
NetIQ® Identity Manager
User Application: Administration Guide
November 2014
www.netiq.com/documentation

Legal Notice

THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT ARE FURNISHED UNDER AND ARE
SUBJECT TO THE TERMS OF A LICENSE AGREEMENT OR A NON-DISCLOSURE AGREEMENT. EXCEPT AS EXPRESSLY
SET FORTH IN SUCH LICENSE AGREEMENT OR NON-DISCLOSURE AGREEMENT, NETIQ CORPORATION PROVIDES
THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT ALLOW DISCLAIMERS OF
EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS; THEREFORE, THIS STATEMENT MAY NOT APPLY
TO YOU.

For purposes of clarity, any module, adapter or other similar material ("Module") is licensed under the terms and conditions of
the End User License Agreement for the applicable version of the NetIQ product or software to which it relates or
interoperates with, and by accessing, copying or using a Module you agree to be bound by such terms. If you do not agree to
the terms of the End User License Agreement you are not authorized to use, access or copy a Module and you must destroy all
copies of the Module and contact NetIQ for further instructions.

This document and the software described in this document may not be lent, sold, or given away without the prior written
permission of NetIQ Corporation, except as otherwise permitted by law. Except as expressly set forth in such license
agreement or non-disclosure agreement, no part of this document or the software described in this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, or otherwise,
without the prior written consent of NetIQ Corporation. Some companies, names, and data in this document are used for
illustration purposes and may not represent real companies, individuals, or data.

This document could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein. These changes may be incorporated in new editions of this document. NetIQ Corporation may make
improvements in or changes to the software described in this document at any time.

U.S. Government Restricted Rights: If the software and documentation are being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier), in accordance with 48 C.F.R. 227.7202-4
(for Department of Defense (DOD) acquisitions) and 48 C.F.R. 2.101 and 12.212 (for non-DOD acquisitions), the government’s
rights in the software and documentation, including its rights to use, modify, reproduce, release, perform, display or disclose
the software or documentation, will be subject in all respects to the commercial license rights and restrictions provided in the
license agreement.

© 2014 NetIQ Corporation. All Rights Reserved.

For information about NetIQ trademarks, see https://www.netiq.com/company/legal/.

https://www.netiq.com/company/legal/

Contents
About This Guide 15

Part I Overview 17

1 Introduction to the User Application 19
1.1 About the User Application. 19

1.1.1 About Identity Self-Service . 20
1.1.2 About Roles-Based Provisioning . 21
1.1.3 About Resource-Based Provisioning . 21
1.1.4 About Workflow-Based Provisioning . 24
1.1.5 About Compliance . 24

1.2 User Application Architecture. 25
1.2.1 User Interface . 26
1.2.2 Directory Abstraction Layer . 27
1.2.3 Workflow Engine . 27
1.2.4 SOAP Endpoints . 27
1.2.5 Application Server (J2EE-Compliant) . 28
1.2.6 Database . 28
1.2.7 User Application Driver . 29
1.2.8 Role and Resource Service Driver . 30
1.2.9 Designer for Identity Manager . 31
1.2.10 iManager . 31
1.2.11 Identity Manager Engine . 31
1.2.12 Identity Vault . 31
1.2.13 Novell Identity Audit . 31

1.3 User Application User Types . 32
1.3.1 Administrative Users . 32
1.3.2 Domain Administrators, Domain Managers, and Team Managers 33
1.3.3 Designers. 36
1.3.4 Business Users . 36

1.4 Design and Configuration Tools. 37
1.5 What’s Next . 39

Part II Configuring the User Application Environment 43

2 Designing the Production Environment 45
2.1 Topology . 45

2.1.1 Design Constraints . 45
2.1.2 High Availability Design . 47

2.2 Security . 47
2.2.1 Security Overview . 47
2.2.2 Enabling SSL . 48
2.2.3 Turning on SOAP Security. 52
2.2.4 Mutual Authentication . 52
2.2.5 Third-Party Authentication and Single Sign-On . 52
2.2.6 Encryption of Sensitive User Application Data . 53
2.2.7 Preventing XSS Attacks. 53
2.2.8 Modifying the Trustee Rights for User Preferences. 54
2.2.9 Modifying the Trustee Rights for a Provisioning Request Definition 55
Contents 3

4 NetI
2.2.10 Disabling the JMX Management Console on JBoss . 55
2.3 Single Sign-On (SSO) Configuration . 55
2.4 Digital Signature Configuration . 56

2.4.1 Setting Up the User Certificates . 56
2.4.2 Configuring the Application Server . 60
2.4.3 Configuring Logging. 61
2.4.4 Configuring the User Application . 61
2.4.5 Configuring the Provisioning Request Definitions . 62

2.5 Enabling Anonymous or Guest Access to the User Application. 63
2.5.1 Establishing the Guest Account . 63

2.6 Configuring Forgotten Password Self-Service . 64
2.6.1 Accessing an External Password WAR . 65

2.7 Performance Tuning. 66
2.7.1 Logging . 66
2.7.2 Identity Vault . 67
2.7.3 JVM . 69
2.7.4 Session Time-out Value. 69
2.7.5 Tuning JBoss . 70
2.7.6 Using Secure Sockets for User Application Connections to the Identity Vault 70

2.8 Clustering . 71
2.8.1 Clustering an Application Server . 71
2.8.2 Things to Do Before Installing the User Application . 73
2.8.3 Installing the User Application to a JBoss Cluster . 74
2.8.4 Installing the User Application to a WebSphere Cluster . 79
2.8.5 Installing the User Application to a WebLogic Cluster . 79
2.8.6 Things to Do After Installing the User Application . 80

2.9 Localizing and Customizing User Application Strings and Name Formats . 83
2.9.1 Localizing User Application Strings . 83
2.9.2 Customizing Text . 84
2.9.3 Configuring the Format of Localized User Names. 87
2.9.4 Ensuring that Characters Display Properly in Role Report PDF Files 88
2.9.5 Ensuring that Dates Display Correctly in Norwegian . 89

2.10 Configuring the Roles and Resources Tab . 90
2.10.1 Role Service Driver Configuration . 90
2.10.2 User Application Configuration . 93
2.10.3 Security Roles . 93
2.10.4 View Request Status Search Limit . 94
2.10.5 Provisioning Display Settings . 94
2.10.6 E-Mail Notification . 94
2.10.7 Enabling Drivers for Resource Mappings . 94
2.10.8 Creating a List in the RBPM Database . 95

2.11 Configuring the Compliance Tab . 97
2.11.1 Security Roles . 98
2.11.2 E-Mail Notification . 98

2.12 Configuring the Work Dashboard Tab . 98
2.13 Recreating the Database After Installation. 98
2.14 Changing the Default Administrator Assignments After Installation. 99

2.14.1 Granting or Removing Assignments in the User Application . 100
2.14.2 Changing the Assignments in Configupdate Without Removing the Existing Users 100
2.14.3 Changing the Assignments in Configupdate and Removing the Existing Users 101

2.15 Setting up JMS in WebSphere and WebLogic . 101
2.15.1 Setting up JMS on WebSphere 6.1 . 102
2.15.2 Setting up JMS on WebSphere 7.0 . 105
2.15.3 Setting up JMS on WebLogic 10.3 . 108

3 Setting Up Logging 111
3.1 About Event Logging . 111
Q Identity Manager User Application: Administration Guide

3.1.1 About the Log Level Settings. 112
3.1.2 Changing the User Application Log Level Settings . 112

3.2 Logging to a Novell Identity Audit or Sentinel Server . 112
3.2.1 Adding the Identity Manager Application Schema to your Novell Identity Audit Server as a Log

Application . 113
3.2.2 Enabling Audit or Sentinel Logging . 114
3.2.3 Log Reports . 114

3.3 Logging to OpenXDAS. 118
3.3.1 Using OpenXDAS with Sentinel. 118
3.3.2 Enabling OpenXDAS Logging in the User Application . 119
3.3.3 Troubleshooting . 119

3.4 Log Events . 119

Part III Administering the User Application 125

4 Using the Administration Tab 127
4.1 About the Administration Tab. 127
4.2 Who Can Use the Administration Tab . 127
4.3 Accessing the Administration Tab . 128
4.4 Administration Tab Actions You Can Perform . 129

5 Application Configuration 131
5.1 Portal Configuration Tasks. 131

5.1.1 Caching Management . 131
5.1.2 Driver Status . 141
5.1.3 Identity Vault Settings . 142
5.1.4 Logging Configuration . 144
5.1.5 Portal Settings . 149
5.1.6 Single Sign-On (SSO) Configuration . 149
5.1.7 Theme Administration . 166
5.1.8 Assigning the User Application Administrator . 172

5.2 Working with the Import and Export Tools . 174
5.2.1 Requirements . 175
5.2.2 Restrictions . 175
5.2.3 Exporting Portal Data. 175
5.2.4 Importing Portal Data. 176

5.3 Password Management Configuration . 180
5.3.1 About Password Management Features . 180
5.3.2 Configuring Challenge Response . 183
5.3.3 Configuring Forgotten Password . 185
5.3.4 Configuring Login. 189
5.3.5 Configuring Password Sync Status . 192
5.3.6 Configuring Password Hint Change. 196
5.3.7 Configuring Change Password . 197

5.4 Web Services . 199
5.4.1 Directory Layer Service . 199
5.4.2 Metrics Service . 200
5.4.3 Notification Service . 200
5.4.4 Provisioning Service . 201
5.4.5 Role Service . 201

6 Page Administration 203
6.1 About Page Administration. 203

6.1.1 About Container Pages . 203
Contents 5

6 NetI
6.1.2 About Shared Pages . 210
6.1.3 An Exception to Page Usage. 211

6.2 Creating and Maintaining Container Pages . 212
6.2.1 Creating Container Pages . 212
6.2.2 Adding Content to a Container Page . 215
6.2.3 Deleting Content from a Container Page. 216
6.2.4 Modifying the Layout of a Container Page. 217
6.2.5 Arranging Content on the Container Page. 218
6.2.6 Displaying a Container Page . 220

6.3 Creating and Maintaining Shared Pages . 220
6.3.1 Creating Shared Pages . 221
6.3.2 Adding Content to a Shared Page . 223
6.3.3 Deleting Content from a Shared Page. 224
6.3.4 Modifying the Layout of a Shared Page. 225
6.3.5 Arranging Content on the Shared Page. 226
6.3.6 Displaying a Shared Page . 228

6.4 Assigning Permissions for Pages. 228
6.4.1 Assigning Page View Permission . 228
6.4.2 Assigning Shared Page Owners . 230
6.4.3 Enabling User Access to the Create User or Group Page. 231
6.4.4 Enabling User Access to Individual Administration Pages . 232

6.5 Setting Default Pages for Groups . 233
6.6 Selecting a Default Shared Page for a Container Page. 234

7 Portlet Administration 237
7.1 About Portlet Administration. 237
7.2 Administering Portlet Definitions . 237

7.2.1 Accessing Portlet Definitions in the Deployed Portlet Application 238
7.2.2 Registering Portlet Definitions . 238
7.2.3 Viewing Information About Portlet Definitions . 239

7.3 Administering Registered Portlets . 241
7.3.1 Accessing Portlet Registrations in the Deployed Portlet Application 242
7.3.2 Viewing Information about Portlet Registrations . 242
7.3.3 Assigning Categories to Portlet Registrations . 244
7.3.4 Modifying Settings for Portlet Registrations. 245
7.3.5 Modifying Preferences for Portlet Registrations . 247
7.3.6 Assigning Security Permissions for Portlet Registrations . 248
7.3.7 Unregistering a Portlet . 250

8 RBPM Provisioning and Security Configuration 253
8.1 About RBPM Provisioning and Security Configuration . 253
8.2 Provisioning Configuration . 254

8.2.1 Configuring Delegation and Proxy Settings . 254
8.2.2 Configuring the Digital Signature Service . 256
8.2.3 Configuring the Provisioning UI Display Settings . 259
8.2.4 Configuring the Workflow Engine and Cluster Settings . 263

8.3 Administrator Assignments . 267
8.3.1 Viewing Administrator Assignments . 268
8.3.2 Creating New Assignments . 269
8.3.3 Editing an Existing Assignment . 279
8.3.4 Deleting Assignments . 279
8.3.5 Refreshing the Assignment List . 279

8.4 Team Configuration . 279
8.4.1 Viewing Team Configurations . 280
8.4.2 Creating New Teams . 282
8.4.3 Editing an Existing Team . 287
Q Identity Manager User Application: Administration Guide

8.4.4 Deleting Teams . 287
8.4.5 Refreshing the Team List. 287

8.5 Navigation Access Permissions . 287

Part IV Portlet Reference 291

9 About Portlets 293
9.1 Accessory Portlets . 293
9.2 Admin Portlets . 293
9.3 Identity portlets . 294
9.4 System Components . 295

10 Create Portlet Reference 297
10.1 About the Create portlet . 297
10.2 Configuring the Create Portlet . 299

10.2.1 Directory Abstraction Layer Setup . 300
10.3 Setting Preferences . 302
10.4 Configuring the Create Portlet for Self-Registration. 303

10.4.1 Guest Access Required Settings . 304

11 Detail Portlet Reference 305
11.1 About the Detail portlet. 305

11.1.1 Displaying Entity Data . 305
11.1.2 Editing Entity Data . 309
11.1.3 E-Mailing Entity Data . 311
11.1.4 Linking to an organization chart . 312
11.1.5 Linking to Details of Other Entities. 312
11.1.6 Printing Entity Data . 313
11.1.7 Setting Preferred Locale . 314
11.1.8 Overriding the Default Entity . 314

11.2 Prerequisites . 316
11.2.1 Configuring the Directory Abstraction Layer . 316
11.2.2 Assigning rights to entities . 317

11.3 Launching Detail from Other Portlets . 317
11.3.1 Launching Detail from the Search List Portlet . 317
11.3.2 From the Org Chart Portlet . 318

11.4 Using Detail on a Page . 318
11.5 Setting Preferences . 318

11.5.1 About the Preferences . 318
11.6 Setting up Detail for Anonymous Access . 320

12 Org Chart Portlet Reference 323
12.1 About Org Chart . 323

12.1.1 About Org Chart Relationships . 326
12.1.2 About Org Chart Display . 327

12.2 Configuring the Org Chart Portlet. 328
12.2.1 Directory Abstraction Layer Setup . 329
12.2.2 Setting Preferences . 330
12.2.3 Dynamically Loading Images. 348

12.3 Configuring Org Chart for Guest Access . 349
12.3.1 Modifying the Org Chart Preferences . 349
12.3.2 Modifying the User Application WAR. 349
Contents 7

8 NetI
13 Resource Request Portlet 351
13.1 About the Resource Request Portlet . 351
13.2 Configuring the Resource Request Portlet. 351

13.2.1 Setting Preferences . 352

14 Search List Portlet Reference 353
14.1 About Search List . 353

14.1.1 About Results List Display Formats. 355
14.2 Configuring the Search List portlet . 357

14.2.1 Directory Abstraction Layer Setup . 358
14.2.2 Setting Search List preferences. 359

14.3 Configuring Search List for Anonymous Access . 364

Part V Configuring and Managing Provisioning Workflows 367

15 Configuring the User Application Driver to Start Workflows 369
15.1 About the User Application Driver . 369
15.2 Setting Up Workflows to Start Automatically . 370

15.2.1 About Policies . 370
15.2.2 Using the Policy Builder . 370
15.2.3 Using the Schema Mapping Policy Editor . 374

16 Managing Provisioning Request Definitions 383
16.1 About the Provisioning Request Configuration Plug-in . 383
16.2 Working with the Installed Templates . 384
16.3 Configuring a Provisioning Request Definition. 387

16.3.1 Selecting the Driver . 387
16.3.2 Deleting a Provisioning Request . 388
16.3.3 Filtering the List of Requests . 389
16.3.4 Changing the Status of an Existing Provisioning Request. 390
16.3.5 Defining Rights on an Existing Provisioning Request . 390

17 Managing Provisioning Workflows 393
17.1 About the Workflow Administration Plug-in . 393
17.2 Managing Workflows . 394

17.2.1 Connecting to a Workflow Server . 394
17.2.2 Finding Workflows that Match Search Criteria. 396
17.2.3 Controlling the Active Workflows Display . 397
17.2.4 Terminating a Workflow Instance . 399
17.2.5 Viewing Details about a Workflow Instance. 399
17.2.6 Reassigning a Workflow Instance . 399
17.2.7 Managing Workflow Processes in a Cluster . 400

17.3 Configuring the E-Mail Server . 402
17.4 Working with E-Mail Templates . 403

17.4.1 Default Content and Format . 405
17.4.2 Editing E-mail Templates. 415
17.4.3 Modifying Default Values for the Template . 416
17.4.4 Adding Localized E-Mail Templates . 417

17.5 Allowing a Named Password to be Retrieved over LDAP . 418
Q Identity Manager User Application: Administration Guide

Part VI Web Service Reference 421

18 Provisioning Web Service 423
18.1 About the Provisioning Web Service . 423

18.1.1 Provisioning Web Service Overview . 423
18.1.2 Removing Administrator Credential Restrictions . 424
18.1.3 Provisioning Web Service Method Categories . 425

18.2 Developing Clients for the Provisioning Web Service . 425
18.2.1 Web Access to the Provisioning Web Service. 426
18.2.2 A Java Client for the Provisioning Web Service . 428
18.2.3 Developing a Mono Client . 433
18.2.4 Sample Ant File . 434
18.2.5 Sample Log4J File . 435

18.3 Provisioning Web Service API . 435
18.3.1 Processes . 436
18.3.2 Provisioning . 445
18.3.3 Work Entries . 456
18.3.4 Comments . 471
18.3.5 Configuration . 476
18.3.6 Miscellaneous . 480
18.3.7 Cluster . 484

19 Metrics Web Service 487
19.1 About the Metrics Web Service . 487

19.1.1 Web Service Semantics. 488
19.1.2 Accessing the Test Page . 488
19.1.3 Web Service Methods Grouped by Security Permissions . 488
19.1.4 Specifying Filters . 491
19.1.5 Generating the Stub Classes. 493
19.1.6 Obtaining the Remote Interface. 493
19.1.7 Metrics Configuration Settings. 494

19.2 Metrics Web Service API . 496
19.2.1 Team Manager Methods . 496
19.2.2 Provisioning Application Administrator Methods . 498
19.2.3 Utility Methods . 500

19.3 Metrics Web Service Examples . 500
19.3.1 General Examples . 501
19.3.2 Other Examples . 501

20 Notification Web Service 505
20.1 About the Notification Web Service . 505

20.1.1 Accessing the Test Page . 505
20.1.2 Accessing the WSDL . 505
20.1.3 Generating the Stub Classes. 506

20.2 Notification Web Service API . 506
20.2.1 iRemoteNotification . 506
20.2.2 BuiltInTokens . 507
20.2.3 Entry . 508
20.2.4 EntryArray . 509
20.2.5 NotificationMap . 510
20.2.6 NotificationService . 510
20.2.7 StringArray. 511
20.2.8 VersionVO . 511

20.3 Notification Example . 512
Contents 9

10 NetI
21 Directory Abstraction Layer (VDX) Web Service 515
21.1 About the Directory Abstraction Layer (VDX) Web Service . 515

21.1.1 Accessing the Test Page . 515
21.1.2 Accessing the WSDL . 515
21.1.3 Generating the Stub Classes. 516
21.1.4 Removing Administrator Credential Restrictions . 516

21.2 VDX Web Service API . 517
21.2.1 IRemoteVdx . 517
21.2.2 Attribute . 519
21.2.3 AttributeArray. 521
21.2.4 AttributeType . 521
21.2.5 BooleanArray . 522
21.2.6 ByteArrayArray . 522
21.2.7 DateArray. 523
21.2.8 EntryAttributeMap . 523
21.2.9 Entry . 524
21.2.10 EntryArray . 525
21.2.11 IntegerArray . 526
21.2.12 StringArray. 526
21.2.13 StringEntry . 527
21.2.14 StringEntryArray . 527
21.2.15 StringMap . 528
21.2.16 VdxService. 529
21.2.17 VersionVO . 529

21.3 VDX Example. 529

22 Role Web Service 539
22.1 About the Role Web Service . 539

22.1.1 Accessing the Test Page . 539
22.1.2 Accessing the WSDL . 542
22.1.3 Generating the Stub Classes. 542
22.1.4 Removing Administrator Credential Restrictions . 542

22.2 Role API . 543
22.2.1 IRemoteRole . 543
22.2.2 Approver . 557
22.2.3 ApproverArray . 558
22.2.4 Category . 558
22.2.5 CategoryArray . 559
22.2.6 CategoryKey . 559
22.2.7 CategoryKeyArray . 560
22.2.8 Configuration . 561
22.2.9 Container . 564
22.2.10 DNString . 565
22.2.11 DNStringArray . 566
22.2.12 Entitlement. 566
22.2.13 EntitlementArray . 567
22.2.14 Group. 567
22.2.15 IdentityType . 569
22.2.16 IdentityTypeDnMap . 571
22.2.17 IdentityTypeDnMapArray . 572
22.2.18 LocalizedValue . 572
22.2.19 LongArray . 573
22.2.20 NrfServiceException . 573
22.2.21 RequestCategoryType. 574
22.2.22 RequestStatus . 576
22.2.23 ResourceAssociation . 578
22.2.24 Role . 579
22.2.25 RoleAssignment. 585
Q Identity Manager User Application: Administration Guide

22.2.26 RoleAssignmentArray . 586
22.2.27 RoleAssignmentActionType. 587
22.2.28 RoleAssignmentRequest . 589
22.2.29 RoleAssignmentRequestStatus . 591
22.2.30 RoleAssignmentType. 595
22.2.31 RoleAssignmentTypeInfo. 596
22.2.32 RoleInfo . 598
22.2.33 RoleInfoArray. 600
22.2.34 RoleLevel . 601
22.2.35 RoleLevelArray . 602
22.2.36 RoleRequest . 602
22.2.37 RoleServiceDelegate . 606
22.2.38 RoleServiceSkeletonImpl. 610
22.2.39 Sod . 614
22.2.40 SodArray . 617
22.2.41 SodApprovalType . 617
22.2.42 SodJustification . 619
22.2.43 SodJustificationArray . 620
22.2.44 User . 620
22.2.45 VersionVO . 624

22.3 Role Web Service Examples . 625
22.3.1 Retrieving Roles for a Group . 625
22.3.2 Retrieving Role Assignment Request Status. 626
22.3.3 Retrieving Type Information for a Role Assignment . 627
22.3.4 Retrieving Role Categories . 628
22.3.5 Retrieving Role Levels. 628
22.3.6 Verifying Whether a User Is In a Role . 629

23 Resource Web Service 631
23.1 About the Resource Web Service . 631

23.1.1 Accessing the Test Page . 631
23.1.2 Accessing the WSDL . 632
23.1.3 Generating the Stub Classes. 633
23.1.4 Removing Administrator Credential Restrictions . 633

23.2 Resource Web Service Interface . 634
23.2.1 IRemoteResource . 634
23.2.2 CodeMapRefreshStatus . 646
23.2.3 CodeMapValueStatus . 648
23.2.4 EntitlementRefreshInfo . 648
23.2.5 ProvisioningCodeMap . 650
23.2.6 Resource . 652
23.2.7 ResourceAssignment. 656
23.2.8 ResourceRequestParam . 658
23.2.9 ResourceAssignmentRequestStatus . 659

23.3 Resource Web Service Examples . 662
23.3.1 Code Map Synchronization Code Samples . 662

24 Forgot Password Web Service 665
24.1 About the Forgot Password Web Service . 665

24.1.1 Accessing the Service . 665
24.1.2 Accessing the WSDL . 665
24.1.3 Generating the Stub Classes. 666

24.2 Password Management Web Service Interface . 666
24.2.1 processForgotConf . 666
24.2.2 processUser. 667
24.2.3 processChaRes . 667
24.2.4 processChgPwd. 668
Contents 11

12 NetI
24.3 ForgotPasswordWSBean. 669

Part VII REST Services 671

25 Introduction to Resource Information Services 673
25.1 About RIS. 673

25.1.1 How it Works . 673
25.1.2 Configuring the RIS WAR . 674

25.2 Security . 677
25.2.1 Architecture . 678
25.2.2 Authorization REST Service . 684
25.2.3 Configuration Parameters . 687

25.3 WADL Document . 688

26 Identities Service 693
26.1 About the Identities Service . 693
26.2 Accessing and Using the Identities Service . 693

26.2.1 Available Resources . 693
26.2.2 Complete URI Syntax . 694
26.2.3 JSON Representations Received by the Client . 696
26.2.4 Event Status Codes . 698

27 Password Management and SSO Services 699
27.1 About the Password Management and SSO Services. 699
27.2 Accessing and Using the Password Management and SSO Services. 699

27.2.1 Available Resources . 699
27.2.2 Complete URI Syntax . 700
27.2.3 JSON Representations Received by the Client . 701

28 Resources Service 709
28.1 About the Resources Service. 709
28.2 Accessing and Using the Resources Service . 709

28.2.1 Available Resources . 709
28.2.2 Complete URI Syntax . 710
28.2.3 JSON Representations . 712

29 Roles Service 715
29.1 About the Role Service . 715
29.2 Accessing and Using the Role Service . 715

29.2.1 Available Resources . 715
29.2.2 Complete URI Syntax . 716
29.2.3 JSON Representations . 718
29.2.4 Event Status Codes . 723

30 Work Items Service 725
30.1 About the Work Items Service . 725
30.2 Accessing and Using the Work Items Service . 725

30.2.1 Available Resources . 725
30.2.2 Complete URI Syntax . 726
30.2.3 JSON Representations Received by the Client . 728
Q Identity Manager User Application: Administration Guide

30.2.4 JSON Representations Sent by the Client. 730
30.2.5 Event Status Codes . 731
30.2.6 JSON Schema . 731

31 Workflow Process and Definition Service 737
31.1 About the Workflow Process and Definition Service . 737
31.2 Accessing and Using the Workflow Process and Definition Service . 737

31.2.1 Available Resources . 737
31.2.2 Complete URI Syntax . 738
31.2.3 JSON Representations Received by the Client . 741
31.2.4 JSON Representations Sent by the Client. 744
31.2.5 Event Status Codes . 745
31.2.6 JSON Schema . 745
31.2.7 Testing the Client with the CURL Command . 750

Part VIII Appendixes 751

A Configuring the Identity Manager Approvals App 753
A.1 Product Requirements . 753
A.2 Setting Up the Approvals App . 754

A.2.1 Understanding Approvals App Settings . 755
A.2.2 Customizing and Using the Default Approvals App Provisioning Request Definition 757
A.2.3 Creating and Deploying a Custom Configuration Link. 761
A.2.4 Creating and Deploying a Custom Configuration QR Code . 761

A.3 Optimizing Designer Forms for the Approvals App . 762
A.4 Understanding Language Support in the Approvals App . 762

B Schema Extensions for the User Application 765
B.1 Attribute Schema Extensions . 765
B.2 Objectclass Schema Extensions . 768
B.3 Resource Definition Object (nrfResource) . 769
B.4 Resource Request Object (nrfResourceRequest) . 770

B.4.1 Resource Request Status Codes (nrfStatus). 771
B.5 Role-Resource Configuration (nrfConfiguration) . 772
B.6 Resource Binding to Users (nrfIdentity) . 772
B.7 Resource Containers . 772

C JavaScript Search API 773
C.1 Launching a Basic Search using the SearchListPortlet . 773

C.1.1 Passing Request Parameters . 773
C.1.2 Using a JSON-formatted String to Represent a Query . 775

C.2 Creating a New Query using the JavaScript API . 777
C.2.1 JavaScript API . 778

C.3 Performing an Advanced Search Using a JSON-formatted Query . 780
C.4 Retrieving all Saved Queries for the Current User . 780
C.5 Running an Existing Saved Query . 781
C.6 Performing a Search on All Searchable Attributes. 781

D Trouble Shooting 783
D.1 Permgen Space Error . 783
D.2 E-Mail Notification Templates . 783
Contents 13

14 NetI
D.3 Org Chart and Guest Access . 783
D.4 Provisioning Notification. 784
D.5 javax.naming.SizeLimitExceededException. 784
D.6 Linux Open Files Error . 785
Q Identity Manager User Application: Administration Guide

About This Guide

This guide describes how to administer the Novell Identity Manager User Application. It includes
these parts:

Part I, “Overview,” on page 17
Part II, “Configuring the User Application Environment,” on page 43
Part III, “Administering the User Application,” on page 125
Part IV, “Portlet Reference,” on page 291
Part V, “Configuring and Managing Provisioning Workflows,” on page 367
Part VI, “Web Service Reference,” on page 421
Part VII, “REST Services,” on page 671
Part VIII, “Appendixes,” on page 751

To learn about administering the other features of Identity Manager (which are common to all
packagings), see the Novell Identity Manager: Administration Guide.

Audience
The information in this guide is for system administrators, architects, and consultants who are
responsible for configuring, deploying, and managing the identity self-service features and
workflow-based provisioning features of the Identity Manager User Application.

End-user documentation for these features is provided in the User Application: User Guide.

Feedback
We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html (http://
www.novell.com/documentation/feedback.html) and enter your comments there.

Documentation Updates
For the most recent version of the Identity Manager User Application: Administration Guide, visit the
Identity Manager Documentation Web site (http://www.netiq.com/documentation/idm402/
index.html).
About This Guide 15

http://www.netiq.com/documentation/idm402/index.html
https://www.netiq.com/documentation/idm402/pdfdoc/ugpro/ugpro.pdf#front
http://www.novell.com/documentation/feedback.html

16 NetIQ Identity Manager User Application: Administration Guide

I IOverview

This section introduces you to the Identity Manager User Application, and helps you plan for its use
in your organization.

Chapter 1, “Introduction to the User Application,” on page 19
Overview 17

18 NetIQ Identity Manager User Application: Administration Guide

1 1Introduction to the User Application

This section introduces the Identity Manager User Application. Topics include:

Section 1.1, “About the User Application,” on page 19
Section 1.2, “User Application Architecture,” on page 25
Section 1.3, “User Application User Types,” on page 32
Section 1.4, “Design and Configuration Tools,” on page 37
Section 1.5, “What’s Next,” on page 39

1.1 About the User Application
The Identity Manager User Application is the business user’s view into the information, resources,
and capabilities of Identity Manager. The User Application is a browser-based Web application that
gives the user the ability to perform a variety of identity self-service tasks. The User Application
provides a complete roles-based provisioning solution, giving users the ability to initiate and manage
provisioning and role-based requests and approvals. In addition, the User Application offers support
for compliance features, giving an organization a way to ensure that personnel conform to relevant
business laws and regulations.

The User Application enables you to address the following business needs:

Providing a convenient way to perform roles-based provisioning actions.

The User Application allows you to manage role definitions and role assignments within your
organization. Role assignments can be mapped to resources within a company, such as user
accounts, computers, and databases.

For details on setting up the Roles and Resources tab, see Section 2.10, “Configuring the Roles
and Resources Tab,” on page 90.
Ensuring that an organization has a method for verifying that personnel are fully aware of
organizational policies and are taking steps to comply with these policies.
For details on setting up the Compliance tab, see Section 2.11, “Configuring the Compliance
Tab,” on page 97.
Providing user self-service, allowing a new user to self-register, and providing access to
anonymous or guest users.
For more information, see Part IV, “Portlet Reference,” on page 291.
Ensuring that access to corporate resources complies with organizational policies and that
provisioning occurs within the context of the corporate security policy.
You can grant users access to identity data within the guidelines of corporate security policies.
For more information, see Section 2.2, “Security,” on page 47.
Reducing the administrative burden of entering, updating, and deleting user information across
all systems in the enterprise.
Introduction to the User Application 19

You can create customized workflows to provide a Web-based interface for users to manipulate
distributed identity data triggering workflows as necessary.
For more information, see Part V, “Configuring and Managing Provisioning Workflows,” on
page 367.
Managing manual and automated provisioning of identities, services, resources, and assets, and
supporting complex workflows.
You can implement manual provisioning by creating workflows that route provisioning
requests to one or more authorities. For automated provisioning, you can configure the User
Application to start workflows automatically in response to events occurring in the Identity
Vault.
For more information, see Part V, “Configuring and Managing Provisioning Workflows,” on
page 367.

IMPORTANT: The User Application is an application and not a framework. The areas within the
User Application that are supported to be modified are outlined within the product documentation.
Modifications to areas not outlined within the product documentation are not supported.

1.1.1 About Identity Self-Service
Identity is the foundation of the User Application. The application uses identity as the basis for
authorizing users access to systems, applications, and databases. Each user’s unique identifier—and
each user’s roles—comes with specific access rights to identity data. For example, users who are
identified as managers can access salary information about their direct reports, but not about other
employees in their organization.

The Identity Self-Service tab within the application gives users a convenient way to display and work
with identity information. It enables your organization to be more responsive by giving users access
to the information they need whenever they need it. For example, users might use the Identity Self-
Service tab to:

Manage their own user accounts directly
Look up other users and groups in the organization on demand
Visualize how those users and groups are related
List applications with which they are associated

The User Application Administrator is responsible for setting up the contents of the Identity Self-
Service tab. What business users can see and do is typically determined by how the application has
been configured, by their job requirements and level of authority.

NOTE: In Identity Manager 4.0.2 Standard Edition, if you logon as a business user, the Identity Self-
Service tab is the only tab you will see in the User Application. If you logon as a User Application
Administrator, you see the Administration tab as well.
20 NetIQ Identity Manager User Application: Administration Guide

1.1.2 About Roles-Based Provisioning
The purpose of the Roles and Resources tab within the User Application is to give you a convenient
way to perform roles-based provisioning actions. These actions allow you to manage role definitions
and role assignments within your organization. Role assignments can be mapped to resources within
a company, such as user accounts, computers, and databases. For example, you might use the Roles
and Resources tab to:

Make role requests for yourself or other users within your organization
Create roles and role relationships within the roles hierarchy
Create separation of duties (SoD) constraints to manage potential conflicts between role
assignments
Look at reports that provide details about the current state of the Role Catalog and the roles
currently assigned to users, groups, and containers

When a role assignment request requires permission from one or more individuals in an
organization, the request starts a workflow. The workflow coordinates the approvals needed to fulfill
the request. Some role assignment requests require approval from a single individual; others require
approval from several individuals. In some instances, a request can be fulfilled without any
approvals.

When a role assignment request results in a potential separation of duties conflict, the initiator has
the option to override the separation of duties constraint, and provide a justification for making an
exception to the constraint. In some cases, a separation of duties conflict can cause a workflow to
start. The workflow coordinates the approvals needed to allow the separation of duties exception to
take effect.

Your workflow designer and system administrator are responsible for setting up the contents of the
Roles and Resources tab for you and the others in your organization. The flow of control for a roles-
based workflow or separation of duties workflow, as well as the appearance of forms, can vary
depending on how the approval definition for the workflow was defined in the Designer for Identity
Manager. In addition, what you can see and do is typically determined by your job requirements and
your level of authority.

For details on setting up the Role Subsystem, see Section 2.10, “Configuring the Roles and Resources
Tab,” on page 90. For details on using the Roles and Resources tab, see the discussion of the Roles and
Resources tab in the Identity Manager User Application: User Guide (http://www.netiq.com/
documentation/idm402/pdfdoc/ugpro/ugpro.pdf).

NOTE: The ability to define custom roles is only available with Identity Manager 4.0.2 Advanced
Edition. Standard Edition only supports the use of system roles. The Roles and Resources tab and the
Work Dashboard tab are not available in Standard Edition.

1.1.3 About Resource-Based Provisioning
The purpose of the resource functionality within the User Application is to give you a convenient
way to perform resource-based provisioning actions. These actions allow you to manage resource
definitions and resource assignments within your organization. Resource assignments can be
mapped to users or to roles within a company. For example, you might use resources to:

Make resource requests for yourself or other users within your organization
Create resources and map them to entitlements
Introduction to the User Application 21

http://www.netiq.com/documentation/idm402/pdfdoc/ugpro/ugpro.pdf

When a resource assignment request requires permission from one or more individuals in an
organization, the request starts a workflow. The workflow coordinates the approvals needed to fulfill
the request. Some resource assignment requests require approval from a single individual; others
require approval from several individuals. In some instances, a request can be fulfilled without any
approvals.

The following business rules govern the behavior of resources within the User Application:

Resources can only be assigned to a user. This does not preclude a resource being granted to
users in a container or group based on implicit role assignment. However, the resource
assignment will only be associated with a user.
Resources can be assigned in any of the following ways:

Directly by a user through UI mechanisms
Through a provisioning request
Through a role request assignment
Through a Rest or SOAP interface

The same resource can be granted to a user multiple times (if this capability has been enabled in
the resource definition).
A resource definition can have no more than one entitlement bound to it.
A resource definition can have one or more same-entitlement references bound to it. This
capability provides support for entitlements where the entitlement parameters represent
provisionable accounts or permssions on the connected system.
Entitlement and decision support parameters can be specified at design time (static) or at
request time (dynamic).

Your workflow designer and system administrator are responsible for setting up the User
Application for you and the others in your organization. The flow of control for a resource-based
workflow, as well as the appearance of forms, can vary depending on how the approval definition for
the workflow was defined in the Designer for Identity Manager. In addition, what you can see and do
is typically determined by your job requirements and your level of authority.

NOTE: Resources require Identity Manager 4.0.2 Advanced Edition. Standard Edition does not
support this feature. The Roles and Resources tab and the Work Dashboard tab are not available in
Standard Edition.

Resources
A resource is any digital entity such as a user account, computer, or database that a business user
needs to be able to access. The User Application provides a convenient way for end users to request
the resources they need. In addition, it provides tools that administrators can use to define resources.

Each resource is mapped to an entitlement. A resource definition can have no more than one
entitlement bound to it. A resource definition can be bound to the same entitlement more than once,
with different entitlement parameters for each resource.
22 NetIQ Identity Manager User Application: Administration Guide

Resource Requests
Resources can be assigned to users only. They cannot be assigned to groups or containers. However,
if a role is assigned to a group or container, the users in the group or container may automatically be
granted access to the resources associated with the role.

Resource requests may require approvals. The approval process for a resource may be handled by a
provisioning request definition, or by an external system by setting the status code on the resource
request.

If a resource grant request is initiated by a role assignment then it is possible that the resource will
not be granted, even though the role is provisioned. The most likely reason for this would be that the
necessary approvals were not provided.

A resource request can grant a resource to a user or revoke a resource from a user.

Role and Resource Service Driver
The User Application uses the Role and Resource Service Driver to manage back-end processing of
resources. For example, it manages all resource requests, starts workflows for resource requests, and
initiates the provisioning process for resource requests.

Resource Request Process Flow
The following example shows the process flow for a resource assignment request. In this example, a
user requests a resource that grants access to an SAP profile:

Figure 1-1 Process Flow for a Resource Request

The steps in the process are described below:

1. A user requests a resource within the User Application.
2. A User Request object is created in the Identity Vault.
3. The Role and Resource Service Driver processes the new request.
Introduction to the User Application 23

4. The Role and Resource Service Driver starts a workflow, and changes the request status.
5. The approval process is performed within the User Application. Upon completion of the

approval process, the workflow activity changes the request status.
6. The Role and Resource Driver picks up the change in the status, and begins to provision the

resource, if all of the necessary approvals have been provided.
7. The User Object attributes are updated to included the resource binding and approval

information.
8. An entitlement request is made for the SAP Profile.
9. The SAP Driver processes the entitlement and creates the profile in SAP.

1.1.4 About Workflow-Based Provisioning
A key feature of the Identity Manager User Application is workflow-based provisioning, which
enables you to initiate workflow processes to manage the approval and revocation of user access to
your organization’s secure systems.

The User Application’s Work Dashboard tab gives users a convenient way to make workflow process
requests. A provisioning request is a user or system action intended to initiate a process. Provisioning
requests can be initiated directly by the user (through the Work Dashboard tab), or indirectly in
response to events occurring in the Identity Vault.

When a provisioning request requires permission from one or more individuals in an organization,
the request starts one or more workflows. The workflows coordinate the approvals needed to fulfill
the request. Some provisioning requests require approval from a single individual; others require
approval from several individuals. In some instances, a request can be fulfilled without any
approvals.

By default, the Work Dashboard tab in the User Application does not display any provisioning
requests. To configure a provisioning request a designer familiar with your business needs creates a
provisioning request definition, which binds the resource to a workflow. The designer can configure
workflows that proceed in a sequential fashion, with each approval step being performed in order, or
workflows that proceed in a parallel fashion. A parallel workflow allows more than one user to act on
a workflow task concurrently.

Identity Manager provides a set of Eclipse-based tools for designing the data and the flow of control
within the workflows. In addition, Identity Manager provides a set of Web-based tools that provide
the ability to view existing provisioning requests and manage workflows that are in process. For
more information, see Section 1.4, “Design and Configuration Tools,” on page 37.

The Provisioning Administrator is responsible for managing the workflow-based provisioning
features of the User Application. For more information, see Section 1.3, “User Application User
Types,” on page 32.

NOTE: Workflow processes require Identity Manager 4.0.2 Advanced Edition. Standard Edition does
not support this feature.

1.1.5 About Compliance
Compliance is the process of ensuring that an organization conforms to relevant business laws and
regulations. One of the key elements of compliance is attestation. Attestation gives an organization a
method for verifying that personnel are fully aware of organizational policies and are taking steps to
24 NetIQ Identity Manager User Application: Administration Guide

comply with these policies. By requesting that employees or administrators regularly attest to the
accuracy of data, management ensures that personnel information such as user profiles, role
assignments, and approved separation of duties (SoD) exceptions are up-to-date and in compliance.

To allow individuals within an organization to verify the accuracy of corporate data, a user makes an
attestation request. This request in turn initiates one or more workflow processes. The workflow
processes give the attesters an opportunity to attest to the correctness of the data. A separate workflow
process is initiated for each attester. An attester is assigned a workflow task in the My Tasks list on the
Requests & Approvals tab. To complete the workflow process, the attester opens the task, reviews the
data, and attests that it is correct or incorrect.

The Roles Based Provisioning Module supports four types of attestation:

User profile
SoD violations
Role assignment
User assignment

For details on setting up the Compliance tab, see Section 2.11, “Configuring the Compliance Tab,” on
page 97. For details on using the Compliance tab, see the discussion of the Compliance tab in the Identity
Manager User Application: User Guide (http://www.netiq.com/documentation/idm402/pdfdoc/ugpro/
ugpro.pdf).

NOTE: Compliance requires Identity Manager 4.0.2 Advanced Edition. Standard Edition does not
support this feature. The Compliance tab is not available in Standard Edition.

1.2 User Application Architecture
The Identity Manager User Application relies on a number of independent components acting
together. The core components are shown in Figure 1-2.
Introduction to the User Application 25

http://www.netiq.com/documentation/idm402/pdfdoc/ugpro/ugpro.pdf
http://www.netiq.com/documentation/idm402/pdfdoc/ugpro/ugpro.pdf

Figure 1-2 User Application Core Components

1.2.1 User Interface
The Identity Manager User Application is a browser-based Java application. It is comprised of a
collection of JSR168-compliant portlets that run within a Web portal, JavaServer Pages, and
JavaServer Faces that run within a Java Web application on a J2EE-compliant application server. The
User Application framework provides container services, such as managing window state, portlet
preferences, persistence, caching, theming, logging, and acts as a security gatekeeper. The application
server, on which the User Application runs, provides various services to the application as a whole,
such as scalability through clustering, database access via JDBC, and support for certificate-based
security.

NOTE: The portal functionality within the User Application is being deprecated in Identity Manager
4.0.2.
26 NetIQ Identity Manager User Application: Administration Guide

1.2.2 Directory Abstraction Layer
The directory abstraction layer provides a logical view of the Identity Vault data. You define a set of
entities and their related attributes based on the Identity Vault objects that you want users to view,
modify, or delete in the User Application. The Directory Abstraction layer:

Performs all of the User Application’s LDAP queries against the Identity Vault. This isolates
presentation-layer logic from the Identity Vault, so that all requests for identity data go through
the directory abstraction layer.
Checks constraints and access control on data requests made via the User Application.
Caches runtime configuration and entity-definition data obtained from the Identity Vault. See
Section 5.1.1, “Caching Management,” on page 131

You use the directory abstraction layer editor plug-in (available in Designer for Identity Manager) to
define the structure of the directory abstraction layer data definitions. To learn more, see the section
on the directory abstraction layer editor in the Identity Manager User Application: Design Guide.

1.2.3 Workflow Engine
The Workflow Engine is a set of Java executables responsible for managing and executing steps in an
administrator-defined workflow and keeping track of state information (which is persisted in a
database). When the necessary approvals have been given, the Provisioning System provisions the
resource as requested.

During the course of workflow execution, the Workflow Engine can send one or more e-mail
messages to notify users of changes in the state of the workflow. In addition, it can send e-mail
messages to notify users when updates have been made to proxy, delegate, and availability settings.

You can edit an e-mail template in the Designer for Identity Manager or in iManager and then use
this template for e-mail notifications. At runtime, the Workflow Engine retrieves the template from
the directory and replaces tags with dynamic text suitable for the notification.

Additional details about the Workflow Engine, including how to configure and manage provisioning
workflows, are in Part V, “Configuring and Managing Provisioning Workflows,” on page 367.

1.2.4 SOAP Endpoints
The User Application provides the following SOAP endpoints to allow third-party software
applications to take advantage of User Application services:

Table 1-1 SOAP Endpoints

SOAP Endpoint Description

Provisioning Web Service To support third-party access, the provisioning
Workflow Engine includes a Web service endpoint.
The endpoint offers all provisioning functionality (for
example, allowing SOAP clients to start a new
approval flow, or list currently executing flows).
Introduction to the User Application 27

1.2.5 Application Server (J2EE-Compliant)
The application server provides the runtime framework in which the User Application, directory
abstraction layer and Workflow Engine execute. The User Application is packaged as a Java Web
Application Archive, or WAR file. The WAR is deployed to the application server.

The User Application runs on JBoss and WebSphere. For a complete list of supported platforms, see
the Roles Based Provisioning Module Installation Guide.

1.2.6 Database
The User Application relies on a database (MySQL* by default; see the Roles Based Provisioning Module
Installation Guide for a list of supported databases) to store several kinds of information:

User application configuration data: for example, Web page definitions, portlet instance
registrations, and preference values.
Workflow state information is persisted in the database. (The actual workflow definitions are
stored in the User Application driver in the Identity Vault.)
Novell Identity Audit logs

Metrics Web Service The workflow engine also includes a Web Service for
gathering workflow metrics. The addition of the Metrics
Web Service to the Workflow Engine lets you monitor
an approval flow process. In addition, it provides
indicators the business manager can use to modify the
process for optimal performance.

Notification Web Service The Provisioning System includes an e-mail
notification facility that lets you send e-mail messages
to notify users of changes in the state of the
provisioning system, as well as tasks that they need to
perform. To support third-party access, the notification
facility includes a Web service endpoint that lets you
send an e-mail message to one or more users.

Directory Abstraction Layer (VDX) Web Service The directory abstraction layer provides a logical view
of the Identity Vault data. To support access by third-
party software applications, the directory abstraction
layer includes a Web service endpoint called the VDX
Web Service. This endpoint lets you access the
attributes associated with entities defined in the
directory abstraction layer. It also lets you perform ad
hoc searches for entities and execute predefined
searches called global queries.

Role Web Service To support access by third-party software applications,
the Role subsystem includes a Web service endpoint
called the Role Web Service. It supports a wide range
of role management and SoD management functions.

SOAP Endpoint Description
28 NetIQ Identity Manager User Application: Administration Guide

1.2.7 User Application Driver
The User Application driver is an important enabling piece of the User Application. It is responsible
for:

Storing application-specific environment configuration data.
Notifying the directory abstraction layer when important data values change in the Identity
Vault. This causes the directory abstraction layer to update its cache.

The User Application driver can be configured to:

Allow events in the Identity Vault to trigger workflows.
Communicate the success or failure of a workflow's provisioning activity back to the User
Application database, which allows users to view the final status of their requests.
Start workflows automatically in response to changes of attribute values in the Identity Vault.

The User Application driver is not only a runtime component but a storage wrapper for directory
objects (comprising the User Application’s runtime artifacts).

Table 1-2 Artifacts Stored in the User Application Driver

Artifacts Description

Driver Set Object Every Identity Manager installation requires that drivers be grouped into driver
sets. Only one driver set can be active at a time (on a given directory server).
The drivers within that set can be toggled on or off individually without
affecting the driver set as a whole. The User Application driver (like any other
Identity Manager driver) must exist inside a driver set. The driver set is not
automatically created by the User Application; you must create one, then
create the User Application driver within it.

User Application The User Application driver object is the container a variety of artifacts. The
User Application driver implements Publisher and Subscriber channel objects
and policies. The Publisher channel is not used by the User Application but is
available for custom use cases.
Introduction to the User Application 29

1.2.8 Role and Resource Service Driver
The Roles subsystem uses the Role and Resource Service driver to manage backend processing of
roles. For example, it manages all role assignments, starts workflows for role assignment requests
and SoD conflicts that require approvals, and maintains indirect role assignments according to group
and container membership, as well as membership in related roles. The driver also grants and
revokes entitlements for users based on their role memberships, and performs cleanup procedures
for requests that have been completed.

The Role and Resource Service driver performs the following functions:

Starts an SoD workflow and waits for approvals in situations where a role request requires an
SoD workflow
Starts a role assignment workflow and waits for approvals in situations where a role request
requires a workflow
Adds users to and remove users from roles. To do this, the Role and Resource Service driver:

Waits for a start date before making assignments
Terminates a role assignment when the end date is reached

Adds and removes higher-level and lower-level role relationships
Adds and removes role assignments for groups
Adds and removes role assignments for containers
Maintains all role membership information for indirect role assignments, including:

Role assignments acquired through role relationships
Role assignments that result from membership in groups
Role assignments that result from membership in containers

App Config Object The AppConfig object is a container for the following User Application
configuration objects.

RequestDefs: Container for Provisioning Request Definitions. The
definitions stored here (as XML) represent the classes of requests that
end users with appropriate rights can instantiate via the User Application.

WorkflowDefs: Container for Workflow objects, including design-time
descriptions plus any template or unused flows.

ResourceDefs: Container for Provisioned Resource definitions,
including design-time descriptions plus any templates or unused targets.

ServiceDefs: Container for Service Definition objects, which wrap Web
Services called by workflows.

DirectoryModel: Directory abstraction layer objects that represent
different types of content of the Identity Vault that can be exposed in the
User Application.

AppDefs: Container for configuration objects that initialize the runtime
environment, such as cache configuration information and e-mail
notification properties.

ProxyDefs: Container for proxy definitions.

DelegateeDefs: Container for delegate definitions.

Artifacts Description
30 NetIQ Identity Manager User Application: Administration Guide

Grants and revokes entitlements to and from users according to their role memberships
Maintains additional reporting information that is associated with each role assignment
Maintains additional reporting information on objects in eDirectory, such as:

Approval information
Where indirect assignments come from
Where entitlements come from

Logs events to an auditing service
Cleans up processed requests after a user-specified amount of time
Recalculates role assignments based on dynamic and nested groups on a polled basis

1.2.9 Designer for Identity Manager
Designer for Identity Manager provides a set of plug-ins you can use to define the directory
abstraction layer objects and provisioning requests and their associated workflows. For more
information, see Section 1.4, “Design and Configuration Tools,” on page 37

1.2.10 iManager
iManager provides a set of plug-ins you can use to view provisioning requests and manage their
associated workflows. For more information, see Section 1.4, “Design and Configuration Tools,” on
page 37.

1.2.11 Identity Manager Engine
The Identity Manager engine provides the runtime framework that monitors events in the Identity
Vault and connected systems. It enforces policies and routes data to and from the Identity Vault. The
Identity Manager User Application is a connected system. Communication between the Identity
Vault, the User Application’s directory abstraction layer, and the Workflow Engine occurs through
the User Application driver.

1.2.12 Identity Vault
The Identity Vault is the repository for user data (and other identity data) plus the Identity Manager
driver set and the User Application driver. Because the User Application relies on various Identity
Vault objects, it’s necessary to extend the eDirectory schema to accommodate the custom LDAP
objects and attributes required by the User Application. The schema extension occurs automatically
as part of the User Application install. The custom objects and attributes are populated with default
values after the User Application driver is installed and activated.

1.2.13 Novell Identity Audit
Novell Identity Audit is an independent logging server that can persist a variety of kinds of data
(such as data generated by steps of a workflow). For more information, see Chapter 3, “Setting Up
Logging,” on page 111.
Introduction to the User Application 31

1.3 User Application User Types
The Identity Manager User Application users fall into these categories:

Administrative Users
Domain Administrators, Domain Managers, and Team Managers
Designers
Business Users

1.3.1 Administrative Users
The User Application defines several types of administrative users. The administrative users defined
in Table 1-3 are defined at installation.

Table 1-3 User Application Administrative Users

User Description

Identity Vault
Administrator

A user who has rights to configure the Identity Vault. This is a logical role that can
be shared with other administrative user types.

The Identity Vault Administrator account is a proxy user for the User Application to
carry out tasks on the LDAP server that an ordinary logged-in user might not have
permission to execute, such as creating a new user, group, or container. It
represents credentials (username and password) used to bind to the Identity Vault
to perform system LDAP operations, so these are the rights that the User
Application itself needs to run. The Identity Vault Administrator needs:

Supervisor rights to the User Application Driver and all the objects it contains.
You can accomplish this by setting the rights at the driver container level and
making them inheritable.

Supervisor Entry rights to any of the users that are defined through the
directory abstraction layer user entity definition. This should include Write
attribute rights to objectClass and any of the attributes associated with the
DirXML-EntitlementRecipient, srvprvEntityAux and srvprvUserAux auxiliary
classes.

Supervisor rights to the container object cn=DefaultNotificationCollection,
cn=Security. This object persists e-mail server settings used for automated
provisioning e-mails. It can contain SecretStore credentials for authenticating
to the e-mail server itself.
32 NetIQ Identity Manager User Application: Administration Guide

1.3.2 Domain Administrators, Domain Managers, and Team Managers
The Roles Based Provisioning Module uses a security model that recognizes three general categories
of administrators and managers:

The Domain Administrator is an administrator who has the full range of capabilities within a
particular domain, which gives a user assigned to be this type of administrator the ability to
perform all operations on all objects within the domain for all users.
The Domain Manager is a delegated administrator who has the ability to perform selected
operations for a subset of authorized objects within the domain for all users.
The Team Manager is a business line manager who can perform selected operations for a subset of
authorized objects within the domain, but only for a designated set of users (team members).

The following diagram illustrates the security model:

User Application
Administrator

A user who has the rights to perform administrative tasks for the User Application.
This user can:

Use the Administration of the User Application to manage the User
Application.

Use iManager to administer workflow tasks (such as enabling, disabling, or
terminating an in-process workflows)

Run reports on Novell Identity Audit logging data.

This user does not have any special privileges within the User Application.

This user does not need any special directory rights because it controls application
level access via the Administration page. Although a User Application Administrator
has the ability to manage themes in the Administration page, the User Application
uses the LDAP administrator credentials to modify the theme selections in the
Identity Vault.

Password self-service: One task of the User Application Administrator is to
configure password self-service for the User Application. A feature of password
self-service is password synchronization status. To enable the User Application
Administrator to view the password synchronization status for other users (for
troubleshooting or other reasons), it is recommended that you create a
PasswordManagement group and assign one or more users to this group. The
members of this group are allowed to view the password synchronization status of
other users. If you choose to create this group, it must:

Be named PasswordManagement.

Be given the privileges to the Identity Vault. The group must have rights to
read the user’s eDirectory object attribute for users whose password
synchronization status they need to view.

User Description
Introduction to the User Application 33

Figure 1-3 Security Model

Domain Administrators and Domain Managers
Domain Administrators and Domain Managers are designated through system role assignments. The
Roles Based Provisioning Module allows you to assign users to any of the following system roles:

Table 1-4 System Roles for Domain Administrators and Domain Managers

Role Description

Compliance Administrator The Compliance Administrator is a Domain
Administrator who can perform all possible actions for
all objects within the Compliance domain.

Configuration Administrator The Configuration Administrator is a Domain
Administrator who can perform all possible actions on
all objects within the Configuration domain. The
Configuration Administrator controls access to
navigation items with the Roles Based Provisioning
Module.

In addition, the Configuration Administrator configures
the delegation and proxy service, the digital signature
service, the provisioning user interface, and the
workflow engine.

Provisioning Administrator The Provisioning Administrator is a Domain
Administrator who can perform all possible actions for
all objects within the Provisioning domain.
34 NetIQ Identity Manager User Application: Administration Guide

These roles are initialized at install time, but can also be assigned through the Administrator
Assignments user interface on the Administration tab. For details on assigning users to the system
roles, see Section 8.3, “Administrator Assignments,” on page 267.

In Identity Manager 4.0.2 Advanced Edition, the following administrators need to be assigned:

User Application Administrator

Provisioning Manager The Provisioning Manager is a Domain Manager who
can perform only allowed actions for a subset of
objects within the Provisioning domain.

Report Administrator The Report Administrator is a Domain Administrator
who can define report permissions, which include the
ability to use the Identity Manager Reporting tool.

A Report Administrator is given the Access Reporting
Tool navigation access permission automatically,
which allows the user to access the reporting tool
directly from the Work Dashboard.

Resource Administrator The Resource Administrator is a Domain Administrator
who can perform all possible actions for all objects
within the Resource domain.

Resource Manager The Resource Manager is a Domain Manager who can
perform only allowed actions for a subset of objects
within the Resource domain.

Role Administrator The Role Administrator is a Domain Administrator who
can perform all possible actions for all objects (except
for the System Roles) within the Role domain.

Role Manager The Role Manager is a Domain Manager who can
perform only allowed actions for a subset of objects
within the Role domain.

Security Administrator The Security Administrator is a Domain Administrator
who can perform all possible actions for all objects
within the Security domain. The Security domain
allows the Security Administrator to configure access
permissions for all objects in all domains within the
Roles Based Provisioning Module.

The Security Administrator can configure teams, and
also assign domain administrators, delegated
administrators, and other Security Administrators.

NOTE: For testing purposes, Novell does not lock
down the security model in Standard Edition.
Therefore, the Security Administrator is able to assign
all domain administrators, delegated administrators,
and also other Security Administrators. However, the
use of these advanced features is not supported in
production. In production environments, all
administrator assignments are restricted by licensing.
Novell collects monitoring data in the audit database to
ensure that production environments comply.
Furthermore, Novell recommends that only one user
be given the permissions of the Security Administrator.

Role Description
Introduction to the User Application 35

Provisioning Administrator
Compliance Administrator
Roles Administrator
Security Administrator
Resources Administrator
Configuration Administrator
Report Administrator

NOTE: At install time, you can simply specify a User Application Administrator and allow all other
assignments to default to this user.

In Identity Manager 4.0.2 Standard Edition, the following administrators need to be assigned:

User Application Administrator
Report Administrator
Security Administrator

Team Managers
A Team Manager is a user designated as a manager of a team through the Team Configuration user
interface on the Administration tab. For details on configuring teams, see Section 8.4, “Team
Configuration,” on page 279.

1.3.3 Designers
Designers use the Designer for Identity Manager to customize the User Application for your
enterprise. Designer is a tool aimed at information technology professionals such as enterprise IT
developers, consultants, sales engineers, architects or system designers, and system administrators
who have a strong understanding of directories, databases, and their information environment and
who act in the role of a designer or architect of identity-based solutions.

To create or edit or edit workflow objects in Designer, the user needs the following rights on the
RequestDefs.AppConfig container for the specific User Application driver.

[Entry Rights] Supervisor or Create.
[All Attribute Rights] Supervisor or Write.

To initiate a workflow, the user must have Browse [Entry Rights] on the RequestDefs.AppConfig
container for the specific User Application driver or individually per request definition object if you
are using a delegated model.

1.3.4 Business Users
Business users interact with the User Application’s Identity Self-Service, Work Dashboard, and Roles and
Resources tabs. A business user can be:

An authenticated user (such as an employee, a manager, or a delegate or proxy for an employee or
manager). A delegate user is a user to whom one or more specific tasks (appropriate to that user’s
rights) can be delegated, so that the delegates can work on those specific tasks on behalf of
36 NetIQ Identity Manager User Application: Administration Guide

someone else. A proxy user is an end user who acts in the role of another user by temporarily
assuming that user’s identity. All of the rights of the original user apply to the proxy. Work
owned by the original user continues to be owned by that user.
An anonymous or guest user. The anonymous user can be either the public LDAP guest account or
a special account set up in your Identity Vault. The User Application Administrator can enable
anonymous access to some features of the Identity Self-Service tab (such as a search or create
request). In addition, the User Application Administrator can create pages that allow the user to
request a resource. See Table 1-9 on page 41 for information on configuring anonymous access.

