
NetIQ® Identity Manager
Driver for REST Implementation Guide

2015

Legal Notice

THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT ARE FURNISHED UNDER AND ARE
SUBJECT TO THE TERMS OF A LICENSE AGREEMENT OR A NON-DISCLOSURE AGREEMENT. EXCEPT AS
EXPRESSLY SET FORTH IN SUCH LICENSE AGREEMENT OR NON-DISCLOSURE AGREEMENT, NETIQ
CORPORATION PROVIDES THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT
ALLOW DISCLAIMERS OF EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS; THEREFORE, THIS
STATEMENT MAY NOT APPLY TO YOU.

For purposes of clarity, any module, adapter or other similar material ("Module") is licensed under the terms and conditions of
the End User License Agreement for the applicable version of the NetIQ product or software to which it relates or interoperates
with, and by accessing, copying or using a Module you agree to be bound by such terms. If you do not agree to the terms of
the End User License Agreement you are not authorized to use, access or copy a Module and you must destroy all copies of
the Module and contact NetIQ for further instructions.

This document and the software described in this document may not be lent, sold, or given away without the prior written
permission of NetIQ Corporation, except as otherwise permitted by law. Except as expressly set forth in such license
agreement or non-disclosure agreement, no part of this document or the software described in this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, or otherwise,
without the prior written consent of NetIQ Corporation. Some companies, names, and data in this document are used for
illustration purposes and may not represent real companies, individuals, or data.

This document could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein. These changes may be incorporated in new editions of this document. NetIQ Corporation may make improvements in
or changes to the software described in this document at any time.

U.S. Government Restricted Rights: If the software and documentation are being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier), in accordance with 48 C.F.R. 227.7202-
4 (for Department of Defense (DOD) acquisitions) and 48 C.F.R. 2.101 and 12.212 (for non-DOD acquisitions), the
government’s rights in the software and documentation, including its rights to use, modify, reproduce, release, perform, display
or disclose the software or documentation, will be subject in all respects to the commercial license rights and restrictions
provided in the license agreement.

© 2015 NetIQ Corporation. All Rights Reserved.

For information about NetIQ trademarks, see https://www.netiq.com/company/legal/.

https://www.netiq.com/company/legal/

Contents
About NetIQ Corporation 5
About This Guide 7
About this Book and the Library 9

1 Understanding the REST Driver 11

1.1 Key Terms . 11
1.1.1 Identity Manager . 12
1.1.2 Connected System . 12
1.1.3 Identity Vault . 12
1.1.4 Identity Manager Engine . 12
1.1.5 Driver Shim . 12
1.1.6 Driver Packages . 12
1.1.7 Remote Loader . 13

1.2 Driver Concepts . 13
1.2.1 Introduction . 13
1.2.2 How the Driver Works . 15
1.2.3 Understanding Driver Operation Data . 16

1.3 Support for Standard Driver Features . 18
1.3.1 Supported Operations . 18
1.3.2 Local Platforms . 18
1.3.3 Remote Platforms . 18
1.3.4 Supporting Driver Authentication . 19
1.3.5 Supporting Publish and Poll Modes. 21
1.3.6 Supporting Identity Manager Engine as a REST EndPoint . 21
1.3.7 Synchronizing Information . 23
1.3.8 Supporting Entitlements and Permission Collection and Reconciliation Service. 23

2 Installing the Driver Files 25

2.1 Prerequisites for Driver Installation . 25
2.2 Installing the REST driver. 25

3 Creating a New Driver Object 27

3.1 Creating the Driver Object in Designer . 27
3.1.1 Importing the Current Driver Packages . 27
3.1.2 Installing the Driver Packages . 28
3.1.3 Configuring the Driver Object . 31
3.1.4 Deploying the Driver Object . 31
3.1.5 Starting the Driver . 32

3.2 Activating the Driver . 33
3.3 Adding Packages to an Existing Driver . 33
3.4 Creating Custom Entitlements . 34

4 Customizing the Driver for RESTful Services 39

4.1 Using Java Extensions. 39
4.2 Changing the JSON/XML Payload . 39
4.3 Using driver-operation-data . 39
Contents 3

4 NetI
5 Securing Communication 41

5.1 Configuring the Publisher Channel . 41
5.2 Configuring the Subscriber Channel . 42

6 Managing the Driver 45

7 Troubleshooting the Driver 47

7.1 Driver Shim Errors . 47
7.2 Troubleshooting Driver Processes . 47
7.3 Exception Reported After Upgrading to REST Driver 1.0.0.1. 47

A Driver Properties 49

A.1 Driver Configuration . 49
A.1.1 Driver Module . 50
A.1.2 Authentication . 50
A.1.3 Startup Option . 50
A.1.4 Driver Parameters . 51
A.1.5 ECMAScript . 55
A.1.6 Global Configuration . 55

A.2 Global Configuration Values. 55
A.2.1 Password Synchronization . 56
A.2.2 Permission Collection and Reconciliation . 56

B Using Java Extensions 59

B.1 Overview . 59
B.2 Creating and Configuring Java Extensions . 60

C Trace Levels 63

D Supported JSON Format 65
Q REST Driver Implementation Guide

About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in your
environment: Change, complexity and risk—and how we can help you control them.

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster

We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios in
which IT organizations like yours operate—day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion

We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and you
need someone that is truly easy to work with—for a change. Ultimately, when you succeed, we
all succeed.

Our Solutions
 Identity & Access Governance

 Access Management

 Security Management

 Systems & Application Management

 Workload Management

 Service Management
About NetIQ Corporation 5

Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. The documentation for this product is
available on the NetIQ Web site in HTML and PDF formats on a page that does not require you to log
in. If you have suggestions for documentation improvements, click Add Comment at the bottom of
any page in the HTML version of the documentation posted at www.netiq.com/documentation. You
can also email Documentation-Feedback@netiq.com. We value your input and look forward to
hearing from you.

Contacting the Online User Community
NetIQ Communities, the NetIQ online community, is a collaborative network connecting you to your
peers and NetIQ experts. By providing more immediate information, useful links to helpful resources,
and access to NetIQ experts, NetIQ Communities helps ensure you are mastering the knowledge you
need to realize the full potential of IT investments upon which you rely. For more information, visit
community.netiq.com.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
6 NetIQ REST Driver Implementation Guide

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com

About This Guide

This guide explains how to install and configure the Identity Manager Driver for REST. The guide
includes the following information:

 Chapter 1, “Understanding the REST Driver,” on page 11

 Chapter 2, “Installing the Driver Files,” on page 25

 Chapter 3, “Creating a New Driver Object,” on page 27

 Chapter 4, “Customizing the Driver for RESTful Services,” on page 39

 Chapter 5, “Securing Communication,” on page 41

 Chapter 6, “Managing the Driver,” on page 45

 Chapter 7, “Troubleshooting the Driver,” on page 47

 Appendix A, “Driver Properties,” on page 49

 Appendix B, “Using Java Extensions,” on page 59

 Appendix C, “Trace Levels,” on page 63

 Appendix D, “Supported JSON Format,” on page 65

Audience

This guide is intended for administrators implementing Identity Manager, application server
developers, Web services administrators, and consultants. You should also have an understanding of
DSML/SPML, REST,JSON and HTML.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of this document, see the Identity Manager Drivers Documentation Web
site (http://www.netiq.com/documentation/idm45drivers/index.html).

Additional Documentation

For information on Identity Manager, see the Identity Manager Documentation Web site (http://
www.netiq.com/documentation/idm45drivers).
About This Guide 7

http://www.netiq.com/documentation/idm45drivers/index.html
http://www.netiq.com/documentation/idm45drivers/index.html
http://www.netiq.com/documentation/idm45drivers

8 NetIQ REST Driver Implementation Guide

About this Book and the Library

The Identity Manager Driver for REST Implementation Guide explains how to install and configure the
Identity Manager Driver for REST.

Intended Audience
This book provides information for administrators implementing Identity Manager, application server
developers, Web services administrators, and consultants, who also have an understanding of
DSML/SPML, REST, JSON and HTML.

Other Information in the Library
The library provides the following information resources:

Identity Manager Setup Guide

Provides overview of Identity Manager and its components. This book also provides detailed
planning and installation information for Identity Manager.

Designer Administration Guide

Provides information about designing, testing, documenting, and deploying Identity Manager
solutions in a highly productive environment.

User Application: Administration Guide

Describes how to administer the Identity Manager User Application.

User Application: User Guide

Describes the user interface of the Identity Manager User Application and how you can use the
features it offers, including identity self-service, the Work Dashboard, role and resource
management, and compliance management.

User Application: Design Guide

Describes how to use the Designer to create User Application components, including how to
work with the Provisioning view, the directory abstraction layer editor, the provisioning request
definition editor, the provisioning team editor, and the role catalog.

Identity Reporting Module Guide

Describes the Identity Reporting Module for Identity Manager and how you can use the features
it offers, including the Reporting Module user interface and custom report definitions, as well as
providing installation instructions.

Analyzer Administration Guide

Describes how to administer Analyzer for Identity Manager.

Identity Manager Common Driver Administration Guide

Provides information about administration tasks that are common to all Identity Manager drivers.
About this Book and the Library 9

Identity Manager Driver Guides

Provides implementation information about Identity Manager drivers.
10 NetIQ REST Driver Implementation Guide

1 1Understanding the REST Driver

REST (Representational State Transfer) is an HTTP-based protocol used for Internet
communication. REST is the widely emerging standard for applications across World Wide Web,
Software as a Service (SaaS) applications, distributed systems, cloud-based services, web services
and other business critical applications. A RESTful service is implemented using the HTTP protocol
and the principles of REST.

The Identity Manager driver for REST enables identity provisioning and data synchronization
between an Identity Vault and any RESTful service.

The driver is not targeted to a specific Web service. The driver is a generic shim that handles the
HTTP transport of data between an Identity Vault and a RESTful service. For this driver, a RESTful
service is defined as an application that uses HTTP as the transport protocol. The REST driver
provides interfaces to transform events and data between Identity Vault and connected system. The
driver also exposes REST endpoints that enables Identity Manager to function as a RESTful service.

The driver provides the following key features:

 Supports Anonymous, Basic, and OAuth2.0 authentication

 Supports XML/JSON based requests between the Identity Manager and any RESTful services

 Provides interfaces to extend driver functionalities

 Exposes the REST endpoints that enables CRUD operation to be done in RESTful way on
Identity Vault

 Supports password synchronization

 Supports Permission Collection and Reconciliation Service (PCRS)

This section provides the following information for the REST driver:

 Section 1.1, “Key Terms,” on page 11

 Section 1.2, “Driver Concepts,” on page 13

 Section 1.3, “Support for Standard Driver Features,” on page 18

1.1 Key Terms
 Section 1.1.1, “Identity Manager,” on page 12

 Section 1.1.2, “Connected System,” on page 12

 Section 1.1.3, “Identity Vault,” on page 12

 Section 1.1.4, “Identity Manager Engine,” on page 12

 Section 1.1.5, “Driver Shim,” on page 12

 Section 1.1.6, “Driver Packages,” on page 12

 Section 1.1.7, “Remote Loader,” on page 13
Understanding the REST Driver 11

1.1.1 Identity Manager

NetIQ Identity Manager is a service that synchronizes data among servers in a set of connected
systems by using a robust set of configurable policies. Identity Manager uses the Identity Vault to
store shared information, and uses the Identity Manager engine for policy-based management of the
information as it changes in the vault or connected system. Identity Manager runs on the server
where the Identity Vault and the Identity Manager engine are located.

