
Access Manager 4.5
Administration API Guide

April 2019

Legal Notice
For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

Copyright © 2019 NetIQ Corporation. All Rights Reserved.
2

https://www.netiq.com/company/legal/

Contents
About this guide 5

1 API Overview 7

2 Administration API 9
2.1 Accessing Administration APIs . 9
2.2 Detailed API Documentation . 9
2.3 Administration API Use Cases. 9

2.3.1 Get Device Health. 10
2.3.2 Get Device Statistics . 10
2.3.3 Refresh Metadata of SAML 2.0 Trusted Providers . 11
2.3.4 Import Trusted Root Certificates . 13
2.3.5 Renew Certificates . 13
2.3.6 Manage User Sessions . 14
2.3.7 Purge Access Gateway Cache . 15
2.3.8 Scaling the Devices . 16

3 OAuth OpenID Connect API 19
3.1 Example Scenarios . 19

3.1.1 A Client Application Requires to Access OAuth Protected Resources 19
3.1.2 Resource Server Validating a Token Issued by Access Manager . 20
3.1.3 Access Manager Revoking Refresh Tokens . 21

3.2 Prerequisites for Establishing an OAuth 2.0 Connection with a Client Application 21
3.2.1 Registering Client Applications . 22
3.2.2 Managing Client Applications . 23
3.2.3 Registering a Resource Server . 26
3.2.4 OAuth 2.0 Endpoints . 30
3.2.5 Other Endpoints . 31

3.3 Authentication . 31
3.3.1 Authorization Code Grant Flow . 32
3.3.2 Implicit Grant . 36
3.3.3 Hybrid Flow . 39

3.4 Authorization . 41
3.4.1 Authorization Code Grant . 41
3.4.2 Implicit Grant . 42
3.4.3 Refresh Token . 42

3.5 Validating Tokens . 44
3.6 Revoking Tokens. 45
3.7 Authorization Code Grant Flow with PKCE . 47
3.8 Other OAuth 2.0 Grants . 48

3.8.1 Resource Owner Credential Grant . 48
3.8.2 Client Credential Grant. 50
3.8.3 SAML 2.0 Bearer Profile for Authorization Grant . 51

3.9 Attribute Service . 53
Contents 3

4 Con
4 Component Statistics API 55

5 AWS Auto Scaling API 57
5.1 Importing Devices to Administration Console. 57

5.1.1 Importing Identity Server. 57
5.1.2 Importing Access Gateway. 57

5.2 Adding Devices to the Cluster. 57
5.2.1 Adding Identity Servers to the Cluster . 58
5.2.2 Adding Access Gateway server to the cluster . 58

5.3 Removing Devices from Administration Console . 58
5.3.1 Removing Identity Server from Administration Console . 58
5.3.2 Removing Access Gateway from Administration Console. 58

5.4 Updating Servers in the Cluster . 58
5.4.1 Updating the Identity Server Cluster . 58
5.4.2 Updating the Access Gateway Cluster . 59

5.5 Additional APIs. 59
5.5.1 Getting the ID of a Specific Cluster . 59
5.5.2 Getting the Number of Active Sessions in Identity Server . 59
tents

About this guide

This guide describes the REST APIs supported by NetIQ Access Manager components. It includes
step-by-step instructions for using these APIs.

IMPORTANT: The Technical Support team supports the general Access Manager setup and any
issues where the Access Manager endpoints do not return valid data. Any other code changes
needed to integrate with Access Manager are outside the scope of traditional technical support and
need to go through the namsdk@microfocus.com channel.
About this guide 5

6 About this guide

1 1API Overview

Access Manager APIs are broadly categorized as follows:

 Administration APIs: The administration APIs help to automate the common administrative
tasks. Administration Console exposes these APIs. See Chapter 2, “Administration API,” on
page 9.

 OAuth and OpenID Connect APIs: Identity Server exposes these APIs for all OAuth
functionalities, such as endpoints for registering clients, and obtaining access tokens. See
Chapter 3, “OAuth OpenID Connect API,” on page 19.

 Component Statistics APIs: These APIs provide statistics of Identity Servers and Access
Gateways. The individual devices expose these APIs. These APIs are a precursor to the
Administration APIs for obtaining the device statistics. These continue to be available, but it is
recommended to use the administration statistics API. As a single administration API provides
details for all devices. See Chapter 4, “Component Statistics API,” on page 55.

 AWS Auto Scaling API: These APIs help to automate tasks related to auto scaling Access
Manager on AWS. See Chapter 5, “AWS Auto Scaling API,” on page 57.
API Overview 7

8 API Overview

2 2Administration API

 Section 2.1, “Accessing Administration APIs,” on page 9
 Section 2.2, “Detailed API Documentation,” on page 9
 Section 2.3, “Administration API Use Cases,” on page 9

2.1 Accessing Administration APIs
Administration Console supports Administration APIs, OAuth and OpenID Connect APIs, and
Component Statistics APIs. You can invoke these APIs by using a browser or by using the curl
command in scripts to help automate the administrative tasks.

Base URL: [https://<Administration Console DNS or IP>:<AC Port>/amsvc/v1/…
The Administration Console port is 8443 by default. However, if Administration Console is installed
along with Identity Server on the same system, then the port is 2443.

Authentication: The APIs are protected by using basic authentication. You can use Administration
Console credentials for accessing the APIs. However, accessing the API differs from accessing
Administration Console in the following ways:

 The username for accessing the APIs must be specified in the fully qualified format. For
example, cn=admin,o=novell.

 The user must have full admin rights to Administration Console. These APIs do not support
delegated admin access.

Response Format: It returns the data as XML by default. Set the Accept header to application/
json to obtain the response in the JSON format.

2.2 Detailed API Documentation
You can access the detailed documentation for all administration APIs in the REST API Doc on the
Access Manager Developer Resources website.

2.3 Administration API Use Cases
 Section 2.3.1, “Get Device Health,” on page 10
 Section 2.3.2, “Get Device Statistics,” on page 10
 Section 2.3.3, “Refresh Metadata of SAML 2.0 Trusted Providers,” on page 11
 Section 2.3.4, “Import Trusted Root Certificates,” on page 13
 Section 2.3.5, “Renew Certificates,” on page 13
 Section 2.3.6, “Manage User Sessions,” on page 14
Administration API 9

https://www.netiq.com/documentation/swagger_ui/?url=/documentation/access-manager-45-developer-documentation/resources/accessmanager_rest_swagger.yaml
https://www.netiq.com/documentation/access-manager-44-developer-documentation/

 Section 2.3.7, “Purge Access Gateway Cache,” on page 15
 Section 2.3.8, “Scaling the Devices,” on page 16

2.3.1 Get Device Health
This API returns the health of Access Manager devices (Identity Servers and Access Gateways). The
API returns the health for the following levels:

 Entire Access Manager
 Each cluster
 Each device
 Each service and component (remote web servers, data stores, and so forth)

You can use this API for integration with external systems, such as NOC to view the status of Access
Manager devices and the remote web servers.

Sample Request

Invoke a URL similar to https://192.168.0.0:8443/amsvc/v1/health?expand=4
The expand parameter specifies the level of detail that is returned. Accepted values are 1,2,3, and 4.
4 returns the maximum detail for all devices.

Sample Response

<amService xmlns="urn:novell:schema:am:service">
<health status="noReport" uri="https://192.168.0.0:8443/amsvc/v1/health">
<idpClusterHealthList status="Green" total="1">
<clusterHealth status="Green" uri="https://192.168.0.0:8443/amsvc/v1/
idpclusters/SCC7c9nsp/health">
<instanceID>SCC7c9nsp</instanceID>
<displayName>IDPCluster</displayName>
<deviceHealthList total="1">
<deviceHealth status="Green"
uri="https://192.168.0.0:8443/amsvc/v1/idpclusters/SCC7c9nsp/devices/idp-
CC1B3FFB0BC40AD8/health">
<instanceID>idp-CC1B3FFB0BC40AD8</instanceID>
<displayName>192.168.0.6</displayName>
<serviceHealthList total="5">
<serviceHealth status="Passed">
<serviceName>Config Datastore</serviceName>
<message>Operating properly</message>
</serviceHealth>
...

NOTE: This API returns the health information saved in Administration Console. This data is
refreshed every five minutes. Therefore, it is sufficient to invoke this API every 5 minutes to get the
latest health.

2.3.2 Get Device Statistics
This API returns the statistics for all Identity Servers and Access Gateways in Access Manager.
10 Administration API

Sample Request

Send a GET request to a URL. For example, https://192.168.0.0:8443/amsvc/v1/
statistics.

Sample Response

<amService xmlns="urn:novell:schema:am:service">
<response code="SUCCESS"/>
<statistics uri="https://192.168.0.0:8443/amsvc/v1/statistics">
<idpClusterStatisticsList total="1">
<clusterStatistics uri="https:// 192.168.0.0:8443/amsvc/v1/idpclusters/
SCC7c9nsp/statistics">
<instanceID>SCC7c9nsp</instanceID>
<displayName>IDPCluster</displayName>
<deviceStatistics uri="https:// 192.168.0.0:8443/amsvc/v1/idpclusters/
SCC7c9nsp/devices/idp-CC1B3FFB0BC40AD8/statistics">
<instanceID>idp-CC1B3FFB0BC40AD8</instanceID>
<displayName>192.168.0.6</displayName>
<statisticList total="90">
<statistic displayName="Cached Sessions">100</statistic>
<statistic displayName="Historical Maximum Logins Served">890</statistic>
...

NOTE: This API returns the statistics information saved in Administration Console. It is refreshed
every 10 minutes. Therefore, it is sufficient to invoke this API every 10 minutes to get the latest
statistics.

2.3.3 Refresh Metadata of SAML 2.0 Trusted Providers
Trusted providers periodically refresh their metadata. Some metadata repositories, such as
InCommon.org, publish an updated metadata everyday. Therefore, an automated approach for
refreshing the metadata of all service providers and updating the associated trusted root certificates
helps relieve the administrator of this frequent chore and ensures that the system is up to date for
security reasons.

Perform the following steps:

1 Invoke the API to get the Identity Server clusters. Parse the response to get the cluster URL.
Sample URL: https://192.168.0.0:8443/amsvc/v1/idpclusters
Response:

...
idpCluster uri="https://192.168.0.0:8443/amsvc/v1/idpclusters/
SCC7c9nsp"> ...

2 For each cluster URL, invoke the API to get the list of service providers or identity providers,
depending on the provider that needs to be refreshed.

https://192.168.0.0:8443/amsvc/v1/idpclusters/SCC7c9nsp/
serviceproviders OR
https://192.168.0.0:8443/amsvc/v1/idpclusters/SCC7c9nsp/
identityproviders
Administration API 11

3 Parse the response to get the URL of the trusted provider to be updated.
Response Snippet:

<serviceProvider uri="https://192.168.0.0:8443/amsvc/v1/idpclusters/
SCC7c9nsp/serviceproviders/STSPr9spkh">
<displayName>of365</displayName>
<protocol>saml2</protocol>
...

4 Invoke the metadata refresh API to apply the updated metadata as follows.
5 Invoke the trusted roots API to add the root CA of the signing certificate specified in the

metadata. This step is needed if the certificate has changed. For more information, see
Section 2.3.4, “Import Trusted Root Certificates,” on page 13.

6 Invoke the Apply changes API to send these changes to Identity Servers in that cluster.
7 Send PUT request to the cluster URL https://192.168.0.0:8443/amsvc/v1/idpclusters/

SCC7c9nsp/ with input

{ "update" : "all" }
Sample Script: You can access a sample script that implements all the steps listed here on the
Update MetaData From File (https://community.microfocus.com/t5/Access-Manager-Tips-
Information/Update-MetaData-From-File/ta-p/1776007) page.
Sample Request:
URL format: <trusted provider URL in step 3>/metadata
Send a PUT request to https://192.168.0.0:8443/amsvc/v1/idpclusters/SCC7c9nsp/
serviceproviders/STSPr9spkh/metadata with metadata as input. Metadata can be specified as a
text or a URL.
Sample text input:

NOTE: The metadata text must be URL encoded.

