container object. To view
the policy in XML, see Command2.xml (../samples/Command2.xml).

<pol i cy>
<rul e>
<descri ption>Check if destination container already exists</description>
<condi ti ons>
<and>
<if-operation op="equal ">add</if-operation>
</ and>
</ condi tions>
<actions>
<do- set -1 ocal -vari abl e name="t ar get - cont ai ner">
<arg-string>
<t oken-dest-dn | ength="-2"/>
</ arg-string>
</ do-set-Ilocal -vari abl e>
<do- set -1 ocal -vari abl e name="does-t ar get - exi st">
<arg-string>
<t oken-dest-attr class-nane="Crgani zational Unit"
nane="obj ect cl ass" >
<ar g-dn>
<t oken- | ocal -vari abl e
nanme="t ar get - cont ai ner"/ >
</ arg-dn>
</token-dest-attr>
</arg-string>
</ do-set -1 ocal -vari abl e>
</ actions>
</rul e>
<rul e>
<description>Create the target container if necessary</description>
<condi ti ons>
<and>
<if-local -variabl e nane="does-t ar get - exi st"
op="avail abl e"/ >

Understanding Types of Policies

../samples/Command2.xml

<if-local-variabl e name="does-target-exist" op="equal "/>
</ and>
</conditions>
<actions>
<do- add- dest - obj ect cl ass- name="organi zational Unit"
direct="true">
<arg-dn>
<t oken-1 ocal -vari abl e name="t ar get - cont ai ner"/ >
</ arg-dn>
</ do- add- dest - obj ect >
<do- add-dest-attr-val ue direct="true" nane="ou">
<ar g-dn>
<t oken-1| ocal -vari abl e nane="t ar get - cont ai ner"/ >
</ arg-dn>
<arg-val ue type="string">
<t oken- parse-dn dest-dn-fornat="dot" |ength="1"
src-dn-fornmat ="dest-dn" start="-1">
<t oken-1 ocal -vari abl e name="t ar get -
cont ai ner"/>
</ t oken- par se- dn>
</ ar g-val ue>
</ do- add- dest -attr-val ue>
</ actions>
</rul e>
</ pol i cy>

Setting Password Expiration Time: Example

This DirXML Script policy modifies the Identity Vault user’s Password Expiration Time attribute. To
view the policy in XML, see Command3.xml (../samples/Command3.xml).

<?xm version="1.0" encodi ng="UTF-8"?>
<policy xmns:jsystem="http://ww. novel |l .conl nxsl/javal/java.lang. Systeni >
<rul e>
<descri ption>Set password expiration time for a given interval from
current day</description>
<condi ti ons>

<and>
<i f-operation op="equal ">nodi fy- passwor d</i f - operati on>
</ and>
</ condi tions>
<actions>

<do-set-| ocal -vari abl e nane="i nterval ">
<arg-string>
<t oken-t ext >30</ t oken-t ext >
</ arg-string>

Understanding Types of Policies 35

../samples/Command3.xml

36

</ do-set -1 ocal -vari abl e>
<do-set-dest-attr-val ue cl ass-nane="User" nanme="Password
Expiration Time" when="after">
<ar g- associ ati on>
<t oken- associ ati on/ >
</ ar g- associ ati on>
<arg-val ue type="string">
<t oken- xpat h
expressi on="round(jsystemcurrentTineMIlis() div 1000 + (86400*$interval))"/>
</ ar g-val ue>
</ do-set-dest-attr-val ue>
</ actions>
</rul e>
</ policy>

Schema Mapping Policy

Schema Mapping policies hold the definition of the schema mappings between the Identity Vault and
the connected system.

The Identity Vault schema is read from the Identity Vault. The Identity Manager driver for the
connected system supplies the connected application’s schema. After the two schemas have been
identified, a simple mapping is created between the Identity Vault and the target application.

After a Schema Mapping policy is defined in the Identity Manager driver configuration, the
corresponding data can be mapped.

It is important to note the following:

+ The same policies are applied in both directions.

+ All documents that are passed in either direction on either channel between the Metadirectory
engine and the application shim are passed through the Schema Mapping policies.

See “Defining Schema Map Policies” in NetlQ Identity Manager - Using Designer to Create Policies
for administrative information.

+ “Basic Schema Mapping Policy: Example” on page 36

+ “Custom Schema Mapping Policy: Example” on page 37

Basic Schema Mapping Policy: Example

This example DirXML Script policy shows the raw XML source of a basic Schema Mapping policy.
However, when you edit the policy through Designer for Identity Manager, the default Schema
Mapping editor allows the policy to be displayed and edited graphically. To view the policy in XML,
see SchemaMapl.xml (../samples/SchemaMapl1.xml).

Understanding Types of Policies

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#smoverview
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bookinfo
../samples/SchemaMap1.xml

<?xm version="1.0" encodi ng="UTF-8"?><attr - nanme- map>
<cl ass- nane>
<app- nane>Wor kOr der </ app- nane>
<nds- nane>Di r XM.- nwoWor kOr der </ nds- nane>
</ cl ass- nane>
<cl ass- nane>
<app- name>PbxSi t e</ app- nanme>
<nds- name>Di r XM.- pbxSi t e</ nds- nane>
</ cl ass- nane>
<attr-nane cl ass-nanme="Di r XM.- pbxSite" >
<app- name>PBXNane</ app- name>
<nds- name>Di r XML- pbxNane</ nds- nane>
</attr-nanme>
<attr-nanme cl ass-nanme="Di r XM.- pbxSite" >
<app- nanme>Tel ephoneNunber </ app- nanme>
<nds- nane>Tel ephone Nunber </ nds- nane>
</attr-nanme>
<attr-nanme cl ass-name="Di r XM.- pbxSi te" >
<app- nanme>Logi nNanme</ app- name>
<nds- name>Di r XM.- pbxLogi nNarme</ nds- name>
</attr-nanme>
<attr-name class-nanme="Dir XM.- pbxSite">
<app- name>Passwor d</ app- nane>
<nds- name>Di r XML- pbxPasswor d</ nds- nane>
</attr-nane>
<attr-name class-name="Dir XM.- pbxSite">
<app- name>Nodes</ app- nanme>
<nds- name>Di r XM.- pbxNodesNew</ nds- nane>
</attr-name>
</ attr-nane-map>

Custom Schema Mapping Policy: Example

This example DirXML Script policy uses DirXML Script to perform custom Schema Mapping. To view
this policy in XML, see SchemaMap2.xml (../samples/SchemaMap2.xml).

<?xm version="1.0" encodi ng="UTF- 8" ?><pol i cy>
<rul e>
<l--
The Scherma Mapping Policy can only handl e one-to-one mappi ngs.
That Mapping Policy maps Student Personal addresses.
This rule maps StaffPersonal addresses
-->
<descri pti on>Publ i sher Staff Address Mappi ngs</description>
<condi ti ons>
<and>
<if-local-variable name="fronNds" op="equal ">fal se</
i f-1ocal -vari abl e>
<if-xpath op="true">@riginal-class-name =
" St af f Personal ’ </i f-xpat h>
</ and>
</ condi ti ons>

<actions>
<do-rename-op-attr dest-nanme="SA" src-nane="Address/ Street/Linel"/>

<do-renane-op-attr dest-name="Postal Ofice Box" src-nanme="Address/

Street/Line2"/>
<do-renane-op-attr dest-name="Physical Delivery Ofice Name" src-

nanme="Address/City"/>
<do-renamne-op-attr dest-name="S" src-nanme="Address/ StatePr"/>

Understanding Types of Policies 37

../samples/SchemaMap2.xml

38

<do-renane-op-attr dest-name="Postal Code" src-name="Address/
Post al Code"/ >
</ actions>
</rul e>
<rul e>
<descri pti on>Subscri ber Staff Address Mappi ngs</description>
<l--
The Scherma Mapping Policy has al ready mapped addresses to StudentPersonal .
This rul e maps Student Personal to StaffPersonal

-->
<condi ti ons>
<and>
<if-local -variabl e name="fronNds" op="equal ">true</if-Iocal -
vari abl e>
<if-op-attr name="DirXM.-siflsStaff" op="equal ">true</if-
op-attr>
</ and>
</condi ti ons>
<actions>

<do-renane-op-attr dest-name="Address/ Street/Linel" src-
nanme="St udent Addr ess/ Addr ess/ Street/ Li nel"/>

<do-renane-op-attr dest-name="Address/ Street/Li ne2" src-
nanme=" St udent Addr ess/ Addr ess/ Street/ Li ne2"/>

<do-renane-op-attr dest-name="Address/City" src-
nanme=" St udent Addr ess/ Address/ G ty"/>

<do-rename-op-attr dest-name="Address/ StatePr" src-
nanme="St udent Addr ess/ Addr ess/ St atePr"/ >

<do-renane-op-attr dest-nanme="Address/ Post al Code" src-
nane=" St udent Addr ess/ Addr ess/ Post al Code"/ >
</ actions>
</rul e>

</ pol i cy>

Output Transformation Policy

Output Transformation policies primarily handle the conversion of data formats from data that the
Metadirectory engine provides to data that the application shim expects. Examples of these
conversions include:

+ Attribute value format conversion

+ XML vocabulary conversion

+ Custom handling of status messages returned from the Metadirectory engine to the application
shim

All documents that the Metadirectory engine supplies to the application shim on either channel pass
through the Output Transformation policies. Since the Output Transformation happens after schema
mapping, all schema names are in the application namespace.