1.1.2 Connected System

A connected system is any system that can share data with Identity Manager through a driver. Any
RESTful service is a connected system for this driver.

1.1.3 Identity Vault

The Identity Vault is a persistent database powered by eDirectory and used by Identity Manager to
hold data for synchronization with a connected system. The vault can be viewed narrowly as a private
data store for Identity Manager or more broadly as a metadirectory that holds enterprise-wide data.
Data in the vault is available to any protocol supported by eDirectory, including the NetWare Core
Protocol (NCP), which is the traditional protocol used by iManager, and LDAP.

Because the vault is powered by eDirectory, Identity Manager can be easily integrated into your
corporate directory infrastructure by using your existing directory tree as the vault.

1.1.4 Identity Manager Engine

The Identity Manager engine is the core server that implements the event management and policies
of Identity Manager. The engine runs on the Java Virtual Machine in eDirectory.

1.1.5 Driver Shim

A driver shim is the component of a driver that converts the XML-based Identity Manager command
and event language (XDS) to the protocols and API calls needed to interact with a connected system.
The shim is called to execute commands on the connected system after the Output Transformation
runs. Commands are usually generated on the Subscriber channel but can be generated by
command write-back on the Publisher channel.

1.1.6 Driver Packages

The REST driver packages are available on the Package Update site. When you create a driver with
packages in Designer, Designer creates a set of policies and rules suitable for synchronizing with the
REST driver.

The REST driver packages are:

 NETQRESTBASE: Contains the base package for the REST driver.

 NETQRESTDCFG: Contains the default packages.

 NETQRESTJSON: Contains the default JSON policies for converting XDS to JSON format and
vice versa.
12 NetIQ REST Driver Implementation Guide

 NETQRESTPWD: Contains the policies for password synchronization.

 NETQRESTPCRS - Contains the policies for Permission Collection and Reconciliation Service
for resource onboarding.

1.1.7 Remote Loader

A Remote Loader enables a driver shim to execute outside of the Identity Manager engine (perhaps
remotely on a different machine). The Remote Loader is a service that executes the driver shim and
passes information between the shim and the Identity Manager engine.

For the REST driver, install the driver shim on the server where the Remote Loader is running. You
can choose to use SSL to encrypt the connection between the Identity Manager engine and the
Remote Loader. For more information, see “Creating a Secure Connection to the Identity Manager
Engine” in the NetIQ Identity Manager Setup Guide.

1.2 Driver Concepts
This section contains the following information:

 “Introduction” on page 13

 “How the Driver Works” on page 15

1.2.1 Introduction

The following concepts are associated with the REST driver:

 “REST” on page 13

 “JSON” on page 13

 “Resource” on page 14

 “Resource Handler” on page 14

 “URL Placeholder” on page 15

 “XML” on page 15

 “HTTP” on page 15

 “HTTPS” on page 15

REST

REST is an HTTP-based protocol for exchanging messages over the network. Since REST is built on
HTTP protocol, it supports POST, PUT, GET, PATCH, DELETE methods to communicate with the
application logic.

JSON

JSON (Java Script Object Notation) is a lightweight data-interchange format. JSON stores
information in a Key-Value pair format. The Identity Manager driver for REST uses JSON as a data
format for payload transfer. For more information about the JSON format used by the driver, see
Appendix D, “Supported JSON Format,” on page 65.
Understanding the REST Driver 13

https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#b18ys970
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#b18ys970
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#front

Resource

A resource is a user, group, or an object that the driver tries to synchronize with the Subscriber and
Publisher channels. To be more precise, a REST resource in the driver is a combination of the REST
application schema name and the Resource handler. For example, in the URL http://
ipaddress:port/User, User is an example of a REST resource that can be configured to use
Default as the Resource Handler. For more information, see “Resources” on page 53. To configure a
REST resource, Identity Manager provides Driver Configuration options.

Resource Handler

A Resource handler is the mapping of an Identity Manager operation with the REST method. To
configure a Resource handler, Identity Manager provides the Driver Configuration options. For more
information, see “Resources” on page 53.

A REST call invokes the REST method mapped with an Identity Manager operation. The REST driver
supports two Resource handler modes. They are:

 Default - Uses the default HTTP methods for configuring handlers and for managing operations
on respective resources. In this mode, the REST driver chooses the best possible mapping for
the corresponding Identity Manager operation. For example, an Identity Manager ADD operation
corresponds to a POST method and a MODIFY operation corresponds to PUT method of the
REST application.

The REST driver generates the complete URL of a REST method by combining the Base URL
for REST Resources and the Schema Name. For example, https:url.example.com/users, where
https:url.example.com is the base URL and users is the schema name. Table 1-1 lists the
Identity Manager operations, their corresponding default REST methods and the URLs.

Table 1-1 Default Resource Handler

Identity Manager Operation REST Method URL

ADD POST http://ipaddress:port/
SchemaName<api-version>

MODIFY PUT http://ipaddress:port/
SchemaName/
<association><api-version>

QUERY GET http://ipaddress:port/
SchemaName/
<association><filter><api-
version>

DELETE DELETE http://ipaddress:port/
SchemaName/
<association><api-version>
14 NetIQ REST Driver Implementation Guide

NOTE: In the GET method, the driver replaces the <filter> placeholder by ?search-
attr=<searchAttrName1> eq <value1>' and <searchAttrName2> eq '<value2'>&read-
attr='<readAttr1>’ and ‘<readAttr2>’ filter value.

 Custom - Uses the Resource Handler parameters in the Driver Configuration page to customize
the driver to suite your deployment scenario. In this mode, the driver generates the complete
URL of the REST method by combining the Base URL for REST Resources and the user
specific URL in the URL extension. For example, https:url.example.com/users

URL Placeholder

A URL placeholder is a variable defined in the URL extension within angular brackets. The attribute-
value pair in the URL token element of the driver-operation-data replaces this placeholder value
during the data transfer. For example, consider a sample URL http://ipaddress:port/
SchemaName/<association><api-version>. During the driver operation, the <api-version> URL
placeholder is replaced by the value in the element <url-token api-version="1.0"/>.

XML

XML (Extensible Markup Language) is a generic subset of Standard Generalized Markup Language
(SGML) that allows for exchange of structured data on the Internet.

HTTP

HTTP is a protocol used to request and transmit data over the Internet or other computer network.
The protocol works well in an Internet infrastructure and with firewalls.

HTTP is a stateless request/response system because the connection is usually maintained only for
the immediate request. The client establishes a TCP connection with the server and sends it a
request command. The server then sends back its response.

HTTPS

HTTPS is the HTTP protocol over Secure Socket Layer (SSL) as a sub-layer under the regular HTTP
application layering. HTTPS encrypts and decrypts user page requests as well as the pages that are
returned by the Web server.

1.2.2 How the Driver Works

Figure 1-1 illustrates the data flow between Identity Manager and REST driver:
Understanding the REST Driver 15

Figure 1-1 REST Driver Data Flow

The Identity Manager engine uses XDS, a specialized form of XML, to represent events in the Identity
Vault. Identity Manager passes the XDS to the driver policy, which consists of basic policies and
DirXML Script.

The driver uses a specialized form of XDS called <driver-operation-data>. The <driver-
operation-data> element encapsulates the metadata and payload for a REST request.

When an event occurs in the Identity Vault, Identity Manager creates an XDS command to represent
that event. Identity Manager passes the XDS command to the driver policy. The driver policy
transforms that XDS command with an output transformation policy.

This output transformation policy generates the <driver-operation-data> that includes
commands, URIs, methods, and payload information for the REST request to successfully complete
on the Subscriber channel.

When the request completes, the driver processes responses and reports status of the completed
operation to the Identity Manager engine or the Identity Vault.

On the Publisher channel, the REST driver receives the REST request in <driver-operation-
data> format. Using the input policy, the driver converts the request to an XDS event and reports
back to the connected system.

1.2.3 Understanding Driver Operation Data

The driver shim applies special handling to Subscriber commands based on an XML element
embedded in the command, which appears in the driver shim as <driver-operation-data>. The
<driver-operation-data> element is added to the command from one of the Subscriber channel
policies.

The <driver-operation-data> element includes the metadata with the class-name, command,
REST method, and the URI. The command, the REST method, and the URI is required only if the
Resource handlers for the resource are not previously configured in the driver parameters. The
<request> tag includes the URL-token associations, header content-type, and the data to be
transferred. The <value> tag includes the JSON payload information.

Subscriber Channel

Publisher Channel

HTTP Requests

HTTP Response

JSON/
XML

JSON/
XML

XDS

XDS

HTTP Response

HTTP RequestsXDS

XDS

Subscriber
Transport

Publisher
Transport

Application

Identity M
anager Policy

and M
etadirectory Engine

converts xds to
json/xml and stores in
driver-operation-data

converts
driver-operation-data
json/xml to xds
16 NetIQ REST Driver Implementation Guide

The <driver-operation-data> element for a REST request includes the following elements:

 <request>: Embeds the request information required to make the HTTP call.

 <url-token>: Includes the placeholder provided in the driver configuration for resource.For
example, during the driver configuration, version is the placeholder added to a resource URL /
User/<version>. The attribute-value pair in the URL token element replaces this placeholder.
For example, <url-token version="1.0"/>.

 <header>: Includes the additional headers that can be added to the REST request in addition to
the ones configured in the resource.

 <value>: Includes the XML or the JSON payload.

Below is a sample request to add new users with the same common name using the <driver-
operation-data> element:

<driver-operation-data class-name="User" command="add">
 <request method="put" url="https://172.16.0.0:XXXX/User/rest123">
 <url-token association="rest123"/>
 <header content-type="application/json"/>
 <value>{"CN":[{"value":"rest6789"}],"Full Name":[{"value":"rest6789
rest6789"}],"Given
Name":[{"value":"rest6789"}],","Surname":[{"value":"rest6789"}],"Login
Disabled":[{"value":"true"}]}
 </value>
 </request>
 <request method="put" url="https://172.16.0.0:XXXX/User/rest123">
 <url-token association="rest123"/>
 <header content-type="application/json"/>
 <value>{"CN":[{"value":"rest1234"}],"Full Name":[{"value":"rest1234
rest1234"}],"Given
Name":[{"value":"rest1234"}],","Surname":[{"value":"rest1234"}],"Login
Disabled":[{"value":"true"}]}
 </value>
 </request>
</driver-operation-data>

You will get a response similar to the below sample for this request:

<input>
 <driver-operation-data class-name="User" command="add" remote-host="172.16.0.0"
url="http://172.16.0.0:XXXX/User">
 <header content-type="application/json"/>
 <response>
 <value>{"association":"noble2","CN":"noble2","Full Name":"noble2","Given
Name":"noble2","nspmDistributionPassword":"novell@123","Surname":"noble2"}
 </value>
 </response>
 </driver-operation-data>
</input>

NOTE: The driver retains the <driver-operation-data> between any REST operations, embeds
the response in the same <driver-operation-data> and returns the response. A single <driver-
operation-data> element is capable of accommodating multiple requests that belong to the same
class.
Understanding the REST Driver 17

1.3 Support for Standard Driver Features
The following sections provide information about how the REST driver supports the standard driver
features:

 Section 1.3.1, “Supported Operations,” on page 18

 Section 1.3.2, “Local Platforms,” on page 18

 Section 1.3.3, “Remote Platforms,” on page 18

 Section 1.3.4, “Supporting Driver Authentication,” on page 19

 Section 1.3.5, “Supporting Publish and Poll Modes,” on page 21

 Section 1.3.6, “Supporting Identity Manager Engine as a REST EndPoint,” on page 21

 Section 1.3.7, “Synchronizing Information,” on page 23

 Section 1.3.8, “Supporting Entitlements and Permission Collection and Reconciliation Service,”
on page 23

1.3.1 Supported Operations

The REST driver performs the following operations on the Publisher and Subscriber channels:

 Publisher Channel: Add, Modify, Delete, and Query operations on User and Group objects, and
password synchronization.