The user’s capabilities within the User Application depend on what features the User Application
Administrator has enabled for them. They can be configured to:

View hierarchical relationships between User objects by using the Org Chart portlet.
View and edit user information (with appropriate rights).
Search for users or resources using advanced search criteria (which can be saved for later reuse).
Recover forgotten passwords.

The User Application can be configured so that users can:

Request a resource (start one of potentially many predefined workflows).
View the status of previous requests.
Claim tasks and view tasklists (by resource, recipient, or other characteristics).
View proxy assignments.
View delegate assignments.
Specify one’s availability.
Enter proxy mode in order to claim tasks on behalf of another.
View team tasks, request team resources, and so forth.

1.4 Design and Configuration Tools
The various administrators can use the following tools to design and configure the Identity Manager
User Application.
Introduction to the User Application 37

Table 1-5 Tools for Designing and Configuring the User Application

Tool Purpose

Designer for Identity Manager A powerful, graphical toolset for configuring and deploying
Identity Manager. The following plug-ins are designed to help
you configure the User Application:

Directory Abstraction Layer editor: Lets you define the
Identity Vault objects needed for your User Application.

Provisioning Request Definition editor: Lets you create
workflows for provisioning request definitions. Also allows
you to customize the forms by which users make and
approve requests and e-mail templates.

Provisioning view: Lets you import, export, deploy, and
migrate directory abstraction layer and provisioning
requests to the User Application driver.

Role editor: Lets you create and configure roles for use
within the User Application.

Resource editor: Lets you create and configure resources
for use within the User Application.

For more information, see the Identity Manager User
Application: Design Guide.

iManager A Web-based administration console. The following plug-ins are
designed to help you configure and administer the User
Application:

Provisioning Request Configuration plug-in: Gives you a
read-only view of provisioning request definitions created
through Designer and allows you to mark them active or
inactive.

Workflow Administration plug-in: Provides a browser-
based interface that lets you view the status of workflow
processes, reassign activities within a workflow, or
terminate a workflow in the event that it is stopped and
cannot be restarted.

Provisioning Team plug-in: Not supported with this release
of the Roles Based Provisioning Module. The Team
Configuration user interface on the Administration of the
User Application replaces this iManager tool.

Provisioning Team Request plug-in: Not supported with this
release of the Roles Based Provisioning Module. The
Team Configuration user interface on the Administration of
the User Application replaces this iManager tool.

For more information, see Part V, “Configuring and Managing
Provisioning Workflows,” on page 367
38 NetIQ Identity Manager User Application: Administration Guide

1.5 What’s Next
Now that you have learned about the features and architecture of the Identity Manager User
Application, you can start to customizing it as needed for your own business needs. Typically, you’ll
be:

Customizing the user interface and identity self-service features. See Table 1-6 on page 39.
Setting up the requests and approval features (if provisioning is installed). See Table 1-7 on
page 40.
Setting up your production environment. See Table 1-8 on page 40.

Table 1-6 Customizing the User Interface and Identity Self-Service Features

User Application Administration tab A Web-based administration console that allows you to
configure, manage, and customize the User Application. It
contains the following pages:

Application Configuration: Lets you configure caching,
LDAP parameters, logging, themes, password module
setup

Page Administration: Lets you create new portlets or
customize existing Identity Self-Service pages

Portlet Administration: Lets you create new or customize
the existing portlets used on the Identity Self-Service
pages.

RBPM Provisioning and Security: Lets you define
administrator assignments, configure teams, and specify
navigation access permissions. In addition, it allows you to
configure delegation, proxy, tasks, digital signature service,
and engine and cluster settings.

For more information, see Part III, “Administering the User
Application,” on page 125.

lreport.exe (log report tool) and
iManager Auditing and Logging
feature

A number of predefined log reports (that come with Identity
Manager) are available in Crystal Reports* (.rpt) format for
filtering data logged to the Novell Identity Audit database. The
lreport.exe log report tool (Windows* only) is one way to
generate the reports. You can also use other methods to create
the reports. See Chapter 3, “Setting Up Logging,” on page 111
for details.

Tool Purpose

To learn about See

Setting up directory abstraction layer objects Identity Manager User Application: Design
Guide

Customizing the Identity Self-Service pages Part IV, “Portlet Reference,” on page 291

Adding new pages and setting page security Chapter 6, “Page Administration,” on page 203

Creating custom instances of the identity portlets Chapter 7, “Portlet Administration,” on page 237
Introduction to the User Application 39

Table 1-7 Setting Up the Provisioning, Roles, and Resources Features

Table 1-8 Setting Up the User Application Production Environment

Changing the User Application’s theme or branding Section 5.1.7, “Theme Administration,” on
page 166

Localizing the User Application user interface Section 2.9, “Localizing and Customizing User
Application Strings and Name Formats,” on
page 83

Enabling password self-service Section 5.3, “Password Management
Configuration,” on page 180

To learn about See

Creating provisioning requests Identity Manager User Application: Design Guide and
Chapter 16, “Managing Provisioning Request Definitions,”
on page 383

Customizing request and approval forms Identity Manager User Application: Design Guide

Defining administrator assignments Section 8.3, “Administrator Assignments,” on page 267

Defining teams Section 8.4, “Team Configuration,” on page 279

Defining navigation access permissions Section 8.5, “Navigation Access Permissions,” on page 287

Defining e-mail templates Identity Manager User Application: Design Guide and
Section 17.4, “Working with E-Mail Templates,” on page 403

To learn about See

Your production environment topology Section 2.1, “Topology,” on page 45

Setting up security Section 2.2, “Security,” on page 47

Performance tuning strategies Section 2.7, “Performance Tuning,” on page 66

Setting up a cluster Section 2.8, “Clustering,” on page 71

Setting up logging Chapter 3, “Setting Up Logging,” on page 111

To learn about See
40 NetIQ Identity Manager User Application: Administration Guide

Table 1-9 User Application Configuration for Guest Access

To learn about See

Guest or anonymous accounts Section 2.5, “Enabling Anonymous or Guest Access to
the User Application,” on page 63

Allowing anonymous users to self-register Section 10.4, “Configuring the Create Portlet for Self-
Registration,” on page 303

Allowing anonymous access to the directory
search

Section 14.3, “Configuring Search List for Anonymous
Access,” on page 364

Allowing anonymous access to the My profile or
Organizational charts

Section 11.6, “Setting up Detail for Anonymous
Access,” on page 320 and Section 12.3, “Configuring
Org Chart for Guest Access,” on page 349

Allowing anonymous access to a workflow Chapter 13, “Resource Request Portlet,” on page 351
Introduction to the User Application 41

42 NetIQ Identity Manager User Application: Administration Guide

II IIConfiguring the User Application
Environment

These sections describe how to configure various aspects of the Identity Manager User Application
environment to meet the needs of your organization.

Chapter 2, “Designing the Production Environment,” on page 45
Chapter 3, “Setting Up Logging,” on page 111
Configuring the User Application Environment 43

44 NetIQ Identity Manager User Application: Administration Guide

2 2Designing the Production Environment

This section discusses issues relating to setting up a production environment. It provides guidance
on a number of considerations that come into play when making the transition from a sandbox, test,
or other pre-production environment to a production environment.

This section is organized as follows:

Section 2.1, “Topology,” on page 45
Section 2.2, “Security,” on page 47
Section 2.3, “Single Sign-On (SSO) Configuration,” on page 55
Section 2.4, “Digital Signature Configuration,” on page 56
Section 2.5, “Enabling Anonymous or Guest Access to the User Application,” on page 63
Section 2.6, “Configuring Forgotten Password Self-Service,” on page 64
Section 2.7, “Performance Tuning,” on page 66
Section 2.8, “Clustering,” on page 71
Section 2.9, “Localizing and Customizing User Application Strings and Name Formats,” on
page 83
Section 2.10, “Configuring the Roles and Resources Tab,” on page 90
Section 2.11, “Configuring the Compliance Tab,” on page 97
Section 2.12, “Configuring the Work Dashboard Tab,” on page 98
Section 2.13, “Recreating the Database After Installation,” on page 98
Section 2.14, “Changing the Default Administrator Assignments After Installation,” on page 99
Section 2.15, “Setting up JMS in WebSphere and WebLogic,” on page 101

2.1 Topology
Each major subsystem can have many instances and many ways of connecting. Not every possible
layout is supported. This section includes the following subsections that describe the possible
configurations.

Section 2.1.1, “Design Constraints,” on page 45
Section 2.1.2, “High Availability Design,” on page 47

2.1.1 Design Constraints
Audit Server: This application is responsible for capturing event information (and possibly a good
deal of other information) from the User Application environment at runtime. It might also be doing
double duty as a persistence store for other applications in your company. For a variety of reasons,
you must never put other major pieces of the Identity Manager system (for example, the application
server or the Identity Vault) on the same machine as the Audit server.
Designing the Production Environment 45

Identity Vault: This is a heavily trafficked component with a need for good performance and good
scalability. You must put the Identity Vault on a dedicated machine. You should never put another
high-traffic system, such as an application server with a deployment of the User Application, on the
same machine as the Identity Vault.

Database: If this instance of a supported database is also your auditing database, it is probably on a
dedicated machine. The User Application uses this component in the following ways:

As a persistence store for portal configuration data
As the persistence store for state information on in-process workflows
Optionally, as the logging store for Novell Identity Audit.

Application Server: For performance and capacity reasons, you must run this piece on a dedicated
machine.

These considerations require at a minimum a three-machine configuration.

Additional Constraints The following additional architectural constraints apply to any User
Application configuration:

No User Application instance can service (search, query, add users to, and so forth) more than
one user container. Also, a user container association with an application is meant to be
permanent.
No User Application driver can be associated with more than one User Application, except
when the User Applications are installed on sister nodes of the same JBoss cluster. In other
words, a one-to-many mapping of drivers to User Applications is not supported.

The first constraint enforces a high degree of encapsulation in User Application design.

Suppose you have the following organizational structure:

Figure 2-1 Sample Organizational Structure

During installation of the User Application, you are asked to specify the top-level user container that
your installation looks for in the Identity Vault. In this case, you could specify
ou=Marketing,o=ACME or (alternatively) ou=Finance,o=ACME. You cannot specify both. All User
Application searches and queries (and administrator log-ins) are scoped to whichever container you
specify.

NOTE: In theory, you could specify a scope of o=ACME in order to encompass Marketing and
Finance. But in a large organization, with potentially many ou containers (rather than just two
relating to Marketing and Finance), this is not likely to be practical.

It is possible, of course, to create two independent installations of the User Application (sharing no
resources in common), one for Marketing and another for Finance. Each installation would have its
own database, its own appropriately configured User Application driver, and each User Application
would be administered separately, possibly having unique themes.
46 NetIQ Identity Manager User Application: Administration Guide

If you truly need to place Marketing and Finance within the same scope for one User Application
installation, there are two possible tactics to consider. One is to insert a new container object (for
example, ou=MarketingAndFinance) in the hierarchy, above the two sibling nodes; then point to the
new container as the scope root. Another tactic is to create a filtered replica (a special type of
eDirectory tree) that combines the needed parts of the original ACME tree, and point the User
Application at the replica’s root container. For more information about filtered replicas, see the
eDirectory Administration Guide (https://www.netiq.com/documentation/edir88/edir88/data/
a2iii88.html).

If you have questions about a particular system layout, contact your Novell representative for
assistance or advice.

2.1.2 High Availability Design
Clustering for high availability and capacity is discussed in Section 2.8, “Clustering,” on page 71. For
now, you should know that:

High availability of the User Application is available through clustering. You can set up a cluster
so that each node runs one User Application instance. The instances are all coequals (peers).
Automatic failover is supported. Tasks can still be completed after a loss of a cluster node. A
manual process needs to be used to resume processing of workflows assigned to the node that
has been lost.

See Section 2.8, “Clustering,” on page 71 for more information.

2.2 Security
This section includes the following topics:

Section 2.2.1, “Security Overview,” on page 47
Section 2.2.2, “Enabling SSL,” on page 48
Section 2.2.3, “Turning on SOAP Security,” on page 52
Section 2.2.4, “Mutual Authentication,” on page 52
Section 2.2.5, “Third-Party Authentication and Single Sign-On,” on page 52
Section 2.2.6, “Encryption of Sensitive User Application Data,” on page 53
Section 2.2.7, “Preventing XSS Attacks,” on page 53
Section 2.2.8, “Modifying the Trustee Rights for User Preferences,” on page 54
Section 2.2.9, “Modifying the Trustee Rights for a Provisioning Request Definition,” on page 55
Section 2.2.10, “Disabling the JMX Management Console on JBoss,” on page 55

2.2.1 Security Overview
Moving from pre-production to production usually involves hardening the security aspects of the
system. In sandbox testing, you might use regular HTTP to connect the User Application driver to the
application server, or you might use a self-signed certificate (as a temporary measure) for driver/app-
server communication. In production, on the other hand, you probably use secure connections, with
server authentication based on your company’s Verisign* (or other trusted provider) certificate.

It is typical for X.509 certificates to be used in a variety of places in the Identity Manager User
Application environment, as shown in the following diagram.
Designing the Production Environment 47

https://www.netiq.com/documentation/edir88/edir88/data/a2iii88.html

Figure 2-2 Identity Manager User Application Environment

All communication between the User Application and the Identity Vault is secure, using Transport
Layer Security, by default. The installation of the Identity Vault (eDirectory) certificate into the JBoss
application server keystore is done automatically at install time. Unless you specify otherwise, the
User Application installer places a copy of the eDirectory certificate in the JRE’s default cacerts store.
The installation of the certificate into the WebSphere application server or the WebLogic keystore
must be done manually using your vendor’s tools.

The server certificate needs to be in several places, if communications are to be secure, as shown in
the diagram. Different setup steps might be needed depending on whether you intend to use a self-
signed certificate in the various places in the diagram shown with a JBoss cert box, or you intend to
use a certificate issued by a trusted certificate authority (CA) such as Verisign.

2.2.2 Enabling SSL
The User Application uses HTML forms for authentication. As a result, user credentials are exposed
during login. We strongly recommend that you enable SSL to protect sensitive information.

The procedure for enabling SSL varies depending on whether on you are working in a test or
production environment, as described below.
48 NetIQ Identity Manager User Application: Administration Guide

Enabling SSL in a Test Environment
If you are in a test environment, you might want to use a self-signed certificate. The procedure below
explains how to do this.

To enable SSL in a test environment:

1 Export the Certificate Authority from your eDirectory server using iManager:
1a Go to iManager.
1b Login with the eDirectory administrator’s username and password.
1c Go to Administration > Modify Object.
1d Browse to the CA object in the Security container called TreeName CA.Security. For

example, IDMTESTTREE CA.Security.
1e Click OK.
1f Click Certificates > Self Signed Certificate.

1g Select the self-signed certificate you want to use.
1h Click the Export button.
1i Clear Export private key.
1j Click Export format and select DER.

1k Click Next.
1l Click Save the exported certificate.

1m Click Save File. iManager saves the file as cert.der.
1n Click Close.
1o Move the saved file to a location where you want to store the exported certificate.

2 Create a keystore:
In a command prompt, cd to your .../jboss/server/IDMProv/conf directory and create the
keystore.

NOTE: The jboss/server/IDMProv/conf path is the default path for a User Application
installed on JBoss. The path can vary, depending on how you installed the User Application and
JBoss.

To create the keystore, use the following command:

keytool -genkey -alias [keystore name] -keyalg RSA -keystore [your keystore
name.keystore] -validity 3650

You will be prompted for your password, first and last name, and possibly other pieces of
information.
Here are a few important points to keep in mind as you answer the prompts:

When asked for your first and last name, you should supply the fully qualified name of the
server. For example:

MyJBossServer.Novell.com

Be sure your spelling is correct. If you spell any words incorrectly, you will see errors when
you generate your signed certificate from the signing authority.
Save a copy of the information you provided in a simple text file. This will help to ensure
that you supply the same information when you apply to the signing authority and when
you import your certificate.
Designing the Production Environment 49

3 In your JBoss conf directory, create a simple text file to store your keystore .csr file. Once this file
is created, return to a command prompt and create the .csr with the following command:

keytool -certreq -v -alias [Keystore name you used when you created your
keystore] -file [your.csr] -keypass [password you created in keystore] -
keystore [your.keystore] -storepass [your password]

4 Issue a certificate using iManager:
4a Go to Certificate Server > Issue Certificate.
4b Browse to the .csr file created earlier.

Click Next. Then click Next again.
4c Select Unspecified as the certificate type.

Click Next. Then click Next again.

Enabling SSL in a Production Environment
To install a signed certificate into the JBoss Application Server with the User Application:

1 Create a keystore using the keytool utility included in the JRE.
In a command prompt, cd to your .../jboss/server/IDMProv/conf directory and create the
keystore.

NOTE: The jboss/server/IDMProv/conf path is the default path for a User Application
installed on JBoss. The path can vary, depending on how you installed the User Application and
JBoss.

keytool -genkey -alias [keystore name] -keyalg RSA -keystore [your keystore
name.keystore] -validity 3650

You will be prompted for your password, first and last name, and possibly other pieces of
information.
Here are a few important points to keep in mind as you answer the prompts:

When asked for your first and last name, you should supply the fully qualified name of the
server (for example, MyJBossServer.Novell.com).
Be sure your spelling is correct. If you spell any words incorrectly, you will see errors when
you generate your signed certificate from the signing authority.
Save a copy of the information you provided in a simple text file. This will help to ensure
that you supply the same information when you apply to the signing authority and when
you import your certificate.

2 In your JBoss conf directory, create a simple text file to store your keystore .csr file. Once this file
is created, return to a command prompt and create the .csr with the following command:

keytool -certreq -v -alias [Keystore name you used when you created your
keystore] -file [your.csr] -keypass [password you created in keystore] -
keystore [your.keystore] -storepass [your password]

3 Submit your .csr file to your Certificate Authority (CA), such as VeriSign or Entrust.

Once you have received your signed certificate from your CA, you need to import it into your JBoss
Server.

To import your signed certificate:

1 Place a copy of your certificate in your JBoss conf directory.
Be sure to create a backup copy of this certificate and store it in a safe location.
50 NetIQ Identity Manager User Application: Administration Guide

2 Convert the root CA to DER format:
2a Double-click on your certificate stored in the JBoss conf directory.

This will open a pop-up Certificate dialog screen.
2b Click on the Certificate Path tab.
2c Highlight the root certificate (the certificated issue by the signing authority, such as Entrust

or Verisign).
2d Click on View Certificate. This will open a new Certificate dialog for the root certificate.
2e Click on the Details tab.
2f Click copy to file. This will open the Export Certificate Wizard.

2g Click next when the Export Certificate Wizard opens.
2h Select DER encoded binary for X.509 (.CER) and click next.
2i Create a new file to store the newly formatted certificate and store it in your JBoss conf

directory.
Then click Finish.

3 Convert the signed certificate into DER format:
3a Double click on your certificate, which should be stored in the JBoss conf directory.

This will open a pop-up Certificate dialog screen.
3b Click on the Details tab.
3c Click copy to file. This will open the Export Certificate Wizard.
3d Click next when the Export Certificate Wizard opens.
3e Select DER encoded binary for X.509 (.CER) and click next.
3f Create a new file to store the newly formatted certificate and store it in your JBoss conf

directory.
Then click Finish.

4 Open a command prompt and cd to your JBoss conf directory.
5 Import your Root CA:

keytool -import -trustcacerts -alias root -keystore your.keystore -file
yourRootCA.cer

Be sure to specify root as your alias in this step.
If all goes well, you should see a Certificate was added to keystore message.

6 Import your signed certificate.

keytool -import -alias [alias you used when creating the .csr] -keystore
[your.keystore] -file [your DER converted Signed Cert.cer]

If all goes well, you should see a Certificate reply was installed in keystore message.
7 To verify that the signed certificate was imported correctly, you can run the following command

in a command prompt from your JBoss conf directory.

keytool -list -v -alias idm -keystore idm.keystore

You should see your self signed and signed certificates listed in the output.
8 Enable SSL in JBoss.

Locate jbossweb.sar under .../jboss/server/IDMProv/deploy, where IDMProv is the
context for your User Application installation. Find server.xml and open that file in a text
editor. Enable SSL by uncommenting or adding the following section:
Designing the Production Environment 51

maxThreads="100" strategy="ms" maxHttpHeaderSize="8192"
emptySessionPath="true"
scheme="https" secure="true" clientAuth="false"
keystoreFile="${jboss.server.home.dir}/IDMProv/conf/jboss.jks"
keystorePass="changeit" sslProtocol ="TLS" />

NOTE: Remember to point keystoreFile to the keystore you created. For example:
${jboss.server.home.dir}/conf/server.keystore. Also, remember to change the
keystorePass="changeit" to your keystore password.

You may also need to add SSLEnabled="true" protocol="HTTP/1.1", as shown below:

 <Connector port="8443" address="${jboss.bind.address}"
 maxThreads="100" strategy="ms" maxHttpHeaderSize="8192"
 emptySessionPath="true" SSLEnabled="true" protocol="HTTP/1.1"
 scheme="https" secure="true" clientAuth="false"
 keystoreFile="${jboss.server.home.dir}/conf/cacerts"
 keystorePass="changeit" sslProtocol="TLS" />

9 Restart your JBoss server and test.

2.2.3 Turning on SOAP Security
1 In IDMProv.war, find the web.xml file and open it in a text editor.
2 At the bottom of the file, uncomment the following section:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>IDMProv</web-resource-name>
 <description>IDM Provisioning Edition</description>
 <url-pattern>/*</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

3 Save the file and archive, then restart JBoss.

2.2.4 Mutual Authentication
The Identity Manager User Application does not support client certificate-based authentication out
of the box. That functionality can be obtained, however, by using Novell Access Manager. See your
Novell representative for more information. See also Section 2.2.5, “Third-Party Authentication and
Single Sign-On,” on page 52.

2.2.5 Third-Party Authentication and Single Sign-On
The Identity Manager User Application supports single sign-on through Access Manager using any
third-party authentication service that can log into Access Manager. This capability enables using a
non-password-based technology to log into the User Application through Access Manager. An
example is logging in through a user (client) certificate, for example from a smart card.

Access Manager maps the user to a DN in the IDM Identity Vault. When a user logs into the User
Application through Access Manager, Access Manager can inject a SAML assertion (with the user’s
DN as the identifier) into an HTTP header and forwards the request to the User Application. The
52 NetIQ Identity Manager User Application: Administration Guide

User Application uses the SAML assertion to establish the LDAP connection with the Identity Vault.
For information on configuring Access Manager to support this capability, refer to the Access
Manager documentation.

Accessory portlets that allow single sign-on authentication based on passwords currently do not
support single sign-on when SAML assertions are used for User Application authentication.

2.2.6 Encryption of Sensitive User Application Data
Any sensitive information associated with the User Application that is stored persistently is
encrypted by using the symmetric algorithm AES-128. The master key itself is protected by
password-based cryptography using PBEWithSHA1AndDESede. The password is never persisted or
stored out of memory.

 Information that is encrypted includes (but is not limited to):

LDAP administrator user password
LDAP guest user password
DSS trusted CA keystore password
DSS signature key keystore password
DSS signature key entry password
Novell Identity Audit signature key

However, in a cluster environment, if session failover is enabled, some sensitive data (for example, a
login-password for portlet single sign-on) in the user session can be transferred on the network
during session replication. This can expose sensitive data to network sniffers. To protect this sensitive
data, do one of the following:

Enable encryption for JGroups. For information about enabling JGroups encryption, see JGroups
Encrypt (http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroupsENCRYPT).
Make sure that the cluster is behind a firewall.

2.2.7 Preventing XSS Attacks
The User Application supports the concept of XSS (Cross-Site Scripting) blacklists to allow you to
prevent scripting attacks. The XSS blacklists prevent XSS injection in the free text input fields within
the Detail portlet, approval flow, and role assignments pages within the application.

The User Application provides default values for two blacklists, one for the Detail Portlet, and one for
the workflow system (which handles the approval flow and role assignments pages). However, you
can customize the blacklists to suit the requirements of your environment.

To customize the either of the blacklists, you need to enter the words or characters you want to block
in the sys-configuration-xmldata.xml file. In JBoss, you can find this file in the <jboss_home>/
server/<IDM>/conf folder. Open the file with a UTF-8 friendly editor.

To modify the blacklist for the Detail portlet, open <jboss_home>/server/<IDM>/conf/sys-
configuration-xmldata.xml in a UTF-8 editor, and find the
com.novell.xss.blacklist.detailportlet property:

<property>
 <key>com.novell.xss.blacklist.detailportlet</key>
 <value>...</value>
</property>
Designing the Production Environment 53

http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroupsENCRYPT
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroupsENCRYPT

The text node of <value> is the blacklist for Detail portlet. The blocked words are separated by
comma (for example, blocked_word1,blocked_word2,...). The default setting is:

",<

This means that double quote and < are disallowed.

To modify the blacklist for the approval flow and role assignments pages, locate the
com.novell.xss.blacklist.workflow property.

<property>
 <key>com.novell.xss.blacklist.workflow</key>
 <value>...</value>
</property>

The syntax is the same. The default value is:

<

which means that < is disallowed.

If you decide to customize the blacklists, be careful not to remove the default values. If you remove
these values, you will make the lists less restricted, and therefore increase the risk of XSS attacks.

2.2.8 Modifying the Trustee Rights for User Preferences
To allow user preferences to be saved, the administrator must ensure that the permissions on the
srvprvUserPrefsPlus and srvprvQueryList attributes are set so that the user is able to write to these
attributes. The necessary rights should be set for [This] at the tree root level, since [This] is a special
alias to the object itself, causing only the user to have rights to modify its own preferences. To set the
proper permissions, the administrator needs to modify the trustees for these attributes in iManager,
as shown below:

The srvprvUserPrefsPlus property is a new property added for version 4.0.2. This property has no
space limitations, so it can save a large amount of user preference information. If you have used the
srvprfUserPrefs property in a previous release, this property will be migrated to
srvprvUserPrefsPlus the first time a user saves new preferences in the User Application.
54 NetIQ Identity Manager User Application: Administration Guide

2.2.9 Modifying the Trustee Rights for a Provisioning Request Definition
To view the details and comments associated with a task in the Task Notifications section of the Work
Dashboard tab, the Domain Administrator or Delegated Administrator must have the proper rights
to the provisioning request definition. In particular, the user must have the
nrfAccessMgrTaskAddressee right to the provisioning request definition, with write access enabled.
To set the proper permissions, the administrator needs to modify the trustees for the provisioning
request definition, as described below:

1 Log into iManager as an administrator.
2 Select Modify Trustee from the Rights left-navigation menu.
3 Browse to the provisioning request definition.
4 If necessary, click Add Trustee to add the user.
5 Click on the Assign rights link.

Notice that nrfAccessMgrTaskAddressee is not listed with the write permission checked, which
means that the user does not have the proper rights for the provisioning request definitiion.

6 Click the Add Property button.
7 Check the check box for Show all properties in schema.
8 Select nrfAccessMgrTaskAddresss.
9 Check the write checkbox for Assigned Rights.

10 Click Done.
11 Click OK.

2.2.10 Disabling the JMX Management Console on JBoss
The results from a Nessus scan show that the JBoss product installer does not secure the JMX
management console by default. This creates a potential security hole.

To solve this problem, you need to disable the JMX console by following your JBoss documentation.

2.3 Single Sign-On (SSO) Configuration
Version 4.0 of RBPM includes an enhanced SSO architecture that provides an easy way to integrate
single sign-on functionality into the User Application. This new architecture works with a variety of
system environments and is very secure.

The 4.0 architecture for single sign-on consists of the following key components:

SSO Providers
SSO Controller

Each SSO Provider handles a specific SSO user scenario. The SSO Provider recognizes the login
identity, then transfers the information to the SSO Controller. The SSO Controller then verifies the
information and converts the login identity to an eDirectory identity. Next, it issues a SAML
authentication token and passes it to the login module to finish the login process.

The SSO Providers and the SSO Controller are loosely coupled. They communicate through an HTTP
header that is digitally signed.

The Roles Based Provisioning Module ships with Kerberos and SAP SSO Providers. However, you
can also implement your own custom SSO Provider to suit the requirements of your organization.
Designing the Production Environment 55

For complete details on SSO configuration, see Section 5.1.6, “Single Sign-On (SSO) Configuration,”
on page 149.

2.4 Digital Signature Configuration
This section provides instructions on configuring your environment to take advantage of the digital
signature support provided with the Identity Manager User Application.

Digital signature support is available on JBoss only The User Application can be configured to
support digital signatures on JBoss only. Digital signatures are not supported on WebSphere or
WebLogic.

In release 4.0.2, the User Application provides support for the digital signature as a service model.
The digital signature as a service model is very easy to configure and manage. In most environments,
you should use this model, unless you are not ready to upgrade from an older digital signature
implementation, or require the ability to read digital signature cards, since this support is not
available with digital signature as a service.

IMPORTANT: We strongly encourage you to use the digital signature as a service support, since it is
the most reliable and easy-to-use configuration for managing digital signatures.

WARNING: You must use Novell Identity Audit (or Sentinel) to preserve documents that you
digitally sign. Digital signature documents are not stored with workflow data in the User
Application database, but are stored in the logging database. You must enable logging to preserve
these documents.

This section includes the following topics:

Section 2.4.1, “Setting Up the User Certificates,” on page 56
Section 2.4.2, “Configuring the Application Server,” on page 60
Section 2.4.3, “Configuring Logging,” on page 61
Section 2.4.4, “Configuring the User Application,” on page 61
Section 2.4.5, “Configuring the Provisioning Request Definitions,” on page 62

2.4.1 Setting Up the User Certificates
1 Create the user certificates using iManager.

1a Log in as an administrator.
1b Under Novell Certificate Server, select Create User Certificate.
1c Select the users for whom you want to create certificates and click Next.

You can use the Object Selector or Object History to pick the users.
56 NetIQ Identity Manager User Application: Administration Guide

1d Select the server and specify the certificate nickname. Specify Custom as the creation
method and click Next.

1e Specify a key size of 1024 or 2048 bits, depending on which size suits your requirements. Set
the key type to Signature. Leave other settings as is and click Next.
Designing the Production Environment 57

1f If you’re using the default configuration, leave the certificate parameters as is and click
Next.
To enable certificate revocation list (CRL) support, select Custom and check the CRL
signing check box.
For complete details on CRL configuration, see the Novell Certificate Server
documentation.

1g Click Finish.
1h Log out.

2 Export the user certificate as a PFX file that contains the private key.
2a Log in as the user for whom you want to export a certificate.
2b Under Novell Certificate Access, select View My Certificates.
2c Select a certificate and click the Export button.
58 NetIQ Identity Manager User Application: Administration Guide

2d In the Export Certificate Wizard, click Yes to indicate that you want to export the private key
with the certificate. Then click Next.

2e Enter a password to protect the private key and click Next.
2f Select Export the certificate into the browser if you do not have a card reader. Otherwise, click

on the link that says Save exported certificate to a file.
Designing the Production Environment 59

You can also import to the browser later. Therefore, you might want to click on Save exported
certificate to a file to import to a different browser.

2g Click Save to Disk to save the file rather than opening it.
2h Click Close.

3 If you’re using a smart card, install the smart card reader driver.
4 Install the software needed to transfer certificate information to the smart card.
5 Import the key pair (certificate) to the smart card:

If you are planning to use browser certificate support, rather than the smart card, you can skip steps 3
through 5 above. Certificates can be imported into a browser using iManager or the browser
certificate management user interface.

2.4.2 Configuring the Application Server
To configure the application server, follow these steps:

1 Download the vaas.war and xmlsigner.war files from a third-party component provider.
Contact your sales representative to get a referral to a third-party provider.

2 For details on configuring the vaas.war file, see the third-party documentation.
3 To deploy to JBoss, copy the vaas.war and xmlsigner.war files to the JBOSS_HOME/server/

IDMProv/deploy directory.
4 Export the trusted root and all intermediate certificates (using iManager) and import them into

the key store specified in your system’s local configuration using the keytool command.
For example, for JBoss:

keytool -import -trustcacerts -file certFile

The certFile is a fully qualified path to the certificate file.
If you’re using the Novell Certificate Server, you do not need to export the trusted root.

5 (Not Required for Digital Signature as a Service) Start the User Application Configuration utility
by running the configupdate script (configupdate.bat on Windows or configupdate.sh on
Linux/Solaris).

6 (Not Required for Digital Signature as a Service) Click Show Advanced Options.
7 (Not Required for Digital Signature as a Service) Under Trusted Key Store, type the path to the

certificate file in the Trusted Store Path. Also, type your password in the Keystore Password field.
The default password is changeit.
The Trusted Key Store contains all trusted signers’ certificates used to validate digital signatures.

NOTE: For JBoss, if you’re using the Novell Certificate Server, you can simply paste the
complete string (for example, C:\Program Files\Java\jdk1.6.0_31\jre\lib\security\cacerts)
from the Keystore Path field under eDirectory Certificates to the Trusted Store Path under Trusted Key
Store. You can also paste the Keystore Password to the Trusted Store Password field.

8 (Not Required for Digital Signature as a Service) If you are using OCSP, under Miscellaneous,
type the URI for OCSP in the OCSP URI field. This value is used to update the status of trusted
certificates online. The URI points to the access point for the Online Certificate Status Protocol
server.
60 NetIQ Identity Manager User Application: Administration Guide

2.4.3 Configuring Logging
To enable logging of digital signatures, you need to configure the logging Platform Agent. The
Platform Agent is required on any client that reports events to Novell Identity Audit or Sentinel. You
configure the platform agent through the logevent configuration file. This file provides the
configuration information that the platform agent needs to communicate with the Novell Identity
Audit server.

IMPORTANT: If you are logging events that include digital signatures, it is critical that the value of
the LogMaxBigData parameter be large enough to handle the data being logged.

For details on logging configuration, see Chapter 3, “Setting Up Logging,” on page 111.

2.4.4 Configuring the User Application
To configure digital signature support for the User Application:

1 Open the sys-configuration-xmldata.xml file:
This file is in the conf folder on JBoss. For example: /opt/novell/idm/rbpm/jboss/server/
IDMProv/conf.

2 Add the mapping to the vaas.war that you received from a third-party component provider in
the sys-configuration-xmldata.xml before the </properties> element.
Here is the format:

<property>
 <key>com.novell.dss.vaas.uri</key>
 <value>http(s)://%server%:%port%/vaas/verify</value>
</property>

For example:

<property>
 <key>com.novell.dss.vaas.uri</key>
 <value>http://myserver.novell.com:8180/vaas/verify</value>
</property>

3 Configure the Digital Signature Service for the User Application. To do this, you need to use the
Digital Signature Service page on the Administration within the User Application. For details, see
Section 8.2.2, “Configuring the Digital Signature Service,” on page 256.

4 Log out of the User Application.
5 Stop the application server.
6 Complete the rest of the steps outlined by the documentation provided by the third-party

component provider to configure and deploy the xmlsigner.war and vaas.war files.
7 Restart the application server.
Designing the Production Environment 61

2.4.5 Configuring the Provisioning Request Definitions
You can use Designer for Identity Manager to configure digital signature support for your
provisioning request definitions.

To configure a provisioning request definition to support digital signatures, you need to:

1 Indicate whether a digital signature is required to initiate the provisioning request.
2 Indicate whether a digital signature is required for each approval step within the workflow.

Because each approval step might have more than one outgoing link, you need to specify
whether a digital signature is required for each link.

After you have indicated whether a digital signature is required to initiate a request or perform an
approval step, you need to also specify the following for each request or approval step where a
digital signature is required:

Table 2-1 Digital Signature Settings

For details on configuring provisioning request definitions in Designer, see the Identity Manager User
Application: Design Guide.

Setting Description

Digital Signature Type Specifies whether the digital signature uses data or
form as its type:

Data: Specifies that the XML signature
serves as the user agreement. When Data is
selected, the XML data is written to the audit
log. The user can preview XML data before
submitting a signature.

Form: Specifies that a PDF document that
includes the digital signature declaration be
generated. This document serves as the user
agreement. The user can preview the
generated PDF document before submitting a
request or approval. When Form is selected,
the PDF document (encapsulated in XML) is
written to the audit log.

WARNING: You must use Novell Identity Audit (or
Sentinel) to preserve documents that you digitally
sign. Digital signature documents are not stored
with workflow data in the User Application
database, but are stored in the logging database.
You must enable logging to preserve these
documents.

Digital Signature Declaration Specifies a digital signature confirmation string that
confirms the user’s signature.
62 NetIQ Identity Manager User Application: Administration Guide

2.5 Enabling Anonymous or Guest Access to the User
Application
To enable anonymous or guest user to access the Identity Self-Service features of the User
Application, follow the steps outlined in Table 2-2.

Table 2-2 Setting Up Anonymous Access

2.5.1 Establishing the Guest Account
There are two ways to support anonymous or guest access to the User Application. You can:

Setup a dedicated user account. Set up the permissions that are needed for the activities of that
anonymous user. Remember that if this user is inside the user container, this guest account is
returned during searches of the tree. To prevent this, consider putting the guest user outside the
user container.
Use the public LDAP guest account that corresponds to the [Public] object in eDirectory. The
default access for [Public] is Browse rights to the entire tree. You must set up whatever
permissions are necessary for this user to perform the guest tasks you provide. If you do not
want all anonymous users to perform some of these tasks, this might not be the correct option
for your installation.

The User Application allows you to specify only one type of anonymous user, and you are required
to specify that user during installation. The installation options are:

Use Public Anonymous Account: This uses the LDAP guest account.
LDAP Guest: This is the dedicated user account.

You can modify your installation choice by running the configupdate utility after the installation is
complete.

Task For more information

Determine the guest account you want to use for the
anonymous access.

See “Establishing the Guest Account” on page 63.

Assign the proper Identity Vault rights to the guest user. Define rights based on the features you want
exposed to non-authenticated Web application
users. In the User Application, you can expose
identity portlets such as the search, detail, or
chart and create portlet. You can also allow users
to initiate a workflow. In these cases the guest
user account is used to bind to eDirectory and
perform the underlying LDAP operation.

To perform Identity Self-Service tasks, create new pages
and portlets specifically for guest access.

See Part IV, “Portlet Reference,” on page 291.

To perform a resource request, use the resource request
portlet.

See Chapter 13, “Resource Request Portlet,” on
page 351.
Designing the Production Environment 63

2.6 Configuring Forgotten Password Self-Service
The User Application provides password self-service for users who have forgotten their passwords.
This service enables

Prompting for challenge responses
Displaying a password hint
Allowing a password change

The forgotten password service is available by default to users inside your corporate firewall through
the deployed User Application WAR.

You can also set up a separate forgotten-password management WAR, IDMPwdMgt.WAR, and deploy it
on a system inside your corporate firewall or external to the firewall. Deploying this WAR outside the
firewall can provide an additional layer of security while providing forgotten-password self-service
to remote users. The forgotten-password WAR is also called the external password WAR. To set up the
external password WAR, see Table 2-3.

IDMPwdMgt.WAR contains only forgotten-password self-service software and the default User
Application theme.

Table 2-3 Steps for Enabling an External Password WAR

Task Description

Install the User Application. During the installation, you
are asked to specify User Application configuration
parameters. Specify the following to enable the
external password WAR:

Use External Password WAR

Forgot Password Link

Forgot Password Return Link

You can also update the configuration after installation
with the configupdate tool.

When you specify Use External Password WAR, the
install program generates and installs
IDMPwdMgt.WAR in the install directory that you
specify.

For Forgot Password Link, specify the location for the
external password WAR. Include the application server
host and its secure port, for example http://
localhost:8080/ExternalPwd/jsps/pwdmgt/
ForgotPassword.jsf. The install program
renames IDMPwdMgt.WAR based on the location you
specify.

For Forgot Password Return Link, supply the path that
the external password WAR uses to call back the User
Application, (it uses a Web Service), for example
https://idmhost:sslport/idm.

If you want to change the link locations, you can do so
in the User Application Administration tab.
64 NetIQ Identity Manager User Application: Administration Guide

The external password WAR location is saved to the

configuration.AppDefs.AppConfig.driver.driverset as

<property>

<key>com.novell.pwdmgmt.login.PREF_FORGOT_PSWD_LINK_KEY</key>

<value>http://localhost:8080/ExternalPwd/jsps/pwdmgt/ForgotPassword.jsf</value>

The return location is saved to the

configuration.AppDefs.AppConfig.driver.driverset as

<property>

<key>com.novell.pwdmgmt.login.PREF_FORGOT_PSWD_RETURN_LINK_KEY</key>

<value>https://localhost:8443/IDMProv</value>

</property>

The return location is saved to the userAppURL property in External WAR/WEB-INF/faces-
managed-beans.xml, for example

<property-name>userAppURL</property-name>

<property-class>java.lang.String</property-class>

<value>https://localhost:8443/IDMProv</value>

2.6.1 Accessing an External Password WAR
Users can go to the Forgot Password page in the external password WAR directly from a browser like
this:

http://localhost:8080/ExternalPwd/jsps/pwdmgt/ForgotPassword.jsf.

Deploy the external password WAR to an application
server.

Before you deploy the external password WAR to an
application server, ensure that the application server is
configured to support SSL. See Section 2.2.2,
“Enabling SSL,” on page 48. In addition:

If the external password WAR is deployed
outside the firewall, make sure that the firewall’s
SSL port is open to allow communication
between both application server hosts.

The application server that hosts the external
password WAR must have the server certificate
of the application server hosting the core User
Application. Use the keytool import command to
import the server certificate to the keystore
(cacerts) of the JRE used by the application
server hosting the external password WAR. The
keytool command has this syntax:

keytool -import -file certname.cer -
keystore cacerts -storepass changeit
-alias uacerts

Do you want to customize the theme for the external
password WAR?

For more information, see “Customizing the Theme for
External Password WAR” on page 172.

Task Description
Designing the Production Environment 65

When accessed directly, the external password WAR checks the WEB-INF\faces-managed-
beans.xml for this entry:

 <property-name>userAppURL</property-name>

 <property-class>java.lang.String</property-class>

 <value>https://151.155.254.69:8443/IDM</value>

The external password WAR uses the userAppURL entry to call the Web Service that handles the
forgot password functionality in the User Application WAR.

Users can access the Forgot Password page by clicking the Forgot Password? link in the User
Application’s Login page. The User Application redirects the user to the external password WAR
based on the value specified for the Forgot Password link. The external password WAR uses the Forgot
Password Return Link value to call back to the User Application.

2.7 Performance Tuning
Performance tuning is a complex subject. The Identity Manager User Application relies on diverse
technologies with many interactions. It is not possible to anticipate every single configuration
scenario or user interaction scenario that could result in poor performance. Nevertheless, some
subsystems are subject to best practices that can boost performance.

See the following sections for information:

Section 2.7.1, “Logging,” on page 66
Section 2.7.2, “Identity Vault,” on page 67
Section 2.7.3, “JVM,” on page 69
Section 2.7.4, “Session Time-out Value,” on page 69
Section 2.7.5, “Tuning JBoss,” on page 70
Section 2.7.6, “Using Secure Sockets for User Application Connections to the Identity Vault,” on
page 70

2.7.1 Logging
The User Application allows logging with Novell Identity Audit as well as with the open source
Apache log4j framework. Logging via Novell Identity Audit is turned off by default. However, file
and console logging with log4j are enabled by default.

NOTE: The kinds of events you can log, and how to enable or disable logging, are covered in
Chapter 3, “Setting Up Logging,” on page 111.

The log4j configuration settings are contained in a file called

jboss-log4j.xml in the install directory (if you are using a JBoss application server)
log4j.xml in the User Application WAR (if you are using a non-JBoss application server)

Near the bottom of the jboss-log4j.xml file, look for the following entry:
66 NetIQ Identity Manager User Application: Administration Guide

<root>
<priority value="INFO" />

 <appender-ref ref="CONSOLE" />
 <appender-ref ref="FILE" />
 </root>

Assigning a value to root ensures that any log appenders that do not have a level explicitly assigned
inherit the root level (in this case, INFO). For example, by default, the FILE appender does not have a
threshold level assigned and so it assumes the root’s.

The possible log levels used by log4j are DEBUG, INFO, WARN, ERROR, and FATAL, as defined in
the org.apache.log4j.Level class. Inattention to the proper use of these settings can be costly in terms
of performance.

A good rule of thumb is to use INFO or DEBUG only when debugging a particular problem.

Any appender included in the root that does have a level threshold set, should set that threshold to
ERROR, WARN, or FATAL unless you are debugging something.

The performance hit with high log levels has less to do with verbosity of messages than with the
simple fact that console and file logging, in log4j, involve synchronous writes. An AsyncAppender
class is available, but its use does not guarantee better performance. The issues are well-known and
are Apache log4j issues, not Identity Manager issues.

The default of INFO in the User Application’s log config file (above) is satisfactory for many
environments, but where performance is critical, you should consider changing the above jboss-
log4j.xml entry to:

<root>
 <priority value="ERROR"/>
 <appender-ref ref="FILE"/>
</root>

In other words, remove CONSOLE and set the log level to ERROR. For a fully tested/debugged
production setup, there is no need to log at the INFO level, nor any need to leave CONSOLE logging
enabled. The performance payoff of turning these off can be significant.

For more information on log4j, consult the documentation available at http://
logging.apache.org/log4j/docs.

For more information on the use of Novell Identity Audit with Identity Manager, consult the Novell
Identity Manager: Administration Guide.

2.7.2 Identity Vault
LDAP queries can be a bottleneck in a heavily utilized directory-server environment. To maintain a
high level of performance with large numbers of objects, Novell eDirectory (which is the basis of the
Identity Vault in Identity Manager) records frequently requested information and stores it in indexes.
When a complex query is run against objects with indexed attributes, the query returns much faster.

Out of the box, eDirectory comes with the following attributes already indexed:
Designing the Production Environment 67

Aliased Object Name
cn
dc
Equivalent to Me
extensionInfo
Given Name
GUID
ldapAttributeList
ldapClassList
Member
NLS: Common Certificate
Obituary
Reference
Revision
Surname
uniqueID
uniqueID_SS

When you install Identity Manager, the default directory schema is extended with new object class
types and new attributes pertaining to the User Application. User-application-specific attributes are
by default not indexed. For better performance, you might find it useful to index some of those
attributes (and perhaps a few traditional LDAP attributes as well), particularly if your user container
contains over 5,000 objects.

The general idea is to index only those attributes that you know are regularly queried, which could
be different attributes in different production environments. The only way to know which attributes
are heavily used is to collect predicate statistics at runtime. The collection process itself degrades
performance, however.

The process for collecting predicate statistics is discussed in detail in the eDirectory Administration
Guide (https://www.netiq.com/documentation/edir88/edir88/data/a2iii88.html). Indexing is also
discussed in more detail there. In general, you need to do the following:

Use ConsoleOne to turn on predicate-statistics collection for attributes of interest
Put the system under load
Disable statistics collection and analyze the results
Create an index for each type of attribute that might benefit from having one

If you already know which attributes you want to index, there is no need to use ConsoleOne. You can
create and manage indexes in iManager with eDirectory Maintenance > Indexes. For example, if you
know that users of your org chart are likely to perform searches based on the isManager attribute,
you can try indexing that attribute to see if performance is enhanced.

NOTE: As a best practice, it is recommended that you index, at a minimum, the manager and
isManager attributes.

For an in-depth discussion of attribute indexing and performance, see “Tuning eDirectory” in
Novell’s Guide to Troubleshooting eDirectory by Peter Kuo and Jim Henderson (QUE Books, ISBN 0-
7897-3146-0).

For more information about performance tuning, see “Maintaining Novell eDirectory” (https://
www.netiq.com/documentation/edir88/edir88/data/a5zek7a.html) in the eDirectory Administration
Guide (https://www.netiq.com/documentation/edir88/edir88/data/a2iii88.html).
68 NetIQ Identity Manager User Application: Administration Guide

https://www.netiq.com/documentation/edir88/edir88/data/a2iii88.html
https://www.netiq.com/documentation/edir88/edir88/data/a2iii88.html
https://www.netiq.com/documentation/edir88/edir88/data/a5zek7a.html

2.7.3 JVM
The amount of heap memory allocated to the Java virtual machine can impact performance. If you
specify minimum or maximum memory values that are either too low or too high (too high meaning
more than the physical memory of the machine), you could experience excessive pagefile swapping.

For a JBoss server, you can set the maximum JVM* size by editing the run.conf or run.bat file (the
former for Linux, the latter for Windows) under [IDM]/jboss/bin/ in a text editor. Increase “-Xmx”
from 128m to 512m, or possibly higher. Some experimentation might be needed to determine the
optimal setting for your particular environment.

NOTE: JBoss and Tomcat performance tuning tips are at http://wiki.jboss.org/wiki/
Wiki.jsp?page=JBossASTuningSliming (http://wiki.jboss.org/wiki/
Wiki.jsp?page=JBossASTuningSliming)

Increasing the stack size for recursive workflows If you have workflows that are recursive in nature
(that execute loops), you might see a StackOverflowError at execution time. Java does not handle the
stack space for recursive type functions effectively. Therefore, for recursive workflows, you need to
increase the stack size for the JVM. The JVM defaults to 512K. You might want to increase the stack
size to 1M.

To increase the stack size, you can include the -Xss1M setting with the JAVA_OPTS in your start JBoss
script file.

JAVA_OPTS="-server -Xss1M -Xms512M -Xmx512M -XX:MaxPermSize=512m"

2.7.4 Session Time-out Value
The session time out (the amount of time a user can leave a page unattended in his or her Web
browser before the server causes a session-time-out warning dialog box to appear) can be changed in
the web.xml file in the IDMProv.war archive. This value should be tuned to match the server and
usage environment in which the application runs. In general, it is advised that the session time out be
as small as practicable. If business requirements can tolerate a 5-minute session time out, this would
allow the server to release unused resources twice as early as it would if the time-out value were 10
minutes. This improves performance and scalability of the Web application.

Consider the following when adjusting the session time out:

Longer session time-outs can cause the JBoss server to run out of memory if many users log in
over a short period of time. This is true of any application server that has too many open
sessions.
When a user logs in to the User Application, an LDAP connection is created for the user and
bound to the session.Thus, the more sessions that are open, the greater the number of LDAP
connections that are held. The longer the session time out, the longer these connections are held
open. Too many open connections to the LDAP server (even if they are idle) can cause system
performance degradation.
If the server starts experiencing out-of-memory errors, and the JVM heap and garbage collection
tuning parameters have already been optimally tuned for the server and usage environments,
consider lowering the session time out.

You can set the session time out value on the User Application Configuration screen at installation
time. Alternatively, you can modify the session time out after installation by performing a
configuration update.
Designing the Production Environment 69

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossASTuningSliming
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossASTuningSliming

2.7.5 Tuning JBoss
By default, the JBoss deployment scanner runs every five seconds. For a production server, this is
typically not necessary and might impact performance. You should consider changing the scan
period so that the deployment scanner runs less frequently, or turn the deployment scanner off
entirely. For information about configuring the deployment scanner, see “Turn the Deployment
Scanner frequency down or turn it off if you do not hot deploy.” (https://community.jboss.org/wiki/
TurnDeploymentScannerDown)

For more information about tuning JBoss for production environments, see “JBoss 5.x Tuning/
Slimming” (https://community.jboss.org/wiki/JBoss5xTuningSlimming).

2.7.6 Using Secure Sockets for User Application Connections to the Identity
Vault
By default, secure sockets are used for communication between the User Application server and the
Identity Vault. However, in some environments, not all communication needs to be secured. For
example, if the User Application and Identity Vault servers are on an isolated network, and the only
ports available to the outside are the HTTP ports, it might be acceptable for some communication
between the two servers to be accomplished using non-secure sockets. Some aspects of the
application will always use a secure connection (for example, a user changing a password) even
though the setting might indicate that secure connections are not required. Turning off secure
connections, especially for user connections, can greatly increase performance and scalability. If, in a
particular environment, there are many concurrent logins, and communication between the User
Application server and the Identity Vault server have been secured using the network setup, then
turning off the secure connection for user connections greatly increase the number of concurrent
logins that can be processed. We recommend that this option be used only when there is actual
evidence of scaling or performance problems in the environment, and adding additional eDirectory
servers is not an option.

Additionally, secure connections can be turned off for administrative connections. These connections
are used for general queries on the Identity Vault server that do not require user credentials. These
connections are pooled and used round-robin. The bind over a secure connection is only done once at
application startup (or possibly again later on if the connection becomes unresponsive) and so does
not represent the scalability issues that can arise with the user connections. However, the time it takes
to encrypt and decrypt the data at both ends does add overhead. We recommend that the default
setting be used, unless there is a need to gain extra performance.

Secure communications for administrative and user connections must be disabled in both the User
Application and in iManager. To disable secure communications for administrative and user
connections, see the following topics:

“Disabling Secure Communications Using the User Application Configuration Tool” on page 70
“Disabling Secure Communications Using iManager” on page 71

Disabling Secure Communications Using the User Application Configuration
Tool
To disable the secure administrative and user connections in the User Application:

1 Run the configupdate script, located in the User Application directory, as follows:
Linux: Type the following to run configupdate.sh:
70 NetIQ Identity Manager User Application: Administration Guide

https://community.jboss.org/wiki/TurnDeploymentScannerDown
https://community.jboss.org/wiki/TurnDeploymentScannerDown
https://community.jboss.org/wiki/JBoss5xTuningSlimming
https://community.jboss.org/wiki/JBoss5xTuningSlimming

./configupdate.sh

Windows: Run configupdate.bat
The User Application configuration utility starts.

2 Deselect Secure Admin Connection and Secure User Connection.

3 Click OK.

Disabling Secure Communications Using iManager
To disable the requirement for secure LDAP (LDAPS) connections for administrative and user
connections to eDirectory using iManager or ConsoleOne:

1 Log into your eDirectory tree.
2 Navigate to the LDAP group object and display its properties.
3 Click General.
4 Deselect Require TLS for Simple Binds with Password.

NOTE: In a multi-server eDirectory tree, disabling TLS on the LDAP group removes the TLS
requirement from all servers. If you want mixed TLS requirements for each individual server in your
tree, you must enable the TLS requirement on each server.

2.8 Clustering
This section includes the following topics:

Section 2.8.1, “Clustering an Application Server,” on page 71
Section 2.8.2, “Things to Do Before Installing the User Application,” on page 73
Section 2.8.3, “Installing the User Application to a JBoss Cluster,” on page 74
Section 2.8.4, “Installing the User Application to a WebSphere Cluster,” on page 79
Section 2.8.5, “Installing the User Application to a WebLogic Cluster,” on page 79
Section 2.8.6, “Things to Do After Installing the User Application,” on page 80

2.8.1 Clustering an Application Server
A cluster is a collection of application server nodes that provide a set of services. The purpose of a
cluster is to increase performance and reliability of applications. In general, a cluster provides three
key benefits for enterprise applications:

High availability
Scalability (more capacity)
Load balancing
Designing the Production Environment 71

High availability means that an application is reliable and available for a high percentage of the time
that it is deployed. Clusters provide high availability because the same application is running on all
nodes. If one node fails, the application is still running on other nodes. The Identity Manager User
Application benefits from higher availability when running in a cluster. In addition, the Identity
Manager User Application supports HTTP session replication and session failover. This means that if
a session is in process on a node and that node fails, the session can be resumed on another server in
the cluster without intervention.

For more information about JBoss clusters, see the JBoss wiki page for High availability and
clustering services (http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossHA).

JGroups Cluster Groups
The JGroups communications module provides communications among groups that share a common
name, multicast address, and multicast port. JGroups is installed with JBoss, but it can also be used
without JBoss. The User Application includes a JGroups module in the User Application WAR to
support caching in a cluster environment.

JBoss Cluster
JBoss clusters are implemented by JBoss using the JGroups communications module. The
configuration of JGroups and session replication is defined by JBoss and depends on the version of
JBoss you are using. See the JBoss Administration Guide (http://www.redhat.com/docs/en-US/
JBoss_Enterprise_Application_Platform/5.0.0/html/Administration_And_Configuration_Guide/
clustering-intro.chapt.html) for more detailed information on configuring JBoss clusters.

User Application Cluster Group
The Identity Manager User Application uses an additional cluster group solely to coordinate User
Application caches in a clustered environment on either JBoss or WebSphere clusters.

The User Application cluster group is independent of the two JBoss cluster groups and does not
interact with them. By default, the User Application cluster group and the two JBoss groups use
different group names, multicast addresses, and multicast ports, so no reconfiguration is necessary.

By default, this cluster group uses a UUID name to minimize the risk of conflicts with other cluster
groups that users might add to their servers. The default name is
c373e901aba5e8ee9966444553544200. By default, the group uses multicast address 228.8.8.8 and
runs on port 45654. This cluster isn't configured using a JBoss service file. Instead, the configuration
settings are located in the directory and can be configured using the User Application administration
features. If you are familiar with JGroups and JBoss clustering, you can adjust the User Application
cluster configuration using this interface. Changes to the cluster configuration only take effect for a
server node when that node is restarted.

User Application cluster group settings are shared by any Identity Manager application that shares
the directory configuration. The purpose of the local settings option in the User Application
administration interface is to allow an administrator to remove a node from a cluster, or change the
membership of servers in a cluster. For example, you can disable clustering globally, then enable it
locally for a subset of your servers sharing the directory configuration.
72 NetIQ Identity Manager User Application: Administration Guide

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossHA
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossHA
http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/5.0.0/html/Administration_And_Configuration_Guide/clustering-intro.chapt.html

2.8.2 Things to Do Before Installing the User Application
This section provides information that you should be aware of before you install the User
Application, and describes tasks that you should perform before installing the User Application.

This section includes the following topics:

“About Multiple Clusters on the Same Network” on page 73
“Synchronizing Application Server Clocks” on page 73
“Avoiding Multiple Browser Logins from the Same Browser Window in a Cluster” on page 73
“About the User Application Database” on page 74

About Multiple Clusters on the Same Network
If you have more than one cluster running on a network, you must separate the clusters to prevent
performance problems and anomalous behavior. You accomplish this by ensuring that each cluster
uses a different partition name, multicast address, and multicast port. Even if you are not running
multiple clusters on the same network, it’s a good idea to specify a unique partition name for the
cluster, rather than using the default partition.

The following are important points:

The cluster must have a unique cluster partition name and multicast address.

For JBoss, specify the cluster partition name and multicast address by editing the JBoss startup
script (start-jboss.bat or start-jboss.sh for Windows or Linux, respectively) supplied
with the User Application. You need to modify the JBoss startup scripts for your servers to start
JBoss with a -D flag and set the jboss.partition.name and jboss.partition.udpGroup
system properties (see “Configuring the Workflow Engine” on page 76).
The cluster must use a unique multicast port.

For JBoss, you can find instructions about running more than one cluster on a network by using your
browser to view Two Clusters Same Network (http://wiki.jboss.org/wiki/
Wiki.jsp?page=TwoClustersSameNetwork).

Synchronizing Application Server Clocks
You must synchronize the clocks of the servers in a User Application cluster. If server clocks are not
synchronized, sessions might time out early, causing HTTP session failover to not work properly.
There are many time synchronization methods available. The method that you use depends on the
needs of your organization. One common approach is to use the Network Time Protocol (NTP). For
information about using NTP, see ntp.org (http://www.ntp.org/).

Avoiding Multiple Browser Logins from the Same Browser Window in a Cluster
We do not recommend using multiple logins across browser tabs or browser sessions on the same
host. Some browsers share cookies across tabs and processes, so using multiple logins might cause
problems with HTTP session failover (in addition to risking unexpected authentication functionality
if multiple users share a computer).
Designing the Production Environment 73

http://www.ntp.org/
http://wiki.jboss.org/wiki/Wiki.jsp?page=TwoClustersSameNetwork

About the User Application Database
When you install the User Application using the User Application installation program, you
designate an existing version of a supported database to use (for example, MySQL, Oracle or
Microsoft SQL Server). The database is used to store User Application data and User Application
configuration information.