+ “Attribute Value Conversion: Example” on page 39
¢ “Customer Handling of Status Messages:” on page 39

Understanding Types of Policies

Attribute Value Conversion: Example

This example DirXML Script policy reformats the telephone number from the (hnn) nnn-nnnn format
to the nnn.nnn.nnnn format. The reverse transformation can be found in the Input Transformation
policy examples. To view the policy in XML, see Output_Transformationl.xml (../samples/
Output_Transformationl.xml).

<pol i cy>
<rul e>
<description>Reformat all tel ephone nunbers from (nnn) nnn-nnnn to
nnn. nnn. nnnn</ descri pti on>
<condi tions/ >
<actions>
<do-reformat-op-attr nanme="t el ephoneNunber" >
<arg-val ue type="string">
<t oken-repl ace-first
regex=""\ ((\d\id\d)\) *(\d\d\d)-(\d\d\d\d)$" replace-w th="3%1. $2. $3">
<t oken-1 ocal -vari abl e
nanme="current-val ue"/>
</token-repl ace-first>
</ arg-val ue>
</ do-reformat-op-attr>
</ actions>
</rul e>
</ policy>

Customer Handling of Status Messages:

This example DirXML Script policy detects status documents with a level not equal to success that
also contain a child password-publish-status element within the operation data and then generates an
e-mail message using the DoSendEmailFromTemplate action. To view the policy in XML, see
Output_Transformation2.xml (../samples/Output_Transformation2.xml).

<?xm version="1.0" encodi ng="UTF-8"?>
<pol i cy>
<description>Emai | notifications for failed password publications</
description>
<rul e>
<description>Send e-nail for a failed publish password
operation</descripti on>
<condi ti ons>
<and>
<i f-gl obal -vari abl e nbde="nocase"
nanme="noti fy-user-on-password-di st-failure" op="equal ">true</if-gl obal -variabl e>
<if-operation op="equal ">stat us</
i f-operation>

<if-xpath
op="true">sel f::status[@evel != "success']/operation-data/password-publish-
status</if-xpath>
</ and>
</ condi ti ons>
<actions>
<l-- generate email notification -->

<do-send-emai | -fromtenpl ate notification-
dn="\cn=security\cn=Default Notification Collection" tenplate-
dn="\cn=security\cn=Default Notification Collection\cn=Password Sync Fail">
<arg-string name="User Ful | Name" >
<token-src-attr name="Full Name">
<ar g-associ ati on>

Understanding Types of Policies 39

../samples/Output_Transformation1.xml
../samples/Output_Transformation2.xml

40

<t oken- xpat h
expressi on="sel f::status/operation-datal/password-publish-status/association"/>
</ ar g- associ ati on>
</token-src-attr>
</ arg-string>
<arg-string name="User G venNanme" >
<token-src-attr nanme="G ven Name">
<ar g-associ ati on>
<t oken- xpat h
expressi on="sel f::status/operation-datal/ password-publish-status/association"/>
</ arg-associ ati on>
</token-src-attr>
</arg-string>
<arg-string name="User Last Nane" >
<t oken-src-attr name="Surname">
<ar g- associ ati on>
<t oken- xpat h
expressi on="sel f::status/operation-datal/ password-publish-status/association"/>
</ arg-associ ati on>
</token-src-attr>
</arg-string>
<arg-string name="Connect edSyst enNane" >
<t oken- gl obal -vari abl e
nanme="Connect edSyst enNane"/ >
</arg-string>
<arg-string nanme="to">
<t oken-src-attr name="Internet Email Address">
<ar g- associ ati on>
<t oken- xpat h
expressi on="sel f::status/operation-datal/password-publish-status/association"/>
</ arg-associ ati on>
</token-src-attr>
</arg-string>
<arg-string name="Fail ureReason">
<t oken-text/>
<t oken- xpat h expressi on="sel f::status/
child::text()"/>
</arg-string>
</ do-send-emmi | -fromtenpl at e>
</ actions>
</rul e>
</ policy>

Input Transformation Policy

Input Transformation policies primarily handle the conversion of data formats from data that the
application shim provides to data that the Metadirectory engine expects. Examples of these
conversions include:

+ Attribute value format conversion

+ XML vocabulary conversion

+ Driver heartbeat

+ Custom handling of status messages returned from the application shim to the Metadirectory
engine

Understanding Types of Policies

All documents supplied to the Metadirectory engine by the application shim on either channel pass
through the Input Transformation policies.

+ “Attribute Value Format Conversion: Example” on page 41

+ “Driver Heartbeat: Example” on page 41

Attribute Value Format Conversion: Example

This example DirXML Script policy reformats the telephone number from the nnn.nnn.nnnn format to
the (nnn) nnn-nnnn format. The reverse transformation can be found in “Output Transformation
Policy” on page 38 examples. To view the policy in XML, see Input_Transformationl.xml (../samples/
Input_Transformationl.xml).

<pol i cy>
<rul e>
<descri pti on>Reformat all tel ephone nunbers from nnn.nnn.nnnn to
(nnn) nnn-nnnn</ descri pti on>
<condi tions/ >
<actions>
<do-reformat-op-attr nanme="t el ephoneNunber" >
<arg-val ue type="string">
<t oken-repl ace-first
regex="~(\d\d\d)\.(\d\d\d)\.(\d\d\d\d)$" replace-with="($1) $2-$3">
<t oken-1 ocal -vari abl e
nanme="current-val ue"/>
</token-repl ace-first>
</ arg-val ue>
</ do-reformat-op-attr>
</ actions>
</rul e>
</ policy>

Driver Heartbeat: Example

This DirXML Script policy creates a status heartbeat event. The driver’s heartbeat functionality is
used to send a success message (HEARTBEAT: $driver) at each heartbeat interval. The message
can be monitored by NetlQ Audit.The Identity Manager driver must support heartbeat, and heartbeat
must be enabled at the driver configuration page. To view the policy in XML, see
Input_Transformation2.xml (../samples/Input_Transformation2.xml).

Understanding Types of Policies 41

../samples/Input_Transformation1.xml
../samples/Input_Transformation2.xml

<?xm version="1.0" encodi ng="UTF-8" ?>
<policy>
<rul e>
<descri ption>Heartbeat Rule, v1.01, 040126, by Hol ger Dopp</ descri ption>
<condi ti ons>
<and>
<if-operation op="equal ">status</if-operation>
<if-xpath op="true">@ype="heartbeat"</if-xpath>
</ and>
</ condi tions>
<actions>
<do-set-xm -attr expression="." name="text1l">
<arg-string>
<t oken- gl obal - vari abl e name="di rxm . auto. dri verdn" />
</arg-string>
</ do-set-xm-attr>
<do-set-xm -attr expression="." name="text2">
<arg-string>
<t oken- t ext >HEARTBEAT</ t oken- t ext >
</arg-string>
</ do-set-xm -attr>
</ acti ons>
</rul e>
</ policy>

Start Up Policies

When a driver is started, the Identity Manager engine sends a start-up event to the policy set. A Start-
up event looks like this:

<nds dtdversion="4.0" ndsversion="8.x">

<source>

<product edition="Advanced" version="4.5">Di r XM_</ pr oduct >
<cont act >Novel |, Inc. </contact>

</ sour ce>

<i nput >

<status |evel ="success" type="startup"/>

</i nput >

</ nds>

You can create policies on top of a start-up event to perform custom actions at the driver start up. For
example, initialization of persistent driver-scope variables, sending a notification from the DirXML
Script to an external auditing or monitoring system, and so on.

There are no plug-ins currently available to create policies in the Start-up policy set. To create these
policies, run the following steps:

1 Create policies in any of the driver policy sets. For example, Subscriber Command
Transformation Policy set.

2 Link the policies to the Start-up policy set.

2a Goto Driver Properties, click the General tab, then select the DirXML-Policies attribute
from the Valued Attributes list and click Edit.

2b In the Edit Attribute dialog, select the desired policy, then click the Edit button. The
TypeNamedUiHandlerLevel attribute specifies the order in which you want to execute the
policy. Policy at level 0 is executed first followed by level 1, 2, and so on. The
TypeNamedUiHandlerInterval attribute specifies the policy set in which you want to execute
the policy. For the Start-up policy, set the value to 15, then click OK.