 Subscriber Channel: Add, Modify, Delete, Migrate, and Query operations on User and Group
objects, Password Set/Reset operations only on User objects.

1.3.2 Local Platforms

A local installation is an installation of the driver on the Metadirectory server. The REST driver can be
installed on the operating systems supported for the Metadirectory server.

For information about the operating systems supported for the Metadirectory server, see System
Requirements for the Identity Manager Engine in the NetIQ Identity Manager Setup Guide.

1.3.3 Remote Platforms

The REST driver can use the Remote Loader service to run on a server other than the Metadirectory
server. The REST driver can be installed on the operating systems supported for the Remote Loader.

For information about the supported operating systems, see System Requirements for the Remote
Loader in the NetIQ Identity Manager Setup Guide.
18 NetIQ REST Driver Implementation Guide

https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#b194dddx
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#b194dddx
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#front
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#b194dg64
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#b194dg64
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#front

1.3.4 Supporting Driver Authentication

The REST driver allows you to configure the following authentication methods. By default the REST
driver supports Basic authentication method. However, you can change the authentication method
using the Driver configuration.

 Anonymous: The driver uses anonymous authentication method for authenticating to a
RESTful service. On the Subscriber channel, this method allows valid connectivity between the
REST driver and any RESTful service that supports anonymous authentication method. On the
Publisher channel, the driver allows anonymous access to the Identity Vault for any RESTful
service.

IMPORTANT: NetIQ recommends that you do not use anonymous authentication method on the
Publisher channel.

 Basic: The driver uses the ID and password that you specify during driver configuration for
authenticating to the RESTful service. The driver considers the Publisher user credentials as the
basic authentication method credentials. In this authentication method, the driver uses these
credentials to connect to the endpoints exposed on the Publisher channel.

 OAuth2.0: The OAuth 2.0 is an open authentication protocol that enables any third-party
application to access data from an HTTP service to share data among various applications. The
driver supports OAuth2.0 authentication only on the Subscriber channel.

The resource owner grants authorization to a client application in cooperation with the
authorization server associated with the resource server. When requesting for authorization, the
client receives an authorization grant from the resource owner. An authorization grant is an
authorization credential representing the resource owner authorization. The two authorization
grants supported by the REST driver are resource owner password credentials and client
credentials.

 Client Credentials - Uses the client ID and secret received while registering with the identity
provider.

 Resource Owner Password - Shares the resource owner credentials with the client
application. Uses the user name and password of the resource owner as authorization grant
to obtain an access token. For example, you can use your Twitter user name and password
to log in to a client application.

NOTE: Ensure that you set the appropriate query options while configuring the authorization
query in the driver parameters. For more information, see “Subscriber Settings” on page 51.

Figure 1-2 illustrates the client credentials option.
Understanding the REST Driver 19

Figure 1-2 Client Credentials

Figure 1-3 illustrates the Resource Owner Password Grant Type option.
20 NetIQ REST Driver Implementation Guide

Figure 1-3 Resource Owner Password Grant Type

1.3.5 Supporting Publish and Poll Modes

The Identity Manager driver for REST supports Publish or Poll as Publisher options.

If Publish is selected, the driver exposes the REST endpoints to receive the events from the
connected RESTful service and then pushes the events to the Identity Vault.

If Poll is selected, the driver periodically pulls the data from the connected RESTful service. In this
scenario, the driver pulls only the MODIFY event changes from the RESTful service and publishes it
to the Identity Vault.

1.3.6 Supporting Identity Manager Engine as a REST EndPoint

The REST driver exposes REST endpoints to the Identity Manger engine. This facilitates easy
communication between external applications and services with eDirectory and Identity Manger
engine via the REST API.
Understanding the REST Driver 21

NOTE: The authentication header and content type are mandatory for REST methods.

Table 1-2 lists an example of POST REST method that the driver supports for a User class:

Table 1-2 POST Method

Table 1-3 lists an example of DELETE REST method that the driver supports:

Table 1-3 DELETE Method

Table 1-4 lists an example of PUT REST method that the driver supports:

Table 1-4 PUT Method

Table 1-5 lists an example of GET REST method that the driver supports:

METHOD: POST

User URI http://ipaddress:port/User

Payload {"association":”User2","Postal
Code":["324324324"],"Surname":["User2"],"CN":["User
2"]}

Authorization Basic c3lzdGVtL3N5c3RlbQ==

Content-Type application/json

Response 201 Created

METHOD: DELETE

User URI http://ipaddress:port/User/User2

Payload Not required

Authorization Basic c3lzdGVtL3N5c3RlbQ==

Content-Type application/json

Response 200 OK

METHOD: PUT

User URI http://ipaddress:portUser/User2

Authorization Basic c3lzdGVtL3N5c3RlbQ==

Content-Type application/json

Payload {"Title":[{"add":["Manager"]}]}

Response 204 No Content
22 NetIQ REST Driver Implementation Guide

Table 1-5 GET Method

1.3.7 Synchronizing Information

Unlike most other drivers, the REST driver synchronizes protocols instead of objects. The driver
includes the following features:

 HTTP transport of data between the Identity Vault and a Web service

 SSL connections using the HTTPS protocol

 Subscriber HTTP and HTTPS proxy servers

 Potential to act as an HTTP or HTTPS listener for incoming connections on the Publisher
channel

 Potential extensibility through customized Java code

For more information, see Appendix B, “Using Java Extensions,” on page 59.

1.3.8 Supporting Entitlements and Permission Collection and
Reconciliation Service

The driver supports custom entitlements. In the Role-Based Services, assignments are made based
on attributes of a user object. Entitlements standardize a method of recording this information on
objects in the Identity Vault.

The REST driver supports Permission Collection and Reconciliation Service (PCRS) to map
entitlements to resources and automatically assign those entitlements to users when permissions
changes in connected system. The driver updates the Resource Catalog so that it reflects the exact
state of user permissions in the connected system.

PCRS also helps in creating and automatically managing the relationship of identities to resource
assignments. To map entitlements to resources, the REST driver uses either a CSV file or queries the
connected system for entitlement values.

For a rest driver enabled with PCRS, if an administrator assigns a resource to a user in the User
Application or in iManager, this change is reflected in the connected system, and similarly, if a
connected system administrator makes a change to the user permission, that change is reflected in
the Identity Vault and the corresponding resource is updated with the permission assignment.

The PCRS package contains the content necessary for permission collection and reconciliation
service. If you want the driver to support permission collection and reconciliation service, ensure that
these packages are installed on the driver. You can turn this functionality on or off using the new set
of GCVs included with the driver.

METHOD: GET

User URI http://ipaddress:port/User?search-attr=given name eq
‘test*user’ and cn eq ‘test*’&read-attr=title

Payload Not Applicable

Authorization Basic c3lzdGVtL3N5c3RlbQ==

Content-Type application/json

Response { "totalResults": 1, "results": [{ "src-dn": "\\GEN-
REST1\\system\\servers\\TestUser", "class-name":
"User", "Title": ["SE"] }]}
Understanding the REST Driver 23

To support only entitlements, turn off PCRS and create the entitlement objects using Designer and
then redeploy the driver. If PCRS is turned on, the driver supports custom entitlements on both
Subscriber and Publisher channels. If PCRS is turned off, the driver supports custom entitlements
only on the Subscriber channel. For more information, refer to Section A.2.2, “Permission Collection
and Reconciliation,” on page 56.

NOTE: You should enable entitlements for the drivers only if you plan to use the User Application or
Role-Based Entitlements with the drivers.

Prerequisites for Permission Collection and Reconciliation Service

To support PCRS, you must have the following:

 Identity Manager 4.5.1 Engine Patch

 Designer for Identity Manager 4.5.1.1

 Managed System Gateway driver version 4.0.0.6 and later

 Driver Set Package:

 Common Settings Advanced Edition Package (NOVLACOMSET 2.0.0 and later)

 Driver Package:

 Driver-specific entitlements packages for REST driver.

 Permission Collection and Reconciliation Service package (NOVLCOMPCRS 2.0.0 and
later)

This is the common PCRS package for defining custom entitlements on drivers such as
REST, SOAP, and JDBC.

 Set up administrative user accounts and configure a password policy. For more information, see
“Setting Up Administrative User Accounts” and “Setting Up Administrative Passwords” in the
NetIQ Identity Manager Driver Administration Guide.
24 NetIQ REST Driver Implementation Guide

https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b1845rl6
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b1845rl7
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle

2 2Installing the Driver Files

NetIQ supports installing the REST driver on the Identity Manger server and on a remote server using
the Remote Loader.

 Section 2.1, “Prerequisites for Driver Installation,” on page 25

 Section 2.2, “Installing the REST driver,” on page 25

2.1 Prerequisites for Driver Installation
Before installing the driver, ensure that you download the following software to your Identity Manager
environment:

 Identity Manager 4.5 SP1

For Identity Manager 4.5 SP1 download and installation instructions, see “NetIQ Identity
Manager 4.5 Service Pack 1 Release Notes”.

For Identity Manager 4.5 prerequisites and installation information, see “Considerations and
Prerequisites for Installation” in the NetIQ Identity Manager Setup Guide.

 Designer packages - Download this file from the Designer Update channel and upgrade
Designer 4.5 to the latest version.

NOTE: Identity Manager Designer 4.5 Service Pack 1 Hotfix 1 includes the necessary software
to create and configure the REST driver. NetIQ recommends that you apply this hotfix to your
Designer before attempting to create the driver.

 NIdM_Driver_4.5_REST.zip file - Download this file from the Downloads Web site.

This zip file contains the packages to create the REST driver and includes the following files:

 install.exe: Run this file for installing the driver in Windows.

 install_linux.bin: Run this command for installing the driver in Linux.

 The commons-codec-1.6.jar file. Use this file only if the driver runs with Remote Loader.

2.2 Installing the REST driver
You can install the REST driver files on the Identity Manager server or a remote server that supports
Remote Loader configuration. For more information about installing Remote Loader, see “Installing
and Managing the Remote Loader” in the NetIQ Identity Manager Setup Guide.

To install the driver:

1 Unzip and extract the files from the NIdM_Driver_4.5_REST.zip.

2 To install the REST driver, perform the following actions depending on your platform:

 Linux: Run the ./install_linux.bin command.

 Windows: Run install.exe.

3 Follow the installation instructions in the wizard.
Installing the Driver Files 25

https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#Alorukq
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#Alorukq
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#front
http://cdn.novell.com/cached/designer/AUPatches/
https://dl.netiq.com/Download?buildid=QOk-uIyX-gk~
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#front

26 NetIQ REST Driver Implementation Guide

3 3Creating a New Driver Object

After the REST driver files are installed on the server where you want to run the driver (see
Chapter 2, “Installing the Driver Files,” on page 25), you can create the driver in the Identity Vault. You
do so by installing the driver packages and then modifying the driver configuration to suit your
environment.