When the User Application is installed in a cluster environment, all nodes in the JBoss cluster must
access the same database instance. The User Application uses standard JDBC calls to access and
update the database. The User Application uses a JDBC data source bound to the JNDI tree to open a
connection to the database.

When you install the User Application into a JBoss cluster by using the User Application installation
program, the data source is installed for you. The installation program creates a data source file
named IDM-ds.xml, and places this file in the deploy directory (for example, server/IDMProv/
deploy). The installation program also places the appropriate JDBC driver for the database specified
during installation in the lib directory (for example, /server/IDMProv/lib). For more information
about setting up the User Application database for a cluster, see “Specifying the User Application
Database” on page 75.

NOTE: By default, MySQL sets the maximum number of connections to 100. This number might be
too small to handle the workflow request load in a cluster. If the number is too small, you might see
the following exception:

(java.sql.SQLException: Data source rejected establishment of connection, message
from server: "Too many connections.")

To increase the maximum number of connections, set the max_connections variable in my.cnf to a
number greater than 100.

2.8.3 Installing the User Application to a JBoss Cluster
To install the User Application to a cluster, use the User Application installation program to install
the User Application to each node in the cluster (see the Roles Based Provisioning Module Installation
Guide). This section provides notes that are specific to installing the User Application to a cluster.

This section includes the following topics:

“About the Server Configuration” on page 74
“Specifying the User Application Database” on page 75
“Selecting the Cluster (all) Option” on page 75
“Configuring the Workflow Engine” on page 76
“Using the Same Master Key for Each User Application in the Cluster” on page 76
“Starting the User Application Cluster Group” on page 78

About the Server Configuration
JBoss comes with three different ready-to-use server configurations: minimal, default and all.
Clustering is only enabled in the all configuration. A cluster-service.xml file in the /deploy
folder describes the configuration for the default cluster partition. When you install the User
Application and indicate to the installation program that you want to install into a cluster, the
installation program makes a copy of the all configuration, names the copy IDM (this is the default;
the installation program allows you to change the name), and installs the User Application into the
this configuration.
74 NetIQ Identity Manager User Application: Administration Guide

Specifying the User Application Database
All nodes in the JBoss cluster must access the same database instance. When you use the User
Application installation program, you are prompted to specify the database name, host and port:

Figure 2-3 Specifying the Database Host and Port

Make sure that you specify the same database parameters each time you install the User Application
to a cluster node.

Selecting the Cluster (all) Option
When you use the User Application installation program, you are prompted to specify the IDM
configuration:

Figure 2-4 Specifying the Cluster (all) Option and Engine ID

Select the clustering (all) option.
Designing the Production Environment 75

Configuring the Workflow Engine
Workflow engine clustering works independently of the User Application cache framework. There
are several steps that you must perform to ensure that the workflow engine works correctly in a
cluster environment.

All servers in the cluster need to be pointing to the same database.

When you install the User Application to the cluster using the User Application installation
program (see “Installing the User Application to a JBoss Cluster” on page 74), you accomplish
this by specifying the IP address or host name of the server on which the database for the User
Application is installed.
Each server in the cluster needs to be started with a unique engine-id.
You can accomplish this by setting the com.novell.afw.wf.engine-id system property at server
startup. For example, if you wanted to start JBoss and assign the engine id ENGINE1 to the
workflow engine for that server, you would use the following command:

run.sh -Dcom.novell.afw.wf.engine-id=ENGINE1 (Linux)

run.bat -Dcom.novell.afw.wf.engine-id=ENGINE1 (Windows)

You might want to combine the setting of this system property with the setting of other system
properties (see “Setting JBoss system properties in the JBoss startup script” on page 76).

For information about managing running workflows, see “Managing Workflows in a Cluster” on
page 82.

Setting JBoss system properties in the JBoss startup script
Each server in the cluster should be started using the same partition name and partition UDP group
(see “About Multiple Clusters on the Same Network” on page 73). Each server in the cluster should
use a unique engine ID (see “Configuring the Workflow Engine” on page 76).

You can modify your JBoss startup script (start-jboss.bat for Windows, start-jboss.sh for
Linux) to specify all of these system properties. This script is located in the directory in which your
User Application files are stored. For example, to start a server using the partition name
“Example_Partition”, the UDP group “228.3.2.1” and the Engine ID “Engine1” you would add the
following to the start-jboss script:

start run.bat -c IDM -Djboss.partition.name=Example_Partition -
Djboss.partition.udpGroup=228.3.2.1 -Dcom.novell.afw.wf.engine-id=Engine1

Using the Same Master Key for Each User Application in the Cluster
The Identity Manager User Application encrypts sensitive data (see Section 2.2.6, “Encryption of
Sensitive User Application Data,” on page 53). A master key is used to access encrypted data. All
User Applications in a cluster must use the same master key. Follow these steps to ensure that all
User Applications in a cluster use the same master key.

1 Using the User Application installation program, install the User Application to the first node in
the cluster.
For information about using the User Application installation program, see “Installing the User
Application in the Roles Based Provisioning Module Installation Guide.
When you use the User Application installation program to install the first User Application in a
cluster, at the end of the installation you are presented with a new master key for the User
Application:
76 NetIQ Identity Manager User Application: Administration Guide

Figure 2-5 Master Key

Follow the on-screen instructions to save the master key to a text file.
2 Using the User Application installation program, install the User Application to the other nodes

in the cluster.
When you install the User Application to the other nodes in the cluster, the installation program
provides a page that you use to import the master key:
Designing the Production Environment 77

Figure 2-6 Pasting Master Key in User Application Installation Program

3 Import the master key that you saved to a text file in Step 1 on page 76.

Starting the User Application Cluster Group
After the User Applications in your cluster have been installed, you must enable the cluster in the
User Application cluster configuration.

1 Start the first User Application in the cluster.
2 Log in as the User Application administrator.

Don’t start any other servers yet.
3 Click Administration.

The User Application displays the Application Configuration portal.
4 Click Caching.

The Caching Management page is displayed.
5 Select True for the Cluster Enabled property.
6 Click Save.
7 Restart the server.
8 If you are using local settings (see “Specifying the User Application Cluster Group Caching

Configuration” on page 81), repeat this procedure for each server in the cluster.
78 NetIQ Identity Manager User Application: Administration Guide

2.8.4 Installing the User Application to a WebSphere Cluster
This section outlines the process for installing and starting the User Application on a WebSphere
cluster. This section assumes you are an experienced user of the WebSphere Application Server.

1 Install and configure your WebSphere Application Servers and cluster according to the
manufacturer’s instructions.

2 Install and create a database according to manufacturer’s instructions. Enable the database for
UTF-8.

3 Add and configure the database driver on a WebSphere server.
4 Create a JDBC Provider.
5 Create a data source for your relational database.
6 Run the User Application installer to install and configure the User Application on your WAS

console system. Directions are in the Roles Based Provisioning Module Installation Guide.
The installer writes the sys-configuration-xmldata.xml file to the directory you choose
during installation.

7 In your post-installation tasks, while creating JVM Custom Properties in the WAS console as
directed in the Roles Based Provisioning Module Installation Guide, create a new JVM Custom
Property for each User Application server in the cluster. Name the Custom Property
com.novell.afw.wf.engine-id and give it a unique value. Each User Application server runs
a workflow engine, and each engine requires a unique engine ID.

8 Import the directory server certificate authority to the WebSphere keystore.
9 Deploy the IDM WAR file from the WebSphere administration console.

10 Start the application. Access the User Application portal using the context you specified during
deployment.

Select the All session attributes mode: In the IBM Admin Console, you can specify a mode that
controls the write content for session failover. The Roles Based Provisioning Module does not
support the Only updated attributes mode, so you must select the All session attributes mode when
using session failover with RBPM. This setting can be found under Application servers >
clustermember1 > Session management > Distributed environment settings > Tuning parameters > Custom
tuning parameters.

2.8.5 Installing the User Application to a WebLogic Cluster
The process of installing the User Application to a WebLogic cluster is essentially the same as the
process of installing the User Application to a single WebLogic server. The key difference is that you
must explicitly identify the engine ID for each server when running in a clustered environment.

You can use this checklist to ensure that all of the components are configured correctly for a
WebLogic clustered environment:

Install a WebLogic server (AdminServer).

Follow the installation instructions in the WebLogic documentation.
Configure a domain and add a managed Server1 with the Server1 IP address in the same
domain.
Configure the additional managed servers in the same domain.
Configure the cluster and add the managed servers in the same cluster in the domain.
Install, configure, and deploy the User Application on the first WegLogic server (Server1).
Designing the Production Environment 79

For details on installing and configuring the User Application on a single WebLogic server, see
“Installing the User Application on WebLogic” (http://www.netiq.com/documentation/idm402/
install/index.html?page=/documentation/idm402/install/data/bf53fpm.html).
Install, configure, and deploy the User Application on each additional server.
On each server, specify the engine ID, as follows:

1. Open the C:\Oracle\Middleware\wlserver_10.3\common\bin\commEnv.cmd file.
2. Add an entry for the engine-id property (for example, -Dcom.novell.afw.wf.engine-

id=Engine1).

2.8.6 Things to Do After Installing the User Application
This section describes User Application cluster configuration actions that you perform after installing
the User Application.

This section includes the following topics:

“Configuring the User Application Driver for Clustering” on page 80
“Specifying the User Application Cluster Group Caching Configuration” on page 81
“Configuring Logging in a Cluster” on page 81
“Managing Workflows in a Cluster” on page 82
“Checking the Health of the Server” on page 83

Configuring the User Application Driver for Clustering
Clustering is the only scenario in which the same User Application driver is used by multiple User
Applications. The User Application driver stores various kinds of information (such as workflow
configuration and cluster information) that is application-specific. Therefore, a single instance of the
User Application driver should be not shared among multiple applications.

The User Application stores application-specific data to control and configure the application
environment. This includes JBoss application server cluster information and the workflow engine
configuration. The only User Applications that should share a single User Application driver
instance are those applications that are part of the same JBoss cluster.

In a cluster, the User Application driver must be configured to use the host name or IP address of the
dispatcher or load balancer for the cluster. You create the User Application driver when you install
the User Application (see the Roles Based Provisioning Module Installation Guide). You configure the
User Application driver using iManager.

1 Log into the instance of iManager that manages your Identity Vault.
2 Click the Identity Manager node in the iManager navigation frame.
3 Click Identity Manager Overview.
4 Use the search page to display the Identity Manager Overview for the driver set that contains

your User Application driver.
5 Click the round status indicator in the upper right corner of the driver icon:
80 NetIQ Identity Manager User Application: Administration Guide

A menu is displayed that lists commands for starting and stopping the driver, and editing driver
properties.

6 Click Edit Properties.
7 In the Driver Parameters section, change the Host parameter to the host name or IP address of the

dispatcher.
8 Click OK.

Specifying the User Application Cluster Group Caching Configuration
Users who are familiar with JGroups and JBoss clustering can modify the cluster group caching
configuration, using the User Application administration user interface (see “Cache Settings for
Clusters” on page 139). Changes to the cluster configuration only take effect for a server node when
the server node is restarted.

In most cases you should use global settings when configuring a cluster. However, global settings
present a problem if you need to use TCP, because the IP address of the server must be specified in
the JGroups initialization string for each server. You can use local settings to specify a JGroups
initialization string by checking Enable Local for Cluster Properties, then typing the JGroups
initialization string in the Local field. For an example of a working JGroups TCP protocol stack, see
JGroupsStackTCP (http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroupsStackTCP).

WARNING: If you specify local settings and enter an incorrect configuration in the JGroups
initialization string, the cache cluster function might not start. Unless you know how to configure
JGroups correctly and understand the protocol stack, you should not use local settings.

Alternatively, you can add a token (for example, “IDM_HOST_ADDR”) to the global settings for the
Cluster Properties. You can then edit the hosts file on each server in the cluster to specify the IP
address for that server.

Configuring Logging in a Cluster
This section includes tips for configuring logging in a cluster. No tips are included for WebSphere or
WebLogic.

“JBoss Logging” on page 81
“User Application Logging” on page 82

JBoss Logging
You can configure JBoss for logging in a cluster. To enable logging for clusters, you need to edit the
jboss-log4j.xml configuration file, located in the \conf directory for the JBoss server configuration
(for example, \server\IDM\conf), and uncomment the section at the bottom that looks like this:
Designing the Production Environment 81

http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroupsStackTCP

<!-- Clustering logging
 -->
- <!--
 Uncomment the following to redirect the org.jgroups and
 org.jboss.ha categories to a cluster.log file.
 <appender name="CLUSTER"
class="org.jboss.logging.appender.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File" value="${jboss.server.home.dir}/log cluster.log"/>
 <param name="Append" value="false"/>
 <param name="MaxFileSize" value="500KB"/>
 <param name="MaxBackupIndex" value="1"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>
 </layout>
 </appender>
 <category name="org.jgroups">
 <priority value="DEBUG" />
 <appender-ref ref="CLUSTER"/>
 </category>
 <category name="org.jboss.ha">
 <priority value="DEBUG" />
 <appender-ref ref="CLUSTER"/>
 </category>
 -->

You can find the cluster.log file in the log directory for the JBoss server configuration (for
example, \server\IDM\log).

User Application Logging
The User Application logging configuration (see Section 5.1.4, “Logging Configuration,” on
page 144) is not propagated to all servers in cluster. For example, if you use the Logging
administration page on a server in a cluster to set the logging level for
com.novell.afw.portal.aggregation to Trace, this setting is not propagated to the other servers in
the cluster. You must individually configure the level of logging messages for each server in the
cluster.

Managing Workflows in a Cluster
The Identity Manager User Application workflow cluster implementation binds process instances to
the engine on which they started. This is done by associating a workflow process instance with an
engine-id and is maintained in the cluster database. When a workflow engine is started, it resumes
process instances that are assigned to its engine-id. This prevents multiple engines in a cluster from
resuming the same process instance. If a workflow engine fails, tasks can still be performed with the
other engine in the cluster. However any workflow activities for workflows running on the lost
engine will not be performed until these workflows are manually assigned to another workflow
engine in the cluster.

You can manually reassign processes to other engines in the cluster. For example, an administrator
could reassign processes back to a failed workflow engine when the workflow engine is brought back
online, or redistribute processes to other engines when an engine is permanently removed from the
cluster (see Section 17.2.7, “Managing Workflow Processes in a Cluster,” on page 400).

When the workflow engine starts up it checks to see if its engine ID is already in use by another node
in the cluster. When this is the case, the workflow engine checks the cluster database to see if the
status of the engine is SHUTDOWN or TIMEDOUT. If it is, the workflow engine starts. If the status is
STARTING or RUNNING, the workflow engine logs a warning, then waits for a heartbeat time out to
occur. If the heartbeat time out occurs, that means that the other workflow engine with the same ID
was not shut down properly, so it's safe to start. If the heartbeat timer is updated, that means another
workflow engine with the same ID is running in the cluster, so the workflow engine cannot start. You
82 NetIQ Identity Manager User Application: Administration Guide

can specify the heartbeat time out (the maximum elapsed time between heartbeats before a workflow
engine is considered timed out) by setting the Heartbeat Interval and Heartbeat Factor properties in the
User Application (see “Configuring the Workflow Cluster” on page 266).

Checking the Health of the Server
Most loadbalancers or dispatchers provide a healthcheck feature for determining whether an HTTP
server is up and listening. The User Application contains a blank page that can be used for
configuring HTTP healthchecks on your loadbalancer. The page can be addressed at this URL:

http://<HOSTNAME>/<CONTEXT>/jsps/healthcheck.jsp

2.9 Localizing and Customizing User Application Strings and
Name Formats
Identity Manager provides several tools for localizing or customizing the User Application’s text.
This section includes the following topics:

Section 2.9.1, “Localizing User Application Strings,” on page 83
Section 2.9.2, “Customizing Text,” on page 84
Section 2.9.3, “Configuring the Format of Localized User Names,” on page 87
Section 2.9.4, “Ensuring that Characters Display Properly in Role Report PDF Files,” on page 88
Section 2.9.5, “Ensuring that Dates Display Correctly in Norwegian,” on page 89

2.9.1 Localizing User Application Strings
See Table 2-4 for links to the documentation that describes how to localize User Application
components.

Table 2-4 Localization and Customization Topics

Topic Where to find it:

To set the User Application’s preferred locale See the sections “Preferred Locale” and “Choosing a
Preferred Language” in the Identity Manager User
Application: User Guide (http://www.netiq.com/
documentation/idm402/index.html).

To localize e-mail templates See Section 17.4.4, “Adding Localized E-Mail
Templates,” on page 417.

To localize challenge questions See “Security: Best Practices” in the Novell Identity
Manager Administration Guide.

To localize the password sync status application name See Table 5-14, “Password Sync Status Application
Settings,” on page 195.

To localize the names of container or shared pages See the Page Name property in Section 6.2.1,
“Creating Container Pages,” on page 212.

See Section 6.3.1, “Creating Shared Pages,” on
page 221.
Designing the Production Environment 83

http://www.netiq.com/documentation/idm402/index.html
http://www.netiq.com/documentation/idm402/index.html

2.9.2 Customizing Text
The text displayed in the User Application is stored in either the User Application driver or in a set of
language-based JAR files (UserAppStrings_xx.JAR) located in the User Application WAR. You use
different tools to customize the text depending on where the text is stored. For text stored in the:

User Application driver: Use the provisioning tools in Designer for Identity Manager.

For more information, see the section “Localizing Provisioning Objects” in the User Application:
Design Guide (http://www.netiq.com/documentation/idm402/index.html).
User Application WAR: Follow the procedure described in this section.
The text strings stored in the User Application WAR file are stored in a language-based JAR file.
There is one JAR for each supported language, and the JAR file names indicate the associated
language by appending the Java locale code for the associated language. The base name of the
JAR file is UserAppStrings_locale-code.JAR. For example, the English language strings are stored
in the UserAppStrings_en.JAR. The JAR files are copied to the l10n-resources subfolder of the
User Application’s installation directory.

NOTE: To customize graphics or theming, see Section 5.1.7, “Theme Administration,” on page 166

To customize the text stored in the User Application WAR, decide:

“What strings do I want to change?” on page 84
“What languages do I want to support?” on page 85

Once you know what to change, follow these steps:

“Modify or customize the strings” on page 85
“Repackage the updated files and deploy” on page 86
“Test your changes” on page 86

You can follow the example outlined in “Text Change Example” on page 86

The User Application strings typically change between versions. This means that you have to apply
your string changes or customizations to each new release.

What strings do I want to change?
Review the User Application tabs.

To localize portlet preferences See Section 7.3.5, “Modifying Preferences for Portlet
Registrations,” on page 247.

For general information about localizing provisioning
objects or customizing their display text, such as:

Directory abstraction layer objects

Provisioning request definitions

Workflow activity display names

See “Localizing Provisioning Objects,” in the User
Application: Design Guide.

Topic Where to find it:
84 NetIQ Identity Manager User Application: Administration Guide

https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#pallocalizingdisplaylabels
http://www.netiq.com/documentation/idm402/index.html
http://www.netiq.com/documentation/idm402/index.html
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#bookinfo
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#bookinfo

Make a list that includes each string you want to change and where the string is located in the
User Application user interface. You can use this list when testing your changes to ensure that
you made the text changes in the appropriate places.

Determine whether the strings are stored in the User Application driver or in the language-
based JAR. The following guidelines help you determine where the strings are stored:

Navigation, headers, names, and instructions: This content is stored in language-based
JARs.
Identity Self-Service tab: This content is stored in language-based JARs, unless it is related
to directory abstraction layer entities (such as display name, lists, and categories). Content
related to directory abstraction layer entities is stored in the User Application driver.
Work Dashboard tab: This content is stored in language-based JARs, unless it is in the
Form Details section. The content in the Form Details section is stored in the User
Application driver.
Administration tab: This content is stored in language-based JARs.
Roles and Resources tab: This content is stored in language-based JARs unless it is related
to role or SoD names or descriptions. Role or SoD names and descriptions are stored in the
User Application driver.
Compliance tab: This content is stored in the language-based JARs unless it is related to the
provisioning request definition. Content related to the provisioning request definition is
stored in the User Application driver.

For information on changing the strings stored in the User Application driver, see the section
“Localizing Provisioning Objects” in the User Application: Design Guide.

What languages do I want to support?
Locate the JAR files corresponding to the language(s) you want to support. For example, English
strings are located in UserAppStrings_en.JAR.

Unzip the JARs into a working directory using a zip tool or the Java JDK JAR program.

Modify or customize the strings
Search the files in the working directory to locate the strings you want to change.

Use a tool that allows you to search for a specified string across all of the files in a folder (the
string(s) you want to change might be located in more than one file).

TIP: The strings in the files are in the properties file format of key=value. Modify only the value,
and not the key. Modifying the key can cause run-time errors. Follow the additional editing tips
identified below.

When editing the properties files:

Use an editor that formats properties files for improved readability, when possible.
Use an editor that displays characters rather than unicode encoding for improved
readability. Some of the properties files contain unicode-encoding.
In the editor, turn off wrapping to improve readability. It helps identity each property on a
separate line.
Designing the Production Environment 85

In some files, the key value might be difficult to identify, especially if your editor does not
provide automatic property file formatting. In these cases, search for the equals sign, and
find the first occurrence of the equals sign that does not have a backslash preceding it (\=).
The key precedes the equals sign (=), and the value follows it.
Make sure to maintain the proper properties file format.
To learn more, see Java Properties Object (http://www.java.sun.com/j2se/1.5.0/docs/api/
java/util/Properties.html#load)

Repackage the updated files and deploy
Add the properties files back to the JAR using the Java JDK jar program. You must maintain the
folder location within the JAR.

Add the modified JAR into the User Application WAR maintaining the folder location within the
WAR. You can use the Java JDK Jar program.
This example uses the Java JDK Jar program and maintains the folder location:

jar -uvf IDMPRov.WAR WEB-INF/lib/UserAppStrings_en.jar

Redeploy the WAR file to your application server.

Test your changes
Access the User Application.

Using your list of changes, review each occurrence of the string you changed to determine if you
made the change appropriately.

Text Change Example
This section provides a simple text change example.

Open the User Application Welcome page and notice the text that says

Securely manage the access needs of your ever-changing user community

Figure 2-7 Sample Text Change
86 NetIQ Identity Manager User Application: Administration Guide

http://www.java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load

To change this string in the English language JAR.

1 Expand the UserAppStrings_en.JAR file to a temporary directory.
2 Use a find tool to locate the string.

Notice that it is located in this properties file ./com/novell/afw/portal/portlet/message/
IDMWelcomeMessageRsrc_en.properties

3 Open the properties file and change the text from:

Securely manage the access needs of your ever-changing user community

to

Test text change

4 Save and close the file.
5 Follow the steps described in “Repackage the updated files and deploy” on page 86.
6 Open the User Application’s Welcome page and verify your changes.

2.9.3 Configuring the Format of Localized User Names
The User Application allows you to configure the format of displayed user names in your
environment based on the user’s current locale.

You can then use localized user names in Approval forms in the User Application, using the literal
%LocaleFormattedFullName% for forms with the User entity definition key. For more information
about creating or configuring User Application forms in Designer, see “Creating Forms for a
Provisioning Request Definition,” in the User Application: Design Guide.

This section helps you configure the format of localized names by editing the Full Name entity in the
Directory Abstraction Layer (DAL) in Designer.

1 Start Designer.
2 Open your current project and click the project name in the Outline view.
3 In the Provisioning view, right-click Full Name and select Edit.
4 In the Directory Abstraction Layer editor, expand Entities > Full Name.
5 Select the locale name pattern you want to modify.
6 Modify the Calculated Attribute expression to specify the format you want to use for the locale.

For example, if you want to display the user’s surname first and given name second, modify the
expression as follows:
Designing the Production Environment 87

https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#prdefcreateformschapter
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#prdefcreateformschapter
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#bookinfo

attr.getValue("Surname") + " " + attr.getValue("Given Name")

You can either modify the expression manually in the Expression field or click the Build
ECMAScript Expression icon and use the ECMA Expression Builder to modify the expression. For
more information about modifying ECMAScript expressions, see “Working with ECMA
Expressions,” in the User Application: Design Guide.

7 Save your changes to the locale name pattern.
8 Repeat Step 5 through Step 7 for each name pattern you want to configure.
9 When finished, close the Directory Abstraction Layer editor.

10 In the Modeler, right-click the User Application driver and select Driver > Deploy.
11 Click Deploy, then click Yes to restart the driver.
12 Click OK.
13 (Conditional) If you have installed Identity Manager Home and Provisioning Dashboard, you

can also enable the same formatting in the typeahead fields. For more information, see
“Enabling Localized User Names in Typeahead Fields” in the NetIQ Identity Manager Home and
Provisioning Dashboard User Guide.

2.9.4 Ensuring that Characters Display Properly in Role Report PDF Files
By default, the role report feature of the Roles Based Provisioning Module uses “UniGB-UCS2-H” for
the PDF encoding and “STSong-Light” for the PDF font for Chinese simplified, Chinese traditional,
Russian and Japanese locales. For the other locales, “Cp1252” is used for PDF encoding and
“Helvetica” or “Helvetica-Bold” is used for the PDF font.

If the user's browser locale or preferred locale is set to one of the above four locales, the report will be
able to display most of characters from these locales. However, some extended characters found in
ISO-8859 may not be displayed properly in the report.

Conversely, if the browser locale or preferred locale is not set to one of these four locales then some
Asian characters will not display properly.

To allow all characters to display properly in generated PDF files, you need to:

Edit the Configuration XML Data in iManager
Configure the User Application

Detailed instructions are provided below.

NOTE: You may also notice problems displaying some characters in role reports for languages that
are not in the standard set of supported languages. If you add a new language (such as Polish), you
may also need to perform the steps provided in this section to ensure that all characters display
properly for that language as well.

Editing the Configuration XML Data in iManager
1 Login to iManager as your Administrator.
2 Click the View Objects icon.
3 In the Tree, navigate to the following location:

Context > Driver Set > Driver > AppConfig > AppDefs

For example:
88 NetIQ Identity Manager User Application: Administration Guide

https://www.netiq.com/documentation/idm402/pdfdoc/idmhomepage/idmhomepage.pdf#b16yabj4
https://www.netiq.com/documentation/idm402/pdfdoc/idmhomepage/idmhomepage.pdf#b16yabj4
https://www.netiq.com/documentation/idm402/pdfdoc/idmhomepage/idmhomepage.pdf#b16yabj4
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#palecmachapter
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#palecmachapter
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#bookinfo

novell > TestDrivers > UserAppDriver > AppConfig > AppDefs

4 Click configuration.
5 In the Valued Attributes list, select XmlData and click Edit.
6 In the Edit Attribute window, search for PREF_FONT and replace the corresponding <value></

value> with <value>Arialuni.ttf</value>.
7 Search for PREF_ENCODING and replace the corresponding <value></value> with

<value>Identity-H</value>.
8 Click OK, the click OK again.
9 Restart the User Application Driver.

Configuring the User Application
1 If you edited the </property> tag (in Step 6 and Step 7 on page 89) to add support for the four

locales by specifying Arialuni.ttf as the preferred font, the directory that contains the file
Arialuni.ttf (the name of the file must match the entry specified for PREF_FONT above) has
to be added to the Application Server’s classpath.
For example, if the file Arialuni.ttf was saved to the directory /home/lab/font, and the
Application Server that the User Application war file is deployed on is JBoss, the start script for
JBoss could be modified with the following entry:

JBOSS_CLASSPATH="$JBOSS_CLASSPATH:/home/user/font"

2 Restart the Application Server:
For JBoss, restart the Application Server once all configuration manual steps have been
completed.
For WebSphere and WebLogic, the patched User Application war must be re-deployed with
their Administration tools once all manual configuration steps have been completed.

NOTE: Arialuni.ttf is the Arial Unicode MS distributed by Microsoft. If you do not have permission
to use it, then try to find and use another unicode font that supports as many characters as possible.
Then update the font and encoding in Step 6 and Step 7 on page 89 and Step 1 on page 89 with this
information.

2.9.5 Ensuring that Dates Display Correctly in Norwegian
For language codes no and nb, you need to perform a workaround to ensure that dates display
correctly in Norwegian. The Date.js file contains no but not nb, however, the dmask value (dd/MM/
yyyy) is not correct. For both no and nb, the format should be dd.MM.yyyy.

To ensure that dates display correctly in Norwegian:

1 Copy the file com/netiq/common/i18n/I18nDateTimeRsrc_en.properties, modifying the
locale portion of the file name to match the desired locale (for example,
I18nDateTimeRsrc_nb.properties).

2 Modify the format(s) in the file to match the desired format. There are four format types: short,
medium, long and full. These formats correspond to the java.text.DateFormat.SHORT,
.MEDIUM, .LONG and .FULL constants.
Designing the Production Environment 89

3 Add the file to the IDMProv.war under WEB-INF/classes/com/netiq/common/i18n using the
jar utility (file must be placed in a directory tree corresponding to the above path).

jar uvf IDMProv.war
WEB-INF/classes/com/netiq/common/i18n/I18nDateTimeRsrc_nb.properties

2.10 Configuring the Roles and Resources Tab
This section provides details on configuring the underlying subsystem for the Roles and Resources
tab. Topics include:

Section 2.10.1, “Role Service Driver Configuration,” on page 90
Section 2.10.2, “User Application Configuration,” on page 93
Section 2.10.3, “Security Roles,” on page 93
Section 2.10.4, “View Request Status Search Limit,” on page 94
Section 2.10.5, “Provisioning Display Settings,” on page 94
Section 2.10.6, “E-Mail Notification,” on page 94
Section 2.10.7, “Enabling Drivers for Resource Mappings,” on page 94
Section 2.10.8, “Creating a List in the RBPM Database,” on page 95

2.10.1 Role Service Driver Configuration
After creating the Role Service driver at installation time, you can optionally modify some of the
driver configuration settings in iManager. To configure the Role Service driver:

1 In iManager, click Identity Manager>Identity Manager Overview.
2 Browse to the driver set where the driver exists, then click Search.
3 Click the upper-right corner of the Role Service driver icon, then click Edit Properties.
4 Click on the Driver Configuration tab.
5 Scroll down to the Driver Settings section of the page.
90 NetIQ Identity Manager User Application: Administration Guide

6 Make any changes you would like to the settings, and click OK to commit your changes.

You can modify the following standard driver settings (listed under User Application/Workflow
Connection on the Driver Configuration page), which get their initial values at installation time:

Table 2-5 Standard Driver Settings

Option Description

User Application Driver DN The distinguished name of the User Application driver
object that is hosting the role system. Use the
eDirectory format, such as
UserApplication.driverset.org, or browse to find the
driver object. This is a required field.

User Application URL The URL used to connect to the User Application in
order to start Approval Workflows. This is a required
field.
Designing the Production Environment 91

In addition, you can modify the following additional settings (listed under Miscellaneous on the
Driver Configuration page) to customize the behavior of the Role Service driver:

Table 2-6 Additional Settings for Customizing the Role Service Driver

User Application Identity The distinguished name of the object used to
authenticate to the User Application in order to start
Approval Workflows. This needs to a user who has
been assigned as a Provisioning Administrator for the
User Application. Use the eDirectory format, such as
admin.department.org, or browse to find the user.

The identity needs to be entered in LDAP format (for
example, cn=admin,ou=department,o=org), rather
than dot format. Note that this is different from the
format required at driver install time, where dot
notation is expected.

This is a required field.

User Application Password Password of the account specified in the User
Application Identity field. The password is used to
authenticate to the User Application in order to start
approval workflows. This is a required field.

Reenter User Application Password Re-enter the password of the account specified in the
User Application Identity field.

Option Description

Number of days before processing removed request
objects

Specifies the number of days the driver should wait
before cleaning up request objects that have finished
processing. This value determines how long you are
able to track the status of requests that have been
fulfilled.

Frequency of reevaluation of dynamic and nested
groups (in minutes)

Specifies the number of minutes the driver should wait
before reevaluating dynamic and nested groups. This
value determines the timeliness of updates to dynamic
and nested groups used by the User Application. In
addition, this value can have an impact on
performance. Therefore, before specifying a value for
this option, you need to weigh the performance cost
against the benefit of having up-to-date information in
the User Application.

Generate audit events Determines whether audit events are generated by the
driver.

For details on audit configuration, see Chapter 3,
“Setting Up Logging,” on page 111.

Option Description
92 NetIQ Identity Manager User Application: Administration Guide

Indexing for the Role Service Driver
The Role Service driver creates relevant indexes in eDirectory for roles definitions. If you upload a
large number of roles, the indexing of these values may take some time. You can monitor these
indexes under Index Management in iManager.

Here is the list of Index Names for the indexes created for the Role Service driver:

nrf(Object Class)
nrf(nrfMemberOf)
nrf(nrfStatus)
nrf(nrfStartDate)
nrf(nrfNextExpiration)
nrf(nrfParentRoles)
nrf(nrfChildRoles)
nrf(nrfCategory)
nrf(nrfRoleCategoryKey)
nrf(nrfLocalizedNames)
nrf(nrfLocalizedDescrs)
nrf(nrfRoles)

2.10.2 User Application Configuration
The Configure Roles and Resources Settings action on the Roles and Resources tab of the User Application
allows you to specify administrative settings for the Role Subsystem. For details on using the
Configure Roles and Resources Settings action, see the section on configuring the role subsystem in the
Identity Manager User Application: User Guide (http://www.netiq.com/documentation/idm402/pdfdoc/
ugpro/ugpro.pdf).

2.10.3 Security Roles
The Role Subsystem uses a set of system roles to secure access to functions within the Roles and
Resources tab. Each menu action in the Roles and Resources tab is mapped to one or more of the system
roles. If a user is not a member of one of the roles associated with an action, the corresponding menu
item is not displayed on the Roles and Resources tab.

The system roles are administrative roles automatically defined by the system at install time for the
purpose of delegated administration. These include the following:

Role Administrator
Role Manager

To assign users to the system roles, you need to use the RBPM Provisioning and Security action on the
Administration tab. For details on assigning users to roles, see Section 8.3, “Administrator
Assignments,” on page 267.

The initial assignment of the Role Administrator is specified at installation time and processed when
the Role Subsystem is first initialized at startup time.
Designing the Production Environment 93

http://www.netiq.com/documentation/idm402/pdfdoc/ugpro/ugpro.pdf

2.10.4 View Request Status Search Limit
By default, the View Request Status action retrieves up to 10,000 request objects. If a user attempts to
retrieve a larger result set, the user will see a message indicating that the limit has been reached. In
this case, the user should narrow the search (by specifying a particular user or status, for example) to
limit the number of objects returned in the result set. Note that when a user applies a filter to a role
name, the filter limits what the user sees and its order, not the number of objects returned.

The administrator can change the maximum number of request objects retrieved by modifying the
entity definition for the nrfRequest object in iManager. To do this, the administrator needs to modify
the <search-max>10000</search-max> setting by editing the XmlData attribute of the sys-nrf-
request object. The sys-nrf-request object can be found under EntityDefs.DirectoryModel.AppConfig
within the User Application driver for the Roles Based Provisioning Module.

2.10.5 Provisioning Display Settings
The Administration tab in the User Application provides several settings that control various aspects
of the user interface, including general display settings, task settings, and request status settings.

For details on the specifying the provisioning display settings for the user interface, see Section 8.2.3,
“Configuring the Provisioning UI Display Settings,” on page 259.

2.10.6 E-Mail Notification
The Role Subsystem uses two templates that are specific to roles-based provisioning:

New Role Request (Role Request Notification)
Role Request Approval Notification (Role Request Approval Completed Notification)
New Resource Request (Resource Request Notification)
Resource Request Approval Notification (Resource Request Approval Completed Notification)

You can edit the templates to change the content and format of e-mail messages. For more
information on these templates, see Section 17.4, “Working with E-Mail Templates,” on page 403.

2.10.7 Enabling Drivers for Resource Mappings
The Roles Based Provisioning Module ships with updated configuration files for the following
drivers:

Active Directory
GroupWise
LDAP
Notes
eDirectory
SAP User Management
SAP Portal
SAP GRC Access Control

All of these updated driver configuration files contain a new section on the driver's Global
Configuration Values (GCV) page labeled Role and Resource Mapping.
94 NetIQ Identity Manager User Application: Administration Guide

To display the configuration options available in the new section, select show for the Show role and
resource mapping configuration GCV.

To enable resource mapping for the driver, select Yes for the Enable resource mapping GCV.

Depending on the driver's capabilities, one or more lower-level options are displayed once resource
mapping is turned on. The Active Directory driver, for example, has three lower-level options:

Allow mapping of user accounts
Allow mapping of groups
Allow mapping of Exchange mailboxes

Each option can be turned on or off individually by selecting Yes or No.

After saving the changes and restarting the driver, RBPM will detect the driver as enabled for
resource mapping.

NOTE: Before RBPM can detect the driver, RBPM must query the entitlement system. RBPM sends
the query to the entitlement system every 1440 minutes by default, but you can force the application
to send the query immediately using the User Application.

To force the query to run immediately, log into the User Application using a User Application
administrator account. Click Roles and Resources > Configure Roles and Resources Settings, then click the
Refresh button under Entitlement Query Status > Refresh Status.

2.10.8 Creating a List in the RBPM Database
You can use lists in request forms to display various options for specifying a resource assignment.
This section provides instructions for adding lists to the database by executing a few SQL statements.
Once these lists have been created, they can be displayed on a request form on the Roles and
Resources tab.

The following example shows how you would create a simple set of values for a list. This example
uses SQL statements that work with MySQL:

INSERT INTO PROVISIONING_CODE_MAP SET VIEWID='Factory-Locations', VERSIONNO=1,
DESCRIPTION='Factory Locations', NAME='Factory
Locations',ENTITYKEY='Factory-Locations', ENTITYTYPE=1,
LASTREFRESHED=UNIX_TIMESTAMP();

INSERT INTO PROVISIONING_VIEW_VALUE SET VALUEID='Factory-Locations-1',
VERSIONNO=1, VIEWID='Factory-Locations', PARAMVALUE='Cambridge, MA 02440';

INSERT INTO PROVISIONING_VIEW_VALUE SET VALUEID='Factory-Locations-2',
VERSIONNO=1, VIEWID='Factory-Locations', PARAMVALUE='Provo, UT 97288';

The following example uses SQL statements that work with PostgreSQL:

INSERT INTO PROVISIONING_CODE_MAP
(VIEWID,VERSIONNO,DESCRIPTION,NAME,ENTITYKEY,ENTITYTYPE,LASTREFRESHED)
VALUES ('Factory-Locations',1,'Factory Locations','Factory-Locations','Factory-
Locations',1,extract(epoch FROM now()));

INSERT INTO PROVISIONING_VIEW_VALUE (VALUEID,VERSIONNO,VIEWID,PARAMVALUE)
VALUES ('Factory-Locations-1','1','Factory-Locations','Cambridge, MA 02440');

INSERT INTO PROVISIONING_VIEW_VALUE (VALUEID,VERSIONNO,VIEWID,PARAMVALUE)
VALUES ('Factory-Locations-2','1','Factory-Locations','Waltham, MA 02451');

INSERT INTO PROVISIONING_VIEW_VALUE (VALUEID,VERSIONNO,VIEWID,PARAMVALUE)
VALUES ('Factory-Locations-3','1','Factory-Locations','Provo, UT 97288');
Designing the Production Environment 95

The VIEWID is the primary key for the PROVISIONING_CODE_MAP. The ENTITYTYPE value 1
identifies the map type as a list. The VIEWID is the foreign key for the
PROVISIONING_VIEW_VALUE relationship to the PROVISIONING_CODE_MAP table. The
VALUEID is the primary key for the PROVISIONING_VIEW_VALUE table.

After the Company Location field has been added to the form, you can specify that the company
location value should come from the Company Locations list at request time:

After the Factory Location field has been added, you can specify that the factory location value must
come from the Factory Locations list at request time:
96 NetIQ Identity Manager User Application: Administration Guide

At request time, the user can then select the company location and factory location values when
assigning the resource:

After the resource has been assigned, the Request Status tab for the resource displays the parameter
values chosen from the lists for the request form fields:

2.11 Configuring the Compliance Tab
This section provides details on configuring the Compliance tab. Topics include:

Section 2.11.1, “Security Roles,” on page 98
Section 2.11.2, “E-Mail Notification,” on page 98
Designing the Production Environment 97

2.11.1 Security Roles
The Compliance tab enforces the RBPM security model to secure access to compliance functions. If a
user is not a Compliance Administrator, the Compliance tab is not available.

A Compliance Administrator is designated at installation time. After installation, the Security
Administrator can assign additional users to the Compliance Administrator role. For details on
assigning users to the Compliance Administrator role, see Section 8.3, “Administrator Assignments,”
on page 267.

2.11.2 E-Mail Notification
When an attestation process is initiated, each attester receives an e-mail message indicating that they
must complete a compliance task. The message provides a link to the workflow activity that has been
assigned to the attester. This behavior is enabled by default, but can be disabled in Designer.

The Compliance Task (Attestation Notification) template determines the content and format of e-mail
messages sent to attesters. For more information on this template, see Section 17.4, “Working with E-
Mail Templates,” on page 403.

2.12 Configuring the Work Dashboard Tab
If you want users to be able to save their preferences within the Work Dashboard tab, you need to set
the permissions appropriately for a couple of attributes in the Identity Vault. Specifically, if you want
users to be able to save customizations associated with the Customize, Filter, and Rows actions
(actions which allow control the display of data on several sections of the Work Dashboard), or
change the sort of the data displayed, you need to ensure that the permissions on the
srvprvUserPrefs and srvprvQueryList attributes are set so that the user is able to write to these
attributes.

2.13 Recreating the Database After Installation
Database table creation has been removed from the start-up process for the User Application and
incorporated into the installation procedure. In previous releases (3.0.0 through 3.6.1), it was possible
to recreate the database tables after installation without having to reinstall by deleting the database
and creating a new database with the same name. In previous releases, the database tables were
created at start up. If the tables did not exist, then the tables would be created. This approach does
not work with this release.

In this release, you can recreate the database tables after an installation, without having to reinstall
the product. However, the procedure is somewhat different. There are two options for recreating the
database.

If a SQL file was generated during the User Application installation, follow these steps:

1 Stop the Application Server.
2 Login to the Database Server.
3 Delete the database that is used by the User Application.
4 Create a new database with the same name as the one that was deleted in Step 3.
98 NetIQ Identity Manager User Application: Administration Guide

5 Use the SQL file that was created during the installation of the User Application to create the
database tables.

6 Restart the Application Server.

If a SQL file was not generated during the User Application installation, or if the SQL file cannot be
found, follow these steps:

1 Stop the Application Server.
2 Login to the Database Server.
3 Delete the database that is used by the User Application.
4 Create a new database with the same name as the one that was deleted in Step 3.
5 Open the Novell-Custom-Install.log file, which is located at the root of the User Application

install directory. For example:

/home/lab/IDM370/idm

6 Search for an entry similar to the following:

**
If a failure is encountered while creating the tables, verify that this string
is correct
If not , you can modify this string and copy/paste to a command line to run
**

7 Copy the command outlined and paste it into a terminal on the machine where the User
Application is installed.

NOTE: You will have to replace the the stars (*) that appear for the database username and
password with the actual values required to authenticate.

8 If a SQL file is generated, then use the generated SQL file to create the database. Otherwise, the
database tables were created as a result of issuing the command.

9 Restart the Application Server.

2.14 Changing the Default Administrator Assignments After
Installation
In this release, the following administrative accounts are assigned once during the initialization of
the User Application:

Compliance Administrator
Provisioning Administrator
RBPM Configuration Administrator
Resource Administrator
Roles Administrator
Security Administrator

Modifying the mappings for these administrative accounts in the configupdate utility after the
installation and initialization process will not work in this release. The check for assigning the
administrative roles happens only once. At this time, a property is set that keeps track of when these
roles were assigned.
Designing the Production Environment 99

NOTE: To modify the default administrator assignments for the User Application, you must first edit
the configupdate.sh or configupdate.bat file and change the -edit_admin property to true. You
can then use configupdate to modify the default assignments.

If you want to modify the default assignments for the administrative roles without deleting the
Driver (which would cause all role assignments to be removed), you need to follow one of the three
procedures shown below.

2.14.1 Granting or Removing Assignments in the User Application
To grant or remove the role assignment through the User Application:

1 Login to the User Application as the Security Administrator.
2 Go to the Roles Catalog on the Roles and Resources tab.
3 Select the administrative role you want to change (for example, the Provisioning Administrator).
4 Select Edit.
5 Select the Assignments tab.
6 If you want to remove the current assigned user, then select the user and press the Remove link.
7 To add a user, press the assign button where you will need to provide a description and the user

to assign the role to and the press the Assign button.

2.14.2 Changing the Assignments in Configupdate Without Removing the
Existing Users
To change any or all of the administrative assignments and keep the existing (default) users that have
been granted the role assignment:

1 Stop the Application Server that the User Application WAR is deployed on.
2 Stop the User Application Driver.
3 Stop the Roles and Resource Service Driver.
4 Launch the configupdate utility.
5 Change the mappings for the administrative roles outlined above as required, and then press

OK.
6 Using either iManager or ConsoleOne, go to %DriverSet% -> %userApplication Driver% ->

AppConfig -> AppDefs -> Configuration. Then, go to the Other tab and open the XMLData.
7 Find the following entry:

<property>
 <key>com.novell.idm.security.domain-admin.initialized</key>

8 Delete the entry, from <property> to </property>. For example:

<property>
 <key>com.novell.idm.security.domain-admin.initialized</key>
 <value>20090831124642Z</value>
</property>

9 Close and Save.
10 Restart the User Application.
11 Restart the User Application Driver.
100 NetIQ Identity Manager User Application: Administration Guide

12 Restart the Roles and Resource Service Driver.
13 Access the User Application and in the logs you will see the administrative roles will be issued.

2.14.3 Changing the Assignments in Configupdate and Removing the
Existing Users
To change any or all of the administrative assignments and remove the existing (default) users that
have been granted the role assignment:

1 Stop the Application Server that the User Application WAR is deployed on.
2 Stop the User Application Driver.
3 Stop the Roles and Resource Service Driver.
4 Launch the configupdate utility.
5 Change the mappings for the administrative roles outlined above as required, and then press

OK.
6 Using either iManager or ConsoleOne, go to %DriverSet% -> %userApplication Driver% ->

AppConfig -> AppDefs -> Configuration. Then, go to the Other tab and open the XMLData.
7 Find the following entry:

<property>
 <key>com.novell.idm.security.domain-admin.initialized</key>

8 Delete the entry, from <property> to </property>. For example:

<property>
 <key>com.novell.idm.security.domain-admin.initialized</key>
 <value>20090831124642Z</value>
</property>

9 Close and Save.
10 Using either ConsoleOne or iManager, remove the user from the role and then the role from the

user.
11 Restart the User Application.
12 Restart the User Application Driver.
13 Restart the Roles and Resource Service Driver.
14 Access the User Application and in the logs you will see the administrative roles will be issued.

2.15 Setting up JMS in WebSphere and WebLogic
The User Application relies on a Java Message Service (JMS) persistent store to persist e-mail
messages. If JMS is not properly configured, any e-mail messages in the memory queue will be lost if
the Application Server is shut down. As a convenience, JMS is configured for JBoss automatically. For
WebSphere and WebLogic, you need to perform setup steps to configure JMS manually.

This section includes the following topics:

Section 2.15.1, “Setting up JMS on WebSphere 6.1,” on page 102
Section 2.15.2, “Setting up JMS on WebSphere 7.0,” on page 105
Section 2.15.3, “Setting up JMS on WebLogic 10.3,” on page 108
Designing the Production Environment 101

2.15.1 Setting up JMS on WebSphere 6.1
To configure JMS on WebSphere 6.1:

1 Login to the WebSphere Console as the Administrative User:

http://server:port/ibm/console

2 Go to Service integration->Buses:
2a Press the New button.
2b Create a new bus.

2b1 Provide a name for the bus.
For example: IDMProvBus

2b2 Uncheck the check box for Bus Security.
2b3 Press the Next button.

2c Confirm the creation of the new bus.
Press the Finish button.

3 Go to Service integration->Buses:
3a Select the bus that was created above.

For example: IDMProvBus
3b On the Configuration Tab -> General Properties area, perform these steps:

3b1 Provide a Description.
For example: Bus to be used with the IDM User Application

3b2 Press the Apply button.
3b3 Press Save.

4 Go to Service integration -> Buses.
4a Select the bus that was created above.

For example: IDMProvBus
4b On the Configuration Tab -> Topology -> Bus Members.

Press the Add button and perform these steps:
4b1 Select server, cluster, or WebSphere MQ server.

Select the correct Server that the User Application WAR is deployed on and press the
Next button.

4b2 Select the type of message store.
Select the radio button next to File Store and press the Next button.

4b3 Provide the message store properties.
Leave all of the default values on this page and press the Next button.

4b4 Confirm the addition of a new bus member.
Press the Finish button

4c Press the Save link.
5 Go to Resources -> JMS -> Topic connection factories.

5a In the scopes drop down, select the correct scope.
For example: Node=MyNode01, Server=server1
102 NetIQ Identity Manager User Application: Administration Guide

5b Press the New button.
5b1 Select the radio button next to Default messaging provider.
5b2 Press the OK button.

5c On the Configuration tab.
5c1 Provide a name.

For example: ConnectionFactory
5c2 Provide the following as the JNDI name.

ConnectionFactory

5c3 Provide a Description.
For Example: Topic Connection Factory to be used with the IDM User
Application

5c4 In the Bus Name drop down box, select the Bus that was created above.
For Example: IDMProvBus

5c5 Provide the following in the Client identifier field under the Durable Subscription area:

IDMNotificationDurableTopic

5c6 In the Persistent message reliability drop down box under Quality of Service, select the
following:

Reliability persistent

5c7 In the Share durable subscriptions drop down box under Advanced Messaging, select the
following:

Never shares

5d Press the Apply button.
5e Press the Save link.

6 Go to Resources -> JMS -> Topics.
6a In the scopes drop down, select the correct scope.

For example: Node=MyNode01, Server=server1
6b Press the New button.

6b1 Select the radio button next to Default messaging provider.
6b2 Press the OK button.

6c On the Configuration tab, perform these steps:
6c1 Provide a Name.

For Example: IDMNotificationDurableTopic
6c2 Provide the following as the JNDI name.

topic/IDMNotificationDurableTopic

6c3 Provide a Description.
For Example: Topic to be used with the IDM User Application

6c4 In the Bus Name drop down box, select the Bus that was created above.
For Example: IDMProvBus

6c5 In the Topic space drop down box, select the following:
Designing the Production Environment 103

Default.Topic.Space

6c6 In the JMS delivery mode drop down box, select the following:

Persistent

6d Press the Apply button.
6e Press the Save link.
6f Logout of the WebSphere console.

7 Restart the WebSphere Application Server with the User Application WAR deployed:
7a In the SystemOut.log, the following three lines will appear in sequence if the JMS server is

not set up correctly:

INFO [JMSConnectionMediator] Starting JMS notification system
WARN [NotificationEngine] Could not properly initialize JMS persistence
for the notification system. Will revert back to non-persistent
asynchronous notification system.
INFO [NotificationThread] Starting asynchronous notification system

7b In the server log, the following two lines will appear with some information about the
connection if the JMS Server is set up correctly:

INFO [JMSConnectionMediator] Starting JMS notification system
%connection information%
INFO [NotificationThread] Starting asynchronous notification system

========

[8/8/09 16:14:28:978 EDT] 0000000a SibMessage I [:] CWSID0021I:
Configuration reload is enabled for bus IDMProvBus.
[8/8/09 16:14:29:118 EDT] 0000000a SibMessage I [:] CWSIS1569I:
Messaging engine
N35020Node01.server1-IDMProvBus is using a file store.

========

[8/8/09 16:16:13:285 EDT] 00000017 SystemOut O 16:16:13,255 INFO
[JMSConnectionMediator] Starting JMS notification system

[8/8/09 16:16:13:502 EDT] 00000017 SharedPool I J2CA0086W: Shareable
connection MCWrapper id 32e432e4 Managed connection
[com.ibm.ws.sib.api.jmsra.impl.JmsJcaManagedConnection@847917706
<managedConnectionFactory=[com.ibm.ws.sib.api.jmsra.impl.JmsJcaManagedTopi
cConnectionFactoryImpl@1943565272 <logWriter=null> <busName=IDMProvBus>
<clientID=IDMNotificationDurableTopic> <userName=null> <password=null>
<xaRecoveryAlias=> <nonPersistentMapping=ExpressNonPersistent>
<persistentMapping=ReliablePersistent>
<durableSubscriptionHome=N35020Node01.server1-IDMProvBus>
<readAhead=Default> <temporaryQueueNamePrefix=null>
<temporaryTopicNamePrefix=> <target=> <targetSignificance=Preferred>
<targetTransportChain=> <targetType=BusMember> <providerEndpoints=>
<connectionProximity=Bus> <shareDataSourceWithCMP=false>
<shareDurableSubscriptions=NeverShared>
<cachedFactory=com.ibm.ws.sib.api.jms.impl.JmsFactoryFactoryImpl@2f8a2f8a>
]> <coreConnection=com.ibm.ws.sib.processor.impl.ConnectionImpl@3ac03ac>
<localTransaction=[com.ibm.ws.sib.api.jmsra.impl.JmsJcaManagedConnection$J
msJcaLocalTransaction@887895276 <localSITransaction=null>]>
<xaResource=null> <metaData=null>
<userDetails=[com.ibm.ws.sib.api.jmsra.impl.JmsJcaUserDetails@1130382176
<userName=null> <password=null>]> <subject=null> <logWriter=null>
104 NetIQ Identity Manager User Application: Administration Guide

<sessions=[[com.ibm.ws.sib.api.jmsra.impl.JmsJcaSessionImpl@1608933350
<managedConnection=847917706> <connection=2119728728> <transacted=false>
<applicationLocalTransaction=null>
<reqInfo=[com.ibm.ws.sib.api.jmsra.impl.JmsJcaConnectionRequestInfo@871511
026> <userDetails=null>
<coreConnection=com.ibm.ws.sib.processor.impl.ConnectionImpl@72bc72bc>
<request counter=0>]> <sessionClosed=false> <sessionInvalidated=false>]]>
<connectionListeners=[com.ibm.ejs.j2c.ConnectionEventListener@33703370]>]
State:STATE_TRAN_WRAPPER_INUSE
 from resource ConnectionFactory was used within a local transaction
containment boundary.

[8/8/09 16:16:13:527 EDT] 0000001e SystemOut O 16:16:13,526 INFO
[NotificationThread] Starting asynchronous notification system

2.15.2 Setting up JMS on WebSphere 7.0
To configure JMS on WebSphere 7.0:

1 Login to the WebSphere Console as the Administrative User:

http://server:port/ibm/console

2 Go to Service integration->Buses:
2a Press the New button.
2b Create a new bus.

2b1 Provide a name for the bus.
For example: IDMProvBus

2b2 Uncheck the check box for Bus Security.
2b3 Press the Next button.

2c Confirm the creation of the new bus.
Press the Finish button. Then, press the Save link.

3 Go to Service integration->Buses:
3a Select the bus that was created above.

For example: IDMProvBus
3b On the Configuration Tab -> General Properties area, perform these steps:

3b1 Provide a Description.
For example: Bus to be used with the IDM User Application

3b2 Press the Apply button.
3b3 Press Save.

4 Go to Service integration -> Buses.
4a Select the bus that was created above.

For example: IDMProvBus
4b On the Configuration Tab -> Topology -> Bus Members.

Press the Add button and perform these steps:
4b1 Select server, cluster, or WebSphere MQ server.

Select the correct Server that the User Application war is deployed on and press the
Next button.

4b2 Select the type of message store.
Designing the Production Environment 105

Select the radio button next to File Store and press the Next button.
4b3 Configure the file store.

Leave all of the default values on this page and press the Next button.
4b4 Tune the performance parameters, if necessary.

Leave all of the default values, unless your situation requires them to be changed.
Press the Next button.

4b5 Press the Finish button.
4c Press the Save link.

5 Go to Resources -> JMS -> Topic connection factories.
5a In the scopes drop down, select the correct scope.

For example: Node=MyNode01, Server=server1
5b Press the New button.

5b1 Select the radio button next to Default messaging provider.
5b2 Press the OK button.

5c On the Configuration tab.
5c1 Provide a name.

For example: ConnectionFactory
5c2 Provide the following as the JNDI name.

ConnectionFactory

5c3 Provide a Description.
For Example: Topic Connection Factory to be used with the IDM User
Application

5c4 In the Bus Name drop down box, select the Bus that was created above.
For Example: IDMProvBus

5c5 Provide the following in the Client identifier field under the Durable Subscription area:

IDMNotificationDurableTopic

5c6 In the Persistent message reliability drop down box under Quality of Service, select the
following:

Reliability persistent

5c7 In the Share durable subscriptions drop down box under Advanced Messaging, select the
following:

Never shares

5d Press the Apply button.
5e Press the Save link.

6 Go to Resources -> JMS -> Topics.
6a In the scopes drop down, select the correct scope.

For example: Node=MyNode01, Server=server1
6b Press the New button.

6b1 Select the radio button next to Default messaging provider.
6b2 Press the OK button.
106 NetIQ Identity Manager User Application: Administration Guide

6c On the Configuration tab, perform these steps:
6c1 Provide a Name.

For Example: IDMNotificationDurableTopic
6c2 Provide the following as the JNDI name.

topic/IDMNotificationDurableTopic

6c3 Provide a Description.
For Example: Topic to be used with the IDM User Application

6c4 In the Bus Name drop down box, select the Bus that was created above.
For Example: IDMProvBus

6c5 In the Topic space drop down box, select the following:

Default.Topic.Space

6c6 In the JMS delivery mode drop down box, select the following:

Persistent

6d Press the Apply button.
6e Press the Save link.
6f Logout of the WebSphere console.

7 Restart the WebSphere Application Server with the User Application WAR deployed:
7a In the SystemOut.log, the following three lines will appear in sequence if the JMS server is

not set up correctly:

INFO [JMSConnectionMediator] Starting JMS notification system
WARN [NotificationEngine] Could not properly initialize JMS persistence
for the notification system. Will revert back to non-persistent
asynchronous notification system.
INFO [NotificationThread] Starting asynchronous notification system

7b In the server log, the following two lines will appear with some information about the
connection if the JMS Server is set up correctly:

INFO [JMSConnectionMediator] Starting JMS notification system
%connection information%
INFO [NotificationThread] Starting asynchronous notification system

========

[9/7/09 14:39:52:167 EDT] 00000000 SibMessage I [:] CWSID0021I:
Configuration reload is enabled for bus IDMProvBus.
[9/7/09 14:39:52:372 EDT] 00000000 SibMessage I [:] CWSIS1569I:
Messaging engine N35020Node02.server1-IDMProvBus is using a file store.

========

[9/7/09 14:41:32:613 EDT] 0000000c SystemOut O 14:41:32,608 INFO
[JMSConnectionMediator] Starting JMS notification system

[9/7/09 14:41:32:841 EDT] 0000000c SharedPool I J2CA0086W: Shareable
connection MCWrapper id 5c175c17 Managed connection
[com.ibm.ws.sib.api.jmsra.impl.JmsJcaManagedConnection@490f490f
<managedConnectionFactory=[com.ibm.ws.sib.api.jmsra.impl.JmsJcaManagedTopi
cConnectionFactoryImpl@1f9c1f9c <logWriter=null> <busName=IDMProvBus>
<clientID=IDMNotificationDurableTopic> <userName=null> <password=null>
<xaRecoveryAlias=> <nonPersistentMapping=ExpressNonPersistent>
<persistentMapping=ReliablePersistent>
<durableSubscriptionHome=N35020Node02.server1-IDMProvBus>
Designing the Production Environment 107

<readAhead=Default> <temporaryQueueNamePrefix=null>
<temporaryTopicNamePrefix=null> <target=null>
<targetSignificance=Preferred> <targetTransportChain=null>
<targetType=BusMember> <providerEndpoints=null> <connectionProximity=Bus>
<shareDataSourceWithCMP=false> <shareDurableSubscriptions=NeverShared>
<cachedFactory=com.ibm.ws.sib.api.jms.impl.JmsFactoryFactoryImpl@4fb24fb2>
<producerDoesNotModifyPayloadAfterSet=false>
<consumerDoesNotModifyPayloadAfterGet=false>]>
<coreConnection=com.ibm.ws.sib.processor.impl.ConnectionImpl@b0b0b0b>
<localTransaction=[com.ibm.ws.sib.api.jmsra.impl.JmsJcaManagedConnection$J
msJcaLocalTransaction@78ce78ce <localSITransaction=null>]>
<xaResource=null> <metaData=null>
<userDetails=[com.ibm.ws.sib.api.jmsra.impl.JmsJcaUserDetails@5b4d5b4d
<userName=null> <password=null>]> <subject=null> <logWriter=null>
<sessions=[[com.ibm.ws.sib.api.jmsra.impl.JmsJcaSessionImpl@21ff21ff
<managedConnection=1225738511> <connection=828453217> <transacted=false>
<applicationLocalTransaction=null>
<reqInfo=[com.ibm.ws.sib.api.jmsra.impl.JmsJcaConnectionRequestInfo@219a21
9a> <userDetails=null>
<coreConnection=com.ibm.ws.sib.processor.impl.ConnectionImpl@b0b0b0b>
<request counter=0>]> <sessionClosed=false> <sessionInvalidated=false>]]>
<connectionListeners=[com.ibm.ejs.j2c.ConnectionEventListener@1572625852]>
] State:STATE_TRAN_WRAPPER_INUSE
 from resource ConnectionFactory was used within a local transaction
containment boundary.