{
"metadata" :
"%3C%3Fxml%20version%3D%221.0%22%20encoding%
3D%22UTF-8%22%20%3F%3E%3Cmd%3AEntityDescriptor%20xmlns%3
Amd%3D%22urn%3Aoasis%3Anames%3Atc%3ASAML%3A2.0%3Ametadata%
22%20ID%3D%22idXMuLnBrALGXkMAMUXd9WXvS0aEI%22%20entityID%
3D%22https%3A%2F%2Fpriyankasb.blr.novell.com%2Fnidp%2Fsaml
2%2Fmetadata%22%3E%3Cds%3ASignature%20xmlns%3Ads%3D%22http
%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fxmldsig%23%22%3E%0A%3Cds
...............
%3C%2Fmd%3AEntityDescriptor%3E"
}
Sample metadata URL input:

{
"metadata" : "https://164.99.87.129:8443/nidp/saml2/metadata"
}
Response: 200 OK
12 Administration API

https://community.microfocus.com/t5/Access-Manager-Tips-Information/Update-MetaData-From-File/ta-p/1776007

2.3.4 Import Trusted Root Certificates
You can use this API to import a trusted root certificate. This is usually used in conjunction with the
metadata refresh API.

Sample Request:

Send a PUT request to https://192.168.0.0:8443/amsvc/v1/security/trustedroots/
myProviderCA where "myProviderCA" is the trusted root name displayed on Administration
Console.

The URL encoded public CA certificate must be specified as input.

{
"certificate" : "----BEGIN%20CERTIFICATE----
%0AMIIFNDCCBBygAwIBAgIkAhwR%......
----END%20CERTIFICATE----"
}
Response: 200 OK

IMPORTANT:

 The certificate must be URL encoded.
 Apply changes to all devices that might use this certificate.

2.3.5 Renew Certificates
You can use this API to renew the certificates that are available through Administration Console.
Specify the certificate name and the certificate content as input to the API.

Sample Request:

Send a PUT request to https://192.168.0.0:8443/amsvc/v1/security/certificates/
test-signing with the following input, where the intermediate certificates are optional:
Administration API 13

{
"entityCertificate" :"----BEGIN%20CERTIFICATE----%0AMIIFDjCCA%2FagAwIBAg
IkAhwR%2F6b94LzCZy%2BK8kSqu----END%20CERTIFICATE----",
"rootCertificate" :"----BEGIN%20CERTIFICATE----%0AMIIFDjCCA%2FagAwIBAg
IkAhwR%2F6b94LzCZy%2BK8kSqu----END%20CERTIFICATE----",
"intermediateCertificate1" :"----BEGIN%20CERTIFICATE----
%0AMIIFDjCCA%2FagAwIBAgb94LzCZy%2BK8kSqu----END%20CERTIFICATE----",
"intermediateCertificate2" :"----BEGIN%20CERTIFICATE----
%0AMIIFDjCCA%2FagAwIBAgzCZy%2BK8kSqu----END%20CERTIFICATE----"
}

IMPORTANT: 1.An update is required for all devices using that certificate. Updating the connector
certificate requires tomcat restart.

2. The certificate specified must be the PEM formatted public certificate and must be URL
encoded.

3. Entire chain must be specified. Entity Cert > Intermediate 1 > Intermediate 2 > Root CA, where >
indicates that the Entity certificate was signed by Intermediate 1 and so on.

2.3.6 Manage User Sessions
These APIs allow fetching and terminating all active sessions of a given user.

Perform the following steps:

1 Invoke the API to get all Identity Server clusters.
Sample URL: https://192.168.0.0:8443/amsvc/v1/idpclusters

2 Parse the response to get the URL for each Identity Server cluster.
…<idpCluster uri="https://192.168.0.0:8443/amsvc/v1/idpclusters/
SCC7c9nsp">…

3 Invoke the URL of a cluster to get the sessions for a user.
URL Format: <IDP cluster URL>/sessions?userid=<user name>

4 Repeat Step 3 for other clusters so that the sessions of the same user across all clusters are
handled.

Sample Request

https://192.168.0.0:8443/amsvc/v1/idpclusters/SCC7c9nsp/
sessions?userid=admin
Use HTTP GET to retrieve all active sessions for the user 'admin'.
Use HTTP DELETE method to terminate all sessions for the user 'admin'.
14 Administration API

Sample Response

{
 "userDN" : "cn=admin, o=novell",

 "sessionDetails": { ["identityServer":"192.168.0.6",
"sessionCount":"1"],

["identityServer":"192.168.0.7", "sessionCount":"2"]

}
}

2.3.7 Purge Access Gateway Cache
You can use this API to purge the Access Gateway server cache. Periodic purging of the cache frees
up storage. You can select to purge the content of the purge list that has already been configured on
Administration Console or purge all content cached on the server.

Perform the following steps:

1 Get the list of Access Gateway clusters.
Sample URL: https://164.99.86.7:8443/amsvc/v1/agclusters

2 Parse the response to get the URL of the cluster you want to purge.
Sample Response:

<agCluster uri="https://164.99.86.7:8443/amsvc/v1/agclusters/
ce035b033e6c7f29">

3 Invoke the URL to get the devices in that cluster.
URL format: <cluster uri from above>/devices
Sample URL: https://164.99.86.7:8443/amsvc/v1/agclusters/ce035b033e6c7f29
devices

4 Parse the response to get the URL of the device you want to purge
Sample Response:

<agDevice uri="https://164.99.86.7:8443/amsvc/v1/agclusters/
ce035b033e6c7f29/devices/ag-6459CF981F6FD178">

5 Send a PUT request to the device URL with parameters to purge cache.

Sample Request

PUT request to https://164.99.86.7:8443/amsvc/v1/agclusters/ce035b033e6c7f29/
devices/ag-6459CF981F6FD178
With input { "purge" : "list" }

Specify "list" to purge the content configured in the Purge List on the UI.

Use "all" to purge the entire cache.

Response: 200 OK
Administration API 15

NOTE: Clearing the cache decreases the responsiveness of a device, as every page will need to be
retrieved. Therefore, it is recommended to execute this command for one device at a time.

2.3.8 Scaling the Devices
You can use these APIs to scale up or scale down Access Gateway and Identity Servers. These APIs
can only assign or delete a node in an existing cluster. For more information about how to configure
these APIs, see the following configurations.

 Section 2.3.8.1, “Scaling Up Access Gateway,” on page 16
 Section 2.3.8.2, “Scaling Up Identity Server,” on page 16
 Section 2.3.8.3, “Scaling Down Access Gateway,” on page 17
 Section 2.3.8.4, “Scaling Down Identity Server,” on page 18

2.3.8.1 Scaling Up Access Gateway
Perform the following steps:

1 Assign a node to an existing Access Gateway cluster. Send a POST request to the following URL
with the cluster ID and the device ID.

NOTE: No input required for this request.

POST: https://<AC_IP:PORT>/amsvc/v1/agclusters/<clusterID>/devices/
<deviceID>
In the above POST request, the following details are used.
Cluster ID: The name of the existing Access Gateway cluster to which the node will add.
Device ID: The device ID of the new Access Gateway node that is to be assigned.

Sample Response
200 OK

2 When the node is assigned to the cluster, send a PUT request to the following URL to update the
cluster

https:// <AC_IP:PORT>164.99.86.7:8443/amsvc/v1/agclusters/<clusterID>
With input { "update" : "all" }

2.3.8.2 Scaling Up Identity Server
Perform the following steps:

1 Assign a node to an existing Identity Server cluster. Send a POST request to the following URL
with the cluster ID and the device ID.

NOTE: No input required for this request.

POST: https://<AC_IP:PORT>/amsvc/v1/idpclusters/<clusterID>/devices/
<deviceID>
16 Administration API

In the above POST request, the following details are used.
Cluster ID: The name of the existing Identity Server cluster to which the node will add.
Device ID: The device ID of the new Identity Server node that is to be assigned.

Sample Response
200 OK

2 When the node is assigned to the cluster, send a PUT request to the following URL to update the
cluster.

https:// <AC_IP:PORT>164.99.86.7:8443/amsvc/v1/idpclusters/<clusterID>
With input { "update" : "all" }

2.3.8.3 Scaling Down Access Gateway
Scaling down from a cluster: Perform the following steps:

1 Delete a node from an existing Access Gateway cluster. Send a DELETE request to the following
URL with the cluster ID and the device ID.

NOTE: You can not delete the primary Access Gateway nodes. You can delete only the
secondary nodes of Access Gateway in a cluster.

POST: https://<AC_IP:PORT>/amsvc/v1/agclusters/<clusterID>/devices/
<deviceID>
In the above POST request, the following details are used.
Cluster ID: The name of the Access Gateway cluster from which the node will be deleted.
Device ID: The device ID of the Access Gateway node that is to be deleted.

Sample Response
200 OK

2 When the node is deleted from the cluster, send a PUT request to the following URL to update
the cluster.

https:// <AC_IP:PORT>164.99.86.7:8443/amsvc/v1/agclusters/<clusterID>
With input { "update" : "all" }

Scaling down an individual node: Perform the following to delete a node that is not part of a
cluster:

Delete a node from an Administration Console. Send a DELETE request to the following URL with the
device ID.

POST: https://<AC_IP:PORT>/amsvc/v1/agclusters/<clusterID>/devices/
<deviceID>
Device ID: The device ID of the Access Gateway node that is to be deleted.

Sample Response

200 OK
Administration API 17

2.3.8.4 Scaling Down Identity Server
Scaling down from a cluster: Perform the following steps:

1 Delete a node from an existing Identity Server cluster. Send a DELETE request to the following
URL with the cluster ID and the device ID.

NOTE: You can not delete the primary Identity Server nodes. You can delete only the secondary
nodes of Identity Server in a cluster.

POST: https://<AC_IP:PORT>/amsvc/v1/idpclusters/<clusterID>/devices/
<deviceID>
In the above POST request, the following details are used.
Cluster ID: The name of the Identity Server cluster from which the node will be deleted.
Device ID: The device ID of the Identity Server node that is to be deleted.

Sample Response
200 OK

2 When the node is deleted from the cluster, send a PUT request to the following URL to update
the cluster.

https:// <AC_IP:PORT>164.99.86.7:8443/amsvc/v1/idpclusters/<clusterID>
With input { "update" : "all" }

Scaling down an individual node: Perform the following to delete a node that is not part of a
cluster:

Delete a node from an Administration Console. Send a DELETE request to the following URL with the
device ID.

POST: https://<AC_IP:PORT>/amsvc/v1/idpclusters/<clusterID>/devices/
<deviceID>
Device ID: The device ID of the Identity Server node that is to be deleted.

Sample Response

200 OK
18 Administration API

3 3OAuth OpenID Connect API

This section describes OAuth 2.0 and OpenID Connect implementation for authentication and
authorization with NetIQ Access Manager. An application developer or administrator can get an
access token and refresh token from Access Manager, and use it in their applications. By default, all
APIs support OpenID Connect.