The following sections provide instructions to create the driver:

 Section 3.1, “Creating the Driver Object in Designer,” on page 27

 Section 3.2, “Activating the Driver,” on page 33

 Section 3.3, “Adding Packages to an Existing Driver,” on page 33

 Section 3.4, “Creating Custom Entitlements,” on page 34

3.1 Creating the Driver Object in Designer
The Designer tool helps you to create the REST driver object. You need to install the driver packages
and them modify the configuration to suit your environment. After you create and configure the driver,
you need to deploy it to the Identity Vault and start it.

 Section 3.1.1, “Importing the Current Driver Packages,” on page 27

 Section 3.1.2, “Installing the Driver Packages,” on page 28

 Section 3.1.3, “Configuring the Driver Object,” on page 31

 Section 3.1.4, “Deploying the Driver Object,” on page 31

 Section 3.1.5, “Starting the Driver,” on page 32

NOTE: NetIQ recommends that you use the new package management features provided in
Designer to create the REST driver. You should not create the driver objects by using the new Identity
Manager 4.0 and later or configuration files through iManager. This method of creating driver objects
is no longer supported.

3.1.1 Importing the Current Driver Packages

The driver packages contain the items required to create a driver, such as policies, entitlements,
filters, and Schema Mapping policies. These packages are only available in Designer and can be
updated after they are initially installed. You must have the most current version of the packages in
the Package Catalog before you can create a new driver object.

To verify that you have the most recent version of the driver packages in the Package Catalog:

1 Open Designer.

2 In the toolbar, click Help > Check for Package Updates.

3 Click OK to update the packages

or

Click OK if the packages are up-to-date.
Creating a New Driver Object 27

4 In the Outline view, right-click the Package Catalog.

5 Click Import Package.

6 Select any REST driver packages

or

Click Select All to import all of the packages displayed.

By default, only the base packages are displayed. Deselect Show Base Packages Only to
display all packages.

7 Click OK to import the selected packages, then click OK in the successfully imported packages
message.

8 After the current packages are imported, continue with Section 3.1.2, “Installing the Driver
Packages,” on page 28.

3.1.2 Installing the Driver Packages

After you have imported the current driver packages into the Package Catalog, you can install the
driver packages to create a new driver.

1 In Designer, open your project.

2 In the Modeler, right-click the driver set where you want to create the driver, then click New >
Driver.

3 Select REST Base, then click Next.

NOTE: You can only select one base package.

4 Select the type of REST driver packages to install, then click Next.

5 Select the optional features to install for the REST driver, then click Next.

The options are:

Password Synchronization: This packages contains the policies that enable the REST driver
to synchronize passwords. If you want to synchronize passwords, verify that this option is
selected. For more information, see the NetIQ Identity Manager Password Management Guide.

Default JSON Configuration: This package contains the default JSON configurations.

Permission Collection and Reconciliation Services: This package contains policies for quick
onboarding of custom entitlements and dynamic resource creation. This package contains GCVs
to control the resource mapping. Select this package if you want to enable the entitlement
onboarding feature for this driver. For more information about creating custom entitlements, see
Section 3.4, “Creating Custom Entitlements,” on page 34.
28 NetIQ REST Driver Implementation Guide

https://www.netiq.com/documentation/idm45/pdfdoc/idm_password_management/idm_password_management.pdf#bookinfo

For more information about PCRS, see “Understanding Permission Collection and
Reconciliation Service” in the NetIQ Identity Manager Driver Administration Guide.

6 (Conditional) If there are package dependencies for the packages you selected to install, you
must install them to install the selected package. Click OK to install the package dependency
listed.

7 (Conditional) If more than one type of package dependency must be installed, you are presented
with these packages separately. Continue to click OK to install any additional package
dependencies.

8 On the Driver Information page, specify a name for the driver, then click Next.

9 On the Install REST Base page, fill in the following fields for the Subscriber options, then click
Next:

Authentication Method: Select the authentication method for the REST driver.

NOTE: The authentication methods available are Anonymous, Basic, and OAuth2.0. You need
to specify additional parameters depending upon the selected authentication method. For more
information, see Section A.1, “Driver Configuration,” on page 49.

Authorization Header Fields: Click the icon to create authentication header fields.

Truststore file: Specify the path and the name of the keystore file that contains the trusted
certificates for the remote server to provide server authentication. For example,
c:\security\truststore. Leave this field blank when server authentication is not used.

Set mutual authentication parameters: Select Show if you want to set mutual authentication
information.

 Keystore file: Specify the path and the name of the keystore file that contains the trusted
certificates for the remote server to provide mutual authentication. For example,
C:\security\keystore. Leave this field blank when mutual authentication is not used.

 Keystore password: Specify the password for the keystore file. Leave this field blank when
mutual authentication is not used.

HTTP Connection Timeout: Specify the HTTP connection time out value. The driver waits for
the time specified and terminates the HTTP connection. The timeout value must be greater than
zero.

Proxy host and port: Specify the host address and the host post when a proxy host and port
are used. For example: 192.168.0.0:port. Choose an unused port number on your server.
Otherwise, leave this field blank.

HTTP Errors to Retry: Specify the HTTP errors that must return a retry status. Error codes must
be a list of integers separated by spaces. For example, 307 408 503 504.

Base URL of the REST Resources: Specify the URL of the REST server or Web service.

NOTE: The Configure Resources to synchronize option is not available in the Designer tool to
configure the class-name. You should use iManager to configure the resources for the REST
driver to start successfully. For example, if user is the class-name, ensure that you specify the
Schema name as user under Resources section in the Driver Configuration.

10 On the Install REST Base page, fill in the following fields for the Publisher options, then click
Next:

Publisher Setting: Specify the publisher setting for the REST driver. You can either select
Publish or Poll mode. Default is Publish.

If you select Publish, fill in the following parameters:
Creating a New Driver Object 29

https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b181p2s1
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b181p2s1
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle

Listening IP address and port: Specify the IP address of the server where this driver is
installed and the port that this driver listens on. You can specify 127.0.0.1 if there is only one
network card installed in the server. Choose an unused port number on your server. For
example: 127.0.0.1:port. The driver listens on this address for incoming requests, processes the
requests, and returns a result.

Authentication Method: Select the authentication method for the REST driver.

NOTE: The authentication methods available are Anonymous and Basic. You need to specify
additional parameters depending upon the selected authentication method. For more
information, see Section A.1, “Driver Configuration,” on page 49.

If Poll mode is selected, fill in the following parameters:

Configure Resource for Poll: Click the icon to configure resource poll.

Search Results to Synchronize on First Startup: Specify the synchronization setting for
search results. When this driver starts for the first time, it performs a search on the application.
The search results are synchronized depending upon the specified parameter.

 Synchronize only subsequent changes: Select this option to synchronize only the
subsequent changes.

 Synchronize everything: Select this option to synchronize the initial search results.

Polling interval in minutes: Specify the polling interval in minutes. Default is one minute.

KMO name: When this server is configured to accept HTTPS connections, this is the KMO
name in eDirectory. The KMO name is the name before the - in the RDN. Leave this field blank
when a keystore file is issued or when HTTPS connections are not used.

Keystore file: When this server is configured to accept HTTPS connections, this is the path and
the name of the keystore file. For example; C:\security\keystore. Leave this field blank when
a KMO name is used or when HTTPS connections are not used.

Keystore password: When this server is configured to accept HTTPS connections, this is the
keystore file password. Leave this field blank when a KMO name is used or when HTTPS
connections are not used.

Server key alias: When this server is configured to accept HTTPS connections, this is the key
alias. Leave this field blank when a KMO name is used or when HTTPS connections are not
used.

Server key password: When this server is configured to accept HTTPS connections, this is the
key alias password (not the keystore password). Leave this field blank when a KMO name is
used or when HTTPS connections are not used.

Require mutual authentication: When using SSL, it is common to do only server
authentication. However, if you want to force both client and server to present certificates during
the handshake process, select Required.

Heartbeat interval in minutes: Specify the heartbeat interval in minutes. Leave this field blank
to turn off the heartbeat.

11 Fill in the following fields for the Remote Loader information, then click Next:

Connect To Remote Loader: Select Yes or No to determine if the driver will use the Remote
Loader. For more information, see Configuring the Remote Loader and Drivers in the NetIQ
Identity Manager Setup Guide.

If you select No, skip to Step 12. If you select Yes, use the following information to complete the
configuration of the Remote Loader:

Host Name: Specify the IP address or DNS name of the server where the Remote Loader is
installed and running.
30 NetIQ REST Driver Implementation Guide

https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#b18xta1v
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#front
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#front

Port: Specify the port number for this driver. Each driver connects to the Remote Loader on a
separate port. The default value is 8090.

KMO: Specify the key name of the Key Material Object that includes keys and certificates for
SSL. You use this parameter only when an SSL connection exists between the Remote Loader
and the Metadirectory engine.

NOTE: When this server is configured to accept HTTPS connections, this is the KMO name in
eDirectory. The KMO name is the name before the - in the RDN. Leave this field blank when a
keystore file is issued or when HTTPS connections are not used.

Other Parameters: Specify any other parameter required in the connection string. The
parameter must be a key-value pair. For example, paraName1=paraValue1.

Remote Loader Password: Specify a password to control access to the Remote Loader. It
must be the same password that is specified as the Remote Loader password on the Remote
Loader.

Driver Password: Specify a password for the driver to authenticate to the Metadirectory server.
It must be the same password that is specified as the Driver Object Password on the Remote
Loader.

12 Review the summary of tasks that will be completed to create the driver, then click Finish.

13 After you have installed the driver, you must change the configuration for your environment.
Proceed to Section 3.1.3, “Configuring the Driver Object,” on page 31.

3.1.3 Configuring the Driver Object

After the driver packages are installed, you need to configure the driver before it can run. You should
complete the following tasks to configure the driver:

 Configure the driver parameters: There are many settings that can help you customize and
optimize the driver. The settings are divided into categories such as Driver Configuration, Engine
Control Values, and Global Configuration Values (GCVs). Although it is important for you to
understand all of the settings, your first priority should be to review the Driver Parameters
located on the Driver Configuration page. The Driver Parameters let you configure the
publication method and other parameters associated with the Publisher channel.

 Customize the driver policies and filter: The driver policies and filter control data flow
between the Identity Vault and the application. You should ensure that the policies and filters
reflect your business needs. For instructions, see Chapter 4, “Customizing the Driver for
RESTful Services,” on page 39.

 Set Up a Secure HTTPS Connection: The connection between the driver and the RESTful
connected system can be configured to use a secure HTTPS connection rather than an HTTP
connection.

After completing the configuration tasks, continue with either Creating Custom Entitlements or
Deploying the Driver Object.

3.1.4 Deploying the Driver Object

After the driver object is created in Designer, it must be deployed into the Identity Vault.

1 In Designer, open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Live > Deploy.
Creating a New Driver Object 31

3 If you are authenticated to the Identity Vault, skip to Step 4; otherwise, specify the following
information, then click OK:

Host: Specify the IP address or DNS name of the server hosting the Identity Vault.

Username: Specify the DN of the user object used to authenticate to the Identity Vault.

Password: Specify the user’s password.

4 Read the deployment summary, then click Deploy.

5 Read the message, then click OK.

6 Click Define Security Equivalence to assign rights to the driver.

The driver requires rights to objects within the Identity Vault. The Admin user object is most often
used to supply these rights. However, you might want to create a DriversUser (for example) and
assign security equivalence to that user. Whatever rights that the driver needs to have on the
server, the DriversUser object must have the same security rights.

6a Click Add, then browse to and select the object with the correct rights.

6b Click OK twice.