[9/7/09 14:41:32:938 EDT] 0000001a SystemOut O 14:41:32,938 INFO
[NotificationThread] Starting asynchronous notification system

2.15.3 Setting up JMS on WebLogic 10.3
To configure JMS on WebLogic 10.3:

1 Login to the WebLogic Console as the Administrative User:

http://server:port/console

2 Go to Domain Configuration->Services->Persistent Stores:
2a Select New->Create File Store screen.
2b On the Create a new File Store screen.

2b1 Provide a Name.
For example: FileStore-0

2b2 Select the correct Target Server.
This needs to be the same Target Server that the User Application WAR is deployed on.
For Example: AdminServer

2b3 Provide a Directory Location for where the JMS Server will be able to store. The
location must already exist on the server. For example: /opt/bea/JMS

2b4 Press the OK button.
3 Go to Domain Configuration->Services->Messaging->JMS Servers:

3a Select the New button.
3b On the Create a New JMS Server screen #1, perform these steps:

3b1 Provide a Name.
For example: JMSServer-0

3b2 In the Persistent Store dropdown, select the persistent store that was created above.
108 NetIQ Identity Manager User Application: Administration Guide

For example: FileServer-0
3b3 Press the Next button.

3c On the Create a New JMS Server screen #2, perform these steps:
3c1 In the Target dropdown, select the correct Target Server.

This needs to be the same Target Server that the User Application WAR is deployed on.
For example: AdminServer

3c2 Press the Finish button.
4 Go to Domain Configuration -> Services -> Messaging -> JMS Modules.

4a Select the New button.
4b Provide a Name.

For example: SystemModule-0
4c Press the Next button.
4d On the Create JMS System Module screen #2:

4d1 Select the checkbox next to the correct Target Server.
This needs to be the same Target Server that the User Application WAR is deployed on.
For example: AdminServer

4d2 Press the Next button.
4e On the Create JMS System Module screen #3:

4e1 Select the checkbox next to Would you like to add resources to this JMS System Module.
4e2 Press the Finish button.

4f On the Settings for %name% (for example: SystemModule-0), select the Configuration tab.
4f1 Under Summary of Resources area, press the New button.

4f1a On the Create a New JMS System Module Resource screen #1, select the radio button
next to Connection Factory, and press the Next button.

4f1b On the Create a New JMS System Module Resource screen #2, follow these steps:
Provide a Name. For example: ConnectionFactory-0
Provide the following as the JNDI Name: ConnectionFactory
Press the Next button.

4f1c On the Create a New JMS Module Resource screen #3, perform these steps:
Select the Target Server that the User Application WAR is deployed on. For example: AdminServer
Press the Finish button.

4f2 Under Summary of Resources area, press the New button.
4f2a On the Create a New JMS System Module Resource screen #1, select the radio button

next to Topic, and press the Next button.
4f2b On the Create a New JMS System Module Resource screen #2, follow these steps:

Provide a Name. For example: Topic-0
Provide the following as the JNDI Name: topic/IDMNotificationDurableTopic
Press the Next button.
Designing the Production Environment 109

4f2c On the Create a New JMS Module Resource screen #3, perform these steps:
Press the Create a New Subdeployment button. Provide a Subdeployment Name. The Subdeployment

name needs to be the same as the Name provided for the Topic. For example:
Topic-0.

Press the OK button.
4f3 Under Targets, select the correct JMS Server.

This has to be the same JMS server that was defined above. For example: JMSServer-0
4f4 Press the Finish button.

4g Logout of the WebLogic console.
5 Restart the WebLogic Server with the User Application WAR deployed:

5a In the server log, the following three lines will appear in sequence if the JMS server is not
set up correctly:

INFO [com.novell.soa.notification.impl.jms.JMSConnectionMediator]
Starting JMS notification system
WARN [com.novell.soa.notification.impl.NotificationEngine] Could not
properly initialize JMS persistence for the notification system. Will
revert back to non-persistent asynchronous notification system.
INFO [com.novell.soa.notification.impl.NotificationThread] Starting
asynchronous notification system

5b In the server log, the following two lines will appear in sequence if the JMS Server is set up
correctly:

INFO [JMSConnectionMediator] Starting JMS notification system
INFO [NotificationThread] Starting asynchronous notification system
110 NetIQ Identity Manager User Application: Administration Guide

3 3Setting Up Logging

This section includes the following:

Section 3.1, “About Event Logging,” on page 111
Section 3.2, “Logging to a Novell Identity Audit or Sentinel Server,” on page 112
Section 3.3, “Logging to OpenXDAS,” on page 118
Section 3.4, “Log Events,” on page 119

3.1 About Event Logging
Section 3.1.1, “About the Log Level Settings,” on page 112
Section 3.1.2, “Changing the User Application Log Level Settings,” on page 112

The Identity Manager User Application implements logging by using a custom-developed logging
framework that integrates with log4j, an open-source logging package distributed by The Apache
Software Foundation. See Logging Services (http://logging.apache.org/log4j) for details. By default,
event messages are logged to the system console and to the application server’s log file at logging
level INFO and above. You can also configure the User Application to log to Novell Identity Audit
and OpenXDAS. Events are logged to all activated loggers.

The default behavior of the JBoss server is to limit the console log4j appender to display log messages
with a verbosity of INFO or less. In order to see log messages for more verbose levels (for example,
DEBUG), you need to examine the server log file.

WARNING: You must use Novell Identity Audit (or Sentinel) to preserve documents that you
digitally sign. Digital signature documents are not stored with workflow data in the User
Application database, but are stored in the logging database. You must enable logging to preserve
these documents.

The log4j configuration settings are stored in the following locations:

jboss-log4j.xml in the install directory on a JBoss application server
log4j.xml in the User Application WAR on a non-JBoss application server

The User Application logging configuration settings are stored in the following locations:

idmuserapp_logging.xml in the install directory on a JBoss application server
custom location specified by the variable idmuserapp.logging.config.dir on Websphere or
Weblogic

NOTE: The CONSOLE and FILE appenders are defined in jboss-log4j.xml, while the NAUDIT
and OPENXDAS appenders, being specific to the User Application, are defined in
idmuserapp_logging.xml. All loggers specific to the User Application are defined in
idmuserapp_logging.xml.
Setting Up Logging 111

http://logging.apache.org/log4j

3.1.1 About the Log Level Settings
Console logging involves synchronized writes. This means that logging can become a processor
usage issue as well as a concurrency impedance. You can change the priority value default setting to
ERROR, on a JBoss server, by modifying the setting in the <installdir>/jboss/server/IDMProv/
conf/jboss-log4j.xml. Locate the root node that looks like this:

 <root>

 <priority value="INFO"/>

 <appender-ref ref="CONSOLE"/>
 <appender-ref ref="FILE"/>
 </root>

Change the priority value to:

<root>
 <priority value="ERROR"/>

 <appender-ref ref="CONSOLE"/>
 <appender-ref ref="FILE"/>
</root>

Assigning a value to the root ensures that any appenders that do not explicitly have a level assigned
inherit the root's level.

3.1.2 Changing the User Application Log Level Settings
The User Application enables you to change the log level settings of individual loggers.

1 Log in to the User Application as the User Application Administrator.
2 Select the Administration tab.
3 Select the Logging link.
4 Change the Log Level of any logger.
5 To save the changes for application server restarts, select Persist the logging changes.
6 Click Submit.

The User Application logging configuration is saved in the file idmuserapp_logging.xml. On JBoss,
the path is <installdir>/jboss/server/IDMProv/conf/idmuserapp_logging.xml.

3.2 Logging to a Novell Identity Audit or Sentinel Server
To log to a Novell Identity Audit or Sentinel server:

1 Add the Identity Manager application schema to the Novell Identity Audit server as a log
application
This step applies to Novell Identity Audit only. For more information, see Section 3.2.1, “Adding
the Identity Manager Application Schema to your Novell Identity Audit Server as a Log
Application,” on page 113

2 Configure the Novell Identity Audit platform agent on your application server
112 NetIQ Identity Manager User Application: Administration Guide

The Platform Agent is required on any client that reports events to Novell Identity Audit or
Sentinel. You configure the platform agent through the logevent configuration file. This file
provides the configuration information that the platform agent needs to communicate with the
Novell Identity Audit server. The default location for this file, on the application server, is:

Linux: /etc/logevent.conf
Windows: /<WindowsDir>/logevent.cfg (Usually c:\windows)

Specify the following four properties:
Loghost: The IP address or DNS name of your Novell Identity Audit or Sentinel server. For
example:

LogHost=xxx.xxx.xxx.xxx

LogJavaClassPath: The location of the lcache jar file NauditPA.jar. For example:

LogJavaClassPath=/opt/novell/idm/NAuditPA.jar

LogCacheDir: Specifies where lcache stores cache files. For example:

LogCacheDir=/opt/novell/idm/naudit/cache

LogCachePort: Specifies on which port lcache listens for connections. The default is 288, but in a
Linux server, set the port number greater than 1000. For example:

LogCachePort=1233

BigData Specifies the maximum number of bytes that the client will allow. Larger amounts of
logging data will be truncated. The default value is 3072 bytes, but you should change this to at
least 8192 bytes to handle a typical form that has approximately 15 fields on a half page.

LogMaxBigData=8192

IMPORTANT: If your data is very large, you may want to increase this value. If you are logging
events that include digital signatures, it is critical that the value of LogMaxBigData be large
enough to handle the data being logged.

Specify any other settings needed for your environment.

NOTE: You must restart the Platform Agent any time you change the configuration.

3 Enable Novell Identity Audit or Sentinel logging.
This step applies to both Novell Identity Audit and Sentinel. For more information, see
Section 3.2.2, “Enabling Audit or Sentinel Logging,” on page 114.

3.2.1 Adding the Identity Manager Application Schema to your Novell
Identity Audit Server as a Log Application
If you are using Novell Identity Audit (not Sentinel), you need to add the schema to your Novell
Identity Audit Server as a log application. This section applies to Novell Identity Audit only.

To configure Audit to use the Identity Manager User Application as a log application:

1 Locate the following file:

dirxml.lsc

This file is located in the Identity Manager User Application installation directory after the
install, for example /opt/novell/idm.
Setting Up Logging 113

2 Use a Web browser to access an iManager with the Novell Identity Audit plug-in installed, and
log in as an administrator.

3 Go to Roles and Tasks > Auditing and Logging and select Logging Server Options.
4 Browse to the Logging Services container in your tree and select the appropriate Audit Secure

Logging Server. Then click OK.
5 Go to the Log Applications tab, select the appropriate Container Name, and click the New Log

Application link.
6 When the New Log Application dialog box displays, specify the following:

Click OK. The Log Applications displays the added application name.
7 Click OK to complete your Novell Identity Audit server configuration.
8 Make sure the status on the Log Application is set to ON. (The circle under the status should be

green. If it is red, click it to switch it to ON.)
9 Restart the Novell Identity Audit server to activate the new log application settings.

3.2.2 Enabling Audit or Sentinel Logging
To enable Novell Identity Audit or Sentinel logging in your Identity Manager User Application:

1 Log in to the User Application as the User Application Administrator.
2 Select the Administration tab.
3 Select the Logging link.
4 Select the Also send logging messages to audit service check box (near the bottom of the page).
5 To save the changes for any subsequent application server restarts, make sure Persist the logging

changes is selected.
6 Click Submit.

NOTE: To enable logging for Role events, the Role Service driver Generate audit events property
must be selected. For more information on this property, see Section 2.10.1, “Role Service Driver
Configuration,” on page 90.

3.2.3 Log Reports
If you log events to the Novell Identity Audit database channel, you can run reports on the data.
There are several ways to generate reports against data logged to a Novell Identity Audit database:

Use the Novell Identity Audit Report application to run your own reports or to run the
predefined reports described in “Predefined Log Reports for Novell Identity Audit” on
page 115.
Write queries against the logged data by using iManager to select Auditing and Logging > Queries
(Novell Identity Audit only).

For this setting Do this

Log Application Name Type any name that is meaningful for your environment

Import LSC File Use the Browse button to select the dirxml.lsc file
114 NetIQ Identity Manager User Application: Administration Guide

Write your own SQL queries against the logged data.
Produce Identity Manager reports in Sentinel.

The default Novell Identity Audit table is called NAUDITLOG.

Predefined Log Reports for Novell Identity Audit
The following predefined log reports are created in Crystal Reports (.rpt) format for filtering data
logged to the Novell Identity Audit database:

The following graphic shows an example of the Specific User Audit Trail report:

Report Name Description

Administrative Action Shows all administrative actions initiated from the Identity
Manager User Application portal. This report includes the
administrator who initiated the action.

It excludes any administrative changes made using iManager
or the Designer for Identity Manager.

Historical Approval Flow Shows all approval flow activities for a specified time frame.

Resource Provisioning Shows all provisioning activities, sorted by resource.

User Audit Trail Shows all activity relating to a user. Activities include both
provisioning and self-service activities.

Specific User Provisioning Shows all provisioning activities for a specific user.

User Provisioning Shows all provisioning activities, sorted by user.
Setting Up Logging 115

Figure 3-1 Sample Audit Trail Report

The report files are in the following locations:
116 NetIQ Identity Manager User Application: Administration Guide

You can use these reports as templates for creating custom reports in the Crystal Reports Designer or
you can run the reports using Audit Report (lreport.exe), a Windows program supplied with
Novell Identity Audit. The predefined reports query data from the default Novell Identity Audit log
database named naudit and a database table named nauditlog. If your Novell Identity Audit log
database has a different name, use the Set Datasource Location menu item in Crystal Reports Designer
to replace the naudit database name with the one in your environment.

Sentinel Reports
If you have configured the platform agent to send events to Sentinel, you can produce the following
reports about Identity Manager events in Sentinel:

Account_Access_Assignments_[Oracle/SQL].rpt
Collector_Pack_Audit_Trail_[Oracle/SQL].rpt
Object_Provisioning_[Oracle/SQL].rpt
Periodic_Password_Change_Violations_[Oracle/SQL].rpt
Self_Password_Changes_[Oracle/SQL].rpt
User_Account_Provisioning_[Oracle/SQL].rpt
Account_Trust_Assignments_[Oracle/SQL].rpt
Collector_Pack_Status_Dashboard_[Oracle/SQL].rpt
Password_Management_[Oracle/SQL].rpt
Periodic_Password_Change_Violations_Test_[Oracle/SQL].rpt
Top_10_Dashboard_[Oracle/SQL].rpt
User_Status_Management_[Oracle/SQL].rpt
Administrative_Activity_[Oracle/SQL].rpt
Configuration_Changes_[Oracle/SQL].rpt
Password_Resets_[Oracle/SQL].rpt
Resource_Request_Errors_[Oracle/SQL].rpt
Top_10_Object_Access_Dashboard_[Oracle/SQL].rpt
Workflow_Proxy_Delegation_Management_[Oracle/SQL].rpt
Authentication_by_Server_[Oracle/SQL].rpt
Event_Count_Trend_[Oracle/SQL].rpt
Per_Object_Modification_[Oracle/SQL].rpt
Resource_Requests_Rejected_[Oracle/SQL].rpt
Trust_Access_Assignments_[Oracle/SQL].rpt
Authentication_by_User_[Oracle/SQL].rpt
Inactive_Users_[Oracle/SQL].rpt
Per_Trust_Modification_[Oracle/SQL].rpt
Resource_Requests_by_Process_[Oracle/SQL].rpt

Platform Location

Windows /nt/dirxml/reports
Setting Up Logging 117

Trust_Management_[Oracle/SQL].rpt
Collector_Management_[Oracle/SQL].rpt
Inactive_Users_Test_[Oracle/SQL].rpt
Per_User_Modification_[Oracle/SQL].rpt
Resource_Requests_by_User_[Oracle/SQL].rpt
Trust_Provisioning_[Oracle/SQL].rpt

You can access the full set of reports by downloading the Novell Identity Manager collector pack
(http://support.novell.com/products/sentinel/zip/collectors/Novell_Identity-Manager_6.1r5.spz.zip).

3.3 Logging to OpenXDAS
To use OpenXDAS for logging events, you must install, configure, then enable OpenXDAS in the
User Application. To learn about:

Installing Open XDAS, see the OpenXDAS instructions at OpenXDAS.org (http://
downloads.sourceforge.net/openxdas)
Configuring OpenXDAS logging, see the “OpenXDAS Logger Configuration” in the OpenXDAS
User’s Manual.
The OpenXDAS daemon or service (xdasd) must be running when you start the User
Application (if you have enabled OpenXDAS logging). For this reason, you should configure the
OpenXDAS daemon to start automatically.

On Linux, use the /etc/init.d/xdasd start command to start the daemon. To start it
automatically, change the runlevel using the “System Services” editor (SUSE) or directly
edit the /etc/init.d/rc* directories.
On Windows, install as a service, or use the command-line options on xdasd.exe to create
the service. See “Command Line Configuration” in the OpenXDAS User’s Manual.

If your OpenXDAS daemon/service is not running and you are configured for OpenXDAS
logging you'll get a error stack trace and the User Application might not start successfully. The
error message looks like this:

"ERROR [com.sssw.fw.servlet.Boot:contextInitialized] Unable to configure
logging. com.novell.soa.common.LocalizedRuntimeException: Error Initializing
OpenXDAS Audit."

3.3.1 Using OpenXDAS with Sentinel
To use OpenXDAS with Sentinel, you must configure the netstream logger. The netstream logger is
undocumented, but it is required to send XDAS audit messages to a Sentinel server. The netstream
logger does not perform any encryption, so the stream needs to be secured in another way (for
example, SSH tunnel).

You must specify netstream entries in the xdasd.conf file for the loggers, server and port. For
example on Linux:

xdasd.loggers=/usr/lib64/openxdas/libxdm_netstream.so

xdasd.loggers.netstream.server = 151.155.226.50
xdasd.loggers.netstream.port = 1468

On Windows, the server and port entries are the same, but the location of the xdasd.loggers entry is
different. For example, on Windows:
118 NetIQ Identity Manager User Application: Administration Guide

http://support.novell.com/products/sentinel/zip/collectors/Novell_Identity-Manager_6.1r5.spz.zip
http://downloads.sourceforge.net/openxdas

xdasd.loggers=c:\Program Files\OpenXDAS\Loggers\xdm_netstream.dll

xdasd.loggers.netstream.server = 151.155.226.50
xdasd.loggers.netstream.port = 1468

NOTE: On Windows, you must move the xdasd.conf file to the c:\windows folder. If you do not, the
xdasd.exe is unable to locate it.

3.3.2 Enabling OpenXDAS Logging in the User Application
You can enable OpenXDAS logging in your Identity Manager User Application in two ways:

Select OpenXDAS as a logging option during the installation procedure.
Enable OpenXDAS logging using the User Application Administration (described next).

1 Log in to the User Application as the User Application Administrator.
2 Select the Administration tab.
3 Select the Logging link.
4 Select the Also send logging messages to OpenXDAS check box (near the bottom of the page).
5 To save the changes for any subsequent application server restarts, make sure Persist the logging

changes is selected.
6 Click Submit.

NOTE: To enable logging for Role events, the Role Service driver Generate audit events property
must be selected. For more information on this property, see Section 2.10.1, “Role Service Driver
Configuration,” on page 90.

3.3.3 Troubleshooting
If you enable OpenXDAS logging, but the OpenXDAS daemon is not running, the User Application
fails to start. View the xdasd.log to verify that XDAS started successfully or to determine the reason
for an unsuccessful start.

If you stop OpenXDAS and restart it, you must also stop and restart the User Application. If you do
not restart the User Application, the connection between OpenXDAS and the User Application is lost
so no User Application events are logged.

Table 3-1 Commands for Starting/Stopping the XDASD daemon/service

3.4 Log Events
The Identity Manager User Application logs a set of events automatically from workflow, search,
detail, and password requests. By default, the Identity Manager User Application automatically logs
the following events to all active logging channels:

Action Command

To start XDAS xdasd -s

To stop XDAS xdasd - x
Setting Up Logging 119

Table 3-2 Logged Events

Event ID Process Novell Identity Audit Event XDAS Event Severity

31400 Detail portlet Delete_Entity Info

31401 Update_Entity Info

31410 Change
Password
portlet

Change_Password_Failure Error

31411 Change_Password_Success Info

31420 Forgot
Password
portlet

Forgot_Password_Change_Failur
e

Error

31421 Forgot_Password_Change_Succe
ss

Info

31430 Search portlet Search_Request Info

31431 Search_Saved Info

31440 Create portlet Create_Entity Info

31520 Workflow Workflow_Error Error

31521 Workflow_Started Info

31522 Workflow_Forwarded Info

31523 Workflow_Reassigned Info

31524 Workflow_Approved Info

31525 Workflow_Refused Info

31526 Workflow_Ended Info

31527 Workflow_Claimed Info

31528 Workflow_Unclaimed Info

31529 Workflow_Denied Info

31534 Workflow_Escalated Info

31535 Workflow_Reminder_Sent Info

31537 Workflow_ResetPriority Info

3152A Workflow_Completed Info

3152B Workflow_Timedout Info

3152C User_Message Info

31533 Workflow_Retracted Info

31538 Role_Approved Info

31539 Role_Denied Info

3153A SOD_Exception_Approved Info

3153B SOD_Exception_Denied Info
120 NetIQ Identity Manager User Application: Administration Guide

3153C Start_Correlated_Workflow XDAS_AE_CREATE_DAT
A_ITEM

info

3153D Role_Request_Submitted XDAS_AE_CREATE_RO
LE

Info

3152D Provisioning Provision_Error Error

3152E Provision_Submitted Info

3152F Provision_Success Info

31530 Provision_Failure Error

31531 Provision_Granted Info

31532 Provision_Revoked Info

31550 Login_Success XDAS_AE_CREATE_SE
SSION

Info

31551 Login_Failure XDAS_AE_CREATE_SE
SSION

Info

31450 Security
Context

Create_Proxy_Definition_Success Info

31451 Create_Proxy_Definition_Failure Error

31452 Update_Proxy_Definition_Succes
s

Info

31453 Update_Proxy_Definition_Failure Error

31454 Delete_Proxy_Definition_Success Info

31455 Delete_Proxy_Definition_Failure Error

31456 Create_Delegatee_Definition_Suc
cess

Info

31457 Create_Delegatee_Definition_Fail
ure

Error

31458 Update_Delegatee_Definition_Su
ccess

Info

31459 Update_Delegatee_Definition_Fail
ure

Error

3145A Delete_Delegatee_Definition_Suc
cess

Info

3145B Delete_Delegatee_Definition_Fail
ure

Error

3145C Create_Availability_Success Info

3145D Create_Availability_Failure Error

3145E Delete_Availability_Success Info

3145F Delete_Availability_Failure Error

Event ID Process Novell Identity Audit Event XDAS Event Severity
Setting Up Logging 121

31600 Role
Provisioning

Role_Provisioning XDAS_AE_APPROVAL_
REQUESTED

Info

31601 Role_Provisioning_Failure XDAS_AE_APPROVAL_
REQUESTED

Error

31610 Role
Assignment
Request

Role_Request Info

31611 Role_Request_Failure Error

31612 Role_Request_Workflow Info

31613 SOD_Exception_Auto_Approval XDAS_AE_CREATE_DAT
A_ITEM_ASSOC

Info

31614 Retract_Role_Request XDAS_AE_TERMINATE_
PEER_ASSOC

Info

31615 Retract_Role_Request_Failure XDAS_AE_TERMINATE_
PEER_ASSOC

Error

31620 User
Entitlement

Entitlement_Grant XDAS_AE_CREATE_DAT
A_ITEM_ASSOC

Info

31621 Entitlement_Grant_Failure XDAS_AE_CREATE_DAT
A_ITEM_ASSOC

Error

31622 Entitlement_Revoke XDAS_AE_TERMINATE_
DATA_ITEM_ASSOC

Info

31623 Entitlement_Revoke_Failure XDAS_AE_TERMINATE_
DATA_ITEM_ASSOC

Error

31624 Entitlement_Invalid_Reference Error

31630 Role
Management

Create_Role Info

31631 Create_Role_Failure Error

31632 Delete_Role Info

31633 Delete_Role_Failure Error

31634 Modify_Role Info

31635 Modify_Role_Failure Error

31640 Create_SOD Info

31641 Create_SOD_Failure Error

31642 Delete_SOD Info

31643 Delete_SOD_Failure Error

31644 Modify_SOD Info

31645 Modify_SOD_Failure Error

31646 Modify_Config XDAS_AE_MODIFY_DAT
A_ITEM_ATT

Info

Event ID Process Novell Identity Audit Event XDAS Event Severity
122 NetIQ Identity Manager User Application: Administration Guide

Events Not Sent Through OpenXDAS The User Application supports sending events to both
Sentinel Audit through NAudit Platform Agent and to Sentinel Syslog through OpenXDAS.
However, the following events, which are generated from the IDM Engine, are only sent to Sentinel
Audit through NAudit Platform Agent, and not through OpenXDAS:

00031665,Resource Provisioning
00031666,Resource Provisioning Failure

00031600,Role Provisioning
00031601,Role Provisioning Failure

00031677,Create Resource Association Failure
00031678,Delete Resource Association
00031679,Delete Resource Association Failure
0003167A,Modify Resource Association
0003167B,Modify Resource Association Failure

#^GROUP^Engine events logged from vrdim^00030001-00030032
00030001,Status Success
00030002,Status Retry
00030003,Status Warning
00030004,Status Error,Channel
00030005,Status Fatal
00030006,Status Other
00030007,Search
00030008,Add Entry
00030009,Delete Entry,Channel
0003000A,Modify Entry
0003000B,Rename Entry
0003000C,Move Entry
0003000D,Add Association
0003000E,Remove Association
0003000F,Query Schema
00030010,Check Password
00030011,Check Object Password
00030012,Change Password
00030013,Sync,Channel
00030014,Input XML Document
00030015,Input Transformation Document
00030016,Output Transformation Document
00030017,Event Transformation Document
00030018,Placement Rule Transformation Document
00030019,Create Rule Transformation Document
0003001A,Input Mapping Rule Transformation Document
0003001B,Output Mapping Rule Transformation Document
0003001C,Matching Rule Transformation Document
0003001D,Command Transformation Document
0003001E,Publisher Filter Transformation Document
0003001F,User Agent Request
00030020,Resync Driver
00030021,Migrate
00030022,Driver Start
00030023,Driver Stop
00030024,Password Sync
00030025,Password Reset
00030026,DirXML Error
00030027,DirXML Warning
00030028,Custom Operation
00030029,Clear Attribute
0003002A,Add Value - Modify Entry
0003002B,Remove Value
0003002C,Merge Entries

31647 Modify_Config_Failure XDAS_AE_MODIFY_DAT
A_ITEM_ATT

Error

Event ID Process Novell Identity Audit Event XDAS Event Severity
Setting Up Logging 123

0003002D,Get Named Password
0003002E,Reset Attributes
0003002F,Add Value - Add Entry
00030030,Set SSO Credential
00030031,Clear SSO Credential
00030032,Set SSO Passphase

#^GROUP^Job events logged from vrdim^000303E4-000303E7
000303E4,Job Result Aborted
000303E5,Job Result Error
000303E6,Job Result Warning
000303E7,Job Result Success

#
#^GROUP^Server events Logged from DXevent^000307D0-000307E2
000307D0,Config:Log Events
000307D1,Config:Driver Cache Limit
000307D2,Config:Driver Set
000307D3,Config:Driver Start Option
000307D4,Driver Resync
000307D5,Migrate Application
000307D6,Shim Password Set
000307D7,Keyed Password Set
000307D8,Remote Loader Password Set
000307D9,Regenerate Key Pair
000307DA,Get Server Certificate
000307DB,Cache Utility
000307DC,Check Object Password
000307DD,Initialize Driver Object
000307DE,Notify Job Update
000307DF,Open Driver Action
000307E0,Queue Driver Event
000307E1,Start Job
000307E2,Abort Job

#^GROUP^Remote Loader^00030BB8-00030BBB
00030BB8,Remote Loader Start
00030BB9,Remote Loader Stop
00030BBA,Remote Loader Connection Established
00030BBB,Remote Loader Connection Dropped
124 NetIQ Identity Manager User Application: Administration Guide

III IIIAdministering the User Application

These sections describe how to configure and manage the Identity Manager User Application by
using the Administration tab of the user interface.

Chapter 4, “Using the Administration Tab,” on page 127
Chapter 5, “Application Configuration,” on page 131
Chapter 6, “Page Administration,” on page 203
Chapter 7, “Portlet Administration,” on page 237
Chapter 8, “RBPM Provisioning and Security Configuration,” on page 253
Administering the User Application 125

126 NetIQ Identity Manager User Application: Administration Guide

4 4Using the Administration Tab

This section introduces you to the Administration tab of the Identity Manager user interface. You’ll
learn how to use the Administration tab to configure and manage the Identity Manager User
Application. Topics include:

Section 4.1, “About the Administration Tab,” on page 127
Section 4.2, “Who Can Use the Administration Tab,” on page 127
Section 4.3, “Accessing the Administration Tab,” on page 128
Section 4.4, “Administration Tab Actions You Can Perform,” on page 129

4.1 About the Administration Tab
The Identity Manager user interface is primarily accessed by end users, who work with the tabs and
pages it provides for identity self-service and workflow-based provisioning. However, this browser-
based user interface also provides an Administration and page, which administrators can use to access
a page and configure various characteristics of the underlying Identity Manager User Application.

For example, choose the Administration to:

Change the theme used for the look and feel of the user interface
Customize the identity self-service features available to end users
Specify who is allowed to perform administration actions
Manage other details about the User Application and how it runs

4.2 Who Can Use the Administration Tab
The Administration tab is not visible to typical end users of the Identity Manager user interface. There
are three kinds of users who can see and access this tab:

User Application Administrators: A User Application Administrator is authorized to perform all
management functions related to the Identity Manager User Application. This includes accessing the
Administration tab of the Identity Manager user interface to perform any administration actions that it
supports. During installation, a user is specified as User Application Administrator. After
installation, that user can use the Security page on the Administration tab to specify other User
Application administrators, as needed. For details, see Section 5.1.8, “Assigning the User Application
Administrator,” on page 172.

Domain Administrators and Domain Managers: Domain Administrators and Domain Managers
are authorized to perform provisioning and security tasks for the Identity Manager User Application.
For details, see Chapter 8, “RBPM Provisioning and Security Configuration,” on page 253.
Using the Administration Tab 127

4.3 Accessing the Administration Tab
When you are a User Application Administrator (or other permitted user), you can access the
Administration tab of the Identity Manager user interface to manage the Identity Manager User
Application. You just need a supported Web browser.

For a list of supported Web browsers, see the Roles Based Provisioning Module Installation Guide.

NOTE: To use the Identity Manager user interface, make sure your Web browser has JavaScript* and
cookies enabled.

To access the Administration tab:

1 In your Web browser, go to the URL for the Identity Manager user interface as configured in
your environment, with the context you used when you installed the User Application. For
example:

http://myappserver:8080/IDMProv

The Welcome Guest page of the user interface displays:

2 Click the Login link in the page header.
The user interface prompts you for a username and password:
128 NetIQ Identity Manager User Application: Administration Guide

3 Specify the username and password of a User Application Administrator (or a user with some
Administration permissions), then click Login.
After you log in, you see the appropriate user-interface content for that user.
By default, you are on the Identity Self-Service tab.

4 Click the Administration tab.
The Administration tab displays a menu of the administration actions you can perform. Each
choice shows a corresponding page of settings and controls.
For more general information about accessing and working in the Identity Manager user
interface, see the Identity Manager User Application: User Guide.

4.4 Administration Tab Actions You Can Perform
After you’re on the Administration tab, you can use any available actions to configure and manage the
Identity Manager User Application. Table 4-1 contains a summary.

Table 4-1 Administration Tab Actions Summary

Action Description

Application
Configuration

Controls User Application configuration of caching, logging, password
management, and LDAP connection parameters. Provides read-only information
about the driver status and the portal. Provides access to tools that allow you to
export or import portal content (pages and portlets used in the Identity Manager
User Application.

For details, see Chapter 5, “Application Configuration,” on page 131.

Page Admin Controls the pages displayed in the Identity Manager user interface and who has
permission to access them

For details, see Chapter 6, “Page Administration,” on page 203.
Using the Administration Tab 129

Portlet Admin Controls the portlets available in the Identity Manager user interface and who has
permission to access them

For details, see Chapter 7, “Portlet Administration,” on page 237.

RBPM Provisioning &
Security

Controls the provisioning configuration, as well as security permissions and
navigation access.

For details, see Chapter 8, “RBPM Provisioning and Security Configuration,” on
page 253.

Action Description
130 NetIQ Identity Manager User Application: Administration Guide

5 5Application Configuration

This section describes the tasks that you can perform from the Application Configuration page. It
includes the following sections:

Section 5.1, “Portal Configuration Tasks,” on page 131
Section 5.2, “Working with the Import and Export Tools,” on page 174
Section 5.3, “Password Management Configuration,” on page 180
Section 5.4, “Web Services,” on page 199

5.1 Portal Configuration Tasks
This section includes information about:

Section 5.1.1, “Caching Management,” on page 131
Section 5.1.2, “Driver Status,” on page 141
Section 5.1.3, “Identity Vault Settings,” on page 142
Section 5.1.4, “Logging Configuration,” on page 144
Section 5.1.5, “Portal Settings,” on page 149
Section 5.1.6, “Single Sign-On (SSO) Configuration,” on page 149
Section 5.1.7, “Theme Administration,” on page 166
Section 5.1.8, “Assigning the User Application Administrator,” on page 172

NOTE: The portal functionality within the User Application is being deprecated in Identity Manager
4.0.2.

5.1.1 Caching Management
You can use the Caching page to manage various caches maintained by the Identity Manager User
Application. The User Application employs these caches to store reusable, temporary data on the
application server so it can optimize performance.

You have the ability to control these caches when necessary by flushing their contents and changing
their configuration settings.
Application Configuration 131

Flushing caches
The caches are named according to the subsystems that use them in the Identity Manager User
Application. Normally, you don’t need to flush them yourself, because the User Application does that
automatically based on how frequently their data is used or when the source data changes. However,
if you have a specific need, you can manually flush selected caches or all caches.

1 Go to the Caching page:

2 In the Flush Cache section of the page, use the drop-down list to select a particular cache to flush
(or select Flush all):
132 NetIQ Identity Manager User Application: Administration Guide

The list of available caches is dynamic; it changes depending on what data is cached at the
moment.

3 Click Flush Cache.

Flushing the Directory Abstraction Layer Cache
The User Application’s directory abstraction layer also has a cache. The
DirectoryAbstractLayerDefinitions cache stores abstraction layer definitions on the application server
to optimize performance for all data model operations.

In a typical situation, the User Application automatically keeps the
DirectoryAbstractLayerDefinitions cache synchronized with the abstraction layer definitions stored
in the Identity Vault. But, if necessary, you can manually flush the DirectoryAbstractLayerDefinitions
cache as described in “Flushing caches” on page 132 to force the latest definitions to be loaded from
the Identity Vault.

For more information on the User Application’s directory abstraction layer, see the Identity Manager
User Application: Design Guide.

Flushing Caches in a Cluster
Cache flushing is supported in both clustered and non-clustered application server environments. If
your application server is part of a cluster and you manually flush a cache, that cache is automatically
flushed on every server in the cluster.

Configuring Cache Settings
You can use the Caching page to display and change cache configuration settings for a clustered or
non-clustered application server environment. Your changes are saved immediately, but they don’t
take effect until the next User Application restart.
Application Configuration 133

TIP: To restart the User Application, you can reboot the application server; redeploy the application
(if the WAR has been changed in some way); or force the application to restart (as described in your
application server’s documentation).

How Caching Is Implemented
In the Identity Manager User Application, caching is implemented via JBoss Cache. JBoss Cache is an
open source caching architecture that’s included with the JBoss Application Server but also runs on
other application servers.

How Cache Settings Are Stored
Two levels of settings are available for controlling cache configuration: global, and local. Use these
settings to customize the caching behavior of the Identity Manager User Application. Table 5-1 on
page 134 describes the cache configuration settings.

Table 5-1 Cache Configuration Settings

Level Description

Global settings Global settings are stored in a central location (the Identity Vault) so that
multiple application servers can use the same setting values. For
example, someone with a cluster of application servers would typically
use global settings for the cluster configuration values.

To find the global settings in your Identity Vault, look for the following
object under your Identity Manager User Application driver:

configuration.AppDefs.AppConfig

For example:

configuration.AppDefs.AppConfig.MyUserApplicationDriv
er.MyDriverSet.MyOrg

The XmlData attribute of the configuration object contains the global
settings data.

Local setting Local settings are stored separately on each application server so that an
individual server can override the value of one or more global settings.
For example, you might want to specify a local setting to remove an
application server from the cluster specified in the global settings, or to
reassign a server to a different cluster.

To find the local settings on your JBoss application server, look for the
following file under your JBoss server configuration’s conf directory:
sys-configuration-xmldata.xml. For example: jboss/server/
IDMProv/conf/sys-configuration-xmldata.xml.

To find the local settings on your WebSphere application server, look for
the sys-configuration-xmldata.xml file at the location you
specified in the extend.local.config.dir property that you set at installation.

If your server has local settings, that data is contained in this file. If no
local settings have been specified, the file won’t exist.
134 NetIQ Identity Manager User Application: Administration Guide

You should think of global settings as the default values for every application server that uses a
particular instance of the User Application driver. When you change a global setting, you are
affecting each of those servers (at the next User Application restart), except for those cases where an
individual server specifies a local override.

How Cache Settings Are Displayed
The Caching page displays the current cache settings (from the latest User Application restart). It also
displays the corresponding global and local values of those settings, and lets you change them (for
use at the next User Application restart).

The global settings always have values. The local settings are optional.

Basic Cache Settings
These cache settings apply to both clustered and non-clustered application servers.

To configure basic cache settings:

1 Go to the Caching page.
2 In the Cache Configuration section of the page, specify global or local values for the following

settings, as appropriate:

Setting What to do

Lock Acquisition Timeout Specify the time interval (in milliseconds) that the cache waits
for a lock to be acquired on an object. You might want to
increase this setting if the User Application gets a lot of lock
timeout exceptions in the application log. The default is 15000
ms.
Application Configuration 135

These settings are required, which means that there must be a global value for each, and
optionally a local value too.
If you want to override the global value of a setting with a local value, select the Enable Local
check box for that setting. Then specify the local value. (Make sure that all of your local values
are valid. Otherwise, you won’t be able to save your changes.)

NOTE: For those settings where Enable Local is deselected, any existing local values are deleted
when you save.

3 Click Save.
4 When you’re ready for your saved settings to take effect, restart the User Application on the

applicable application servers.

Customizable Cache Holders
You can customize the Max Nodes, Time To Live, and Max Age settings for some cache holders. The
cache holders are listed in Table 5-2.

Wake Up Interval Seconds Specify the time interval (in seconds) that the cache eviction
policy waits before waking up to do the following:

Process the evicted node events

Clean up the size limit and age-out nodes

Eviction Policy Class Specify the classname for the cache eviction policy that you
want to use. The default is the LRU eviction policy that JBoss
Cache provides:

org.jboss.cache.eviction.LRUPolicy

If appropriate, you can change this to another eviction policy
that JBoss Cache supports.

Max Nodes Specify the maximum number of nodes allowed in the cache.
For no limit, specify:

0

You can customize this setting for some cache holders. See
“Customizable Cache Holders” on page 136.

Time To Live Seconds Specify the time to idle (in seconds) before the node is swept
away. For no limit, specify:

0

You can customize this setting for some cache holders. See
“Customizable Cache Holders” on page 136.

Max Age Specifies the number of seconds an entry should be allowed to
stay in the cache holder since its creation time. For no time limit,
specify:

0

This setting is only available for “Customizable Cache Holders”
on page 136.

Setting What to do
136 NetIQ Identity Manager User Application: Administration Guide

Table 5-2 Customizable Cache Holders

Cache Holder Name Description

DirectoryAbstractionLayerDefinitions Caches the Directory Abstraction Layer definitions
to optimize performance for all data model
operations. See “Flushing the Directory
Abstraction Layer Cache” on page 133.

DirectoryService.ContainerCacheHolder Caches containers in the directory layer.
Containers are shared by many users and groups,
and reading them from the directory layer involves
both network communication (with the LDAP
server) and object creation. By default, the cache
is limited to 50 containers, and the LRUs have a
default Time To Live (TTL) of 10 minutes.
Depending on the directory topography in your
enterprise, you might need to adjust the maximum
number of nodes or the TTL if you find the
performance is suffering because of queries to the
LDAP server for container objects. Making
settings too high in combination with a large
number of usable containers can cause unneeded
memory consumption and net lower performance
from the server.

DirectoryService.DelProxyRuntimeServiceDelegate Caches delegate assignments.

DirectoryService.DelProxyRuntimeService.Delegation Caches user availability settings.

DirectoryService.DelProxyRuntimeService.Delegator Caches the delegator entities.

DirectoryService.DelProxyRuntimeService.Proxy Caches proxy assignments.

DirectoryService.GroupCacheHolder Caches groups in the directory layer. Groups are
often shared by many users, and reading them
from the directory layer involves both network
communication (with LDAP server) and object
creation. By default, the cache is limited to 500
groups, and the LRUs have a default TTL of 10
minutes. Depending on the user/group topography
in your enterprise, you might need to adjust the
maximum number of nodes or the TTL if you find
the performance is suffering because of queries to
the LDAP server for groups objects. Settings that
are too high, in combination with a large number
of usable groups, can cause unneeded memory
consumption, and net lower performance from the
server.
Application Configuration 137

DirectoryService.MemberhipCacheHolder Caches the relationship between a user and a set
of groups. Querying the set of groups a user
belongs to can be a network and CPU intensive
operation on the LDAP server, especially if
dynamic groups are enabled. For this reason,
relationships are cached with an expiration
interval so that changes in the criteria for
inclusion/exclusion in a group (such as time-based
dynamic groups) are reflected. The default Max
Age is five minutes. However, if you use dynamic
groups which have a requirement for finer grained
time control, then you can adjust the Max Age on
this cache holder to be just below the minimum
time your finest grained time based dynamic
group requires. The lower this value is, the more
times the user's groups are queried during a
session. Setting a value too high keeps the user/
group relationships in memory perhaps longer
than the user's session needlessly consuming
memory.

DirectoryService.RolesMembershipCacheHolder Caches the application role membership list by
role.

DirectoryService.TeamManagerRuntime.Team Caches the application team instances and team
provisioning requests.

DirectoryService.UserCacheHolder Caches users in the directory layer. Reading users
from the directory layer involves both network
communication (with LDAP server) and object
creation. By default, the cache is limited to 1000
users, and the LRUs have a default TTL of 10
minutes. Depending on the user topography in
your enterprise, you might need to adjust the
maximum number of nodes or the TTL if you find
the performance is suffering because of queries to
the LDAP server for user objects. Making settings
too high combined with a large number of different
users logging in can cause unneeded memory
consumption, and net lower performance from the
server.

GlobalCacheHolder The general purpose cache holder. This
configuration applies to all caches that are not
customizable (that is, all cache holders not listed
in this table.)

JUICE Caches the resource bundles used by the user
interface controls and DN display expression
lookup results. Changing the setting of the cache
holder has a performance impact for the DN
display expression lookups because they are
frequently used in the User Application.

The low value should be at least 300 seconds, but
a higher value than 900 seconds is ok. A lower
value should be used if the customer is frequently
changing the attributes that are used in the DN
display expression

Cache Holder Name Description
138 NetIQ Identity Manager User Application: Administration Guide

Cache Settings for Clusters
This section discusses how to configure caching when you run the Identity Manager User
Application across a cluster of application servers.

In the Identity Manager User Application, cluster support for caching is implemented via JGroups.
JGroups is an open-source clustering architecture that’s included with the JBoss Application Server
but also runs on other application servers.

The User Application’s cluster consists of nodes on a network that run JGroups and use a common
Group ID. By default, the Group ID provided for the User Application’s cluster is a UUID that looks
like this:

c373e901aba5e8ee9966444553544200

The UUID helps ensure uniqueness, so that the Group ID of the User Application’s cluster doesn’t
conflict with the Group IDs of other clusters in your environment. For instance, the JBoss Application
Server itself uses several JGroups clusters and reserves associated names including the Group IDs
DefaultPartition and Tomcat-Cluster for them.

How Caching Works with a Cluster
When you start the User Application, the application’s cluster configuration settings on the Caching
page determine whether to participate in a cluster and invalidates cache changes in the other nodes
in that cluster. If clustering is enabled, the User Application accomplishes this by sending cache entry
invalidation messages to each node as changes occur.

Preparing to Use a Cluster
To use caching across a cluster:

1 Set up your JGroups cluster. This involves using the User Application installation program to
install the Identity Manager User Application to each application server in the cluster (see
Section 2.8, “Clustering,” on page 71).

2 Enable the use of that cluster in the User Application’s cache configuration settings
See “Configuring Cache Settings for Clusters” on page 140.

RoleManager.RolesCacheHolder Caches user role memberships listed by user.

Workflow.Model.Process Caches the provisioning process XML object
structure.

Workflow.Model.Request Caches the provisioning request XML object
structure.

Workflow.Provisioning Caches provisioning request instances that have
not completed. The default maximum capacity for
the LRU cache is 500. The capacity can be
modified by clicking the Administration/
Provisioning and choosing the Engine and Cluster
settings. The Process Cache Maximum Capacity
appears on this page. This cache reduces the
memory footprint for workflow processing without
compromising performance.

Cache Holder Name Description
Application Configuration 139

Configuring Cache Settings for Clusters
After you have a cluster ready to use, you can specify settings for the support of caching across that
cluster.

1 Go to the Caching page.
2 In the Cluster Configuration section of the page, specify global or local values for the following

settings, as appropriate:

If you want to override the global value of a setting with a local value, select the Enable Local
check box for that setting. Then specify the local value.
For those settings where Enable Local is unselected, any existing local values are deleted when
you save.
Make sure that all nodes in your cluster specify the same Group ID and Cluster Properties. To
see these settings for a particular node, you must access the Identity Manager user interface
running on that node—by browsing to the URL of the user interface on that server—and then
display the Caching page there.
If you need to use the TCP protocol instead of the default UDP protocol, see “Specifying the
User Application Cluster Group Caching Configuration” on page 81.

3 Click Save.
4 When you’re ready for your saved settings to take effect, restart the User Application on the

applicable application servers.

Setting What to do

Cluster Enabled Select True to invalidate cache changes to the other nodes in the
cluster specified by Group ID. If you don’t want to participate in a
cluster, select False.

Group ID Specify the Group ID of the JGroups cluster in which you want to
participate. There’s no need to change the default Group ID that’s
provided for the User Application’s cluster, unless you want to use a
different cluster.

The Group ID must be unique and must not match any of the known
JBoss cluster names such as DefaultPartition and Tomcat-Cluster.

TIP: To see the Group ID in logging messages, make sure that the
level of the caching log (com.sssw.fw.cachemgr) is set to Info or
higher.

Cluster Properties Specify the JGroups protocol stack for the cluster specified by Group
ID. This setting is for experienced administrators who might need to
adjust the cluster properties. Otherwise, you should not change the
default protocol stack.

To see the current cluster properties, click view.

For details on the JGroups protocol stack, go to www.jboss.org/wiki/
Wiki.jsp?page=JGroups (http://www.jboss.org/wiki/
Wiki.jsp?page=JGroups).
140 NetIQ Identity Manager User Application: Administration Guide

http://www.jboss.org/wiki/Wiki.jsp?page=JGroups
http://www.jboss.org/wiki/Wiki.jsp?page=JGroups

Configuring User Application Caching to use TCP
You can configure caching for the User Application to use TCP. The configuration process must be
completed on each server in the cluster because the Local Settings are saved on the file system for
each server.

To configure User Application caching to use TCP:

1 Log in as the User Application Administrator and go to
Administration->Application Configuration->Caching.

2 Enable the Enable Local checkbox in the Cluster Enabled row and set Local=TRUE. And for each of
the individual properties in the following steps enable the Enable Local checkbox for that
property and specify a value in the textfield in the Local column. The Local value for the property
will then override the Global value.

3 Copy this string and paste it in to the Cluster Properties field. It is very important to paste as a
single string with no carriage returns embedded:

TCP(bind_addr=164.99.208.68;start_port=7815;loopback=true):TCPPING(initial_hos
ts=164.99.208.68[7815],164.99.208.36[7815];port_range=3;timeout=3500;num_initi
al_members=3;up_thread=true;down_thread=true):MERGE2(min_interval=5000;max_int
erval=10000):FD(shun=true;timeout=2500;max_tries=5;up_thread=true;down_thread=
true):VERIFY_SUSPECT(timeout=1500;down_thread=false;up_thread=false):pbcast.NA
KACK(down_thread=true;up_thread=true;gc_lag=100;retransmit_timeout=3000):pbcas
t.STABLE(desired_avg_gossip=20000;down_thread=false;up_thread=false):pbcast.GM
S(join_timeout=5000;join_retry_timeout=2000;shun=false;print_local_addr=true;d
own_thread=true;up_thread=true):pbcast.STATE_TRANSFER(up_thread=true;down_thre
ad=true)

The properties in this string are defined by JBoss. Refer to JBoss documentation for more
information.

4 Set bind_addr to the local host IP address of the server you are logged into.
5 Next you need to set the start_port. This value must take into account ports already in use as

well as the value for port_range in order to avoid port conflicts. Depending on your
configuration you may need to troubleshoot to find an unused port.

6 Change the IP addresses for TCPPING to include the IP addresses of all the nodes in the cluster
and their start_port values. The list should begin with the local IP address.

7 Save changes. These changes are written to the local file system for your server. Remember to
make these changes for all servers in the cluster. Any server that does not have these changes
will use the Global Settings values.

8 Restart the server.

5.1.2 Driver Status
You can use the Driver Status pane to determine the expiration status of your driver.
Application Configuration 141

Figure 5-1 Sample Driver Status

The Driver Status pane displays the following two entries:

Driver Name
Expiration Date
The Expiration Date displays one of the following values:

1. Unlimited (if the activation has occurred)
2. Expiration date of the driver (if the driver is a trial driver)

5.1.3 Identity Vault Settings
You can use the Identity Vault Settings pane to:

Change the credentials used by the Identity Manager User Application when connecting to the
Identity Vault (LDAP provider)
Change the credentials for the guest account, if your system is configured to use a specific guest
account, rather than LDAP anonymous account.
View other LDAP properties of the Identity Manager User Application. The values of these
settings are determined when you install the User Application.

The user interface displays different fields depending on how you configured the guest account
during installation. If you specified a guest account, the user interface includes fields that let you
update the credentials for that account. If you have configured your system to use the LDAP Public
Anonymous account, the user interface displays this message: The application is configured to
use public anonymous account. To use a specific guest account, enable the guest
account using the ldap configuration tool.

To administer Identity Vault settings:

1 On the Application Configuration page, select Identity Vault Settings from the navigation menu
on the left.
The Identity Vault Settings panel displays:
142 NetIQ Identity Manager User Application: Administration Guide

2 Examine and modify the settings, as appropriate. For details, see:“LDAP Settings You Can
Change” on page 143.

3 If you make changes that you want to apply, click Submit.

LDAP Settings You Can Change
On the Identity Vault Connection Settings panel, you can modify settings for the credentials for:

The Identity Manager User Application whenever it connects to the Identity Vault (LDAP
provider).
The guest account (if configured).

The initial values for the credentials are specified during installation. These installation values are
written to the sys-configuration-xmldata file. If you make changes to these credentials via the
Administration tab, your changes are saved to the User Application’s database; they are not saved to
the sys-configuration-xmldata file. After values are written to the database, the User Application no
longer checks the values written to the sys-configuration-xmldata file. This means that you cannot
use the configupdate utility to change the credentials because they are ignored. However, you can
use configupdate to change the type of guest user (LDAP Guest or Public Anonymous Account).
Application Configuration 143

Table 5-3 LDAP Parameters

If TLS is enabled for your LDAP server, you might encounter the following error when you update
the Admin username and password: Unable to authenticate to LDAP Provider. Disable
this error by disabling TLS via iManager.

5.1.4 Logging Configuration
You can use the Logging page to control the levels of logging messages you want the Identity
Manager User Application to generate and specify whether those messages are sent to Novell
Identity Audit.

The Identity Manager User Application implements logging by using a custom-developed logging
framework that integrates with log4j, an open-source logging package distributed by The Apache
Software Foundation. By default, event messages are logged to both of the following:

The system console of the application server where the Identity Manager User Application is
deployed
A log file on that application server. For example:

jboss/server/IDMProv/log/server.log

Setting What to do

Identity Vault Administrator Type the name of a user who has full administrator rights in the Identity
Vault. The Identity Manager User Application needs to access the Identity
Vault as an administrator in order to function.

It is typical to specify the Identity Vault’s root administrator as the LDAP
connection username. The root administrator has full control over the
tree, so you need not assign any special trustee rights.

For example:

cn=admin,o=myorg

If you specify some other user, you need to assign inheritable trustee
rights to the properties [All Attributes Rights] and [Entry Rights] on your
User Application driver.

NOTE: To avoid confusion, it is recommended that you do not specify the
User Application’s User Application Administrator as the LDAP
connection username. It is best to use separate accounts for these two
different purposes.

Identity Vault Administrator
Password

and

Confirm Identity Vault
Administrator Password

Type the password that is currently set for that username in the Identity
Vault.

Guest Username Type the guest user’s distinguished name

Confirm Guest Password Type the password for the guest user.
144 NetIQ Identity Manager User Application: Administration Guide

This is a rolling log file; after it reaches a certain size, it rolls over to another file. If you have
configured your environment to include Novell Identity Audit, you have the option of logging event
messages there as well. For details on configuring your logging environment and Novell Identity
Audit, see Chapter 3, “Setting Up Logging,” on page 111.

About the Logs
The Logging page lists a variety of logs, each outputting event messages from a different part of the
Identity Manager User Application. Each log has its own independent output level.

The log names are based on log4j conventions. You’ll see these log names in the event messages that
are generated, indicating the context of the message output.

Table 5-4 on page 145 lists and describes the logs.

Table 5-4 Identity Manager User Application Logs

Log Name Description

com.novell Parent of other Identity Manager User Application logs

com.novell.afw.portal.aggregat
ion

Messages related to portal page processing

com.novell.afw.portal.persist Messages related to the persistence of portal data (including
portal pages and portlet registrations)

com.novell.afw.portal.portlet Messages from the portal core portlets and accessory
portlets

com.novell.afw.portal.util Messages from the portal import/export and navigation
portlets

com.novell.afw.portlet.consume
r

Messages related to portlet rendering

com.novell.afw.portlet.core Messages related to the core portlet API

com.novell.afw.portlet.persist Messages related to the persistence of portlet data (including
portlet preferences and setting values)

com.novell.afw.portlet.produce
r

Messages related to the registration and configuration of
portlets within the portal

com.novell.afw.portlet.util Messages related to utility code used by portlets

com.novell.afw.theme Messages from the theme subsystem

com.novell.afw.util Messages related to portal utility classes

com.novell.soa.af.impl Messages from the approval flow (provisioning workflow)
subsystem

com.novell.srvprv.apwa Messages from the Web application (actions and tags)

com.novell.srvprv.impl.portlet
.core

Messages from the core identity portlets and password
portlets

com.novell.srvprv.impl.portlet
.util

Messages from the identity-related utility portlets
Application Configuration 145

The User Application logs are hierarchical. For example, com.novell is the parent of other logs
underneath it. Any additional logs inherit its properties.

Changing Log Levels
You can control the amount of information that is written to a particular log by changing the level
that is set for it. By default, all logs are set to Info, which is an intermediate level.

1 Go to the Logging page:

com.novell.srvprv.impl.servlet Messages from the UI control framework’s ajax servlet and
ajax services

com.novell.srvprv.impl.uictrl Messages from the UI control registry API and approval form
rendering

com.novell.srvprv.impl.vdata Messages from the directory abstraction layer

com.novell.srvprv.spi Messages from the UI control registry API

com.sssw.fw.cachemgr Messages related to the framework cache subsystem

com.sssw.fw.core Messages related to the framework core subsystem

com.sssw.fw.directory Messages related to the framework directory subsystem

com.sssw.fw.event Messages related to the framework event subsystem

com.sssw.fw.factory Messages related to the framework factory subsystem

com.sssw.fw.persist Messages related to the framework persistence subsystem

com.sssw.fw.resource Messages related to the framework resource subsystem

com.sssw.fw.security Messages related to the framework security subsystem

com.sssw.fw.server Messages related to the framework server subsystem

com.sssw.fw.servlet Messages related to the framework servlet subsystem

com.sssw.fw.session Messages related to the framework session subsystem

com.sssw.fw.usermgr Messages related to the framework user subsystem

com.sssw.fw.util Messages related to the framework utility subsystem

com.sssw.portal.manager Messages related to the Portal Manager

com.sssw.portal.persist Messages related to portal persistence

Log Name Description
146 NetIQ Identity Manager User Application: Administration Guide

2 At the top of the page, find a log whose level you want to change.
3 Use the drop-down list to select one of the following levels:

Level Description

Fatal The least detail. Writes fatal errors to the log.

Error Writes errors (plus all of the above) to the log.

Warn Writes warnings (plus all of the above) to the log.

Info Writes informational messages (plus all of the above) to the log.

Debug Writes debugging information (plus all of the above) to the log.

Trace The most detail. Writes tracing information (plus all of the above) to the log.
Application Configuration 147

4 Repeat Step 2 and Step 3 for other logs, as needed.
5 Click Submit.

You can change the log level for all of the logs to one setting by selecting Change log level of all
above logs and using the drop-down list to select the level.

Adding Logs for Other Packages
You can add logs for other packages used by the User Application.

1 Go to the Logging page:
2 At the bottom of the page, select Add Log Level for Package, then use the drop-down list to select

the package.
3 Choose a log level from the drop-down, then click Submit.

Sending Log Messages to an Auditing Service
You can use the Logging page to control whether the Identity Manager User Application sends event
message output to an auditing service. Logging is off by default, unless you turn it on when installing
the User Application.

To toggle logging on/off:

1 Go to the Logging page.
2 Select or deselect the following settings, as appropriate:

Also send logging messages to audit service
Also send logging messages to OpenXDAS

3 Click Submit.

Persisting Your Log Settings
By default, changes you make on the Logging page stay in effect until the next application-server
restart or User Application redeployment. After that, the log settings revert to their default values.

However, the Logging page does offer you the option of persisting your changes to its settings. If you
turn on this feature, values for the log settings are stored in a logging configuration file on the
application server where the Identity Manager User Application is deployed. For example:

On JBoss, this file is in the following location by default:

jboss/server/IDMProv/conf/idmuserapp_logging.xml

On WebSphere, the location of this file is specified according to the custom property named
idmuserapp.logging.config.dir.

To toggle persistence of settings on or off:

1 Go to the Logging page.
2 Select or deselect the following setting, as appropriate: Persist the logging changes
3 Click Submit.
148 NetIQ Identity Manager User Application: Administration Guide

5.1.5 Portal Settings
You can use the Portal page to view characteristics of the Identity Manager User Application.The
settings are for informational purposes and cannot be changed.The values of these settings are set in
the User Application WAR. (Default Theme reflects your current theme choice from the Themes page.)

