i‘j NetlQ

Access Manager 4.5
Administration APl Guide

April 2019

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

Copyright © 2019 NetlQ Corporation. All Rights Reserved.

https://www.netiq.com/company/legal/

Contents

About this guide 5
1 API Overview 7
2 Administration API 9

2.1 Accessing Administration APIS ittt e 9

2.2 Detailed API DOCUMENTAtioON ittt e e e e 9

2.3 Administration API UsSe Cases. . .o vi ittt et e et e e e 9

2.3.1 Get Device Health. e 10

2.3.2 Get Device Statistics. . ..o e e e e 10

233 Refresh Metadata of SAML 2.0 Trusted Providers i, 11

234 Import Trusted Root Certificates. i e i 13

235 Renew Certificateso e e 13

2.3.6 MaNage User SESSIONS . oottt ettt et e e e e e e 14

2.3.7 Purge Access Gateway Cache e e e 15

2.3.8 Scaling the DevVICesS. . ..ot e e e 16

3 OAuth OpenID Connect API 19
3.1 EXamMPlE SCeNAMIOS . . . oottt e e e e 19
3.1.1 AClient Application Requires to Access OAuth Protected Resources 19

3.1.2 Resource Server Validating a Token Issued by Access Manager...................... 20

3.1.3 Access Manager Revoking Refresh Tokens o i, 21

3.2 Prerequisites for Establishing an OAuth 2.0 Connection with a Client Application.............. 21
3.2.1 Registering Client Applications it i et 22

3.2.2 Managing Client Applicationst i e e 23

3.2.3 Registering a ReSOUICE SerVer . ..ot e e et e ettt et e 26

3.24 OAUth 2.0 ENdPOints ... ovti ittt e e e e e e 30

3.2.5 Other Endpoints . ..ottt e e 31

3.3 AULNENtiCAtiON . . . o e 31
3.3.1 Authorization Code Grant FIOWttt e e e et e 32

3.3.2 IMPlicit Grant 36

3.3.3 Hybrid FIoW . ..ot e 39

3.4 AULNONIZatioN o e e 41
3.4.1 Authorization Code Grantot e 41

3.4.2 IMplicit Grant e e e 42

343 Refresh Token . ..o i e 42

3.5 Validating ToKeNS . . . oot e e 44

3.6 ReVOKING TOKENS. . ottt e et e e e e e e e e e 45

3.7 Authorization Code Grant Flow with PKCE it i 47

3.8 Other OAULh 2.0 Grants . ..ottt e e e e e e e e 48

3.8.1 Resource Owner Credential Grant ittt 48
3.8.2 Client Credential Grant. i i e e et et et 50
3.8.3 SAML 2.0 Bearer Profile for AuthorizationGrant............ 51
3.9 ANIDULE SErVICE . .ot e e e e 53

Contents

3

4

4 Component Statistics API 55

5 AWS Auto Scaling API 57
5.1 Importing Devices to Administration Console.t 57
5.1.1 Importing Identity Server. e 57

5.1.2 IMpPOorting ACCess GateWay. . .ot i it e e e e e e e e 57

5.2 Adding Devicestothe Cluster. i e e e e e 57
5.2.1 Adding ldentity Serverstothe Clusterottt 58

5.2.2 Adding Access Gateway servertothecluster, 58

5.3 Removing Devices from Administration Consolettt 58
53.1 Removing Identity Server from AdministrationConsole............................ 58

5.3.2 Removing Access Gateway from AdministrationConsole. 58

5.4 Updating Serversinthe Cluster e ettt e e 58
5.4.1 Updating the Identity Server Cluster it i 58

5.4.2 Updating the Access Gateway Cluster ...ttt 59

5.5 AddIitioNal APIs. . ..o e e e 59
5.5.1 GettingtheIDofaSpecificClustert it 59

5.5.2 Getting the Number of Active Sessions in Identity Server 59

Contents

About this guide

This guide describes the REST APIs supported by NetlQ Access Manager components. It includes
step-by-step instructions for using these APIs.

IMPORTANT: The Technical Support team supports the general Access Manager setup and any
issues where the Access Manager endpoints do not return valid data. Any other code changes
needed to integrate with Access Manager are outside the scope of traditional technical support and
need to go through the namsdk@microfocus.com channel.

About this guide

5

6

About this guide

1 APl Overview

Access Manager APIs are broadly categorized as follows:

+ Administration APIs: The administration APIs help to automate the common administrative
tasks. Administration Console exposes these APIs. See Chapter 2, “Administration API,” on
page 9.

+ OAuth and OpenlID Connect APIs: Identity Server exposes these APIs for all OAuth
functionalities, such as endpoints for registering clients, and obtaining access tokens. See
Chapter 3, “OAuth OpenlID Connect API,” on page 19.

+ Component Statistics APIs: These APIs provide statistics of Identity Servers and Access
Gateways. The individual devices expose these APls. These APIs are a precursor to the
Administration APIs for obtaining the device statistics. These continue to be available, but it is
recommended to use the administration statistics API. As a single administration API provides
details for all devices. See Chapter 4, “Component Statistics API,” on page 55.

+ AWS Auto Scaling API: These APIs help to automate tasks related to auto scaling Access
Manager on AWS. See Chapter 5, “AWS Auto Scaling API,” on page 57.

APl Overview

8 API Overview

2.1

2.2

2.3

Administration API

¢ Section 2.1, “Accessing Administration APIs,” on page 9
+ Section 2.2, “Detailed APlI Documentation,” on page 9

+ Section 2.3, “Administration APl Use Cases,” on page 9

Accessing Administration APIs

Administration Console supports Administration APls, OAuth and OpenID Connect APIs, and
Component Statistics APIs. You can invoke these APls by using a browser or by using the curl
command in scripts to help automate the administrative tasks.

Base URL: [https://<Adm nistration Console DNS or |P>:<AC Port>/amsvc/vl/ ...

The Administration Console port is 8443 by default. However, if Administration Console is installed
along with Identity Server on the same system, then the port is 2443.

Authentication: The APIs are protected by using basic authentication. You can use Administration
Console credentials for accessing the APls. However, accessing the API differs from accessing
Administration Console in the following ways:

+ The username for accessing the APIs must be specified in the fully qualified format. For
example, cn=admi n, o=novel | .

+ The user must have full admin rights to Administration Console. These APIs do not support
delegated admin access.

Response Format: It returns the data as XML by default. Set the Accept header to appl i cati on/
j son to obtain the response in the JSON format.

Detailed APl Documentation

You can access the detailed documentation for all administration APIs in the REST APl Doc on the
Access Manager Developer Resources website.

Administration APl Use Cases

+ Section 2.3.1, “Get Device Health,” on page 10

¢ Section 2.3.2, “Get Device Statistics,” on page 10

+ Section 2.3.3, “Refresh Metadata of SAML 2.0 Trusted Providers,” on page 11
+ Section 2.3.4, “Import Trusted Root Certificates,” on page 13

+ Section 2.3.5, “Renew Certificates,” on page 13

+ Section 2.3.6, “Manage User Sessions,” on page 14

Administration API

https://www.netiq.com/documentation/swagger_ui/?url=/documentation/access-manager-45-developer-documentation/resources/accessmanager_rest_swagger.yaml
https://www.netiq.com/documentation/access-manager-44-developer-documentation/

10

2.3.1

2.3.2

¢ Section 2.3.7, “Purge Access Gateway Cache,” on page 15

+ Section 2.3.8, “Scaling the Devices,” on page 16

Get Device Health

This API returns the health of Access Manager devices (Identity Servers and Access Gateways). The
API returns the health for the following levels:

+ Entire Access Manager

*

Each cluster

*

Each device

+ Each service and component (remote web servers, data stores, and so forth)

You can use this API for integration with external systems, such as NOC to view the status of Access
Manager devices and the remote web servers.

Sample Request
Invoke a URL similar to htt ps: //192. 168. 0. 0: 8443/ ansvc/ vl/ heal t h?expand=4

The expand parameter specifies the level of detail that is returned. Accepted values are 1,2,3, and 4.
4 returns the maximum detail for all devices.

Sample Response

<anBervi ce xm ns="urn: novel | : schema: am servi ce">

<heal th status="noReport” uri="https://192.168.0.0: 8443/ ansvc/vl/ health">
<i dpd ust er Heal t hLi st status="Geen" total ="1">

<clusterHealth status="Green" uri="https://192.168.0.0: 8443/ amsvc/vl/

i dpcl ust er s/ SCC7c9nsp/ heal t h" >

<i nst ancel D>SCC7c9nsp</i nst ancel D>

<di spl ayName>| DPC ust er </ di spl ayName>

<devi ceHeal t hLi st total ="1">

<devi ceHeal th status="G een"

uri="https://192.168. 0. 0: 8443/ amsvc/ v1l/idpcl usters/ SCC7c9nsp/ devi ces/ i dp-
CC1B3FFBOBCA0ADS/ heal t h" >

<i nst ancel D>i dp- CC1B3FFBOBC40AD8</ i nst ancel D>

<di spl ayNane>192. 168. 0. 6</ di spl ayName>

<servi ceHeal thLi st total ="5">

<servi ceHeal th status="Passed">

<servi ceName>Conf i g Dat ast or e</ servi ceNane>

<message>Qper ati ng properly</nessage>

</ servi ceHeal t h>

NOTE: This API returns the health information saved in Administration Console. This data is
refreshed every five minutes. Therefore, it is sufficient to invoke this APl every 5 minutes to get the
latest health.

Get Device Statistics

This API returns the statistics for all Identity Servers and Access Gateways in Access Manager.

Administration API

2.3.3

Sample Request

Send a GET request to a URL. For example, ht t ps: //192. 168. 0. 0: 8443/ ansvc/ v1l/
statistics.

Sample Response

<anBervi ce xm ns="urn: novel | : schema: am servi ce" >

<response code="SUCCESS"/ >

<statistics uri="https://192.168.0.0: 8443/ ansvc/vl/statistics">
<idpCQusterStatisticsList total="1">

<clusterStatistics uri="https:// 192.168.0.0: 8443/ amsvc/vl/idpclusters/
SCC7c9nsp/ statistics">

<i nst ancel D>SCC7c9nsp</i nst ancel D>

<di spl ayName>| DPC ust er </ di spl ayName>

<devi ceStatistics uri="https:// 192.168.0.0: 8443/ ansvc/vl/idpclusters/
SCC7c9nsp/ devi ces/ i dp- CCLB3FFBOBCA0ADS/ st ati stics">

<i nst ancel D>i dp- CC1B3FFBOBC40AD8</ i nst ancel D>

<di spl ayNane>192. 168. 0. 6</ di spl ayName>

<statisticList total ="90">

<statistic displayNane="Cached Sessi ons">100</statistic>

<statistic displayName="Hi storical Maximm Logi ns Served">890</statistic>

NOTE: This API returns the statistics information saved in Administration Console. It is refreshed
every 10 minutes. Therefore, it is sufficient to invoke this APl every 10 minutes to get the latest
statistics.

Refresh Metadata of SAML 2.0 Trusted Providers

Trusted providers periodically refresh their metadata. Some metadata repositories, such as
InCommon.org, publish an updated metadata everyday. Therefore, an automated approach for
refreshing the metadata of all service providers and updating the associated trusted root certificates
helps relieve the administrator of this frequent chore and ensures that the system is up to date for
security reasons.

Perform the following steps:

1 Invoke the API to get the Identity Server clusters. Parse the response to get the cluster URL.
Sample URL: ht t ps: //192. 168. 0. 0: 8443/ ansvc/ v1l/idpclusters

Response:

idpC uster uri="https://192.168.0.0: 8443/ ansvc/vl/idpclusters/
SCC7c9nsp" > . ..

2 For each cluster URL, invoke the API to get the list of service providers or identity providers,
depending on the provider that needs to be refreshed.

https://192.168. 0. 0: 8443/ ansvc/ v1/i dpcl ust ers/ SCC7c9nsp/
servi ceprovi ders OR

https://192.168. 0. 0: 8443/ ansvc/ v1/i dpcl ust ers/ SCC7c9nsp/
i dentityproviders

Administration API 11

12

3 Parse the response to get the URL of the trusted provider to be updated.

Response Snippet:
<serviceProvider uri="https://192.168.0.0: 8443/ ansvc/vl/idpclusters/
SCC7c¢9nsp/ servi ceprovi der s/ STSPr 9spkh" >

<di spl ayName>of 365</ di spl ayNanme>
<pr ot ocol >sam 2</ pr ot ocol >

4 Invoke the metadata refresh API to apply the updated metadata as follows.

5 Invoke the trusted roots API to add the root CA of the signing certificate specified in the
metadata. This step is needed if the certificate has changed. For more information, see
Section 2.3.4, “Import Trusted Root Certificates,” on page 13.