For more information about defining a Security Equivalent User in objects for drivers in the
Identity Vault, see “Establishing a Security Equivalent User” in the Identity Manager 4.0.2
Security Guide.

7 Click Exclude Administrative Roles to exclude users that should not be synchronized.

You should exclude any administrative User objects (for example, Admin and DriversUser) from
synchronization.

7a Click Add, then browse to and select the user object you want to exclude, then click OK.

7b Repeat Step 7a for each object you want to exclude, then click OK.

8 Click OK.

9 Continue with the next section, Starting the Driver.

3.1.5 Starting the Driver

When a driver is created, it is stopped by default. To make the driver work, you must start the driver.
Identity Manager is an event-driven system, so after the driver is started, it won’t do anything until an
event occurs. You can use iManager or dxevent commands to start the driver.

To start the driver using Designer:

1 In Designer, open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Live > Start Driver.

To start the driver using iManager:

To start the driver using iManager:

1 In iManager, click to display the Identity Manager Administration page.

2 Click Identity Manager Overview.

3 Browse to and select the driver set object that contains the driver you want to start.

4 Click the driver set name to access the Driver Set Overview page.

5 Click the upper right corner of the driver, then click Start driver.
32 NetIQ REST Driver Implementation Guide

https://www.netiq.com/documentation/idm402/idm_security/?page=/documentation/idm402/idm_security/data/front.html
https://www.netiq.com/documentation/idm402/idm_security/?page=/documentation/idm402/idm_security/data/front.html

IMPORTANT: When you start the driver for the first time, don't add new users to the Publisher
channel until the first polling interval completes because the driver treats all users as existing users
and stores them in the change cache without sending them to the Identity Manager engine. It sends
the new users to the Identity Manager engine from the next polling interval. Therefore, ensure that
new users are added to the Publisher channel after the first polling cycle completes.

3.2 Activating the Driver
If you create the REST driver in a driver set where you already activated a driver that comes with the
Integration Module for Tools, the driver inherits the activation. If you created the REST driver in a
driver set that has not been activated, you must activate the driver, with the Integration Module for
Tools activation, within 90 days. Otherwise, the driver stops working.

The drivers that are included in the Integration Module for Tools are:

 Driver for Delimited Text

 Driver for REST

For information on activation, refer to “Activating Identity Manager” in the NetIQ Identity Manager
Setup Guide.

If driver activation has expired, the following error message is displayed in the ndstrace window:

DirXML Log Event -------------------
Driver: \META-RHEL6\system\DriverSet\RESTDriver-BulkOperations
Channel: Subscriber
Status: Error
Message: Code(-9075) Shutting down because DirXML engine evaluation
period has expired. Activation is required for further use.

To use the driver, you must reactivate it.

3.3 Adding Packages to an Existing Driver
You can add new functionality to an existing driver by adding new packages to it.

1 Right-click the driver, then click Properties.

2 Click Packages, then upgrade the already installed REST Base package.

2a Select the package from the list of packages, then click the Select Operation cell.

2b Click Upgrade from the drop-down list, then click Apply.

2c Click OK to close the Package Management page.

You can upgrade the Password Synchronization package in a similar way.

3 Click the Add Packages icon .

4 Select the packages to install.

5 (Optional) If you want to see all available packages for the driver, clear the Show only applicable
package versions option, if you want to see all available packages for the driver, then click OK.

This option is only displayed on drivers. By default, only the packages that can be installed on
the selected driver are displayed.

6 Click Apply to install all of the packages listed with the Install operation.
Creating a New Driver Object 33

https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#b1ffm73r
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#Front
https://www.netiq.com/documentation/idm45/pdfdoc/setup_guide/setup_guide.pdf#Front

7 (Conditional) Fill in the fields with appropriate information to install the package you selected for
the driver, then click Next.

8 Read the summary of the installation, then click Finish.

9 Click OK to close the Package Management page after you have reviewed the installed
packages.

10 Modify the driver configuration settings. See Section 3.1.3, “Configuring the Driver Object,” on
page 31.

11 Deploy the driver. See Section 3.1.4, “Deploying the Driver Object,” on page 31.

12 Start the driver. See Section 3.1.5, “Starting the Driver,” on page 32.

13 Repeat Step 1 through Step 9 for each driver where you want to add the new packages.

3.4 Creating Custom Entitlements
In an enterprise, entitlement servers as granting agent. Custom entitlements helps to control the
permission parameters such as user accounts, group memberships., resources access.

The Permission Collection and Reconciliation Services (PCRS) help you to create entitlements that
you can map with resources in the Identity Vault. You can dynamically create resources with custom
entitlement populated with permission values of connected system, and permission assignments
between Identity Manager resource/entitlement model and connected systems.

Unlike other drivers, the REST packages do not include the default entitlements. However, you can
customize the REST driver to support the default entitlements such as useracccount and group
membership. The driver also supports other entitlements such as printers, conference rooms, floor
access, and so forth.

The Identity Manager driver for REST installed with Permission Collection and Reconciliation Service
packages perform the following actions:

 Provide a way to create custom entitlements and resources specific to your environment.

 Reconcile resource or permission assignments between the Identity Vault and connected
systems.

For example, let’s consider a deployment scenario in which the Identity Vault connects with the SCIM
server as the target system.

You can define a new role “Manager” in the SCIM server and assign users to this role. You can define
the Manager role as a custom entitlement and when the driver returns the custom entitlements from
the connected system, all users assigned with this role is created and mapped as resources in the
Identity Vault. The REST driver synchronizes the permission updates from the connected system and
updates the Identity and Resource Catalog.

Figure 3-1 illustrates the process of creating resources using PCRS:
34 NetIQ REST Driver Implementation Guide

Figure 3-1 Permission Collection and Reconciliation Service Flow

Creates the CSV file
with entitlement values

Use Designer to create entitlement
objects and configure the parameters

to be queried from the connected
system

Specifies the entitle-
mentName, assign-
mentAttribute, and
CSV file path in the

PermissionNameToFile
mapping table.

On driver start, the
Startup policy
updates the

PermissionEntMapping
mapping table with

the list of
entitlements.

The
PermissionOnboarding
job verifies if the CSV
File Path is specified.

Create dynamic
resources for all the
custom entitlements

and update the
resource catalog

Yes No Use the entitlements
objects created via

Designer to query the
connected system.

Reads the CSV file
containing the

entitlement
values

Permission
Collection and
Reconciliation

Service enabled
Identity Manager

REST driver
Creating a New Driver Object 35

IMPORTANT: In the Driver Configuration, ensure that you configure the resources in the Subscriber
Setting. You should configure the Schema name as Entitlement and the required handlers for the
PCRS to work. For more information, see “Resources” on page 53.

For creating custom entitlements, you should specify the entitlement value, attribute, and CSV file
path in the PermissionNameToFile mapping table in the Driver Configuration page. The REST driver
uses either the CSV file or query the connected system to populate entitlement values. If the custom
entitlements are not dependent on the values from the connected system, use the CSV file to provide
the entitlement values to create entitlements and resources. If the custom entitlements are dependent
on the values from the connected system, create entitlements objects using Designer and specify the
information required for querying the connected system.

In the CSV file, the administrator must provide the entitlement values of the connected system in the
specified format that includes the entitlement value, the display name and the description. You must
place the CSV file containing the entitlement values on the server where Identity Manager engine is
installed. Ensure that you update the csvFile column in the PermissionNameToFile mapping table
with the correct path for the CSV file. The REST driver access the custom entitlement information
from the CSV file.

For any REST driver enabled with PCRS, to create custom entitlements, you should create the
entitlements objects. The Designer tool helps you to create the entitlement objects. You can define
the values that must be queried for from the connected system in these entitlement objects. For
example, you can create entitlement objects for users and groups. For more information about
creating entitlement objects, see ““Valued Entitlement that Queries an External Application”” in the
NetIQ Designer for Identity Manager Administration Guide.

The PermissionOnboarding job is a standard Identity Manager job and is available in the entitlement
package. During the driver startup, the PermissionOnboarding job runs and queries the connected
system for resource updates. After you create, deploy, and start the driver, the driver automatically
reads the PermissionNameToFile mapping table. If the CSV file name is available in
PermissionNameToFile mapping table, the driver consumes the entitlements values from the file and
creates the custom entitlements. If the csvFile column in the PermissionNameToFile mapping table
is empty, the driver queries the connected system using the entitlement objects. New resources are
created with the entitlement values from the CSV file or values obtained as the query response.

The new custom entitlement and the corresponding resource object is created in the Resource
Catalog. When the permission assignments change in connected system, the driver policies
consume the modified permission values and update the Resource Catalog.

IMPORTANT

 If you are querying the connected system to create resources, ensure that entitlement objects
are configured correctly. If the entitlement object configuration is wrong, the
PermissionOnboarding job fails to create resources for all entitlements provided in the
PermissionNameToFile mapping table editor.

 The entitlement assignments are only for a user class. A user resource is eligible to reconcile
and synchronize the entitlement changes. However the assignment attributes can differ as per
the requirement.

CSV File Format

The REST driver consumes the entitlement information from the CSV file, which is present on the
server where Identity Manager is installed. This file must contain values of the connected system
permissions in the format specified below. The connected system administrator should maintain a
separate CSV file for every custom entitlement.
36 NetIQ REST Driver Implementation Guide

https://www.netiq.com/documentation/idm45/pdfdoc/designer_admin/designer_admin.pdf#entvalued
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle

For example, a CSV file can contain details about granting access to the users for the
ResourcesAccess entitlement. A CSV file that contains ResourceAccess entitlement details
represents this information in the following format:

Resource A,Google,The google access
Resource B,Twitter,The twitter access
Resource C,Facebook,The facebook access

where Resource A is the entitlement value, Google is the display name in the User Application for the
entitlement value Resource A, and The google access is the description for the entitlement value.
This description is displayed in the User Application.
Creating a New Driver Object 37

38 NetIQ REST Driver Implementation Guide

4 4Customizing the Driver for RESTful
Services

The following sections provide information to help you understand the available customization to
make the driver connect to any RESTful service:

 Section 4.1, “Using Java Extensions,” on page 39

 Section 4.2, “Changing the JSON/XML Payload,” on page 39

 Section 4.3, “Using driver-operation-data,” on page 39

4.1 Using Java Extensions
Use the java extensions to modify a REST request or response before it is submitted or received on
the Subscriber or Publisher channels. For more information, see Appendix B, “Using Java
Extensions,” on page 59.

4.2 Changing the JSON/XML Payload
After you install the default JSON package, you can transform the payload generated in the <driver-
operation-data> to a format supported by your RESTful service.

4.3 Using driver-operation-data
You can use the policies to add a new <driver-operation-data> element to the Subscriber
channel, or submit a new custom created <driver-operation-data> element. The driver process
the <driver-operation-data> element irrespective of the configured handlers. For more
information, see Section 1.2.3, “Understanding Driver Operation Data,” on page 16.
Customizing the Driver for RESTful Services 39

40 NetIQ REST Driver Implementation Guide

5 5Securing Communication

If the remote Web service you are accessing allows HTTPS connections, you can configure the driver
to take advantage of this increased security.

IMPORTANT: Only certificates from a Java keystore are accepted. Make sure that the keystore for
the certificates is a Java keystore.

The following sections provide instructions for creating a secure connection:

 Section 5.1, “Configuring the Publisher Channel,” on page 41

 Section 5.2, “Configuring the Subscriber Channel,” on page 42

5.1 Configuring the Publisher Channel
The Publisher channel publishes the information from the RESTful service to the Identity Vault. To
establish a secure connection for the Publisher Channel, you need a keystore or a KMO containing a
certificate issued by the certificate authority that signed the server’s certificate.