42 Understanding Types of Policies

Shut-Down Policies

When a driver is stopped, the Identity Manager engine sends a stop event to the policy set. A Shut-
Down event looks like this:

<nds dtdversion="4.0" ndsversion="8. x"><source>

<product edition="Advanced" version="4.5">Di r XM_</ pr oduct >
<cont act >Novel |, Inc. </contact >

</ sour ce>

<i nput >

<status |evel ="success" type="shutdown"/>

</i nput >

</ nds>

You can create policies on top of a start-up event to perform custom actions at the driver shutdown.
For example, saving the state of driver-scope variables by writing them to the eDirectory objects,
making use of Java to perform some customized tasks, and so on.

There are no plug-ins currently available to create policies in the Shut-Down policy set. To create
these policies, run the following steps:

1 Create policies in any of the driver policy sets. For example, Subscriber Command
Transformation Policy set.
2 Link the policies to the Shut-down policy set.

2a Goto Driver Properties, click the General tab, then select the DirXML-Policies attribute
from the Valued Attributes list and click Edit.

2b In the Edit Attribute dialog, select the desired policy, then click the Edit button. The
TypeNamedUiHandlerLevel attribute specifies the order in which you want to execute the
policy. Policy at level 0 is executed first followed by level 1, 2, and so on. The
TypeNamedUiHandlerInterval attribute specifies the policy set in which you want to execute
the policy. For the Shut-down policy, set the value to 16, then click OK.

Defining Policies
All policies are defined in one of two ways:

+ Using the Policy Builder interface to generate DirXML Script. Existing, non-XSLT rules are
converted to DirXML Script automatically upon import.

+ Using XSLT style sheets.

Schema Mapping policies can also be defined (and usually are) using a schema mapping table.

Policy Builder and DirXML Script

The Policy Builder interface is used to define the majority of policies you might implement. The Policy
Builder interface uses a graphical environment to enable you to easily define and manage policies.

The underlying functionality of rule creation within Policy Builder is provided by DirXML Script,
however, you do not need to work directly with DirXML Script.

Instead, you have access to a wide variety of conditions you can test, actions to perform, and
dynamic values to add to your policies. Each option is presented using intelligent drop-down lists,
providing only valid selections at each point, and quick links to common values.

Understanding Types of Policies 43

See NetlQ Identity Manager - Using Designer to Create Policies, for more information on Policy
Builder. See “DirXML Script” on page 45 for more information on DirXML Script.

TIP: Although it is not necessary for using Policy Builder, the DirXML Script DTD is available in the
Identity Manager DTD Reference Documentation.

44 Understanding Types of Policies

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-developer/dtd-documentation.html

4 Understanding Policy Components

+ “DirXML Script” on page 45

+ “Naming Conventions for Policies” on page 45
+ “Variables” on page 47

+ “Variable Expansion” on page 48

+ “Date/Time Parameters” on page 48

+ “Regular Expressions” on page 49

+ “XPath 1.0 Expressions” on page 50

+ “Nested Groups” on page 53

DirXML Script

DirXML Script is the primary method of implementing Identity Manager policies. It describes a policy
that is implemented by an ordered set of rules. A rule consists of a set of conditions to be tested and
an ordered set of actions to be performed when the conditions are met.

DirXML Script is created using the Policy Builder, which provides a GUI interface for easy use.

Identity Manager is an XML-based application, and DirXML Script uses XML documents to modify
and manipulate the data being sent between the ldentity Vault and the external data store. To
understand DirXML Script, you need to understand XML. For more information on XML, see the W3C
Extensible Markup Language (XML) (http://www.w3.org/XML/) Web site.

DirXML Script has a document type definition (DTD) that defines how DirXML Script works. To read
the DTDs that Identity Manager uses, see the Identity Manager DTD Reference (https://
www.netig.com/documentation/identity-manager-developer/dtd-documentation.html).

Naming Conventions for Policies

Identity Manager contains naming conventions for policies that are stored in a driver or library.

+ “Naming Convention for Driver Policy Objects” on page 45

+ “Naming Convention for Policy Objects in Libraries” on page 46

Naming Convention for Driver Policy Objects

Driver policy objects are policies that exist underneath a driver or channel object. These policies are
usually consumed only by this driver. A driver can contain many policies; without the naming
conventions, it is easy to be confused.

<channel >- <pol i cyset >[- <f eat ure name>] [What | sThi sPol i cyDoi ng]

Understanding Policy Components 45

http://www.w3.org/XML/
http://www.w3.org/XML/
https://www.netiq.com/documentation/identity-manager-developer/dtd-documentation.html

46

Table 4-1 Driver Policy Object Naming Convention

Policy Set DirXML Script Policy Style Sheet Policy Samples

Subscriber Event sub-etp sub-ets sub- et p- Vet 0Adds, sub- et s-
Transformation ChangeRenanmeToMove
Subscriber Matching sub-mp sub-ms

Subscriber Creation sub-cp sub-cs

Subscriber Placement sub-pp sub-ps

Subscriber Command sub-ctp sub-cts

Transformation

Publisher Event pub-etp pub-ets pub- et p- Vet oAdds, pub- et s-
Transformation ChangeRenanmeToMove
Publisher Matching pub-mp pub-ms

Publisher Creation pub-cp pub-cs

Publisher Placement pub-pp pub-ps

Publisher Command pub-ctp pub-cts pub- ct p- Handl eFr om\er ge, pub-
Transformation ct s- Passwor dSync

Input Transformation itp its

Output Transformation otp ots

Schema Mapping smp sms

Naming Convention for Policy Objects in Libraries

Policy objects in policy libraries might be consumed by more than one driver in different policy sets
and channels. The naming conventions for library policies are adapted from the driver policies.

I'i b-<feature name>-<Wat | sThi sPol i cyDoi ng>[- <channel >] [- <pol i cyset >]

+ Lib: Static prefix to mark the policy as a library policy. This is important so that you can tell which
policies belong to that driver and which policies do not.

+ Feature Name: Short name that describes the feature this policy is implementing. Examples
might be CredProv for Credential Provisioning or PwdSync for Password Synchronization. The
feature name groups multiple policies together.

+ WhatlsThisPolicyDoing: A compound word or phrase where the words are joined without
spaces and are capitalized within the compound word. This word or phrase is a brief descriptive
name for the policy.

For example:

|'i b- CredProv- Convert Payl oad- opt

|'i b- CredProv- ProcessPayl oad-itp

|'i b- CredProv- Requi redAttri butes-sub-cp
|'i b- CredProv-Triggers-cub-ctp

Understanding Policy Components

Variables

DirXML Script supports two kinds of variables: global and local. A global variable is a variable that is
defined in a global configuration value for the driver or the driver set. Global variables are by definition
read-only. A local variable is a variable that is set by a policy. A local variable can exist in one of two
different scopes: policy or driver. A policy-scoped variable is only visible during the processing of the
current operation by the policy that sets the variable. A driver-scoped variable is visible from all
DirXML Script policies running within the same driver until the driver is stopped.

A variable name must be a legal XML name. For information on what is a legal XML name, see W3C
Extensible Markup Language (XML) (http://www.w3.0rg/TR/2006/REC-xmI11-20060816/#sec-

suggested-names).

There are a number of global and local variables that are automatically defined.

Table 4-2 Defined Global and Local Variables

Name Type Description

dirxml.auto.driverdn global/string Slash format DN of the current driver.

dirxml.auto.localserverdn global/string DN of the local server where the current driver is
running in LDAP format.

dirxml.auto.driverguid global/string GUID of the current driver.

dirxml.auto.treename global/string Tree name of the local eDirectory instance.

fromNds

policy local/boolean

True if the source data store is the Identity Vault.
False if the source data store is the connected
application.

destQueryProcessor

policy local/java object

Instance of XdsQueryProcessor used to query
the destination data store.

srcQueryProcessor

policy local/java object

Instance of XdsQueryProcessor used to query
the source data store.

destCommandProcessor

policy local/java object

Instance of XdsCommandProcessor used to
execute the command using the destination
data store.

srcCommandProcessor

policy local/java object

Instance of XdsCommandProcessor used to
execute the command using the source data
store.

dnConverter

policy local/java object

Instance of DNConverter.

current-node

policy local/node set

The loop variable for each iteration of the for
each element.

current-value

policy local/node set

The loop variable for each iteration of the
reformat operation attribute.

Understanding Policy Components a7

http://www.w3.org/TR/2006/REC-xml11-20060816/#sec-suggested-names
http://www.w3.org/TR/2006/REC-xml11-20060816/#sec-suggested-names

Name Type Description

current-op policy local/node set The current operation. Setting this variable
using the <do- set - | ocal - vari abl e>element
causes the first operation specified by <ar g-
node- set > to become the current operation for
the remainder of the current policy execution or
until it is set to another value. The new current
operation must be an element sibling of the
original current operation and must have been
added by the current policy.

Variable Expansion

Many conditions, actions, and tokens support dynamic variable expansion in their attributes or
content. Where supported, an embedded reference of the form $<vari abl e- nane>$ is replaced with
the value of the local or global variable with the given name. $<vari abl e- name>$ must be a legal
variable name. For information on what is a legal XML name, see W3C Extensible Markup Language
(XML) (http:/mww.w3.0rg/TR/2004/REC-xmI-20040204/#NT-Name).