6 Invoke the Apply changes API to send these changes to Identity Servers in that cluster.
7 Send PUT request to the cluster URL https://192.168.0.0:8443/amsvc/v1/idpclusters/
SCC7c9nsp/ with input

{ "update" : "all" }

Sample Script: You can access a sample script that implements all the steps listed here on the

Update MetaData From File (https://community.microfocus.com/t5/Access-Manager-Tips-
Information/Update-MetaData-From-File/ta-p/1776007) page.

Sample Request:
URL format: <trusted provider URL in step 3>/metadata
Send a PUT request to https://192.168.0.0:8443/amsvc/v1/idpclusters/SCC7c9nsp/

serviceproviders/STSPr9spkh/metadata with metadata as input. Metadata can be specified as a

text or a URL.

Sample text input:

NOTE: The metadata text must be URL encoded.

{

"net adat a" :

"UBCYBFxM %20ver si on¥BDWR21. 0922%20encodi ng%

3DYR2UTF- 89%22%20%Y8F¥BEY8Cmd¥BAENt i t yDescri pt or %20xm ns%3
AmlYBDYR2ur n¥BAoasi s¥8Ananes¥8At cYBASAMLYBA2. 0%3Aret adat a%
229201 DY8DYR2i dXMuLnBr ALGXk MAMUXd9WKv SOaEl 922%20ent i t yl D%
3D%22ht t ps¥BAWRFY2Fpri yankasb. bl r. novel | . con?2Fni dp¥2Fsani
292Fmet adat a%229%BEYBCds¥BASI gnat ur e%20xm ns¥BAds¥B8D¥22ht t p
YBAYR FY2 Fvwww. W3. or g¥2F2000%2F09%2Fxm dsi g%23%22%8EYOAYBCds

YBCWRFNdYBAENt i t yDescri pt or %3E"

}

Sample metadata URL input:

{

"metadata" : "https://164.99.87.129: 8443/ ni dp/ sam 2/ met adat a"
}

Response: 200 OK

Administration API

https://community.microfocus.com/t5/Access-Manager-Tips-Information/Update-MetaData-From-File/ta-p/1776007

234

2.3.5

Import Trusted Root Certificates

You can use this APl to import a trusted root certificate. This is usually used in conjunction with the
metadata refresh API.

Sample Request:

Send a PUT request to ht t ps: //192. 168. 0. 0: 8443/ amsvc/ v1l/ security/trustedroots/
nmyPr ovi der CAwhere "myProviderCA" is the trusted root name displayed on Administration
Console.

NetlQ Access Manager = F GG g .,

b |

Dashboard Devices Policies Security
Certificates
Certificates L0500 GGean External Trusted Roots | Command Status
Import... | Delete | Add Trusted Roots to Trust Stores... | Auto-lmport From Server..
[] Hame Subject Devices Starting Date Ending Date
|:| configCA O=hari_86_9_tree, OU=0Organizational CA 2 Devices » November 2, 2015 Febroary 4, 2036
myProviderCA O=priyankasb_tree, OU=0rganizational CA September 6, 2015 February 4, 2036

The URL encoded public CA certificate must be specified as input.

{
"certificate" : "----BEG NY20CERTI FI CATE- - - -

%9AM | FNDCCBBY gAW BAgl KAhWRY%
- - - - ENDYROCERTI FI CATE- - - - "

}
Response: 200 OK

IMPORTANT:

+ The certificate must be URL encoded.

+ Apply changes to all devices that might use this certificate.

Renew Certificates

You can use this APl to renew the certificates that are available through Administration Console.
Specify the certificate name and the certificate content as input to the API.

Sample Request:

Send a PUT request to ht t ps: //192. 168. 0. 0: 8443/ amsvc/ vl/ security/certificates/
t est - si gni ng with the following input, where the intermediate certificates are optional:

Administration API 13

{

"entityCertificate" :"----BEQ NVROCERTI FI CATE- - - - YOAM | FDj CCAY%2FagAwW BAg
| KAhWRY2F6b94 Lz CZy %2BK8k Squ- - - - ENDY20CERTI FI CATE----",

"rootCertificate" :"----BEGQ NVROCERTI FI CATE- - - - YOAM | FDj CCAY2FagAwW BAg

| KAhWRY2F6b94 Lz CZy %2BK8k Squ- - - - ENDY20CERTI FI CATE----",

"internedi ateCertificatel” :"----BEQ NVROCERTI FI CATE- - - -

%OAM | FOj CCA%FagAw BAgh94Lz CZy%2BK8k Squ- - - - ENDY20CERTI FI CATE----",
"internedi ateCertificate2" :"----BEQ NVROCERTI FI CATE- - - -

%AM | FOj CCA%FagAwW BAgz CZy %2BK8k Squ- - - - ENDY20CERTI FI CATE- - - - "

}

IMPORTANT: 1.An update is required for all devices using that certificate. Updating the connector
certificate requires tomcat restart.

2. The certificate specified must be the PEM formatted public certificate and must be URL
encoded.

3. Entire chain must be specified. Entity Cert > Intermediate 1 > Intermediate 2 > Root CA, where >
indicates that the Entity certificate was signed by Intermediate 1 and so on.

23.6 Manage User Sessions

These APIs allow fetching and terminating all active sessions of a given user.

Perform the following steps:

1 Invoke the API to get all Identity Server clusters.
Sample URL: htt ps://192. 168. 0. 0: 8443/ anmsvc/ v1/idpcl usters
2 Parse the response to get the URL for each Identity Server cluster.

.<idpOuster uri="https://192.168.0.0: 8443/ amsvc/v1l/idpclusters/
SCC7c9nsp" >...

3 Invoke the URL of a cluster to get the sessions for a user.
URL Format: <I DP cl uster URL>/sessi ons?useri d=<user nane>

4 Repeat Step 3 for other clusters so that the sessions of the same user across all clusters are
handled.

Sample Request

https://192.168. 0. 0: 8443/ ansvc/ v1/i dpcl ust ers/ SCC7c9nsp/

sessi ons?useri d=adni n

Use HTTP GET to retrieve all active sessions for the user '"admn'.

Use HTTP DELETE nethod to terminate all sessions for the user 'admin'.

Administration API

2.3.7

Sample Response

{

"userDN' : "cn=adnin, o=novell",

"sessionDetails": { ["identityServer":"192.168.0.6",
"sessionCount":"1"],

["identityServer":"192.168.0.7", "sessionCount":"2"]

}
}

Purge Access Gateway Cache

You can use this APl to purge the Access Gateway server cache. Periodic purging of the cache frees
up storage. You can select to purge the content of the purge list that has already been configured on
Administration Console or purge all content cached on the server.

Perform the following steps:

1 Get the list of Access Gateway clusters.
Sample URL: ht t ps: // 164. 99. 86. 7: 8443/ ansvc/ v1l/ agcl usters
2 Parse the response to get the URL of the cluster you want to purge.

Sample Response:

<agCl uster uri="https://164.99.86.7: 8443/ ansvc/vl/ agcl usters/
ce035b033e6¢c7f 29" >

3 Invoke the URL to get the devices in that cluster.
URL format: <cl uster uri from above>/ devi ces

Sample URL:htt ps: //164. 99. 86. 7: 8443/ ansvc/ vl/ agcl ust er s/ ce035b033e6¢7f 29
devi ces

4 Parse the response to get the URL of the device you want to purge

Sample Response:

<agDevice uri="https://164.99.86. 7: 8443/ ansvc/v1l/ agcl usters/
ce035b033e6¢7f 29/ devi ces/ ag- 6459CF981F6FD178" >

5 Send a PUT request to the device URL with parameters to purge cache.

Sample Request

PUT requesttohtt ps: // 164. 99. 86. 7: 8443/ ansvc/ v1/ agcl ust er s/ ce035b033e6¢7f 29/
devi ces/ ag- 6459CF981F6FD178

With input { "purge" : "list" }
Specify "list" to purge the content configured in the Purge List on the Ul.
Use "all" to purge the entire cache.

Response: 200 OK

Administration API 15

NOTE: Clearing the cache decreases the responsiveness of a device, as every page will need to be
retrieved. Therefore, it is recommended to execute this command for one device at a time.

2.3.8 Scaling the Devices

You can use these APIs to scale up or scale down Access Gateway and ldentity Servers. These APIs
can only assign or delete a node in an existing cluster. For more information about how to configure
these APlIs, see the following configurations.

+ Section 2.3.8.1, “Scaling Up Access Gateway,” on page 16

+ Section 2.3.8.2, “Scaling Up Identity Server,” on page 16

+ Section 2.3.8.3, “Scaling Down Access Gateway,” on page 17

+ Section 2.3.8.4, “Scaling Down Identity Server,” on page 18

2.3.8.1 Scaling Up Access Gateway
Perform the following steps:

1 Assign a node to an existing Access Gateway cluster. Send a POST request to the following URL
with the cluster ID and the device ID.

NOTE: No input required for this request.

POST: htt ps:// <AC_| P: PORT>/ ansvc/ v1/ agcl ust er s/ <cl ust er| D>/ devi ces/
<devi cel D>

In the above POST request, the following details are used.
Cluster ID: The name of the existing Access Gateway cluster to which the node will add.

Device ID: The device ID of the new Access Gateway node that is to be assigned.

Sample Response
200 &K

2 When the node is assigned to the cluster, send a PUT request to the following URL to update the
cluster

https:// <AC_| P: PORT>164. 99. 86. 7: 8443/ ansvc/ vl/ agcl ust ers/ <cl ust er| D>
With input { "update" : "all" }

2.3.8.2 Scaling Up Identity Server

Perform the following steps:

1 Assign a node to an existing Identity Server cluster. Send a POST request to the following URL
with the cluster ID and the device ID.

NOTE: No input required for this request.

POST: htt ps: // <AC_I P: PORT>/ ansvc/ v1/i dpcl ust ers/ <cl uster| D>/ devi ces/
<devi cel D>

16 Administration API

In the above POST request, the following details are used.
Cluster ID: The name of the existing Identity Server cluster to which the node will add.

Device ID: The device ID of the new Identity Server node that is to be assigned.

Sample Response
200 K

2 When the node is assigned to the cluster, send a PUT request to the following URL to update the
cluster.

https:// <AC_| P: PORT>164. 99. 86. 7: 8443/ ansvc/ vl1/idpcl usters/<clusterl D>

With input { "update" : "all" }

2.3.8.3 Scaling Down Access Gateway

Scaling down from a cluster: Perform the following steps:

1 Delete a node from an existing Access Gateway cluster. Send a DELETE request to the following
URL with the cluster ID and the device ID.

NOTE: You can not delete the primary Access Gateway nodes. You can delete only the
secondary nodes of Access Gateway in a cluster.

POST: htt ps:// <AC_| P: PORT>/ ansvc/ v1/ agcl ust er s/ <cl ust er| D>/ devi ces/
<devi cel D>

In the above POST request, the following details are used.
Cluster ID: The name of the Access Gateway cluster from which the node will be deleted.

Device ID: The device ID of the Access Gateway node that is to be deleted.

Sample Response
200 X

2 When the node is deleted from the cluster, send a PUT request to the following URL to update
the cluster.

https:// <AC_| P. PORT>164. 99. 86. 7: 8443/ ansvc/ vl/ agcl ust ers/ <cl ust er| D>
With input { "update" : "all" }

Scaling down an individual node: Perform the following to delete a node that is not part of a
cluster:

Delete a node from an Administration Console. Send a DELETE request to the following URL with the
device ID.

POST: htt ps:// <AC_I P: PORT>/ ansvc/ v1/ agcl ust er s/ <cl ust er | D>/ devi ces/
<devi cel D>

Device ID: The device ID of the Access Gateway node that is to be deleted.
Sample Response

200 &

Administration API 17

2.3.8.4 Scaling Down Identity Server

Scaling down from a cluster: Perform the following steps:

1 Delete a node from an existing ldentity Server cluster. Send a DELETE request to the following
URL with the cluster ID and the device ID.

NOTE: You can not delete the primary Identity Server nodes. You can delete only the secondary
nodes of Identity Server in a cluster.

POST: htt ps:// <AC_| P: PORT>/ ansvc/ v1/i dpcl ust ers/ <cl ust er| D>/ devi ces/
<devi cel D>

In the above POST request, the following details are used.
Cluster ID: The name of the Identity Server cluster from which the node will be deleted.

Device ID: The device ID of the Identity Server node that is to be deleted.

Sample Response
200 &K

2 When the node is deleted from the cluster, send a PUT request to the following URL to update
the cluster.

https:// <AC_| P: PORT>164. 99. 86. 7: 8443/ ansvc/ v1/idpcl usters/<cl usterl| D>
With input { "update" : "all" }

Scaling down an individual node: Perform the following to delete a node that is not part of a
cluster:

Delete a node from an Administration Console. Send a DELETE request to the following URL with the
device ID.