5.1.6 Single Sign-On (SSO) Configuration
The Application Configuration section within the Administration tab now provides a left navigation
choice that allows administrators to configure the User Application to support single sign-on. The
Single Sign On (SSO) page looks like this:

Figure 5-2 Single Sign On (SSO) Page

You must be a User Application Administrator to access this page.

This section provides details on SSO configuration. Topics include:

“About SSO Configuration” on page 149
“Preparing for Single Sign-On” on page 150
“Configuring the SSO Controller” on page 153
“Configuring a Kerberos Provider” on page 153
“Configuring an SAP Provider” on page 161
“Adding a Custom SSO Provider” on page 164

About SSO Configuration
RBPM includes an enhanced SSO architecture that provides an easy way to integrate single sign-on
functionality into the User Application. This architecture works with a variety of system
environments and is very secure.

The architecture for single sign-on consists of the following key components:

SSO Providers
SSO Controller
Application Configuration 149

Each SSO Provider handles a specific SSO user scenario. The SSO Provider recognizes the login
identity, then transfers the information to the SSO Controller. The SSO Controller then verifies the
information and converts the login identity to an eDirectory identity. Next, it issues a SAML
authentication token and passes it to the login module to finish the login process.

NOTE: After you configure and enable single sign-on in your environment, users can no longer
access the User Application as a guest or anonymous user. Users are instead prompted to log into the
user interface.

The SSO Providers and the SSO Controller are loosely coupled. They communicate through an HTTP
header that is digitally signed.

The Roles Based Provisioning Module ships with Kerberos and SAP SSO Providers. However, you
can also implement your own custom SSO Provider to suit the requirements of your organization.

The SSO Providers are stackable, which means that you can enable multiple providers at the same
time for a single User Application.

Preparing for Single Sign-On
This section provides general setup procedures that must be performed to prepare your environment
for single sign-on. These procedures are required for all single sign-on environments, including
Kerberos and SAP configurations. Topics include:

“Creating the Certificates” on page 150
“Configuring eDirectory” on page 151

Creating the Certificates
The single sign-on environment requires that you have a set of certificates and private keys. A
minimum of one set of certificates and private keys is necessary. For a more secure environment,
there should be one set for each SSO Provider being used, in addition to the set for the SSO
Controller.

Currently SSO configuration only supports X509 PEM format for a X509 certificate and PKCS8 DER
format for a private key.

To generate key pairs, you can use openSSL:

openssl req -newkey rsa:1024 -x509 -keyout name.key -out name.cert -days expiration

For example:

openssl req -newkey rsa:1024 -x509 -keyout rbpm.key -out rbpm.cert -days 365

NOTE: The openSSL tool is acceptable for test environments. However, for production
environments, you should use a Truster Signer, such as Verisign.

When asked for a password phrase, provide a phrase, such as novell.

This generates the key pair and self-signed certificate: rbpm.key is the DES encrypted raw RSA
private key. rbpm.cert is the PEM format X509 certificate.

Now, perform the following command to convert private key file to PKCS8 with encryption (you will
be prompted to enter a password):

openssl pkcs8 -in name.key -topk8 -out name.pkcs8 -outform DER
150 NetIQ Identity Manager User Application: Administration Guide

For example:

openssl pkcs8 -in rbpm.key -topk8 -out rbpm.pkcs8 -outform DER

Now you have two files: rbpm.pkcs8 and rbpm.cert that you can use in the next steps. rbpm.cert
needs to be imported to eDirectory as well (see eDirectory preparation).

Configuring eDirectory
SAML and NMAS methods must be installed to the eDirectory Server that the User Application is
configured to use. Currently, Novell provides SAML methods for the following 32 bit operating
systems:

Windows
Linux

In addition, 64-bit SAML methods are available for Windows and Linux.

The SAML methods are included with the Roles Based Provisioning Module and with Access
Manager.

To install the SAML and NMAS authentication methods on eDirectory:

1 Unzip nmassaml.zip (in the /products/RBPM/SAML directory).
2 Install the SAML and NMAS methods into your eDirectory tree:

2a Extend the schema stored in authsaml.sch. Refer to “Post-Installation Tasks,” in the
Identity Manager Roles Based Provisioning Module 4.0.2 User Application: Installation Guide, for
more information. If eDirectory is installed on Linux, you can use the following command
to extend the schema:

ndssch -h edir_ip edir_admin authsaml.sch

2b Install the methods. Refer to “How to Install NMAS Method” (https://www.netiq.com/
documentation/nmas33/admin/data/a49tuwk.html), in the Novell Modular Authentication
Services Administration Guide (https://www.netiq.com/documentation/nmas33/admin/data/
a20gkue.html), for more information. If eDirectory is installed on Linux, you can use the
following command to install the methods:

nmasinst -addmethod edir_admin tree ./config.txt

To create the Trusted Root Container:

1 In iManager, select Roles and Tasks > Novell Certificate Server > Create Trusted Root Container.
2 Enter a Name for the Trusted Root Container (for example, RBPMTrustedRootContainer).
3 For the Context, press the Search button and select the Security Container.
4 Press OK.
5 Press OK.

To create a Trusted Root for the certificate that your affiliate will use to sign assertions:

1 In iManager, select Roles and Tasks > Novell Certificate Server > Create Trusted Root.
2 Enter a Name for the Trusted Root (for example, RBPMTrustedRoot).
3 For the Container, press the Search button and select the Trusted Root Container you created

earlier.
Application Configuration 151

https://www.netiq.com/documentation/idm402/pdfdoc/install/install.pdf#bcz611v
https://www.netiq.com/documentation/nmas33/admin/data/a49tuwk.html
https://www.netiq.com/documentation/nmas33/admin/data/a20gkue.html
https://www.netiq.com/documentation/nmas33/admin/data/a20gkue.html
https://www.netiq.com/documentation/idm402/pdfdoc/install/install.pdf#front

4 For the Certificate File, press the Browse button and select the certificate that will be used for the
SSO Controller.

5 Click Finish, then click Close.

To create the SAML Authorization Object:

1 In iManager, select Roles and Tasks > Directory Administration > Create Object.
2 Select the checkbox for Show all object classes.
3 Scroll down and select authsamlAffiliate.
4 Press OK.
5 Enter a Name for the authsamlAffiliate (for example, RBPMSAML).
6 For the Context, press the Search button and follow these steps:

6a Select the down arrow next to Security.
6b Select the down arrow next to Authorized Login Methods.
6c Select SAML Assertion.

7 Press OK.
8 Press Modify.
9 Under Unvalued Attributes:

9a Select authsamlProviderID and press the left arrow.
9b Enter the following attribute:

rbpm.idm.novell.com

NOTE: This attribute is used to match an assertion with its affiliate. The contents of this
attribute must be an exact match with the Issuer attribute in assertions sent by this affiliate.
It must be rbpm.idm.novell.com for RBPM.

9c Click OK.
9d Select authsamlValidAfter and press the left arrow.
9e Enter an appropriate amount of time in seconds. The authsamlValidBefore and

authsamlValidAfter attributes define a window of time around the IssueInstant in an assertion
in which the assertion will be considered valid.

9f Click OK.
9g Select authsamlValidBefore and press the left arrow.
9h Enter an appropriate amount of time in seconds.
9i Click OK.
9j Select authsamlCertContainerDN and press the left arrow.

9k Press the Browse button and select the Trusted Root Container created earlier. This attribute
is used to verify the certificate chain of the signing certificate.

9l Click OK.
9m Select authsamlTrustedCertDN and press the left arrow.
9n Press the Browse button and select the Trusted Root created earlier. This will be located

inside of the Trusted Root Container that was created earlier. All assertions for the affiliate
must be signed by certificates pointed to by this attribute, or they will be rejected.

9o Click OK, then click OK again.
10 Press Apply.
152 NetIQ Identity Manager User Application: Administration Guide

11 Click OK.
12 Restart eDirectory.

Configuring the SSO Controller
This section provides instructions on configuring the SSO controller. To configure the controller, you
use the Single Sign On (SSO) page on the Administration tab of the User Application.

To configure the SSO Controller:

1 Login to the User Application as a User Application Administrator.
2 On the Administration tab, select the Application Configuration tab.
3 Select Single Sign On (SSO) from the left navigation menu.
4 Select Enable Single Sign On (SSO) To User Application.
5 Browse to the Signing Certificate file used to create the Trusted Root in eDirectory and upload it

to the User Application.
6 Browse to the Signing Key file that was created with the certificate above and upload it to the

User Application.

NOTE: The signing key should be a PKCS8 format key.

7 Type the Signing Key Password.
8 Click Save.
9 Restart the application server.

Configuring a Kerberos Provider
This section provides instructions on preparing and configuring a Kerberos provider.

IMPORTANT: The Active Directory domain name and computer name should be configured in
upper case. In addition, keytab and krb5.conf must use all upper case for the Active Directory
Domain and fully-qualified-name-AD-Server. If lower case names are used, the RBPM SSO
configuration will fail.

Preparing to Use Microsoft Active Directory Kerberos
To prepare the Key Distribution Center (KDC):

1 Prepare RBPM's Service Principal Name (SPN) and Keytab:
1a Create a user account for RBPM in a Microsoft Active Directory.

On the Microsoft Active Directory server, click Start>Programs>Administrative Tools>Active
Directory Users and Computers.
Then click Users>New, specifying any name, such as rbpm. Provide a password you will
remember. This account should only be used for the Roles Based Provisioning Module.
Select Account never expires and Password never expires. Do not select User must change
password at next logon.

1b Map the user account to SPN.

setspn -A HTTP/dns-name-for-UA userID

For example:
Application Configuration 153

setspn -A HTTP/myRBPM.novell.com rbpm

Type setspn -L userID to confirm the mapping. For example:

setspn -L rbpm

1c Create key tab for SPN.
If Active Directory is installed on Windows 2008, execute this command:

ktpass -out keytab-name.keytab -princ HTTP/dns-name-for-UA@WINDOWS-DOMAIN -
mapUser userid -mapOp set -pass password -crypto All -pType
KRB5_NT_PRINCIPAL

For example:

ktpass -out rbpm.keytab -princ HTTP/rbpm.novell.com@MYDOMAIN.NOVELL.COM -
mapUser rbpm -mapOp set -pass N0v3ll -crypto All -pType KRB5_NT_PRINCIPAL

NOTE: The encryption types and algorithms you can specify for Windows 2008 depend
upon the domain functional level at which the domain is set, as well as domain-specific
configurations.

If Active Directory is installed on Windows 2003, execute this command:

ktpass -out keytab-name.keytab -princ HTTP/dns-name-for-UA@WINDOWS-DOMAIN -
mapUser userid -mapOp set -pass password -pType KRB5_NT_PRINCIPAL

For example:

ktpass -out rbpm.keytab -princ HTTP/rbpm.novell.com@MYDOMAIN.NOVELL.COM -
mapUser rbpm -mapOp set -pass N0v3ll -pType KRB5_NT_PRINCIPAL

Note that for Windows 2003, by not specifying a crypto algorithm, you are defaulting the
algorithm to RC4-HMAC.

2 Prepare end user accounts for SSO.
The end user account name has to match some attribute value of an eDirectory user in order to
support single sign-on.
Create an end user in Active Directory, as follows:
2a On a Microsoft Active Directory server, click Start>Programs>Administrative Tools>Active

Directory Users and Computers.
Then click Users>New, specifying the user name, such as cnano. Provide a password you
will remember.
Do not select User must change password at next logon.

To prepare the Application Server environment:

1 Define the OS settings for the Kerberos configuration.
Open and edit the krb5 file to include the following information:
154 NetIQ Identity Manager User Application: Administration Guide

[libdefaults]
 default_realm = WINDOWS-DOMAIN
 kdc_timesync = 0
 forwardable = true
 proxiable = false
[realms]
 WINDOWS-DOMAIN = {
 kdc = fully-qualified-name-AD-Server
 admin_server = fully-qualified-name-AD-Server
 }
[domain_realm]
 .your.domain = WINDOWS-DOMAIN
 your.domain = WINDOWS-DOMAIN

For example:

[libdefaults]
 default_realm = MYDOMAIN.NOVELL.COM
 kdc_timesync = 0
 forwardable = true
 proxiable = false
[realms]
 MYDOMAIN.NOVELL.COM = {
 kdc = myadserver.cam.novell.com
 admin_server = myadserver.cam.novell.com
 }
[domain_realm]
 .novell.com = MYDOMAIN.NOVELL.COM
 novell.com = MYDOMAIN.NOVELL.COM

The krb5 file is located in one of the following directories:
Linux: /etc/krb5.conf
Windows: c:\Windows\krb5.ini
Unix: /etc/krb5/krb5.conf

2 Define the Web Container settings (JBoss):
2a Copy the keytab from Active Directory.

Copy myRBPM.keytab from myadserver.cam.novell.com to myRBPM.
2b Edit login-config.xml.

Open and add the following fragment to jboss/server/context/conf/login-
config.xml:

<application-policy name = "com.sun.security.jgss.krb5.accept">
 <authentication>
 <login-module code =
"com.novell.common.auth.sso.KerberosCredentialLoginModule" flag =
"required" />
 <login-module code =
"com.sun.security.auth.module.Krb5LoginModule" flag = "required">
 <module-option name = "debug">false</module-option>
 <module-option name = "kdc">fully-qualified-name-AD-Server</
module-option>
 <module-option name = "realm">WINDOWS-DOMAIN</module-option>
 <module-option name = "useKeyTab">true</module-option>
 <module-option name = "keyTab">path-to-keytab</module-option>
 <module-option name = "storeKey">true</module-option>
 <module-option name = "useFirstPass">true</module-option>
 <module-option name = "principal">HTTP/dns-name-for-UA</
module-option>
 <module-option name = "noPrompt">true</module-option>
 </login-module>
 </authentication>
 </application-policy>
Application Configuration 155

For example:

<application-policy name = "com.sun.security.jgss.krb5.accept">
 <authentication>
 <login-module code =
"com.novell.common.auth.sso.KerberosCredentialLoginModule" flag =
"required" />
 <login-module code =
"com.sun.security.auth.module.Krb5LoginModule" flag = "required">
 <module-option name = "debug">false</module-option>
 <module-option name = "kdc">myadserver.cam.novell.com</module-
option>
 <module-option name = "realm">MYDOMAIN.NOVELL.COM</module-
option>
 <module-option name = "useKeyTab">true</module-option>
 <module-option name = "keyTab">/home/userapp/IDM370/
rbpm.keytab</module-option>
 <module-option name = "storeKey">true</module-option>
 <module-option name = "useFirstPass">true</module-option>
 <module-option name = "principal">HTTP/rbpm.novell.com</
module-option>
 <module-option name = "noPrompt">true</module-option>
 </login-module>
 </authentication>
 </application-policy>

For WebSphere and WebLogic, a configuration file must be created and a property needs to
be set to make the Application Server aware that Kerberos authentication will be used.
Sample Kerberos_login.config for WebSphere Create a Kerberos_login.config file on
the WebSphere Application server with the following content:

IBMJGSSRBPM {com.ibm.security.auth.module.Krb5LoginModule required
debug=true
credsType=acceptor useKeytab=file:///c:/rbpm.keytab
tryFirstPass=true principal="HTTP/rbpm.novell.com@MYDOMAIN.NOVELL.COM";};

On Windows, use the file as is (remember to provide the exact location of the keytab file).
On Linux, provide the absolute path of the keytab file. For example: /home/user/
rbpm.keytab

An entry needs to be added similar to the following in the Generic JVM arguments for
Websphere.

-Djava.security.auth.login.config=C:/kerberos_login.config

Sample Kerberos_login.conf for WebLogic Create a Kerberos_login.conf file on the
WebLogic Application server with the following content:

com.sun.security.jgss.krb5.accept {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="HTTP/rbpm.novell.com@MYDOMAIN.NOVELL.COM" useKeyTab=true
 keyTab="C:/rbpm.keytab" realm=MYDOMAIN.NOVELL.COM debug=true
kdc=myadserver.cam.novell.com
 storeKey=true;};

On Windows, use this file as is (remember to provide the exact location of the keytab file).
On Linux, provide the absolute path of the keytab file. For example: /home/user/
rbpm.keytab
156 NetIQ Identity Manager User Application: Administration Guide

An entry needs to be added similar to the following in the JAVA_OPTS section of
setDomainEnv.sh (on Linux) and setDomainEnv.cmd (on Windows):

-Djava.security.auth.login.config=C:/kerberos_login.conf

3 Enable the Kerberos SSO Provider, as described in “Using the Administration Tab to Configure
the Kerberos Provider” on page 159.

To prepare the end user browser (Internet Explorer 7):

1 Open Internet Explorer > Options > Advanced, make sure integrated windows authentication is
enabled.

2 Open Internet Explorer > Options > Intranet > Sites, add the dns-name-for-UA (for example,
rbpm.novell.com) to the trusted intranet sites list.

To prepare the end user browser (Firefox 3):

1 Type about:config in the address bar.
2 Type network.n in the Filter.
3 Modify network.negotiate-auth.trusted-uris to include your domain (for example, .novell.com).
4 Close and restart Firefox.

Preparing to Use MIT Kerberos
To prepare the Key Distribution Center (KDC):

1 Install and configure the MIT KDC software.
Install MIT Kerberos 5 server on a machine that will be used as the KDC, assuming the Kerberos
domain is MYDOMAIN.NOVELL.COM and the KDC is myadserver.cam.novell.com.

NOTE: SLES 11 comes with a pre-installed version of MIT Kerberos V5. You can configure it
through yast2. Default Domain, Default Realm, and KDC Server Address for basic setup. You'll
need to configure the Kerberos Server for the KDC, and the Kerberos client for the client side.
After you've enabled these, you still need to follow the steps below. However, this will save you
time by removing the need to download and install Kerberos in your environment.

1a In /etc/krb5.conf, make sure you define the domain and mapping correctly:

[libdefaults]
 default_realm = MYDOMAIN.NOVELL.COM
[realms]
 MYDOMAIN.NOVELL.COM = {
 kdc = myadserver.cam.novell.com
 admin_server = myadserver.cam.novell.com
 }
[domain_realm]
 .novell.com = MYDOMAIN.NOVELL.COM
 novell.com = MYDOMAIN.NOVELL.COM

1b In /usr/local/var/krb5kdc/kdc.conf (or /var/lib/kerberos/krb5kdc/kdc.conf, depending on
your OS), make sure you specified the following entries with reasonable values:

max_life = 8h 0m 0s
max_renewable_life = 1d 0h 0m 0s

1c Initialize the database:

kdb5_util create -s
Application Configuration 157

1d Start KDC and Kadmin:

/etc/init.d/krb5kdc start
/etc/init.d/kadmind start

2 Prepare the RBPM Service Principal Name and Keytab.
2a Create a principal for RBPM on MIT KDC.

Suppose the User Application will be running on rbpm.novell.com. On the MIT KDC
machine, execute the following command to create the service principal and assign it a
random key.

kadmin.local
>ank -randkey HTTP/rbpm.novell.com

2b Export the key into a keytab.

ktadd -k /tmp/userapp.keytab HTTP/rbpm.novell.com

3 Prepare end user accounts for SSO.
The end user name should be able to map to an eDirectory user (for example, cnano):

kadmin.local
>ank cnano

To prepare the Application Server environment:

1 Define the OS settings for the Kerberos configuration.
Open and edit /etc/krb5.conf to make sure it has the same content as the one on the KDC (see
above).

2 Define the Web Container settings (JBoss):
2a Copy the keytab from KDC.

Copy rbpm.keytab from the KDC (for example, myadserver.cam.novell.com) /tmp to the
User Application server, securely.

2b Edit login-config.xml.
Open and add the following fragment to JBoss/server/context/conf/login-
config.xml:

<application-policy name = "com.sun.security.jgss.krb5.accept">
 <authentication>
 <login-module code =
"com.novell.common.auth.sso.KerberosCredentialLoginModule" flag =
"required" />
 <login-module code =
"com.sun.security.auth.module.Krb5LoginModule" flag = "required">
 <module-option name = "debug">false</module-option>
 <module-option name = "kdc">fully-qualified-name-AD-Server</
module-option>
 <module-option name = "realm">WINDOWS-DOMAIN</module-option>
 <module-option name = "useKeyTab">true</module-option>
 <module-option name = "keyTab">path-to-keytab</module-option>
 <module-option name = "storeKey">true</module-option>
 <module-option name = "useFirstPass">true</module-option>
 <module-option name = "principal">HTTP/dns-name-for-UA</
module-option>
 <module-option name = "noPrompt">true</module-option>
 </login-module>
 </authentication>
 </application-policy>

For example:
158 NetIQ Identity Manager User Application: Administration Guide

<application-policy name = "com.sun.security.jgss.krb5.accept">
 <authentication>
 <login-module code =
"com.novell.common.auth.sso.KerberosCredentialLoginModule" flag =
"required" />
 <login-module code =
"com.sun.security.auth.module.Krb5LoginModule" flag = "required">
 <module-option name = "debug">false</module-option>
 <module-option name = "kdc">myadserver.cam.novell.com</module-
option>
 <module-option name = "realm">MYDOMAIN.NOVELL.COM</module-
option>
 <module-option name = "useKeyTab">true</module-option>
 <module-option name = "keyTab">/home/userapp/IDM370/
rbpm.keytab</module-option>
 <module-option name = "storeKey">true</module-option>
 <module-option name = "useFirstPass">true</module-option>
 <module-option name = "principal">HTTP/rbpm.novell.com</
module-option>
 <module-option name = "noPrompt">true</module-option>
 </login-module>
 </authentication>
 </application-policy>

NOTE: For WebSphere and WebLogic, a configuration file must be created and a property
needs to be set to make the Application Server aware that Kerberos authentication will be
used.

3 Enable the Kerberos SSO Provider, as described in “Using the Administration Tab to Configure
the Kerberos Provider” on page 159.

To prepare the end user browser (Internet Explorer 7):

1 Initialize the ticket.
Make sure you have same content in /etc/krb5.conf as in the KDC (see above). If your local login
is "cnano", do kinit.
Otherwise, do kinit cnano.

2 Prepare Firefox (Firefox 3):
2a Type about:config in the address bar.
2b Type network.n in Filter.
2c Modify network.negotiate-auth.trusted-uris to include .novell.com.
2d Close and restart Firefox.

Using the Administration Tab to Configure the Kerberos Provider
To configure the Kerberos provider in the Administration tab of the User Application:

1 Select the Kerberos provider name and click Edit.
The Kerberos dialog displays.
Application Configuration 159

2 In the Expiration Interval field, specify the number of seconds that the SSO Header will be kept
alive before expiring. This value defines the lifecycle of the SSO Header from the time it is
issued. The expiration interval is needed to prevent replay attacks. You need to consider the
network latency between your SSO Provider and the SSO Controller, as well as clock
synchronization between the two components, if they are deployed on different machines.

3 In the User ID Mapping field, indicate whether the user ID will be associated with a user DN or
with a user attribute, such as a CN. The User ID Mapping maps the user ID in the original realm
to the eDirectory realm. If Distinguished Name is selected, the SSO UserID that appears in the SSO
header has to be the full DN recognized by eDirectory. The SSO Controller will not try to do any
user mapping. If User Attribute is selected, the SSO Controller will try to map the user from
UserID to a full user DN. For a particular mapping, if the result is not unique (in other words, a
single UserID maps to multiple users in eDirectory), or the result is none, the SSO Controller will
refuse the SSO header, and the single sign-on operation will fail.

4 Browse to the Signing Certificate file you created earlier (for example, rbpm.cert) and upload it to
the User Application.
This file can be the same one used for the SSO Controller, or it can be generated separately for
the Kerberos provider. To make your environment more secure, you should use a different
certificate than the one used for the SSO Controller.

5 Browse to the Signing Key file you created earlier (for example, rbpm.pkcs8) and upload it to the
User Application.
This file can be the same one used for the SSO Controller, or it can be generated separately for
the Kerberos provider. To make your environment more secure, you should use a different key
than the one used for the SSO Controller.

6 In the Server protected by field, specify how the server will be protected by selecting Key or
Password.
The recommended approach is Key.

7 Click Save.
8 Select the checkbox next to Kerberos, and select Enable.
9 Restart the Application Server.
160 NetIQ Identity Manager User Application: Administration Guide

To confirm that the SSO Controller and SSO Provider are enabled, you can look for the following two
lines in the server log file:

INFO [com.novell.common.auth.saml.AuthTokenGenerator] (main) SSO Framework is
enabled
INFO [com.novell.common.auth.sso.SSOFilter] (main) SSO Filter kerberos is enabled.

On the Single Sign On (SSO) page, you should also see that the Enable Single Sign On (SSO) checkbox
is selected. In addition, you should see that the SSO Provider has a green check mark in the Status
column.

Testing Single Sign-On with Kerberos
To test the single sign-on feature with Kerberos:

1 Login to the Windows Client Machine (on XP or Vista).
2 Open a browser and access the User Application by using a URL of this format:

http://dns-name-for-UA:port/context/Kerberos

For example:

http://rbpm.novell.com:8080/IDMProv/Kerberos

3 If all of the components have been configured properly, you should see your default page in the
User Application.

Configuring an SAP Provider
This section provides instructions on preparing and configuring the SAP provider.

Preparing to Use an SAP Logon Ticket
To configure the domains:

1 Make sure the User Application is in the same domain as the SAP portal. Single sign-on with the
SAP logon ticket only works when both are in the same domain.

To configure the SAP logon ticket properties:

1 Follow the instructions on configuring SAP logon provided at Configuring Authentication and
Single Sign-On (http://help.sap.com/saphelp_nwce10/helpdata/en/45/
b6af6e3753003ae10000000a11466f/content.htm).
The steps below provide a simple example for the NW7 environment:
1a Login to the SAP portal NWA (management) as administrator/passw0rd:

http://w2k3entnw7.novell.com:50000/webdynpro/dispatcher/sap.com/
tc~lm~webadmin~mainframe~wd/WebAdminApp

1b Switch from the overview to the configuration tab. Choose system properties. Expand NW7 in
right hand pane and choose global server configuration. Switch from Kernel to Services in
Details section.

1c Page down to row 31 and choose com.sap.security.core.ume.service. The Expanded Details
section shows up at the bottom.
Application Configuration 161

http://help.sap.com/saphelp_nwce10/helpdata/en/45/b6af6e3753003ae10000000a11466f/content.htm
http://help.sap.com/saphelp_nwce10/helpdata/en/45/b6af6e3753003ae10000000a11466f/content.htm

1d Enable Filter on and type login. You should understand most of the settings and be able to
verify that they are appropriate. Note that the login.ticket_lifetime is using minute as the
time unit. This number must be very large.

1e Now change the filter to logon. Note the item called ume.logon.security.relax_domain.level. It
defines the domain level in which the ticket will take effect. For example, if the portal server
is A.B.C.com and you set the domain level to 1, then any website under B.C.com will be able
to single sign-on. If you set the domain level to 2, then any website under C.com will be able
to single sign-on. This is achieved by the Set-Cookie's domain attribute.

To create a user in the SAP portal:

1 Login to the SAP portal as an administrator.
To be able to single sign-on to the User Application, you must create a portal user who also has
an account in eDirectory.

To configure SSO on the User Application:

1 Create the private keys and certificates, if you have not already done so. For details, see
“Creating the Certificates” on page 150.

2 Enable the SSO Controller, if you have not already done so. For details, see “Configuring the
SSO Controller” on page 153.

3 Enable the SAP SSO Provider, as described in “Using the Administration Tab to Configure the
SAP Provider” on page 162.
When you enable the SAP provider, you need to provide the SAP native library path and SAP
ticket signing certificate path. You can download the native libraries through your SAP support
channel (https://websmp110.sap-ag.de/support). On the downloads page, select support packages
and patches, and then choose applications by index. The name of the package is SAPSSOEXT.
You will need to unzip the .SAR file by using SAPCAR utility.
You can download the certificate from:

http://w2k3entnw7.novell.com:50000/irj/portal --> system admin --> system
configuration --> keystore administration --> download verify.pse

Using the Administration Tab to Configure the SAP Provider
To configure the SAP provider in the Administration tab of the User Application:

1 Select the SAP provider name and click Edit.
The SAP dialog displays.
162 NetIQ Identity Manager User Application: Administration Guide

https://websmp110.sap-ag.de/support
https://websmp110.sap-ag.de/support

2 In the Expiration Interval field, specify the number of seconds that the SSO Header will be kept
alive before expiring. This value defines the lifecycle of the SSO Header from the time it is
issued. The expiration interval is needed to prevent replay attacks. You need to consider the
network latency between your SSO Provider and the SSO Controller, as well as clock
synchronization between the two components, if they are deployed on different machines.

3 In the User ID Mapping field, indicate whether the user ID will be associated with a user DN or
with a user attribute, such as a CN. The User ID Mapping maps the user ID in the original realm
to the eDirectory realm. If Distinguished Name is selected, the SSO UserID that appears in the SSO
header has to be the full DN recognized by eDirectory. The SSO Controller will not try to do any
user mapping. If User Attribute is selected, the SSO Controller will try to map the user from
UserID to a full user DN. For a particular mapping, if the result is not unique (in other words, a
single UserID maps to multiple users in eDirectory), or the result is none, the SSO Controller will
refuse the SSO header, and the single sign-on operation will fail.

4 Browse to the Signing Certificate file you created earlier and upload it to the User Application.
This file can be the same one used for the SSO controller, or it can be generated separately for the
SAP provider. To make your environment more secure, you should use a different certificate
than the one used for the SSO controller.

5 Browse to the Signing Key file you created earlier and upload it to the User Application.
This file can be the same one used for the SSO controller, or it can be generated separately for the
SAP provider. To make your environment more secure, you should use a different key than the
one used for the SSO controller.

6 Specify the path to the SAP Certificate File.
7 Specify the SAP Library Path.
8 Click Save.
9 Select the checkbox next to SAP, and select Enable.

10 Restart the Application Server.

Testing Single Sign-On with SAP
To perform single sign-on with SAP:

1 Login to the SAP portal as an SAP user.
Application Configuration 163

NOTE: After logging in, you may see a message indicating that no portal roles have been
assigned. This is because no portal permissions have been set up for this user. This is not a
problem for single sign-on. As long as you see Log off link under the warning, you are logged in.

2 Access your User Application.

To logout:

1 Logoff from the SAP portal.
2 Logoff from the User Application.

NOTE: If you don't logoff from the SAP portal, you won't be able to logout of the User
Application. There is no mechanism to notify SAP that a user wants to logoff globally. Therefore,
the ticket will keep you logged in.

Adding a Custom SSO Provider
This section provides instructions for creating a custom SSO Provider and configuring this provider
to work with the Roles Based Provisioning Module. Topics include:

“Implementing and Deploying a Custom SSO Provider” on page 164
“Configuring the Custom SSO Provider in the SSO Configuration Page” on page 165

Implementing and Deploying a Custom SSO Provider
A custom SSO Provider can be implemented in various ways, but it must support the basic protocol
outlined below.

Once the custom SSO Provider recognizes the login user identity, it must insert the following HTTP
header into the HTTP request that is sent to the RBPM User Application:

<SSO Header Name>: BASE64<SSO UserID>:<TimeStamp>:BASE64(<Signature>)

The SSO Header Name must be named carefully to avoid conflicts with regular HTTP headers and
other SSO providers.

The SSO UserID represents the login user’s identity. The SSO Controller will later map this identity to
the user’s DN name. For details on user mapping, see “Configuring the Custom SSO Provider in the
SSO Configuration Page” on page 165.

The Signature is a digital signature (SHA1WithRSA) of SSO UserID and TimeStamp in UTF-8 String
representation.

Here is a code fragment that shows how you might generate the signature:

 // Signing
 Signature sig = Signature.getInstance("SHA1withRSA");
 sig.initSign(privatekey, SecureRandom.getInstance("SHA1PRNG"));
 sig.update(userId.getBytes("UTF-8"));
 String timestamp = Long.valueOf(System.currentTimeMillis()).toString();
 sig.update(timestamp.getBytes("UTF-8"));
 byte[] signature = sig.sign();
 // Build the content
 return new String(Base64.encodeBase64(userId.getBytes("UTF-8")), "UTF-
8") +
 ":" + timestamp +
 ":" + new String(Base64.encodeBase64(signature), "UTF-8");
164 NetIQ Identity Manager User Application: Administration Guide

Configuring the Custom SSO Provider in the SSO Configuration Page
To configure a custom provider in the Single Sign On page within the User Application:

1 Select the New button in the menu on the Single Sign On (SSO) page.
The New SSO Provider dialog displays.

2 In the SSO Provider Name field, specify a name for the provider. This name must match the SSO
Header Name, as described in “Implementing and Deploying a Custom SSO Provider” on
page 164.

3 In the Expiration Interval field, specify the number of seconds that the SSO Header will be kept
alive before expiring. This value defines the lifecycle of the SSO Header from the time it is
issued. The expiration interval is needed to prevent replay attacks. You need to consider the
network latency between your SSO Provider and the SSO Controller, as well as clock
synchronization between the two components, if they are deployed on different machines.

4 In the User ID Mapping field, indicate whether the user ID will be associated with a user DN or
with a user attribute, such as a CN. The User ID Mapping maps the user ID in the original realm
to the eDirectory realm. If Distinguished Name is selected, the SSO UserID that appears in the SSO
header has to be the full DN recognized by eDirectory. The SSO Controller will not try to do any
user mapping. If User Attribute is selected, the SSO Controller will try to map the user from
UserID to a full user DN. For a particular mapping, if the result is not unique (in other words, a
single UserID maps to multiple users in eDirectory), or the result is none, the SSO Controller will
refuse the SSO header, and the single sign-on operation will fail.

5 Browse to the Signing Certificate file you created earlier and upload it to the User Application.
The file you use must be match the certificate of the private key used for the Signature, as
described in “Implementing and Deploying a Custom SSO Provider” on page 164.

6 Click Save.
7 Select the checkbox next to the new custom provider, and select Enable.
8 Restart the Application Server.
Application Configuration 165

5.1.7 Theme Administration
You can use the Themes page to control the look and feel of the Identity Manager user interface.

A theme is a set of visual characteristics that apply to the entire user interface (including the guest
and login pages, the Identity Self-Service tab, the Work Dashboard tab, and the Administration tab).
There’s always just one theme in effect for the user interface. The Themes page offers a choice of
several themes, in case you want to switch to a different one.

The Themes page also enables you to:

Preview each theme choice to see how it looks
Customize any theme choice to reflect your own branding (such as a logo)

Previewing a Theme
Before choosing a theme, you can preview how it will change the look of the Identity Manager user
interface.

1 Go to the Themes page:

The following themes are supported in this release:
BlueGloss
Neptune (new theme introduced in this release)

Several of the themes introduced in earlier versions of the User Application have been
deprecated in this release. The following themes have been deprecated:

Manilla
Linen
166 NetIQ Identity Manager User Application: Administration Guide

Medico
IDMStandard

These themes are no longer supported with the current release. You cannot select any of these
themes on the Theme Administration page on the Administration tab.
The Manilla, Linen, Medico, and IDMStandard themes will most likely be removed in a future
release. If you use any of these themes, you should migrate them to this release of the User
Application. If you use a custom theme that is based on one of the deprecated themes, you need
to follow these steps to migrate the theme:
1a Look inside the theme.css for your custom theme and copy any custom selectors (new or

edited) from this theme into either the BlueGloss or Neptune theme.
1b Save a new custom theme, which now includes your customizations as well as selectors

from the BlueGloss or Neptune theme.
2 Find a theme that you are interested in, then click the corresponding Preview button.

The preview for that theme displays in a new browser window:
Application Configuration 167

3 Scroll through the preview to see the characteristics of this theme.
4 When you’re done, click Close Preview Page (in the top left corner) or close the preview window

manually.

Choosing a Theme
When you find a theme that you like, you can choose to make it the current theme for the Identity
Manager user interface.

1 Go to the Themes page.
2 Click the radio button for the theme you want.
3 Click the Save button.

The look of the user interface changes to reflect your chosen theme.

Customizing a Theme's Branding
You can tailor any theme by substituting your own images and changing some color settings. This
enables you to give the Identity Manager user interface a custom look to meet the branding
requirements of your company or organization.

1 Go to the Themes page.
2 Find a theme that you want to customize, then click the corresponding Customize button.

The Themes page displays the Customize Branding settings for that theme:
168 NetIQ Identity Manager User Application: Administration Guide

3 Specify your customizations by changing the settings in one or more tabs (as needed). Each
contains the settings for different parts of the User Application interface. They include:

General: Lets you specify general theming properties such as a favorites icon, background,
link and hover color, and the left navigation area properties.
Header: Lets you specify the header color, texture, logo and username properties.

NOTE: The Left Background image needs to be the size indicated on the Header page
(which defaults to 272 x 79 pixels) in order to display properly. The user interface does not
attempt to resize the image automatically. For example, it will not stretch the image if it is
too small.

Header tabs: Lets you specify the properties for the header tabs.
Admin subnavigation: Lets you specify the properties for the Admin tab.
Login: Lets you specify the properties for the login screen.

Follow the on-screen instructions for specifying each setting. The changes are not reflected in the
User Application until you save them. If you have made unsaved changes, the Save button
displays an asterisk * to indicate that the changes are pending a save.
Application Configuration 169

4 Click Save.
If you’re editing the current theme, the look of the user interface changes to reflect your
customizations. If you want to undo all of your customizations to the theme, click the Reset
button.

5 When you’re done working on this theme, click Back to Theme Selector.

Defining a Custom Theme
You can also create and deploy your own custom themes and deploy them in their own WAR file.
When they are deployed, the custom themes are available through the Themes management page of
the Administration tab. Before attempting to create your own custom theme, make sure you have a
working knowledge of the following technologies:

The structure of J2EE WAR files, how to modify the contents of a WAR file, and how to deploy
one to your application server.
How to modify CSS and XML files
How to create the graphic elements for your theme

Creating a Custom Theme
To create a custom theme, begin with a copy of an existing theme (such as BlueGloss) from the User
Application WAR:

1 Back up the deployed User Application WAR file (IDMProv.WAR) to the directory in which you
install, for example the /opt/novell/idm subdirectory.

2 In a test environment, extract the contents of the User Application WAR file.
The files that comprise the User Application’s themes are located in the resource\themes
subdirectory. Each theme resides in its own directory with an appropriate name.

3 In the test environment, create a directory for the custom theme.
The directory name can be any valid directory name, but it should reflect the name of the theme,
and it should not contain spaces.

4 Copy the contents of the BlueGloss theme from the extracted WAR file to the new subdirectory.
You will be working with the following files:

File Name Description

theme.xml The theme descriptor file. It includes entries for display name and
description. They are used in the Themes page of the Administration
tab. The remaining entries correspond to the brandable selectors. The
width and height attributes on these entries are used in the branding
page to reference the exact dimensions needed when a user uploads a
customized version of these images. These entries must match their
respective images, width and height as found in the themes.css.

theme.css Contains the CSS selectors used to style the look and feel of the user
interface.

print.css Contains the CSS selectors used to style a print friendly version of the
user interface.

dojo.css Contains a pointer to additional CSS files used by RBPM.

An images subdirectory Contains the images used by the theme.
170 NetIQ Identity Manager User Application: Administration Guide

Rules for working with these files:
Do not change the names of the theme.xml, theme.css, print.css and dojo.css files.
The CSS Selector names must remain the same, but you can change the properties of the
selectors to establish the look and feel.
The images subdirectory can have any name, but you must reference it correctly in the CSS
and XML files.

5 Make your changes to the images, CSS style sheets and other theme elements as needed. The
following changes are recommended:

In the theme.xml file:
display-name: Change this to a value that represents your theme. It displays as the
Theme-name in the Themes page of the User Application’s Administration tab.
description: Change this to a value that describes your theme. It displays as the
Description in the Themes page of the User Application’s Administration tab.
Consider whether to localize the display-name and Description fields.
Remove the following:

<resource-bundle>com.novell.afw.portal.artifacts.theme.BlueGloss</
resource-bundle>
<resource-group>admin-resgrp</resource-group>

In the dojo.css file, change the @import line to the following value:

@import url("../../../../IDMProv/javascript/dijit/themes/idmua/
idmua.css");

where IDMProv is the name of your WAR context.
If you wish to change the appearance of some Dojo elements, such as the menu buttons
within the profile section on the Work Dashboard, you should take the following steps,
instead of performing the steps above:

1. Copy the following from your extracted WAR in this location: /javascript/dijit/
themes:

dijit.css
dijit_rtl.css
idmua (folder)

Paste these items into your new theme folder.
2. Change the @import line in the dojo.css file, as follows:

@import url("idmua/idmua.css");

In the graphics directory:
thumbnails.gif: Replace the copy with your own image. This image displays along
with the Theme-name and Description of the theme (described above) that is shown in
the Themes page of the Administration tab. It typically illustrates what the User
Application landing page looks like when the associated theme is applied
Renaming graphics files: If you change the names of graphics files (rather than just
substituting a different image of the same name), make sure to change the reference to
the image in both the theme.xml and the theme.css file. If the image is not used in the
branding interface (for example, if it is not listed as one of the subset of brandable
images in the theme.xml file), then you will only need to change the reference to the
image in the theme.css file. Suppose you want to rename images/header_left.gif
to images/my_company_name.gif. Edit the theme.css file to reflect the new image
name.
Application Configuration 171

6 After you make all of the desired changes to the theme files, add your customized theme
directory to a new WAR file that contains one or more custom themes. Deploy the new WAR to
your test application server.
Testing tip: Open the Themes page (available under the Administration tab). Your theme should
display along with the prepackaged themes. Use the Theme Preview action to see how the
customized changes to your new theme will render. This is a useful way to preview many of
your intended changes to your theme. Running through commonly used features of the
application is also a recommended testing step.

7 After your changes are fully tested, you can deploy the WAR containing the custom theme to
your production application server.

Any number of custom themes can reside in a single WAR. Any number of custom WARs containing
custom themes can be deployed.

To undeploy the theme, remove the WAR that contains the theme from the application server’s
deploy directory. Before undeploying, make sure that any themes it contains are not defined as the
User Application’s default theme. If you remove the WAR and it does contain the default theme, the
Theme Administration screen displays an error message and reverts the User Application theme to
the original default theme defined at installation time.

Customizing the Theme for External Password WAR
If you configured Password Management to use an External Password WAR, the theme for the Forgot
Password page is defined in that external password WAR. The default name for the external
password WAR is IDMPwdMgt.WAR. The IDMPwdMgt.WAR contains one theme; by default, it is
BlueGloss. It does not include a user interface for modifying or branding this theme.

You can define a custom theme for the external Forgot Password page. The procedure for defining a
custom theme is described in “Defining a Custom Theme” on page 170; however, the deployment
procedure for the external Forgot Password page is different and the rules about the custom theme
WAR are more restrictive. After you define the custom theme:

Package the theme in a WAR named IDMPwdMgtTheme.WAR.
The IDMPwdMgtTheme.WAR can contain a single theme, and the theme must be located in the
resource/themes/Theme directory within the WAR.
Deploy the IDMPwdMgtTheme.WAR on the application server where the external WAR is located.
Only one custom theme can be deployed at a time.

5.1.8 Assigning the User Application Administrator
The User Application Administrator performs administrative tasks for the Identity Manager User
Application, using the Administration panel of the Identity Manager User Application. The User
Application Administrator does not have provisioning administration rights, and is considered an
ordinary user while using the Work Dashboard panel. There can be more than one User Application
Administrator.

One user must be assigned to the User Application Administrator role at installation. The User
Application Administrator created during installation can administer everything in the User
Application including the Provisioning system and can designate other users as User Application
Administrators.

You can assign the User Application Administrator at installation and on the Application
Configuration page on the Administration tab of the Identity Manager User Application. When you
assign the administrator at installation, IDM writes the assignment to the User Application
172 NetIQ Identity Manager User Application: Administration Guide

configuration file, which is editable with the configupdate utility. But, at deployment of the WAR, the
assignment is written to the User Application database. Thus, after you start the JBoss Application
Server the first time after installation, you cannot change the assignment with the configupdate
utility--it must be changed from the Application Configuration page.

A user who is to be a User Application Administrator should typically be located under the user root
container specified in the User Application’s LDAP configuration. This enables the user to log in
simply by username (instead of requiring the fully distinguished name each time).

The user who is a User Application Administrator does not need special directory rights because this
role controls application-level access.

When assigning User Application Administrators, you can specify users, groups, or containers.

1 Go to the Application Configuration page:

2 Under Portal Configuration, select User App Administrator Assignment.
3 Specify values for the following search settings:

4 Click Go.
The results of your search appear in the Results list.

Setting What to Do

Search for Select one of the following from the drop-down menu:

Users

Groups

Containers

Starts with If you want to:

Find all available objects of your specified type (user), then make
this setting blank.

Find a subset of those objects, then enter the starting characters
of the CN values you want. (Case is not considered. Wildcards
are not supported.)
Application Configuration 173

5 Select the users, group, or container you want to assign as User Application Administrators,
then click Add (>).
Hold down the Ctrl key to make multiple selections.

6 Click Save.

To unassign User Application Administrators:

1 In the Current Assignments list, select the users, group, or container you want to unassign as
User Application Administrators, then click Remove (<).
Hold down the Control key to make multiple selections.

2 Click Save.

You cannot delete yourself as User Application Administrator. This is a safeguard to ensure that the
User Application always has at least one User Application Administrator.

5.2 Working with the Import and Export Tools
You can use the Tools page to export or import portal content (pages and portlets) used in the
Identity Manager User Application. This content is also known as the portal configuration state and it
includes:

Container and shared pages (including each page’s assigned portlets, and each portlet’s
preferences and settings)
Portlet registrations

Table 5-5 Portal Data Export and Import Tools

The Export and Import tools enable you to move the portal configuration state from one portal (User
Application) to another, as needed. Table 5-5 on page 174 describes how these tools work.

You can use the Portal Data Export and Import tools to:

Move your portal configuration state from a test (source) environment to a production (target)
environment
Update the configuration state of a portal incrementally
Clone a portal
Optionally, overwrite the configuration state on the target portal

Tool How it works

Portal Data Export Generates XML descriptions of a set of selected container and shared pages,
and portlets. The XML files are stored in a portal data export ZIP file that can
be used as input to the Portal Data Import tool.

Portal Data Import Accepts a portal data export ZIP file as input. Uses the portal data export ZIP
file to generate container and shared pages, and portlets in a portal (User
Application).
174 NetIQ Identity Manager User Application: Administration Guide

5.2.1 Requirements
To use the Portal Data Export and Import tools, make sure that the Identity Manager User
Application (portal) is deployed and running on your source and target application servers.

It is not required that your source and target servers access the same Identity Vault; they can access
different ones, if appropriate. The users, groups, and containers in those Identity Vaults are not
required to be the same.

5.2.2 Restrictions
You cannot use the Portal Data Export and Import tools to:

Export or import portal configuration state when a server is currently servicing user requests
Export or import portal classes and resources
Export or import portlet classes and resources
Export or import the identity and provisioning data used in a portal
Export or import administration settings other than for pages and portlets
Migrate configuration state from an earlier portal version to a later version (the portals must be
the same version)

5.2.3 Exporting Portal Data
This section describes how to export a portal’s configuration state to a portal data export ZIP file.

1 If you are performing an incremental update, back up the target portal.
2 On the Application Configuration page, select Portal Data Export from the navigation menu on

the left.
The Portal Data Export panel displays:
Application Configuration 175

3 Follow the on-screen instructions to select the portal pages and portlets that you want to export.
Some portlets that you have not selected for export might still be exported. If you export a page
that contains a portlet, but do not select that portlet for export, the portlet is still exported (to
ensure that a runtime error does not occur for the exported page).

4 When you are done making selections, click Export Portal Data.
Your new portal data export ZIP file is generated, with a default name that includes the current
date and time. For example:

PortalData.21-Oct-05.09.12.16.zip

You are then prompted to save this ZIP file locally (or to open it in an appropriate archive
utility). For example:

5 Save the portal data export ZIP file to an appropriate location.

5.2.4 Importing Portal Data
This section describes how to import a portal data export ZIP file to a portal.

NOTE: Remember that, during the import, your target application server must be running but not
currently servicing user requests.

1 If you are performing an incremental update, back up the target portal.
2 On the Tools page, select Portal Data Import from the navigation menu on the left.

The Portal Data Import panel displays:
176 NetIQ Identity Manager User Application: Administration Guide

3 Specify the following general import settings:

4 Click View Import Archive.
The panel displays more specifics about your selected portal data export ZIP file and how you
want to import it:

Setting What to Do

Archive Click Browse to select the portal data export ZIP file to import.
For example:

PortalData.21-Oct-05.09.12.16.zip

Import security settings? Select one of the following:

Yes: If you want to import the permissions that the portal
data export ZIP file specifies for access to pages and
portlets by users, groups, and containers. Make sure that
the users, groups, and containers involved exist in the
target portal’s Identity Vault; permissions for missing
entities fail to be imported.

No: If you want to ignore the permissions that the portal
data export ZIP file specifies.
Application Configuration 177

5 Specify the following detailed import settings:

Setting What to Do

Replace existing data? Select one of the following:

Yes: If you want the contents of the portal data export ZIP
file to overwrite corresponding pages and portlets that
already exist in the target portal. For example, if the portal
data export ZIP file contains a shared page named
MyPage and the target portal contains a shared page
named MyPage, that existing page is overwritten in the
target portal.

No: If you want to skip the import for all existing pages and
portlets.

Access level for imported objects Select one of the following:

All Users: For unrestricted access to imported pages and
portlets.

Administrator only: For restricted access to imported pages
and portlets.

If you chose to import security settings, then this access level is
applied only to those imported pages and portlets where a
security setting failed to be imported, typically because specified
users, groups, or containers do not exist in the target portal’s
Identity Vault.

If you chose not to import security settings, then this access
level is applied to all pages and portlets that are imported.
178 NetIQ Identity Manager User Application: Administration Guide

6 When you’re ready to begin the import, click Import Portal Data.
When the import completes, the Portal Data Import Results panel displays:

Import group settings? (If you chose to import security settings) Select one of the
following:

Yes: If you want to import the default container page and
default shared page assignments that the portal data
export ZIP file specifies for groups. Make sure that the
groups involved exist in the target portal’s Identity Vault;
assignments for missing groups fail to be imported.

No: If you want to ignore the default page assignments that
the portal data export ZIP file specifies for groups.

Import Container Pages

Import Shared Pages

Import Portlets

Follow the on-screen instructions to select the pages and
portlets that you want to import from the portal data export ZIP
file to the target portal.

NOTE: Some portlets that you have not selected for import
might still be imported. If you import a page that contains a
portlet, but do not select that portlet for import, the portlet is still
imported to ensure that a runtime error does not occur for the
imported page.

Please map the portlet
application names... Archive/
Local

Use the Archive and Local drop-down menus to map the portlet
application names in the archive (portal data export ZIP file) to
existing portlet applications on the local (target) application
server.

Setting What to Do
Application Configuration 179

Unsuccessful imports display in red. To troubleshoot import or export problems, look at your
application server’s system console or log file (such as jboss/server/IDMProv/log/
server.log) for messages from the following User Application log:

com.novell.afw.portal.util

7 Test the target portal to ensure that you imported the data that you expected.

5.3 Password Management Configuration
This section describes how to configure password self-service and user authentication features to
your Identity Manager User Application. Topics include:

Section 5.3.1, “About Password Management Features,” on page 180
Section 5.3.2, “Configuring Challenge Response,” on page 183
Section 5.3.3, “Configuring Forgotten Password,” on page 185
Section 5.3.4, “Configuring Login,” on page 189
Section 5.3.7, “Configuring Change Password,” on page 197
Section 5.3.5, “Configuring Password Sync Status,” on page 192
Section 5.3.6, “Configuring Password Hint Change,” on page 196
Section 5.3.7, “Configuring Change Password,” on page 197

5.3.1 About Password Management Features
The password management features supported by an Identity Manager User Application encompass
user authentication and password self-service. When you put these features into use, they enable
your application to:

Prompt for login information (username and password) to authenticate against Novell
eDirectory
Provide users with password change self-service
Provide users with forgotten password self-service (including prompting for challenge
responses, displaying a password hint, or allowing a password change, as needed). You can
configure forgotten password self-service to run inside the firewall (the default), or you can
configure it to run outside the firewall.
Provide users with challenge question self-service
Provide users with password hint self-service

Required Setup in eDirectory
Before you can use most of the password self-service and user authentication features, you need to do
the following in eDirectory:

Enable Universal Password
Create one or more password policies
Assign the appropriate password policies to users

A password policy is a collection of administrator-defined rules that specify the criteria for creating
and replacing user passwords. Novell Identity Manager takes advantage of NMAS (Novell Modular
Authentication Service) to enforce password policies that you assign to users in eDirectory.
180 NetIQ Identity Manager User Application: Administration Guide

You can use Novell iManager to perform the required setup steps. For example, here’s how someone
defined the DocumentationPassword Policy in iManager.

Figure 5-3 Sample Password Policy

This password policy specifies:

Universal Password settings
Application Configuration 181

Figure 5-4 Sample Universal Password Settings

Settings to deal with forgotten-password situations

Figure 5-5 Sample Password Policy
182 NetIQ Identity Manager User Application: Administration Guide

Assignments that apply the policy to specific users

Figure 5-6 Sample Policy Assignments

Case-Sensitive Passwords
By default passwords are not case-sensitive. You can create a password policy that allows case-
sensitive passwords. You can specify the Allow the password to be case-sensitive in the Password Policies >
Universal Password > Advanced Password Rules. If you enable case-sensitive password, you must also
enable the Allow user to retrieve password setting. It is enabled by default, but you can verify it through
the iManager Password Policies > Universal Password > Configuration Options tab.

Password Policy Compliance
If you enable Universal Password, it is recommended that you also configure the system to verify that
existing passwords comply with the password policy. You can configure this through iManager. In
iManager, go to Passwords > Password Policies > Universal Password > Configuration Options. Make sure
the following option is selected: Verify whether existing passwords comply with password policy
(verification occurs on login). This ensures that users created through the User Application are
forwarded to the Change Password page to enter a password that complies with the Identity
Manager password policy.

5.3.2 Configuring Challenge Response
The Challenge Response self-service page lets users:

Set up the valid responses to administrator-defined challenge questions, and set up user-defined
challenge questions and responses
Change the valid responses to administrator-defined challenge questions, and change user-
defined challenge questions and responses
Application Configuration 183

NOTE: The password management facility makes passwords case-sensitive, by default, and also
allows you to configure case sensitivity for passords. This is not the case with the Challenge
Response facility. Challenge Response answers are not case sensitive, and cannot be configured to
support case sensitivity.

TIP: If you have localized the Challenge Response questions in iManager set the Login Configuration
setting Enable Locale Check to True.

Figure 5-7 Challenge Response Example

Requirements
The Challenge Response requirements are described Table 5-6 on page 184.

Table 5-6 Challenge Response Requirements

Topic Requirements

Password policy A password policy with forgotten password enabled and a challenge
set.

Universal Password Does not require Universal Password to be enabled.

eDirectory configuration Requires that you grant supervisor rights to the LDAP Administrator
for the container in which the logged-in user resides. Granting these
privileges allows the user to write a challenge response to the secret
store.

For example, suppose the LDAP realm administrator is cn=admin,
ou=sample, n=novell and you log in as cn=user1, ou=testou, o=novell.
You need to assign cn=admin, ou=sample, n=novell as a trustee of
testou, and grant supervisor rights on [All attribute rights].
184 NetIQ Identity Manager User Application: Administration Guide

Using the Challenge Response Feature
To use the Challenge Response feature, you need to know about the following:

“How Challenge Response Is Used During Login” on page 185
“How Challenge Response Is Used in the User Application” on page 185

How Challenge Response Is Used During Login
During the login process, the Login page automatically redirects to Challenge Response whenever
the user needs to set up challenge questions and responses (for example, the first time a user attempts
to log in to the application after an administrator assigns the user to a password policy in iManager.
The password policy must have forgotten password enabled and include a challenge set).

How Challenge Response Is Used in the User Application
By default, the User Application provides users with self-service for changing challenge questions
and responses.

Configuring Challenge Response
The Challenge Response Configuration settings (on the Administration tab) are described in the
following table.

Table 5-7 Challenge Response Configuration Settings

5.3.3 Configuring Forgotten Password
This feature uses challenge/response authentication to let users get information about their
passwords. The result, which depends on the assigned password policy, can include:

Displaying the user’s password hint on the screen
E-mailing the hint to the user
E-mailing the password to the user
Prompting the user to reset (change) the password

Forgotten password self-service is typically available to users inside your corporate firewall through
the deployed User Application WAR, but you can also configure your system so that the forgotten
password management features are stored in a separate password management WAR. You can then
deploy the password management WAR on a separate system that can be located inside or outside
your corporate firewall. To learn how to setup Forgot Password outside the core User Application
WAR, see Section 2.6, “Configuring Forgotten Password Self-Service,” on page 64.

Requirements
The Forgot Password feature requirements are listed in Table 5-8 on page 186.

Setting Description

Mask Response Text Choosing Yes means that user-entered response text
is masked with asterisk (*) characters.
Application Configuration 185

Table 5-8 Forgotten Password Requirements

Using the Forgot Password Feature
To use the Forgot Password feature, you need to know about the following:

“How the Forgot Password feature Is Used During Login” on page 186
“Configuring Your Environment for E-mail Actions” on page 187
“Forgot Password Configuration Settings” on page 187

How the Forgot Password feature Is Used During Login
During the login process, the Login page redirects to the Forgot Password page if the user clicks the
Forgot Password link. When Forgot Password displays, it does the following:

1. Prompts for username.
2. Redirects to the Challenge/Response page to perform challenge/response authentication for that

user.
3. Performs the forgotten password action specified in the authenticated user’s assigned password

policy. It does one of the following:
Redirects to the Change password page so the user can reset their password
E-mails the password or hint to the user
Displays the hint

Topic Requirements

Password policy Requires a password policy with forgotten password enabled and with a
challenge set.

When using password policies, you also need to configure the following
settings on the Password Policy page in iManager to ensure that the
User Application prompts the user to change the password on first login.

Force user to configure Challenge Questions and/or Hint upon
authentication must be enabled. This setting is on the Forgotten
Password panel, under Authentication.

Verify whether existing passwords comply with the password policy
(verification occurs on login) must be enabled. This setting is on the
Universal Password Policy panel, under Configuration
Options>Authentication.

Limit the number of grace logins allowed (0-254) must be enabled.
You can accept the default value of 6. This setting is on Universal
Password panel, under Advanced Password Rules>Password
Lifetime. This setting is required to support the Create User action.
The Create User action expires the user’s password and sets the
grace login value to 1, so that the user is forced to change the
password on first login.

Universal Password Does not require Universal Password to be enabled, unless you want to
support resetting the password or e-mailing the password to the user.
186 NetIQ Identity Manager User Application: Administration Guide

Configuring Your Environment for E-mail Actions
If you want to support the Forgot Password e-mail actions, you need to make sure your e-mail
notification server is set up properly:

1 Use a Web browser to access iManager on your eDirectory server and log in as an administrator.
2 Go to Roles and Tasks > Passwords and select Email Server Options.
3 Specify the appropriate settings, then click OK.

Forgot Password uses two e-mail templates. In iManager, you find them in Roles and Tasks > Passwords
> Edit Email Templates. They are named:

Password hint request
Your password request

You can change the content of these templates as needed for your application, but don’t change the
structure. The Forgot Password page determines, based on the user’s preferred locale, whether to
display a localized e-mail template.

Forgot Password Configuration Settings
You set the Forgot Password page configuration settings in the Administration tab. They are described
in Table 5-9 on page 187.

Table 5-9 Forgot Password Configuration Settings

Configuration Setting Description

Login Sequence The NMAS login sequence to use. In this version, only Challenge
Response is supported.

LDAP secure port The secure LDAP port to use. The default is 636.

Allow Wild Cards in Login Select True if you want users to be able to type the first few characters of
a username. (The default is false). Display DN Information must also be
true.

When True, the user is able to type a few characters of a username and
the Forgot Password page returns a list of DNs that match the user-
entered string. Do not enter “*” or “?” in the username as part of search
string.

Display Full User Name Select True when you want the Forgot Password page to display the full
user name. This can be used in conjunction with Allow Wild Cards in
Login. If set to False, no name is displayed.

Generic Password Policy User DN Specify the DN of an existing Identity Vault user established to prevent
unauthorized users from accessing your system by guessing valid
usernames.