If the given variable does not exist, the reference is replaced with the empty string. Where it is
desirable to use a single $ and not have it interpreted as a variable reference, it should be escaped
with an additional $ (for example, You owe me $$100.00). See the Identity Manager DTD Reference
Documentation (https://www.netiq.com/documentation/identity-manager-developer/dtd-
documentation.html) for the content attributes that support variable expansion. For more information
on the local variables scope, see Variables. If the same local variable exists in the policy scope and
the driver scope, the variable in the policy scope takes precedence. For information on GCV and their
precedence, see Global configuration Values in the Identity Manager DTD Reference Documentation
(https://www.netig.com/documentation/identity-manager-developer/dtd-documentation.html).

Date/Time Parameters

Tokens that deal with dates and times have arguments that deal with the format, language, and time
zone of the date and time representation. Date format arguments can be specified with a ‘" character
or without a ‘!’ character. If the format begins with a ‘I’ character, then the format is a named format.
Legal names are defined in Table 4-3 on page 48.

Table 4-3 Legal Date/Time Parameters

Name Description

ICTIME Number of seconds since midnight, January 1, 1970. (Compatible with
eDirectory time syntaxes).

UTIME Number of milliseconds since midnight, January 1, 1970. (Compatible
with Java time).

IFILETIME Number of 100-nanosecond intervals since January 1, 1601
(Compatible with Win32 FILETIME).

IFULL.TIME Language-specific FULL time format.

ILONG.TIME Language-specific LONG time format.

IMEDIUM.TIME Language-specific MEDIUM time format.

48 Understanding Policy Components

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Name
http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Name
https://www.netiq.com/documentation/identity-manager-developer/dtd-documentation.html
https://www.netiq.com/documentation/identity-manager-developer/dtd-documentation.html
https://www.netiq.com/documentation/identity-manager-developer/dtd-documentation.html

Name Description

ISHORT.TIME Language-specific SHORT time format.
IFULL.DATE Language-specific FULL date format.
ILONG.DATE Language-specific LONG date format.
IMEDIUM.DATE Language-specific MEDIUM date format.
ISHORT.DATE Language-specific SHORT date/time format.
IFULL.DATETIME Language-specific FULL date/time format.
ILONG.DATETIME Language-specific LONG date/time format.
IMEDIUM.DATETIME Language-specific MEDIUM date/time format.
ISHORT.DATETIME Language-specific SHORT date/time format.

If the format does not begin with '!', then it is interpreted as a custom date/time format conforming to
the patterns recognized by the Java class java.text.SimpleDateFormat.

Language arguments can be specified by an identifier that conforms to IETF RFC 3066. The list of
identifiers understood by the system can be obtained by calling the Java class
java.util.Locale.getAvailableLocales() and replacing all underscores in the result with hyphens. If a
language argument is omitted or blank, then the default system language is used.

Time zone arguments can be specified in any identifier recognizable by the Java class

java.util. TimeZone.getTimeZone(). A list of identifiers understood by the system can be obtained by
the Java class calling java.util. TimeZone.getAvailableIDs(). If a time zone argument is omitted or
blank, then the default system time zone is used.

Regular Expressions

A regular expression is a formula for matching text strings that follow some pattern. Regular
expressions are made up of normal characters and metacharacters. Normal characters include
uppercase and lowercase letters and digits. Metacharacters have special meanings. The following
table contains some of the most common metacharacters and their meanings.

Table 4-4 Common Regular Expressions

Metacharacter Description

Matches any single character.

$ Matches the end of the line.
N Matches the beginning of a line.
* Matches zero or more occurrences of the character

immediately preceding.

\ Literal escape character. It allows you to search for
any of the metacharacters. For example \$ finds $1000
instead of matching at the end of the line.

[] Matches any one of the characters between the
brackets.

Understanding Policy Components 49

Metacharacter Description

[0-9] Matches a range of characters with the hyphen. The
example matches any digit.

[A-Za-Z] Matches multiple ranges. The example matches all
uppercase and lowercase letters.

(?u) Enables Unicode-aware case folding. This flag can
impact performance.

(?i) Enables case-insensitive matching.

The Argument Builder is designed to use regular expressions as defined in Java. For information, see
the Oracle Java documentation for your version of Java.

XPath 1.0 Expressions

The arguments to some conditions, actions, and tokens use XPath 1.0 expressions. XPath is a
language created to provide a common syntax and semantics for the functionality shared between
XSLT and XPointer. XPath is used primarily for addressing parts of an XML document, but also
provides basic facilities for manipulation of strings, numbers, and Booleans.

The XPath specification requires that the embedding application provide a context with several
application-defined pieces of information. In the DirXML Script (see “DirXML Script” on page 45),
XPath is evaluated with the following context:

+ The context node is the current operation executed by the policy, unless otherwise specified in
the description of the expression.

A Modify event in Identity Manager looks like this:

<nds dtdversion="3.5" ndsversi on="8.x">

<sour ce>
<product version="4.0.1">Di r XM_</ pr oduct >
<cont act >Novel |, Inc.</contact>

</ sour ce>

<i nput >

<modi fy class?name="User" event ?i d="656B0450E1A3BC5C6525780D003E7F4D ?
1294053788689" fronenerge="true"
qual i fi ed?src2dn="0=dat a\ OU=user s\ CN=user name" src2dn="dat a\ user s\ user name
srcrentry?i d="33045">
<associ ati on>656B0450E1A3BC5C6525780D003E7F4D</ associ ati on>
<modi fy?attr attr2name="Dir XM_?Entit| ement Ref ">
<renove-al | ?val ues/ >
</ modi fyrattr>
<nodi fy?attr attr2name="CN'>
<add?val ue>
<val ue namng="true" ti mestanp="1294053459#23"
type="string">usernane</val ue>
</ add»val ue>
</ modi fyrattr>
</ modi fy>
</i nput >
</ nds>

50 Understanding Policy Components

https://docs.oracle.com/javase/10/

When a policy rule is executed on the above event, the context node is set to the Modi fy node
instead of / . To obtain the values of some of the nodes, start the XPath expression from the
Modi fy node instead of / nds/ i nput / nodi fy. For example, the XPath expression for obtaining
the cl ass- nane attribute should be @I ass- nane instead of nds/ i nput/ nodi fy/ @l ass- nane.
The XPath expression for extracting the value of at t r - name=CNcan be nodi fy-attr[@ttr-
nane="CN']/ add- val ue/ val ue/ or nodi fy-attr/add-val ue/ val ue/ .

+ The context position and size are 1.
+ There are several available variables:

+ Variables available as parameters to style sheets within Identity Manager (currently
fromNds, srcQueryProcessor, destQueryProcessor, srcCommandProcessor,
destCommandProcessor, and dnConverter).

¢ Global configuration variables.
+ Local policy variables.

+ If there is a name conflict between different variable sources, the order of precedence is
local (policy scope), local (driver scope), and global.

+ Because of the XPath syntax, any variable that has a colon character in its name is not
accessible from XPath.

+ There are several namespaces definitions available.
+ Any namespaces explicitly declared on the <pol i cy> element by using the XMLNS: pr ef i x.

+ The following implicitly defined namespaces (unless the same prefix has been explicitly
defined):

¢ xmns:js="http://ww.novel | .con nxsl/ecmascript”
+ xm ns:es="http://ww. novel | . com nxsl /ecmascri pt"

+ xm ns: query="http://ww. novel | . com nxsl /j aval/
com novel | . nds. di rxm . driver. XdsQuer yProcessor”

¢ xm ns: cnd="http://ww. novel | . com nxsl/j ava/
com novel | . nds. di rxm . driver. XdsCommandPr ocessor”

¢ xmns:jdbc="urn:dirxn:jdbc"

+ Any namespace prefix that is not otherwise mapped is automatically mapped to ht t p: //
waww. novel | . cont nxsl /j aval <prefi x>, if the prefix is the fully qualified class name of the
Java class that can be resolved to an available Java class through introspection.

+ Namespace declarations to associate a prefix with a Java class must be declared with the
policy element.

+ There are several available functions:
+ All built-in XPath 1.0 functions.
+ Java extension functions, as provided by NXSL.

+ Java extension functions are accessed through a namespace prefix mapped to a URI
of the form: htt p: / / www. novel | . conf nxsl /javal/ <ful | y-qual i fi ed-cl ass- nane>.

+ For convenience, any prefix that is not otherwise mapped is mapped to htt p: //
www. novel | . conl nxsl /javal <prefi x>, if the prefix is the fully qualified class name
of a Java class that can be discovered through introspection.

+ ECMAScript extension functions, as provided by NXSL:

+ The ECMAScript extension function definitions come from the set of ECMAScript
resources associated with the driver.

Understanding Policy Components 51

52

+ The ECMAScript extension functions are accessed through a namespace prefix
mapped to the URI ht t p: / / ww. novel | . coml nxsl / ecmascri pt .