POST: htt ps:// <AC_I P: PORT>/ amsvc/ v1/i dpcl ust ers/ <cl uster| D>/ devi ces/
<devi cel D>

Device ID: The device ID of the Identity Server node that is to be deleted.
Sample Response

200 &

18 Administration API

3.1

3.1.1

OAuth OpenlD Connect API

This section describes OAuth 2.0 and OpenID Connect implementation for authentication and
authorization with NetlQ Access Manager. An application developer or administrator can get an
access token and refresh token from Access Manager, and use it in their applications. By default, all
APIs support OpenlD Connect.

+ Section 3.1, “Example Scenarios,” on page 19

+ Section 3.2, “Prerequisites for Establishing an OAuth 2.0 Connection with a Client Application,”
on page 21

+ Section 3.3, “Authentication,” on page 31

¢ Section 3.4, “Authorization,” on page 41

+ Section 3.5, “Validating Tokens,” on page 44

+ Section 3.6, “Revoking Tokens,” on page 45

+ Section 3.7, “Authorization Code Grant Flow with PKCE,” on page 47
+ Section 3.8, “Other OAuth 2.0 Grants,” on page 48

+ Section 3.9, “Attribute Service,” on page 53

Example Scenarios

This section includes information about using API for OAuth and OpenlID Connect in the following
scenarios:
¢ Section 3.1.1, “A Client Application Requires to Access OAuth Protected Resources,” on page 19
+ Section 3.1.2, “Resource Server Validating a Token Issued by Access Manager,” on page 20

+ Section 3.1.3, “Access Manager Revoking Refresh Tokens,” on page 21

A Client Application Requires to Access OAuth Protected
Resources

A client application can use the Access Manager token to access an Access Manager OAuth
protected resource. The following is the workflow of accessing a protected resource when the client
uses the Access Manager token:

1. Registration: The client must be registered in Access Manager. For information about
registering a client, see Registering Client Applications.

2. Retrieve a token from Access Manager: The client retrieves the token by selecting any of the
following authorization grant flows:

+ Authorization code flow
+ Implicit flow

+ Resource owner credentials flow

OAuth OpenlID Connect API 19

3.1.2

+ Client credential flow
+ |ID token flow

+ SAML 2 bearer profile for authorization grant flow

NOTE: For more information about grants, see OAuth Authorization Grant in the Access
Manager 4.5 Administration Guide. For required endpoints, see the respective endpoint
sections in OAuth 2.0 Endpoints.

3. Send the token to resource server: The token is sent as an authorization header bearer token.

Resource Server Validating a Token Issued by Access Manager

A resource server can validate a token that is issued by Access Manager through resource server keys
or through Access Manager keys. By default, the token encryption is done by using Access Manager
keys. The resource server sends a request to Access Manager to validate the token. If you provide
the resource server's key and encryption algorithm details in Access Manager, the resource server
does not require to send a request to Access Manager. Instead, the resource server can use its key to
validate the token.

Only an Access Manager administrator can register a new resource server. To validate a token, the
resource server must know how the token is encrypted.

Encrypted by Access Manager: This is an older way of validating the token. You need to send the
token to Access Manager's token info endpoint for validation.

Encrypted using configured resource server keys: No need to validate through Access Manager. The
resource server cryptokeys can be configured in Access Manager. Access Manager uses this key to
encrypt the access token. This enables a resource server to validate the token itself, without sending
it to the Access Manager token verification endpoint.

The following is a sample in Java code about how to validate the token:

/] Stepl: decrypt the JWI Token (JWE Standard)

String jw AccessToken =

"eyJhbGci O JBMTI 4S1ci LCII bV O JBMIT 4RONNI i wi dH Wi j 0i Sl dUl'i wi a2l kI j oi bnFt L
TE f Q Zj EOj Ro50h3su@ZHFmaB-m ... ";

JsonWebEncryption jwe = new JsonWebEncryption();

j we. set Conpact Seri al i zati on(j wt AccessToken);

JsonWebKeySet | sonWebKeySet = new JsonWebKeySet (j wks) ;

Li st <JsonWbKey> j sonWebKeys = j sonWWebKeySet . get JsonWebKeys() ;
JsonWebKey j sonWebkey = j sonWebKeys. streanm().filter(p ->

p. get Keyl d() . equal sl gnoreCase(j we. get Keyl dHeader Val ue())).findFirst(). orEl
se(j sonWbKeys. get (0));

i f(j sonWebkey instanceof RsalsonWebKey) {

RsaJsonWebKey rsa = (RsaJsonWbKey) jsonWebkey;

j we. set Key(rsa. get PrivateKey());

}el se

{
j we. set Key(j sonWebkey. get Key());

20 OAuth OpenlID Connect API

https://www.netiq.com/documentation/access-manager-45/pdfdoc/admin/admin.pdf#b1cgm7ol
https://www.netiq.com/documentation/access-manager-45/pdfdoc/admin/admin.pdf#bookinfo
https://www.netiq.com/documentation/access-manager-45/pdfdoc/admin/admin.pdf#bookinfo
https://www.netiq.com/documentation/access-manager-45/pdfdoc/admin/admin.pdf#bookinfo

3.1.3

3.2

}
String decryptedToken = jwe.getPlaintextString();

//Step 2: Verify the JW Signature (JWS Standard)
JsonWebKeySet j sonWebKeySet = new JsonWebKeySet (j wks);

JsonWebKey j sonWebkey = | sonWebKeySet . get JsonWebKeys(). get (0);
JsonWebSi gnature jws = new JsonWebSi gnature();

j ws. set Key(j sonWebkey. get Key());;

j ws. set Conmpact Seri al i zati on(decrypt edToken);

if(true == jws.verifySignature()){
Systemout.println("Signature is valid.");

String payl oad = jws. getPayl oad(); //

}

For detailed sample code and tool for validating the JWT access token, see JWT Validation tool
(https://www.netig.com/documentation/access-manager-44/resources/JWTUTtilityTool.zip) under
Additional Resources on the Access Manager documentation page (https://www.netig.com/
documentation/access-manager).

No encryption: Trust and accept the token. As access token is not encrypted, use the sample in Java
code mentioned in the previous step to verify the signature and trust the token.

For information about configuring access token encryption keys, see Section 3.2.3, “Registering a
Resource Server,” on page 26.

Access Manager Revoking Refresh Tokens

Access Manager revokes only the refresh token and its corresponding Access token. Only the refresh
tokens that are generated by Access Manager Version 4.4 or later can be revoked.

You can perform the following tasks by using Access Manager API:

+ Revoking refresh token for applications

+ Revoking tokens that are issued to a device
For example, a user lost his device and wants to revoke all tokens that are issued to that device.

Using Mobile Access SDK: Use the Access Manager user portal for deregistering a device. When
device is deregistered, the refresh token and associated access token are revoked.

Not using Mobile Access SDK: If you are not using Mobile Access SDK to revoke a device, you must
provide the device ID in the access token request so that the device can be associated with the
token. You can use this device ID later for revoking the tokens issued to the device. For more
information, see Revoking Token Issued to a Device.

Prerequisites for Establishing an OAuth 2.0 Connection
with a Client Application

+ Section 3.2.1, “Registering Client Applications,” on page 22
+ Section 3.2.2, “Managing Client Applications,” on page 23

+ Section 3.2.3, “Registering a Resource Server,” on page 26

OAuth OpenlID Connect API 21

https://www.netiq.com/documentation/access-manager-44/resources/JWTUtilityTool.zip
https://www.netiq.com/documentation/access-manager

3.2.1

3.2.1.1

3.2.1.2

3.2.1.3

3.2.1.4

¢ Section 3.2.4, “OAuth 2.0 Endpoints,” on page 30
+ Section 3.2.5, “Other Endpoints,” on page 31

Registering Client Applications

Registering a client application includes the following activities:

¢ Section 3.2.1.1, “Getting Client ID And Secret,” on page 22

¢ Section 3.2.1.2, “Registering Redirect URI,” on page 22

¢ Section 3.2.1.3, “Registering Authorization Grants,” on page 22

+ Section 3.2.1.4, “Registering OpenlD Connect Configuration,” on page 22

Getting Client ID And Secret

To get an access token or an ID token, the application needs to send Client Credentials. Client
Credentials are unique credentials assigned per client application. Developers need to register their
applications to Access Manager with necessary details to use any of the APIs. The details of how to
register their applications are specified in Registering a Client Application. After registering the
application, Access Manager provides client id and client secret. Note these values.

Registering Redirect URI

A valid redirection URI must be registered with Access Manager along with each client application.
Access Manager redirects only to registered URlIs for issuing tokens in the authorization code grant
flow and implicit grant flow. One of the registered URIs should be passed along with requests in
these flows.

Registering Authorization Grants

The client application has to specify which OAuth2.0 authorization grant flows the application will
use. Access Manager issues tokens only in the specified flows. Any requests with flows those are not
registered during client registration are not supported. You can also modify this information after a
client is registered.

An administrator of your organization can disable some of the OAuth 2.0 authorization grant flows to
minimize the security risk. For example, an administration can disable the use of resource owner
credential grant if none of the OAuth 2.0 applications in the organization uses this flow. It is not
recommended unless it is required.

Registering OpenlID Connect Configuration

Access Manager supports both OAuth 2.0 and OpenlD Connect specifications by default. Typically,

OAuth2.0 is used for authorization of applications and OpenlD Connect is used for authentication.

OAuth 2.0 flow issues a security token called access token and OpenlID Connect issues ID token and
optionally access token.

Access tokens and ID tokens are JSON Web Tokens (JWT) signed by Identity Server and ID tokens are
optionally encrypted by the client application's public certificate. The relying party can verify the
signature of the ID token and trust that token is issued by trusted Identity Server.

22 OAuth OpenlID Connect API

3.2.2

3.2.2.1

You can register signing algorithm to be used for a JWT token. If your application needs
confidentiality of the ID token, provide a publicly accessible URL of public certificate and algorithm in
the JWKS format. You need to configure this during the client application registration process.

Managing Client Applications

You can programmatically register, view, modify, and delete a client application in Access Manager.

Before performing any of these actions, you must define your role as NAM QAUTH2 DEVELOPER or
NAM_QAUTH2_ADM Nin the IDP Role policy.

You can register an application in any of the following two ways:

+ Using username and password.

+ Using Access token. To register a client application by using an access token, you must have your
role defined as NAM QAUTH2 DEVELOPERin the IDP Role policy.

Use the resource owner flow to get an access token. The endpoint of the resource owner flow is
https://<ldentity Server URL: Port Number>/ni dp/oaut h/ nanm t oken

This endpoint requires the followings parameters to provide an access token:

Parameter Value

grant_type Password

username Application developer's user name

password Application developer's password

scope urn:netig.com:nam:scope:oauth:registration:full (This scope allows you to register,

view, modify, and delete client applications.)
urn:netig.com:nam:scope:oauth:registration:read (This scope provides read-only
access)

token endpoint Identity Server URL: Port Number>/ nidp/oauth/nam/token

+ Section 3.2.2.1, “Registering a Client Application,” on page 23
+ Section 3.2.2.2, “Modifying a Client Application,” on page 25
+ Section 3.2.2.3, “Viewing a Client Application,” on page 26

¢ Section 3.2.2.4, “Deleting a Client Application,” on page 26

Registering a Client Application

To register a client application, the HTTP method value must be POST.
Identity Server uses the following endpoint for registering a client application:
https://<ldentity Server URL: Port Number>/nidp/oauth/nam clients

The endpoint requires the following OAuth parameters for client registration:

OAuth OpenlID Connect API 23

Parameter

Required/
Optional

Description

client_name

Required

Name of the client application.

application_type

Optional

web or native.

enableNativeSSO

Optional

Specify true as a value to enable single sign on for a user who uses the
client applications on a desktop or a mobile.

For example, A user accesses client A using the credentials and is
authenticated. Client A receives a refresh token and an access token.
Now, the user accesses client B immediately or after few days. If this
option is enabled for client B, then the client uses the persistent
cookie to retrieve the token and authenticate the user. Hence, client B
will be authenticated automatically.

If this option is not enabled for client B configuration, then to retrieve
refresh token and access token user has to provide credentials even
though the user has already authenticated for client A.

redirect_uris

Required

Redirection URI values used by the client application.

grant_types

Optional

The following are supported grant types:

* authorization_code

+ implicit

+ refresh_token

+ resource_owner_credentials
+ client_credentials

+ saml2_assertion

If you do not specify a grant type, the default grant type
aut hori zati on_code is used.

response_types

Optional

The following list includes supported response types:

+ code

+ code token

+ code id_token token
+ id_token

+ id_token token

* access_token

+ refresh_token

alwayslssueNewRef
reshToken

Optional

Specify true to issue a new refresh token for each refresh token
request.

authzCodeTTL

Optional

Specify the duration in minute after that the authorization code
becomes invalid.

accessTokenTTL

Optional

Specify the duration in minute after that an access token and an ID
token become invalid.