By default, if the user enters an invalid name, the User Application
displays the message User not Found. Under some circumstances an
unauthorized user might be able to guess a valid name and answer the
challenge questions correctly. One way to prevent this is to specify this
value. See “Setting Up a Generic Password Policy User DN” on page 188
for additional required configuration steps.

Encoding The character encoding to use. The default is utf-8.
Application Configuration 187

Setting Up a Generic Password Policy User DN
To support the Generic Password Policy User DN, you need to set up a user in the users container for
this purpose. This user should:

Have a password that is difficult to guess.
Have his or her e-mail address assigned to a User Application Administrator.

You must set up:

A Challenge Set for this user and establish only Admin defined questions.
A Password Policy that uses this Challenge Set. The Password Policy should have
ForgotPassword enabled

Display Hint in Password Reset Select True (the default) to display the user’s password hint on the
Password Reset screen.

Select False to avoid displaying the user’s password hint on the
Password Reset screen.

Display Return to Calling Page Allows administrator to show or hide Return to Calling Page Link after a
forgot password action is performed.

If the Novell Client Login Extension (CLE) Restricted Browser is used, the
link should be disabled because pressing on the link when using the
Restricted Browser does not work.

Forgot Password Link This value defines the name and path to the Forgot Password page. This
initial value is established during installation. If you do not use an external
password management WAR, you can leave the default value.

For more information, see Section 2.6, “Configuring Forgotten Password
Self-Service,” on page 64.

Forgot Password Return Link Like the Forgot Password Link, this value is set during installation and
you do not need to make any changes if you do not use an external
password management WAR.

If you do use an external password WAR, use this setting to specify the
URL that the Forgot Password page can use to return to the User
Application when the user clicks Submit. The return link should take the
form of:

protocol://servername:port/userappcontext

For example: https://idmhost:8080/IDMProv

For more information, see Section 2.6, “Configuring Forgotten Password
Self-Service,” on page 64.

Forgot Password Web Service URL This setting allows the External Forgot Password WAR to call the Forgot
Password Web Service defined in the User Application. The format of this
field is:

https://host:port/idm_ctx/pwdmgt/service

Configuration Setting Description
188 NetIQ Identity Manager User Application: Administration Guide

You must log in to the User Application as this user at least once to supply the answers to the Admin-
defined questions.

Finally, log in to the User Application as the User Application administrator and go to the Forgot
Password configuration page of the Administration tab. Specify false for Allow Wild Cards in Login
and Display Full User Name. Specify this newly established user as the Generic Password Policy
User DN.

5.3.4 Configuring Login
The Login page performs a very robust user authentication supported by Identity Manager (through
Universal Password, password policies, and NMAS). The Login page redirects to the other password
pages as needed during the login process.

Requirements
The Login page requirements are listed in Table 5-10 below.

Table 5-10 Login Requirements

Use the Password Module Setup Login Action to configure the following settings:

Topic Requirements

Password policy This page does not require a password policy, unless you want to use
advanced password rules or let users click the Forgot Password link.

Universal Password This page does not require Universal Password to be enabled, unless
you want to use a password policy with advanced password rules.

SSL This page uses SSL, so make sure that your application server is
properly configured to support SSL connections to your LDAP realm.
Application Configuration 189

Table 5-11 Login Configuration Settings

Configuration Setting Description

Allow ID Wildcard If True, users can specify the first few characters of a username and a
list of usernames that include those characters is displayed so the use
can select the user to login as.

Enable Forgot Password Link If True, the User Application Login page displays the Forgot Password
link.

Enable SSO To Other Application If True, the Username and password are stored in the session and can
be accessed by other properly configured portlets. The username is
stored in the SSO User ID Key and the password in the SSO Password
Key

SSO User ID Key If Enable SSO To Other Application is True the username is stored in
the session using this key.

SSO Password Key if Enable SSO To Other Application is True the password is stored in the
session using this key.

Enable Hint Migration If True, any existing hints are moved from the nsimHint to the
nsimPasswordReminder.

Enable Locale Check If True, and the user has not set their locale preferences, the User
Application displays a page that allows them to set their preferred
locale.

Enable Password Autocomplete If True and supported by the browser, the user’s browser opens a
window asking if the user wants to save the login credentials.

If False (the default), the user does not receive a browser prompt to
save the login credentials.

Guest Container Page Allows you to specify a custom guest container page. For example, you
might specify any of the following values to direct the user to the
MyOrgChart page :

/IDMProv/portal/cn/DefaultContainerPage/MyOrgChart
/portal/cn/DefaultContainerPage/MyOrgChart
http://localhost:9000/IDMProv/portal/cn/
DefaultContainerPage/MyOrgChart

The default value is:

GuestContainerPage

Logout URL This value specifies the URL that a user is redirected to after the user
presses the Logout button in the User Application.
190 NetIQ Identity Manager User Application: Administration Guide

Password Change Return Page This value specifies the URL that a user is redirected to after a
password change. If you specify an URL for this setting, the User
Application displays a link to the redirect page, along with a success
message when the password has been changed.

This setting only works when accessing the User Application via Novell
Access Manager. If you access the User Application without going
through Access Manager, the Password Change Return Page link will
not display.

Furthermore, this setting only works within the context of the User
Application and not when you access the ChangePassword.jsp directly.
If you access the ChangePassword.jsp directly, you will not see a link
displayed that redirects to the Password Change Return Page.

Stand-alone access to the ChangePassword.jsp When accessing
ChangePassword.jsp directly, if you want users to receive a success
message, you need to add the following URL parameter:

?changePasswordForcedLogout=true

For example:

http://myserver/IDMProv/jsps/pwdmgt/
ChangePassword.jsp?changePasswordForcedLogout=true

Otherwise, the user will not receive a success message after changing
their password.

Using Novell Access Manager’s Expired Password Servlet If you
are using Novell Access Manager and want to utilize Password
Expiration, then the URL for the Password Expiration Servlet within
Novell Access Manager will need to be similar to the following:

http(s)://%server%:%port%/%context%/jsps/pwdmgt/
ChangePassword.jsp?changePasswordForcedLogout=true&i
dp_return_url=<RETURN_URL>&store=<STOREID>&dn=<USERI
D>&action=expire

For example:

http://myserver.novell.com/IDMProv/jsps/pwdmgt/
ChangePassword.jsp?changePasswordForcedLogout=true&i
dp_return_url=<RETURN_URL>&store=<STOREID>&dn=<USERI
D>&action=expire

Enable Password Expiration Warning This setting gives you the ability to enable or disable the expired
password warning. This feature is useful in configurations where
another product has detected an expired password and already warned
the user prior to redirecting to the Identity Manager portlets.

Using SSL Login This setting gives you the ability to configure the Login to redirect to
https. If you set Using SSL Login to true, then when user goes to the
login.jsp (either directly or through a redirect from NONE SSL page), the
login.jsp page will be presented with https with the SSL port configured
(Server SSL Port). After user logs in, he see the https (SSL) landing
page.

Server SSL Port Specifies the SSL port that the User Application is running on.

Configuration Setting Description
Application Configuration 191

Using the Login Page
To use the Login page, you need to know about the following:

“How Login Redirects to Other Pages” on page 192
“Using Grace Logins” on page 192

How Login Redirects to Other Pages
At runtime, the Login page redirects to other password pages, depending on what’s needed to
complete the login process. Table 5-12 on page 192 directs you to descriptions.

Table 5-12 Login Directions to Other Pages

Using Grace Logins
If you use a grace login, the Login page displays a warning message that asks you to change your
password and indicates the number of grace logins that remain. If you are on your last login, the
Login page redirects you to the Change Password page.

5.3.5 Configuring Password Sync Status
Password Sync Status lets users check the progress of the password change process on connected
systems. You can specify a different image to represent each connected system. To set up password
sync status checking:

Define the connected applications whose status the user should be able to view during the
synchronization process. You define the connected applications in the Password Sync Status
Application Settings described in Table 5-14 on page 195.
Define the settings for the password sync status page displayed to users. These settings are
described in Table 5-13, “Password Sync Status Client Settings,” on page 194.

By default, the User Application Administrator can view the password sync status of other users
when the User Application Administrator accesses the Password Sync Status page, shown in Figure
5-8 on page 193. The administrator can access the sync status for another user by specifying the other
user’s DN, then clicking Check Sync Status.

If the user Login redirects to

Clicks the link Forgot Password Forgot Password page

Needs to set up challenge questions and
responses

Challenge response page

Needs to set up a password hint Hint Definition page

Needs to reset an invalid password Change password page
192 NetIQ Identity Manager User Application: Administration Guide

Figure 5-8 Password Sync Status

In addition to the User Application Administrator, you can define a set of users to perform the Check
Sync Status for other users (for troubleshooting or other purposes). The members of a group called
PasswordManagement are also automatically allowed to view the password synchronization status
of other users. This group does not exist by default. If you choose to create this group, it must be:

Named PasswordManagement.
Given privileges to the Identity Vault. The group must have rights to read the user’s eDirectory
object attribute for users whose password synchronization status they need to view. The system
accesses the DirXML-passwordSyncstatus, the pwdChangedTime, and the DirXML-
Associations attributes.
Application Configuration 193

Table 5-13 Password Sync Status Client Settings

Configuration Setting Description

Password Sync Buffer Time
(milliseconds)

The password sync status checking compares time stamps
across different Identity Vaults and connected systems. This
buffer time is intended to account for differences between the
system times on these different machines. This time is added
to the time stamp on the user object’s password change
attribute to determine if a change has occurred. It is used like
this:

 The Password Sync Status process uses the buffer time as
follows:

 If the time stamp value (password sync time) in DirXML-
PasswordSyncStatus for the connected system is older
than the last password change time stamp
(pwdChangedTime attribute of user object) + password
sync buffer time, then the status is considered old and
the system continues polling for an updated status for
the connected system.

If the time stamp value in DirXML-PasswordSyncStatus
for the connected system is newer than the last
password change time stamp + password sync buffer
time, then the password sync functionality returns the
status code or message and displays the updated status
of the connected system.

The last password change time stamp is populated to the
user object after the user’s password change. This
functionality is available in NMAS 3.1.3 and higher.

Image Per Row The number of application images to display per row in the
Identity Self-Service Password Sync Status page.

Individual Application Timeout
(milliseconds)

The amount of time that the Password Sync Status process
waits for a response for each connected application’s status
before checking for the next one.

All Application Timeout (milliseconds) This value indicates the amount of time allowed for the entire
password sync status process (of all connected systems) to
complete. Before this timeout is reached, the password sync
process continues to poll until all status values are updated or
this timeout is reached. When the timeout status is reached,
the system displays an error message to the user that
indicates that a timeout condition has been reached.

Process Count The number of times each connected system is checked for
the password sync status.

Pass Phrase If the DirXML-PasswordSyncStatus contains a password
hash, then the value entered in this field is compared to that
value. If they are not equal, the User Application displays an
invalid hash message.

Application Image Size Limit (bytes) Lets you set the maximum size (in bytes) of the application
image that can be uploaded. You specify this image in the
Application Image setting described in Table 5-14.
194 NetIQ Identity Manager User Application: Administration Guide

The password Sync Status Application Settings are described in Table 5-14.

Table 5-14 Password Sync Status Application Settings

Show Password Sync Status After
Password Change

If this field is set to true, after the user changes a password,
the interface presents the Password Sync Status screen. If
this field is set to false, the Password Sync Status screen is
not displayed after a password change.

Configuration Setting Description

Password Synchronization Application Name The name used to describe the connected application.
You can enter the application name in multiple locales.

To add a language (locale):

1. Click Add Language (+).

2. Type the Application Name for the desired
localized languages in the appropriate field.

3. Click Save.

If you do not specify localized application names, the
value specified in the Password Synchronization
Application Name is used.

Application DirXML-PasswordSyncStatus GUID You can get the driver GUID by browsing the attributes
on the driver object in one of two ways:

Click the browse button next to this field. This
browse button obtains only GUIDs of drivers in
the current driverset that the User Application
driver resides in.

Use iManager to browse for the driver (use the
General - Other tab, used when modifying the
object) and manually copy and paste the GUID
into this field.

Application Image The name of the connected application Image to
upload. The Application Image size can be configured
from the Application Image Size Limit field in the
Password Sync Status Client Settings section.
Supported file types are .bmp, .jpeg, .jpg, .gif, and
.png.

Application Filter Optional. Specify an LDAP filter that allows or prohibits
users’ viewing the application name on their Check
Password Synchronization pages.

You can use any standard LDAP filter.

Configuration Setting Description
Application Configuration 195

5.3.6 Configuring Password Hint Change
This self-service page lets users set up or change their password hints, which can be displayed or e-
mailed as a clue in forgotten password situations.

Dependent Driver Optional. Specify any additional driver this application
depends on.

If any driver in the dependent driver chain is not visible
to the user, the driver specified by Application DirXML-
PasswordSyncStatus GUID is also not visible to the
user.

If any driver in the dependent driver chain fails to
check password sync status, the driver specified by
Application DirXML-PasswordSyncStatus GUID also
fails to check password sync status.

You can get the driver GUID by browsing the attributes
on the driver object in one of two ways:

Use the object selector button beside the
Dependent Driver field.

This method saves the application driver's fully
distinguished name (FDN). When a user checks
password sync status, this FDN is compared to
the value of the FDN field in the DirXML-
Associations attribute of the user object. If the
two FDNs do not match, this application is not
visible to the user. If there is a match, and if the
DirXML-Associations attribute's driver status field
is not 0 and the driver data field is not null, this
application is visible to the user.

Manually enter the GUID for the dependent
driver.

Use this method when this application driver is
not from the current driverset that the User
Application driver resides in. This method does
not save an FDN. When a user checks password
sync status, FDNs are not compared, and this
dependent driver is visible to the user unless you
apply an Application Filter that excludes the user.

Configuration Setting Description
196 NetIQ Identity Manager User Application: Administration Guide

Figure 5-9 Define Password Hint Sample

Requirements
The Password Hint Change requirements are listed in Table 5-15.

Table 5-15 Password Hint Change Requirements

Using the Password Hint Change Page
To use the Password Hint Change page, you need to know about the following:

“How Password Hint Change Is Used During Login” on page 197
“Using Password Hint Change in the User Application” on page 197

How Password Hint Change Is Used During Login
During the login process, the Login page automatically redirects to the Password Hint Change page
whenever users need to set up their password hints. For example, the first time a user attempts to log
in to the application after an administrator assigns the user to a password policy in iManager, the
password policy has forgotten password enabled and has the action set to Email hint to user or Show
hint on page.

Using Password Hint Change in the User Application
By default, the User Application provides users with self-service for changing a password hint.

5.3.7 Configuring Change Password
This self-service page lets users change (reset) their Universal Passwords, according to the assigned
password policy. It uses that policy to display the rules that the new password must conform to.

If Universal Password is not enabled, this page changes the user’s eDirectory (simple) password, as
permitted in the user's Password Restrictions.

Topic Requirements

Universal Password Does not require Universal Password to be enabled.
Application Configuration 197

Figure 5-10 Change Password

There are no Password Change configuration settings.

Requirements
The Change Password page requirements are listed in Table 5-16.

Table 5-16 Change Password Requirements

Topic Requirements

Directory Abstraction Layer configuration No directory abstraction layer configuration is required for
this page.

Password policy This page does not require a password policy, unless you
want to use advanced password rules (with Universal
Password enabled).

Universal Password To use this page for a Universal Password, the setting
Allow user to initiate password change must be enabled in
the Advanced Password Rules of the user's assigned
password policy.

To use this page for an eDirectory (simple) password, the
setting Allow user to change password must be enabled in
the user’s Password Restrictions.
198 NetIQ Identity Manager User Application: Administration Guide

Using the Change Password Page
To use the Change Password page, you need to know about the following:

“How Change Password Is Used During Login” on page 199
“Using Change Password in the User Application” on page 199

How Change Password Is Used During Login
During the login process, the Login page automatically redirects to the Change Password page
whenever the user needs to reset an invalid password. For example, the first time a user attempts to
log in to an application after an administrator implements a password policy that requires users to
reset their passwords.

The Forgot Password page also redirects to Change Password automatically if the user’s assigned
password policy specifies reset password as the action for forgotten password situations.

Using Change Password in the User Application
By default, the User Application provides users with the password change self-service using the
Change Password page.

NOTE: On Firefox, if you allow the browser to save passwords, you may see a confusing pop-up
message that asks the following question when you confirm a password change: “Would you like to
have password manager change the stored password for <user>?”. The user specified in the message
may not be the same as the user who logged into the User Application. This message is generated by
the Firefox password manager. To turn off this message, you need to disable the password manager
in Firefox by deselecting the Remember passwords sites checkbox under Passwords on the
Tools>Options>Security page.

5.4 Web Services
This section describes how to access basic information about the SOAP endpoints for the User
Application. This information includes the WSDL document, remote interface, and type mappings
for each endpoint. Topics include:

Section 5.4.1, “Directory Layer Service,” on page 199
Section 5.4.2, “Metrics Service,” on page 200
Section 5.4.3, “Notification Service,” on page 200
Section 5.4.4, “Provisioning Service,” on page 201
Section 5.4.5, “Role Service,” on page 201

5.4.1 Directory Layer Service
To access information about the Directory Layer Service:

1 Select the Application Configuration tab.
2 Select Web Services from the left navigation menu.
3 Select Directory Layer Service.

The user interface displays the Directory Layer Service page.
Application Configuration 199

For more information about the Directory Layer Service, see Chapter 21, “Directory Abstraction
Layer (VDX) Web Service,” on page 515.

5.4.2 Metrics Service
To access information about the Metrics Service:

1 Select the Application Configuration tab.
2 Select Web Services from the left navigation menu.
3 Select Metrics Service.

The user interface displays the Metrics Service page.
For more information about the Metrics Service, see Chapter 19, “Metrics Web Service,” on
page 487.

5.4.3 Notification Service
To access information about the Notification Service:

1 Select the Application Configuration tab.
2 Select Web Services from the left navigation menu.
3 Select Notification Service.

The user interface displays the Notification Service page.
For more information about the Notification Service, see Chapter 20, “Notification Web Service,”
on page 505.
200 NetIQ Identity Manager User Application: Administration Guide

5.4.4 Provisioning Service
To access information about the Provisioning Service:

1 Select the Application Configuration tab.
2 Select Web Services from the left navigation menu.
3 Select Provisioning Service.

The user interface displays the Provisioning Service page.
For more information about the Provisioning Service, see Chapter 18, “Provisioning Web
Service,” on page 423.

5.4.5 Role Service
To access information about the Role Service:

1 Select the Application Configuration tab.
2 Select Web Services from the left navigation menu.
3 Select Role Service.

The user interface displays the Role Service page.
For more information about the Role Service, see Chapter 22, “Role Web Service,” on page 539.
Application Configuration 201

202 NetIQ Identity Manager User Application: Administration Guide

6 6Page Administration

This section describes how to use the Page Admin page on the Administration of the Identity Manager
user interface. Topics include:

Section 6.1, “About Page Administration,” on page 203
Section 6.2, “Creating and Maintaining Container Pages,” on page 212
Section 6.3, “Creating and Maintaining Shared Pages,” on page 220
Section 6.4, “Assigning Permissions for Pages,” on page 228
Section 6.5, “Setting Default Pages for Groups,” on page 233
Section 6.6, “Selecting a Default Shared Page for a Container Page,” on page 234

For more general information about accessing and working with the Administration tab, see
Chapter 4, “Using the Administration Tab,” on page 127.

6.1 About Page Administration
You use the Page Admin page to control the pages displayed in the Identity Manager User
Application and who has permission to access them. The user interface includes two types of pages.

Table 6-1 Page Types

Both page types include content in the form of portlets (a Java standard for pluggable user-interface
elements).

To learn more about portlets, see Chapter 7, “Portlet Administration,” on page 237 and Part IV,
“Portlet Reference,” on page 291.

6.1.1 About Container Pages
This section introduces you to some container pages that play an important role in the Identity
Manager user interface:

“GuestContainerPage” on page 204

Type of Page Description

Container Container pages wrap shared pages with a consistent look and feel,
corporate branding, and navigation approach.

Shared Shared pages provide a coherent set of content that is used for a specific
purpose (such as updating a user’s profile). They are called shared pages
because they offer services used by multiple people.
Page Administration 203

“DefaultContainerPage” on page 206
“Admin Container Page” on page 208

Keep in mind that you can modify these container pages if necessary. You also have the option of
adding your own container pages.

To learn about working with container pages, see Section 6.2, “Creating and Maintaining Container
Pages,” on page 212.

GuestContainerPage
By default, when users arrive at the Identity Manager user interface prior to logging in, they see the
container page named GuestContainerPage shown in Figure 6-1.

Figure 6-1 Default Guest Container Page

Internally, GuestContainerPage has the following layout:
204 NetIQ Identity Manager User Application: Administration Guide

Figure 6-2 GuestContainerPage Layout

The GuestContainerPage layout is divided into three regions, which display the following portlets:

Table 6-2 Layout Regions

By default, users see only the following in those portlets prior to logging in:

A single link in the header: Login
A single shared page: Welcome

Because the user has not logged in yet, the Shared Page Navigation portlet shows only shared pages
that are in the Guest Pages category; it filters out all other categories. By default, Welcome is the only
page in the Guest Pages category.

Portlet Description

HeaderPortlet Displays the header information and top-level controls for the user
interface

Shared Page Navigation Displays a vertical menu from which the user can select a shared page
to display

Portal Page Controller Displays the shared page that the user has currently selected via the
Shared Page Navigation portlet
Page Administration 205

After login, the Shared Page Navigation portlet filters out the Guest Pages category. Instead, it shows
other categories of shared pages (as specified in its preferences).

For more information on the Shared Page Navigation portlet, see Chapter 9, “About Portlets,” on
page 293.

DefaultContainerPage
By default, after users log in to the Identity Manager user interface, they go to the container page
named DefaultContainerPage shown in Figure 6-3.

Figure 6-3 Default Container Page

Internally, DefaultContainerPage has the layout shown in Figure 6-4.
206 NetIQ Identity Manager User Application: Administration Guide

Figure 6-4 Default Container Page Layout

The DefaultContainerPage layout is divided into three regions, which display the portlets described
in Table 6-3.

Table 6-3 Default Container Page Portlets

After user login, DefaultContainerPage automatically opens the Identity Self-Service in HeaderPortlet.

Portlet Description

HeaderPortlet Displays the header information and top-level controls for the user
interface

Shared Page Navigation Displays a vertical menu from which the user can select a shared
page to display

Portal Page Controller Displays the shared page that the user has currently selected via
the Shared Page Navigation portlet

Session Timeout Warning Displays an alert message whenever a user’s session is about to
time out
Page Administration 207

Admin Container Page
By default, when User Application Administrators (and other authorized users) click the
Administration tab of the Identity Manager user interface, they go to the container page named
Admin Container Page, which displays as shown in Figure 6-5.

Figure 6-5 Default Admin Container Page

Internally, Admin Container Page has the layout shown in Figure 6-6.
208 NetIQ Identity Manager User Application: Administration Guide

Figure 6-6 Admin Container Page Layout

The Admin Container Page layout is divided into two regions, which display the portlets described
in Table 6-4.

Table 6-4 Default Admin Container Page Portlets

Portlet Description

HeaderPortlet Displays the header information and top-level controls for the user
interface

Admin List Display Displays a second level of tabs from which the user can select an
administration action to perform

Portal Page Controller Displays a shared page that corresponds to the currently selected
by the user via the Admin List Display portlet

Session Timeout Warning Displays an alert message whenever a user’s session is about to
time out
Page Administration 209

6.1.2 About Shared Pages
The Identity Manager user interface includes many shared pages, which provide the major content
within its container pages. You can modify these shared pages if necessary. You also have the option
of adding your own shared pages.

To learn about working with shared pages, see Section 6.3, “Creating and Maintaining Shared
Pages,” on page 220.

A Typical Shared Page
As an example of one of these shared pages, Organization Chart is the default shared page that
DefaultContainerPage displays after users log in to the Identity Manager user interface. It is shown in
Figure 6-7.

Figure 6-7 Sample Shared Page

Internally, Organization Chart has the layout shown in Figure 6-8.
210 NetIQ Identity Manager User Application: Administration Guide

Figure 6-8 Default Org Chart Layout

The Organization Chart layout consists of just one region, which displays just one portlet (the Org
Chart portlet).

6.1.3 An Exception to Page Usage
In this section, you have seen how these top-level tabs of the Identity Manager user interface are
based on pages:

The Identity Self-Service uses the DefaultContainerPage
The Administration uses the Admin Container Page

However, the Work Dashboard is based on a different architecture and cannot be manipulated through
Page Admin.
Page Administration 211

6.2 Creating and Maintaining Container Pages
The process of creating and maintaining container pages involves the following steps:

1 Create a new container page or select an existing container page, as described in Section 6.2.1,
“Creating Container Pages,” on page 212.

2 Add content (in the form of portlets) to the page, as described in Section 6.2.2, “Adding Content
to a Container Page,” on page 215.
You can also delete content from the page, as described in Section 6.2.3, “Deleting Content from
a Container Page,” on page 216.

3 Choose a portal layout, as described in Section 6.2.4, “Modifying the Layout of a Container
Page,” on page 217.

4 Arrange the order and position of content on the selected layout, as described in Section 6.2.5,
“Arranging Content on the Container Page,” on page 218.

5 Immediately display the new page by specifying the container page URL in your browser, as
described in Section 6.2.6, “Displaying a Container Page,” on page 220.

You can switch layouts for container pages without losing page contents. When you apply a new
layout to a container page, portlets in the page are automatically displayed using the new layout. You
might need to fine-tune the content placement in the new layout.

6.2.1 Creating Container Pages
You can create container pages from scratch or by copying existing pages. This section describes both
procedures.

To create a container page from scratch:

1 On the Page Admin page, select Maintain Container Pages.
The Maintain Container Pages panel displays:
212 NetIQ Identity Manager User Application: Administration Guide

2 Select the New page action (in the bottom left section of the panel).
An untitled, uncategorized container page is created.

3 Specify the page properties of the container page:
Page Administration 213

4 Click Save Page (at the bottom of the page properties section).

Property What to do

Page Link Name (URI) Specify the URI name for the page (as it is to appear within the
user interface URL). For example, if you specify the URI:

MyContainerPage

it appears within the URL like this:

http://myappserver:8080/IDMProv/portal/cn/
MyContainerPage

NOTE: The User Application does not support multibyte
characters in the Page Link Name (URI) for a portal page. Multi-
byte characters are supported in the Page Name.

Page Name Specify the display name for the page. For example:

My Container Page

Click Localize to specify localized versions of this name for other
languages.

Navigation Priority Specify one of the following:

None if you don’t need to assign a priority to this container
page.

Set value to assign a priority to this container page, relative
to other container pages. The priority must be an integer
between 0 and 9999, where 0 is the lowest priority and
9999 is the highest.

Setting priority values is useful if you want to ensure a
particular order when pages are listed by priority, or if you
want to ensure a particular selection when multiple default
pages exist (in the case of a user who belongs to multiple
groups).

Default Shared Page See Section 6.6, “Selecting a Default Shared Page for a
Container Page,” on page 234.

Assign Categories Select zero or more of the following categories in which you want
the page to belong:

Administration

General

Assigning categories is useful if you want to ensure proper
organization when pages are listed by category, or if you want to
ensure an appropriate subset when pages are filtered by
category.

You Cannot Create New Administration Pages The
administrator cannot create new Administration pages. If you
attempt to create a new page in the Administration category, the
page will not be displayed under Application Configuration.

Description Type text that describes the page.
214 NetIQ Identity Manager User Application: Administration Guide

To create a container page by copying an existing page:

1 On the Page Admin page, select Maintain Container Pages.
The Maintain Container Pages panel displays (as shown in the previous procedure).

2 In the list of container pages, select the page you want to copy.
If the list is long, you can refine it (by category or starting text) to more easily find the desired
page.

3 Select the Copy page action (in the bottom left section of the panel).
A new container page is created with the name Copy of OriginalPageName.

4 Specify the page properties of the container page (as described in the previous procedure).
5 Click Save Page (at the bottom of the page properties section).

6.2.2 Adding Content to a Container Page
After you create a container page, the next step is to add content by selecting portlets to place on the
page. You can use prebuilt portlets supplied with the Identity Manager User Application or other
portlets you have registered.

To add content to a container page:

1 Open a new or existing page on the Maintain Container Pages panel, then click the Select Content
page task (at the bottom of the panel).
The Content Selector displays in a new browser window:
Page Administration 215

2 If you want to display a specific category of available content, select a category from the Filter
list.

3 Select one or more portlets from the Available Content list.
Hold down Control to select multiple non-contiguous portlets from the list; use Shift to make
multiple contiguous selections.

4 Click Add to move your choices to the Selected Content list.
5 You can click Content Preferences to edit the preferences of any portlet you have selected for your

container page. The preference values you specify take effect for the instance of the portlet that
appears on your page.

6 Click Save Contents.
Now that you have chosen the content for your container page, you can select a new layout as
described in Section 6.2.4, “Modifying the Layout of a Container Page,” on page 217, or arrange
the content on the current layout as described in Section 6.2.5, “Arranging Content on the
Container Page,” on page 218.

6.2.3 Deleting Content from a Container Page
In the process of creating container pages, you might want to delete content by removing portlets
from a page. You can use the Content Selector or Layout Selector, as described in the following
procedures.

To delete content from a container page using the Content Selector:

1 Open a page on the Maintain Container Pages panel, then click the Select Content page task (at
the bottom of the panel).
The Content Selector displays in a new browser window as shown in Step 1 on page 215.

2 Select a portlet you want to delete from the Selected Content list and click Remove.
The portlet is removed from the page.

3 Click Save Contents.

To delete content from a container page using the Layout Selector:

1 Open a page on the Maintain Container Pages panel, then click the Arrange Content page task (at
the bottom of the panel).
The Layout Selector displays in a new browser window, showing the portlets on that page:
216 NetIQ Identity Manager User Application: Administration Guide

2 Click the X button for a portlet you want to remove.
3 When you’re prompted for confirmation, click OK.

The portlet is removed from the page.
4 Click Save Layout.

6.2.4 Modifying the Layout of a Container Page
When you modify the layout of a container page, existing content is shifted to accommodate the new
layout. In some cases, you might need to fine-tune the end result.

To modify the layout of a container page:

1 Open a page on the Maintain Container Pages panel, then click the Select Layout page task (at the
bottom of the panel).
The Portal Layouts list displays in a new browser window:
Page Administration 217

2 Scroll through the choices and select the layout you want.
3 Click Select Layout.

6.2.5 Arranging Content on the Container Page
After you have designated the content and layout for your container page, you can position the
content in the selected layout, add other portlets in specific locations, or delete portlets.

1 Open a page on the Maintain Container Pages panel, then click the Arrange Content page task (at
the bottom of the panel).
The Layout Selector displays in a new browser window, showing the portlets on that page:
218 NetIQ Identity Manager User Application: Administration Guide

2 To add a portlet to the page:
2a Click Add Content in the desired layout frame.

The Portlet Selector displays in a new browser window.
2b If you want to display a specific category of available content, select a category from the

Filter drop-down list.
2c Select a portlet you want from the Available Content list.
2d Click Select Content.

The Portlet Selector closes and the portlet you selected appears in the target layout frame of
the Layout Selector.

3 If you want to move a portlet to a different location in the layout, follow these browser-specific
steps:

Browser What to do

Internet Explorer 1. Move your cursor over the title bar of the portlet until the
cursor changes to a hand shape.

2. Hold down the left mouse button and drag the portlet to the
desired location in the layout.

Mozilla 1. Click the portlet you want to move.

2. Click inside the destination layout frame.

The portlet moves to the destination.
Page Administration 219

4 If you want to remove a portlet from the layout, follow these steps:
4a Click the X button for the portlet you want to remove.
4b When you’re prompted for confirmation, click OK.

The portlet is removed from the layout.
5 To edit the preferences of a portlet:

5a Click the pencil button for the portlet you want to edit.
The portlet’s Content Preferences display in your browser.

5b Change preference values, as appropriate.
The preference values you specify take effect for the instance of the portlet that appears on
your page.

5c Click Save Preferences.
6 Click Save Layout to record your changes and close the Layout Selector.

6.2.6 Displaying a Container Page
You can display your page by going to the container page URL in your browser. Specify the following
URL in your web browser:

http://server:port/IDM-war-context/portal/cn/container-page-name

For example, to display the container page named MyContainerPage:

http://myappserver:8080/IDMProv/portal/cn/MyContainerPage

6.3 Creating and Maintaining Shared Pages
The process of creating and maintaining shared pages involves the following steps:

1 Create a new shared page or select an existing shared page, as described in Section 6.3.1,
“Creating Shared Pages,” on page 221.

2 Add content (in the form of portlets) to the page, as described in Section 6.3.2, “Adding Content
to a Shared Page,” on page 223.
You might also want to delete content from the page, as described in Section 6.3.3, “Deleting
Content from a Shared Page,” on page 224.

3 Choose a portal layout, as described in Section 6.3.4, “Modifying the Layout of a Shared Page,”
on page 225.

4 Arrange the order and position of content on the selected layout, as described in Section 6.3.5,
“Arranging Content on the Shared Page,” on page 226.

5 Display the new page by entering the shared page URL in your browser, as described in
Section 6.3.6, “Displaying a Shared Page,” on page 228.

Shared Pages and Layouts
Shared pages are not tightly bound to portal layouts. That means you can switch layouts for shared
pages without losing any page contents. When a new layout is applied, any portlets that have been
added to the page are automatically displayed using the new layout. You might need to fine-tune the
content placement in the new layout.
220 NetIQ Identity Manager User Application: Administration Guide

6.3.1 Creating Shared Pages
You can create shared pages from scratch or by copying existing pages. This section describes both
procedures.

To create a shared page from scratch:

1 On the Page Admin page, select Maintain Shared Pages.
The Maintain Shared Pages panel displays:

2 Select the New page action (in the bottom left section of the panel).
An untitled, uncategorized shared page is created.

3 Specify the page properties of the shared page:
Page Administration 221

Property What to do

Page Link Name (URI) Specify the URI name for the page (as it is to appear within the
user interface URL). For example, if you specify the URI:

MySharedPage

it appears within the URL like this:

http://myappserver:8080/IDMProv/portal/cn/
MyContainerPage/MySharedPage

NOTE: The User Application does not support multibyte
characters in the Page Link Name (URI) for a portal page. Multi-
byte characters are supported in the Page Name.

Page Name Specify the display name for the page. For example:

My Shared Page

You can click Localize to specify localized versions of this name
for other languages.

Navigation Priority Specify one of the following:

None if you don’t need to assign a priority to this shared
page.

Set value to assign a priority to this shared page, relative to
other shared pages. The priority must be an integer between
0 and 9999, where 0 is the highest priority and 9999 is the
lowest.

Setting priority values is useful if you want to ensure a
particular order when pages are listed by priority, or if you
want to ensure a particular selection when multiple default
pages exist (in the case of a user who belongs to multiple
groups).

Parent Page If you want this shared page to be the child of another shared
page, click Select Parent. Make sure that both the parent and
child pages belong to the same categories (to prevent display
problems).

At runtime, the end user sees this relationship when using the
Shared Page Navigation portlet. When displaying the list of
shared pages, it shows children indented under their parents.

Child pages do not inherit content, preferences, or settings from
their parent pages. Conversely, parent pages do not automatically
display the content of child pages along with their own content.
222 NetIQ Identity Manager User Application: Administration Guide

4 Click Save Page (at the bottom of the page properties section).

To create a shared page by copying an existing page:

1 On the Page Admin page, select Maintain Shared Pages.
The Maintain Shared Pages panel displays as shown in “To create a shared page from scratch:”
on page 221.

2 In the list of shared pages, select the page you want to copy.
If the list is long, you can refine it (by category or starting text) to more easily find the desired
page.

3 Select the Copy page action (in the bottom-left section of the panel).
A new shared page is created with the name Copy of OriginalPageName.

4 Specify the page properties of the shared page as described in “To create a shared page from
scratch:” on page 221.

5 Click Save Page (at the bottom of the page properties section).

6.3.2 Adding Content to a Shared Page
After you create a shared page, the next step is to add content by selecting portlets to place on the
page. You can use prebuilt portlets supplied with the Identity Manager User Application or other
portlets you have registered.

1 Open a new or existing page on the Maintain Shared Pages panel, then click the Select Content
page task (at the bottom of the panel).
The Content Selector displays in a new browser window:

Assign Categories Select zero or more of the following categories in which you want
the page to belong:

Administration

Directory Management

General

Guest Pages

Information Management

Password Management

Assigning categories is useful if you want to ensure proper
organization when pages are listed by category, or if you want to
ensure an appropriate subset when pages are filtered by category.

NOTE: Guest Pages is a special category used to identify shared
pages that can be displayed prior to user login but not after. For
more information, see the section on the Shared Page Navigation
portlet in Chapter 9, “About Portlets,” on page 293.

Description Type text that describes the page.

Property What to do
Page Administration 223

2 If you want to display a specific category of available content, select a category from the Filter
drop-down list.

3 Select one or more portlets from the Available Content list.
Hold down the Ctrl key to select multiple non-contiguous portlets from the list; use the Shift key
to make multiple contiguous selections.

4 Click Add to move your choices to the Selected Content list.
5 You can click Content Preferences to edit the preferences of any portlet you have selected for your

shared page. The preference values you specify take effect for the instance of the portlet that
appears on your page.

6 Click Save Contents.

Now that you have chosen the content for your shared page, you can select a new layout as described
in Section 6.3.4, “Modifying the Layout of a Shared Page,” on page 225, or arrange the content on the
current layout as described in Section 6.3.5, “Arranging Content on the Shared Page,” on page 226.

6.3.3 Deleting Content from a Shared Page
In the process of creating shared pages, you might want to delete content by removing portlets from
a page. You can use the Content Selector or Layout Selector, as described in the following procedures.

1 Open a page on the Maintain Shared Pages panel, then click the Select Content page task (at the
bottom of the panel).
224 NetIQ Identity Manager User Application: Administration Guide

The Content Selector displays in a new browser window as shown in Section 6.3.2, “Adding
Content to a Shared Page,” on page 223.

2 Select a portlet you want to delete from the Selected Content list and click Remove.
The portlet is removed from the page.

3 Click Save Contents.

To delete content from a shared page by using the Layout Selector:

1 Open a page on the Maintain Shared Pages panel, then click the Arrange Content page task (at the
bottom of the panel).
The Layout Selector displays in a new browser window, showing the portlets on that page:

2 Click the X button for a portlet you want to remove.
3 When you’re prompted for confirmation, click OK.

The portlet is removed from the page.
4 Click Save Layout.

6.3.4 Modifying the Layout of a Shared Page
When you modify the layout of a shared page, existing content is shifted to accommodate the new
layout. In some cases, you might need to fine-tune the end result.
Page Administration 225

To modify the layout of a shared page:

1 Open a page on the Maintain Shared Pages panel, then click the Select Layout page task (at the
bottom of the panel).
The Portal Layouts list displays in a new browser window:

2 Scroll through the choices and select the layout you want.
3 Click Select Layout.

6.3.5 Arranging Content on the Shared Page
After you have designated the content and layout for your shared page, you can position the content
in the selected layout, add other portlets in specific locations, or delete portlets.

To arrange content on a shared page:

1 Open a page on the Maintain Shared Pages panel, then click the Arrange Content page task (at the
bottom of the panel).
The Layout Selector displays in a new browser window, showing the portlets on that page:
226 NetIQ Identity Manager User Application: Administration Guide

2 If you want to add a portlet to the page:
2a Click Add Content in the desired layout frame.

The Portlet Selector displays in a new browser window.
2b If you want to display a specific category of available content, select a category from the

Filter drop-down list.
2c Select a portlet you want from the Available Content list.
2d Click Select Content.

The Portlet Selector closes and the portlet you selected appears in the target layout frame of
the Layout Selector.

3 If you want to move a portlet to a different location in the layout, follow these browser-specific
steps:

Browser What to do

Internet Explorer 1. Move your cursor over the title bar of the portlet until the cursor
changes to a hand shape.

2. Hold down the left mouse button and drag the portlet to the
desired location in the layout.

Mozilla Firefox 1. Click the portlet you want to move.

2. Click inside the destination layout frame.

The portlet moves to the destination.
Page Administration 227

4 If you want to remove a portlet from the layout:
4a Click the X button for the portlet you want to remove.
4b When you’re prompted for confirmation, click OK.

The portlet is removed from the layout.
5 If you want to edit the preferences of a portlet:

5a Click the pencil button for the portlet you want to edit.
The portlet’s Content Preferences display in your browser.

5b Change preference values, as appropriate.
The preference values you specify take effect for the instance of the portlet that appears on
your page.

5c Click Save Preferences.
6 Click Save Layout to record your changes and close the Layout Selector.

6.3.6 Displaying a Shared Page
To display your shared page, go to this URL in your Web browser:

http://server:port/IDM-war-context/portal/pg/shared-page-name

For example, to display the shared page named MySharedPage:

http://myappserver:8080/IDMProv/portal/pg/MySharedPage

6.4 Assigning Permissions for Pages
You can assign permission to other users, groups, and containers to work with specific container
pages and shared pages. Two security levels of permission can be assigned.

Table 6-5 Page Permissions

6.4.1 Assigning Page View Permission
When you assign users View permission for a container page or shared page, they can access the
page and see it in a list of available pages.

To assign View permission for container pages or shared pages:

1 Open a page on the Maintain Container Pages panel or the Maintain Shared Pages panel, then
click the Assign Permissions page task (at the bottom of the panel).
The Page Permissions dialog box displays in a new browser window:

Permission Description Can be assigned for

View Allows a user, group, or container to access
the page and see it in a list of available pages

Container pages and shared pages

Ownership Allows a user, group, or container to modify
the content and layout of the page, and to
assign View and Ownership permission to
other users, groups, and containers

Shared pages
228 NetIQ Identity Manager User Application: Administration Guide

2 Go to the View tab.
3 Specify values for the following search settings:

Setting What to do

Search for Select one of the following from the drop-down menu:

Users

Groups

Containers

Starts with If you want to:

Find all available objects of your specified type (user, group, or
container), then make this setting blank.

Find a subset of those objects, then enter the starting characters of
the CN values you want. (Case is not considered. Wildcards are not
supported.)

For example, searching for groups that start with S would narrow
your search results to something like this:
cn=Sales,ou=groups,o=MyOrg
cn=Service,ou=groups,o=MyOrg
cn=Shipping,ou=groups,o=MyOrg

Searching for groups that start with Se would return:
cn=Service,ou=groups,o=MyOrg
Page Administration 229

4 Click Go.
The results of your search appear in the Results list.

5 Select the users, groups, or containers you want to assign to the page, then click the Add (>)
button.
Hold down the Ctrl key to make multiple selections.

6 Enable or disable page lock-down as follows:

7 Click Save, then click Close.

6.4.2 Assigning Shared Page Owners
Users who own shared pages can modify the content of the pages they own and change the
preferences of portlets on those pages.

To assign Ownership permission for shared pages:

1 Open a page on the Maintain Shared Pages panel, then click the Assign Permissions page task (at
the bottom of the panel).
The Page Permissions dialog box displays in a new browser window as shown in Step 1 on
page 228.

2 Go to the Ownership tab.
3 Specify values for the following search settings:

If you want to Do this

Lock down the page so only User Application
Administrators can view it

Select View Permission Set to Admin Only

Allow all assigned users, groups, and containers
to view the page

Deselect View Permission Set to Admin Only

NOTE: If you deselect this setting but there are
no users, groups, or containers explicitly
assigned to the page, then everyone has View
permission for this page.

Setting What to do

Search for Select one of the following from the drop-down menu:

Users

Groups

Containers
230 NetIQ Identity Manager User Application: Administration Guide

4 Click Go.
The results of your search appear in the Results list.

5 Select the users, groups, or containers you want to assign to the page, then click the Add (>)
button.
Hold down the Ctrl key to make multiple selections.

6 Enable or disable page lock-down as follows:

7 Click Save, then click Close.

6.4.3 Enabling User Access to the Create User or Group Page
By default, only User Application Administrators can see and use the Create User or Group page,
which is a shared page on the Identity Self-Service of the Identity Manager user interface. But, where
appropriate, a User Application Administrator can assign permission for one or more end users to
access that page. For instance, selected people in administration or management positions might
need the ability to create users, groups, or task groups.

To give users access to the Create User or Group page:

1 On the Maintain Shared Pages panel, open the page named Create User or Group.
2 Use the Assign Permissions page task to give View permission to the appropriate users, groups,

or containers for the Create User or Group shared page.

Starts with If you want to:

Find all available objects of your specified type (user, group, or
container), then make this setting blank.

Find a subset of those objects, then enter the starting characters of
the CN values you want. (Case is not considered. Wildcards are not
supported.)

For example, searching for groups that start with S would narrow
your search results to something like this:
cn=Sales,ou=groups,o=MyOrg
cn=Service,ou=groups,o=MyOrg
cn=Shipping,ou=groups,o=MyOrg

Searching for groups that start with Se would return:
cn=Service,ou=groups,o=MyOrg

If you want to Do this

Lock down the page so only User Application
Administrators can work with it

Select Ownership Permission Set to Admin Only

Allow all assigned users, groups, and containers
to work with the page

Deselect Ownership Permission Set to Admin
Only

NOTE: If you deselect this setting but there are
no users, groups, or containers explicitly
assigned to the page, then everyone has
Ownership permission for this page.

Setting What to do
Page Administration 231

3 Switch from Page Admin to Portlet Admin, and open the CreatePortlet portlet registration
(which is used on the Create User or Group page).

4 Use the Security panel to give List and Execute permissions to the appropriate users, groups, or
containers for the CreatePortlet portlet registration.
For more information about assigning permissions for portlets, see Chapter 7, “Portlet
Administration,” on page 237.

5 Go to iManager and use an administrator account to log in to the tree for your Identity Vault.
6 Make sure that the people who will be using Create User or Group have Create rights for the

[Entry Rights] property on the containers in which objects (users, groups, or task groups) will be
created.
For example, you can modify trustees for a chosen container and add the appropriate users,
groups, or containers as trustees. Then, for each trustee, you can assign the following rights:

If you don’t assign the necessary rights in the Identity Vault (or if those rights can’t somehow be
derived), an end user might get an error message such as this one from Create User or Group:

User 'cn=mmackenzie,ou=users,ou=idmsample,o=novell' does not have permission
to create 'cn=MyNewGroup,ou=groups,ou=idmsample,o=novell' or modify related
objects.

To learn how the Create User or Group page is used (by those with access to it), see the Identity
Manager User Application: User Guide.

6.4.4 Enabling User Access to Individual Administration Pages
By default, only User Application Administrators can access the Administration tab of the Identity
Manager user interface and the pages contained on that (Application Configuration, Page Admin,
Portlet Admin, Provisioning, Security). But if necessary, a User Application Administrator can assign
permission for one or more end users to see and use specific pages on the Administration tab. For
example, a small group of users might need to change themes periodically, even though they are not
User Application Administrators.

To give users access to individual Administration pages:

1 On the Maintain Container Pages panel, open Admin Container Page.
This is the container page that’s used when you go to the Administration of the Identity Manager
user interface.

2 Use the Assign Permissions page task to give View permission to the appropriate users, groups,
or containers for Admin Container Page.

3 On the Maintain Shared Pages panel, open the appropriate Administration page (one of the
shared pages under the category Administration).

Property name Assigned rights Inherit

[All Attributes Rights] Compare

Read

Write

Yes (select this check box)

[Entry Rights] Browse

Create

Yes (select this check box)
232 NetIQ Identity Manager User Application: Administration Guide

4 Use the Assign Permissions page task to give View and Ownership permissions to the
appropriate users, groups, or containers for that shared page.

5 Make sure the specified users, groups, or containers have Execute permission for each portlet
used on a specified page (if you have restricted those portlets).
For more information about assigning permissions for portlets, see Chapter 7, “Portlet
Administration,” on page 237.

6.5 Setting Default Pages for Groups
You can assign a default container page and a default shared page for any authorized group of users.
These settings affect the container page those users see when they log in and the shared page they see
on the container page.

When users belong to multiple groups with default page assignments, Navigation Priority is used in
determining which container page and shared page to display.

To assign a default container page or a default shared page to a group:

1 Open a page on the Maintain Container Pages panel or the Maintain Shared Pages panel, then
click the Set As Default page task (at the bottom of the panel).
The Page Defaults dialog box displays in a new browser window:

2 Specify values for the following search settings:
Page Administration 233

3 Click Go.
The results of your search appear in the Results list.

4 Select the groups for whom this page is to be a default, then click the Add (>) button.
Hold down the Ctrl key to make multiple selections.

5 Click Save, then click Close.

6.6 Selecting a Default Shared Page for a Container Page
You can assign a default shared page to each container page you have. The user interface considers
this page assignment when determining what to display.

1 Open a container page on the Maintain Container Pages panel.
2 In the page properties section, look for Default Shared Page and click Select Default.

The Choose a Default Shared Page dialog box displays in a new browser window:

Setting What to do

Search for Groups is automatically selected.

Starts with If you want to:

Find all available groups, then make this setting blank.

Find a subset of those groups, then enter the starting characters of the CN
values you want. (Case is not considered. Wildcards are not supported.)

For example, searching for groups that start with S would narrow your
search results to something like this:
cn=Sales,ou=groups,o=MyOrg
cn=Service,ou=groups,o=MyOrg
cn=Shipping,ou=groups,o=MyOrg

Searching for groups that start with Se would return:
cn=Service,ou=groups,o=MyOrg
234 NetIQ Identity Manager User Application: Administration Guide

3 If the shared page list is long, you can refine it by category or starting text to more easily find the
desired page.

4 Select a shared page to use as the default for the container page or select None for no default.
5 Click Save to accept your selection and close the dialog.
6 Click Save Page (at the bottom of the page properties section).
Page Administration 235

236 NetIQ Identity Manager User Application: Administration Guide

7 7Portlet Administration

This section describes how to use the Portlet Admin page on the Administration of the Identity
Manager user interface. Topics include:

Section 7.1, “About Portlet Administration,” on page 237
Section 7.2, “Administering Portlet Definitions,” on page 237
Section 7.3, “Administering Registered Portlets,” on page 241

For more general information about accessing and working with the Administration tab, see
Chapter 4, “Using the Administration Tab,” on page 127.

7.1 About Portlet Administration
You can use the Portlet Admin page to control the portlets available in the Identity Manager user
interface and who has permission to access them. Portlets are pluggable user-interface elements
(based on a Java standard) that provide the content for pages in the user interface, including
container pages and shared pages. Table 7-1 describes how to manage portlets.

Table 7-1 Managing Portlets

For details on the portlets provided with the Identity Manager user interface, see Part IV, “Portlet
Reference,” on page 291. To learn about using portlets on container pages and shared pages, see
Chapter 6, “Page Administration,” on page 203.

7.2 Administering Portlet Definitions
The Portlet Admin page enables you to perform the following tasks related to portlet definitions in a
portlet application:

Section 7.2.1, “Accessing Portlet Definitions in the Deployed Portlet Application,” on page 238
Section 7.2.2, “Registering Portlet Definitions,” on page 238
Section 7.2.3, “Viewing Information About Portlet Definitions,” on page 239

What you work with Description

Portlet definitions Descriptors (read from portlet.xml) that specify portlet configuration
parameters. There is one definition for each portlet in an application.

See Section 7.2, “Administering Portlet Definitions,” on page 237.

Portlet registrations Registrations of portlets, based on their definitions. Multiple registrations
of the same portlet can exist in a single portlet application.

See Section 7.3, “Administering Registered Portlets,” on page 241.
Portlet Administration 237

7.2.1 Accessing Portlet Definitions in the Deployed Portlet Application
The Portlet Applications list shows the portlet definitions in a selected portlet application.

In the Portlet Applications list, expand the portlet application whose portlet definitions you want to
access.

The tree displays all of the portlet definitions under that portlet application:

7.2.2 Registering Portlet Definitions
Before you can use a portlet, you must register that portlet definition with the portal (Identity
Manager User Application). A registered portlet definition is called a portlet registration. You can
create multiple registrations for a single portlet, which enables you to put multiple instances of that
portlet on the same page.

The portlet registration inherits all the preferences and settings of the portlet class, but you can
modify these values in the following ways:

When registering the portlet definition. See Section 7.3, “Administering Registered Portlets,” on
page 241
When adding an instance of the portlet to a page. See Chapter 6, “Page Administration,” on
page 203

All portlets that ship with the Identity Manager User Application are automatically registered.

If the portlet definition provides an Edit mode, the end user can modify specific preferences of the
portlet registration at runtime, according to the logic of the portlet’s doEdit() method.

The Identity Manager User Application also provides a default implementation for Edit mode. If the
doEdit() method is not explicitly implemented, a default preference sheet is displayed.

To register a portlet definition:

1 In the Portlet Applications list, select the portlet definition for which you want to create a portlet
registration.
A General panel displays on the right:
238 NetIQ Identity Manager User Application: Administration Guide

All existing registrations of the selected portlet are listed in the Portlet Applications tree (on the
left), under the corresponding portlet definition name.

2 In the Register New Portlet Instance text box, specify a unique name for the portlet registration,
then click Register.
The new portlet registration is created and listed in the Portlet Applications tree.

3 If you want to modify the preferences and settings of the new portlet registration, see
Section 7.3, “Administering Registered Portlets,” on page 241.

7.2.3 Viewing Information About Portlet Definitions
You can view the following read-only information about a listed portlet definition:

Display name
Class name
Portlet title
Type of execution (synchronous or asynchronous)
Short title
Type of registration
Style name
Cache expiration time
Description
Portlet Administration 239

Initialization parameters
Keywords
Supported mime types
Modes supported by the portlet
Supported locales
Supported devices
Security roles

To view information about portlet definitions:

1 In the Portlet Applications list, select the portlet definition that you want to learn about.
A General panel displays on the right, showing information about the selected portlet definition:
240 NetIQ Identity Manager User Application: Administration Guide

2 Go to the Additional Information panel to view further details about the selected portlet
definition:

7.3 Administering Registered Portlets
The Portlet Admin page enables you to perform the following tasks related to portlet registrations in
a portlet application:

Section 7.3.1, “Accessing Portlet Registrations in the Deployed Portlet Application,” on page 242
Section 7.3.2, “Viewing Information about Portlet Registrations,” on page 242
Section 7.3.3, “Assigning Categories to Portlet Registrations,” on page 244
Section 7.3.4, “Modifying Settings for Portlet Registrations,” on page 245
Section 7.3.5, “Modifying Preferences for Portlet Registrations,” on page 247
Section 7.3.6, “Assigning Security Permissions for Portlet Registrations,” on page 248
Section 7.3.7, “Unregistering a Portlet,” on page 250
Portlet Administration 241

7.3.1 Accessing Portlet Registrations in the Deployed Portlet Application
The Portlet Applications list shows the portlet registrations for each portlet definition in a selected
portlet application.

To access portlet registrations in the deployed portlet application:

1 In the Portlet Applications list, expand the portlet application whose portlet definitions and
registrations you want to access.
The tree displays all of the portlet definitions under that portlet application:

2 Expand the portlet definition whose portlet registrations you want to access.
The tree displays all of the portlet registrations under that portlet definition:

7.3.2 Viewing Information about Portlet Registrations
You can view the following read-only information about a listed portlet registration:

Display name
242 NetIQ Identity Manager User Application: Administration Guide

Type of registration
Portlet title
Type of execution (synchronous or asynchronous)
Class name
Description

In the Portlet Applications list, select the portlet registration that you want to learn about.

A General panel displays on the right, showing information about the selected portlet registration as
shown in Figure 7-1.

Figure 7-1 Portlet Registration: General Properties
Portlet Administration 243

7.3.3 Assigning Categories to Portlet Registrations
To facilitate searching for specific portlets in a portlet application, you can organize portlet
registrations by category.

1 In the Portlet Applications list, select the portlet registration that you want to categorize.
A General panel displays on the right.

2 Go to the Categories panel.
This panel displays lists of available and assigned categories for the selected portlet registration:

3 Update the Assigned Categories list, as appropriate:
244 NetIQ Identity Manager User Application: Administration Guide

4 Click Save Categories.

7.3.4 Modifying Settings for Portlet Registrations
Portlet settings define how the portal (Identity Manager User Application) interacts with individual
portlets. Each portlet is configured with these settings:

Title
Maximum timeout
Requires authentication
Display title bar
Hidden from user
Options defined in the portlet application

Standard Java Portlet 1.0 settings are defined in the portlet deployment descriptor (portlet.xml) of
the portlet application WAR. You can change the values of these settings on a registration-by-
registration basis by using the Portlet Admin page. In this case, the new values take effect only for the
selected portlet registration.

To modify portlet registration settings:

1 In the Portlet Applications list, select the portlet registration whose settings you want to modify.
A General panel displays on the right.

2 Go to the Settings panel.
This panel displays the current settings for the selected portlet registration:

If you want to Do this

Assign one or more categories to the portlet
registration

Select each category you want to assign and
click >

Assign all categories to the portlet registration Click >>

Remove one or more category assignments Select each category you want to remove and
click <

Remove all category assignments Click <<
Portlet Administration 245

3 Modify settings, as appropriate.
While working on this panel, you can also perform the following actions:

4 Click Save Settings.

If you want to Do this

Discard your unsaved changes Click Cancel

Return all settings for this portlet registration to their
default values (as defined in the corresponding portlet
definition)

Click Reset All

Return an individual setting to its default value Click the Reset link beside that setting
246 NetIQ Identity Manager User Application: Administration Guide

7.3.5 Modifying Preferences for Portlet Registrations
Portlet preferences are defined by the portlet developer at design time in the portlet deployment
descriptor. Preferences vary from portlet to portlet, based on the portlet developer’s implementation.

You can change the values of these preferences on a registration-by-registration basis by using the
Portlet Admin page. In this case, the new values take effect only for the selected portlet registration.

To modify portlet registration preferences:

1 In the Portlet Applications list, select the portlet registration whose preferences you want to
modify.
A General panel displays on the right.

2 Go to the Preferences panel.
This panel displays the current preferences for the selected portlet registration:

3 Modify preferences, as appropriate.
While working on this panel, you can also perform the following actions:

If you want to Do this

Display more information about the preferences Click Descriptions

Discard your unsaved changes Click Cancel

Return all preferences for this portlet registration to
their default values (as defined in the corresponding
portlet definition)

Click Reset All

Return an individual preference to its default value Click the Reset link next to that preference
Portlet Administration 247

4 To modify the localized version of a preference for each locale specified in the portlet definition:
4a Click the Detail link beside that preference (if available).

The panel displays the preference values for each locale.
4b Modify values, as appropriate.
4c Click OK to apply your changes and return to the main preferences list.

5 Click Save Preferences.

7.3.6 Assigning Security Permissions for Portlet Registrations
You can assign the security permissions described in Table 7-2 to users, groups, and containers for
portlet registrations.

Table 7-2 Security Permissions for Portlet Registrations

When you modify security permissions, the new values take effect only for the selected portlet
registration.

To assign security permissions for portlet registrations:

1 In the Portlet Applications list, select the portlet registration whose security permissions you want
to modify.
A General panel displays on the right.

2 Go to the Security panel.
This panel displays the current security permissions for the selected portlet registration:

Permission Description

List Users can view the portlet registration from a selection list

Execute Users can run the portlet registration on a portal page
248 NetIQ Identity Manager User Application: Administration Guide

3 Go to the List or Execute tab, depending on which type of permission you want to assign.
4 Specify values for the following search settings:

Setting What to do

Search for Select one of the following from the drop-down menu:

Users

Groups

Containers
Portlet Administration 249

5 Click Go.
The results of your search appear in the Results list.

6 Select the users, groups, or containers you want to assign to the portlet registration, then click
the Add (>) button.
Hold down the Ctrl key to make multiple selections.

7 Enable or disable lock-down for the portlet registration as follows:

8 Click Save.

7.3.7 Unregistering a Portlet
You can use the Portlet Admin page to unregister a portlet if necessary.

NOTE: If you unregister a portlet that is defined as auto-registered, that portlet is registered again
automatically when you restart your application server.

To unregister a portlet:

1 In the Portlet Applications list, select the portlet registration that you want to unregister.
A General panel displays on the right, showing information about the selected portlet
registration:

Starts with If you want to:

Find all available objects of your specified type (user, group, or container),
then make this setting blank.