+ The prefixes j s and es are both implicitly mapped to htt p: / / ww. novel | . com nxsl /
ecmascri pt unless otherwise explicitly defined.

The W3 Web site (http://www.w3.0rg/TR/1999/REC-xpath-19991116) contains more information
about XPath.

XPath Examples

Here are some simple XPath examples commonly used in Identity Manager:

Add Event

<i nput >
<add cached-tinme="20130423053016. 248Z" cl ass-name="User" event-id="rj-idmdt-
122# 20130423053016#1#1: 71e2b5f d- cf 71- 4ebc- 06al- f db5e27171cf" quali fi ed-src-
dn="O=dat a\ OU=user s\ CN=sf puser z" src-dn="\ Rose- Mayf | ower - 2\ dat a\ user s\ sf puser z"
src-entry-id="39025" tinestanp="1366695016#45">
<add-attr attr-nane="Postal Code">
<val ue ti mestanp="1366695016#24" type="string">Sacranent o</val ue>
</add-attr>
<add-attr attr-name="QU'>
<val ue ti nmestanp="1366695016#22" type="string">DC\/ val ue>
</add-attr>
<add-attr attr-nanme="Title">
<val ue ti mestanp="1366695016#16" type="string">seni or manager </ val ue>
</add-attr>
<add-attr attr-name="co">
<val ue ti nmestanp="1366695016#18" type="string">USA</val ue>
</add-attr>
<add-attr attr-name="Tel ephone Nunber">
<val ue ti nest anp="1366695016#12" type="tel eNunber">+1 818 936-6205</ val ue>
</add-attr>
<add-attr attr-nane="S">
<val ue ti mestanp="1366695016#19" type="string">California</val ue>
</add-attr>
<add-attr attr-nane="G ven Name">
<val ue ti mestanp="1366695016#11" type="string">sfpuserz</val ue>
</add-attr>
<add-attr attr-nanme="conpany">
<val ue ti nmestanp="1366695016#23" type="string">Francos</val ue>
</add-attr>
<add-attr attr-nanme="Surname">
<val ue ti mestanp="1366695016#26" type="string">joe</val ue>
</add-attr>
<add-attr attr-nane="workforcel D'>
<val ue ti mestanp="1366695016#15" type="string">800001</val ue>
</add-attr>
<add-attr attr-nane="CN'>
<val ue ti mestanp="1366695016#45" type="string">sfpuserz</val ue>
</add-attr>
</ add>
</i nput >

Understanding Policy Components

http://www.w3.org/TR/1999/REC-xpath-19991116

Element Description

add-attr[@attr-name="Surname"]/value Returns the value of the add-value node for the Surname attribute.

add-attr[@attr-name=" Facsimile Returns the value of the fax number from the Facsimile Telephone
Telephone Number" /value/ Number structured attribute.
component[@name="faxNumber"]

Modify Event

<i nput >
<nodi fy class nane="User" event id="656B0450E1A3BC5C6525780D003E7F4D
1294053788689" from nerge="true" qualified src dn="0O=dat a\ OU=user s\ CN=user nane"
src dn="dat a\ users\usernanme" src entry id="33045">
<associ at i on>656B0450E1A3BC5C6525780D003E7F4D</ associ ati on>
<nmodi fy attr attr name="DirXM. Entitlement Ref">
<renove all val ues/>
</nodify attr>
<nmodi fy attr attr nanme="CN'>
<add val ue>
<val ue namng="true" timestanp="1294053459#23" type="string">username</
val ue>
</ add val ue>
</nmodify attr>

</ modi fy>
</i nput >
Element Description
@src-dn Returns the value of the src-dn attribute inside the event node.
@event-id Returns the value of the event-id attribute.
modify-attr@attr-name="CN"]/add- Returns the value of the add-value node for the Surname attribute.
value/value

Nested Groups

By default, the Metadirectory engine, when reading or searching the Member and Group Member
attributes of Identity Vault objects, returns only those values that are “static” values. Static values are
objects that received group membership by direct assignment to the group rather than inherited
assignment through a nested group.

If you want the Metadirectory engine’s searches to return values inherited through nested groups, you
can create policies (and stylesheets) that search for and read the “calculated” values for the Member
and Group Membership attributes. Calculated values include objects that are either 1) statically
assigned membership or 2) dynamically assigned membership by virtue of the nested group and the
dynamic group hierarchy calculations used by the Identity Vault. You implement this behavior in
policies and stylesheets by using the following pseudo attributes: [pseudo] . Menber and

[pseudo] . G oup Menber shi p. A single query operation can contain only the pseudo attributes or the
real attributes; mixing both attributes in the same query will result in an error.

Understanding Policy Components 53

If you want to change the Metadirectory engine default so that it always searches for and reads the
“calculated” values for the Member and Group Membership attributes, use the Revert to Calculated
Membership Value Behavior engine control value. Changing this value causes the Metadirectory
engine to revert to the method used prior to Identity Manager 3.6.1. In pre-3.6.1 versions, the
Metadirectory engine's search of the Member and Group Member attributes retrieved all “calculated”
values. For information about changing the value, see “Driver Properties” in the NetlQ Identity

Manager Driver Administration Guide.

54 Understanding Policy Components

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/driver_admin/driver_admin.pdf#b94pq23
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/driver_admin/driver_admin.pdf#Bktitle
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

Downloading Identity Manager Policies

NetlQ has provided sample policies you can download and use in your environment. The policies are
available at the NetlQ Support Web site (http://support.novell.com/patches.html). To download the
policies:

1 Go to the NetlQ Support Web site (http://support.novell.com/patches.html).

2 On the left, click Download > Patches > Patch Finder.

3 Select Identity Manager in the product field, then click Search.

4 Click Identity Manager 2.0 and Identity Manager 2.0.1.

These policies can be used with any version of Identity Manager.

5 Browse to and select the desired policy.
Table 5-1 contains a list of the policies available for download.
Select proceed to download, to download the policy.
Click download by the file name.
Click Save, then browse to and select a location to save the file.

© 00 N o

Click save, then click Close.
10 Extract the file, then read the How To_I nstal | .rtf file for installation instructions.

Table 5-1 Downloadable Policies

Name File Name

Policy to Place by Surname pl acebynane. t gz
Policy: Reset value of the email attribute pushback. t gz
Policy to enforce the presence of attributes requiredattrs.tgz

Policy: Create email from GivenName & Surname set emai | nane. t gz

Policy: Create FullName from GivenName, synt hful | nane. t gz
Surname

Policy: Convert First/Last name to uppercase upper casenanes. t gz
Policy to add user to group based on Title addcr eat egroups. t gz
Policy: Assign template to user based on title assigntenpl ate. tgz

Disable user account and move when terminated di smvontermtgz
Policy to filter events filterby.tgz

Govern Groups for user based on the title attribute gr oupchange. t gz

To use Designer to import the files, see “Importing a Policy From an XML File” in NetlQ Identity
Manager - Using Designer to Create Policies. To use iManager to import the files, see “Importing a
Policy from an XML File” in NetlQ Identity Manager Policies in iManager Guide.

Downloading Identity Manager Policies 55

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bxjclt1
http://support.novell.com/patches.html
http://support.novell.com/patches.html
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_designer/policy_designer.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_imanager/policy_imanager.pdf#brm6tn1
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_imanager/policy_imanager.pdf#brm6tn1
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/policy_imanager/policy_imanager.pdf#bookinfo

56 Downloading Identity Manager Policies

Defining Policies by Using XSLT Style
Sheets

XSLT, which is a standard language for transforming XML documents, can be used for implementing

policies as XSLT style sheets. The XSLT processor in the Metadirectory engine is compliant with the
16 November 1999 W3C recommendation. For the relevant specifications, see the following:

¢ XSL Transformations (XSLT) (http://www.w3.0rg/TR/1999/REC-xslt-19991116)

+ XML Path Language (XPath) (http://www.w3.0rg/TR/1999/REC-xpath-19991116)

The following sections describe the specifics of using XSLT style sheets with Identity Manager.

+ “Managing XSLT Style Sheets in Designer” on page 57

+ “Managing XSLT Style Sheets in iManager” on page 59

+ “Prepopulated Information in the XSLT Style Sheet” on page 60

+ “Using the Parameters that Identity Manager Passes” on page 61

+ “Using Extension Functions” on page 63

+ “Creating a Password: Example Creation Policy” on page 64

+ “Creating an Identity Vault User: Example Creation Policy” on page 65

Managing XSLT Style Sheets in Designer

XSLT policy style sheets can be added, modified, and deleted using Designer’s XML Editor. The
following sections provide details:

+ “Adding an XSLT Style Sheet in Designer” on page 57

+ “Modifying an XSLT Style Sheet in Designer” on page 59

+ “Deleting an XSLT Style Sheet in Designer” on page 59

Adding an XSLT Style Sheet in Designer

1 Open a project in Designer and select the Outline tab.

2 Select the driver and location where you want the style sheet.
3 Right-click and select New > XSLT.

4 Specify the name of the style sheet.

5 Select Open Editor after creating policy, then click OK.

Defining Policies by Using XSLT Style Sheets

57

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

58

Set Policy Name

Enter a name For vour new policy,

Mame: | Skyle Sheet]|

Cpen the editor after creating the object

[Ok] [Cancel

6 Select Yes to save the project before editing the new style sheet.

Before editing this item, wou need to save, Do you want ko save this editor's

" "
\t} changes and continue?