 Section 3.1, “Example Scenarios,” on page 19
 Section 3.2, “Prerequisites for Establishing an OAuth 2.0 Connection with a Client Application,”

on page 21
 Section 3.3, “Authentication,” on page 31
 Section 3.4, “Authorization,” on page 41
 Section 3.5, “Validating Tokens,” on page 44
 Section 3.6, “Revoking Tokens,” on page 45
 Section 3.7, “Authorization Code Grant Flow with PKCE,” on page 47
 Section 3.8, “Other OAuth 2.0 Grants,” on page 48
 Section 3.9, “Attribute Service,” on page 53

3.1 Example Scenarios
This section includes information about using API for OAuth and OpenID Connect in the following
scenarios:

 Section 3.1.1, “A Client Application Requires to Access OAuth Protected Resources,” on page 19
 Section 3.1.2, “Resource Server Validating a Token Issued by Access Manager,” on page 20
 Section 3.1.3, “Access Manager Revoking Refresh Tokens,” on page 21

3.1.1 A Client Application Requires to Access OAuth Protected
Resources
A client application can use the Access Manager token to access an Access Manager OAuth
protected resource. The following is the workflow of accessing a protected resource when the client
uses the Access Manager token:

1. Registration: The client must be registered in Access Manager. For information about
registering a client, see Registering Client Applications.

2. Retrieve a token from Access Manager: The client retrieves the token by selecting any of the
following authorization grant flows:
 Authorization code flow
 Implicit flow
 Resource owner credentials flow
OAuth OpenID Connect API 19

 Client credential flow
 ID token flow
 SAML 2 bearer profile for authorization grant flow

NOTE: For more information about grants, see OAuth Authorization Grant in the Access
Manager 4.5 Administration Guide. For required endpoints, see the respective endpoint
sections in OAuth 2.0 Endpoints.

3. Send the token to resource server: The token is sent as an authorization header bearer token.

3.1.2 Resource Server Validating a Token Issued by Access Manager
A resource server can validate a token that is issued by Access Manager through resource server keys
or through Access Manager keys. By default, the token encryption is done by using Access Manager
keys. The resource server sends a request to Access Manager to validate the token. If you provide
the resource server's key and encryption algorithm details in Access Manager, the resource server
does not require to send a request to Access Manager. Instead, the resource server can use its key to
validate the token.

Only an Access Manager administrator can register a new resource server. To validate a token, the
resource server must know how the token is encrypted.

Encrypted by Access Manager: This is an older way of validating the token. You need to send the
token to Access Manager's token info endpoint for validation.

Encrypted using configured resource server keys: No need to validate through Access Manager. The
resource server cryptokeys can be configured in Access Manager. Access Manager uses this key to
encrypt the access token. This enables a resource server to validate the token itself, without sending
it to the Access Manager token verification endpoint.

The following is a sample in Java code about how to validate the token:

//Step1: decrypt the JWT Token (JWE Standard)
String jwtAccessToken =
"eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0NNIiwidHlwIjoiSldUIiwia2lkIjoibmFtL
TEifQ.ZjE0jRb5oh3suQZHFmaB-m....";

JsonWebEncryption jwe = new JsonWebEncryption();
jwe.setCompactSerialization(jwtAccessToken);
JsonWebKeySet jsonWebKeySet = new JsonWebKeySet(jwks);
List<JsonWebKey> jsonWebKeys = jsonWebKeySet.getJsonWebKeys();
JsonWebKey jsonWebkey = jsonWebKeys.stream().filter(p ->
p.getKeyId().equalsIgnoreCase(jwe.getKeyIdHeaderValue())).findFirst().orEl
se(jsonWebKeys.get(0));
if(jsonWebkey instanceof RsaJsonWebKey){
RsaJsonWebKey rsa = (RsaJsonWebKey) jsonWebkey;
jwe.setKey(rsa.getPrivateKey());
}else
{
jwe.setKey(jsonWebkey.getKey());
20 OAuth OpenID Connect API

https://www.netiq.com/documentation/access-manager-45/pdfdoc/admin/admin.pdf#b1cgm7ol
https://www.netiq.com/documentation/access-manager-45/pdfdoc/admin/admin.pdf#bookinfo
https://www.netiq.com/documentation/access-manager-45/pdfdoc/admin/admin.pdf#bookinfo
https://www.netiq.com/documentation/access-manager-45/pdfdoc/admin/admin.pdf#bookinfo

}
String decryptedToken = jwe.getPlaintextString();

//Step 2: Verify the JWT Signature (JWS Standard)
JsonWebKeySet jsonWebKeySet = new JsonWebKeySet(jwks);

JsonWebKey jsonWebkey = jsonWebKeySet.getJsonWebKeys().get(0);
JsonWebSignature jws = new JsonWebSignature();
jws.setKey(jsonWebkey.getKey());;
jws.setCompactSerialization(decryptedToken);
if(true == jws.verifySignature()){
System.out.println("Signature is valid.");
String payload = jws.getPayload(); //
}
For detailed sample code and tool for validating the JWT access token, see JWT Validation tool
(https://www.netiq.com/documentation/access-manager-44/resources/JWTUtilityTool.zip) under
Additional Resources on the Access Manager documentation page (https://www.netiq.com/
documentation/access-manager).

No encryption: Trust and accept the token. As access token is not encrypted, use the sample in Java
code mentioned in the previous step to verify the signature and trust the token.

For information about configuring access token encryption keys, see Section 3.2.3, “Registering a
Resource Server,” on page 26.

3.1.3 Access Manager Revoking Refresh Tokens
Access Manager revokes only the refresh token and its corresponding Access token. Only the refresh
tokens that are generated by Access Manager Version 4.4 or later can be revoked.

You can perform the following tasks by using Access Manager API:

 Revoking refresh token for applications
 Revoking tokens that are issued to a device

For example, a user lost his device and wants to revoke all tokens that are issued to that device.

Using Mobile Access SDK: Use the Access Manager user portal for deregistering a device. When
device is deregistered, the refresh token and associated access token are revoked.

Not using Mobile Access SDK: If you are not using Mobile Access SDK to revoke a device, you must
provide the device ID in the access token request so that the device can be associated with the
token. You can use this device ID later for revoking the tokens issued to the device. For more
information, see Revoking Token Issued to a Device.

3.2 Prerequisites for Establishing an OAuth 2.0 Connection
with a Client Application
 Section 3.2.1, “Registering Client Applications,” on page 22
 Section 3.2.2, “Managing Client Applications,” on page 23
 Section 3.2.3, “Registering a Resource Server,” on page 26
OAuth OpenID Connect API 21

https://www.netiq.com/documentation/access-manager-44/resources/JWTUtilityTool.zip
https://www.netiq.com/documentation/access-manager

 Section 3.2.4, “OAuth 2.0 Endpoints,” on page 30
 Section 3.2.5, “Other Endpoints,” on page 31

3.2.1 Registering Client Applications
Registering a client application includes the following activities:

 Section 3.2.1.1, “Getting Client ID And Secret,” on page 22
 Section 3.2.1.2, “Registering Redirect URI,” on page 22
 Section 3.2.1.3, “Registering Authorization Grants,” on page 22
 Section 3.2.1.4, “Registering OpenID Connect Configuration,” on page 22

3.2.1.1 Getting Client ID And Secret
To get an access token or an ID token, the application needs to send Client Credentials. Client
Credentials are unique credentials assigned per client application. Developers need to register their
applications to Access Manager with necessary details to use any of the APIs. The details of how to
register their applications are specified in Registering a Client Application. After registering the
application, Access Manager provides client id and client secret. Note these values.

3.2.1.2 Registering Redirect URI
A valid redirection URI must be registered with Access Manager along with each client application.
Access Manager redirects only to registered URIs for issuing tokens in the authorization code grant
flow and implicit grant flow. One of the registered URIs should be passed along with requests in
these flows.

3.2.1.3 Registering Authorization Grants
The client application has to specify which OAuth2.0 authorization grant flows the application will
use. Access Manager issues tokens only in the specified flows. Any requests with flows those are not
registered during client registration are not supported. You can also modify this information after a
client is registered.

An administrator of your organization can disable some of the OAuth 2.0 authorization grant flows to
minimize the security risk. For example, an administration can disable the use of resource owner
credential grant if none of the OAuth 2.0 applications in the organization uses this flow. It is not
recommended unless it is required.

3.2.1.4 Registering OpenID Connect Configuration
Access Manager supports both OAuth 2.0 and OpenID Connect specifications by default. Typically,
OAuth2.0 is used for authorization of applications and OpenID Connect is used for authentication.
OAuth 2.0 flow issues a security token called access token and OpenID Connect issues ID token and
optionally access token.

Access tokens and ID tokens are JSON Web Tokens (JWT) signed by Identity Server and ID tokens are
optionally encrypted by the client application's public certificate. The relying party can verify the
signature of the ID token and trust that token is issued by trusted Identity Server.
22 OAuth OpenID Connect API

You can register signing algorithm to be used for a JWT token. If your application needs
confidentiality of the ID token, provide a publicly accessible URL of public certificate and algorithm in
the JWKS format. You need to configure this during the client application registration process.

3.2.2 Managing Client Applications
You can programmatically register, view, modify, and delete a client application in Access Manager.

Before performing any of these actions, you must define your role as NAM_OAUTH2_DEVELOPER or
NAM_OAUTH2_ADMIN in the IDP Role policy.

You can register an application in any of the following two ways:

 Using username and password.
 Using Access token. To register a client application by using an access token, you must have your

role defined as NAM_OAUTH2_DEVELOPER in the IDP Role policy.

Use the resource owner flow to get an access token. The endpoint of the resource owner flow is
https://<Identity Server URL: Port Number>/nidp/oauth/nam/token.

This endpoint requires the followings parameters to provide an access token:

 Section 3.2.2.1, “Registering a Client Application,” on page 23
 Section 3.2.2.2, “Modifying a Client Application,” on page 25
 Section 3.2.2.3, “Viewing a Client Application,” on page 26
 Section 3.2.2.4, “Deleting a Client Application,” on page 26

3.2.2.1 Registering a Client Application
To register a client application, the HTTP method value must be POST.

Identity Server uses the following endpoint for registering a client application:

https://<Identity Server URL: Port Number>/nidp/oauth/nam/clients
The endpoint requires the following OAuth parameters for client registration:

Parameter Value

grant_type Password

username Application developer's user name

password Application developer's password

scope urn:netiq.com:nam:scope:oauth:registration:full (This scope allows you to register,
view, modify, and delete client applications.)
urn:netiq.com:nam:scope:oauth:registration:read (This scope provides read-only
access)

token endpoint Identity Server URL: Port Number>/ nidp/oauth/nam/token
OAuth OpenID Connect API 23

Parameter Required/
Optional

Description

client_name Required Name of the client application.

application_type Optional web or native.

enableNativeSSO Optional Specify true as a value to enable single sign on for a user who uses the
client applications on a desktop or a mobile.

For example, A user accesses client A using the credentials and is
authenticated. Client A receives a refresh token and an access token.
Now, the user accesses client B immediately or after few days. If this
option is enabled for client B, then the client uses the persistent
cookie to retrieve the token and authenticate the user. Hence, client B
will be authenticated automatically.

If this option is not enabled for client B configuration, then to retrieve
refresh token and access token user has to provide credentials even
though the user has already authenticated for client A.

redirect_uris Required Redirection URI values used by the client application.

grant_types Optional The following are supported grant types:

 authorization_code
 implicit
 refresh_token
 resource_owner_credentials
 client_credentials
 saml2_assertion

If you do not specify a grant type, the default grant type
authorization_code is used.

response_types Optional The following list includes supported response types:

 code
 code token
 code id_token token
 id_token
 id_token token
 access_token
 refresh_token

alwaysIssueNewRef
reshToken

Optional Specify true to issue a new refresh token for each refresh token
request.

authzCodeTTL Optional Specify the duration in minute after that the authorization code
becomes invalid.

accessTokenTTL Optional Specify the duration in minute after that an access token and an ID
token become invalid.
24 OAuth OpenID Connect API

3.2.2.2 Modifying a Client Application
Perform the following steps:

1. Retrieve the client details from the https://<Identity Server URL: Port Number>/
nidp/oauth/nam/clients/<client ID> endpoint. In the request for retrieving client
details, use GET as the HTTP method value.