Find a subset of those objects, then enter the starting characters of the
CN values you want. (Case is not considered. Wildcards are not
supported.)

For example, searching for groups that start with S would narrow your
search results to something like this:
cn=Sales,ou=groups,o=MyOrg
cn=Service,ou=groups,o=MyOrg
cn=Shipping,ou=groups,o=MyOrg

Searching for groups that start with Se would return:
cn=Service,ou=groups,o=MyOrg

If you want to Do this

Lock down the portlet registration so only User
Application Administrators can list/execute it

Select List/Execute Permission Set to Admin
Only

Allow all assigned users, groups, and containers
to list/execute the portlet registration

Deselect List/Execute Permission Set to Admin
Only

NOTE: If you deselect this setting but there are
no users, groups, or containers explicitly
assigned to the portlet registration, then
everyone has List/Execute permission for this
portlet registration.

Setting What to do
250 NetIQ Identity Manager User Application: Administration Guide

2 Click Unregister Portlet.
3 When you are prompted to confirm the unregister operation, click OK.
Portlet Administration 251

252 NetIQ Identity Manager User Application: Administration Guide

8 8RBPM Provisioning and Security
Configuration

This section describes the tasks that you can perform from the RBPM Provisioning and Security page.
Topics include:

Section 8.1, “About RBPM Provisioning and Security Configuration,” on page 253
Section 8.2, “Provisioning Configuration,” on page 254
Section 8.3, “Administrator Assignments,” on page 267
Section 8.4, “Team Configuration,” on page 279
Section 8.5, “Navigation Access Permissions,” on page 287

8.1 About RBPM Provisioning and Security Configuration
The Administration tab now provides a new RBPM Provisioning and Security tab, which replaces the
Provisioning and the Security tab. This incorporates left navigation options that were previously
available on the Provisioning and the Security tab. In addition, it includes several new left navigation
options that give administrators the ability to assign security permissions in accordance with the new
consolidated security model.

The RBPM Provisioning and Security tab looks like this:

Figure 8-1 RBPM Provisioning and Security tab
RBPM Provisioning and Security Configuration 253

8.2 Provisioning Configuration
The Provisioning Configuration actions allow you to configure the Delegation and Proxy Service, the
Digital Signature Service, the provisioning user interface settings, and the Workflow Engine and
clustering.

To access the Provisioning Configuration actions, you need to be a Configuration Administrator.

8.2.1 Configuring Delegation and Proxy Settings
This section includes information about:

“Configuring the Delegation and Proxy Service” on page 254
“Scheduling Synchronization and Cleanup” on page 256

Configuring the Delegation and Proxy Service
To configure the Delegation and Proxy Service:

1 Select the RBPM Provisioning and Security tab.
2 Select Delegation and Proxy from the left navigation menu.

The user interface displays the Delegation and Proxy page. To configure the service, you need to
make some changes in the Delegation and Proxy Service Settings box.

3 Check the Allow All Requests option if you want to display the All option in the Resource Search
Criteria drop-down list for the Team Delegate Assignments action. When the All option is
available, a delegate assignment can be defined that applies to all resource categories.

4 Define the retention period for delegate, proxy, and availability assignments:
254 NetIQ Identity Manager User Application: Administration Guide

5 Select the e-mail templates you want to use for delegation, proxy, and availability notifications:

Field Description

Retention time for Delegation assignments Specifies the number of minutes to retain delegate
assignments in the directory after they have
expired. The default is 0, which indicates that the
assignments will be removed after the expiration
time has been reached.

Retention time for Proxy assignments Specifies the number of minutes to retain proxy
assignments in the directory after they have
expired. The default is 0, which indicates that the
assignments will be removed after the expiration
time has been reached.

Retention time for Availability settings Specifies the number of minutes to retain availability
settings in the directory after they have expired. The
default is 0, which indicates that the assignments
will be removed after the expiration time has been
reached.

Field Description

Delegation notification template Specifies the language-independent name for the
template to use for delegation e-mail notifications.
After the template name has been specified, the
notification engine can determine which language-
specific template to use at runtime.

For details on creating and editing e-mail templates,
see Section 17.4, “Working with E-Mail Templates,”
on page 403.

Proxy notification template Specifies the language-independent name for the
template to use for proxy e-mail notifications. After
the template name has been specified, the
notification engine can determine which language-
specific template to use at runtime.

For details on creating and editing e-mail templates,
see Section 17.4, “Working with E-Mail Templates,”
on page 403.

Availability notification template Specifies the language-independent name for the
template to use for availability e-mail notifications.
After the template name has been specified, the
notification engine can determine which language-
specific template to use at runtime.

For details on creating and editing e-mail templates,
see Section 17.4, “Working with E-Mail Templates,”
on page 403.
RBPM Provisioning and Security Configuration 255

Scheduling Synchronization and Cleanup
To configure the Synchronization and Cleanup Service:

1 Select the RBPM Provisioning and Security tab.
2 In the Provisioning Configuration group of actions, select Delegation and Proxy from the left

navigation menu.
The user interface displays the Delegation and Proxy page. To schedule synchronization and
cleanup, you need to make some changes in the Synchronization and Cleanup Service box.

3 To specify how often you want to activate the synchronization service, type the activation
interval (in minutes) in the Synchronization Service Activation Interval field. The default value is 0,
which means that the service is not activated.
When the synchronization service runs, any modifications (or deletions) made to delegate
assignments are synchronized with the corresponding availability settings for the user.

4 To specify how often you want to activate the cleanup service, select Cleanup Service Activation
Interval, then type the activation interval (in minutes). Alternatively, select Cleanup Date and use
the calendar tool to specify the date when you want to activate the service. The default value is 0,
which means that the service is not activated.
If no cleanup date is specified, the date is set to null. If no cleanup interval is specified, the
interval is set to 0. When a cleanup date is specified, the interval is set to be 0. When an interval
value other than 0 is specified, the date is set to null. If you check the cleanup interval option
without putting in a number (the default is 0), the interface will show the original cleanup date
after you submit the page, just as if you had not performed a submit.
When the cleanup service runs, all obsolete proxy and delegate assignments are removed from
the system.

If the cleanup service has been activated, the Last cleanup performed field indicates when the last
cleanup was performed.

8.2.2 Configuring the Digital Signature Service
This section provides details on configuring the Digital Signature Service.

To configure the Digital Signature Service:

1 Select the RBPM Provisioning and Security tab.
2 Select Digital Signature Service from the left navigation menu.

The user interface displays the Digital Signature Service panel:
256 NetIQ Identity Manager User Application: Administration Guide

3 Perform these steps to configure the Digital Signature Service:
3a Select the Enable Digital Signature Support check box.

If this check box is not selected, users will see an error message when they try to access any
provisioning resource that requires a digital signature.
Before enabling digital signature support, make sure all of the required JARs are present. If
any of the JARs are missing, you will see an error message when you select the check box.
For details on which JARs are required for digital signatures, see Section 2.4, “Digital
Signature Configuration,” on page 56.

3b Select the Use XML Signature check box if you want to use an XML Signature.
3c Optionally select the Enable Signed Document Preview checkbox to allow users to preview

signed documents.
3d Select the Use Digital Signature as a Service checkbox to configure digital signatures with the

Digital Signature Service.
The service for digital signatures is very easy to configure and manage. Do not deselect this
checkbox, unless you are not ready to upgrade from an older digital signature
implementation, or require the ability to read digital signature cards, since this support is
not available with digital signature as a service.

IMPORTANT: We strongly encourage you to use the digital signature as a service support,
since it is the most reliable and easy-to-use configuration for managing digital signatures.

When you select Use Digital Signature as a Service, the user interface automatically
displays the name of the provider class for signature verification. You cannot edit the class
name if you are using the digital signature service.

3e (Not Required for Digital Signature as a Service) Type the name of the class for your digital
signature service in the Class Name field.

3f (Not Required for Digital Signature as a Service) Optionally specify an entity key in the
Alternative Certificate Subject Virtual Entity Key field. The entity key maps to an entity
defined in the data abstraction layer. The entity provides a calculated attribute that can be
used instead of the LDAP common name to ensure that only authorized users can perform
digital signing. In the Designer, you define the entity, giving the key any name you like. On
the Digital Signature Service configuration panel, you specify the key for the entity you
defined. The alternative subject is an optional feature that you can use to add an extra layer
of protection.

3g (Not Required for Digital Signature as a Service) Select JKS or PKCS as the Key Store Type
for your configuration. The choice depends on how your application will store encrypted
private keys locally. If you want to use the Java Key Store, then select JKS. If you would
prefer to use a language-neutral approach, select PKCS.
RBPM Provisioning and Security Configuration 257

3h (Not Required for Digital Signature as a Service) Optionally select the Certificate
Authorization check box to ensure that the authenticated user matches the user associated
with the selected user certificate. When Certificate Authorization is enabled, the current user
is not permitted to use a certificate on the smart card (or browser) that has been given to a
different user.

3i (Not Required for Digital Signature as a Service) Optionally select the Enable Revocation
Check check box to cause the application to check the certificate revocation list (CRL) before
using a certificate to be sure that it is still valid. A certificate might be revoked for several
reasons. For example, the certificate authority might determine that a particular certificate
was improperly issued. Alternatively, the certificate might be revoked if the private key for
the certificate has been lost or stolen.

3j (Not Required for Digital Signature as a Service) Optionally select the Enable OCSP Query
check box to perform a query against an Online Certificate Status Protocol (OCSP) server
before using a certificate. OCSP is an alternative to certificate revocation lists that addresses
problems associated with using CRLs in a public key infrastructure (PKI). The OCSP access
point for the server is specified in the User Application Configuration utility.

4 To view the settings for a previously configured applet, select the applet from the Signature
Applet dropdown list.

5 Perform these steps to add a new signature applet configuration:
5a Click Add.

The user interface makes the fields in the Signature Applet panel editable.
5b Provide a name for this applet configuration in the Display Name field.
5c Specify the class ID for the applet in the Class ID field.
5d Specify the entry of the JAR that contains the applet in the Archive Name field.
5e Specify <context root path> of the Web application that contains the applet archive for the

Context Root. (If the context root points to a different application, always start it with a “/”
character.)

5f Specify the callback name in the Callback Name field.
5g Specify the XML declaration string in the Declaration Template field.
5h Specify the invocation string in the Invocation Template field.
5i Specify the callback function in the Callback Function Template field.
5j Select the browser type (for example, IE 6.0) in the Browser Type select list.

6 Click Save to save your settings.
258 NetIQ Identity Manager User Application: Administration Guide

8.2.3 Configuring the Provisioning UI Display Settings
This section provides instructions on configuring various user interface settings. Some of the settings
control system-wide behavior within the User Application. Others are specific to the Work
Dashboard.

To access the Provisioning UI Display Settings:

1 Select the Administration tab.
2 Select the RBPM Provisioning and Security tab.
3 Select Provisioning UI Display Settings from the left navigation menu.

The user interface displays the Provisioning UI Display Settings page. To configure the display
settings for the Work Dashboard, you can make changes in the Task Settings and Request Status
Settings box, which appear after the General Display Settings.

Configuring the General Display Settings
The Administration tab in the User Application provides several settings you can use to control how
result sets are processed and displayed on pages within the application. To configure the settings for
result sets and pagination:

1 On the Provisioning UI Display Settings page, scroll down to the General Display Settings section of
the page.

2 Modify any of the following settings, and click Save.

Setting Description

Default number of results displayed per page Specifies the default number of rows to display in
lists shown on the Roles and Resources tab.

When a user initiates a query on any of the pages
listed above, the User Application caches the data
obtained by the query, and returns the number of
rows specified for this setting to the browser. Each
time the user requests to see the next page, another
set of rows is returned from the cache.

The default value for this setting is 25.
RBPM Provisioning and Security Configuration 259

Options for number of results displayed per page
(use spaces to separate values)

Allows you to specify additional values that the user
can select to override the default number of rows
displayed on the My Roles, View Request Status,
Browse Role Catalog, and Manage Role
Relationships pages. The list of values you type
must be separated by spaces.

Note that the number specified in the Default
number of results displayed per page control is
always included in the list of values for the user to
select.

The default value for this setting is 5 10 50 100 500.

NOTE: This setting also applies to the Team Tasks
page on the Work Dashboard tab and to the Object
Selector. The default number of rows displayed on
the Team Tasks page and in the Object Selector,
however, is not controlled by the Default number of
results displayed per page setting. The default
number of rows for team tasks is set at 5, and the
default number of rows for the Object Selector is set
at 10.

Threshold for browser-based sorting and filtering Specifies the maximum amount of memory
(expressed in rows) for the client browser to use for
sorting and filtering. If you specify a very high value,
client-side sorting and filtering will be very fast, but
an excessive amount of memory might be used on
the client. If you specify a very low value, the client-
side memory usage might be low, but sorting and
filtering might also be too slow.

This setting applies only if the size of the result set
is less than or equal to the threshold value. If the
size of the result set is larger than the threshold
value specified, sorting and filtering operations are
performed on the server.

The default value for this setting is 1000.

Novell Identity Manager Reporting Module URL The Uniform Resource Locator (URL) for the
Identity Reporting Module.

Once the URL has been defined, a user can log in
as a Report Administrator, and see the Access
Reporting Tool button on the Work Dashboard.
When the user clicks this button, the URL defined
here is used to open the reporting module in a new
window.

If the reporting module is running on the same
server and port as the User Application, you only
need to enter the WAR context name prefixed with a
slash [/]. Otherwise, you need to specify the full
URL, including the server and port.

Setting Description
260 NetIQ Identity Manager User Application: Administration Guide

Configuring the Task Settings
To configure the administrative settings for the Tasks list on the Work Dashboard:

1 Scroll down to the Task Settings box:

2 To specify whether you want the Task List to be displayed when users first open the dashboard,
select either the Yes or No radio button for the Expand Task List in default view of Work Dashboard
option.

3 To set the default sort column for the task list, pick the column in the Task Notifications List default
sort field. Indicate whether the sort order will be ascending or descending by selecting or
deselecting the Descending checkbox.
The default sort column is required in the task list display. When you select a default sort
column, this column is automatically added to the User default columns list.
To allow the user to override the default sort column and sort order, click the the Allow user to
override checkbox.

4 To include a column in the task list, select it in the Available Columns list box, and drag them to
the User default columns list box. To remove a column, select it in the User default columns list box
and drag it to the Available Columns list box. You can select multiple columns to include or
exclude by using the Ctrl or Shift key while clicking on the columns.
To allow the user to override the column selections you’ve made, click the Allow user to override
checkbox. When you click this checkbox, the user interface displays the Available columns for User
override list box. Any columns you add to the Available columns for User override list box are
included in the Available columns list that the user sees on the Work Dashboard. To allow the user
to override the default column list, select and drag one or more columns to the Available columns
RBPM Provisioning and Security Configuration 261

for User override list box from either the User default columns list box or the Available Columns list
box. When you add a column to the Available columns for User override list box, that column is
automatically removed from the list box from which you dragged it.

5 To specify how the task details should be displayed when the user clicks on a task, select one of
the following options:

6 To allow the user to claim a task automatically by simply opening the task details, select yes for
the Auto-claim when opening Task Details option. When this option is set to no, the user must
explicitly select Claim to claim a task.

Configuring the Request Status Settings
To configure the administrative settings for the Request Status list on the Work Dashboard:

1 Scroll down to the Request Status Settings box:

2 To set the default sort column for the request status list, pick the column in the Request Status List
default sort field. Indicate whether the sort order will be ascending or descending by selecting or
deselecting the Descending checkbox.
The default sort column is required in the request status list display. When you select a default
sort column, this column is automatically added to the User default columns list.
To allow the user to override the default sort column and sort order, click the the Allow user to
override checkbox.

3 To include a column in the request status list, select it in the Available Columns list box, and drag
them to the User default columns list box. To remove a column, select it in the User default columns
list box and drag it to the Available Columns list box. You can select multiple columns to include
or exclude by using the Ctrl or Shift key while clicking on the columns.

Option Description

In line with list Displays the details within the Task Notifications list,
directly under the task selected.

This is the default.

In modal dialog Displays the details in a separate dialog box that
must appears on top of the Task Notifications list.
After viewing the details for a task, the user needs to
close the dialog to see the list again.
262 NetIQ Identity Manager User Application: Administration Guide

To allow the user to override the column selections you’ve made, click the Allow user to override
checkbox. When you click this checkbox, the user interface displays the Available columns for User
override list box. Any columns you add to the Available columns for User override list box are
included in the Available columns list that the user sees on the Work Dashboard. To allow the user
to override the default column list, select and drag one or more columns to the Available columns
for User override list box from either the User default columns list box or the Available Columns list
box. When you add a column to the Available columns for User override list box, that column is
automatically removed from the list box from which you dragged it.

4 To specify how the request status details should be displayed when the user clicks on one of the
items requested, select one of the following options:

8.2.4 Configuring the Workflow Engine and Cluster Settings
This section provides instructions on configuring the Workflow Engine and on configuring cluster
settings. These settings apply to all engines in the cluster. When any of these settings are changed,
other engines in the cluster will detect these changes in the database and use the new values. The
engines check for changes to these settings at the same rate as specified by the pending process
interval.

The process cache settings and heartbeat settings require a server restart to take effect.

Configuring the Workflow Engine
To configure the Workflow Engine settings:

1 Select the Provisioning tab.
2 Select Engine and Cluster Settings from the left navigation menu.

The user interface displays the Workflow Configuration Settings page. To configure the engine,
you need to make some changes in the Workflow Engine box.

Option Description

In line with list Displays the details within the Request Status list,
directly under the request selected.

This is the default.

In modal dialog Displays the details in a separate dialog box that
must appears on top of the Task Notifications list.
After viewing the details for a task, the user needs to
close the dialog to see the list again.
RBPM Provisioning and Security Configuration 263

3 To change an engine setting, click the target field for the setting and type the new value. The
engine settings are described below:

Engine Setting Description

Email Notification (per workflow
engine)

Enables or disables e-mail notifications for the entire workflow
engine. Defaults to enabled.

Web Service Activity Timeout
(minute)

Specifies the default Web Service activity timeout in minutes. The
default is 50 minutes.

User Activity Timeout (hour, 0 for
no timeout)

Specifies the default user activity timeout. The default is 0 days,
which indicates no timeout.

Completed Process Timeout (day) Specifies the number of days that a completed process state is kept
in the workflow database system. The default is 120 days.

Completed Process Cleanup
Interval (hour)

Specifies how often the engine checks for and removes completed
processes that have been in the workflow database system for longer
than the completed process timeout. The default is 12 hours.

Pending Process Interval (second) User activities that are executed on an engine which the process is
not bound to are put into a pending state. This interval specifies how
often to check for pending activities in order to continue their
execution. The default is 30 seconds.
264 NetIQ Identity Manager User Application: Administration Guide

Retry Queue Interval (minute) Activities that fail because of suspected database connectivity issues
are put on a retry queue. This interval specifies how often the engine
attempts to retry these activities. The default is 15 minutes.

Maximum Thread Pool Size The maximum number of threads that the engine uses to execute
activities. The default is 20.

Minimum Thread Pool Size The minimum number of threads that the engine uses to execute
activities. When a thread is requested and fewer than the minimum
are in the pool, a new thread will be created even if there are idle
threads in the pool. The default is 10.

Initial Thread Pool Size Number of prestarted threads in the pool when it is created. The
default is 5.

Thread Keep Alive Time (second) If the pool is larger than the minimum size, excess threads that have
been idle for more than the keep alive time will be destroyed. The
default is 5 minutes.

Process Cache Load Factor The load factor specifies how full the cache is allowed to get before
increasing its capacity. If the number of entries in the cache exceeds
the product of the load factor multiplied by the current capacity, then
the capacity is increased. The default is 0.75.

Process Cache Initial Capacity The process cache is backed by a hash map. The capacity is the
number of buckets in the hash map. The initial capacity is the number
of buckets at the time the cache is created. The default is 700.

Engine Setting Description
RBPM Provisioning and Security Configuration 265

Configuring the Workflow Cluster
To configure the Workflow Cluster settings:

1 Select the Provisioning tab.
2 Select Engine and Cluster Settings from the left navigation menu.

The user interface displays the Workflow Configuration Settings page. To configure cluster
settings, you need to make some changes in the Workflow Cluster box.

Process Cache Maximum
Capacity

Before adding a process to the cache, if the number of processes in
the cache equals or exceeds the Process Cache Maximum Capacity,
the cache attempts to remove the oldest inactive process from the
cache. The maximum capacity is a soft limit, so the number of
processes in the cache might exceed the Process Cache Maximum
Capacity if there are no inactive processes (only active processes) in
the cache.

A good value for this setting should be less than product of the
Process Cache Initial Capacity and the Process Cache Load Factor.
This gives the cache a chance to remove older inactive processes
from the cache before having to increase its capacity.

Take the following example:

Process Cache Initial Capacity = 700;

Process Cache Load Factor =.75;

Process Cache Maximum Capacity = 500;

Number of processes in cache = 500;

In this case, the number of processes in the cache that will trigger the
cache to grow its capacity and perform a rehash would be 525,
because the Initial capacity multiplied by the load factor is equal to
525.

In this example, when there are 500 processes in the cache, the
cache is approaching the point where it must increase its size and
perform a rehash, which is at 525 processes. When another process
is added to the cache, the engine attempts to remove the least
recently used inactive process instead of letting the cache get closer
to 525 processes.

The default is 500.

Maximum Engine Shutdown
Timeout (minute)

The engine attempts to shutdown gracefully. When shutting down it
stops queuing new activities for execution and attempts to complete
any activities already queued. This timeout specifies the maximum
time that the engine waits for all queued activities and threads
executing activities to complete. If this time is exceeded, the engine
halts processing of queued activities and attempts to stop all threads
executing activities. The default is 1 minute.

Engine Setting Description
266 NetIQ Identity Manager User Application: Administration Guide

3 To change a cluster setting, click the target field for the setting and type the new value. The
cluster settings are described below:

8.3 Administrator Assignments
The Administrator Assignments page allows you to assign users, groups, and containers to
administrative roles. An administrator assignment specifies a domain type (Security, Provisioning,
Role, Resource, Configuration, and Compliance), as well as a set of permissions for the assignment.

The Administrator Assignments page is accessible to the following users:

Cluster Setting Description

Heartbeat Interval (second, minimum 60) Specifies the interval at which the workflow engine’s
heartbeat is updated.

When the workflow engine starts up, it detects if its
engine ID is already being used by another node in
the cluster and refuses to start if the ID is in use.
The User Application database maintains a list of
engine IDs and engine states. If an engine crashes
and is restarted, its last state in the database
indicates that it is still running. The workflow engine
therefore uses a heartbeat timer, which writes
heartbeats at the specified interval, to determine if
an engine with its ID is still running in the cluster. If
it’s already running, it refuses to start.

The minimum value for the heartbeat interval is 60
seconds.

Heartbeat Factor (minimum 2) Specifies the factor that is multiplied with the
hearbeat interval to arrive at the heartbeat timeout.

The timeout is the maximum elapsed time permitted
between heartbeats before an engine will be
considered timed out.

The minimum value for the heartbeat factor is 2.
RBPM Provisioning and Security Configuration 267

Table 8-1 User Access to the Administrator Assignments Page

Delegated administrators of a domain have no access to this page.

The permissions for an administrator assignment define the actions that administrators can take on a
particular scope of object instances within the domain type selected. For example, if you select the
Role domain as the domain type for an assignment, the permissions determine what actions the
administrators can take on the set of role instances selected as the scope for the assignment. These
permissions might specify, for the selected scope of roles, that administrators can perform actions
such as assigning roles to users, viewing role assignments, and reporting on role assignments.

Changing the Default Administrator Assignments The default administrator assignment settings
are established at the time the User Application driver is initialized. After the driver has been
initialized, you can change the default settings on the Administrator Assignments page, as long as
your “admin” user account still exists. If the account has been deleted, deactivated, or moved to a
different location, you will not be able to login to make the new assignments. In this case, you need to
reset the values in the configupdate utility and delete the initialization property in the User
Application Driver. Here are the basic steps you need to follow to do this:

1. Change the administrator assignment values in the configupdate utility.
2. Delete the initialization parameter in the User Application Driver.
3. Restart the User Application Driver and the Roles and Resources Driver.
4. Restart the User Application.

For complete details, see Section 2.14, “Changing the Default Administrator Assignments After
Installation,” on page 99.

8.3.1 Viewing Administrator Assignments
To view existing administrator assignments:

1 Select Administrator Assignments on the RBPM Provisioning & Security tab.

User Capabilities

Security Administrator Can perform all operations on the Administrator
Assignments page.

Other Domain Administrators Can view administrator assignments and request
assignments (or revoke assignments) for the domain
over which this user has authority. He/she cannot view
assignments or request assignments within another
domain.
268 NetIQ Identity Manager User Application: Administration Guide

The Administrator Assignments page displays the list of administrator assignments currently
defined.

8.3.2 Creating New Assignments
To define a new administrator assignment:

1 Click the Assign button at the top of the Administrator Assignments display.

The New Administrator Assignment dialog displays:
RBPM Provisioning and Security Configuration 269

2 Select one of the following domains:
The Compliance domain defines rights to launch attestation requests and view the status of
attestation requests.
The Configuration domain defines rights to configure access to User Application header tabs
and navigation items.
The Provisioning domain defines rights to launch and retract process requests, manage
addressee tasks, and configure delegate, proxy, and availability settings.
The Reports domain defines report permissions, which include the ability to use the Identity
Manager Reporting tool. A Report Administrator is given the Access Reporting Tool
navigation access permission automatically, which allows the user to access the reporting
tool directly from the Work Dashboard.

NOTE: To access the existing role and resource reports, a user who is a Report
Administrator must be assigned as Role or Resource Manager, and be given the Report on
Role or Report on Resource permission for a specific role or resource, or for all roles or
resources.

The Resource domain defines rights to manage resources, assign, revoke, and report on
resources, as well as rights to configure resource settings and bind entitlements.
The Role domain defines rights to manage roles and SoDs, assign, revoke, and report on
roles, as well as rights to configure role settings.
The Security domain defines rights to manage User Application security, such as assign and
revoke domain administrators, domain managers, and teams.

The domain determines what types of objects the administrator can act on. An administrator
assignment can only be associated with a single domain.

NOTE: If a particular user has been designated as a manager of a team, Novell recommends that
this user should not also be designated as a domain administrator for the domain associated
with the team.

To see a description of a particular domain, click the Info icon to the right of the Domain list:

3 Specify one of the following choices for the Type of Assignment:
User
Group
270 NetIQ Identity Manager User Application: Administration Guide

Container
Role

4 Select the users (or groups, containers, or roles) in the Select Users field.
The label for the control, and the objects available for selection, vary according to the type of
assignment you’ve specified.

5 Select an Effective Date for the assignment. This date (and time) determines when the
permissions are enabled for the assignment.

6 Select an Expiration Date for the assignment. This date (and time) determines when the
permissions are disabled for the assignment.

7 To give the administrator full permissions for the selected domain, click the All Permissions
checkbox.
When the All Permissions checkbox is checked, the assignment creates a Domain Administrator.
When it is unchecked, the assignment creates a Delegated Administrator.
When the domain selected is Security, Configuration, Compliance, or Reports, the assignment
automatically gives full permissions for the selected domain, and the All Permissions checkbox is
not displayed.

NOTE: When a user is assigned a Compliance Administrator role, the user interface shows two
rows in the Administrator Assignments page, one for the Compliance Administrator role, and
one for a Provisioning Manager role with no permissions visible. Note that this latter row
should not be removed. If the row is removed, the user assigned to be Compliance
Administrator will not be able to launch attestation requests successfully. The Compliance
Administrator role is automatically given rights to initiate and retract attestation provisioning
requests. For this reason, the Provisioning Manager role is required.

8 Click Save to preserve your administrator assignment settings.
If the domain for the assignment is Provisioning, Role, or Resource domain, and you’ve unchecked
the All Permissions checkbox, the Permissions section is added to the page.

9 To define the permissions, click New.
This interface shows controls that apply to the domain selected for the assignment. These
controls allow you to specify which objects are within the scope of the assignment and which
permissions administrators have with respect to these objects.

10 Follow these steps to define permissions for an assignment that uses the Provisioning domain:
10a To include all provisioning request definitions, click the All Provisioning Request Definition

button.
RBPM Provisioning and Security Configuration 271

10b To select provisioning request definitions individually, choose the Select Provisioning Request
Definition radio button, and use the Object Selector to pick one provisioning request
definition at a time:

NOTE: If you select All Provisioning Request Definitions, and define a permission at this
level, and then try to define the same permission for a particular provisioning request
definition, the Administration Assignment page will not create the permission for the
provisioning request definition, since it has already been defined at a higher level. In
general, a permission will not be set on a lower level object if it has been already defined for
a higher level object. However, if it is defined on a lower level object first, the same
permission can be set on a higher level set of objects as well.
272 NetIQ Identity Manager User Application: Administration Guide

10c Once you’ve defined the scope, choose the permissions you want to allow for each object by
selecting the object and picking the desired permissions in the list on the right side of the
dialog.

10d In the Add User Application Driver Permissions section of the page, optionally select the
Configure Proxy permission to allow the selected user(s) to configure proxy assignments.
This setting applies to the driver as a whole.

10e Click Save to save the permissions for the selected objects or containers.
To delete a permission, select the permission and click Delete.
To refresh the list of permissions, click Refresh.

11 Follow these steps to define permissions for an assignment that uses the Role domain:
11a To include all roles in all levels in the roles hierarchy, choose All Role Levels in the Role Level

control.

Permission Description

Initiate PRD Allows the user to initiate the selected
provisioning requests.

NOTE: The Initiate PRD permission has no effect
on the behavior of the Novell-installed PRDs for
resources, roles, and attestation within the User
Application, since these PRDs cannot be initiated
directly from the User Application. However, this
permission does control whether these PRDs can
be initiated from a SOAP call.

Retract PRD Allows the user to retract the selected
provisioning requests when they are in progress.

View Running PRD Allows the user to view the selected provisioning
requests when they are in progress.

Configure Delegate Allows the user to configure delegate
assignments for the selected provisioning
requests.

Manage Addressee Task Allows the user to manage tasks associated with
the selected provisiong requests that have been
addressed to other users.

When this permission is enabled, Domain and
Delegated Administrators can manage tasks for
all users, including addresses and recipients.
Team Managers are able to manage tasks for
addressees, but not for recipients.

Configure Availability Allows the user to configure availability for tasks
associated with the selected provisioning
requests.
RBPM Provisioning and Security Configuration 273

To include all roles at a particular level in the role hierarchy, choose one of the following
levels:

Business Role
IT Role
Permission Role

To include all roles in a particular sub container under the selected role level, use the Object
Selector to select the sub container.

11b To select roles individually, choose Select Roles radio button, and use the Object Selector to
pick one or more roles:
274 NetIQ Identity Manager User Application: Administration Guide

11c Once you’ve defined the role scope, choose the permissions you want to allow for each
object by selecting the object and picking the desired permissions in the list on the right side
of the dialog.

Permission Description

Create Role Allows the user to create roles.

This permission is hidden when a particular role
is selected.

Delete Role Allows the user to delete the selected roles.

This setting applies only at the container level.

At installation time, no user has the ability to
delete system roles. However, the administrator
may grant user access to the system roles. The
permission to delete roles should not be given for
the RoleConfig, Level20, and System roles
containers. Also, in general, you should not set
permissions on those containers, because
permissions on these containers will be
propagated to the system roles. Instead, you
should create role subcontainers under the role
level container and set permissions on each
subcontainer.
RBPM Provisioning and Security Configuration 275

11d To include all separation of duties constraints, choose All Separation of Duties Constraints
radio button.

11e To select separation of duties constraints individually, choose Select Separation of Duties
Constraint radio button, and use the Object Selector to pick one or more constraints.

11f Once you’ve defined the separation of duties scope, choose the permissions you want to
allow for each object by selecting the object and picking the desired permissions in the list
on the right side of the dialog.

Update Role and Role Relationship Allows the user to update the selected roles and
modify role relationships.

This setting applies only at the container level.

View Role Allows the user to view the selected roles.

This setting applies only at the container level.

Assign Role To User Allows the user to assign users to the selected
roles.

IMPORTANT: Only the Security Administrator
can assign system roles on the Work Dashboard
tab and the Roles and Resources tab.

Revoke Role From User Allows the user to revoke user assignments for
the selected roles.

Assign Role To Group And Container Allows user to assign groups and containers to
the selected roles.

Revoke Role From Group And Container Allows the user to revoke group and container
assignments for the selected roles.

Report On Role Allows the user to generate reports that provide
information about the selected roles.

Permission Description

Create SoD Allows the user to create separation of duties
constraints.

This permission is hidden when a particular SoD
constraint is selected.

Update SoD Allows the user to update the selected separation
of duties constraints.

Delete SoD Allows the user to delete the selected separation
of duties constraints.

View SoD Allows the user to look at the selected separation
of duties constraints.

Report On SoD Allows the user to generate reports that provide
information about the selected separation of
duties constraints.

Permission Description
276 NetIQ Identity Manager User Application: Administration Guide

11g In the Add Role Configuration Permissions section of the page, optionally select the Configure
Roles Settings permission for the configuration object.
This setting controls access to the Configure Role and Resource Settings page on the Roles and
Resources tab. To access this page, the user must have the Configure Roles Settings permission
as well as the Configure Resource Settings permission, which is given through a Resource
Manager (or Resource Administrator) assignment. If a user does not have both of these
permissions, the Configure Roles and Resource Settings page displays read-only information,
and cannot be edited.

11h Click Save to save the permissions for the selected objects or containers.
To delete a permission, select the permission and click Delete.
To refresh the list of permissions, click Refresh.

12 Follow these steps to define permissions for an assignment that uses the Resource domain:
12a To include all resources, click the All Resources button.

12b To select resources individually, choose the Select Resources radio button, and use the Object
Selector to pick one or more resources:
RBPM Provisioning and Security Configuration 277

12c Once you’ve defined the resource scope, choose the permissions you want to allow for each
object by selecting the object and picking the desired permissions in the list on the right side
of the dialog.

12d To include all drivers for entitlements, click the All Drivers radio button.
12e To select drivers individually, choose the Select Driver radio button, and use the Object

Selector to pick a resource.
12f Once you’ve defined the driver scope, optionally select the Bind Entitlement permission to

allow the selected user(s) to bind resources to entitlements. To allow the user to generate
reports on entitlements, optionally select the Report On Entitlement permission.

Permission Description

Create Resource Allows the user to create resources.

This permission is hidden when a particular
resource is selected.

Delete Resource Allows the user to delete the selected resources.

Update Resource Allows the user to update the selected resources.

View Resource Allows the user to view the selected resources.

Assign Resource Allows the user to assign users to the selected
resources.

Revoke Resource Allows the user to revoke user assignments for
the selected resources.

Report On Resource Allows the user to generate reports that provide
information about the selected resources.
278 NetIQ Identity Manager User Application: Administration Guide

12g In the Add Resource Configuration Permissions section of the page, optionally select the
Configure Resources Settings permission for the configuration object.
This setting controls access to the Configure Role and Resource Settings page on the Roles and
Resources tab. To access this page, the user must have the Configure Resources Settings
permission as well as the Configure Roles Settings permission, which is given through a Role
Manager (or Role Administrator) assignment. If a user does not have both of these
permissions, the Configure Roles and Resource Settings page displays read-only information,
and cannot be edited.

12h Click Save to save the permissions for the assignment.
To delete a permission, select the permission and click Delete.
To refresh the list of permissions for the assignment, click Refresh.

13 Click Save to save the assignment and permissions.

8.3.3 Editing an Existing Assignment
To edit an existing administrator assignment:

1 Select a previously defined assignment and click Edit.
2 Make your changes to the administrator settings and click Save.

8.3.4 Deleting Assignments
To delete an assignment:

1 Select a previously defined assignment and click Edit.

8.3.5 Refreshing the Assignment List
To refresh the list of administrator assignments:

1 Click Refresh.

8.4 Team Configuration
The Team Configuration page allows you to create teams and define permissions for these teams. A
team definition specifies a domain type (Provisioning, Role, or Resource), as well as a set of team
members and managers. The Team Configuration page is accessible to the following users:

Table 8-2 User Access to the Team Configuration Page

User Capabilities

Security Administrator Can perform all operations on the Team Configuration
page.

Other Domain Administrators Can define a team for the domain over which the
administrator has authority.
RBPM Provisioning and Security Configuration 279

The members of a team can be specified individually as a set of users, groups, or containers, or can be
defined based on a business relationship, such as the Manager-Employee relationship. Alternatively,
the team member list can include all users within the container.

When a team definition includes a container or group in its membership list, the User Application
expands the list within the container or group to show the users within the container or group.
Therefore, the User Application only allows the team manager to specify a particular user within the
container or group as the recipient for a team request; the team manager is not permitted to specify a
container or group as the recipient for a team request.

The managers for a team can be a one or more users or groups. When you define a team, you can
specify whether you want the team managers to also be members of the team.

The permissions for a team define the actions that team members can take on a particular scope of
object instances within the domain type selected for a team. For example, if you select the Role
domain as the domain type for a team, the team permissions determine what actions the members
can take on the set of role instances selected as the scope for the team. These permission might
specify, for the selected scope of roles, that members can perform actions such as assigning roles to
users, viewing role assignments, and reporting on role assignments.

8.4.1 Viewing Team Configurations
To view existing team configurations:

1 Select Team Configuration on the RBPM Provisioning and Security tab.
The Team Configuration page displays a list of team configurations currently defined.

Team Manager Can view a team definition for which he/she is
configured to be the manager. When a team manager
edits a team, the team definition itself is read-only,
because the team manager cannot modify the team
configuration.

User Capabilities
280 NetIQ Identity Manager User Application: Administration Guide

Filtering the Team List
1 Click the Display Filter button in the upper right corner of the Resource Catalog display.

2 Specify a filter string for the team name or description in the Filter dialog, or select a particular
domain, and click Filter:

3 To remove the current filter, click Reset.

Setting the Maximum Number of Rows on a Page
1 Click on the Rows dropdown list and select the number of rows you want to be displayed on

each page:

Scrolling within the Team List
1 To scroll to another page in the resource list, click on the Next, Previous, First or Last button at

the bottom of the list.

Sorting the Team List
To sort the team list:

1 Click the header for the column you want to sort on.
The pyramid-shaped sort indicator shows you which column is the new sort column. When the
sort is ascending, the sort indicator is shown in its normal, upright position.
When the sort is descending, the sort indicator is upside down.
The default sort column is the Resource Name column.
RBPM Provisioning and Security Configuration 281

If you override the default sort column, your sort column is added to the list of required columns.
Required columns are indicated with an asterisk (*).

When you modify the sort order for the task list, your preference is saved in the Identity Vault along
with your other user preferences.

8.4.2 Creating New Teams
To define a new team:

1 Click the New button at the top of the Team Configuration display.

The New Team dialog displays:

2 Select one of the following domains:
Provisioning Domain
Role Domain
Resource Domain

The domain determines what types of objects the team members can act on. A team can only be
associated with a single domain.

NOTE: If a particular user has been designated as a domain administrator, Novell recommends
that this user should not also be designated as a manager of a team for the same domain for
which the user is a domain administrator.

3 Provide a name and description for the team.
4 In the Managers control, select the users and groups that will be managers of the team.
282 NetIQ Identity Manager User Application: Administration Guide

5 In the Members control:
5a Indicate whether the managers will also be members of the team by selecting or deselecting

the Also include selected managers in members list checkbox.
5b Define the members of the team by selecting one of the following radio buttons:

6 Click Save to preserve your team configuration settings.
Once you’ve saved a team, the Permissions section is added to the page, and the Team
Permissions Configuration interface is displayed.
The Team Permissions Configuration interface includes buttons for adding new permissions,
deleting permissions and refreshing the display. The Permissions section of the page does not
include an Edit button because the details associated with each permission are shown in the
Permissions list. If a particular team permission is not properly defined, you can simply delete
the permission and add a new one in its place.

7 To define the permissions for the team, click New.
This interface shows controls that apply to the domain selected for the team. These controls
allow you to specify which objects are within the scope of the team and which permissions team
members have with respect to these objects.

8 Follow these steps to define permissions for a team that uses the Provisioning domain:
8a To include all provisioning request definitions, click the All Provisioning Request Definition

button.

Option Description

All Users Includes all users in the container.

Relationship Includes all users that have a relationship with
the users in the Managers list. For example, if
you select the Manager-Employee relationship,
the members report directly to the users in the
Managers list.

Select Members Includes the users, groups, and containers you
select.
RBPM Provisioning and Security Configuration 283

8b To select provisioning request definitions individually, choose the Select Provisioning Request
Definition radio button, and use the Object Selector to pick one or more provisioning request
definitions:

8c Once you’ve defined the scope for the team, choose the permissions you want to allow for
each object by selecting the object and picking the desired permissions in the Permissions
control.
The provisioning permissions are the same for team configurations as for RBPM
administrator assignments. See Step 10c on page 273 for details on the provisioning
permissions.

8d To define permissions that apply to the User Application driver as a whole, open the Add
User Application Driver Permisions section of the page and select the permissions you want to
allow with this assignment.
284 NetIQ Identity Manager User Application: Administration Guide

8e Click Save to save the permissions for the selected objects or containers.
To delete a permission, select the permission and click Delete.
To refresh the list of permissions for the team, click Refresh.

9 Follow these steps to define permissions for a team that uses the Role domain:
9a To include all roles in all levels in the roles hierarchy, choose All Role Levels in the Role Level

control:

To include all roles at a particular level in the role hierarchy, choose one of the following
levels:

Business Role
IT Role
Permission Role

To include all roles in a particular sub container under the selected role level, use the Object
Selector to select the sub container.

9b To select roles individually, choose Select Roles radio button, and use the Object Selector to
pick one or more roles:

9c Once you’ve defined the role scope for the team, choose the permissions you want to allow
for each object by selecting the object and picking the desired permissions in the Permissions
control.
The following role permissions are supported in team configurations:

View Role
Assign Role
RBPM Provisioning and Security Configuration 285

Revoke Role
Assign Role to Group and Container
Revoke Role from Group and Container

These role permissions have the same behavior as for RBPM administrator assignments. See
Step 11c on page 275 for details on these role permissions.

9d Click Save to save the permissions for the selected objects or containers.
To delete a permission, select the permission and click Delete.
To refresh the list of permissions for the team, click Refresh.

10 Follow these steps to define permissions for a team that uses the Resource domain:
10a To include all resources, click the All Resources button.

10b To select resources individually, choose the Select Resources radio button, and use the Object
Selector to pick one or more resources:

10c Once you’ve defined the resource scope for the team, choose the permissions you want to
allow for each object by selecting the object and picking the desired permissions in the
Permissions control.
The following resource permissions are supported in team configurations:

View Resource
Assign Resource
Revoke Resource

These resource permissions have the same behavior as for RBPM administrator
assignments. See Step 12c on page 278 for details on these resource permissions.
286 NetIQ Identity Manager User Application: Administration Guide

10d Click Save to save the permissions for the team.
To delete a permission, select the permission and click Delete.
To refresh the list of permissions for the team, click Refresh.

11 Click Save to save the team configuration and team permissions.

8.4.3 Editing an Existing Team
To edit an existing team:

1 Select a previously defined team and click Edit.
When a team manager edits a team, the team definition itself is read-only, because the team
manager cannot modify the team configuration.

2 Make your changes to the team settings and click Save.

8.4.4 Deleting Teams
To delete an existing team:

1 Select a previously defined team and click Delete.

8.4.5 Refreshing the Team List
To refresh the list of teams:

1 Click Refresh.

8.5 Navigation Access Permissions
The Navigation Access Permissions page allows you to set the access permissions for some of the
navigation items within the User Application. It allows you to control access to three of the main
header tabs with the application: Roles and Resources tab, Identity Self-Service tab, and Work
Dashboard tab. In addition, it allows you to define permissions for lower-level navigation items
within the Provisioning and Security, Roles and Resources, and Work Dashboard areas of the
application.

NOTE: The Compliance and Administration tabs cannot be configured through the Navigation
Access Permissions page. The Compliance tab is only visible to Compliance Administrators, and the
Administration tab is only visible to Security Administrators, Domain Administrators (such as the
Role Domain Administrator and Resource Domain Administrator), and Configuration
Administrators.

To define navigation access permissions:

1 Select Navigation Access Permissions on the RBPM Provisioning & Security tab.
The Navigation Access Permissions page displays.
RBPM Provisioning and Security Configuration 287

2 Click on the Name drop-down list to see the navigation items for which you can define
permissions:

The navigation areas appear in bold. Within each area, you can see the items.
3 Select the navigation item for which you want to define permissions.
288 NetIQ Identity Manager User Application: Administration Guide

4 Select one or more trustees for the navigation item. When a trustee logs on to the User
Application, the navigation item is displayed. Otherwise, the navigation item is hidden. You can
add users, groups, roles, and containers as trustees.
Each navigation item has a set of default trustees that is suitable for the services that can be
accessed through the navigation item. Most of the navigation items listed are self-explanatory.
For those items that require additional explanation, you can find details below.
Access Reporting Tool Allows you to use the Novell Identity Manager Reporting Tool. The
Report Administrator is given this permission by default.
Make a Process Request By default, the Make a Process Request navigation item is shown on
the Work Dashboard. To hide the Make a Process Request item, remove all trustees for this item.
If you remove all trustees, only Configuration Administrators will be able to see the item. To
show the Make a Process Request item on the Work Dashboard again, select Make a Process
Request and choose the users, groups, roles, or containers that you want to be able to access the
item.
Assign Resource Controls whether you see the Assign button on the Resource Assignments
section of the Work Dashboard. The root container is specified as the default trustee for this
permission at installation time.
Remove Resource Assignments Controls whether you see the Remove button on the Resource
Assignments section of the Work Dashboard. The root container is specified as the default trustee
for this permission at installation time.
Assign Role Controls whether you can see the Assign button on the Role Assignments section of
the Work Dashboard. The root container is specified as the default trustee at installation time.
Remove Role Assignments Controls whether you can use the Remove button on the Role
Assignments section of the Work Dashboard. The root container is specified as the default trustee
at installation time.

5 To make the currently selected navigation item the default for the navigation area, select Check to
make this the default navigation item for selected area.

The Check to make this the default navigation item for selected area control is not available for
navigation items within the Work Dashboard area.
RBPM Provisioning and Security Configuration 289

6 Click Save.
If you add a user as a trustee for a navigation item, and this user is a member of a container that
was previously added as a trustee, this user will have access to the navigation item, but will not
be added to the list of trustees.

NOTE: If a user does not have access to the default tab (or to the default menu item within a
navigation area), the User Application will attempt to display a tab (or menu item) for which the user
has authorization. If the user has not been given authorization for any tab or menu item, the default
page will display. If the user is not authorized for the default page, or if the user goes directly to an
unauthorized bookmark, an error message is displayed indicating that the user does not have the
proper authorization.

If the user has been authorized to access a tab, but nothing under the tab, the page will still show and
an error message will be displayed indicating that the user does not have the proper authorization.
Conversely, if the tab has not been authorized, the tab will not show. However, if the user is
authorized to access menu items under the tab, the user will be able to access these menu items by
using bookmarks.

Proxy Mode When a user is in proxy mode, the navigation access permissions for menu items on the
Dashboard will show the proxied user's permissions, not the permissions for the logged in user. For
all other navigation, the menu items will be controlled by the permissions set for the logged in user.
The Manage control (for selecting a user, group, role, or container) is not available in proxy mode,
even if a user is proxying for a user that is a Domain Administrator or Domain Manager.
290 NetIQ Identity Manager User Application: Administration Guide

IV IVPortlet Reference

These sections describe how to configure the identity and system portlets used in the Identity
Manager user interface:

Chapter 9, “About Portlets,” on page 293
Chapter 10, “Create Portlet Reference,” on page 297
Chapter 11, “Detail Portlet Reference,” on page 305
Chapter 12, “Org Chart Portlet Reference,” on page 323
Chapter 13, “Resource Request Portlet,” on page 351
Chapter 14, “Search List Portlet Reference,” on page 353
Portlet Reference 291

292 NetIQ Identity Manager User Application: Administration Guide

9 9About Portlets

This section provides information about the portlets you can use in the Identity Manager User
Application. Topics include:

Section 9.1, “Accessory Portlets,” on page 293
Section 9.2, “Admin Portlets,” on page 293
Section 9.3, “Identity portlets,” on page 294
Section 9.4, “System Components,” on page 295

For more information about managing portlets, see Chapter 7, “Portlet Administration,” on page 237.

Many of the portlets include preferences that enable you to customize the portlet’s behavior or
appearance. You localize the preferences by clicking the Detail link in the Content Preferences page. As
a general guideline, if the preference value is a free-form text input field, do not localize it unless the
value is a message displayed in the user interface. You can however, localize the preference name and
description. Localizing a preference value, that is not a message, can cause the portlet to malfunction.

9.1 Accessory Portlets
Accessory portlets provide a diverse set of functions that you can add to your Identity Manager User
Application. Accessory portlets provide e-mail, file system, and other functions. For more
information, see the Identity Manager Accessory Portlet Reference Guide.

9.2 Admin Portlets
The portlets in the Admin category are used to control the layout and contents of the user interface.

WARNING: In general, you should not use or modify these portlets. They provide framework
services to the User Application. However, you may want to modify the localized strings in the
Header Portlet. If you do so, be sure not to delete the localized value for any of the menu items. If you
leave a menu item blank, the corresponding will not display in the User Application.

Table 9-1 describes Admin portlets.

Table 9-1 Admin Portlets

Portlet Name Description

Header Portlet Displays the header information and top-level controls for the user
interface.

Shared Page Navigation Displays a menu containing the Identity Manager User Application
shared pages.
About Portlets 293

9.3 Identity portlets
The Identity portlets are used by the Identity Self-Service tab of the Identity Manager User
Application. Table 9-2 on page 294 lists the Identity portlets.

Table 9-2 Identity Portlets

At runtime, the identity portlets might also call the ContainerLookup portlet or the ParamLookup
portlet depending on user interaction. The ContainerLookup portlet is launched by the identity
portlets when the user performs a lookup on a container object, and the ParamLookup portlet is
launched when the user performs a lookup on an attribute. Users launch these portlets by clicking
the Lookup button. These portlets have a similar runtime appearance.

Portlet Name Description

Associations Report Shows the DirXML-Associations attributes for the logged on user. This attribute
maps a user to an external application. There are no preferences for this
portlet.

NOTE: The Associations Report portlet has been deprecated and will be
removed in the next release.

Create Provides a wizard-based interface that enables users to create objects in the
Identity Vault.

See Chapter 10, “Create Portlet Reference,” on page 297.

Detail Lets users display and manipulate an entity’s attribute data.

See Chapter 11, “Detail Portlet Reference,” on page 305.

Org Chart Lets users view and browse the hierarchical relationships between objects in
the Identity Vault.

See Chapter 12, “Org Chart Portlet Reference,” on page 323.

Resource Request Lets you provide access to resource requests to anonymous or guest users.
You must create a new shared page for this portlet and ensure that the page is
available to guest or anonymous users. See Chapter 13, “Resource Request
Portlet,” on page 351.

Search List Allows users to search for objects in the Identity Vault.

See Chapter 14, “Search List Portlet Reference,” on page 353.
294 NetIQ Identity Manager User Application: Administration Guide

Figure 9-1 Sample ParamLookup Portlet

These portlets are also referred to as object selectors, and their contents are defined by the DNLookup
definition in the directory abstraction layer. There are no preferences for these portlets, and you
cannot add them to a page. The only time you might modify them is when you allow guest access to
the identity portlets. The modifications that you need to make for guest access are described in each
identity portlet reference section.

9.4 System Components
The system portlets provide services to the Identity Manager User Application.

IMPORTANT: You should not use or modify portlets in this category.

Table 9-3 on page 295 lists the system portlets.

Table 9-3 System Portlets

Portlet Name Description

Portal Page Controller Displays the shared page that the user has currently selected via the
Shared Page Navigation portlet.

There are no preferences for this portlet.
About Portlets 295

296 NetIQ Identity Manager User Application: Administration Guide

10 10Create Portlet Reference

This section describes how to use the Create portlet in your Identity Manager User Application.
Topics include:

Section 10.1, “About the Create portlet,” on page 297
Section 10.2, “Configuring the Create Portlet,” on page 299
Section 10.3, “Setting Preferences,” on page 302
Section 10.4, “Configuring the Create Portlet for Self-Registration,” on page 303

10.1 About the Create portlet
The Create portlet provides an easy-to-use wizard that allows users to create Identity Vault objects of
different types. Portlet preferences control the following:

The types of objects that the user can create.
The attributes that the user can supply.

You can also configure the portlet to allow guest users to self-register.

The default configuration of the Create portlet (accessed via the Create User or Group action of the
Identity Manager User Application) allows users to create a User or a Group. This portlet is
restricted, by default, to the User Application Administrator. The following example shows how the
default Create portlet wizard prompts the user to:

Select the type of object to create:
Create Portlet Reference 297

Populate the object’s attributes:

Prompt for a password, when required by the object type:
298 NetIQ Identity Manager User Application: Administration Guide

If a password policy is assigned, the portlet displays any custom policy messages.
Provide an informational message when the object is successfully created. The message contains
a link to the Detail portlet for that object for further editing (assuming the Detail portlet is
likewise configured).

10.2 Configuring the Create Portlet
Follow the steps in Table 10-1 on page 299 to configure the Create portlet.

Table 10-1 Steps to Configure the Create Portlet

Step Task Description

1 Decide if the default Create User or
Group feature meets your needs.

If it does, then you do not need to take any further
action; otherwise complete the remaining steps.

2 Define the types of objects that you
want to allow users to create.

Add the objects and attributes to the directory
abstraction layer.

For more information, see Section 1.2.2, “Directory
Abstraction Layer,” on page 27.

3 Determine how you want users to
access this new portlet.

Do you want users to launch this portlet from an
existing or a new page? Which users can access the
portlet and the page?

For more information about pages, see Chapter 6,
“Page Administration,” on page 203.
Create Portlet Reference 299

10.2.1 Directory Abstraction Layer Setup
Objects that can be created and attributes that can be populated by users of the Create portlet must be
defined in the directory abstraction layer, as described in Table 10-2 on page 301.

4 Specify the users that have access to
the page and the portlet instance.

Edit the page security and add the users to the list.
For more information on restricting user access to
pages, see Chapter 6, “Page Administration,” on
page 203.

Edit the portlet instance to change security. For more
information on restricting user access to portlets, see
Chapter 7, “Portlet Administration,” on page 237.

Do you want anonymous users to access this portlet?
For more information on setting up the Create portlet
specifically for anonymous access, see Section 10.4,
“Configuring the Create Portlet for Self-Registration,”
on page 303.

5 Set preferences for the portlet. Preferences let you define:

Which objects users can create.

Which attributes to supply during the create.

For more information, see Section 10.3, “Setting
Preferences,” on page 302.

6 Test. Verify that the objects are created and that the
attributes are populated properly.

7 Establish the proper effective rights in
eDirectory for your users.

Make sure the users have sufficient rights to create
the object.

Step Task Description
300 NetIQ Identity Manager User Application: Administration Guide

Table 10-2 Settings for the Directory Abstraction Layer

For more information on setting up the abstraction layer, see Section 1.2.2, “Directory Abstraction
Layer,” on page 27.

Definition Type Property Value

entity create Selected.

view Selected.

If it is not selected, the entity does not display in the list of
entities that can be created.

Create Container for Create: Specify a valid Identity Vault
container. If you do not assign a container, the user is
prompted to select one. The user is allowed to select any
container beginning with the root container specified
during the User Application installation. For anonymous
users, it is recommended that you specify a Container for
Create. If you do not, then you must also modify the
security setting for the ContainerLookupPortlet, as
described in Section 10.4, “Configuring the Create Portlet
for Self-Registration,” on page 303.

Create naming attribute: Specify the entity’s naming
attribute. This shows up in the Create portlet as the
Object ID. You can specify different text to display by
using the Create naming label.

NOTE: Because the naming attribute is defined in this
way, you do not need to add it to the directory abstraction
layer as a separate attribute.

Password Management:
Password Required When
Entity is Created

Selected, if the entity type requires a password on create.

If the Create portlet is configured to create users and you
want to assign the users to an iManager password policy,
then you must also assign this container to the same
iManager password policy. This ensures that users
created in the User Application are automatically
assigned to the default iManager password policy.

By default, anyone who has access to the Create Users
and Groups action and has Trustee rights to the OU can
create users and assign the initial password. When the
new user first logs in, he or she is redirected to the
Change Password page to modify the initial password.
You can change the default behavior via the Expire
password on initial login preference.

For more information on this preference, see
Section 10.3, “Setting Preferences,” on page 302.

For more information on the Change Password page,
Section 5.3.1, “About Password Management Features,”
on page 180.

attribute enabled

viewable

Selected.

If enabled or viewable are not selected (false), the
attribute cannot be used by the portlet.
Create Portlet Reference 301

10.3 Setting Preferences
Preferences allow you to configure the types of objects and the attributes that users are prompted for.
There are two types of preferences: general and complex. The general preferences are described in
Table 10-3 on page 302 followed by the complex preferences in Table 10-4 on page 302.

Table 10-3 Create Portlet: General Preferences

Table 10-4 Create Portlet: Complex Preferences

Preference Description

Detail Portlet Name Specify the instance of the Detail Portlet to display when the user
clicks the Object Created link after the object is successfully
created. It defaults to the standard DetailPortlet. See Section 11.6,
“Setting up Detail for Anonymous Access,” on page 320.

Custom Class Name Specify the name of the class for processing create events. The
default is
com.novell.srvprv.impl.portlet.create.CreateCustomEventDefaultH
andler.

Expire password on initial login Specify whether to expire the newly created user’s password on
initial login (True), or whether to default to the Identity Vault’s
password policy GraceLogin setting.

Display password with attributes Specify whether to display the password on the same page as the
other attributes (True) or on its own page (false).

Create Virtual Entity complex preference Click View/Edit Custom Preference to access the Entity and
Attribute definitions for the create portlet. The preferences are
described in Table 10-4 on page 302.

Preference Description

Entity Definition The name of the object type to create. This represents the beginning of an
entity definition block where you define how the portlet handles the create
operation.

Objects listed in the complex preferences are displayed to the user in a drop-
down list. To restrict the objects that users can create, remove objects from
this preference sheet with the delete button. To add other entities, click Add
Entity Definition and complete the wizard.
302 NetIQ Identity Manager User Application: Administration Guide

Completing the Preferences Panel
To verify that you submitted valid entries, click Submit. If an entry is invalid, an error message is
displayed at the top of the preferences page. Click Return to List View when you are able to click
Submit and no errors occur. You must click Save Preferences when you return to List View.

10.4 Configuring the Create Portlet for Self-Registration
You can configure the Create portlet so that guest users are able to self-register. Enabling anonymous
access to the create portlet is a two-step process. First, configure a Create portlet instance for
anonymous use, then create a shared page to host the new portlet instance. You have the option to
force the newly registered user to log in or to allow anonymous access to other identity self-service
features. To create a portlet instance:

1 Go to the Portlet Admin page.
2 Register and name a new instance of the CreatePortlet, for example, Self Registration.
3 Select the new portlet instance, then click Settings.
4 Set Require Authentication to false, then click Save Settings.
5 Select Preferences and modify the preferences as needed.

Attributes Controls the attributes that the user is prompted to populate. You must
include all of the object’s required attributes; otherwise, the actual create of
the object will fail. In addition, the preferences do not save properly if a
required attribute is missing.

To add or remove an attribute:

Click the Modify Attributes button.

To add an attribute, select it (from the list of Available attributes). You
can multi-select attributes by using the Ctrl or Shift keys.

Click the arrow to move the attribute to the Selected list. Do the reverse
to remove an attribute.

To reorder the attributes list, click the up and down arrows to the right of
the Selected list. Click Submit.

Attributes and data types:

The attribute’s data type affects the way it is displayed. For example, if an
attribute is defined as a Local or Global list subtype, then it displays in a list
box.

NOTE: The create portlet automatically prompts for an object ID. (The label
displays as the entity type and appends the string ID, for example, user ID or
Group ID.) The object ID is the naming attribute for the object. for the object.
You do not have to add the CN as an attribute.

For more information, see the Novell Identity Manager User Application:
Design Guide.