24 OAuth OpenlID Connect API

Parameter Required/ Description
Optional
refreshTokenTTL Optional Specify the duration in minute after that a refresh token becomes
invalid.
corsdomains Optional If you want to allow access to requests from only selected domains,
specify the domains as a JSON array.
For example, ["beem // ww. t est. cont', "fbh://
app.local.url", "https://namapp. coni]
logo_uri Optional Specify the URL of the logo that you want to include in the consent
page.
For example, htt ps://client. exanpl e. org/ | 0go. png
policy_uri Optional Specify the URL of the relying party client's privacy policy.
For example, https://client. exanpl e. org/ privacypolicy
tos_uri Optional Specify the URL of the relying party's terms of service.
For example, htt ps://client.exanple.org/terns
contacts Optional Specify the email addresses of people related to this client application.
jwks_uri Optional Specify the URI of the JSON file containing the json web keys.
This key set contains signing keys that the relying party uses to validate
signatures from the OpenlD provider.
For example, htt ps://client. exanpl e. org/
ny_public_keys. | wks
id_token_signed_r | Optional Specify the ID Token Signed Response Algorithm. This algorithm is
esponse_alg required for signing the ID token issued to a client.
id_token_encrypte | Optional Specify the algorithm used to encrypt the key.
d_response_alg
id_token_encrypte | Optional Specify the algorithm used to encrypt the content.

d_response_enc

3.2.2.2 Modifying a Client Application

Perform the following steps:

1. Retrieve the client details fromthe https: // <l dentity Server URL: Port Nunber>/
ni dp/ oaut h/ nani cl i ent s/ <cl i ent | D> endpoint. In the request for retrieving client
details, use GET as the HTTP method value.

2. Send the update request. In the update request, use POST as the HTTP method value. Identity

Server uses the following endpoint for modifying a registered client application:
https://<ldentity Server URL: Port Number>/ni dp/oauth/naniclients/

For the list of parameters this endpoint requires for a client application modification, see the
table under Registering a Client Application.

OAuth OpenlID Connect API

25

3.2.2.3

3.2.2.4

26

3.2.3

NOTE: For updating a client application, you must send the complete xml with all parameters during
the update request. If you do not include a parameter in the update xml, the server does not
initialize this parameter. For example, if you want to update the r esponse_t ypes parameter, send
the updated value for this parameter and existing values for other parameters in the request.

Viewing a Client Application

To view a client application, use GET as the HTTP method value.
You can view a registered client application by using the following two endpoints:

+ https://<ldentity Server URL: Port Number>/nidp/oauth/nam/clients/: To view all clients
applications registered by a developer

+ https://<Identity Server URL: Port Number>/nidp/oauth/nam/clients/<client ID>: To view a
specific client application registered by a developer

Deleting a Client Application

To delete a client application, the HTTP method value must be DELETE.
Identity Server uses the following endpoint for deleting a registered client application:

https://<ldentity Server URL: Port Number>/ni dp/oauth/naniclients/<client
| D>

Registering a Resource Server

By default, access tokens are signed by JSON Web Tokens (JWT) and encrypted by Identity Server.
Registering a resource server provides more features such as, option to encrypt the access token by
using either the resource server encrypted keys or the Identity Server encrypted keys.

It also provides an option to not encrypt an access token. This is not recommended because it may
cause security issues.

After resource server registration, specify the registered resource server name in the token request
for encrypting the access token using the resource server encrypted keys. In this way, no need to
contact Identity Server's TokenlInfo/UserInfo endpoint for token validation or for claims. Only an
Access Manager administrator can register a resource server.

You can programmatically register, view, modify, and delete a resource server by using REST API. You
must have your role defined as NAM_QAUTH2_ADM Nin the IDP Role policy. You can access this
endpoint either by login or using an access token. For more information, see Managing Client
Applications.

Send an HTTPS POST request with the appropriate URI parameters to resource server endpoint URI.

Resource Server Endpoint: htt ps: // <l dentity Server URL: Port Nunber >/ ni dp/ oauth/
nani r esour ceservers

HTTP Method: POST

OAuth OpenlID Connect API

Request Parameters:

Parameter Required | Description
/Optional
name Required | The name of the resource server.
disable]WTAccessTokenEncryption | Optional Specify the value as true for not encrypting the access
token.

The value as false to encrypt the access token by using
Access Manager key or resource server key.

cryptoKeys Optional Specify the resource server's JWKS key details to encrypt
the access token using this key.

The parameter value as a sample JSON format is as
follows:

{"jwksUri": "https://

WWW. I esour cer. server. coni crypt o/ j wks",
"jwtaccessTokenEncrypti onAl go": ({
"encryptionAl g": "RSAl 225",
"encryptionEnc": " A128CBC- HS2563" }

Sample Request and Response

A sample request and response for registering resource server crypto keys in Access Manager, with
line breaks for better readability and payload in JSON.

HTTP/ 1. 1 POST /ni dp/ oaut h/ nam t oken
User - Agent: Mdzilla/5.0 (Wndows NT 6.1) AppleWbKit/537.36 (KHTM., |ike
Gecko) Chrome/41.0.2228.0 Safari/537.36

Host: www. i dp. com 8443
"{"name": " nanResour ceServer",

"“cryptokeys":{"jwksUri": "https://ww.resourcer.server.comcrypto/jwks",
"jwtaccessTokenEncryptionAl go": { "encryptionAl g": "RSAl_225",
“encryptionEnc":"Al28CBC- HS2563" }

}
}
A successful Response

HTTP/ 1.1 200 OK
Cache-Control : no-cache, no-store, no-transform

3.2.3.1 Deleting a Resource Server

To delete a resource server by using REST API, you must have your role defined as
NAM QAUTH2_ADM Nin the IDP Role policy. To access this endpoint, you need to log in or use an
access token. If you use the access token, it should contain the following scope:

Scope:ur n: neti g. com nam scope: oaut h: regi stration: ful

HTTP Method: DELETE

OAuth OpenlID Connect API 27

3.23.2

3.2.3.3

Resource Server Endpoint: htt ps: // <l dentity Server URL: Port Nunber >/ ni dp/ oaut h/
nani r esour ceser ver s/ <r esour ceSer ver Nanme>

Viewing Registered Resource Servers

To view all registered resource servers by using REST API, you must have your role defined as
NAM_QAUTH2_ADM Nor NAM_QAUTH2_DEVELOPERin the IDP Role policy. To access this endpoint,
you need to log in or use an access token. If you use the access token, it should contain the following
scope:

Scope: urn: neti g. com nam scope: oaut h: regi stration: full
HTTP method: Get

Resource Server Endpoint: htt ps: //<ldentity Server URL: Port Nunber >/ ni dp/ oaut h/
nani r esour ceservers

Creating Scopes

To create a scope by using REST API, you must have your role defined as NAM_QAUTH2_ADM Nin the
IDP Role policy. To access this endpoint, you need to log in or use an access token. If you use the
access token, it should contain the following scope:

Scope: urn: neti . com nam scope: oaut h: regi stration: full

Resource Server Endpoint: htt ps: // <l dentity Server URL: Port Nunber >/ ni dp/ oaut h/
nani r esour ceserver s/ <r esour ceSer ver Nane>/ scopes

HTTP Method: Post

Request URI Parameters:

Parameter Required/Optional Description
scope Required The name of the scope.
scope_description Required Description of the scope. The consent page displays
this description while obtaining authorization from the
user.
claims claims or The list of claims.
attribute_set is
required
attribute_set claims or Attribute name and attribute dn.
attribute_set is . A W oua
required Sample: { "name" : "jpeg_photo", "dn" :
"cn=jpeg_photo,o=novell"}
userPermissionRequired Optional Boolean value. The default value is true.
adminApprovalRequired Required Boolean value. The default value is true, set it to false
always.
isGroupOfUserAttributes | Optional Boolean value. The default value is false.
allowModifyInConsent Optional Boolean value. The default value is false.

28 OAuth OpenlID Connect API

3.2.3.4

3.2.3.5

Parameter Required/Optional

Description

includeAllClaimsInIDToke | Optional
n

Boolean value. The default value is false.

If the value is true, all claims or attributes in this scope
will be included in the IDToken.

includedClaimsInIDToken | Optional

Attribute or claim name(s). You can use comma,) as a
delimiter to specify names of more than one attribute
or claim.

The specified claims or attributes will be included in
the IDToken.

For example, givenName, mail

includeAllClaimsInJWT Optional

Boolean value. The default value is false.

If the value is true, all the claims or the attributes in
this scope will be included the access token.

includedClaimsInJWT Optional Attribute or claims name(s). You can use comma (,) as a
delimiter to specify names of more than one attribute
or claim.

The specified claims or attributes will be included in
the access token.
For example, givenName, mail

Modifying a Scope

To modify a scope by using REST API, you must have your role defined as NAM_OAUTH2_ADM Nin the
IDP Role policy. To access this endpoint, you need to log in or use an access token. If you use the
access token, it should contain the following scope:

Scope: urn: neti q. com nam scope: oaut h: regi stration: full

The request includes the following details:

Resource Server Endpoint: htt ps: // <l dentity Server URL: Port Nunber >/ ni dp/ oaut h/
nani r esour ceserver s/ <resour ceSer ver Nane>/ scopes/ <scopenane>

HTTP Method: POST

Send only those parameters that you want to modify.

Deleting a Scope

To delete a scope by using REST API, you must have your role defined as NAM_ OAUTH2_ADM Nin the
IDP Role policy. To access this endpoint, you need to log in or use an access token. If you use the
access token, it should contain the following scope:

Scope: urn: neti q. com nam scope: oaut h: regi stration: full

The request includes the following details:

OAuth OpenlID Connect API

29

3.2.3.6

30

3.24

Resource Server Endpoint: htt ps: // <l dentity Server URL: Port Nunber >/ ni dp/ oaut h/
nani resour ceserver s/ <resour ceSer ver Nane>/ scopes/ <scopenane>

HTTP Method: DELETE

Viewing Configured Scopes

You can view details of all scopes together or of a specific scope. To view a scope by using REST AP,
you must have your role defined as NAM_QAUTH2_DEVELOPER or NAM OAUTH2_ADM Nin the IDP
Role policy. To access this endpoint, you need to log in or use an access token. If you use the access
token, it should contain the following scope:

Scope: urn: neti . com nam scope: oaut h: regi stration: full
Viewing Details of a Specific Scope
The request includes the following details:

Resource Server Endpoint: htt ps: //<ldentity Server URL: Port Nunber >/ ni dp/ oaut h/
nani r esour ceserver s/ <r esour ceSer ver Nane>/ scopes/ <scopenane>

HTTP Method: GET
Viewing Details of All Configured Scopes
The request includes the following details:

Resource Server Endpoint: htt ps: // <l dentity Server URL: Port Nunber >/ ni dp/ oaut h/
nani r esour ceserver s/ <resour ceSer ver Name>/ scopes

HTTP Method: GET

OAuth 2.0 Endpoints

To get an access token and identity token, the client invokes requests to corresponding endpoints
exposed by ldentity Server. Identity Server exposes the following endpoints:

+ Authorization Endpoint: This is always contacted via a browser. This endpoint requires that the
user has existing browser session with Identity Server. If no session exists at the time of request,
the Authorization Endpoint redirects the user to login. This endpoint is used when a client uses
the authorization code flow or implicit flow.

+ Token Endpoint: This is used directly by a client without involving the browser. Therefore, it is
possible to get an access token offline when a user is not connected via a browser. This
endpoint can issue an access token when the client provides a valid authorization code, SAML2
bearer profile for authorization grant flow, resource owner credentials, or client credentials.

+ Tokeninfo Endpoint: This is used for validating a refresh token and access tokens issued in
OAuth 2.0 authorization flows. Clients can send the access token via authorization header. This
endpoint returns a JSON response stating whether the token is valid.

OAuth OpenlID Connect API

3.2.5

3.3

+ UserInfo Endpoint: This is used for getting resource owner's claims. A client can send a request
to this endpoint with a valid access token and get the claims that are authorized by the resource
owner to share. This endpoint checks whether provided access token has valid scopes to issue
the claims.

+ Revocation Endpoint: This is used for revoking refresh tokens and its corresponding access
token.