2. Send the update request. In the update request, use POST as the HTTP method value. Identity
Server uses the following endpoint for modifying a registered client application:
https://<Identity Server URL: Port Number>/nidp/oauth/nam/clients/
For the list of parameters this endpoint requires for a client application modification, see the
table under Registering a Client Application.

refreshTokenTTL Optional Specify the duration in minute after that a refresh token becomes
invalid.

corsdomains Optional If you want to allow access to requests from only selected domains,
specify the domains as a JSON array.

For example, ["beem://www.test.com", "fb://
app.local.url", "https://namapp.com"]

logo_uri Optional Specify the URL of the logo that you want to include in the consent
page.

For example, https://client.example.org/logo.png
policy_uri Optional Specify the URL of the relying party client's privacy policy.

For example, https://client.example.org/privacypolicy
tos_uri Optional Specify the URL of the relying party's terms of service.

For example, https://client.example.org/terms
contacts Optional Specify the email addresses of people related to this client application.

jwks_uri Optional Specify the URI of the JSON file containing the json web keys.

This key set contains signing keys that the relying party uses to validate
signatures from the OpenID provider.

For example, https://client.example.org/
my_public_keys.jwks

id_token_signed_r
esponse_alg

Optional Specify the ID Token Signed Response Algorithm. This algorithm is
required for signing the ID token issued to a client.

id_token_encrypte
d_response_alg

Optional Specify the algorithm used to encrypt the key.

id_token_encrypte
d_response_enc

Optional Specify the algorithm used to encrypt the content.

Parameter Required/
Optional

Description
OAuth OpenID Connect API 25

NOTE: For updating a client application, you must send the complete xml with all parameters during
the update request. If you do not include a parameter in the update xml, the server does not
initialize this parameter. For example, if you want to update the response_types parameter, send
the updated value for this parameter and existing values for other parameters in the request.

3.2.2.3 Viewing a Client Application
To view a client application, use GET as the HTTP method value.

You can view a registered client application by using the following two endpoints:

 https://<Identity Server URL: Port Number>/nidp/oauth/nam/clients/: To view all clients
applications registered by a developer

 https://<Identity Server URL: Port Number>/nidp/oauth/nam/clients/<client ID>: To view a
specific client application registered by a developer

3.2.2.4 Deleting a Client Application
To delete a client application, the HTTP method value must be DELETE.

Identity Server uses the following endpoint for deleting a registered client application:

https://<Identity Server URL: Port Number>/nidp/oauth/nam/clients/<client
ID>

3.2.3 Registering a Resource Server
By default, access tokens are signed by JSON Web Tokens (JWT) and encrypted by Identity Server.
Registering a resource server provides more features such as, option to encrypt the access token by
using either the resource server encrypted keys or the Identity Server encrypted keys.

It also provides an option to not encrypt an access token. This is not recommended because it may
cause security issues.

After resource server registration, specify the registered resource server name in the token request
for encrypting the access token using the resource server encrypted keys. In this way, no need to
contact Identity Server's TokenInfo/UserInfo endpoint for token validation or for claims. Only an
Access Manager administrator can register a resource server.

You can programmatically register, view, modify, and delete a resource server by using REST API. You
must have your role defined as NAM_OAUTH2_ADMIN in the IDP Role policy. You can access this
endpoint either by login or using an access token. For more information, see Managing Client
Applications.

Send an HTTPS POST request with the appropriate URI parameters to resource server endpoint URI.

Resource Server Endpoint: https://<Identity Server URL: Port Number>/nidp/oauth/
nam/resourceservers
HTTP Method: POST
26 OAuth OpenID Connect API

Request Parameters:

Sample Request and Response

A sample request and response for registering resource server crypto keys in Access Manager, with
line breaks for better readability and payload in JSON.

HTTP/1.1 POST /nidp/oauth/nam/token
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/41.0.2228.0 Safari/537.36

Host: www.idp.com:8443
'{"name":"namResourceServer",

"cryptokeys":{"jwksUri": "https://www.resourcer.server.com/crypto/jwks",
"jwtaccessTokenEncryptionAlgo": { "encryptionAlg": "RSA1_225",
"encryptionEnc":"A128CBC-HS2563"}
}
}'
A successful Response

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, no-transform

3.2.3.1 Deleting a Resource Server
To delete a resource server by using REST API, you must have your role defined as
NAM_OAUTH2_ADMIN in the IDP Role policy. To access this endpoint, you need to log in or use an
access token. If you use the access token, it should contain the following scope:

Scope:urn:netiq.com:nam:scope:oauth:registration:full
HTTP Method: DELETE

Parameter Required
/Optional

Description

name Required The name of the resource server.

disableJWTAccessTokenEncryption Optional Specify the value as true for not encrypting the access
token.

The value as false to encrypt the access token by using
Access Manager key or resource server key.

cryptoKeys Optional Specify the resource server's JWKS key details to encrypt
the access token using this key.

The parameter value as a sample JSON format is as
follows:

{"jwksUri": "https://
www.resourcer.server.com/crypto/jwks",
"jwtaccessTokenEncryptionAlgo": {
"encryptionAlg": "RSA1_225",
"encryptionEnc":"A128CBC-HS2563"}
OAuth OpenID Connect API 27

Resource Server Endpoint: https://<Identity Server URL: Port Number>/nidp/oauth/
nam/resourceservers/<resourceServerName>

3.2.3.2 Viewing Registered Resource Servers
To view all registered resource servers by using REST API, you must have your role defined as
NAM_OAUTH2_ADMIN or NAM_OAUTH2_DEVELOPER in the IDP Role policy. To access this endpoint,
you need to log in or use an access token. If you use the access token, it should contain the following
scope:

Scope: urn:netiq.com:nam:scope:oauth:registration:full
HTTP method: Get
Resource Server Endpoint: https://<Identity Server URL: Port Number>/nidp/oauth/
nam/resourceservers

3.2.3.3 Creating Scopes
To create a scope by using REST API, you must have your role defined as NAM_OAUTH2_ADMIN in the
IDP Role policy. To access this endpoint, you need to log in or use an access token. If you use the
access token, it should contain the following scope:

Scope: urn:netiq.com:nam:scope:oauth:registration:full
Resource Server Endpoint: https://<Identity Server URL: Port Number>/nidp/oauth/
nam/resourceservers/<resourceServerName>/scopes

HTTP Method: Post
Request URI Parameters:

Parameter Required/Optional Description

scope Required The name of the scope.

scope_description Required Description of the scope. The consent page displays
this description while obtaining authorization from the
user.

claims claims or
attribute_set is
required

The list of claims.

attribute_set claims or
attribute_set is
required

Attribute name and attribute dn.

Sample: { "name" : "jpeg_photo", "dn" :
"cn=jpeg_photo,o=novell"}

userPermissionRequired Optional Boolean value. The default value is true.

adminApprovalRequired Required Boolean value. The default value is true, set it to false
always.

isGroupOfUserAttributes Optional Boolean value. The default value is false.

allowModifyInConsent Optional Boolean value. The default value is false.
28 OAuth OpenID Connect API

3.2.3.4 Modifying a Scope
To modify a scope by using REST API, you must have your role defined as NAM_OAUTH2_ADMIN in the
IDP Role policy. To access this endpoint, you need to log in or use an access token. If you use the
access token, it should contain the following scope:

Scope: urn:netiq.com:nam:scope:oauth:registration:full
The request includes the following details:

Resource Server Endpoint: https://<Identity Server URL: Port Number>/nidp/oauth/
nam/resourceservers/<resourceServerName>/scopes/<scopename>
HTTP Method: POST
Send only those parameters that you want to modify.

3.2.3.5 Deleting a Scope
To delete a scope by using REST API, you must have your role defined as NAM_OAUTH2_ADMIN in the
IDP Role policy. To access this endpoint, you need to log in or use an access token. If you use the
access token, it should contain the following scope:

Scope: urn:netiq.com:nam:scope:oauth:registration:full
The request includes the following details:

includeAllClaimsInIDToke
n

Optional Boolean value. The default value is false.

If the value is true, all claims or attributes in this scope
will be included in the IDToken.

includedClaimsInIDToken Optional Attribute or claim name(s). You can use comma(,) as a
delimiter to specify names of more than one attribute
or claim.

The specified claims or attributes will be included in
the IDToken.

For example, givenName, mail

includeAllClaimsInJWT Optional Boolean value. The default value is false.

If the value is true, all the claims or the attributes in
this scope will be included the access token.

includedClaimsInJWT Optional Attribute or claims name(s). You can use comma (,) as a
delimiter to specify names of more than one attribute
or claim.

The specified claims or attributes will be included in
the access token.

For example, givenName, mail

Parameter Required/Optional Description
OAuth OpenID Connect API 29

Resource Server Endpoint: https://<Identity Server URL: Port Number>/nidp/oauth/
nam/resourceservers/<resourceServerName>/scopes/<scopename>
HTTP Method: DELETE

3.2.3.6 Viewing Configured Scopes
You can view details of all scopes together or of a specific scope. To view a scope by using REST API,
you must have your role defined as NAM_OAUTH2_DEVELOPER or NAM_OAUTH2_ADMIN in the IDP
Role policy. To access this endpoint, you need to log in or use an access token. If you use the access
token, it should contain the following scope:

Scope: urn:netiq.com:nam:scope:oauth:registration:full
Viewing Details of a Specific Scope

The request includes the following details:

Resource Server Endpoint: https://<Identity Server URL: Port Number>/nidp/oauth/
nam/resourceservers/<resourceServerName>/scopes/<scopename>
HTTP Method: GET
Viewing Details of All Configured Scopes

The request includes the following details:

Resource Server Endpoint: https://<Identity Server URL: Port Number>/nidp/oauth/
nam/resourceservers/<resourceServerName>/scopes
HTTP Method: GET

3.2.4 OAuth 2.0 Endpoints
To get an access token and identity token, the client invokes requests to corresponding endpoints
exposed by Identity Server. Identity Server exposes the following endpoints:

 Authorization Endpoint: This is always contacted via a browser. This endpoint requires that the
user has existing browser session with Identity Server. If no session exists at the time of request,
the Authorization Endpoint redirects the user to login. This endpoint is used when a client uses
the authorization code flow or implicit flow.

 Token Endpoint: This is used directly by a client without involving the browser. Therefore, it is
possible to get an access token offline when a user is not connected via a browser. This
endpoint can issue an access token when the client provides a valid authorization code, SAML2
bearer profile for authorization grant flow, resource owner credentials, or client credentials.

 TokenInfo Endpoint: This is used for validating a refresh token and access tokens issued in
OAuth 2.0 authorization flows. Clients can send the access token via authorization header. This
endpoint returns a JSON response stating whether the token is valid.
30 OAuth OpenID Connect API

 UserInfo Endpoint: This is used for getting resource owner's claims. A client can send a request
to this endpoint with a valid access token and get the claims that are authorized by the resource
owner to share. This endpoint checks whether provided access token has valid scopes to issue
the claims.

 Revocation Endpoint: This is used for revoking refresh tokens and its corresponding access
token.

3.2.5 Other Endpoints
In addition to the basic endpoints mentioned in Section 3.2.4, “OAuth 2.0 Endpoints,” on page 30,
Identity Server exposes the following endpoints:

Metadata Endpoint: This exposes basic services and options available at Identity Server for OAuth
2.0 and OpenID Connect. This also contains URLs for basic endpoints. This endpoint is typically in this
format: https://www.idp.com:8443/nidp/oauth/nam/.well-known/OpenID-
configuration. Invoking this URL responds with a JSON document containing the following
information:

 OAuth 2.0 Endpoints
 ID token supported algorithms
 JWKS keys that can be used for verifying access token and ID token

Client Registration Endpoint: Developers use this to register OAuth2.0 clients through REST API. This
endpoint is protected by OAuth 2.0, therefore the clients invoking this endpoint to register clients
should obtain access tokens from the authorization endpoint by providing the developer's username
and password. For registering new clients, a developer must have the NAM_OAUTH2_DEVELOPER
role defined in Identity Server.