1 Create a server certificate in iManager.:

1a In the Roles and Tasks view, click NetIQ Certificate Server > Create Server Certificate.

1b Browse to and select the server object where the REST driver is installed.

1c Specify a certificate nickname.

1d Select Standard as the creation method, then click Next.

1e Click Finish, then click Close.

2 Export a self-signed certificate from the certificate authority in eDirectory:

2a In the Roles and Tasks view, click Directory Administration > Modify Object.

2b Select your tree’s certificate authority object, then click OK.

It is usually found in the Security container and is named something like TREENAME
CA.Security.

2c Click Certificate > Self Signed Certificate.

2d Click Export.

2e When asked if you want to export the private key with the certificate, click No, then click
Next.

2f Based on the client to be accessing the Web service, select either File in binary DER format
or File in Base64 format for the certificate, then click Next.

If the client uses a Java-based keystore or trust store, then you can choose either format.

2g Click Save the exported certificate to a file.

2h Click Save, then browse to a known location on your computer.

2i Click Save, then click Close.

3 Import the self-signed certificate into the client’s trust store:
Securing Communication 41

The steps to import the certificate vary depending on the client that connects to the Publisher
channel’s HTTPS listener. If the client uses a typical Java keystore, you can perform the
following steps to create the keystore:

3a Use the keytool executable that is included with any Java JDK.

For more information on keytool, see Keytool - Key and Certificate Management Tool (http:/
/java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html).

3b Enter the following command at a command prompt:

keytool -import -file name_of_cert_file -trustcacerts -noprompt
-keystore filename -storepass password

For example:

keytool -import -file tree_ca_root.b64 -trustcacerts -noprompt -keystore
dirxml.keystore -storepass novell

4 Configure the Publisher channel to use the server certificate you created in Step 1:

4a In iManager, in the Roles and Tasks view, click Identity Manager > Identity Manager
Overview.

4b Locate the driver set containing the REST driver, then click the driver’s icon to display the
Identity Manager Driver Overview page.

4c In the Identity Manager Driver Overview page, click the driver’s icon again, then scroll to
Publisher Settings.

4d In the KMO name setting, specify the certificate nickname you used in Step 1.

5 Click Apply, then click OK.

5.2 Configuring the Subscriber Channel
The Subscriber channel sends information from the Identity Vault to the Web service. To establish a
secure connection for the Subscriber channel, you need a trust store containing a certificate issued
by the certificate authority that signed the server’s certificate. See Section 5.1, “Configuring the
Publisher Channel,” on page 41 for an example.

1 Make sure you have a server certificate signed by a certificate authority.

2 Import the certificate into your trust store or create a new trust store by entering the following
command at the command prompt:

keytool -import -file name_of_cert_file -trustcacerts -noprompt -keystore
filename -storepass password

For example:

keytool -import -file tree_ca_root.b64 -trustcacerts -noprompt -keystore
dirxml.keystore -storepass novell

For more information on keytool, see Keytool - Key and Certificate Management Tool (http://
java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html).

3 Configure the Subscriber channel to use the trust store you created in Step 2:

3a In iManager, in the Roles and Tasks view, click Identity Manager > Identity Manager
Overview.

3b Locate the driver set containing the REST driver, then click the driver’s icon to display the
Identity Manager Driver Overview page.
42 NetIQ REST Driver Implementation Guide

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

3c On the Identity Manager Driver Overview page, click the driver’s icon again, then scroll to
Subscriber Settings.

3d In the Keystore File setting, specify the path to the trust store you created in Step 2.

4 Click Apply, then click OK.
Securing Communication 43

44 NetIQ REST Driver Implementation Guide

6 6Managing the Driver

As you work with the REST driver, there are a variety of management tasks you might need to
perform, including the following:

 Starting, stopping, and restarting the driver

 Viewing driver version information

 Using Named Passwords to securely store passwords associated with the driver

 Monitoring the driver’s health status

 Backing up the driver

 Inspecting the driver’s cache files

 Viewing the driver’s statistics

 Using the DirXML Command Line utility to perform management tasks through scripts

 Securing the driver and its information

Because these tasks, as well as several others, are common to all Identity Manager drivers, they are
included in one reference, the NetIQ Identity Manager Driver Administration Guide.
Managing the Driver 45

https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle

46 NetIQ REST Driver Implementation Guide

7 7Troubleshooting the Driver

You can log Identity Manager events by using the Event Auditing Service. Using this service in
combination with the driver log level setting provides you with tracking control at a very granular level.
For more information, see the NetIQ Identity Reporting Module Guide.

This section contains the following information on error messages:

 Section 7.1, “Driver Shim Errors,” on page 47

 Section 7.2, “Troubleshooting Driver Processes,” on page 47

 Section 7.3, “Exception Reported After Upgrading to REST Driver 1.0.0.1,” on page 47

7.1 Driver Shim Errors
The following errors might occur in the core driver shim. Error messages that contain a numerical
code can have various messages, depending on the application or Web service.

 “Issues with commons-codec-1.3.jar” on page 47

Issues with commons-codec-1.3.jar

Explanation: The driver initialization fails if installed on Remote Loader set up.

Possible Cause: Unsupported version of commons-codec-1.3.jar.

Action: Replace the commons-codec-1.3.jar file with the latest version of commons-
codec-1.6.jar shipped along with the driver packages.

7.2 Troubleshooting Driver Processes
Viewing driver processes is necessary to analyze unexpected behavior. To view the driver processing
events, use DSTrace. You should only use it during testing and troubleshooting the driver. Running
DSTrace while the drivers are in production increases the utilization on the Identity Manager server
and can cause events to process very slowly. For more information, see “Viewing Identity Manager
Processes” in the NetIQ Identity Manager Driver Administration Guide.

7.3 Exception Reported After Upgrading to REST
Driver 1.0.0.1
Issue: After upgrading, the driver reports the following error:

Message: Code(-9010) An exception occurred: java.lang.NoSuchMethodError:
org.apache.http.impl.client.HttpClientBuilder.setConnectionManagerShared(Z)Lorg/
apache/http/impl/client/HttpClientBuilder;
at
com.novell.nds.dirxml.driver.rest.HTTPSubscriberConnectionInfo.makeHttpClient(Http
RESTOperations.java:547)
Troubleshooting the Driver 47

https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle

Workaround: Include httpclient and httpcore 441 jar files in the REST driver installation directory.

1 Download httpclient 4.4.1 jar file.

2 Download httpcore 4.4.1 jar file.
48 NetIQ REST Driver Implementation Guide

https://mvnrepository.com/artifact/org.apache.httpcomponents/httpclient/4.4.1
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpcore/4.4.1

A ADriver Properties

This section provides information about the Driver Configuration and Global Configuration Values
properties for the REST driver. These are the only unique properties for drivers. All other driver
properties (Named Password, Engine Control Values, Log Level, and so forth) are common to all
drivers. Refer to “Driver Properties” in the NetIQ Identity Manager Driver Administration Guide for
information about the common properties.

The information is presented from the viewpoint of iManager. If a field is different in Designer, it is
marked with a Designer icon.

 Section A.1, “Driver Configuration,” on page 49

 Section A.2, “Global Configuration Values,” on page 55

A.1 Driver Configuration
In iManager:

1 Click to display the Identity Manager Administration page.

2 Open the driver set that contains the driver whose properties you want to edit:

2a In the Administration list, click Identity Manager Overview.

2b If the driver set is not listed on the Driver Sets tab, use the Search In field to search for and
display the driver set.

2c Click the driver set to open the Driver Set Overview page.

3 Locate the driver icon, then click the upper right corner of the driver icon to display the Actions
menu.

4 Click Edit Properties to display the driver’s properties page.

By default, the Driver Configuration page displays.

In Designer:

1 Open a project in the Modeler.

2 Right-click the driver icon or line, then select click Properties > Driver Configuration.

The Driver Configuration options are divided into the following sections:

 Section A.1.1, “Driver Module,” on page 50

 Section A.1.2, “Authentication,” on page 50

 Section A.1.3, “Startup Option,” on page 50

 Section A.1.4, “Driver Parameters,” on page 51

 Section A.1.5, “ECMAScript,” on page 55

 Section A.1.6, “Global Configuration,” on page 55
Driver Properties 49

https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b94pq23
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle

A.1.1 Driver Module

The driver module changes the driver from running locally to running remotely or the reverse.

Java: Use this option to specify the name of the Java class that is instantiated for the shim
component of the driver. This class can be located in the classes directory as a class file, or in the
lib directory as a .jar file. If this option is selected, the driver is running locally. Select this option to
run the driver locally.

The Java class name is: com.novell.nds.dirxml.driver.rest.RESTDriverShim

Native: This option is not used with the REST driver.

Connect to Remote Loader: Used when the driver is connecting remotely to the connected system.
Designer includes two suboptions:

 Remote Loader Client Configuration for Documentation: Includes information on the Remote
Loader client configuration when Designer generates documentation for the driver.

 Driver Object Password: Specifies a password for the Driver object. If you are using the Remote
Loader, you must enter a password on this page. Otherwise, the remote driver does not run. The
Remote Loader uses this password to authenticate itself to the remote driver shim.

Name: Displays the java class name.

Driver Object Password: Use this option to set a password for the driver object. If you are using the
Remote Loader, you must enter a password on this page or the remote driver does not run. This
password is used by the Remote Loader to authenticate itself to the remote driver shim.

A.1.2 Authentication

The authentication section describes the parameters required for authentication to the connected
system. This section is not applicable for the Identity Manager driver for REST. The authentication
method for REST driver is Anonymous, Basic or OAuth2.0.

A.1.3 Startup Option

The Startup Option section allows you to set the driver state when the Identity Manager server is
started.

Auto start: The driver starts every time the Identity Manager server is started.

Manual: The driver does not start when the Identity Manager server is started. The driver must be
started through Designer or iManager.

Disabled: The driver has a cache file that stores all of the events. When the driver is set to Disabled,
this file is deleted and no new events are stored in the file until the driver state is changed to Manual
or Auto Start.
50 NetIQ REST Driver Implementation Guide

A.1.4 Driver Parameters

The Driver Parameters section lets you configure the driver-specific parameters. When you change
driver parameters, you tune driver behavior to align with your network environment.

The parameters are presented by category:

 “Driver Settings” on page 51

 “Subscriber Settings” on page 51

 “Resources” on page 53

 “Publisher Options” on page 53

Driver Settings

Custom Java Extensions: Select Show if you have developed custom Java classes to extend the
driver shim’s functionality. Otherwise, select Hide.

 Document Handling: Select Implemented if you have developed a custom Java class to
process data as XML documents. Otherwise, select None.

 Class: Specify the class by using a complete package identifier. For example,
com.novell.DocumentModifier.

 Init Parameter: Specify the parameter to pass to the init() method of the specified class.
The init method is responsible for parsing the information contained in this string. Leave this
field blank if the configuration string is not required for the class.

 Schema: Select Implemented if you have developed a custom Java class to provide the
application schema to the driver and specify the Class and Init Parameter values. Otherwise,
select None.

For more information, see Appendix B, “Using Java Extensions,” on page 59.

Subscriber Settings

Authentication Method: Select the method for authentication with the RESTful service. The
available options are:

 Anonymous: The user name and password is not required in Anonymous authentication
method.

 Basic: The driver uses the specified ID and password for authentication when processing the
requests.