7 Add the style sheet information below the line Add your custom templates here.

1 Project 1 - Developer __E Mew Policy 5

T8 B R ®

E l:?:r::u-; veraion="1.0" encoding="UTF-8"7?><xaliscylesh=er exclude-resulc-prefixe

<¥sl:pacam name=s"srelueryProcessorc",/>
cx=l:param pamssTdescOusryProces=zor™/ >
cx2l:pacram name=s*srcoCommandFrocessor ™/ >
<xsliparam name="destCommandProcessor™/ >
<x=l:param name=TdnConmmercer />
<xal:ipacam name="fromdds"/ >

£1—— jdenticy teansformAtiIOoN tempplate ——>

¢l== in the absence of any other templates this will cause

cx2litemplace macch="noda () |F*™>
<xalicopy?
fusli:apply-templaces selacc="3*| node () " >
<fxml:copy>

<fuslicemplaces
<l-- add your custcom cemplates here -->
<fxal:stylesheat>

8 Click File > Save to, to save the style sheet.

Defining Policies by Using XSLT Style Sheets

<!-— the atyleshest to copy the input through unchanged to the output

=

{m|

Modifying an XSLT Style Sheet in Designer

1 Open a project in Designer and select the Outline tab.
2 Select the XSLT style sheet you want to modify.
3 Right-click, then select Edit.

Modify the style sheet as desired. To clear the existing style sheet content, click Clear & inthe
XML editor toolbar.

Deleting an XSLT Style Sheet in Designer

1 Open a project in Designer and select the Outline tab.
2 Select the XSLT style sheet that you want to delete, right-click, then select Delete.

Alternatively, you can clear the XSLT policy without deleting the object. To do this, right-click the
XSLT policy, then select Clear.

Managing XSLT Style Sheets in iManager

XSLT policy style sheets are added, modified, and deleted using iManager. The following sections
provide details:

+ “Adding an XSLT Policy in iManager” on page 59

+ “Modifying an XSLT Style Sheet in iManager” on page 60

+ “Deleting an XSLT Style Sheet in iManager” on page 60

Adding an XSLT Policy in iManager

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the icon representing the policy were you want to add the XSLT style sheet.
3 Click Insert.

4 Provide a name for the new XSLT style sheet, select XSLT, then click OK.

5 Select Enable XML Editing to edit the XSLT style sheet.

6 Add the style sheet information below the line add your custom templates here.

Defining Policies by Using XSLT Style Sheets 59

60

Identity Manager Policy: &: xsLT.subscriber.Delimited Text,Driverset.Novell

Identity Manager

Edit XML | Usage

XML Editor: Enable XML editing
<?xml version="1.0" encoding="UTF-5"?><xsl:stylesheet exclude-result-prefixes="qu
<!—— parameters passed in from the DirEML engine —-3>

<¥sl:parawm nawme="sroQueryProcessor™S >
<x3l:parsm namwe="destQueryProcessor™/ >
<®sl:param name="srcCommandProcessor ™, >
<xal:param name="destCommandProcessor ™y >
<®sl:param name="dnConverter™/>
<®sl:param name="fronlds"/>

<!—— identity transformsation template -->
<!—— in the absence of any other templates this will cause ——>
<!—— the stylesheet to copy the input through unchanged to the output —-->

<®sl:itenmplate mwatch="node() |B*">
<Hsl:copy>
<x¥3lrapply-templates select="@+ | node (1 "/ >
</xsl:copys>
<fxsl:templates>
(<!—— add your custom templates here ——>)
<fx3l:acylesheet>

£ >

7 Click OK to save the XSLT style sheet.

Modifying an XSLT Style Sheet in iManager

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the icon representing the policy where the XSLT style sheet you want to modify is stored.
3 Select the XSLT style sheet you want to modify from the list of policies, then click Edit.

4 Edit the XSLT style sheet, then click OK.

Deleting an XSLT Style Sheet in iManager

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the icon representing the policy where the XSLT style sheet you want to delete is stored.
3 Select the XSLT style sheet you want to delete from the list of policies, then click Delete.

4 Click OK, to verify that you want to delete the XSLT style sheet.

Prepopulated Information in the XSLT Style Sheet

When you create a new style sheet in iManager or Designer, it is prepopulated with a style sheet that
implements the identity transformation. In the absence of additional templates, the identity
transformation allows the input XML document to pass through the style sheet unchanged. You
usually implement policy by adding additional templates to act on only the XML that you want to be
changed. If your style sheet is being used to translate a document to or from an XML vocabulary that
is different than XDS (such as the Input and Output Transformations for the SOAP and Delimited Text
drivers) you might need to remove the identity template.

Defining Policies by Using XSLT Style Sheets

Using the Parameters that Identity Manager Passes

The Metadirectory engine passes the policy style sheets the following parameters to the style sheet:

Table 6-1 Style Sheet Parameters

Parameter

Description

srcQueryProcessor

A Java object that implements the XdsQueryProcessor interface. This allows
the style sheet to query the source data store for more information.

destQueryProcessor

A Java object that implements the XdsQueryProcessor interface. This allows
the style sheet to query the destination data store for more information.

srcCommandProcessor

A Java object that implements the XdsCommandProcessor interface. This
allows the style sheet to write back a command to the event source.

destCommandProcessor

A Java object that implements the XdsCommandProcessor interface. This
allows the style sheet to issue a command directly to send a command to the
destination data store.

dnConverter

A Java object that implements the XdsCommandProcessor interface.This
allows the style sheet to convert Identity Vault object DNs from one format to
another. For more information, see Interface DNCoverter (http://
developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/
driver/DNConverter.html).

fromNds

A Boolean value that is True if the source data store is the Identity Vault and
False if it is the connected application.

When you create a new style sheet in iManager or Designer, it is prepopulated with a style sheet that
contains the declarations for these parameters.

When using the query and command parameters with the schema mapping policies, input
transformation policies, and output transformation policies, the following limitations apply:

+ Queries issued to the application shim must be in the form expected by the application shim. In
other words, schema names must be in the application namespace and the query must conform
to whatever XML vocabulary is used natively by the shim. No association references are added

to the query.

+ Responses from the application shim are in the form returned by the shim with no modification or
schema mapping performed and no resolution of association references.

+ Queries issued to the Identity Vault must be in the form expected by the Identity Vault. In other
words, schema names must be in the Identity Vault namespace and the query must be XDS.
Association references are not resolved.

+ Responses from the application shim are in the form returned by the shim with no modification or
schema mapping performed.

Query Processors

Use of the query processors depends on the XSLT implementation of extension functions. To make a
query, you need to declare a namespace for the XdsQueryProcessor interface. This is done by
adding the following to the <xsl : st yl esheet > or <xsl : t r ansf or > element of the style sheet.

xm ns: query="http://wwm novel | . com nxsl /java/
com novel | . nds. di rxm . driver. XdsQueryProcessor"

Defining Policies by Using XSLT Style Sheets

61

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html

When you create a new style sheet in iManager or Designer, it is prepopulated with the namespace
declaration. For more information about query processors see Class XdsQueryProcessor (http://
developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/
XdsQueryProcessor.html).

The following example uses one of the query processors (the long lines are wrapped and do not
begin with a <): To view the style sheet, see Query Processors.xsl (../samples/
Query_Processors.xsl).

<l-- Query object name queries NDS for the passed object name -->

<xsl :tenpl ate nane="query-obj ect - name" >
<xsl : param nanme="obj ect - nane"/ >

<l-- puild an xds query as a result tree fragment -->
<xsl :vari abl e nane="query">
<query>

<sear ch-cl ass cl ass-name="{ancestor-or-self:
:add/ @l ass-nane}"/ >

<l-- NOTE: depends on CN being the namng attribute -->
<search-attr attr-name="CN'>
<val ue><xsl : val ue- of sel ect =" $obj ect - nane"/

></val ue>
</search-attr>
<l-- put an enpty read attribute in so that we don't get -->
<l-- the whol e object back -->
<read-attr/>

</ query>
</ xsl :vari abl e>

<l-- query NDS -->
<xsl:variabl e nane="result" sel ect="query: query($dest Query
Processor, $query) "/ >

<l-- return an enpty or non-enpty result tree fragment -->

<l-- depending on result of query -->
<xsl : val ue- of select="$result//instance"/>

</ xsl:tenpl at e>

Here is another example.