Other Endpoints

In addition to the basic endpoints mentioned in Section 3.2.4, “OAuth 2.0 Endpoints,” on page 30,
Identity Server exposes the following endpoints:

Metadata Endpoint: This exposes basic services and options available at Identity Server for OAuth
2.0 and OpenlD Connect. This also contains URLs for basic endpoints. This endpoint is typically in this
format: ht t ps: // www. i dp. com 8443/ ni dp/ oaut h/ nanm . wel | - known/ Openl D-

confi gurati on. Invoking this URL responds with a JSON document containing the following
information:

+ OAuth 2.0 Endpoints
+ |D token supported algorithms

+ JWKS keys that can be used for verifying access token and ID token

Client Registration Endpoint: Developers use this to register OAuth2.0 clients through REST API. This
endpoint is protected by OAuth 2.0, therefore the clients invoking this endpoint to register clients
should obtain access tokens from the authorization endpoint by providing the developer's username
and password. For registering new clients, a developer must have the NAM_QAUTH2_DEVELOPER
role defined in Identity Server.

Scope and Resource Server registration Endpoint: This is used to register, modify, and delete a
scope. Users who invoke this endpoint must have the NAM QAUTH2_ADM Nrole defined in Identity
Server to be able to register and modify the scope values.

JSON Web Key Set Endpoint: Provides the information about the signing certificate that is used by
Access Manager, which can be used for verifying an access token.

Authentication

The application can request an authentication service from Access Manager by using one of the
supported OAuth 2.0 authorization grant flows. Access Manager implements OpenID Connect 1.0
specification on top of these flows. Therefore, the application can get more information about
authentication and it can verify the issued identity tokens.

The result of authentication exchange is an identity token called as | D t oken. This token is in the
JSON Web Token (JWT) format. This token is signed by public signing certificate of Identity Server.
The client application needs to verify the signature of the token and token is issued by the trusted
Identity Server.

The authentication service assures the application that the user has an active session at Identity
Server with requested or default assurance level. The flows requiring active user session involves a
browser redirect, therefore the authorization grant flows in this section talks about

aut hori zation Code Grant flowandlInplicit G ant flow The authentication service

OAuth OpenlID Connect API 31

3.3.1

3.3.11

can use advanced authentication methods configured in Identity Server. This does not require the
application to know the password of the user. If your application does not depend on a browser
interface or handles username and password directly, see Section 3.8.1, “Resource Owner Credential
Grant,” on page 48.

Getting Identity Tokens
You can use any one of the following flows to get an identity token:

+ Authorization code grant flow
+ Implicit Flow
+ Hybrid Flow

Authorization Code Grant Flow

The authorization code grant flow is a two-step process.

1. Get ashort lived authorization code from Identity Server.

2. Exchange this authorization code with ID token.

The application can also request for an access token for authorization if the application makes REST
API calls to resource servers.

The application can also specify minimum assurance level for the authentication method from
Identity Server by using the following request parameter.

Identity Server ensures that the user is authenticated with the requested level of authentication
before sending the identity token.

An identity token is a signed JSON Web Token (JWT). Signing is optional, but recommended. The
token is sighed when the client is configured with | D Token Si gni ng Al gorit hmduring the
client registration process.

)

The application verifies the returned identity token as mentioned in Section 3.5, “Validating Tokens,’
on page 44.

Getting an Authorization Code

The client can get an authorization code in by redirecting the browser to the authorization endpoint
with the required query string values. See “Request Parameters” on page 32.

The response is a short life-time aut hori zat i on code and must be used only once. This code can
be used to exchange identity tokens from ldentity Server through the token endpoint only once by
sending the necessary request parameter. See “Exchanging the Authorization Code with Identity
Tokens” on page 34.

Multiple attempts of exchanging code for token revokes tokens that are issued earlier. The
authorization code is sent through a browser redirect to a registered redirect_uri. The client should
handle this request to the redirect_uri. This involves exchanging the code with an access token.

Request Parameters

To get an authorization code, the client should invoke a request to Identity Server's authorization
endpoint with the following request query string parameters:

32 OAuth OpenlID Connect API

Parameter Required/ Value Description
Optional

client_id Required Client application ID, which is obtained at the time of the client
application registration process.

response_type | Required code code

redirect_uri Optional If provided, the value of this must exactly match to one of the
registered URIs during the application registration process. If
not provided, the browser is redirected to any of the registered
redirect URIs registered during application registration.

scope Required OpenlID | The list of scopes the application requires. It should contain
OpenlID". You can get all "scopes_supported" at the
authorization server's OpenlD Metadata Endpoint. Scope
values must be space separated %20 or +.

resourceServer | Optional Specify the registered resource server name. If this parameter
is available, the authorization server uses the respective
configured method to encrypt the access token.

state Recommen An opaque value used by the client to maintain state between
ded the request and callback. The authorization server includes this
value when redirecting the user-agent back to the client. The
parameter should be used to prevent cross- site forgery
requests.

prompt Optional none none: No user interface will be shown to the user if the user is
not already authenticated. If not authenticated, an error
message in one of "login_required", "interaction_required", or
other will be sent to the client application. This is useful if the
client wants to detect whether the user has an existing session
with Identity Server and has necessary consents.

login

consent

login: Identity Server will prompt for re-authentication.

consent: Identity Server will prompt for consent even if
consent is already given.

max_age Optional 300 Maximum authentication age at Identity Server in seconds. If
the user has not logged in within this elapsed time, the user
will be re-prompted for authentication

acr_values Optional /name/ | If client request contains acr_values parameter, Identity Server
passwor | maps the value to configured contracts in Identity Server and
d/uri prompts the user with the contract if the user is not already
authenticated with the contract. The contract is not sent in ID
token in this release.

device_id Optional Specify the device ID that token to be associated with device.

Response Values

Identity Server responds with a HTTP 302 redirect message to the requested redirect_uri in the
authorization request. If the request does not contain the redirect_uri param, Identity Server
redirects to one of the registered redirect_uri.

OAuth OpenlID Connect API 33

3.3.1.2

The redirect response contains the following parameters:

Parameter | Description

code An opaque binary token.

Variable length field. Application should not assume the size of the code and allocate
sufficient space for reading the code.

state Contains the state parameter sent in the authentication request above

Sample Request and Response
A sample request with whitespace for readability:

HTTP/ 1. 1 CET /ni dp/ oaut h/ nanf aut hz?

&r esponse_t ype=code

&cl i ent _i d=bb775b12- bbd4- 423b- 83d9- 647aeb98608d

&redirect _uri=https://ww:. oaut happ. coni oaut h. php

&scope=emai |

&nonce=abh8932b6

&st at e=AB32623HS

User - Agent: Mzilla/5.0 (Wndows NT 6.1) AppleWbKit/537.36 (KHTM., |ike
Gecko) Chrome/41.0.2228.0 Safari/537.36

Host: www. i dp. com 8443

Accept: /
Cooki e: JSESSI ONI D=188BAEB80B063C852D2CC82FDBD15A43
Response

HTTP/ 1.1 302 Found

Cache-Control: no-cache, no-store, no-transform
Location: https://ww. oaut happ. conif oaut h. php?
code=/ WEBAAY. W 1gQ~~

&scope=emai |

Content-Length: O

Date: Tue, 03 Mar 2015 18:12:55 GVl

Exchanging the Authorization Code with Identity Tokens

The client, listening for the authorization code in the registered redirect_uri, can use the requests
explained in next section to exchange the authorization code with an access token. The
authorization code is allowed for exchange only once. The request should be sent to the token
endpoint.

The response is sent in the JSON format and contains both access_token and id_token. Access
tokens are used for authorization and typically sent to an APl server. The client when invoking any
other API service has to include this access token. The API server validates this access token and
authorize the incoming APl requests based on the scopes embedded in the access token.

The ID token contains the authentication information, such as the issuer of the token, its validity, and
when the user was authenticated. The client needs to verify the signature of the ID token if available
and check the issuer.

34 OAuth OpenlID Connect API

Request Parameters

Specify the following parameters in the token request:

Parameter Required/ | Description
Optional
resourceServer | Optional Registered resource server name. If this parameter is available, the
authorization server uses the respective configured way to encrypt the
access token.
grant_type Required authorization_code
client_id Required Client ID of the registered client.
client_secret Optional Client secret of the registered client.
It is optional for a native application and mandatory for a web application.
code Required Code received in the authorization code flow.
redirect_uri Required This must be same as the one sent during the authorization code request.
device_id Optional Specify the device ID that token to be associated with device.

Response Values

A successful request contains a JSON object with the following values:

Parameter Required/ Description
Optional
token_type Required The type of the token. The authorization server supports only the
Bearer type.
access_token Required An access token that can be used to invoke resource server APls.
id_token Optional if When invoking authorization code request, if the client has sent
scope contains | OpenlD, this response object contains an ID token.
"OpenID"
scope Optional The list of scopes that a user has authorized. This can contain all
scopes the client requested.
state Optional if the st at e parameter was available in the client authorization
request, the same state value is sent in the response.

NOTE: Ensure that you do not use the Expect :

HTTP 400 Bad Request.

If you are using CURL, use "-H 'Expect:

or do not include IDP cookies.

100- Cont i nue header in the request when using
a multi-node Identity Server cluster setup. If the request contains this header, you may experience

OAuth OpenlID Connect API

35

36

3.3.2

Sample Request and Response

POST / ni dp/ oaut h/ nam t oken HTTP/ 1.1

User - Agent: Mdzilla/5.0 (Wndows NT 6.1) AppleWbKit/537.36 (KHTM., |ike
Gecko) Chrone/41.0.2228.0 Safari/537.36

Host: www. i dp. com 8443

Accept: /

Content-Length: 695

Cont ent - Type: application/x-ww-formurl encoded

grant _type=aut hori zati on_code

&client id=b017c96c-bl6a-4d80- a5f a- 68f 5050abc58

&cl i ent _secret =ZDDwbuuWPdV_e5quAf 7f 0Jkg_i JJ7g

&redirect _uri=https://ww.client.com oauth_call back. php
&code=/ WEBAAK.

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Cont ent - Type: application/json

Content-Length: 916

Date: Thu, 19 Mar 2015 14:14:57 GVI

Connection: cl ose

{
"access_token":"/WEBAAQEACA.
"token_type":"bearer", "expires_in":179, "refresh_token":"/

WEBAAQEACASI N8bgv. ,
"scope":"enmail"

}

Implicit Grant

Get an access token and ID token by sending an HTTPS GET or POST request with the appropriate URI
parameters to the authorization endpoint base URI. The ID token issued only if the scope is having
OpenlD param value. The ID token can be signed and encrypted based on the client's registration. To
access any of the user's attribute or getting permissions to access user's resource pages, you can
include the request in the scope parameter.

For example, if you want a user's email address and profile, set the scope parameter accordingly. If
any of this scope requires approval from the user, the consent screen includes a request to provide
the user's email address and profile to your application.

Sample implicit request/response: ht t ps: / / exanpl e. neti g. con ni dp/ oaut h/ nan
aut hz?response_t ype=t oken+i d_t oken&cl i ent _i d=4e4ae330- 1215- 4f ¢8- 9aa7-
79df 8325451c&redirect _uri=https://client.exanple.con

cal | back&scope=enui | +Qpenl D&st at e=s1234&nonce=n123

In this case, the authorization server validates all request parameters and checks whether the user is
authenticated. If the user is not authenticated, then it sends the login page to user. After the user is
authenticated, it takes the consent from the user for the requested scopes and sends the response
to the client.

The authorization server sends the following response for the request:

https://client.exanpl e.conf cal | back#t oken_t ype=bear er &access_t oken=/
WEBAAUFACAj Df Pt n d/ zI OANPpN/

kV1Jt t 3nxCPt zHy UH~&expi res_i n=3600& d_t oken=eyJhbCci G JSUzI 1N J9. eyJp
¢3M O Jo&scope=enui | &st at e=s1234

OAuth OpenlID Connect API

Token Request URI Parameters

The token request needs to include the following query parameters and the request needs to be sent

to the authorization endpoint:

Parameter Required/ | Description
Optional

response_type | Required The possible values are t oken, i d_t oken, andt oken i d_t oken. The
id_token is issued only if the scope contains the OpenlD value.
If the value is sent ast oken, then the authorization server issues only an
access token to the client.
If the valueisi d_t oken, then authorization server issues only id_token in
the response.
If the value ist oken i d_t oken, then authorization server issues both
access token and ID token in the response.

resourceServer | Optional Specify the registered resource server’s name. If this parameter is
available, the authorization server uses the respective configured way to
encrypt the access token.

client_id Required Client application ID that is obtained at the time of the client application
registration process.

redirect_uri Optional If provided, the value of this parameter must exactly match to one of URIs
of the registered application.

scope Optional Scopes supported by the authorization server. You can get
scopes_support ed at authorization server's OpenlD Metadata
endpoint. For the ID token, OpenlD needs to be available in the scope.
Specify multiple scope values separated with space %20.

state Required An opaque value used by the client to maintain state between the request
and callback. The authorization server includes this value when the
response is sent to the client. The parameter prevents cross-site forgery
requests.

nonce Required String value used to associate a client session with an ID token, and to

mitigate replay attacks.