Scope and Resource Server registration Endpoint: This is used to register, modify, and delete a
scope. Users who invoke this endpoint must have the NAM_OAUTH2_ADMIN role defined in Identity
Server to be able to register and modify the scope values.

JSON Web Key Set Endpoint: Provides the information about the signing certificate that is used by
Access Manager, which can be used for verifying an access token.

3.3 Authentication
The application can request an authentication service from Access Manager by using one of the
supported OAuth 2.0 authorization grant flows. Access Manager implements OpenID Connect 1.0
specification on top of these flows. Therefore, the application can get more information about
authentication and it can verify the issued identity tokens.

The result of authentication exchange is an identity token called as ID token. This token is in the
JSON Web Token (JWT) format. This token is signed by public signing certificate of Identity Server.
The client application needs to verify the signature of the token and token is issued by the trusted
Identity Server.

The authentication service assures the application that the user has an active session at Identity
Server with requested or default assurance level. The flows requiring active user session involves a
browser redirect, therefore the authorization grant flows in this section talks about
authorization Code Grant flow and Implicit Grant flow. The authentication service
OAuth OpenID Connect API 31

can use advanced authentication methods configured in Identity Server. This does not require the
application to know the password of the user. If your application does not depend on a browser
interface or handles username and password directly, see Section 3.8.1, “Resource Owner Credential
Grant,” on page 48.

Getting Identity Tokens

You can use any one of the following flows to get an identity token:

 Authorization code grant flow
 Implicit Flow
 Hybrid Flow

3.3.1 Authorization Code Grant Flow
The authorization code grant flow is a two-step process.

1. Get a short lived authorization code from Identity Server.
2. Exchange this authorization code with ID token.

The application can also request for an access token for authorization if the application makes REST
API calls to resource servers.

The application can also specify minimum assurance level for the authentication method from
Identity Server by using the following request parameter.

Identity Server ensures that the user is authenticated with the requested level of authentication
before sending the identity token.

An identity token is a signed JSON Web Token (JWT). Signing is optional, but recommended. The
token is signed when the client is configured with ID Token Signing Algorithm during the
client registration process.

The application verifies the returned identity token as mentioned in Section 3.5, “Validating Tokens,”
on page 44.

3.3.1.1 Getting an Authorization Code
The client can get an authorization code in by redirecting the browser to the authorization endpoint
with the required query string values. See “Request Parameters” on page 32.

The response is a short life-time authorization code and must be used only once. This code can
be used to exchange identity tokens from Identity Server through the token endpoint only once by
sending the necessary request parameter. See “Exchanging the Authorization Code with Identity
Tokens” on page 34.

Multiple attempts of exchanging code for token revokes tokens that are issued earlier. The
authorization code is sent through a browser redirect to a registered redirect_uri. The client should
handle this request to the redirect_uri. This involves exchanging the code with an access token.

Request Parameters

To get an authorization code, the client should invoke a request to Identity Server's authorization
endpoint with the following request query string parameters:
32 OAuth OpenID Connect API

Response Values

Identity Server responds with a HTTP 302 redirect message to the requested redirect_uri in the
authorization request. If the request does not contain the redirect_uri param, Identity Server
redirects to one of the registered redirect_uri.

Parameter Required/
Optional

Value Description

client_id Required Client application ID, which is obtained at the time of the client
application registration process.

response_type Required code code

redirect_uri Optional If provided, the value of this must exactly match to one of the
registered URIs during the application registration process. If
not provided, the browser is redirected to any of the registered
redirect URIs registered during application registration.

scope Required OpenID The list of scopes the application requires. It should contain
OpenID". You can get all "scopes_supported" at the
authorization server's OpenID Metadata Endpoint. Scope
values must be space separated %20 or +.

resourceServer Optional Specify the registered resource server name. If this parameter
is available, the authorization server uses the respective
configured method to encrypt the access token.

state Recommen
ded

An opaque value used by the client to maintain state between
the request and callback. The authorization server includes this
value when redirecting the user-agent back to the client. The
parameter should be used to prevent cross- site forgery
requests.

prompt Optional none

login

consent

none: No user interface will be shown to the user if the user is
not already authenticated. If not authenticated, an error
message in one of "login_required", "interaction_required", or
other will be sent to the client application. This is useful if the
client wants to detect whether the user has an existing session
with Identity Server and has necessary consents.

login: Identity Server will prompt for re-authentication.

consent: Identity Server will prompt for consent even if
consent is already given.

max_age Optional 300 Maximum authentication age at Identity Server in seconds. If
the user has not logged in within this elapsed time, the user
will be re-prompted for authentication

acr_values Optional /name/
passwor
d/uri

If client request contains acr_values parameter, Identity Server
maps the value to configured contracts in Identity Server and
prompts the user with the contract if the user is not already
authenticated with the contract. The contract is not sent in ID
token in this release.

device_id Optional Specify the device ID that token to be associated with device.
OAuth OpenID Connect API 33

The redirect response contains the following parameters:

Sample Request and Response

A sample request with whitespace for readability:

HTTP/1.1 GET /nidp/oauth/nam/authz?
&response_type=code
&client_id=bb775b12-bbd4-423b-83d9-647aeb98608d
&redirect_uri=https://www.oauthapp.com/oauth.php
&scope=email
&nonce=ab8932b6
&state=AB32623HS
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/41.0.2228.0 Safari/537.36
Host: www.idp.com:8443
Accept: /
Cookie: JSESSIONID=188BAEB80B063C852D2CC82FDBD15A43
Response
HTTP/1.1 302 Found
Cache-Control: no-cache, no-store, no-transform
Location: https://www.oauthapp.com/oauth.php?
code=/wEBAAY..........Ws1gQ~~
&scope=email
Content-Length: 0
Date: Tue, 03 Mar 2015 18:12:55 GMT

3.3.1.2 Exchanging the Authorization Code with Identity Tokens
The client, listening for the authorization code in the registered redirect_uri, can use the requests
explained in next section to exchange the authorization code with an access token. The
authorization code is allowed for exchange only once. The request should be sent to the token
endpoint.

The response is sent in the JSON format and contains both access_token and id_token. Access
tokens are used for authorization and typically sent to an API server. The client when invoking any
other API service has to include this access token. The API server validates this access token and
authorize the incoming API requests based on the scopes embedded in the access token.

The ID token contains the authentication information, such as the issuer of the token, its validity, and
when the user was authenticated. The client needs to verify the signature of the ID token if available
and check the issuer.

Parameter Description

code An opaque binary token.

Variable length field. Application should not assume the size of the code and allocate
sufficient space for reading the code.

state Contains the state parameter sent in the authentication request above
34 OAuth OpenID Connect API

Request Parameters

Specify the following parameters in the token request:

Response Values

A successful request contains a JSON object with the following values:

NOTE: Ensure that you do not use the Expect: 100-Continue header in the request when using
a multi-node Identity Server cluster setup. If the request contains this header, you may experience
HTTP 400 Bad Request.

If you are using CURL, use "-H 'Expect:'" or do not include IDP cookies.

Parameter Required/
Optional

Description

resourceServer Optional Registered resource server name. If this parameter is available, the
authorization server uses the respective configured way to encrypt the
access token.

grant_type Required authorization_code

client_id Required Client ID of the registered client.

client_secret Optional Client secret of the registered client.

It is optional for a native application and mandatory for a web application.

code Required Code received in the authorization code flow.

redirect_uri Required This must be same as the one sent during the authorization code request.

device_id Optional Specify the device ID that token to be associated with device.

Parameter Required/
Optional

Description

token_type Required The type of the token. The authorization server supports only the
Bearer type.

access_token Required An access token that can be used to invoke resource server APIs.

id_token Optional if
scope contains
"OpenID"

When invoking authorization code request, if the client has sent
OpenID, this response object contains an ID token.

scope Optional The list of scopes that a user has authorized. This can contain all
scopes the client requested.

state Optional if the state parameter was available in the client authorization
request, the same state value is sent in the response.
OAuth OpenID Connect API 35

Sample Request and Response

POST /nidp/oauth/nam/token HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/41.0.2228.0 Safari/537.36
Host: www.idp.com:8443
Accept: /
Content-Length: 695
Content-Type: application/x-www-form-urlencoded
grant_type=authorization_code
&client_id=b017c96c-b16a-4d80-a5fa-68f5050abc58
&client_secret=ZDDwbuuWPdV_e5quAf7f0Jkg_iJJ7g
&redirect_uri=https://www.client.com/oauth_callback.php
&code=/wEBAAk...................................
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/json
Content-Length: 916
Date: Thu, 19 Mar 2015 14:14:57 GMT
Connection: close
 {
"access_token":"/wEBAAQEACA......",
"token_type":"bearer", "expires_in":179, "refresh_token":"/
wEBAAQEACA9lN8bgv..........",
"scope":"email"
}

3.3.2 Implicit Grant
Get an access token and ID token by sending an HTTPS GET or POST request with the appropriate URI
parameters to the authorization endpoint base URI. The ID token issued only if the scope is having
OpenID param value. The ID token can be signed and encrypted based on the client's registration. To
access any of the user's attribute or getting permissions to access user's resource pages, you can
include the request in the scope parameter.

For example, if you want a user's email address and profile, set the scope parameter accordingly. If
any of this scope requires approval from the user, the consent screen includes a request to provide
the user's email address and profile to your application.

Sample implicit request/response: https://example.netiq.com/nidp/oauth/nam/
authz?response_type=token+id_token&client_id=4e4ae330-1215-4fc8-9aa7-
79df8325451c&redirect_uri=https://client.example.com/
callback&scope=email+OpenID&state=s1234&nonce=n123
In this case, the authorization server validates all request parameters and checks whether the user is
authenticated. If the user is not authenticated, then it sends the login page to user. After the user is
authenticated, it takes the consent from the user for the requested scopes and sends the response
to the client.

The authorization server sends the following response for the request:

https://client.example.com/callback#token_type=bearer&access_token=/
wEBAAUFACAjDfPtn d/zlOWPpN/
kV1Jtt3nxCPtzHyUH~&expires_in=3600&id_token=eyJhbGciOiJSUzI1NiJ9.eyJp
c3MiOiJo&scope=email&state=s1234
36 OAuth OpenID Connect API

Token Request URI Parameters

The token request needs to include the following query parameters and the request needs to be sent
to the authorization endpoint:

Parameter Required/
Optional

Description

response_type Required The possible values are token, id_token, and token id_token. The
id_token is issued only if the scope contains the OpenID value.

If the value is sent as token, then the authorization server issues only an
access token to the client.

If the value is id_token, then authorization server issues only id_token in
the response.

If the value is token id_token, then authorization server issues both
access token and ID token in the response.

resourceServer Optional Specify the registered resource server’s name. If this parameter is
available, the authorization server uses the respective configured way to
encrypt the access token.

client_id Required Client application ID that is obtained at the time of the client application
registration process.

redirect_uri Optional If provided, the value of this parameter must exactly match to one of URIs
of the registered application.

scope Optional Scopes supported by the authorization server. You can get
scopes_supported at authorization server's OpenID Metadata
endpoint. For the ID token, OpenID needs to be available in the scope.
Specify multiple scope values separated with space %20.

state Required An opaque value used by the client to maintain state between the request
and callback. The authorization server includes this value when the
response is sent to the client. The parameter prevents cross-site forgery
requests.

nonce Required String value used to associate a client session with an ID token, and to
mitigate replay attacks.
OAuth OpenID Connect API 37

Response Values

The authorization endpoint sends an HTTP 302 Redirect response with the following http fragment
values in the Location header. The browser redirects the request to the returned Location
header without exposing the fragment values. The Location header is the redirect_uri
parameter sent in the request. Only the browser can read the fragment values and these are never
sent to redirect_uri.

prompt Optional A space delimited, case-sensitive list of ASCII string values that specifies
whether the authorization server prompts the end user for re-
authentication and consent.