 OAuth2.0: The driver uses the specified access token URL, ID and password for authentication
when processing the request.

If Basic is selected, fill in the following parameters:

 Authentication ID: Specify the authentication ID used for basic authorization on the HTTP
header.

 Authentication Password: Specify the authentication password used for basic authorization on
the HTTP header.

 Reenter Authentication Password: Specify the authentication password again.

If you need to clear the password, select Remove existing password, then click Apply.
Driver Properties 51

If OAuth2.0 is selected, fill in the following parameters:

 Access Token URL: Specify the URL of the server used for requesting token access.

 User Name: Specify the user name for authentication. This parameter is optional.

 User Password: Specify the password for authentication. This parameters is optional

 Reenter User Password: Specify the user password again.

If you need to clear the password, select Remove existing password, then click Apply.

 Authorization Query Options: Click the icon to create authentication query options for
OAuth2.0 authorization method. The supported OAuth authorization types for REST driver are
Client Credentials and Resource Owner Credentials. You can create any one of these
authorization types.

 Query Name: Specify the name of the query. For example, grant_type. You also can
configure client_id, client_secret, and resource as query names.

 Query Value: Specify the value for the query. For example, client_crendentials or
password.

Authorization Header Fields: Click the icon to create authorization header fields.

 Header Name: If the remote server requires an authentication ID, specify the ID in the field.
Otherwise, leave the field empty.

 Header Value: Specify the authentication password for the remote server if you specified an
header name. Otherwise, leave the field empty.

Truststore File: Specify the name and path of the keystore file containing the trusted certificates
used when the remote server is configured to provide server authentication. For example,
c:\security\truststore. Leave this field empty when server authentication is not used.

Set mutual authentication parameters: Specify Show to set mutual authentication information.
Specify Hide to not use mutual authentication.

 Keystore file: Specify the path and the name of the keystore file that contains the trusted
certificates for the remote server to provide mutual authentication. For example,
C:\security\keystore. Leave this field blank when mutual authentication is not used.

 Keystore password: Specify the password for the keystore file. Leave this field blank when
mutual authentication is not used.

HTTP Connection Timeout: Specify the HTTP connection timeout value. The driver waits for the
time specified and terminates the HTTP connection. The timeout value must be greater than zero.

Proxy host and port: Specify the host address and the host port when a proxy host and port are
used. For example: 192.10.1.3:18180.

Or, if a proxy host and port are not used, leave this field empty.

HTTP Errors to Retry: Specify the HTTP errors that must return a retry status. Error codes must be
a list of integers separated by spaces. For example, 307 408 503 504.

 Base URL for REST Resources: Specify the common part of the REST resource URL. This is the
part of the URL remaining after excluding the URL extension of the resource. For example, http://
ipaddress:port/.
52 NetIQ REST Driver Implementation Guide

Resources

 Configure Resources to synchronize: Click the icon to add a class name of the user resource
present in application schema.

 Schema name: Specify the class name of the user resource in the application schema. For
example, Users, Groups, and Entitlement.

 Configure Handlers: Select the appropriate customer handlers. The available options are
Default and Custom.

If you select Custom, fill in the following parameters:

 Rest Handler Details: Click the icon to add rest custom handler information.

 URL Extension: Specify the relative URL extension where the resource is located. The driver
shim appends this URL extension to the base URL. The URL extension also includes the
necessary URL placeholder. A placeholder is defined as a variable embedded within the URL.
The driver-operation-data element replaces this with the URL token element during data
transformation.

For example, /Users/<version>. In this example, version is the placeholder and the driver
replaces this with the URL token element in the driver-operation-data element.

<driver-operation-data class-name="User" command="add" method="put"
uri="https://172.16.0.0:XXXX/User/rest123">
 <request>
 <url-token version="1.0"/>
 <header content-type="application/json"/>
 <value>{"CN":[{"value":"rest6789"}],"Full Name":[{"value":"rest6789
rest6789"}],"Given
Name":[{"value":"rest6789"}],","Surname":[{"value":"rest6789"}],"Login
Disabled":[{"value":"true"}]}
 </value>
 </request>
</driver-operation-data>

 Operation: Select the required operation for Identity Manger operation.

 Method: Select the HTTP method to use. The options are: GET, POST,PATCH,PUT, and
DELETE.

 Optional Header Fields: Click the icon to add optional header name and value.

Publisher Options

Publisher Settings: Specify the publisher settings.You can select either Publish or Poll as the
publisher setting. If Publish is selected, the driver pushes the events to the Identity Vault. In the
Publish mode, the driver exposes the REST endpoints to receive the events. These vents are then
pushed to the Identity Vault. If Poll is selected, the driver periodically pulls the data from the
connected RESTful service.

If Publish is selected, fill in the following parameters:

Listening IP address and port: Specify the IP address of the server where the REST driver is
installed and the port number that this driver listens on.

If you imported a sample configuration file, this field contains the IP address and port that you
specified in the wizard.

Authentication method: Select the authentication method as Anonymous or Basic.
Driver Properties 53

if Basic is selected, fill in the following parameters:

Authentication ID: Specify the Authentication ID of the remote server to validate incoming requests.
If the remote server does not send an Authentication ID, leave this field empty.

If you imported a sample configuration file, this field contains the IP address and port that you
specified in the wizard.

Authentication Password: Specify the authentication password of the remote server to validate
incoming requests if you entered an Authentication ID above. Otherwise, leave these fields empty.

Reenter Authentication Password: Specify the authentication password again.

If you need to clear the password, select Remove existing password, then click Apply.

If Poll is selected, fill in the following parameters:

 Configure Resources to poll: Click the icon to add a class name of the user resource present in
application schema.

 Schema name: Specify the class name of the user resource in the application schema.

 Service Endpoint: Specify the service end point of the connected RESTful service for the
publisher polling. A generic example is http://ip:port/schema. For users: http://
172.16.0.0:port/User?search-attr=.

 Method: Select the method.

 Optional Header Fields: Click the icon to add optional header name and value.

Search Results to Synchronize on First Startup: Specify the synchronization setting for search
results. When this driver starts for the first time, it performs a search on the application. The search
results are synchronized depending upon the specified parameter.

 Synchronize only subsequent changes: Select this option to synchronize only the
subsequent changes.

 Synchronize everything: Select this option to synchronize the initial search results.

Polling interval in minutes: Specify the polling interval in minutes. Default is one minute.

NOTE: The Subscriber Base URL is mandatory for the driver authentication when using the poll
mode.

KMO name: Specify the KMO name to be used in eDirectory.

When the server is configured to accept HTTPS connections, this name becomes the KMO name in
eDirectory. The KMO name is the name before the “-” (dash) in the RDN.

Leave this field empty when a keystore file is used or when HTTPS connections are not used.

Keystore file: Specify the keystore name and path to the keystore file. This file is used when the
server is configured to accept HTTPS connections.

Leave this field empty when a KMO name is used or when HTTPS connections are not used.

Keystore password: Specify the keystore file password used with the Keystore file:keystore file
specified above when this server is configured to accept HTTPS connections.

Leave this field empty when a KMO name is used or when HTTPS connections are not used.

Server key alias: Specify a Server key alias when this server is configured to accept HTTPS
connections.
54 NetIQ REST Driver Implementation Guide

Leave this field empty when a KMO name is used or when HTTPS connections are not used.

Server key password: When this server is configured to accept HTTPS connections, this is the key
alias password (not the keystore password). Leave this field empty when a KMO name is used or
when HTTPS connections are not used.

Require mutual authentication: When using SSL, it is common to do only server authentication.
However, if you want to force both client and server to present certificates during the handshake
process, you should require mutual authentication.

Heartbeat interval in seconds: Specify the heartbeat interval in seconds.

Leave this field empty to turn off the heartbeat.

A.1.5 ECMAScript

Displays an ordered list of ECMAScript resource files. The files contain extension functions for the
driver that Identity Manager loads when the driver starts. You can add additional files, remove existing
files, or change the order the files are executed.

A.1.6 Global Configuration

Displays an ordered list of Global Configuration objects. The objects contain extension GCV
definitions for the driver that Identity Manager loads when the driver is started. You can add or
remove the Global Configuration objects, and you can change the order in which the objects are
executed.

A.2 Global Configuration Values
Global configuration values (GCVs) are values that can be used by the driver to control functionality.
GCVs are defined on the driver or on the driver set. Driver set GCVs can be used by all drivers in the
driver set. Driver GCVs can be used only by the driver on which they are defined.

The REST driver includes several predefined GCVs. You can also add your own if you discover you
need additional ones as you implement policies in the driver.

To access the driver’s GCVs in iManager:

1 Click to display the Identity Manager Administration page.

2 Open the driver set that contains the driver whose properties you want to edit:

2a In the Administration list, click Identity Manager Overview.

2b If the driver set is not listed on the Driver Sets tab, use the Search In field to search for and
display the driver set.

2c Click the driver set to open the Driver Set Overview page.

3 Locate the driver icon, click the upper right corner of the driver icon to display the Actions menu,
then click Edit Properties.

or

To add a GCV to the driver set, click Driver Set, then click Edit Driver Set properties.

To access the driver’s GCVs in Designer:

1 Open a project in the Modeler.
Driver Properties 55

2 Right-click the driver icon or line, then select Properties > Global Configuration Values.

or

To add a GCV to the driver set, right-clickthe driver set icon , then click Properties > GCVs.

The global configuration values are organized as follows:

 Section A.2.1, “Password Synchronization,” on page 56

 Section A.2.2, “Permission Collection and Reconciliation,” on page 56

A.2.1 Password Synchronization

These GCVs enable password synchronization between the Identity Vault and the connected system.

In Designer, you must click the icon next to a GCV to edit it. This displays the Password
Synchronization Options dialog box for a better view of the relationship between the different GCVs.

In iManager, you should edit the Password Management Options on the Server Variables tab rather
than under the GCVs. The Server Variables page has a better view of the relationship between the
different GCVs.

For more information about how to use the Password Management GCVs, see “Configuring
Password Flow” in the NetIQ Identity Manager Password Management Guide.

Application accepts passwords from Identity Manager: If True, allows passwords to flow from the
Identity Manager data store to the connected system.

Identity Manager accepts passwords from application: If True, allows passwords to flow from the
connected system to Identity Manager.

Publish passwords to NDS password: Use the password from the connected system to set the
non-reversible NDS password in eDirectory.

Publish passwords to Distribution Password: Use the password from the connected system to
set the NMAS Distribution Password used for Identity Manager password synchronization.

Require password policy validation before publishing passwords: If True, applies NMAS
password policies during publish password operations. The password is not written to the data store if
it does not comply.

Reset user’s external system password to the Identity Manager password on failure: If True,
on a publish Distribution Password failure, attempts to reset the password in the connected system by
using the Distribution Password from the Identity Manager data store.

Notify the user of password synchronization failure via e-mail: If True, notifies the user by e-mail
of any password synchronization failures.

A.2.2 Permission Collection and Reconciliation

If you installed the Permission Collection and Reconciliation package, iManager and Designer display
the following options. For more information about permission reconciliation feature, see
“Understanding Permission Collection and Reconciliation Service ,” in the NetIQ Identity Manager
Driver Administration Guide.