OAuth OpenlID Connect API

37

Parameter Required/ | Description
Optional

prompt Optional A space delimited, case-sensitive list of ASCII string values that specifies
whether the authorization server prompts the end user for re-
authentication and consent.

The following are defined values:

+ none: The authorization server does not display any authentication
or consent user interface pages. An error is returned if an end user is
not authenticated or the client does not have preconfigured consent
for the requested claims, or does not fulfill other conditions for
processing the request.

+ Login: The authorization server prompts the end user for re-
authentication. If it cannot re-authenticate the end user, it returns an
error to the client.

¢ Consent: The authorization server prompts the end user for consent
before returning information to the client. If it cannot obtain consent,
it returns an error, typically consent_required.

max_age Optional Maximum authentication age. Specifies the allowable elapsed time in
seconds since the last time the user was authenticated by the OP.

device_id Optional The device ID of the device with which the token will be associated.

Response Values

The authorization endpoint sends an HTTP 302 Redirect response with the following http fragment
values in the Locat i on header. The browser redirects the request to the returned Locat i on
header without exposing the fragment values. The Locat i on header is theredi rect _uri
parameter sent in the request. Only the browser can read the fragment values and these are never
sent to redirect_uri.

Parameter Required/Optional | Description

token Required The type of the token. The authorization server supports only
bearer.

Access_token | Based on the If the response type value ist oken ort oken i d_t oken, the

response type value | authorization server sends an access token.

id_token Based on the If the response type valueisi d_t oken ort oken i d_t oken, the
response type value | authorization server sends an ID token.

scope Optional The user given consent scope names.

state Optional If the st at e parameter was available in the client authorization
request, the same state value is sent in the response.

38 OAuth OpenlID Connect API

3.3.3

Hybrid Flow

Get a combination of tokens or code, such as access token, ID token, or authorization code, based on
ther esponse_t ype parameter by sending an HTTPS GET or POST request with the appropriate URI
parameters to the authorization endpoint base URI. The hybrid flow works and the ID token is issued
only if the scope contains the OpenlID param value. An ID token can be signed and encrypted based
on the client's registration. To access any of the user's attributes or getting permissions to access the
user's resource pages, you can include the request in the scope parameter.

For example, if you want a user's email address and profile, set the scope parameter accordingly. If
any of this scopes requires approval from the user, the consent screen includes a request to provide
the user's email address and profile to your application.

Response types that are allowed in hybrid flows, in any combination, are as follows:

response_type Token Generated

code id_token Authorization code and ID token

code token Authorization code and access token

code id_token token Authorization code, ID token, and access token

Sample hybrid flow request/response: ht t ps: / / exanpl e. neti q. coni ni dp/ oaut h/ nam
aut hz?

response_t ype=code id_token&client id=4e4ae330-1215-4fc8-9aa7-
79df 8325451c&redirect _uri=https://client.exanple.conl
cal | back&scope=enui | +openi d&st at e=s1234&nonce=n123

In this case, the authorization server validates all request parameters and checks whether the user is
authenticated. If the user is not authenticated, it sends the login page to user. After the user is
authenticated, it takes the consent from the user for the requested scopes and sends the response
to the client.

The authorization server sends the following response for the this request:

https://client.exanple.con
cal | back#code=ey2hgwshg223j dsw& d_t oken=eyJhbGci G JSUz| 1N J9. eyJpc3M O Jo&
scope=enai | &st at e=s1234

Token Request URI Parameters

The token request should have the following query parameters and the request should be sent to
the authorization endpoint:

Parameter Required | Description

/
Optional

response_type | Required | The possible values are code t oken,code token id_token,code
i d_t oken, and other combinations of the three values. It should be space
separated.

OAuth OpenlID Connect API 39

Parameter Required | Description

/
Optional

resourceServer | Optional | Specify the name of the registered resource server. If this parameter is
available, the authorization server uses the respective configured way to
encrypt the access token.

client_id Required | The client application ID that is obtained at the time of the client application
registration process.

redirect_uri Required | The value of this must parameter must exactly match with one of URIs of the
registered application.

scope Required | Scopes supported by the authorization server. Get scopes_support ed at
authorization server's OpenlD Metadata Endpoint. It must contain the
openi d scope value. You can add multiple space separated scope values.

state Optional | An opaque value used by the client to maintain state between the request
and callback. The authorization server includes this value when the response
is sent to the client. The parameter prevents cross-site forgery requests.

nonce Required | A string value used to associate a client session with an ID Token, and to
mitigate replay attacks.

prompt Optional | A space delimited, case-sensitive list of ASCII string values that specifies
whether the authorization server prompts the end user for re-authentication
and consent.

The following are defined values:

+ none: The authorization server must not display any authentication or
consent user interface pages. An error is returned if an end user is not
authenticated or the client does not have preconfigured consent for the
requested claims or does not fulfill other conditions for processing the
request.

+ login: The authorization server should prompt the end user for re-
authentication. If it cannot re-authenticate the end user, it must return
an error to the client.

+ consent: The authorization server should prompt the end user for
consent before returning the information to the client. If it cannot
obtain consent, it must return an error, typically consent_required.

max_age Optional | Maximum authentication age. Specify the allowable elapsed time in seconds
since the last time the user was authenticated by the OP.

device_id Optional | Specify the device ID of the device that token has to be associated with.

Response Values

The authorization endpoint sends an HTTP 302 Redirect response with the following http fragment
values in the Locat i on header. The browser redirects the request to the returned Locat i on
header without exposing the fragment values. The Locat i on header is theredi rect _uri
parameter sent in the request. The fragment values can only be read by the browser and never sent
to redirect_uri.

40 OAuth OpenlID Connect API

3.4

3.4.1

Parameter

Required/Optional

Description

token_type

Based on response
type value

The type of the token. The authorization server supports only
bearer.

access_toke
n

Based on response
type value

If the response type value is code t oken,code id_token
t oken, or its combination, the authorization server sends an
access token.

id_token Based on response If the response type value iscode i d_t oken, code
type value i d_token token, orits combination, the authorization server
sends an ID token.
scope Optional The user given consent scope names.
state Optional if the st at e parameter was available in the client authorization
request, the same state value is sent in the response.
expires_in Based on response Expiration time of the access token in seconds since the response
type value was generated.
code Required Authorization code
Authorization

Access to the resources hosted in the resource server can be protected by verifying the access token
available in the API request. A client application offering a service to the user (Resource Owner), that
needs to act on the resource owned by the user, has to get an access token from Identity Server. The
resource server verifies that this token is issued by a trusted issuer and contains necessary scopes to
access the resource.

The client can get the access token from Identity Server by invoking one of the supported OAuth 2.0
authorization flows by using the client's credentials.

The client usually invokes one of the following flows or the grants explained in Other Grants:

+ Authorization Code Grant

+ Implicit Grant

+ Refresh Token

+ Resource Owner Credentials Grant

+ Client Credentials Grant

+ SAML2 Bearer Profile for Authorization Grant

Authorization Code Grant

This is same as getting the identity token explained in Section 3.3.1, “Authorization Code Grant
Flow,” on page 32.

OAuth OpenlID Connect API

41

3.4.2

3.4.3

Implicit Grant

This is same as getting the identity token explained in Section 3.3.2, “Implicit Grant,” on page 36. To
get an access token, the request must contain r esponse_t ype val ue as token.

Refresh Token

The Authorization Code Grant requires that the user is available on the browser and has an active
session with Identity Server. Therefore, it is called as the online flow.

Sometime, the client might need access to resources even if the user is not available online. For
example, when a client wants to perform batch processing on resources owned by a user, it might
need to have a longer lifetime of access token. Access tokens usually have shorter lifetime. The
refresh tokens have longer lifetime. Using the refresh tokens, clients can ask for fresh access tokens.
As the access tokens are issued offline when the user is not active, this flow is called as an offline
flow.

A client can use this option if the access token is expired or going to expire.

Refresh Token Request URI Parameters

The refresh token request should be sent to the Token Endpoint. The request should have following
parameters in query string of the request:

Parameter Required/ | Description
Optional
grant_type Required Must be refresh_token.
client_id Required The client application ID that is obtained at the time of the client

application registration process.

client_secret Optional The client secret that is obtained at the time of the client application
registration process.

The client secret is optional for a native application, but mandatory for a
web application.

refresh_token Required refresh_token that is obtained during authorization grant, resource owner
credentials.

scope Optional The list of the scope names separated by space.

device_id Optional Specify the device ID that token to be associated with device.

resourceServer | Optional The name of the registered resource server. If this parameter is available,

the authorization server uses the respective configured way to encrypt the
access token.

42 OAuth OpenlID Connect API

Refresh Token Response Values

A successful request to token endpoint with refresh token results in a response containing a JSON
object with the following values:

Parameter Required/Optional | Description

access_token Required Access token

refresh_token Optional Re-issue a refresh token

token_type Optional Token type that is supported by the authorization server
expires_in Required The validity time of an access token

token_scope Optional The scopes granted to a client

Sample Request
A sample request and response, with line breaks for better readability.

HTTP/ 1. 1 POST /ni dp/ oaut h/ nam t oken

User-Agent: Mzilla/5.0 (Wndows NT 6.1) AppleWbKit/537.36 (KHTM., |ike
Gecko) Chrone/41.0.2228.0 Safari/537.36

Host: www. i dp. com 8443

‘grant _type=refresh_token

&client id=4e4ae330-1215- 4f c8- 9aa7- 79df 8325451c

&cl i ent _secret =Rxl 5pvgL80DBzbl cLPVnHL7FehZA8LLT-

70Z9POFr EguEyB2J Mz B6k Bj 3JHABXpZTr nFSj mFgr CA QuCKt 3MUg

&r ef resh_t oken=/ WwEBAACHACAup9Kv @ ZbLuBBaWeaYf kP/ NT'

A Successful Response

HTTP/ 1.1 200 K

Cache-Control : no-cache, no-store, no-transform

Content-Length: O

Date: Tue, 03 Mar 2015 18:12:55 GVl

{ "access_t oken": "/ wEBAAYGACBgyZapAgMYk70JYXFQO/ LI bl f 9FAngp@Y1/ Y/
voByU9Z2awk Cbf p

LZTzpUqgFspZ4xr Jc/ TcNAl 3hkt f RDJgOUEHUkdy O

FowkmTn3Nr HLOK8KNPQo 7nnBky USyj pxxvj Viw

SOPt VIMNI 94AX0O xqCbYpLoRgpqqe®BTU t vQ k9z MNKAMHs c PTYFwt zHE@B98kKI r Z1b266eSh
UATL r4yl1guAx0yYs1XhboFd971 6mabGXDgeA j px/ DTZBTCpt A/

LI 1 JgN10j Mu k7x9nZZ3w v16/ 4hw8G UHaS09uHXqqt F3S0pJ6/ aM
hsWAgkcZeChl i PGXV8T7t j Mc8V1t 4m zuGagzNOLbacl D1OBkndl KC

CcqJdi i MVRDZNEHB] woOXc~",

"token_type":"bearer",

"expires_in":3599, "scope":"profile email"

}

OAuth OpenlID Connect API 43

3.5 Validating Tokens

Access Manager issues tokens of variable length. The application must not assume the size of the
tokens.

By default, access tokens are signed and encrypted by using Access Manager encrypted keys. You can
choose to encrypt the access token by using resource server encrypted keys or disable encryption.

You can verify the access token received in earlier flows based on how the token is encrypted.

Use one of the following ways to verify the token:

+ When an access token is signed and encrypted by using Access Manager encrypted keys, the
token can be validated by sending a request to the TokenInfo endpoint of Identity Server. This
scenario requires the token to be sent to Identity Server for verification.

+ When access token is encrypted by using resource server encrypted keys, the resource server
can validate the token by decrypting the token, verifying the signature, trusting the token that is
issued by the trusted Identity Server, or by sending the decrypted token to TokenInfo endpoint
of Identity Server. This scenario does not require token to be sent to Identity Server instead the
resource server can verify the token by itself. For detailed sample code and tool for validating
the JWT access token, see JWT Validation tool (https://www.netiq.com/documentation/access-
manager-45/resources/JWTUtilityTool.zip) under Additional Resources on the Access Manager
documentation page (https://www.netig.com/documentation/access-manager). The access
token contains a claim called "_pvt" that is an Access Manager encrypted private claim and can
be decrypted and used only by Access Manager.

+ When access token is not encrypted, the resource server can verify the signature of the token
and trust the token that is issued by trusted Identity Server.

To validate access tokens and refresh token that are signed and encrypted by using Access Manager
encrypted keys, send a request to TokenInfo endpoint. Refresh tokens are always encrypted by using
Access Manager encryption keys. You can refer to the following sample to send the request:

The URL to invoke ishtt ps://i dpbaseur| . conl ni dp/ oaut h/ nam t okeni nf o.
The TokenInfo endpoint supports both HTTP GET and POST methods.