The following are defined values:

 none: The authorization server does not display any authentication
or consent user interface pages. An error is returned if an end user is
not authenticated or the client does not have preconfigured consent
for the requested claims, or does not fulfill other conditions for
processing the request.

 Login: The authorization server prompts the end user for re-
authentication. If it cannot re-authenticate the end user, it returns an
error to the client.

 Consent: The authorization server prompts the end user for consent
before returning information to the client. If it cannot obtain consent,
it returns an error, typically consent_required.

max_age Optional Maximum authentication age. Specifies the allowable elapsed time in
seconds since the last time the user was authenticated by the OP.

device_id Optional The device ID of the device with which the token will be associated.

Parameter Required/Optional Description

token Required The type of the token. The authorization server supports only
bearer.

Access_token Based on the
response type value

If the response type value is token or token id_token, the
authorization server sends an access token.

id_token Based on the
response type value

If the response type value is id_token or token id_token, the
authorization server sends an ID token.

scope Optional The user given consent scope names.

state Optional If the state parameter was available in the client authorization
request, the same state value is sent in the response.

Parameter Required/
Optional

Description
38 OAuth OpenID Connect API

3.3.3 Hybrid Flow
Get a combination of tokens or code, such as access token, ID token, or authorization code, based on
the response_type parameter by sending an HTTPS GET or POST request with the appropriate URI
parameters to the authorization endpoint base URI. The hybrid flow works and the ID token is issued
only if the scope contains the OpenID param value. An ID token can be signed and encrypted based
on the client's registration. To access any of the user's attributes or getting permissions to access the
user's resource pages, you can include the request in the scope parameter.

For example, if you want a user's email address and profile, set the scope parameter accordingly. If
any of this scopes requires approval from the user, the consent screen includes a request to provide
the user's email address and profile to your application.

Response types that are allowed in hybrid flows, in any combination, are as follows:

Sample hybrid flow request/response: https://example.netiq.com/nidp/oauth/nam/
authz?
response_type=code id_token&client_id=4e4ae330-1215-4fc8-9aa7-
79df8325451c&redirect_uri=https://client.example.com/
callback&scope=email+openid&state=s1234&nonce=n123
In this case, the authorization server validates all request parameters and checks whether the user is
authenticated. If the user is not authenticated, it sends the login page to user. After the user is
authenticated, it takes the consent from the user for the requested scopes and sends the response
to the client.

The authorization server sends the following response for the this request:

https://client.example.com/
callback#code=ey2hgwshg223jdsw&id_token=eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJo&
scope=email&state=s1234
Token Request URI Parameters

The token request should have the following query parameters and the request should be sent to
the authorization endpoint:

response_type Token Generated

code id_token Authorization code and ID token

code token Authorization code and access token

code id_token token Authorization code, ID token, and access token

Parameter Required
/
Optional

Description

response_type Required The possible values are code token, code token id_token, code
id_token, and other combinations of the three values. It should be space
separated.
OAuth OpenID Connect API 39

Response Values
The authorization endpoint sends an HTTP 302 Redirect response with the following http fragment
values in the Location header. The browser redirects the request to the returned Location
header without exposing the fragment values. The Location header is the redirect_uri
parameter sent in the request. The fragment values can only be read by the browser and never sent
to redirect_uri.

resourceServer Optional Specify the name of the registered resource server. If this parameter is
available, the authorization server uses the respective configured way to
encrypt the access token.

client_id Required The client application ID that is obtained at the time of the client application
registration process.

redirect_uri Required The value of this must parameter must exactly match with one of URIs of the
registered application.

scope Required Scopes supported by the authorization server. Get scopes_supported at
authorization server's OpenID Metadata Endpoint. It must contain the
openid scope value. You can add multiple space separated scope values.

state Optional An opaque value used by the client to maintain state between the request
and callback. The authorization server includes this value when the response
is sent to the client. The parameter prevents cross-site forgery requests.

nonce Required A string value used to associate a client session with an ID Token, and to
mitigate replay attacks.

prompt Optional A space delimited, case-sensitive list of ASCII string values that specifies
whether the authorization server prompts the end user for re-authentication
and consent.

The following are defined values:

 none: The authorization server must not display any authentication or
consent user interface pages. An error is returned if an end user is not
authenticated or the client does not have preconfigured consent for the
requested claims or does not fulfill other conditions for processing the
request.

 login: The authorization server should prompt the end user for re-
authentication. If it cannot re-authenticate the end user, it must return
an error to the client.

 consent: The authorization server should prompt the end user for
consent before returning the information to the client. If it cannot
obtain consent, it must return an error, typically consent_required.

max_age Optional Maximum authentication age. Specify the allowable elapsed time in seconds
since the last time the user was authenticated by the OP.

device_id Optional Specify the device ID of the device that token has to be associated with.

Parameter Required
/
Optional

Description
40 OAuth OpenID Connect API

3.4 Authorization
Access to the resources hosted in the resource server can be protected by verifying the access token
available in the API request. A client application offering a service to the user (Resource Owner), that
needs to act on the resource owned by the user, has to get an access token from Identity Server. The
resource server verifies that this token is issued by a trusted issuer and contains necessary scopes to
access the resource.

The client can get the access token from Identity Server by invoking one of the supported OAuth 2.0
authorization flows by using the client's credentials.

The client usually invokes one of the following flows or the grants explained in Other Grants:

 Authorization Code Grant
 Implicit Grant
 Refresh Token

 Resource Owner Credentials Grant
 Client Credentials Grant
 SAML2 Bearer Profile for Authorization Grant

3.4.1 Authorization Code Grant
This is same as getting the identity token explained in Section 3.3.1, “Authorization Code Grant
Flow,” on page 32.

Parameter Required/Optional Description

token_type Based on response
type value

The type of the token. The authorization server supports only
bearer.

access_toke
n

Based on response
type value

If the response type value is code token, code id_token
token, or its combination, the authorization server sends an
access token.

id_token Based on response
type value

If the response type value is code id_token, code
id_token token, or its combination, the authorization server
sends an ID token.

scope Optional The user given consent scope names.

state Optional if the state parameter was available in the client authorization
request, the same state value is sent in the response.

expires_in Based on response
type value

Expiration time of the access token in seconds since the response
was generated.

code Required Authorization code
OAuth OpenID Connect API 41

3.4.2 Implicit Grant
This is same as getting the identity token explained in Section 3.3.2, “Implicit Grant,” on page 36. To
get an access token, the request must contain response_type value as token.

3.4.3 Refresh Token
The Authorization Code Grant requires that the user is available on the browser and has an active
session with Identity Server. Therefore, it is called as the online flow.

Sometime, the client might need access to resources even if the user is not available online. For
example, when a client wants to perform batch processing on resources owned by a user, it might
need to have a longer lifetime of access token. Access tokens usually have shorter lifetime. The
refresh tokens have longer lifetime. Using the refresh tokens, clients can ask for fresh access tokens.
As the access tokens are issued offline when the user is not active, this flow is called as an offline
flow.

A client can use this option if the access token is expired or going to expire.

Refresh Token Request URI Parameters

The refresh token request should be sent to the Token Endpoint. The request should have following
parameters in query string of the request:

Parameter Required/
Optional

Description

grant_type Required Must be refresh_token.

client_id Required The client application ID that is obtained at the time of the client
application registration process.

client_secret Optional The client secret that is obtained at the time of the client application
registration process.

The client secret is optional for a native application, but mandatory for a
web application.

refresh_token Required refresh_token that is obtained during authorization grant, resource owner
credentials.

scope Optional The list of the scope names separated by space.

device_id Optional Specify the device ID that token to be associated with device.

resourceServer Optional The name of the registered resource server. If this parameter is available,
the authorization server uses the respective configured way to encrypt the
access token.
42 OAuth OpenID Connect API

Refresh Token Response Values

A successful request to token endpoint with refresh token results in a response containing a JSON
object with the following values:

Sample Request

A sample request and response, with line breaks for better readability.

HTTP/1.1 POST /nidp/oauth/nam/token
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/41.0.2228.0 Safari/537.36
Host: www.idp.com:8443
'grant_type=refresh_token
&client_id=4e4ae330-1215-4fc8-9aa7-79df8325451c
&client_secret=Rxl5pvgL80DBzbIcLPVnH17FehZA8LLT-
7oZ9POFrEguEyB2JMzB6kBj3JH4BxpZTrnFSjmFgrCClQuCKt3MUg
&refresh_token=/wEBAAcHACAup9Kv@JZbLuBBaWeaYfkP/NT'

A Successful Response

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, no-transform
Content-Length: 0
Date: Tue, 03 Mar 2015 18:12:55 GMT
{ "access_token":"/wEBAAYGACBgyZapAgMYk7oJYXFO9/LIblf9FAnqp@Y1/Y/
voByU9Z2awkCbfp
LZTzpUqFspZ4xrJc/TcNAl3hktfRDJgOUEHUkdyO/
FoWxmTn3NrHL0K8kNPQo7nm3kyUSyjpxxvjVw
SOPtVmNl94AXOIxqObYpLoRgpqqeO8TUltvQlk9zMNkAmHscPTYFwMrzHE@B98kIrZ1b266eSb
uAmL r4y1guAx0yYs1XhboFd97I6mabGXDqeAjjpx/DTZBTCptA/
LlIJgN10jMwik7x9nZZ3wjv16/4hw8G UHaS09uHXqqtF3S0pJ6/aM/
hsWAgkcZeOhliPGXV8T7tjMmc8V1t4mIzuOagzN0LbaclD1OBkndIKC
OcqJiiMMRDZNEHBjwoOXc~",
"token_type":"bearer",
"expires_in":3599, "scope":"profile email"
}

Parameter Required/Optional Description

access_token Required Access token

refresh_token Optional Re-issue a refresh token

token_type Optional Token type that is supported by the authorization server

expires_in Required The validity time of an access token

token_scope Optional The scopes granted to a client
OAuth OpenID Connect API 43

3.5 Validating Tokens
Access Manager issues tokens of variable length. The application must not assume the size of the
tokens.

By default, access tokens are signed and encrypted by using Access Manager encrypted keys. You can
choose to encrypt the access token by using resource server encrypted keys or disable encryption.

You can verify the access token received in earlier flows based on how the token is encrypted.

Use one of the following ways to verify the token:

 When an access token is signed and encrypted by using Access Manager encrypted keys, the
token can be validated by sending a request to the TokenInfo endpoint of Identity Server. This
scenario requires the token to be sent to Identity Server for verification.

 When access token is encrypted by using resource server encrypted keys, the resource server
can validate the token by decrypting the token, verifying the signature, trusting the token that is
issued by the trusted Identity Server, or by sending the decrypted token to TokenInfo endpoint
of Identity Server. This scenario does not require token to be sent to Identity Server instead the
resource server can verify the token by itself. For detailed sample code and tool for validating
the JWT access token, see JWT Validation tool (https://www.netiq.com/documentation/access-
manager-45/resources/JWTUtilityTool.zip) under Additional Resources on the Access Manager
documentation page (https://www.netiq.com/documentation/access-manager). The access
token contains a claim called "_pvt" that is an Access Manager encrypted private claim and can
be decrypted and used only by Access Manager.

 When access token is not encrypted, the resource server can verify the signature of the token
and trust the token that is issued by trusted Identity Server.

To validate access tokens and refresh token that are signed and encrypted by using Access Manager
encrypted keys, send a request to TokenInfo endpoint. Refresh tokens are always encrypted by using
Access Manager encryption keys. You can refer to the following sample to send the request:

The URL to invoke is https://idpbaseurl.com/nidp/oauth/nam/tokeninfo.

The TokenInfo endpoint supports both HTTP GET and POST methods.