Enable Permissions Collection and Reconciliation: Set the value of this parameter to true for
allowing permission collection and entitlement assignment. By default, the value is set to false, which
allows the driver to override any other conditions to reconcile custom entitlements.
56 NetIQ REST Driver Implementation Guide

https://www.netiq.com/documentation/idm45/pdfdoc/idm_password_management/idm_password_management.pdf#bnwjt01
https://www.netiq.com/documentation/idm45/pdfdoc/idm_password_management/idm_password_management.pdf#bnwjt01
https://www.netiq.com/documentation/idm45/pdfdoc/idm_password_management/idm_password_management.pdf#bookinfo
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b181p2s1
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle

Enable Permissions Reconciliation for all Custom entitlements: If the value of this parameter is
set to No, it allows you to select the custom entitlements for reconciling them. By default, it is set to
Yes, which allows reconciling of all custom entitlements.

Click the Add icon add custom entitlements you want to selectively onboard and specify
Assignment Attribute Name for them.
Driver Properties 57

58 NetIQ REST Driver Implementation Guide

B BUsing Java Extensions

The functionality of the REST driver can be extended by using Java. You use an API defined by Java
interfaces to create your own custom Java classes that have access to the data passing through the
Subscriber and Publisher channels. These classes read and interpret the data, and, optionally, modify
the data.

This section contains the following information on using Java extensions:

 Section B.1, “Overview,” on page 59

 Section B.2, “Creating and Configuring Java Extensions,” on page 60

B.1 Overview
If the application you are using with the REST driver uses non-XML data that is not supported by the
REST driver, you can create Java extensions to convert the non-XML data to the JSON format
supported by the REST driver.

As illustrated in Figure B-1, there are five points where functionality can be extended:

 Two in the Subscriber channel

 Two in the Publisher channel

 One to report the application schema

Figure B-1 Using Java to Extend Functionality

The REST driver is designed to be flexible and extensible. For the Java programmer who wants to
extend or modify the capabilities of the driver, there are programming interfaces that can be used for
this purpose. These interfaces should be used only when you need to do transformations that cannot
be done in policies or style sheets.

Subscriber Channel

Publisher Channel

HTTP Requests (POST)

HTTP Response

Bytes

Bytes

Convert XML
to/from bytes

remove/restore
operation-data.

XML

XML

HTTP ResponseBytes

HTTP Requests (POST)Bytes
Convert bytes
to/from XML

XML

XML

Subscriber
Transport

Publisher
Transport

A
pplication

Iddentity M
anager P

olicy
and M

etadirectory E
ngine
Using Java Extensions 59

The Javadoc describes these interfaces.

There are two Java interfaces that can be used to extend or customize the driver behavior. They are
DocumentModifiers and SchemaReporter.

DocumentModifiers is used to access and to modify the commands and events passing through the
driver shim, if this is desired. DocumentModifiers gives you access to the data as XML DOM
documents.

The other interface, SchemaReporter, can be used if you have a way of programatically determining
the classes and attributes used by the remote Web service. The advantage to this is that creating
schema mapping rules is easier if the schema can be dynamically determined.

B.2 Creating and Configuring Java Extensions
You should name your class by using any Java package and class name that is convenient for your
environment and your organization.

For example, if you were writing your own class that implemented the DocumentModifiers interface,
and you named your class MyDocumentModifiers within a package called com.novell.idm, then you
would perform the following steps to compile, jar, and deploy your class:

1 Prepare your environment.

Make sure you have a current Java Development Kit (JDK) installed on your computer. Visit the
Java Web Site if you need to download one.

2 Gather your source code in the proper directory structure as defined by your package naming.

In the example given above, you would have a com directory that contained a novell directory
that contained an idm directory. Within the idm directory, you would have a source file named
MyDocumentModifiers.java.

3 Make sure you have the jar files you need to compile your class.

At a minimum, you need RESTUtil.jar. If you are using XML documents within your class, you
also need nxsl.jar.

4 Put a copy of the required jar files in a convenient location like the root of your compile directory
just outside the com directory, then access a system command prompt or shell prompt with that
location as the current directory.

5 Compile your class by entering one of the following commands:

 For Windows: javac -classpath RESTUtil.jar;nxsl.jar com\novell\idm*.java

 For Linux or UNIX: javac -classpath RESTUtil.jar:nxsl.jar com/novell/idm/
*.java

6 Create a Java archive file containing your class by entering one of the following commands:

 For Windows: jar cvf mydriverextensions.jar com\novell\idm*.class

 For Linux: jar cvf mydriverextensions.jar com/novell/idm/*.class

7 Place the jar file you created in Step 6 into the same directory that contains the RESTShim.jar.

In Windows, this is often C:\Novell\NDS\lib.

8 In iManager, edit the driver settings.

8a Next to Custom Java Extension, select Show.

8b Next to Document Handling, select Implemented.
60 NetIQ REST Driver Implementation Guide

http://www.novell.com/documentation/dirxmldrivers/javadoc/api/index.html
http://java.sun.com/

8c Specify com.novell.idm.MyDocumentModifiers as the value for Class and any string as the
value for Init Parameter.

The init parameter is the string that is passed to the init method of your class, so you can put
any information here that you want to use during your class initialization.

9 Restart the driver.

You can now use your custom class.
Using Java Extensions 61

62 NetIQ REST Driver Implementation Guide

C CTrace Levels

The driver supports the following trace levels:

Table C-1 Supported Trace Levels

For information about setting driver trace levels, see “Viewing Identity Manager Processes” in the
NetIQ Identity Manager Driver Administration Guide.

Level Description

0 No debugging

1-3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous level plus Remote Loader, driver, driver shim, and driver connection messages,
driver parameters, driver security, driver schema, request and response XML
Trace Levels 63

https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/idm45/pdfdoc/idm_driver_admin/idm_driver_admin.pdf#Bktitle

64 NetIQ REST Driver Implementation Guide

D DSupported JSON Format

The Identity Manger driver for REST queries the exposed RESTful endpoints and the returns the
responses in JSON format.

The following is an example of the QUERY response in the supported JSON format.

{
 "totalResults": 1,
 "results": [
 {
 "src-dn": "\\SERVER-LINUX-TREE-45\\data\\users\\thomaswagner",
 "class-name": "User",
 "CN": [
 "thomaswagner"
],
 "Object Class": [
 "User",
 "Organizational Person",
 "Person",
 "ndsLoginProperties",
 "Top"
],
 "Password Allow Change": [
 "true"
],
 "Password Minimum Length": [
 "4"
],
 "Password Required": [
 "true"
],
 "Password Unique Required": [
 "false"
],
 "Public Key": [
 "AQAAAAQAAAAgAGAAAADWACc7sIe2QAUFVSU0FG"
],
 "Surname": [
 "thomaswagner"
],
 "Full Name": [
 "thomaswagner thomaswagner"
],
 "Revision": [
 "6"
],
 "Given Name": [
 "thomaswagner"
],
 "GUID": [
 "OTGey593Bkx1sDkxnsufdw=="
],
 "DirXML-Associations": [
 {
Supported JSON Format 65

 "nameSpace": "1",
 "volume": "\\SERVERL-LINUX-TREE-45\\system\\driverset1\\REST-
DRIVER-PUB",
 "path": "thomaswagner"
 },
 {
 "nameSpace": "1",
 "volume": "\\SERVERL-LINUX-TREE-45\\system\\driverset1\\Data
Collection Service Driver",
 "path": "39319ECB-9F77-064c-75B0-39319ECB9F77"
 }
],
 "creatorsName": [
 "CN=linux-yal5,OU=servers,O=system"
],
 "modifiersName": [
 "CN=linux-yal5,OU=servers,O=system"
]
 }
]
}

The following is an example of the ADD request in the supported JSON format.

{
 "cn": "Sam2",
 "title": [
 "Sr Engineer",
 "Manager",
 "Mr. "
],
 "streetAddress": [
 {
 "component": "566666"
 },
 {
 "component": "area numero",
 "postal code": "566666"
 }
]
}

The following is an example of the MODIFY request in the supported JSON format.
66 NetIQ REST Driver Implementation Guide

{
 "cn": {
 "remove": "Sam1",
 "add": "Sam"
 },
 "title": {
 "add": [
 "Mr",
 "mr2"
]
 },
 "streetAddress": {
 "remove": [
 {
 "component1": "areanumero",
 "postalcode": "566666"
 }
],
 "add": [
 {
 "component2": " area numero ",
 "postalcode": "5555"
 }
]
 }
}

The following is an example of the GET response in the supported JSON format.

<nds dtdversion="4.0" ndsversion="8.x">
 <source>
 <product edition="Advanced" version="4.5.0.0">DirXML</product>
 <contact>NetIQ Corporation</contact>
 </source>
 <output>
 <status event-id="0" level="success"><driver-operation-data>
 <header Accept="application/json"/>
 <response>
 <value>{"totalResults":2,"results":
[{"keyvalue1":{"NAME":"thomas","VALUE":29},
"keyvalue2":{"NAME":"wagnor","VALUE":30}},
{"search-attr":[{"Surname": "Thomas"
}],"read-attr":["Surname","cn","Given Name"]}]}</value>
 </response>
 </driver-operation-data>
 </status>
 </output>
</nds>
Supported JSON Format 67

68 NetIQ REST Driver Implementation Guide

	NetIQ REST Driver Implementation Guide
	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	About This Guide
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	1 Understanding the REST Driver
	1.1 Key Terms
	1.1.1 Identity Manager
	1.1.2 Connected System
	1.1.3 Identity Vault
	1.1.4 Identity Manager Engine
	1.1.5 Driver Shim
	1.1.6 Driver Packages
	1.1.7 Remote Loader

	1.2 Driver Concepts
	1.2.1 Introduction
	1.2.2 How the Driver Works
	1.2.3 Understanding Driver Operation Data

	1.3 Support for Standard Driver Features
	1.3.1 Supported Operations
	1.3.2 Local Platforms
	1.3.3 Remote Platforms
	1.3.4 Supporting Driver Authentication
	1.3.5 Supporting Publish and Poll Modes
	1.3.6 Supporting Identity Manager Engine as a REST EndPoint
	1.3.7 Synchronizing Information
	1.3.8 Supporting Entitlements and Permission Collection and Reconciliation Service

	2 Installing the Driver Files
	2.1 Prerequisites for Driver Installation
	2.2 Installing the REST driver

	3 Creating a New Driver Object
	3.1 Creating the Driver Object in Designer
	3.1.1 Importing the Current Driver Packages
	3.1.2 Installing the Driver Packages
	3.1.3 Configuring the Driver Object
	3.1.4 Deploying the Driver Object
	3.1.5 Starting the Driver

	3.2 Activating the Driver
	3.3 Adding Packages to an Existing Driver
	3.4 Creating Custom Entitlements

	4 Customizing the Driver for RESTful Services
	4.1 Using Java Extensions
	4.2 Changing the JSON/XML Payload
	4.3 Using driver-operation-data

	5 Securing Communication
	5.1 Configuring the Publisher Channel
	5.2 Configuring the Subscriber Channel

	6 Managing the Driver
	7 Troubleshooting the Driver
	7.1 Driver Shim Errors
	Issues with commons-codec-1.3.jar

	7.2 Troubleshooting Driver Processes
	7.3 Exception Reported After Upgrading to REST Driver 1.0.0.1

	A Driver Properties
	A.1 Driver Configuration
	A.1.1 Driver Module
	A.1.2 Authentication
	A.1.3 Startup Option
	A.1.4 Driver Parameters
	A.1.5 ECMAScript
	A.1.6 Global Configuration

	A.2 Global Configuration Values
	A.2.1 Password Synchronization
	A.2.2 Permission Collection and Reconciliation

	B Using Java Extensions
	B.1 Overview
	B.2 Creating and Configuring Java Extensions

	C Trace Levels
	D Supported JSON Format