The request must contain the token in the authorization header as follows:
Authorization: Bearer access_token

Response Values

The response to the TokenInfo endpoint contains the following values in the JSON format:

Parameter Required Description

expires_in Yes Time in seconds the token is valid from now
user_id Yes The user to whom the token was issued
scope Yes The list of scope values the token holds

44 OAuth OpenlID Connect API

https://www.netiq.com/documentation/access-manager-45/resources/JWTUtilityTool.zip
https://www.netiq.com/documentation/access-manager
https://www.netiq.com/documentation/access-manager

3.6

Sample Request and Response

Request :

HTTP/ 1. 1 CET / ni dp/ oaut h/ nant t okeni nf o
Host: www. i dp. com 8443

Accept: /

Aut hori zation: Bearer /WEBAAVDACAYtKt.............. @xBEzwW~~
Response:

HTTP/ 1.1 200 &K

Server: Apache-Coyote/1.1

Cont ent - Type: application/json
Content-Length: 48

Date: Thu, 19 Mar 2015 15:47:25 GVI

{

"expires_in": 145, "user_id": "alice", "scope": []
}

Revoking Tokens

The client application can programmatically revoke its token in the following scenarios:

+ When an end user logs out.
+ When an application is uninstalled.

+ To notify Identity Server that a previously obtained refresh token is no longer needed.

The refresh token received in earlier flows can be revoked by sending a request to the revocation
endpoint of Identity Server.

IMPORTANT: Only the refresh tokens that are generated by Access Manager Version 4.4 or later can
be revoked.

The URL to revoke is htt ps: / /i dpbaseur| . coni ni dp/ oaut h/ nam r evoke.

The request should contain the refresh token and client credentials in HTTP request parameters as
mentioned in the following table:

Parameter Required | Description

/
Optional

client_id Required | The client application ID that is obtained at the time of the client application
registration process.

client_secre | Optional | The client secret that is obtained at the time of the client application
t registration process.

The client secret is optional for a native application, but mandatory for a web
application.

Token Required | refresh_token that is obtained during authorization grant, resource owner
credentials, client credentials flow

OAuth OpenlID Connect API 45

46

Response Values

*

Identity Server responds with the HTTP status code 200 OK if the token has been revoked
successfully or if the client submitted an invalid token.

Identity Server returns the error code unsupported_token_type when the provided token is not
a refresh token.

If Identity Server responds with the HTTP status code 503, the client must assume that the
token still exists and may retry revoking the refresh token after a reasonable delay.

Revoking Token Issued to a Device

When Mobile Access SDK is not used for on-boarding and off-boarding devices, the token can be
manually associated with a device. This can be done by providing additional parameter devi ce_i d
while requesting for an access token. Such manually associated tokens can be revoked by using the
revocation endpoint.

The URL to revoke tokens that are issued to a device is:

https://idpbaseurl. coni ni dp/ oaut h/ nani r evoke/ <devi ce_i d>

HTTP Post

Content-Type: application/x-www-form-urlencoded (Optional)

Request Parameters
Parameter Required Description
userstore_name Yes Specify the name of the user store.
user_dn Yes Specify the user's dn to whom the token issued.

Response Values

HTTP 200 K

{

"status": "Successfully revoked token(s) issued to this device."

}

Sample Request

A sample request and response, with line breaks for better readability.

HTTP/ 1. 1 POST /ni dp/ oaut h/ nam r evoke/ andri odt est _1401

User - Agent: Mzilla/5.0 (Wndows NT 6.1) AppleWbKit/537.36 (KHTM., |ike
Gecko) Chrone/41.0.2228.0 Safari/537.36

Host: www. i dp. com 8443

' user st ore_nanme=nansi gnboxuser store

& user _dn=cn%3Dhar r y¥2Co%3Dnovel |

A successful response

OAuth OpenlID Connect API

3.7

HTTP/ 1.1 200 OK

Cache-Control : no-cache, no-store, no-transform
Content-Length: O

Date: Tue, 03 Mar 2015 18:12:55 GVl

{

"status": "Successfully revoked token(s) issued to this device."

}

Error Response

When an invalid device id specified or device had not been associated with any token, returns HTTP
404 NOT FOUND with error response

{

“error”: "invalid_request”,

“error_description": "lInvalid device ID or no tokens to revoke for this
devi ce. "

}

Authorization Code Grant Flow with PKCE

The native apps use Authorization Code with PKCE OAuth 2.0 grant to mitigate vulnerability with the
authorization code grant flow. To implement PKCE flow client must generate random secret and
store. Using random secret, client has to create code verifier and code challenge. (rfc7636 (https://
tools.ietf.org/html/rfc7636))

1 Aclient sends the code challenge as part of the OAuth 2.0 Authorization request with following
additional parameters:

Parameter Required | Description

/

Optional
code_challenge Required | Code challenge parameter if PKCE flow has to be initiated.
code_challenge_method | Optional | The default value is pl ai n. The value can be pl ai n or S256.

2 Returned Authorization Code is associated with code_chal | enge and
code_chal | enge_net hod.

3 The client sends an access token request to the token endpoint with additional parameter.

The following additional request parameters can be used along with Authorization Code grant

flow:
Parameter Required Description
code_verifier Yes Code verifier parameter is required if Authorization Code is
requested using PKCE flow.

4 The server verifies code_veri fi er before returning the token.

PKCE flow error messages

OAuth OpenlID Connect API 47

https://tools.ietf.org/html/rfc7636

48

3.8

3.8.1

PKCE verification fail ed:

{

"error": "invalid grant",

"error_description": "Either invalid authorization code or invalid code
verifier, PKCE verification failed"

}

{

"error": "invalid grant",

"error_description": "PKCE verification failed because either code
challenge is null or code challenge nmethod is not supported"

}

Example:

PKCE initiate request to Authorization endpoint:

[htt ps://<<I DP>>: 8443/ ni dp/ oaut h/ nam

aut hz?code_chal | enge=WsEH2Rr 4] Wici BEbCuHVI H_Ul BUGFPRbDXc Psb-

Pl 74&code_chal | enge_met hod=S256&scope=pr of i | e&r esponse_t ype=codeé&r edi r
ect_uri=<<Redirec URI >>&client i d=484f d33f-12b0-44c4- bbf5-82bae803b71d
PKCE fl ow Token request paraneters to Token Endpoint:

code=<<aut hori zation code received from authorization endpoi nt>>
&grant _t ype=aut hori zati on_code&r edi rect _uri =<<Redi rect

URI >>&cl i ent _i d=484f d33f - 12b0- 44c4- bbf 5-

82bae803b71d&code_veri fi er=0ak1nD3l oHOy1ZksmyoOLf QEhRBEuz GYbk QqKFelNyO

Other OAuth 2.0 Grants

+ Section 3.8.1, “Resource Owner Credential Grant,” on page 48
+ Section 3.8.2, “Client Credential Grant,” on page 50
+ Section 3.8.3, “SAML 2.0 Bearer Profile for Authorization Grant,” on page 51

Resource Owner Credential Grant

The resource owner credential grant flow requires a client to know the user credentials. To exchange
the username and password for an access token, send an HTTPS POST request with the appropriate
URI parameters to token endpoint base URI. The http connections are not accepted. Use HTTPS. You
should retrieve the token endpoint base URI at authorization server's OpenlD Metadata Endpoint.

Request Parameters

Parameter Required/ | Description
Optional
resourceServer | No The name of the registered resource server. If this parameter is available,

the authorization server uses the respective configured way to encrypt the
access token.

client_id Required | The client application ID that is obtained at the time of the client application

registration process.

OAuth OpenlID Connect API

Parameter Required/ | Description
Optional

client_secret Optional This is optional for a native application, but mandatory for a web
application.

grant_type Required Specify passwor d as the value for this parameter.

username Required | The user login name.

password Required The user login password.

scope Optional Scopes supported by the authorization server. Get scopes_support ed at
the authorization server's OpenID Metadata Endpoint. For the ID token,
OpenlD should be available in the scope. You can add multiple scope values
with space separated %20 or +.

acr_values Optional If a client request contains the acr _val ues parameter, Identity Server

maps the value to configured contracts in Identity Server and executes the
contract.

For example, use parameter value as/ nane/ passwor d/ uri .
The contract is not sent in the ID token.

Use space as delimiter to specify more than one contract URI for acr_values.
In this case, Identity Server executes contracts in the sequence as specified.
Any one of the contract execution success is considered as authentication
success. If none of the contract succeeds, then authentication fails.

Response Parameters

Parameter

Description

access_token

OAuth 2.0 access token.

token_type The type of token returned. At this time, this is always Bear er .
expires_in The remaining lifetime of an access token.
scope Scopes requested. The access token allows you access to these scopes.

refresh_token

The refresh token is returned if a client application is registered for it. This token can be
used to refresh the access token when it expires.

Sample Request and Response

The following is a sample request with whitespace for readability:

OAuth OpenlID Connect API

49

50

3.8.2

HTTP/ 1. 1 POST / ni dp/ oaut h/ nam t oken?

&grant _t ype=password

&client _i d=bb775b12- bbd4- 423b- 83d9- 647aeb98608d
&client _secret =bBbE- 4nNO_kWMnEeOL1CLTyuPhNLhHKTThA-
r Eckyr dLmRLn3Ghnxj sKl 2nEi j CSI Pj f t xHod_05dp- uGs6wA
&user nanme=user 1

&passwor d=pass@23

&scope=emai | %20profile

> User-Agent: Mzilla/5.0 (Wndows NT 6.1) Appl eWbKit/537.36 (KHTM., |ike
Gecko) Chrome/41.0.2228.0 Safari/537.36

> Host: www. idp.com 8443

> Accept: /

Response

HTTP/ 1.1 200 OK

Content - Type: application/json

Content - Lengt h: 630

{

"access_token": "/ WEBAAEBACAgHKphvONdD5khH7CLt y 7PpURgORKOBpG. . . ",
"token_type": "bearer",

"expires_in":3599,

"scope": "profile email"

}

NOTE: If validation errors occur, HTTP Status 400 is returned with the JSON response containing
error anderror_description.

The following is a sample error response with whitespace for readability:

HTTP/ 1.1 400 Bad Request Content-Type: application/json Content-Length: 143
{

"error":"invalid_ request",

"error_description" :"QAuth dient Authentication Failure because password
paranmeter is mssing in the request”

}

Client Credential Grant

The client credentials can be exchanged for an access token. To get an access token, send an HTTPS
POST request with the appropriate URI parameters to the token endpoint base URI. The http
connections are not accepted. Use HTTPS. You should retrieve the token endpoint base URI at
authorization server's OpenlD Metadata Endpoint.

Request Parameters
Parameter Required/ | Description
Optional
client_id Required The client application ID, which is obtained at the time of the client application
registration process.
client_secre | Optional The client secret is optional for a native application, but it is mandatory for a
t web application.
grant_type Required Specify cl i ent _credenti al s as value for this parameter.

OAuth OpenlID Connect API

3.8.3

Response Values

Parameter Description

access_token OAuth 2.0 access token.

token_type The type of token returned. At this time, this is always Bearer.

expires_in The remaining lifetime of the access token.

Sample Request and Response
A sample request with whitespace for readability

HTTP/ 1.1 POST /ni dp/ oaut h/ nam t oken?

&grant _type=client_credentials

&cl i ent _i d=bb775b12- bbd4- 423b- 83d9- 647aeb98608d

&cl i ent _secret =bBbE- 4nMNO_kWANEeCL1CLTYyuPhNLhHKTThA-

r Eckyr dLmRLN3Ghnxj sKI 2nEi j CSI Pj f t xHod_05dp- uGs 6WA

&redirect _uri=https://ww:. oaut happ. coni oaut h. php

&scope=emai | ¥%20profile

> User-Agent: Mzilla/5.0 (Wndows NT 6.1) Appl eWebKit/537.36 (KHTM., |ike
Gecko) Chrome/41.0.2228.0 Safari/537.36

> Host: www. idp.com 8443

> Accept: /

Response

HTTP/ 1.1 200 K

Cont ent - Type: application/json

Content-Length: 630

{

"access_t oken": "/WwEBAAAAACBy4Ku4ApcxEV7er 19P6ngH5HZg5J6CCY. . . ",
"token_type": "bearer",

"expires_in":3599

}

NOTE: If validation errors occur, HTTP Status 400 is returned with the JSON response containing
error anderror_description.

SAML 2.0 Bearer Profile for Authorization Grant

The SAML 2.0 assertions can be exchanged for access token. The Consent page will not be shown to
users for authorizing scopes. The access token allows you to access only those scopes that are
previously approved by the user. To get an access token, send an HTTPS POST request with the
appropriate URI parameters to the token endpoint base URI.