The request must contain the token in the authorization header as follows:

Authorization: Bearer access_token

Response Values

The response to the TokenInfo endpoint contains the following values in the JSON format:

Parameter Required Description

expires_in Yes Time in seconds the token is valid from now

user_id Yes The user to whom the token was issued

scope Yes The list of scope values the token holds
44 OAuth OpenID Connect API

https://www.netiq.com/documentation/access-manager-45/resources/JWTUtilityTool.zip
https://www.netiq.com/documentation/access-manager
https://www.netiq.com/documentation/access-manager

Sample Request and Response

Request:
HTTP/1.1 GET /nidp/oauth/nam/tokeninfo
Host: www.idp.com:8443
Accept: /
Authorization: Bearer /wEBAAMDACAYtKt..............@kBEzw~~
Response:
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/json
Content-Length: 48
Date: Thu, 19 Mar 2015 15:47:25 GMT
{
"expires_in": 145, "user_id": "alice", "scope": []
}

3.6 Revoking Tokens
The client application can programmatically revoke its token in the following scenarios:

 When an end user logs out.
 When an application is uninstalled.
 To notify Identity Server that a previously obtained refresh token is no longer needed.

The refresh token received in earlier flows can be revoked by sending a request to the revocation
endpoint of Identity Server.

IMPORTANT: Only the refresh tokens that are generated by Access Manager Version 4.4 or later can
be revoked.

The URL to revoke is https://idpbaseurl.com/nidp/oauth/nam/revoke.

The request should contain the refresh token and client credentials in HTTP request parameters as
mentioned in the following table:

Parameter Required
/
Optional

Description

client_id Required The client application ID that is obtained at the time of the client application
registration process.

client_secre
t

Optional The client secret that is obtained at the time of the client application
registration process.

The client secret is optional for a native application, but mandatory for a web
application.

Token Required refresh_token that is obtained during authorization grant, resource owner
credentials, client credentials flow
OAuth OpenID Connect API 45

Response Values

 Identity Server responds with the HTTP status code 200 OK if the token has been revoked
successfully or if the client submitted an invalid token.

 Identity Server returns the error code unsupported_token_type when the provided token is not
a refresh token.

 If Identity Server responds with the HTTP status code 503, the client must assume that the
token still exists and may retry revoking the refresh token after a reasonable delay.

Revoking Token Issued to a Device
When Mobile Access SDK is not used for on-boarding and off-boarding devices, the token can be
manually associated with a device. This can be done by providing additional parameter device_id
while requesting for an access token. Such manually associated tokens can be revoked by using the
revocation endpoint.

The URL to revoke tokens that are issued to a device is:

https://idpbaseurl.com/nidp/oauth/nam/revoke/<device_id>
HTTP Post

Content-Type: application/x-www-form-urlencoded (Optional)

Request Parameters

Response Values

HTTP 200 OK
{
"status": "Successfully revoked token(s) issued to this device."
}
Sample Request

A sample request and response, with line breaks for better readability.

HTTP/1.1 POST /nidp/oauth/nam/revoke/andriodtest_1401
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/41.0.2228.0 Safari/537.36
Host: www.idp.com:8443
'userstore_name=namsignboxuserstore
& user_dn=cn%3Dharry%2Co%3Dnovell'
A successful response

Parameter Required Description

userstore_name Yes Specify the name of the user store.

user_dn Yes Specify the user's dn to whom the token issued.
46 OAuth OpenID Connect API

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, no-transform
Content-Length: 0
Date: Tue, 03 Mar 2015 18:12:55 GMT
{
"status": "Successfully revoked token(s) issued to this device."
}
Error Response
When an invalid device id specified or device had not been associated with any token, returns HTTP
404 NOT FOUND with error response

{
"error": "invalid_request",
"error_description": "Invalid device ID or no tokens to revoke for this
device."
}

3.7 Authorization Code Grant Flow with PKCE
The native apps use Authorization Code with PKCE OAuth 2.0 grant to mitigate vulnerability with the
authorization code grant flow. To implement PKCE flow client must generate random secret and
store. Using random secret, client has to create code verifier and code challenge. (rfc7636 (https://
tools.ietf.org/html/rfc7636))

1 A client sends the code challenge as part of the OAuth 2.0 Authorization request with following
additional parameters:

2 Returned Authorization Code is associated with code_challenge and
code_challenge_method.

3 The client sends an access token request to the token endpoint with additional parameter.
The following additional request parameters can be used along with Authorization Code grant
flow:

4 The server verifies code_verifier before returning the token.
PKCE flow error messages

Parameter Required
/
Optional

Description

code_challenge Required Code challenge parameter if PKCE flow has to be initiated.

code_challenge_method Optional The default value is plain. The value can be plain or S256.

Parameter Required Description

code_verifier Yes Code verifier parameter is required if Authorization Code is
requested using PKCE flow.
OAuth OpenID Connect API 47

https://tools.ietf.org/html/rfc7636

PKCE verification failed:
{
"error": "invalid_grant",
"error_description": "Either invalid authorization code or invalid code
verifier, PKCE verification failed"
}
{
"error": "invalid_grant",
"error_description": "PKCE verification failed because either code
challenge is null or code challenge method is not supported"

}
Example:
PKCE initiate request to Authorization endpoint:

[https://<<IDP>>:8443/nidp/oauth/nam/
authz?code_challenge=WsEH2Rr4lWdciBEbCuHVlH_UIBUGFPRbDXcPsb-
Pl74&code_challenge_method=S256&scope=profile&response_type=code&redir
ect_uri=<<Redirec URI>>&client_id=484fd33f-12b0-44c4-bbf5-82bae803b71d
"
PKCE flow Token request parameters to Token Endpoint:
code=<<authorization code received from authorization endpoint>>
&grant_type=authorization_code&redirect_uri=<<Redirect
URI>>&client_id=484fd33f-12b0-44c4-bbf5-
82bae803b71d&code_verifier=0ak1mD3loHOy1ZksmyoO1fQEhRBEuzGYbkQqKFe1Ny0

3.8 Other OAuth 2.0 Grants
 Section 3.8.1, “Resource Owner Credential Grant,” on page 48
 Section 3.8.2, “Client Credential Grant,” on page 50
 Section 3.8.3, “SAML 2.0 Bearer Profile for Authorization Grant,” on page 51

3.8.1 Resource Owner Credential Grant
The resource owner credential grant flow requires a client to know the user credentials. To exchange
the username and password for an access token, send an HTTPS POST request with the appropriate
URI parameters to token endpoint base URI. The http connections are not accepted. Use HTTPS. You
should retrieve the token endpoint base URI at authorization server's OpenID Metadata Endpoint.

Request Parameters

Parameter Required/
Optional

Description

resourceServer No The name of the registered resource server. If this parameter is available,
the authorization server uses the respective configured way to encrypt the
access token.

client_id Required The client application ID that is obtained at the time of the client application
registration process.
48 OAuth OpenID Connect API

Response Parameters

Sample Request and Response

The following is a sample request with whitespace for readability:

client_secret Optional This is optional for a native application, but mandatory for a web
application.

grant_type Required Specify password as the value for this parameter.

username Required The user login name.

password Required The user login password.

scope Optional Scopes supported by the authorization server. Get scopes_supported at
the authorization server's OpenID Metadata Endpoint. For the ID token,
OpenID should be available in the scope. You can add multiple scope values
with space separated %20 or +.

acr_values Optional If a client request contains the acr_values parameter, Identity Server
maps the value to configured contracts in Identity Server and executes the
contract.

For example, use parameter value as /name/password/uri.

The contract is not sent in the ID token.

Use space as delimiter to specify more than one contract URI for acr_values.
In this case, Identity Server executes contracts in the sequence as specified.
Any one of the contract execution success is considered as authentication
success. If none of the contract succeeds, then authentication fails.

Parameter Description

access_token OAuth 2.0 access token.

token_type The type of token returned. At this time, this is always Bearer.

expires_in The remaining lifetime of an access token.

scope Scopes requested. The access token allows you access to these scopes.

refresh_token The refresh token is returned if a client application is registered for it. This token can be
used to refresh the access token when it expires.

Parameter Required/
Optional

Description
OAuth OpenID Connect API 49

HTTP/1.1 POST /nidp/oauth/nam/token?
&grant_type=password
&client_id=bb775b12-bbd4-423b-83d9-647aeb98608d
&client_secret=bBbE-4mNO_kWWAnEeOL1CLTyuPhNLhHkTThA-
rEckyrdLmRLn3GhnxjsKI2mEijCSlPjftxHod_05dp-uGs6wA
&username=user1
&password=pass@123
&scope=email%20profile
> User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/41.0.2228.0 Safari/537.36
> Host: www.idp.com:8443
> Accept: /
Response
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 630
{
"access_token":"/wEBAAEBACAgHkphv9NdD5khH7CLty7PpURg9RKOQ5pm6...",
"token_type": "bearer",
"expires_in":3599,
"scope": "profile email"
}

NOTE: If validation errors occur, HTTP Status 400 is returned with the JSON response containing
error and error_description.

The following is a sample error response with whitespace for readability:

HTTP/1.1 400 Bad Request Content-Type: application/json Content-Length: 143
{
"error":"invalid_request",
"error_description" :"OAuth Client Authentication Failure because password
parameter is missing in the request"
}

3.8.2 Client Credential Grant
The client credentials can be exchanged for an access token. To get an access token, send an HTTPS
POST request with the appropriate URI parameters to the token endpoint base URI. The http
connections are not accepted. Use HTTPS. You should retrieve the token endpoint base URI at
authorization server's OpenID Metadata Endpoint.

Request Parameters

Parameter Required/
Optional

Description

client_id Required The client application ID, which is obtained at the time of the client application
registration process.

client_secre
t

Optional The client secret is optional for a native application, but it is mandatory for a
web application.

grant_type Required Specify client_credentials as value for this parameter.
50 OAuth OpenID Connect API

Response Values

Sample Request and Response

A sample request with whitespace for readability

HTTP/1.1 POST /nidp/oauth/nam/token?
&grant_type=client_credentials
&client_id=bb775b12-bbd4-423b-83d9-647aeb98608d
&client_secret=bBbE-4mNO_kWWAnEeOL1CLTyuPhNLhHkTThA-
rEckyrdLmRLn3GhnxjsKI2mEijCSlPjftxHod_05dp-uGs6wA
&redirect_uri=https://www.oauthapp.com/oauth.php
&scope=email%20profile
> User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/41.0.2228.0 Safari/537.36
> Host: www.idp.com:8443
> Accept: /
Response
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 630
{
"access_token": "/wEBAAAAACBy4Ku4ApcxEV7er19P6nqH5HZg5J6GcY...",
"token_type": "bearer",
"expires_in":3599
}

NOTE: If validation errors occur, HTTP Status 400 is returned with the JSON response containing
error and error_description.

3.8.3 SAML 2.0 Bearer Profile for Authorization Grant
The SAML 2.0 assertions can be exchanged for access token. The Consent page will not be shown to
users for authorizing scopes. The access token allows you to access only those scopes that are
previously approved by the user. To get an access token, send an HTTPS POST request with the
appropriate URI parameters to the token endpoint base URI.

The HTTP connections are not accepted. Use HTTPS. You should retrieve the token endpoint base
URI at authorization server's OpenID Metadata Endpoint.

Parameter Description

access_token OAuth 2.0 access token.

token_type The type of token returned. At this time, this is always Bearer.

expires_in The remaining lifetime of the access token.
OAuth OpenID Connect API 51

Request Parameters

Response Values

Sample Request and Response

The following is a sample request with whitespace for readability:

HTTP/1.1 POST /nidp/oauth/nam/token?
&grant_type= urn:ietf:params:oauth:grant-type:saml2-bearer
&client_id=bb775b12-bbd4-423b-83d9-647aeb98608d
&assertion=MPHnbWxv01….SY2
&scope=email%20profile
> User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/41.0.2228.0 Safari/537.36
> Host: www.idp.com:8443
> Accept: /
arul
Response
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 630
{
"access_token": "/wEBAAAAACBy4Ku4ApcxEV7er19P6nqH5HZg5J6GcY...",
"token_type": "bearer",
"expires_in":3599
}

Parameter Required/
Optional

Description

client_id Required The client application ID that is obtained at the time of the client application
registration process.

grant_type Required Use urn:ietf:params:oauth:grant-type:saml2-bearer as the
value for this parameter.