<?xm version="1.0"?>
<xsl:transform
versi on="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
xm ns: cd="htt p: // www. novel | . conf nxsl /] ava
com novel | . nds. di rxm . dri ver. XdsCommandPr ocessor "
>
<xsl : param nanme="sr cConmandPr ocessor"/ >

<xsl :tenpl ate match="node()| @">
<xsl : copy>
<xsl : apply-tenpl ates select="@| node()"/>
</ xsl : copy>
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="add">

<xsl : copy>
<xsl : apply-tenpl ates select="@| node()"/>

62 Defining Policies by Using XSLT Style Sheets

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html
../samples/Query_Processors.xsl

</ xsl : copy>

<l-- on a user add, add Engineering department to the source object -->
<xsl : vari abl e nane="dumy" >
<nmodi fy class-name="{ @l ass-nane} "dest-dn="{@rc-dn}">
<xsl - copy-of sel ect="association"/>
<nodi fy-attr attr-name="QU'>
<add- val ue>
<val ue type="string">Engi neering</val ue>
</ add- val ue>
</nmodi fy-attr>
</ nodi fy>
</ xsl : vari abl e>
<xsl :vari abl e name="dummy?2"
sel ect =" cmd: execut e($sr cCommandPr ocessor, $dummy)"/>
</ xsl:tenpl at e>

</ xsl :transfornp

Using Extension Functions

XSLT is an excellent tool for performing some kinds of transformations and a rather poor tool for other

types of transformations, such as non-trivial string manipulation and iterative processes. However,
the XSLT processor implements extension functions that allow the style sheet to call a function
implemented in Java, and by extension, any other language that can be accessed through JNI.

For specific examples, see “Query Processors” on page 61 using the query processor, and the

following example that illustrates using Java for string manipulation. The long lines are wrapped and

do not begin with a <. To view the style sheet, see Extension_Functions.xsl (../samples/
Extension_Functions.xsl).

<l-- get-dn-prefix places the part of the passed dn that -->
<l-- precedes the |last occurrence of '\’ in the passed dn -->
<l-- in aresult tree fragnment neaning that it can be -->
<l-- used to assign a variable val ue -->

<xsl:tenpl ate nane="get-dn-prefix" xmns:jstring="http://
www. novel | . conmf nxsl/javal/java.lang. String">

<xsl : param name="src-dn"/ >
<l-- use java string stuff to make this nmuch easier -->

<xsl :vari abl e nane="dn" sel ect="jstring: new $src-dn)"/>
<xsl:variabl e name="i ndex" select="jstring:|astlndexX

($dn,"'\")"/>
<xsl:if test="$index !'=-1">
<xsl : val ue- of sel ect="j string: substring($dn, 0, $i ndex)
Il/>
</xsl:if>

</ xsl:tenpl at e>

Defining Policies by Using XSLT Style Sheets

63

../samples/Extension_Functions.xsl

64

Creating a Password: Example Creation Policy

The following style sheet can be used for a Creation policy. It creates a user, generates a password
for the user from the user’s Surname and CN attributes, and performs an identity transformation that
passes through everything in the document except the events you are trying to intercept and
transform. To view the style sheet, see Create Password.xsl (../samples/Create_Password.xsl).

<?xm version="1.0" encodi ng="1S0 8859-1"?>

<l-- This styl esheet has an exanple of howto replace a create rule with
an XSLT styl esheet and supply an initial password for "User" objects. -->

<xsl:transform xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf orm
"version="1.0">

<l-- ensure we have required NDS attributes -->
<xsl:tenpl ate mat ch="add">
<xsl:if test="add-attr[@ttr-name="Surname’] and
add-attr[@ttr-name="CN]">
<l-- copy the add through -->
<xsl : copy>
<xsl:apply-tenpl ates select="@| node()"/>
<l-- add a <password> el enment -->
<xsl:cal |l -tenpl ate nanme="cr eat e- password"/>
</ xsl : copy>
</xsl:if>

<l-- if the xsl:if fails, we don't have all the required attributes
so we won't copy the add through, and the create rule will veto the add -->

</ xsl:tenpl at e>

<xsl:tenpl ate name="cr eat e- password" >
<passwor d>
<xsl :val ue-of sel ect="concat (add-attr[@ttr-name="Surname’]/val ue,
'-',add-attr[@ttr-name="CN]/val ue)"/>
</ passwor d>
</ xsl:tenpl ate>

<l-- jdentity transformfor everything we don't want to change -->

<xsl:tenpl ate match="@ | node()">
<xsl : copy>
<xsl : appl y-tenpl ates sel ect="@| node()"/>
</ xsl : copy>
</ xsl:tenpl ate>

</ xsl : transforne
While constructing DirXML-PasswordSyncStatus, you may can encounter values like:

39DB7DED8436EE4ADF38039DB7DED843620140325141422721000000000001Code(- 8032) Oper ati on
vet oed by policy

The value of DirXML-PasswordSyncStatus is composed of the following:

+ The first 32 bytes represent the GUID of the driver
+ The next 17 bytes represent the Date/Time in yyyyMMddHHmMmMssSSS format
+ The next 8 bytes are 00000000

Defining Policies by Using XSLT Style Sheets

../samples/Create_Password.xsl

+ The next 4 bytes indicate any one of the following status codes:
+ 0000: ERROR
+ 0001: WARNING
+ 0002: RETRY
+ 0003: FATAL
+ 0004: SUCCESS
+ The next string is the status message, if any.

Creating an ldentity Vault User: Example Creation
Policy

This style sheet can be used for a Creation policy. It shows how to create an Identity Vault user from
an entry created in an external application. This example is based on the idea that a newly hired
person is first created in the Human Resources database and then on the network. It takes the user’s
first name and last name and generates a unique CN in the Identity Vault. Although, Identity Vault
requires the CN to be unique in only the container, this style sheet ensures that it is unique across all
containers in the Identity Vault. To view the style sheet, see Create_User.xsl (../samples/
Create_User.xsl)

<?xm version="1.0" encodi ng="1S0 8859-1"?>

<l-- This stylesheet is an exanple of how to replace a create rule with an
XSLT styl esheet and that creates the User name fromthe Surname and
given Nanme attributes -->

<xsl:transform
xm ns: xsl ="http://www. w3. org/ 1999/ XSL/ Transf orm' versi on="1. 0"
xm ns: query="http://ww. novel | . conf nxsl /j ava/ com novel | . nds. di rxm . driver.

XdsQuer yProcessor"
>

<l-- This is for testing the styl esheet outside of ldentity Manager so things
are pretty to look at -->

<xsl:strip-space el ements="*"/>

<xsl : preserve-space el enent s="val ue, conponent"/>

<xsl : out put nethod="xm " indent="yes"/>

<l-- ldentity Manager always passes two styl esheet parameters to an XSLT rul e:
an inbound and out bound query processor -->

<xsl : param name="sr cQuer yProcessor"/ >

<xsl : param nane="dest Quer yProcessor"/ >

<l-- match <add> el enents -->
<xsl :tenpl ate mat ch="add" >

<l-- ensure we have required NDS attributes we need for the name -->
<xsl:if test="add-attr[@ttr-name="Surname’] and
add-attr[@ttr-name="G ven Name']">

<l-- copy the add through -->
<xsl : copy>
<l-- copy any attributes through except for the src-dn -->
<l-- we'll construct the src-dn bel ow so that the placenment rule will work

Defining Policies by Using XSLT Style Sheets 65

../samples/Create_User.xsl

66

<xsl:apply-tenplates select="@[string(.) !="src-dn']"/>

<l-- call a tenplate to construct the object nane and place the result in
a variable -->
<xsl:variabl e name="obj ect - nane" >
<xsl:call-tenpl ate nane="cr eat e- obj ect - nane"/ >
</ xsl :vari abl e>

<l-- now create the src-dn attribute with the created name -->
<xsl:attribute name="src-dn">
<xsl :vari abl e name="prefix">
<xsl:call-tenpl ate name="get-dn-prefix">
<xsl : wi t h- param name="src-dn" sel ect="string(@rc-dn)"/>
</ xsl:call-tenpl ate>
</ xsl :vari abl e>
<xsl : val ue- of sel ect="concat ($prefix,’\’', $object-nane)"/>
</xsl:attribute>

<I-- if we have a "CN' attribute, set it to the constructed nane -->
<xsl:if test="./add-attr[@ttr-name="CN]">
<add-attr attr-name="CN'>
<val ue type="string"><xsl:val ue-of sel ect="%object-nanme"/></val ue>
</add-attr>

</xsl:if>
<l-- copy the rest of the stuff through, except for what we have al ready
copied -->
<xsl:apply-tenpl ates select="*[nanme() != 'add-attr’ or @ttr-name != "' CN]
I
coment () |
processi ng-instruction() |
text()"/>
<l-- add a <password> el enent -->

<xsl:call-tenpl ate name="creat e- password"/ >

</ xsl : copy>
</xsl:if>
<l-- if the xsl:if fails, it means we don't have all the required attributes
so we won’'t copy the add through, and the create rule will veto the add -->
</ xsl:tenpl at e>

<l-- get-dn-prefix places the part of the passed dn that precedes the -->
<l-- last occurrance of '"\' in the passed dn in a result tree fragment -->
<l-- meaning that it can be used to assign a variable val ue -->