The HTTP connections are not accepted. Use HTTPS. You should retrieve the token endpoint base
URI at authorization server's OpenlD Metadata Endpoint.

OAuth OpenlID Connect API 51

52

Request Parameters

Parameter Required/ | Description
Optional

client_id Required The client application ID that is obtained at the time of the client application

registration process.

grant_type Required Useurn:ietf:parans: oaut h: grant-type: sam 2- bear er asthe

value for this parameter.

Assertion Required Use a single base64url encoded SAML2.0 Assertion as the value for this
parameter.

client_secre | Optional The client secret value.

t

scope Optional Scopes supported by the Authorization server. Get scopes_support ed at

values with space separated %20 or +.

authorization server's OpenlD Metadata Endpoint. Specify multiple scope

Response Values

Parameter Description

access_token OAuth 2.0 access token.

token_type The type of token returned. At this time, this is always Bear er .
expires_in The remaining lifetime of the access token.
scope Requested scopes that are pre-approved by the user.

Sample Request and Response
The following is a sample request with whitespace for readability:

HTTP/ 1. 1 POST / ni dp/ oaut h/ nam t oken?

&grant _type= urn:ietf:parans: oauth: grant-type: san 2-bearer

&cl i ent _i d=bb775b12- bbd4- 423b- 83d9- 647aeb98608d

&asserti on=MPHNbWvOL1... SY2

&scope=emai | ¥%20profile

> User-Agent: Mzilla/5.0 (Wndows NT 6.1) Appl eWebKit/537.36 (KHTM.,
Gecko) Chrone/41.0.2228.0 Safari/537.36

> Host: www.idp.com 8443

> Accept: /

ar ul

Response

HTTP/ 1.1 200 K

Cont ent - Type: application/json

Content-Length: 630

{

"access_token": "/wEBAAAAACBy4Ku4ApcxEV7er 19P6ngH5HZg5J6C&Y. . . ",
"token_type": "bearer",

"expires_in":3599

}

OAuth OpenlID Connect API

like

3.9

NOTE: If validation errors occur, HTTP Status 400 is returned with the JSON response containing
error anderror_description.

Response Values
The following is a sample error response with whitespace for readability:

HTTP/ 1.1 400 Bad Request Content-Type: application/json
{

"error":"invalid grant",
"error_description":"Audi ence validation failed"

}

Attribute Service

Identity Server exposes an endpoint to which the clients and resource servers can query for users’
claims associated with an access token. This service is implemented in Userinfo Endpoint.

The clients or resource servers can invoke the request to the Userinfo endpoint by including the
access token in the authorization header as follows:

Authorization: Bearer access_token

The UserInfo endpoint returns the claims associated with the access token in a JSON object as given
in the response values.

Response Values

Parameter Description

sub Unique ID identifying the subject. This is GUID of the user.

The other claims are included as values in the JSON object if the access token contains the necessary
scope and the user has authorized the client to access the claim.

For example, if the client has requested the emai | scope, the Userinfo endpoint returns a value
"email" : "alice@c.com" along with the "sub" field.

Sample Request and Response
Request

GET / ni dp/ oaut h/ nam userinfo HTTP/ 1.1
User-Agent: curl/7.41.0

Host: www. i dp. com 8443

Accept: /

Aut hori zation: Bearer /WEBAA............. DSDG

Response:

OAuth OpenlID Connect API 53

HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

Cont ent - Type: application/json
Content-Length: 73

Date: Thu, 19 Mar 2015 16:14:52 GVI

{
"sub": "6adb7cad4lld5al4c94946adb7ca411d5",
"emai | ": "alice@. cont

}

54 OAuth OpenlID Connect API

Component Statistics API

Identity Servers and Access Gateway systems provide APIs to retrieve the statistics of that system.
These are precursors to the Administration APl and provide statistics. Both APIs provide the same
data, but the difference is in the invocation point. The Component statistics API can be called for
each device IP and the Administration API can be called for Administration Console to retrieve
statistics of all Identity Servers and Access Gateways in the system. Therefore, it is recommended to
use the Administration APIs.

For more information, see Component Statistics Through REST APIs (https://www.netig.com/
documentation/access-manager-45/admin/data/b1bfre0e.html) in the NetlQ Access Manager 4.5
Administration Guide (https://www.netig.com/documentation/access-manager-45/admin/data/
bookinfo.html).

Component Statistics API 55

https://www.netiq.com/documentation/access-manager-45/admin/data/b1bfre0e.html
https://www.netiq.com/documentation/access-manager-45/admin/data/bookinfo.html
https://www.netiq.com/documentation/access-manager-45/admin/data/bookinfo.html

56 Component Statistics API

5.1

5.1.1

5.1.2

5.2

AWS Auto Scaling API

As part of the auto scaling Access Manager process, you require to automate some of the
management tasks. Access Manager provides APIS for automating the following activities during
auto scaling on AWS:

¢ Importing Devices to Administration Console

+ Adding Devices to the Cluster

+ Removing Devices from Administration Console

*

Updating Servers in the Cluster
Additional APIs

*

NOTE: For more information about how to use these APIs, refer to the supporting scripts included in
the sample auto scaling solution provided along with Sample Auto Scaling Deployment of Access
Manager on AWS (https://www.netig.com/documentation/access-manager-45-developer-
documentation/aws-autoscaling/data/aws-autoscaling.html).

Importing Devices to Administration Console

+ Section 5.1.1, “Importing Identity Server,” on page 57

¢ Section 5.1.2, “Importing Access Gateway,” on page 57

Importing Identity Server

Use ther ei nport _ni dp. sh script available in the / opt / novel | / devman/ j cc/ conf location to
import Identity Server.

You might require to regenerate jccid of the device before importing it to avoid the jccid conflicts.

Importing Access Gateway

Use ther ei mport _ags. sh script available in the / opt / novel | / devman/ j cc/ conf location to
import Access Gateway.

You might require to regenerate jcc_id of the device before importing it to avoid the jcc_id conflicts.

Adding Devices to the Cluster

+ Section 5.2.1, “Adding Identity Servers to the Cluster,” on page 58

+ Section 5.2.2, “Adding Access Gateway server to the cluster,” on page 58

AWS Auto Scaling API 57

https://www.netiq.com/documentation/access-manager-45-developer-documentation/aws-autoscaling/data/aws-autoscaling.html
https://www.netiq.com/documentation/access-manager-45-developer-documentation/aws-autoscaling/data/aws-autoscaling.html

5.2.1 Adding Identity Servers to the Cluster

Request: curl -X POST "$rest _url" -u $ADM N_FQDN: $SADM N_PASSWORD
Where rest_url=https://SADMIN_CONSOLE_IP:8443/amsvc/v1/idpclusters/SCLUSTER_ID/devices/

idp-Sjcc_id
5.2.2 Adding Access Gateway server to the cluster

Request: curl -X POST "$rest _url" -u $ADM N_FQDN: $ADM N_PASSWORD

Where rest_url="https://SADMIN_CONSOLE_IP:8443/amsvc/vl/agclusters/SMAG_CLUSTER_ID/
devices/ag-Sjcc_id"

5.3 Removing Devices from Administration Console

¢ Section 5.3.1, “Removing Identity Server from Administration Console,” on page 58

+ Section 5.3.2, “Removing Access Gateway from Administration Console,” on page 58

5.3.1 Removing Identity Server from Administration Console

Request: curl -k -X DELETE "$rest_url" -u
cn=$ADM N_NANE, o=novel | : $ADM N_PASS

Where rest_url=https://SAC_IP:8443/amsvc/v1/idpclusters/SIDP_CLUSTER_ID/devices/
$IDP_DEVICE_ID"
5.3.2 Removing Access Gateway from Administration Console

Request:curl -k -X DELETE "$rest _url" -u
cn=3ADM N_NAME, o=novel | : $ADM N_PASS)

Where rest_url=https://SAC_IP:8443/amsvc/v1/agclusters/SAG_CLUSTER_ID/devices/
$AG_DEVICE_ID"

5.4 Updating Servers in the Cluster
+ Section 5.4.1, “Updating the Identity Server Cluster,” on page 58
+ Section 5.4.2, “Updating the Access Gateway Cluster,” on page 59
5.4.1 Updating the Identity Server Cluster

Request:curl -k --ciphers ALL -u $ADM N_FQDN: $ADM N_PASSWORD - X PUT -H
"Content - Type: application/json" -d "{\"update\": \"all\"}" "$rest_url

Where rest_url=rest_url="https://SADMIN_CONSOLE_IP:8443/amsvc/v1/idpclusters/SCLUSTER_ID"

58 AWS Auto Scaling API

5.4.2

5.5

5.5.1

5.5.2

Updating the Access Gateway Cluster

Request:curl -k --ciphers ALL -u $ADM N_FQDN: $ADM N_PASSWORD - X PUT -H
"Content - Type: application/json" -d "{\"update\": \"all\"}" "$rest_url

Where rest_url="https://SADMIN_CONSOLE_IP:8443/amsvc/vl/agclusters/SMAG_CLUSTER_ID"

Additional APIs

¢ Section 5.5.1, “Getting the ID of a Specific Cluster,” on page 59

+ Section 5.5.2, “Getting the Number of Active Sessions in Identity Server,” on page 59

Getting the ID of a Specific Cluster

Getting the ID of an Identity Server Cluster:

Request: curl -k -X CGET $rest_url -u
cn=$ADM N_USERNAME, o=novel | : SADM N_PASSWORD)

Where rest_url="https://SADMIN_CONSOLE_IP:8443/amsvc/v1/idpclusters"
Getting the ID of an Access Gateway:

Request:curl -k -X GET $rest_url -u
cn=3ADM N_USERNAME, o=novel | ; $ADM N_PASSWORD)

Where rest_url="https://SADMIN_CONSOLE_IP:8443/amsvc/vl/agclusters"

Getting the Number of Active Sessions in Identity Server

Request: curl -k -X GET $rest_url -u cn=$ADM N_NAME, o=novel | : $ADM N_PASS

Where rest_url="https://SAC_IP:8443/roma/rest/SIDP_CLUSTER_ID/sessions/devices/
$IDP_DEVICE_ID"

AWS Auto Scaling API

59

60 AWS Auto Scaling API

	NetIQ Access Manager 4.5 Administration API Guide
	About this guide
	1 API Overview
	2 Administration API
	2.1 Accessing Administration APIs
	2.2 Detailed API Documentation
	2.3 Administration API Use Cases
	2.3.1 Get Device Health
	2.3.2 Get Device Statistics
	2.3.3 Refresh Metadata of SAML 2.0 Trusted Providers
	2.3.4 Import Trusted Root Certificates
	2.3.5 Renew Certificates
	2.3.6 Manage User Sessions
	2.3.7 Purge Access Gateway Cache
	2.3.8 Scaling the Devices

	3 OAuth OpenID Connect API
	3.1 Example Scenarios
	3.1.1 A Client Application Requires to Access OAuth Protected Resources
	3.1.2 Resource Server Validating a Token Issued by Access Manager
	3.1.3 Access Manager Revoking Refresh Tokens

	3.2 Prerequisites for Establishing an OAuth 2.0 Connection with a Client Application
	3.2.1 Registering Client Applications
	3.2.2 Managing Client Applications
	3.2.3 Registering a Resource Server
	3.2.4 OAuth 2.0 Endpoints
	3.2.5 Other Endpoints

	3.3 Authentication
	3.3.1 Authorization Code Grant Flow
	3.3.2 Implicit Grant
	3.3.3 Hybrid Flow

	3.4 Authorization
	3.4.1 Authorization Code Grant
	3.4.2 Implicit Grant
	3.4.3 Refresh Token

	3.5 Validating Tokens
	3.6 Revoking Tokens
	3.7 Authorization Code Grant Flow with PKCE
	3.8 Other OAuth 2.0 Grants
	3.8.1 Resource Owner Credential Grant
	3.8.2 Client Credential Grant
	3.8.3 SAML 2.0 Bearer Profile for Authorization Grant

	3.9 Attribute Service

	4 Component Statistics API
	5 AWS Auto Scaling API
	5.1 Importing Devices to Administration Console
	5.1.1 Importing Identity Server
	5.1.2 Importing Access Gateway

	5.2 Adding Devices to the Cluster
	5.2.1 Adding Identity Servers to the Cluster
	5.2.2 Adding Access Gateway server to the cluster

	5.3 Removing Devices from Administration Console
	5.3.1 Removing Identity Server from Administration Console
	5.3.2 Removing Access Gateway from Administration Console

	5.4 Updating Servers in the Cluster
	5.4.1 Updating the Identity Server Cluster
	5.4.2 Updating the Access Gateway Cluster

	5.5 Additional APIs
	5.5.1 Getting the ID of a Specific Cluster
	5.5.2 Getting the Number of Active Sessions in Identity Server