Assertion Required Use a single base64url encoded SAML2.0 Assertion as the value for this
parameter.

client_secre
t

Optional The client secret value.

scope Optional Scopes supported by the Authorization server. Get scopes_supported at
authorization server's OpenID Metadata Endpoint. Specify multiple scope
values with space separated %20 or +.

Parameter Description

access_token OAuth 2.0 access token.

token_type The type of token returned. At this time, this is always Bearer.

expires_in The remaining lifetime of the access token.

scope Requested scopes that are pre-approved by the user.
52 OAuth OpenID Connect API

NOTE: If validation errors occur, HTTP Status 400 is returned with the JSON response containing
error and error_description.

Response Values

The following is a sample error response with whitespace for readability:

HTTP/1.1 400 Bad Request Content-Type: application/json
{
"error":"invalid_grant",
"error_description":"Audience validation failed"
}

3.9 Attribute Service
Identity Server exposes an endpoint to which the clients and resource servers can query for users’
claims associated with an access token. This service is implemented in UserInfo Endpoint.

The clients or resource servers can invoke the request to the UserInfo endpoint by including the
access token in the authorization header as follows:

Authorization: Bearer access_token

The UserInfo endpoint returns the claims associated with the access token in a JSON object as given
in the response values.

Response Values

The other claims are included as values in the JSON object if the access token contains the necessary
scope and the user has authorized the client to access the claim.

For example, if the client has requested the email scope, the UserInfo endpoint returns a value
"email" : "alice@c.com" along with the "sub" field.

Sample Request and Response

Request

GET /nidp/oauth/nam/userinfo HTTP/1.1
User-Agent: curl/7.41.0
Host: www.idp.com:8443
Accept: /
Authorization: Bearer /wEBAA.............DSDG

Response:

Parameter Description

sub Unique ID identifying the subject. This is GUID of the user.
OAuth OpenID Connect API 53

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/json
Content-Length: 73
Date: Thu, 19 Mar 2015 16:14:52 GMT
 {
"sub": "6adb7ca411d5a14c94946adb7ca411d5",
"email": "alice@a.com"
}

54 OAuth OpenID Connect API

4 4Component Statistics API

Identity Servers and Access Gateway systems provide APIs to retrieve the statistics of that system.
These are precursors to the Administration API and provide statistics. Both APIs provide the same
data, but the difference is in the invocation point. The Component statistics API can be called for
each device IP and the Administration API can be called for Administration Console to retrieve
statistics of all Identity Servers and Access Gateways in the system. Therefore, it is recommended to
use the Administration APIs.

For more information, see Component Statistics Through REST APIs (https://www.netiq.com/
documentation/access-manager-45/admin/data/b1bfre0e.html) in the NetIQ Access Manager 4.5
Administration Guide (https://www.netiq.com/documentation/access-manager-45/admin/data/
bookinfo.html).
Component Statistics API 55

https://www.netiq.com/documentation/access-manager-45/admin/data/b1bfre0e.html
https://www.netiq.com/documentation/access-manager-45/admin/data/bookinfo.html
https://www.netiq.com/documentation/access-manager-45/admin/data/bookinfo.html

56 Component Statistics API

5 5AWS Auto Scaling API

As part of the auto scaling Access Manager process, you require to automate some of the
management tasks. Access Manager provides APIS for automating the following activities during
auto scaling on AWS:

 Importing Devices to Administration Console
 Adding Devices to the Cluster
 Removing Devices from Administration Console
 Updating Servers in the Cluster
 Additional APIs

NOTE: For more information about how to use these APIs, refer to the supporting scripts included in
the sample auto scaling solution provided along with Sample Auto Scaling Deployment of Access
Manager on AWS (https://www.netiq.com/documentation/access-manager-45-developer-
documentation/aws-autoscaling/data/aws-autoscaling.html).

5.1 Importing Devices to Administration Console
 Section 5.1.1, “Importing Identity Server,” on page 57
 Section 5.1.2, “Importing Access Gateway,” on page 57

5.1.1 Importing Identity Server
Use the reimport_nidp.sh script available in the /opt/novell/devman/jcc/conf location to
import Identity Server.

You might require to regenerate jccid of the device before importing it to avoid the jccid conflicts.

5.1.2 Importing Access Gateway
Use the reimport_ags.sh script available in the /opt/novell/devman/jcc/conf location to
import Access Gateway.

You might require to regenerate jcc_id of the device before importing it to avoid the jcc_id conflicts.

5.2 Adding Devices to the Cluster
 Section 5.2.1, “Adding Identity Servers to the Cluster,” on page 58
 Section 5.2.2, “Adding Access Gateway server to the cluster,” on page 58
AWS Auto Scaling API 57

https://www.netiq.com/documentation/access-manager-45-developer-documentation/aws-autoscaling/data/aws-autoscaling.html
https://www.netiq.com/documentation/access-manager-45-developer-documentation/aws-autoscaling/data/aws-autoscaling.html

5.2.1 Adding Identity Servers to the Cluster
Request: curl -X POST "$rest_url" -u $ADMIN_FQDN:$ADMIN_PASSWORD
Where rest_url=https://$ADMIN_CONSOLE_IP:8443/amsvc/v1/idpclusters/$CLUSTER_ID/devices/
idp-$jcc_id

5.2.2 Adding Access Gateway server to the cluster
Request: curl -X POST "$rest_url" -u $ADMIN_FQDN:$ADMIN_PASSWORD
Where rest_url="https://$ADMIN_CONSOLE_IP:8443/amsvc/v1/agclusters/$MAG_CLUSTER_ID/
devices/ag-$jcc_id"

5.3 Removing Devices from Administration Console
 Section 5.3.1, “Removing Identity Server from Administration Console,” on page 58
 Section 5.3.2, “Removing Access Gateway from Administration Console,” on page 58

5.3.1 Removing Identity Server from Administration Console
Request: curl -k -X DELETE "$rest_url" -u
cn=$ADMIN_NAME,o=novell:$ADMIN_PASS
Where rest_url=https://$AC_IP:8443/amsvc/v1/idpclusters/$IDP_CLUSTER_ID/devices/
$IDP_DEVICE_ID"

5.3.2 Removing Access Gateway from Administration Console
Request: curl -k -X DELETE "$rest_url" -u
cn=$ADMIN_NAME,o=novell:$ADMIN_PASS)
Where rest_url=https://$AC_IP:8443/amsvc/v1/agclusters/$AG_CLUSTER_ID/devices/
$AG_DEVICE_ID"

5.4 Updating Servers in the Cluster
 Section 5.4.1, “Updating the Identity Server Cluster,” on page 58
 Section 5.4.2, “Updating the Access Gateway Cluster,” on page 59

5.4.1 Updating the Identity Server Cluster
Request: curl -k --ciphers ALL -u $ADMIN_FQDN:$ADMIN_PASSWORD -X PUT -H
"Content-Type: application/json" -d "{\"update\": \"all\"}" "$rest_url "
Where rest_url=rest_url="https://$ADMIN_CONSOLE_IP:8443/amsvc/v1/idpclusters/$CLUSTER_ID"
58 AWS Auto Scaling API

5.4.2 Updating the Access Gateway Cluster
Request: curl -k --ciphers ALL -u $ADMIN_FQDN:$ADMIN_PASSWORD -X PUT -H
"Content-Type: application/json" -d "{\"update\": \"all\"}" "$rest_url "
Where rest_url="https://$ADMIN_CONSOLE_IP:8443/amsvc/v1/agclusters/$MAG_CLUSTER_ID"

5.5 Additional APIs
 Section 5.5.1, “Getting the ID of a Specific Cluster,” on page 59
 Section 5.5.2, “Getting the Number of Active Sessions in Identity Server,” on page 59

5.5.1 Getting the ID of a Specific Cluster
Getting the ID of an Identity Server Cluster:

Request: curl -k -X GET $rest_url -u
cn=$ADMIN_USERNAME,o=novell:$ADMIN_PASSWORD)
Where rest_url="https://$ADMIN_CONSOLE_IP:8443/amsvc/v1/idpclusters"

Getting the ID of an Access Gateway:

Request: curl -k -X GET $rest_url -u
cn=$ADMIN_USERNAME,o=novell:$ADMIN_PASSWORD)
Where rest_url="https://$ADMIN_CONSOLE_IP:8443/amsvc/v1/agclusters"

5.5.2 Getting the Number of Active Sessions in Identity Server
Request: curl -k -X GET $rest_url -u cn=$ADMIN_NAME,o=novell:$ADMIN_PASS
Where rest_url="https://$AC_IP:8443/roma/rest/$IDP_CLUSTER_ID/sessions/devices/
$IDP_DEVICE_ID"
AWS Auto Scaling API 59

60 AWS Auto Scaling API

	NetIQ Access Manager 4.5 Administration API Guide
	About this guide
	1 API Overview
	2 Administration API
	2.1 Accessing Administration APIs
	2.2 Detailed API Documentation
	2.3 Administration API Use Cases
	2.3.1 Get Device Health
	2.3.2 Get Device Statistics
	2.3.3 Refresh Metadata of SAML 2.0 Trusted Providers
	2.3.4 Import Trusted Root Certificates
	2.3.5 Renew Certificates
	2.3.6 Manage User Sessions
	2.3.7 Purge Access Gateway Cache
	2.3.8 Scaling the Devices

	3 OAuth OpenID Connect API
	3.1 Example Scenarios
	3.1.1 A Client Application Requires to Access OAuth Protected Resources
	3.1.2 Resource Server Validating a Token Issued by Access Manager
	3.1.3 Access Manager Revoking Refresh Tokens

	3.2 Prerequisites for Establishing an OAuth 2.0 Connection with a Client Application
	3.2.1 Registering Client Applications
	3.2.2 Managing Client Applications
	3.2.3 Registering a Resource Server
	3.2.4 OAuth 2.0 Endpoints
	3.2.5 Other Endpoints

	3.3 Authentication
	3.3.1 Authorization Code Grant Flow
	3.3.2 Implicit Grant
	3.3.3 Hybrid Flow

	3.4 Authorization
	3.4.1 Authorization Code Grant
	3.4.2 Implicit Grant
	3.4.3 Refresh Token

	3.5 Validating Tokens
	3.6 Revoking Tokens
	3.7 Authorization Code Grant Flow with PKCE
	3.8 Other OAuth 2.0 Grants
	3.8.1 Resource Owner Credential Grant
	3.8.2 Client Credential Grant
	3.8.3 SAML 2.0 Bearer Profile for Authorization Grant

	3.9 Attribute Service

	4 Component Statistics API
	5 AWS Auto Scaling API
	5.1 Importing Devices to Administration Console
	5.1.1 Importing Identity Server
	5.1.2 Importing Access Gateway

	5.2 Adding Devices to the Cluster
	5.2.1 Adding Identity Servers to the Cluster
	5.2.2 Adding Access Gateway server to the cluster

	5.3 Removing Devices from Administration Console
	5.3.1 Removing Identity Server from Administration Console
	5.3.2 Removing Access Gateway from Administration Console

	5.4 Updating Servers in the Cluster
	5.4.1 Updating the Identity Server Cluster
	5.4.2 Updating the Access Gateway Cluster

	5.5 Additional APIs
	5.5.1 Getting the ID of a Specific Cluster
	5.5.2 Getting the Number of Active Sessions in Identity Server