<xsl:tenpl ate nane="get-dn-prefix" xmns:jstring="http://ww.novell.conl nxsl/java/
java.lang. String">
<xsl : param name="src-dn"/>

<l-- use java string stuff to make this nmuch easier -->
<xsl:variabl e name="dn" sel ect="jstring: newm $src-dn)"/>
<xsl :vari abl e nane="i ndex" select="jstring:|astlndexX($dn,’\")"/>

<xsl:if test="8$index !'= -1">
<xsl :val ue- of sel ect="jstring:substring($dn, 0, $i ndex)"/>
</xsl:if>

</ xsl:tenpl at e>

<l-- create-object-name creates a nane for the user object and places the -->
<l-- result in aresult tree fragnent -->
<xsl :tenpl ate nanme="cr eat e- obj ect - nane" >

Defining Policies by Using XSLT Style Sheets

<l-- first try is first initial followed by surnanme -->

<xsl:variabl e name="gi ven-name" sel ect="add-attr[@ttr-name="G ven Nane']/
ue"/ >

<xsl:variabl e name="surname" select="add-attr[@ttr-name="Surnane']/val ue"/>
<xsl :vari abl e nane="prefix" sel ect="substring($gi ven-nane, 1,1)"/>

<xsl :vari abl e nane="obj ect - name" sel ect ="concat ($prefi x, $surnane)"/ >

va

<l-- then see if nane already exists in NDS -->
<xsl:vari abl e name="exi sts">
<xsl:cal |l -tenpl ate nane="query-obj ect - nane" >
<xsl : wi t h- par am name="obj ect - nane" sel ect =" $obj ect - name"/ >
</xsl:call-tenpl ate>
</ xsl :vari abl e>

<l-- if exists, then try 1st fallback, else return result -->
<xsl : choose>
<xsl : when test="%exists I=""">

<xsl:call-tenpl ate name="cr eat e- obj ect - nanme- 2"/ >
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of sel ect =" $obj ect - nane"/ >
</ xsl : ot herw se>
</ xsl : choose>

</ xsl:tenpl at e>

<l-- create-object-name-2 is the first fallback if the name created by -->
<l-- create-object-name already exists -->
<xsl :tenpl ate nanme="cr eat e- obj ect - nane- 2" >

<l-- first try is first name followed by surname -->

<xsl:variabl e name="gi ven-name" sel ect="add-attr[@ttr-name="G ven Nane’']/
ue"/ >

<xsl:vari abl e name="surname" select="add-attr[@ttr-name=" Surnane’]/val ue"/>
<xsl :vari abl e nane="obj ect - nane" sel ect ="concat ($gi ven- nane, $sur nane) "/ >

va

<l-- then see if name already exists in NDS -->
<xsl :vari abl e nane="exi sts">
<xsl :cal |l -tenpl at e nane="query- obj ect - nane" >
<xsl : wi t h- par am nane="obj ect - nanme" sel ect =" $obj ect - name"/ >
</ xsl:call-tenpl ate>
</ xsl :vari abl e>

<l-- if exists, then try last fallback, else return result -->
<xsl : choose>
<xsl:when test="%exists !=""">

<xsl:call-tenpl ate name="creat e- obj ect - nane-f al | back"/ >
</ xsl : when>
<xsl: ot herw se>
<xsl : val ue- of sel ect =" $obj ect - nane"/ >
</ xsl : ot herwi se>
</ xsl : choose>

</ xsl:tenpl at e>

<l-- create-object-nane-fallback recursively tries a name created by -->
<l-- concatenating the surnane and a count until NDS doesn't find -->
<l-- the nane. There is a danger of infinite recursion, but only if -->
<l-- there is a bug in NDS -->

Defining Policies by Using XSLT Style Sheets 67

<xsl :tenpl ate nanme="cr eat e- obj ect - nane-f al | back" >
<xsl : param name="count" select="1"/>

<l-- construct the a name based on the surname and a count -->

<xsl:variabl e name="surname" select="add-attr[@ttr-name="Surnane']/val ue"/>
<xsl : vari abl e nane="obj ect - nanme" sel ect ="concat ($surnane,’-', $count)"/ >

<l-- see if it exists in NDS -->

<xsl:variabl e name="exi sts">
<xsl :cal |l -tenpl at e nane="query- obj ect - nane" >
<xsl : wi t h- par am name="obj ect - nane" sel ect =" $obj ect - name"/ >
</ xsl:call-tenpl ate>
</ xsl :vari abl e>

<l-- if exists, then try again recursively, else return result -->
<xsl : choose>
<xsl :when test="$exists !=""">

<xsl:call-tenpl ate name="cr eat e- obj ect - nanme-f al | back" >
<xsl :wi t h- param nane="count" sel ect ="$count + 1"/>
</ xsl:call-tenpl ate>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of sel ect ="$obj ect - nane"/ >
</ xsl : ot herw se>
</ xsl : choose>

</ xsl:tenpl at e>

<l-- query object nane queries NDS for the passed object-nane. Ideally, this would
-->

<l-- not depend on "CN': to do this, add another paraneter that is the name of the
-->

<l-- paming attribute. -->

<xsl :tenpl at e nanme="query-obj ect - name" >
<xsl : param nane="obj ect - nane"/ >

<l-- build an xds query as a result tree fragnent -->
<xsl:variabl e name="query">
<nds ndsversion="8.5" dtdversion="1.0">
<i nput >
<query>
<search-cl ass cl ass-name="{ancestor-or-self::add/ @l ass-nane}"/>
<l-- NOTE: depends on CN being the namng attribute -->
<search-attr attr-name="CN'>
<val ue><xsl : val ue- of sel ect ="$obj ect - nane"/ ></ val ue>
</search-attr>
<l-- put an enpty read attribute in so that we don't get the whole
obj ect back -->
<read-attr/>
</ query>
</'i nput >
</ nds>
</ xsl :vari abl e>

<l-- query NDS -->
<xsl:variable nane="result" sel ect="query: query($dest QueryProcessor, $query)"/>

<l-- return an enpty or non-enpty result tree fragment depending on result of

query -->
<xsl : val ue-of select="%$result//instance"/>

68 Defining Policies by Using XSLT Style Sheets

</ xsl:tenpl at e>

<l-- create an initial password -->
<xsl:tenpl ate nane="cr eat e- password" >
<passwor d>
<xsl :val ue-of sel ect="concat (add-attr[@ttr-name="Surnane’']/val ue,’-', add-
attr[@ttr-name="CN]/val ue)"/>
</ passwor d>
</ xsl:tenpl at e>

<l-- jdentity transformfor everything we don't want to nmess with -->
<xsl:tenpl ate match="@| node()">
<xsl : copy>

<xsl : apply-tenpl ates select="@| node()"/>
</ xsl : copy>
</ xsl:tenpl at e>

</ xsl :transforne

Defining Policies by Using XSLT Style Sheets 69

70 Defining Policies by Using XSLT Style Sheets

	NetIQ Identity Manager Understanding Policies Guide
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	1 Overview
	What Are Policies?

	2 Upgrading Identity Manager Policies
	Methods for Upgrading the Driver Configuration File
	Installing a New Driver and Moving the Existing Policies from the Old Driver
	Overlay the New Driver Configuration File Over an Existing Driver

	Recommended Driver Configuration Upgrade Procedure
	Upgrading the Driver Configuration in Designer
	Upgrading the Driver Configuration in iManager

	3 Understanding Types of Policies
	Identity Manager Architecture in Relation to Policies
	Using Filters
	How Policies Function
	Detecting Changes and Sending Them to the Identity Vault
	Filtering Information
	Using Policies to Apply Changes

	Policy Types
	Event Transformation Policy
	Matching Policies
	Creation Policy
	Placement Policy
	Command Transformation Policy
	Schema Mapping Policy
	Output Transformation Policy
	Input Transformation Policy
	Start Up Policies
	Shut-Down Policies

	Defining Policies
	Policy Builder and DirXML Script

	4 Understanding Policy Components
	DirXML Script
	Naming Conventions for Policies
	Naming Convention for Driver Policy Objects
	Naming Convention for Policy Objects in Libraries

	Variables
	Variable Expansion
	Date/Time Parameters
	Regular Expressions
	XPath 1.0 Expressions
	Nested Groups

	5 Downloading Identity Manager Policies
	6 Defining Policies by Using XSLT Style Sheets
	Managing XSLT Style Sheets in Designer
	Adding an XSLT Style Sheet in Designer
	Modifying an XSLT Style Sheet in Designer
	Deleting an XSLT Style Sheet in Designer

	Managing XSLT Style Sheets in iManager
	Adding an XSLT Policy in iManager
	Modifying an XSLT Style Sheet in iManager
	Deleting an XSLT Style Sheet in iManager

	Prepopulated Information in the XSLT Style Sheet
	Using the Parameters that Identity Manager Passes
	Using Extension Functions
	Creating a Password: Example Creation Policy
	Creating an Identity Vault User: Example Creation Policy