Preference Description
Create Portlet Reference 303

For example, you could specify a DetailPortlet that supports anonymous access, or you could
limit the set of attributes displayed by the default instance. (The changes you make to the default
instance are reflected in other parts of the User Application that use that instance.)

TIP: If you do specify the default DetailPortlet, the user is forced to log in when viewing the
detail of the newly created object. For details, see Section 10.4.1, “Guest Access Required
Settings,” on page 304

To create a shared page:

1 Go to the Page Admin tab.
2 Create a new page.
3 Under Assign Categories, select Guest Pages. You can select other categories if you also want

logged-in users to see this.
4 Click Save Page.
5 Click Select Content, add the new instance to the page, then click Save Contents.
6 Click Assign Permissions and make sure that View Permissions Set to Admin Only is unselected.
7 Save the page.

10.4.1 Guest Access Required Settings
Other required settings include:

Create container: Every entity requires a create container. You can define a default create
container for each entity type in the directory abstraction layer, or you can allow the user to
select one. When you specify a default create container for the entity type, the user is never
prompted for the container. When you do not specify a default, the user must select one. To
allow anonymous users access to the selection list, you must change the ContainerLookupPortlet
setting Require Authentication to false. For more information about the default Create container,
see the section on the directory abstraction layer editor in the Identity Manager User Application:
Design Guide.
Identity Vault Rights: The user is initially the guest user. When he or she self-registers, the User
Application writes an object to the create container. To create a user object, the guest user must
have create [Entry rights] in the container where new users are created. This could be inherited
or restricted by using an inherited rights filter. The guest user must also have Write rights to the
attribute(s) that they are allowed to create.
DNLookup controls: If the user is required to provide a value for an attribute defined as a control
type of DNLookup, you need to change the ParamlistPortlet setting Requires authentication to
false.

Detail portlet: When the object is successfully created, the portlet displays a link to the object
displayed, via the Detail portlet. The default Detail portlet requires authentication so that users
are forced to log in with the new identity credentials before they are able to view the detail. You
can create a separate instance of the detail portlet for anonymous login, or you can modify the
default detail portlet so that Requires authentication is set to false. See Section 11.6, “Setting up
Detail for Anonymous Access,” on page 320.
Passwords: If you allow an anonymous user to create an entity that requires a password, you
must ensure that the anonymous account has the rights to create a password.
304 NetIQ Identity Manager User Application: Administration Guide

11 11Detail Portlet Reference

This section describes the Detail portlet, which lets users display and manipulate an entity’s attribute
data. The detail portlet is the basis for the My Profile action in the Identity Manager User
Application’s Identity Self-Service tab. Topics include:

Section 11.1, “About the Detail portlet,” on page 305
Section 11.2, “Prerequisites,” on page 316
Section 11.3, “Launching Detail from Other Portlets,” on page 317
Section 11.4, “Using Detail on a Page,” on page 318
Section 11.5, “Setting Preferences,” on page 318
Section 11.6, “Setting up Detail for Anonymous Access,” on page 320

11.1 About the Detail portlet
The Detail portlet provides users with a detailed view of an entity’s attributes and their values. The
portlet has two modes: display and edit. When accessing the Detail portlet, users can take advantage
of its built-in capabilities to work with this information, including:

Section 11.1.1, “Displaying Entity Data,” on page 305
Section 11.1.2, “Editing Entity Data,” on page 309
Section 11.1.3, “E-Mailing Entity Data,” on page 311 (display mode only)
Section 11.1.4, “Linking to an organization chart,” on page 312 (display mode only)
Section 11.1.5, “Linking to Details of Other Entities,” on page 312 (display mode only)
Section 11.1.6, “Printing Entity Data,” on page 313 (display mode only)
Section 11.1.7, “Setting Preferred Locale,” on page 314 (display mode only)

11.1.1 Displaying Entity Data
When accessed, the Detail portlet displays attribute data about a selected entity, such as a user or
group. For example, Figure 11-1 displays what the Detail portlet might display when user Bill Brown
selects the My Profile action.
Detail Portlet Reference 305

Figure 11-1 Sample MyProfile Data

User images. By default, the Detail portlet is configured to include the User Photo attribute.
However, if your Identity Vault does not include this attribute or it is not populated, a default image
is displayed at runtime. If you store your user images in a different location, you can configure the
portlet to display them from that location instead.

For more information, see “Dynamically loading images.” on page 309.

Determining Which Attributes Display
The Detail portlet (display mode) displays the attributes that

Your directory abstraction layer data definitions make available for viewing.

For more information on directory abstraction layer configuration, see Section 1.2.2, “Directory
Abstraction Layer,” on page 27.
Are specified in the Attributes to display in view mode preference.
To learn about specifying which attributes display in the Detail portlet, see Section 11.5, “Setting
Preferences,” on page 318.
The current user has rights to view.
For instance, managers with rights to the salary attribute will see that data, but other users
won’t.
For more information, see Section 11.2.2, “Assigning rights to entities,” on page 317.
Are currently populated with a value.

Determining How Attributes Display
When displaying attributes, Detail formats the data as text, with some exceptions. Exceptions are
listed in Table 11-1 on page 307.
306 NetIQ Identity Manager User Application: Administration Guide

Table 11-1 Detail Portlet: Attributes That Do Not Display As Text

Determining What the Heading Area Displays
You can lay out the heading area of the Detail portlet using standard HTML features.

Figure 11-2 Detail Portlet: Heading Area

The Detail preferences provide an HTML Layout Editor that you can use to create the look and
content you want:

Format Specification in Directory
Abstraction Layer Definition

How It Displays

Format: email As a mail-to link

Format:

groupwise-im

aol-im

yahoo-im

As an icon that initiates a chat and adds that user

Data type: Binary

Format: image

As the image

Data type: Boolean As disabled radio buttons indicating true or false

The buttons display without indicating a default value
because the attribute is not actually created for the user
until a value is specified.

Multivalue: Selected A comma-separated list

Control type: DNLookup As a link

In the example above, a link (Terry Mellon) displays to
access the Detail data of Bill Brown’s manager.

Control type:

Local List

Global List

As the display-label rather than the actual (key) value

For example, the EmployeeType attribute displays Full
Time instead of the actual value ft.
Detail Portlet Reference 307

Using the HTML Layout Editor
The HTML Layout Editor provides the typical features of an HTML editor for defining text
formatting and lists, and for specifying anchors, images, and so on.

Keywords. When designing your layout, you can use the Keywords drop-down list to insert variables
within the heading area of the Detail portlet to be replaced at runtime with specific attribute values.
You can also type them using this syntax:

$[[keyword]]

Where keyword is the value of an attribute such as LastName.

You can concatenate attributes using this syntax:

$[[keyword+keyword]]

For example:

$[[FirstName+LastName]]

You can concatenate as many attributes as you want and can also include quoted strings like this:

$[[keyword+"sample text"+keyword]]

This renders the values of the keywords and the quoted text.

NOTE: When manually typing a keyword placeholder instead of selecting it from the dropdown list,
make sure that it does not contain HTML formatting. It is recommended that you use the View
Source mode for manual entry of keywords. When. a keyword is mistyped in a layout, it is rendered
as-is at runtime (including the $[[]]).
308 NetIQ Identity Manager User Application: Administration Guide

Dynamically loading images. To display images that are stored in your Identity Vault (such as user
photos), you can add the attribute name using the HTML Layout Editor. For example, adding the
User Photo attribute displays the user’s photo. If you store images outside the Identity Vault, you’ll
need to use the IMG: tag (from the View Source mode of the HTML Editor) as follows:

1 Go to the portlet’s preferences and access the HTML Editor.
2 Click View Source.
3 Use the IMG: tag to combine a location, an attribute key, and a file extension using a syntax like

this:

$[[IMG:"URL" + attribute-key-name + "fileextension"]]

The following example shows the syntax you would use if you stored employee photos as JPG
images by Last Name in the /images subdirectory of your application server:

$[[IMG:"http://myhost:8080/images/"+LastName+".jpg"]]

At runtime, the portlet concatenates the URL with the LastName attribute and the file extension.jpg.

The HTML Editor supports a flexible syntax. It supports any combination of text and attributes so
that the syntax is

$[[IMG:"some text" + attribute-key-name + ...]]

11.1.2 Editing Entity Data
The Detail portlet automatically provides an Edit link (such as Edit Your Information or Edit User) to
switch from display mode to edit mode. This enables users with appropriate rights for the current
entity to change its attribute values and save those changes.

For example, here’s what Detail might display when user Bill Brown (who has the necessary rights)
edits his own information:
Detail Portlet Reference 309

Figure 11-3 MyProfile Edit Mode

NOTE: For Boolean attributes, when both radio buttons are unselected it means that the attribute
does not exist for the user. Selecting true or false creates the attribute for the user and also sets its
value.

Determining Which Attributes Display
In edit mode, you can specify the attributes to display and their display order by using the Detail
portlet’s Attributes to display in edit mode preference. In addition, the Detail portlet displays only
attributes that

Are defined as viewable in the directory abstraction layer data definitions.

For more information on data definitions, see Section 1.2.2, “Directory Abstraction Layer,” on
page 27.
The current user has rights to view.
For instance, managers with rights to the salary attribute will see that data, but other users
won’t.
For more information, see Section 11.2.2, “Assigning rights to entities,” on page 317.
310 NetIQ Identity Manager User Application: Administration Guide

Determining How Attributes Display
In edit mode, Detail formats each editable attribute as a text box, except in the following cases:

Table 11-2 Detail Portlet: Recognizing Non-Text-Box Editable Attributes

Attributes that can’t be edited (either by definition or because of inadequate user rights) display as
disabled or read only.

Validating Changes
During editing, data validation is automatically performed for the following attribute type
specifications:

Format: email
Data type: Integer
Control type: Range

When using a control type of local or global list, it is possible for the displayed list to include values
that are outside of an attribute’s specified bounds. However, such values are flagged as out-of-range,
and validation prevents them from being submitted.

11.1.3 E-Mailing Entity Data
The Detail portlet automatically provides a link named Send Identity Info. Users can click it to e-mail
the URL of the current entity’s Detail to one or more other users. By e-mailing the Detail URL rather
than the actual information, security is maintained because anyone receiving the URL will need
appropriate authority to use it.

Attribute Type Specification (in
directory abstraction layer)

How It Displays

Data type: Binary

Format: image

As a button and link to the Entity Image Upload portlet for
viewing, updating, or adding the image

Data type: Boolean As radio buttons indicating true or false

hide: Selected As radio buttons labeled Hide and Display

multivalue=Selected As a set of controls for editing, adding, and removing
attribute values

Control type: DNLookup As a button to launch the Param List portlet for searching
and selecting a DN

Control type:

Local list

Global list

As a drop-down list (allowing multiple selections if
applicable)
Detail Portlet Reference 311

11.1.4 Linking to an organization chart
The Detail portlet automatically provides a link named Display Organization Chart. Users can click it
to display the Org Chart portlet for the current entity.

For example, if you’re viewing Detail for user Bill Brown, clicking this link displays:

Figure 11-4 My Profile: Linking to Org Chart

You can suppress automatic linking to the Org Chart by setting Detail’s Enable org chart display
preference to false. See Section 11.5, “Setting Preferences,” on page 318.

11.1.5 Linking to Details of Other Entities
When configuring the Detail portlet, you might want to enable users to link to related entities from
the current one. You can do that by including attributes that are defined with the control type
DNLookup (in your directory abstraction layer).

When the Manager attribute is displayed in a user’s Detail, it appears as a link. Clicking that link
displays Detail for the Manager.
312 NetIQ Identity Manager User Application: Administration Guide

Figure 11-5 Linking to Other Entities from My Profile

For more information on the directory abstraction layer, see Section 1.2.2, “Directory Abstraction
Layer,” on page 27.

To learn about specifying which attributes display in the Detail portlet, see Section 11.5, “Setting
Preferences,” on page 318.

11.1.6 Printing Entity Data
By default, the display settings for the Detail portlet enable the Print option on the portlet’s title bar. If
you keep Print enabled, users can click it to display a printer-friendly version of the Detail content.

To change this or other settings for the Detail portlet, use the Administration to update the Portlet
Registration for DetailPortlet (on the Portlet Administration page).

For more information, see Chapter 7, “Portlet Administration,” on page 237.
Detail Portlet Reference 313

11.1.7 Setting Preferred Locale
The Detail portlet automatically provides a link named Edit Preferred Locale. It appears for an
administrator or for a user editing their own information. Users can click it to display the settings,
and they can use the dialog to change it. Changes to the preferred locale require that the user logout
and log back in for the proper locale to display, otherwise, inconsistent locales can be displayed. For
example, if you are viewing Detail for user Bill Brown, clicking this link displays:

Figure 11-6 Sample Edit Preferred Locale Dialog

You can suppress the link by setting the Enable edit of preferred locale preference to false.

11.1.8 Overriding the Default Entity
You can override the default entity type for an instance of the Detail Portlet. To do this, you need to
use the Portlet Admin facility within the Administration tab of the User Application. The Default ‘My
Profile’ Entity Definition preference allows you to set the default entity, as shown below:
314 NetIQ Identity Manager User Application: Administration Guide

Figure 11-7 Setting the Default Entity for an Instance of the Detail Portlet

The initial value of this preference is set in the driver configuration in Designer, as shown below:
Detail Portlet Reference 315

Figure 11-8 Initial Setting for the Default Entity for My Profile in Designer

11.2 Prerequisites
Before you start using the Detail portlet, review the following information.

Section 11.2.1, “Configuring the Directory Abstraction Layer,” on page 316
Section 11.2.2, “Assigning rights to entities,” on page 317

11.2.1 Configuring the Directory Abstraction Layer
The Detail portlet depends on directory abstraction layer definitions in a variety of ways. Instructions
on how to configure your abstraction layer data definitions to support specific Detail portlet features
are provided in the following sections:

Section 11.1.1, “Displaying Entity Data,” on page 305
Section 11.1.2, “Editing Entity Data,” on page 309
Section 11.4, “Using Detail on a Page,” on page 318

For more information on configuration, see Section 1.2.2, “Directory Abstraction Layer,” on page 27.
316 NetIQ Identity Manager User Application: Administration Guide

11.2.2 Assigning rights to entities
In order to access an entity and its attributes in the Detail portlet, users must have the appropriate
rights assigned in eDirectory:

You can assign rights by specifying that a user is a trustee of an object (entity). You can also specify
the rights to assign for each of the attributes that are available via the Detail portlet.

11.3 Launching Detail from Other Portlets
A common use of the Detail portlet is to launch it after selecting an entity from one of the other
identity portlets. You can launch Detail from the Search List portlet or from the Org Chart portlet:

Section 11.3.1, “Launching Detail from the Search List Portlet,” on page 317
Section 11.3.2, “From the Org Chart Portlet,” on page 318

11.3.1 Launching Detail from the Search List Portlet
In the Search List portlet, users can click an entity row in the search results in order to display Detail
for that entity. For example, clicking the Bill Brown row in the following list displays the Detail
portlet with his attribute data:

Figure 11-9 Launching Detail from Directory Search

For more information on the Search List portlet, see Chapter 14, “Search List Portlet Reference,” on
page 353.

To Do This A User Needs This Right

Display an attribute Read

Edit an attribute Write
Detail Portlet Reference 317

11.3.2 From the Org Chart Portlet
In the Org Chart portlet, users can click the Identity Actions icon for an entity and then select Show Info
to display details for that entity.

For more information on the Org Chart portlet, see Chapter 12, “Org Chart Portlet Reference,” on
page 323.

11.4 Using Detail on a Page
If you want to provide users with self-service for displaying and possibly editing their own attribute
data, you can add the Detail portlet to a shared page. When used on a shared page, the Detail portlet
automatically accesses the data of the current user.

11.5 Setting Preferences
To define the contents and appearance of the Detail portlet, you set preferences. The way you use the
Detail portlet determines where you set its preferences:

To learn about accessing portlet preferences from a shared or container page, see Chapter 6,
“Page Administration,” on page 203.
To learn about accessing portlet preferences for a portlet registration, see Chapter 7, “Portlet
Administration,” on page 237.

11.5.1 About the Preferences
The Detail portlet has two preference pages: one for general preferences (shown in Figure 11-10 on
page 318) and one for complex preferences.

Figure 11-10 Detail Preferences: General Preferences
318 NetIQ Identity Manager User Application: Administration Guide

Table 11-3 Detail Portlet: General Preferences

When you open this complex preference, the individual Detail preferences are presented:

Figure 11-11 Detail Portlet: Complex Preferences

Preference Description

OrgChart Portlet Name The name of the registered instance of the org chart
portlet that you want to launch if the enable org chart
display preference is set to true.

Entity Detail Complex Preference Click View/Edit Custom Preferences to access the
detail portlet’s complex preferences.
Detail Portlet Reference 319

Table 11-4 Detail Portlet: Complex Preferences

11.6 Setting up Detail for Anonymous Access
An anonymous user might navigate to the Detail portlet after completing the Create portlet or
performing a Search. You can set up a special instance of the Detail portlet just for access by an
anonymous or guest user. If you do not set up a separate instance for anonymous access, the user
might be prompted to log in before being allowed to access any details of an Identity Vault object. As
an alternative to setting up a unique instance for guest access, you could also change the
authentication requirement of the standard detail portlet

To set up the detail portlet for anonymous access:

1 Go to Administration > Portlet Admin.
2 Register and name a new instance of the DetailPortlet, for example, Public Detail.
3 Select the new detail portlet instance.
4 Go to Settings. Set Requires authentication to false.

Preference Details

Entity Definition Specifies the attribute list and HTML layout to display when Detail
is used for a particular entity type (such as User, Device, or
Group).

You can click Add Entity Definition to specify Detail support for
additional entity types.

Attributes to display in view mode Specifies which attributes of the selected entity you want the
portlet to display in view mode. These attributes are listed in the
order you choose.

A button is provided to let you add or remove attributes as needed.

Attributes to display in edit mode Specifies which attributes of the selected entity you want the
portlet to display in edit mode. These attributes are listed in the
order you choose.

A button is provided to let you add or remove attributes as needed.

HTML Layout Provides a button to open the HTML Layout Editor, where you can
design the heading area that the Detail portlet is to display for the
selected entity.

For details, see “Determining What the Heading Area Displays” on
page 307.

Enable edit entity Choose True if you want to enable the Edit Your Information link in
the header of the detail portlet.

Enable send entity info Choose True if you want to enable the Send Identity Info link in the
header of the detail portlet.

Enable org chart display Choose True if you want to enable the Display Organization Chart
link in the header of the detail portlet.

Enable edit of preferred locale Choose True if you want to display the Edit Preferred Locale link in
the header of the detail portlet.
320 NetIQ Identity Manager User Application: Administration Guide

5 Click Save Settings.
6 Go to Preferences and modify the preferences as required. For example, you might want to

change the entities or the attributes to display in view and edit mode.

If the anonymous user is allowed to view the detail without logging in, Detail does not display Edit
User or Edit Your Information because the portlet detects that the user is not logged in and has no Edit
rights. If the anonymous user is forced to log in, edit rights are determined by any policies set in
eDirectory for new users in that container.
Detail Portlet Reference 321

322 NetIQ Identity Manager User Application: Administration Guide

12 12Org Chart Portlet Reference

This section describes how to modify or add new org chart features to your Identity Manager User
Application. Topics include:

Section 12.1, “About Org Chart,” on page 323
Section 12.2, “Configuring the Org Chart Portlet,” on page 328
Section 12.2.2, “Setting Preferences,” on page 330
Section 12.3, “Configuring Org Chart for Guest Access,” on page 349

12.1 About Org Chart
The Org Chart portlet allows users to view and browse a graphical representation of the relationships
between objects in the Identity Vault. For example, you can define Org Chart portlets that show
relationships, such as

An organization (such as employees and managers)
A group’s membership (such as all of the employees in a group)
Devices assigned to a user (such as cell phones and laptops)

The default configuration of the Identity Manager User Application Identity Self-Service tab includes
an Organization Chart action. This action is an Org Chart portlet configured to show relationships
among user objects in the Identity Vault. The following example shows how the default Org Chart
portlet renders this relationship (using sample data).
Org Chart Portlet Reference 323

Figure 12-1 Default Org Chart

Built-in links. The Org Chart portlet includes these built-in links. The built-in links are configurable
via the Org Chart Layout Preferences described in “Org Chart Presentation Layout Preferences” on
page 340.

Link Description

Allows the user to navigate to the next upper level. This is only available when viewing a
relationship where the target and source entities are the same type (such as user).
Relationships are defined in the directory abstraction layer editor.

Lets users expand or collapse the default relationship. The default relationship is
defined in the preferences. It is the relationship that is initially displayed.

Lets users reset the root of the org chart currently displayed. The root is the starting
point or orientation point of the org chart.

Lets users choose a relationship to expand or collapse from a drop-down list. If users
choose to expand a relationship, Org Chart allows them to choose which direction to
expand it (left or right).
324 NetIQ Identity Manager User Application: Administration Guide

For more information about adding and restricting the built-in links on your org charts, see “Org
Chart Presentation Layout Preferences” on page 340.

Org Chart also provides a view of the relationships in a 508-compliant format. You can set
preferences that display this view by default or as an option. Figure 12-2 shows the same Org Chart
data as Figure 12-1 but in the 508-compliant format.

Launches the Detail portlet.

Displays a list of org charts. Lets users choose one or more org charts to view.

This list of org charts is dynamic. It displays other org charts that share the same source
entity type. For example, if you are viewing a manager/employee org chart (the source
entity is user) and you click this icon, then the list of org charts you can view only
contains relationships where the source entity is also user.

.

Launches an e-mail tool to:

Send the identity details of the currently selected user.

Compose an e-mail.

Allows users to perform entity searches. The searches result in the found entity
becoming the top node of the chart displayed. (This is not configurable via preferences.)

Link Description
Org Chart Portlet Reference 325

Figure 12-2 Org Chart Accessible View

12.1.1 About Org Chart Relationships
The Org Chart portlet displays relationships that are defined in the directory abstraction layer. The
following relationships are available after the Identity Manager User Application is installed:

Group’s membership
Manager-Employee
User Groups

To learn more about creating or modifying Org Chart relationships, see Section 1.2.2, “Directory
Abstraction Layer,” on page 27.

NOTE: Dynamic groups are not fully supported by the Org Chart portlet. You cannot define a
dynamic group as the source entity of a relationship, but you can define a dynamic group as the
target entity in a relationship.
326 NetIQ Identity Manager User Application: Administration Guide

12.1.2 About Org Chart Display
The Org Chart portlet can display in HTML mode (the default) or in Accessible mode which is the
508-compliant mode. You can enable or disable these views via the portlet preferences. When both
modes are enabled, users see a tabbed page. You can control the titles through preference definitions.

Users are able to display multiple relationships in one org chart as long as the relationships share the
source entity. For example, Figure 12-3 shows the org chart with both manager-employees, and users-
groups for the root entity.

Figure 12-3 Org Chart Displaying Multiple Relationships

If the manager attribute is multi-valued, the org chart automatically allows users to choose which
manager’s org chart to display, as shown in Figure 12-4 on page 328.
Org Chart Portlet Reference 327

Figure 12-4 Displaying Multi-valued Manager Attributes

User Images
By default, the org chart HTML layout for the User object includes the User Photo attribute.
However, if your Identity Vault does not include this attribute or it is not populated, the org chart
ignores this attribute at runtime. If you store your photos in a different location, you can configure
the org chart to display those photos instead.

The default user image shipped with the User Application is 86 x 86 pixels. For consistency, you
should use images that are approximately this size. You can use images of any size and dimension,
but they are displayed in that size. This can affect the layout of the business card view.

For more information, see Section 12.2.3, “Dynamically Loading Images,” on page 348.

12.2 Configuring the Org Chart Portlet
To configure the Org Chart portlet, complete the steps in Table 12-1.

Table 12-1 Org Chart Portlet: Configuration Steps

Step Task Description

1 Define the relationship that you want to
display.

You can use one of the predefined relationships that
are installed with the Identity Manager User
Application, or you can create your own.

For more information about defining a relationship,
see Section 1.2.2, “Directory Abstraction Layer,” on
page 27.

2 Verify that the entities and attributes that
you want to use in the relationship are
available in the directory abstraction layer.

For more information about defining a relationship,
see Section 12.2.1, “Directory Abstraction Layer
Setup,” on page 329.
328 NetIQ Identity Manager User Application: Administration Guide

12.2.1 Directory Abstraction Layer Setup
The entities and attributes displayed within an Org Chart must be defined in the directory
abstraction layer. Table 12-2 on page 329 shows the attributes and properties that you must set for
each entity and attribute displayed in an org chart.

Table 12-2 Org Chart Portlet: Entity and Attribute Settings

Lookup Link requirements. Lookup Link allows users to navigate the org chart by performing
searches for other objects of the same type as the Source Entity key. The Lookup Link requires that
the source entity key have at least one attribute with the require and search access properties set to true
(selected in the directory abstraction layer editor). If not, the lookup link’s Object Lookup dialog
cannot be populated and is empty when displayed.

For more information on entity and attribute configuration, see Section 1.2.2, “Directory Abstraction
Layer,” on page 27.

3 Determine where you want to display this
relationship.

Do you want to create a new page for launching the
org chart? Or, do you want to launch it from the
Detail portlet or from another org chart?

For more information about creating pages and
adding portlets to those pages, see Chapter 6,
“Page Administration,” on page 203.

4 Set preferences for the portlet. Preferences let you define:

Which attributes to display.

How to display them (their HTML layout).

For more information, see Section 12.2.2, “Setting
Preferences,” on page 330.

5 Test. Test the relationship definitions and layout.

6 Set eDirectory rights and establish any
indexes needed to enhance performance.

Effective rights. To display attributes defined by the
portlet, users must have Read rights to the
attributes.

Performance enhancement. The performance of the
org chart display can be enhanced by adding an
eDirectory value index to the relationship’s target
attribute because the target attribute is used to do
the LDAP search.

Step Task Description

Definition Type Setting Value

entity view Selected (true)

attribute read Selected (true)

search Selected (true)
Org Chart Portlet Reference 329

12.2.2 Setting Preferences
You can define preferences for the relationships, the presentation (such as attributes and their order)
and general display preferences. For more information, see:

“Org Chart General Preferences” on page 330
“Org Chart Data/Relationship Preferences” on page 336
“Org Chart Presentation Layout Preferences” on page 340

Org Chart General Preferences
This category includes the preferences on the main preferences page and excludes the custom
preferences. The preference page is shown in Figure 12-5 and Figure 12-6 on page 331.

Figure 12-5 Org Chart Preferences
330 NetIQ Identity Manager User Application: Administration Guide

Figure 12-6 Org Chart Preferences (continued)

Table 12-3 Org Chart Portlet: Preferences

Preference What to Do

Data Click View/Edit Custom Preferences to access the preferences that
define the org chart’s relationships. See “Org Chart Data/Relationship
Preferences” on page 336.

Enable HTML Pane Click True to enable the HTML display of related objects. This is the
default display. It displays the related objects as business cards.

HTML Pane Title Type the text to display in the HTML Pane tab. If you enable the display
of the Accessible Pane and the HTML Pane, this text is displayed as the
title of the containing the HTML display.

Enable Accessible Pane Click True to enable the Accessible display of related objects. The
Accessible pane displays the objects and links as text strings. This
display provides 508-compliant access.

Accessible Pane Title Type the text to display in the Accessible Pane tab. If the HTML Pane
and the Accessible Pane are enabled, this text is displayed as the title of
the containing the Accessible display.

Default Pane Choose the pane to display as the default when a user clicks the
Organization Chart action. It must be enabled.
Org Chart Portlet Reference 331

Detail Portlet Name Specify the name of the Detail portlet instance to launch when the user
clicks the Show Info link.

Presentation Layouts Click View/Edit Custom Preferences to access the layout preferences.
They are described in “Org Chart Presentation Layout Preferences” on
page 340.

Maximum Depth Defines the maximum depth the user can drill down in an org chart. This
is not the same as the ability to navigate through an org chart, which is
restricted by effective rights.

Maximum Initial Depth Defines the depth of the initial display.

Show Scrollbars Click True to enable scrollbars.

Preference What to Do
332 NetIQ Identity Manager User Application: Administration Guide

OrgChart Skin Specify one of the skins for the org chart listed below:

Business Card:

eGuide:

Novell.com:

Wired:

True Blue:

Connect wires to items Specifies whether the org chart cards are connected by wires. False
means not connected.

Tree Presentation Defines the Org Chart orientation (horizontal or vertical) and whether the
chart displays as business cards or text. Values range between 0 and 5.
Values of 0, 2, and 4 display business cards. Values of 1, 3, and 5
display text.

Preference What to Do
Org Chart Portlet Reference 333

Tree Presentation Values of 0, 2, and 4 display business cards.

 Specify 0, to place a card above a vertical list of items.

Specify 2, to place a business card above a horizontal list of items.

Specify 4, to place card before a vertical list of items

Preference What to Do
334 NetIQ Identity Manager User Application: Administration Guide

Tree Presentation Values of 1, 3, and 5 display the org chart using lines.

Specify 1, to display a line above a vertical list of items

Specify 3, to display a line above a horizontal list of items

Specify 5, to display a line before a vertical list of items

Minimum item width The minimum width (in pixels) of the business card display (in HTML
mode). This value should equal to round ('item min height' * 1.618).

Minimum item height The minimum height (in pixels) of the business card display. This value
should equal to round ('item min width' / 1.618).

Separator for multi-valued
attributes

The character used as a separator for attributes with more than one
value.

Preference What to Do
Org Chart Portlet Reference 335

Org Chart Data/Relationship Preferences
You access the Org Chart relationship preferences by clicking the View/Edit Custom Preferences link of
the Data preference. The initial preference page is shown below. It displays the default relationship
used in the default Org Chart.

Figure 12-7 Org Chart Data/Relationship Preferences

To edit the entity and relationships available to the org chart, click edit button . See Editing Data/
Relationship Preferences (page 336). To modify the display settings for the expanded nodes, click the

modify button . See Modifying Expanded Nodes (page 338).

Editing Data/Relationship Preferences
This set of preferences affects the initial display of the org chart and the relationships displayed when
users click the expand/collapse relationship button. . You can define any number of relationship
levels.
336 NetIQ Identity Manager User Application: Administration Guide

Figure 12-8 Edit Default Data/Relationship Preferences

Table 12-4 Org Chart Data/Relationship Preference

Preference Description

Entity Settings The Select Entity Definition Type preference lets you choose the entity
whose relationships you want to display. Only entities defined in the
directory abstraction layer are available in this drop-down list.

The Select Object Entity preference lets you choose the chart’s root entity.
Click the object selector button to search for an object. If the selected entity
type definition is a user, then you can select Self instead of an object.
Choosing Self means that the org chart root is the logged-on user.

Relationship Settings The settings in this category let you specify the details about the
relationships displayed by the default chart.

The Relationship preference lets you choose a relationship from the drop-
down list. Only the relationships that make sense for the selected entity are
included in this list.

The Display Depth preference controls how many levels of the relationship
are displayed. Only display depths allowed for the selected relationship are
displayed.
Org Chart Portlet Reference 337

The expanded node preferences are the same, except that they control the relationships displayed
after the user clicks the expand/collapse button .

Modifying Expanded Nodes
Expanded nodes preferences let you control what is displayed when the user clicks the expand/collapse
button of the org chart. .
338 NetIQ Identity Manager User Application: Administration Guide

Figure 12-9 Preferences for Modifying Expanded Nodes
Org Chart Portlet Reference 339

Org Chart Presentation Layout Preferences
The Org Chart Presentation Layout preferences let you define the HTML layout for the display of the
org chart entries. You can use the HTML editor available from the preferences sheet, or you can use
the HTML editor of your choice for more precise editing. See “Using an External HTML Editor” on
page 348.

The HTML editor, available from the preferences page, provides a WYSIWYG interface for defining
the layout of the leaves of the org chart. It provides the typical features of an HTML editor for
defining text formatting and lists, specifying anchors and images, and so on. Use the Keywords drop-
down list to place attributes, commands, and navigation URLs within the layout area. When you
choose a keyword from the drop-down list, it is inserted with the proper syntax, but you can also add
HTML within the layout area.
340 NetIQ Identity Manager User Application: Administration Guide

Figure 12-10 Org Chart Presentation Layouts Preferences
Org Chart Portlet Reference 341

Table 12-5 HTML Layout Definitions

Using the HTML Editor
You access the HTML editor by clicking the Edit button. The HTML editor is shown in Figure 12-11.

Figure 12-11 HTML Editor

HTML Editor Features and Keywords
Table 12-6 describes the HTML editor features and Keywords drop-down list. To save your layouts,
click Submit.

Layout Section Description

HTML Layout Section Business Cards The default layout. The layout displayed when Tree
Presentation is set to 0, 2, or 4.

HTML Layout Section for Section 508 Display The default layout for the Accessible Pane.

HTML Layout Section for Simple Layout The layout when the Tree Presentation is set to 1, 3, or
5.
342 NetIQ Identity Manager User Application: Administration Guide

Table 12-6 HTML Editor Features

Feature Tip

Insert Link button In Mozilla:

1. Select the text you want to link, then click Insert Link.

2. Type the URL and click Create Link.

3. Save the preferences.

In IE:

1. Click Insert Link.

2. Type the URL in the pop-up window.

3. Select the text you want to link, then click Create Link in the pop-up
window.

4. Save the preferences.

NOTE: If your image or URL is located in the upper-left quadrant of the
HTML editor, the pop-up window overlaps it. Because the pop-up cannot be
moved, you must create the text you want elsewhere in the editor and cut
and paste it to the correct location.

Add Image button In Mozilla:

1. Place the cursor where you want to insert an image, then click Add
Image.

2. Type the URL and text, then click Create Image in the pop-up window.

3. Save the preferences.

In IE:

1. Click Add Image.

2. Type the URL and text in the pop-up window, place the cursor where
you want to insert an image, then click Create Image in the pop-up
window.

3. Save the preferences.

NOTE: If your image or URL is located in the upper-left quadrant of the
HTML editor, the pop-up window overlaps it. Because the pop-up cannot be
moved, you must create the text you want elsewhere in the editor and cut
and paste it to the correct location.
Org Chart Portlet Reference 343

Keyword drop-down List:
Attributes

The set of attributes available for this entity. When designing your layout,
you can use the Keywords drop-down list to insert variables that are
replaced at runtime with specific attribute values. You can also type the
attributes directly in the editor using the following syntax:

$[[keyword]]

where keyword is the value of an entity attribute such as LastName.

You can concatenate attributes using this syntax:

$[[keyword+keyword]]

$[[FirstName+LastName]]

For example, you can concatenate as many attributes as you want and can
also include quoted strings like this:

$[[keyword+"sample text"+keyword]]

This renders the values of the keywords and the quoted text.

NOTE: When a keyword is mistyped in a layout, it is rendered as-is in the
org chart (including the $[[]]).

Keyword drop-down List:
Commands

These commands allow the Org Chart portlet to display the links or buttons
for the built-in links described in “Built-in links.” on page 324.

The keyword commands generate:

Navigation URLs. See Table 12-7, “Org Chart Keywords: Built-in Action
URLs,” on page 345.

Action Links. See Table 12-8, “Org Chart Keywords: Built-in Action
Links,” on page 346.

Navigation Buttons. Table 12-9, “Org Chart Buttons Built-in Action
Buttons,” on page 347.

There is a set of commands that generate buttons for the HTML display and
a set of commands that generate links for the accessible view. The links do
not display with link attributes. See Table 12-8 on page 346.

Feature Tip
344 NetIQ Identity Manager User Application: Administration Guide

Table 12-7 Org Chart Keywords: Built-in Action URLs

Menu Item Source Created Usage

OrgChart Navigation Click (Link) @OCNavClick Use this keyword for an onClick event. It makes
the clicked entity the new org chart root.

To use this keyword:

1. Click View Source.

2. Type the @NavClick keyword using this
syntax:

<A href="javascript:return false;"
onClick="$[[@NavClick]]">$[[SomeAttr
ibute]]

where SomeAttribute is an entity attribute that
becomes a clickable link.

The "javascript:return false;" is required. Omitting
it will cause an error.

OrgChart Up Navigation (Link) @OCUpClick Use this keyword for an onClick event. It
navigates to the current entity’s parent. If there is
more than one parent, it displays a popup menu
with selectable options.

To use this keyword, you must:

1. Click View Source.

2. Type @OCUpClick using this syntax:

<A href="javascript:return false;"
onClick="$[[@OCUpClick]]">$[[SomeAtt
ribute]]

where SomeAttribute is an entity attribute that
becomes a clickable link.

The "javascript:return false;" is required. Omitting
it will cause an error.

@OCExpCollClick Use this keyword on an onClick event. It allows
the user to Expand/Collapse existing
relationships from the clicked entity. To use this
keyword, you must:

1. Click View Source.

2. Type @OCExpCollClick using this syntax:

<A href="javascript:return false;"
onClick="$[[@OCExpCollClick]]">$[[So
meAttribute]]

where SomeAttribute is an entity attribute that
becomes a clickable link.

The "javascript:return false;" is required. Omitting
it will cause an error.
Org Chart Portlet Reference 345

The keywords in Table 12-8 generate localized text links for use on the HTML pane.

Table 12-8 Org Chart Keywords: Built-in Action Links

OrgChart Navigation Url (Link) @OCNavURL Specify a URL or entity attribute to display as a
link. When clicked, the org chart displays with the
clicked entity becoming the root node. This is
only valid when the Source and Target entities
are the same object type. For example, in the
Manager-Employee relationship, both are users.

Use this keyword as follows:

1. Click View Source.

2. Type the @NavUrl keyword using this
syntax:

someT
ext

where someText is the text or an entity attribute.
In the following example, Click here becomes
a clickable link:

Click
here

Here, the FirstName attribute is the clickable link:

$[[Fi
rstName]]

With Internet Explorer, do not use the following
syntax. IE adds a context before the @NavURL;
it will not display correctly.

someText

Menu Item Source Created Renders as a Localized Link of This
Text

Expand/Collapse Current
Relationship (Link)

@OCLazyExpCollLink Expand/Collapse current relationship

Finds the first reentrant relationship
and collapses it.

Org Chart Up Button (Link) @OCUpLink Go up a level

Goes to the current entity’s parent. If
there is more than one parent, it
displays a popup that allows the user
to select the parent.

Menu Item Source Created Usage
346 NetIQ Identity Manager User Application: Administration Guide

The keywords in Table 12-9 generate image buttons for use with the HTML pane.

Table 12-9 Org Chart Buttons Built-in Action Buttons

Show Info (Link) @ShowInfoLink Show info

Launches the Detail portlet for the
selected entity.

Email Info (Link): @SendInfoLink Email Info

Launches an e-mail that contains the
clicked entity’s information.

Email to team (Link) @MailTeamLink Email to team

Launches an e-mail to the selected
entity’s team.

Menu Item Syntax Renders As

OrgChart Leap (Action Button) @OCLeapBtn

The button makes the clicked entity
the new root.

OrgChart Up Button (Action Button) @OCUpButton

The button goes to the current
entity’s parent. If there is more than
one parent, it displays a popup that
allows the user to select the parent.

Choose relationship to Expand/
Collapse (Action Button)

@OCExpColBtn

This buttons expands/collapses
existing relationships from the
clicked entity.

Expand/Collapse current
relationship (Action Button)

@OCLazyExpColBtn

This button finds the first reentrant
relationship and collapses it.

OrgChart (Action Button) @OCSwitchBtn

This buttons shows the available
relationships from the clicked entity.
When the user picks one, the
clicked entity becomes the new root
and the selected relationship is
expanded.

Menu Item Source Created Renders as a Localized Link of This
Text
Org Chart Portlet Reference 347

Using an External HTML Editor
Use the following process to work in an external HTML editor:

1 Create the HTML source for the entity attributes, commands, and keywords using HTML Layout
Editor, available in the preferences.

2 Copy the HTML source to the editor of your choice.
3 Make the changes that you want.
4 Copy the HTML source back to the HTML Layout Editor preference when you have finished

editing it.

12.2.3 Dynamically Loading Images
To display images that are stored in your Identity Vault (such as user photos), you can add the
attribute name to the business card. For example, adding the User Photo attribute to the business
card layout displays the user’s photo.

If you store images outside the Identity Vault, you need to use the IMG: tag within the View Source
mode of the HTML Editor as follows:

1 Go to the Org Chart portlet’s preferences and access the HTML Editor.
2 Click View Source.
3 Use the IMG: tag to combine a location, an attribute key, and a file extension using a syntax like

this:

$[[IMG:"URL" + attribute-key-name + "fileextension"]]

The following example shows the syntax you would use if you stored employee photos as JPG
images by Last Name in the /images subdirectory of your application server:

$[[IMG:"http://myhost:8080/images/"+LastName+".jpg"]]

Info (Action Button) @InfoBtn

Displays the detail portlet for the
selected entity.

IM (Action Button) @IMBtn

Allows the user to send instant
messages and add contacts. The
entity must include the appropriate
attributes or the org chart displays a
message indicating that no data is
available.

Mail (Action Button) @MailBtn

Launches an e-mail that contains
the clicked entity’s information.

Menu Item Syntax Renders As
348 NetIQ Identity Manager User Application: Administration Guide

At runtime, the org chart concatenates the URL with the LastName attribute and the file
extension .jpg.
The HTML Editor supports a flexible syntax. It supports any combination of text and attributes
so that the syntax is:

$[[IMG:"some text" + attribute-key-name + ...]]

12.3 Configuring Org Chart for Guest Access
To configure the org chart portlet for anonymous access you must modify settings in the Org Chart
preferences and also in the User Application WAR file. The steps are described in:

Section 12.3.1, “Modifying the Org Chart Preferences,” on page 349
Section 12.3.2, “Modifying the User Application WAR,” on page 349

12.3.1 Modifying the Org Chart Preferences
1 Go to Administration > Portlet Admin.
2 Register and name a new instance of the OrgChartPortlet, for example, Public OrgChart.
3 Select the new instance, then go to the Settings tab.
4 Set Requires Authentication to false, then click Save Settings.
5 Go to the Preferences and modify the preferences as needed.
6 Reference this instance of Org Chart from the Create or Detail portlets defined for anonymous

access.

12.3.2 Modifying the User Application WAR
The org chart portlet relies on controls defined in the User Application WAR’s
UIControlRegistry.xml file. By default, these controls require authentication. To allow guest access
to the org chart portlet, you must set the authentication requirement to false in the definitions for the
portal and vdm services in the WEB-INF\UIControlRegistry.xml file. Perform these instructions in
a test environment before attempting them on a working version of the User Application. Make sure
you backup your files before you begin.

To change the authentication requirements for the portal and vdm service definitions:

1 Open the User Application WAR and extract the contents.
2 Locate the UIControlRegistry.xml file in the WAR’s WEB-INF directory.
3 In the UIControlRegistry.xml file, locate the service definition for the portal service. It is

shown below:

<service resultType="json" authenticated="true" config="false">

 <key>portal</key>
<classname>com.novell.srvprv.impl.servlet.service.PortalBridge

</classname>
</service>

4 Change the value of authenticated to false.
5 In the UIControlRegistry.xml file, locate the service definition for the vdm service. It is shown

below:
Org Chart Portlet Reference 349

<service resultType="json" authenticated="false" config="false">
 <key>vdm</key>
<classname>com.novell.srvprv.impl.servlet.service.VDMBridge

</classname>
</service>

6 Change the value of authenticated to false.
7 Save your changes.
8 Repackage the User Application WAR file.

To repackage the WAR file, you need to use the jar tool included with the JDK.
Note that the configupdate.sh script may fail after you manually add custom files to an
IDM.war, if the WAR was created with the jar binary in /usr/bin/jar distributed in SLES 9. The
error is:
DEBUG===WAR updating...java.util.zip.ZipException: invalid entry compressed
size (expected 16176 but got 16177 bytes) at
java.util.zip.ZipOutputStream.closeEntry(Unknown Source) at
java.util.zip.ZipOutputStream.putNextEntry(Unknown Source)

To solve or prevent the problem, use a newer version of the jar tool to create the WAR, as in this
example:
/usr/lib/java/bin/jar -cvf IDM.war *

9 Deploy the updated WAR in your test environment.
350 NetIQ Identity Manager User Application: Administration Guide

13 13Resource Request Portlet

This section describes how to set up and customize the Resource Request portlet for use with the
User Application. It includes these topics:

Section 13.1, “About the Resource Request Portlet,” on page 351
Section 13.2, “Configuring the Resource Request Portlet,” on page 351
Section 13.2.1, “Setting Preferences,” on page 352

13.1 About the Resource Request Portlet
The Resource Request portlet allows the guest user to execute resource requests. For example, you
could set up a resource request that allows a user to self-register upon a completed and approved
workflow.

13.2 Configuring the Resource Request Portlet
Follow these steps to configure the Resource Request portlet:

Table 13-1 Resource Request Configuration Steps

TIP: When you create the workflows to use with the Resource Request portlet and you define the To
token in the e-mail notification as _default_, the addressee expression must be an IDVault expression.

Step Task Description

1 Define the guest account for your
system.

Only non-anonymous guest accounts can start
provisioning requests. This is due to the fact that the
initiator must be a valid DN for further processing by the
Workflow engine. You can define a non-anonymous
guest account when you install the User Application or by
running the configupdate tool.

2 Specify the resource request to be
executed from this portlet.

For more information, see Section 13.2.1, “Setting
Preferences,” on page 352.

3 Create a new page to contain the
resource request. The security on this
page should allow guest access.

For more information, see Section 6.3, “Creating and
Maintaining Shared Pages,” on page 220.

After you create the new shared page, make sure that
you specify the Guest Category and deselect the page’s
View permission Set to Admin only.

4 Test the resource request as the guest
user.

Verify that the workflow completes as expected.
Resource Request Portlet 351

13.2.1 Setting Preferences
Preferences include:

Table 13-2 Resource Request Portlet: General and Custom Preferences

Preference Description

Resource Request Click View/Edit Custom Preference to access the list of
resource requests to add to the page. This list is
populated with any resource requests deployed to the
User Application driver.

Choose a single resource request. The list is
populated with the resource requests that are
deployed to the User Application driver.
352 NetIQ Identity Manager User Application: Administration Guide

14 14Search List Portlet Reference

This section describes how to set up and customize the Search List portlet for use with the Identity
Manager User Application. Topics include:

Section 14.1, “About Search List,” on page 353
Section 14.2, “Configuring the Search List portlet,” on page 357
Section 14.2.2, “Setting Search List preferences,” on page 359
Section 14.3, “Configuring Search List for Anonymous Access,” on page 364

14.1 About Search List
The Search List portlet allows users to search and display the contents of the Identity Vault. It is the
basis for the Directory Search action of the Identity Manager User Application Identity Self-Service tab.
The Directory Search action is configured to allow users to search for users and groups, but you can
modify it to change the scope of searchable objects and attributes.

Figure 14-1 on page 353 shows how the Directory Search action allows users to define search criteria.

Figure 14-1 Basic Search

Table 14-1 Directory Search Criteria

User Interface Element Description

Search for Users select the object type to search.

For more information on defining the contents of this list, see
Section 14.2.2, “Setting Search List preferences,” on page 359.
Search List Portlet Reference 353

This example shows how the portlet displays (using sample data) after the search criteria First
name starts with A is entered:

Figure 14-2 Sample Search List Results

The Search List portlet provides support for the features listed in Table 14-2 on page 355. Some of
these features require configuration, as described in Section 14.2, “Configuring the Search List
portlet,” on page 357.

With this criteria Users define the search criteria by selecting attributes and search
operators from the drop-down list.

When users select Advanced Search, they are able to specify multiple
rows and multiple blocks of search criteria groupings that can be made
inclusive (AND) or exclusive (OR).

For more information on defining the searchable attributes, see “Setting
Search List preferences” on page 359.

Search Runs the specified search criteria.

For more information on defining the default search, see “Setting Search
List preferences” on page 359.

My Saved Searches Allows the user to run, edit, or delete a previously saved search.

Advanced Search Lets users add rows or blocks of search criteria, but in an advanced
search, they are able to specify multiple rows and multiple blocks of
search criteria groupings that can be made inclusive (AND) or exclusive
(OR).

For more information on defining the searchable attributes, see “Setting
Search List preferences” on page 359.

User Interface Element Description
354 NetIQ Identity Manager User Application: Administration Guide

Table 14-2 Search List Portlet Features

By default, Search List also allows users to:

Print the search results
Launch e-mail from the results list
Launch the Detail portlet from the results list

14.1.1 About Results List Display Formats
You can define how data that is returned from the Identity Vault search is displayed to users. The
data can be organized in one or more of these page types:

Identity Pages typically include contact information, as shown here:

User Interface Element Description

Identity, Location, Organization tabs Users click one of these tabs to see the results list displayed
in different ways.

For more information on formats, see “About Results List
Display Formats” on page 355.

My Saved Searches Allows users to select a previously saved search.

Save Search Allows users to save search criteria and rerun the saved
searches as needed. The searches are saved to the
currently logged on user’s srvprvQueryList attribute.

To allow users to save searches, you need to give these
users write access to the srvprvQueryList attribute.

Export Results Lets users export the search results to a different format.

Revise Search Lets users change the search criteria.

New Search Lets users define a new search.
Search List Portlet Reference 355

Location Pages typically include location information, as shown here:
356 NetIQ Identity Manager User Application: Administration Guide

Organization Pages typically include organization hierarchy information, as shown here:

You can define other result list formats using the portlet’s complex preferences. For example, if your
Identity Vault schema includes information about employee skills, you can set up a results list to
display this information.

Depending on how you configure the portlet, users are able to:

Choose the types of Identity Vault objects to search (such as users and groups)
Specify the criteria that they want to search (such as First name starts with, Last name includes,
and so on)
Choose the display format that they want to view the search results
Change the sort order

14.2 Configuring the Search List portlet
To configure the Search List portlet, follow the steps in Table 14-3.

Table 14-3 Search List Portlet Configuration Steps

Step Task Description

1 Define:

The entities and attributes you
allow users to search.

How you display the results list.

You can use the predefined Directory Search action that
gets installed with the Identity Manager User Application
as-is. You can modify it, or you can create your own.

For more information, see “Setting Search List
preferences” on page 359.
Search List Portlet Reference 357

For more information on defining different results list display formats, see Section 14.2.2, “Setting
Search List preferences,” on page 359.

14.2.1 Directory Abstraction Layer Setup
The entities and attributes that can be selected from the search criteria drop-down list and data
returned from the Identity Vault searches must be defined in the directory abstraction layer. Table 14-
4 shows the properties that you should set for the entities and attributes used by search list.

Table 14-4 Search List Entities and Attributes

2 Verify that the set of entities and
attributes for searching are defined in
the directory abstraction layer.

For more information, see Section 1.2.2, “Directory
Abstraction Layer,” on page 27.

3 Determine how you want users to
access the portlet.

Do you want users to launch this portlet from an existing
or a new page?

For more information about pages, see Chapter 6, “Page
Administration,” on page 203.

4 Set preferences for the portlet. Preferences for the search list portlet let you define:

The attributes displayed for each results list format.

The results list display format that a search
produces.

The default sort order for the results list formats.

For more information, see Section 14.2.2, “Setting
Search List preferences,” on page 359.

5 Test your settings. Verify that the results lists show the desired attributes.

6 Set eDirectory rights and establish any
indexes needed to enhance
performance.

eDirectory rights:

To execute a search:

The user performing the search needs Browse
rights to any users or objects being searched.

To save a search (for non-Administrative users):

Trustee of the organizational unit and the
organization where they will be executing the
search.

User requires write, self, and supervisor rights.

Performance enhancement. The performance of the
search can be improved by adding an eDirectory value
index to the attribute on which the search is based.

Step Task Description

Definition Type Setting Directory Abstraction Layer Value

entity view Selected (true)
358 NetIQ Identity Manager User Application: Administration Guide

Other Directory abstraction layer settings. The directory abstraction layer data type, format type,
filters, and search scope also impact the Search List portlet. The data type and format type affect the
appearance; the filter and search scope affect how much data is returned.

For more information, see Identity Manager User Application: Design Guide.

14.2.2 Setting Search List preferences
You can define two types of preferences:

“Search preferences” on page 359
“Results List format preferences” on page 361

Search preferences
The search preferences are contained in a single preference page:

attribute enable Selected (true).

search Selected (true).

Any attribute that you want to appear in the list of available
search criteria must have search=true. When false, you
cannot define a search on this attribute or include it in a
results list format.

hide Unselected (false).

Any attribute that you want to include in the results list must
have hide=false.

Definition Type Setting Directory Abstraction Layer Value
Search List Portlet Reference 359

The search preferences are defined in Table 14-5 on page 361.
360 NetIQ Identity Manager User Application: Administration Guide

Table 14-5 Search List Portlet Preferences

Results List format preferences
The complex preferences page lets you define the entities to include in the search and how to format
the results list. The default preferences page looks like this:

Preference What to Do

Default Mode Specify how you want the portlet to display when a user first accesses it.
Values are:

Basic Search. Allows users to enter a single search criteria. For example:

First Name starts with A

Advanced search. Allows users to define multiple search criteria in one or
more search blocks. Users can use the and and or logical operators within
the search criteria or among the search blocks. For example, users can
create a search like this:

(First Name starts with A or First Name starts with B)
and (Region = Northeast or Region = Southeast)

OR

(First Name starts with A and Last Name starts with B)
or (First Name starts with B and Last Name starts with
A)

My Saved Searches. Displays a list of searches saved by the currently
logged in user. The searches are saved in the user’s srvprvQueryList
attribute.

NOTE: Users can access any of these modes at runtime by executing or
editing a search or clicking a button at the bottom of the portlet.

Pagination The maximum number of rows shown at a time.

Results Limit The maximum number of matches returned by the search. If set to 0, then
the maximum defers to the directory abstraction layer setting.

Search and List complex
preference

Click to refine the

Entities to search

Result set type

Attributes to include in the pages and the order in which they appear
Search List Portlet Reference 361

The complex preferences are listed in Table 14-6 on page 363.
362 NetIQ Identity Manager User Application: Administration Guide

Table 14-6 Search List Portlet: Complex Preferences

Preference What to Do

Entity Definition Each object that is valid for searching (view=true) has a
corresponding Entity Definition block on this preferences page.
Use these preferences to:

Define the objects included in the search.

Modify the results list format definitions (such as adding and
removing the attributes that are displayed and their default
sort order).

Remove any objects that you do not want included in the
search by clicking Delete, shown on the Entity Definition line.
This deletes the entire entity definition block.

You can add the object back to the search later by clicking Add
Entity Definition (located at the bottom of the page) and completing
the wizard selection panels.

TIP: If an object does not appear in this list, but is listed in the
directory abstraction layer, check the view modifier (on the entity
object). If it is set to false, then the entity cannot be used by the
identity portlets.

Show email as Icon When set to True and an e-mail attribute is specified in the results
list, it displays as an icon. When set to False, the e-mail attribute
displays the full e-mail address. The e-mail attribute (whether text
or icon) is a clickable mailto: link.

Results List Types (default) Specifies the results list default format for the current entity. The
default is used only when a different format is not selected by the
current user.

Results List display format block Specifies the display format (such as Identity, Location, or
Organizational pages) and includes the set of attributes to include
for the type.

To remove a Results List Type:

Click Delete next to the Results List Type.

This deletes the page type and all of its associated attributes from
the search.

To add a result set page:

Click Expand and select the result set format from the list of
choices.
Search List Portlet Reference 363

Completing the Preferences Panel
To verify that you have submitted valid entries, click Submit. If an entry is invalid, you will see an
error message displayed at the top of the preferences page. When you are able to resolve all of the
errors, click Return to List View, then click Save Preferences.

14.3 Configuring Search List for Anonymous Access
To set up the Search List portlet for anonymous access:

1 Go to Administration > Portlet Admin.
2 Register and name a new instance of the Search List portlet, for example, Public Search.
3 Select the new instance and go to Settings.
4 Set Requires Authentication to false, then click Save Settings.

Attributes Specifies the set of attributes that will be displayed for the
particular display format.

To add or remove an attribute:

Click the Modify attributes button.

To add an attribute, select it (from the list of Available
attributes).

Click the arrow to move it to the Selected list. Do the reverse
to remove an attribute from the Results List.

To reorder the attributes list, click the up and down arrows to
the right of the selected list.

Click Submit.

Attributes and data types. The attribute’s data type affects the way
it is displayed. For example, if an attribute is defined as a sub-type
of local list or global list then possible values are displayed in a
drop-down list box in the Basic or Advanced Search Criteria
screens. If the type is DN then a finder and history button are
displayed to allow users to select a value in the Basic or Advanced
Search Criteria screens, and the DN are resolved to a user-friendly
display in the results list. The data type and sub-type also restrict
the comparison operator displayed for the user to ensure that only
valid comparisons are constructed.

For more information, see Section 1.2.2, “Directory Abstraction
Layer,” on page 27.

Results List display format block
Sort

The sort order for the Results List is based on this attribute. The
default sort order only takes effect if the Result Set Type is not the
display format for the current user session.

Multi-valued attributes and single-valued attributes. The number of
records displayed in a results list varies depending on whether the
sort attribute is single- or multi-valued. Sorting on multi-value
attributes generally appears to result in more records, although the
total number of matches remains the same. This is because each
value of a multi-valued attribute is shown on a line by itself.

Preference What to Do
364 NetIQ Identity Manager User Application: Administration Guide

5 Go to Preferences, then
Change Default Search Mode to Basic or Advanced (Saved Search mode is not valid for an
anonymous user).
Consider specifying a Detail Portlet instance that is also set up for public access (Requires
Authentication is set to false). If you use the default DetailPortlet, the user will be forced to
log in when viewing the detail of any result list link.
Go to View/Edit Custom preferences and remove any entities or attributes that you do not
want the guest user to see.

To create a new shared page for the anonymous Search List:

1 Go to Administration > Page Admin.
2 Create a new Page and add it to the Guest Pages category (and any other categories for logged-in

users.)
3 Click Add Permissions. Deselect View Permissions set to admin only.
4 Save the page.

If the Search List portlet instance requires a DNLookup attribute, you need to change the
ParamListPortlet setting Requires Authentication to false.
Search List Portlet Reference 365

366 NetIQ Identity Manager User Application: Administration Guide

V VConfiguring and Managing
Provisioning Workflows

These sections describe how to configure and manage provisioning requests and workflows:

Chapter 15, “Configuring the User Application Driver to Start Workflows,” on page 369
Chapter 16, “Managing Provisioning Request Definitions,” on page 383
Chapter 17, “Managing Provisioning Workflows,” on page 393
Configuring and Managing Provisioning Workflows 367

368 NetIQ Identity Manager User Application: Administration Guide

15 15Configuring the User Application Driver
to Start Workflows

This section describes the User Application driver and how to configure it to automatically trigger a
workflow based on an event in the Identity Vault.

Section 15.1, “About the User Application Driver,” on page 369
Section 15.2, “Setting Up Workflows to Start Automatically,” on page 370

15.1 About the User Application Driver
The User Application driver is responsible for starting provisioning workflows and for notifying the
User Application of changes in the Identity Vault (for example, when you make changes to the
directory abstraction layer using the Designer for Identity Manager). Only the Subscriber channel is
used in this driver. The driver processes messages from the Identity Vault to the User Application
running on an application server. Although there are events that occur in the User Application that
are reported back to the Identity Vault, these events do not flow through the Publisher channel of the
User Application driver.

When the application server is started, the driver establishes a session with the application server.
The driver sends messages to the User Application running on the application server (for example,
“retrieve a new set of virtual directory definitions”).

The source components of the driver include:

ComposerDriverShim.jar – The Composer Driver Shim. It is installed in the lib directory
\Novell\NDS\lib in Windows or the classes directory /usr/lib/dirxml/classes in Linux.
srvprvUAD.jar – The Application Driver Shim. It is installed in the lib directory
\Novell\NDS\lib in Windows or the classes directory /usr/lib/dirxml/classes in Linux.
UserApplicationDriver.xml – A file that contains configuration data for setting up the new
driver. It is installed in the DirXML.Drivers directory, which is
\Tomcat\webapps\nps\DirXML.Drivers in Windows and either /opt/novell/eDirectory/
lib/dirxml/rules/ or /var/opt/novell/iManager/nps/DirXML.Drivers in Linux.

The User Application driver components are installed when you install Identity Manager. Before you
can run the Identity Manager User Application, you must add the User Application driver to a new
or existing driver set, and activate the driver.

Depending on your work environment, very little configuration of the User Application driver might
be required, or you might want to implement a complex set of business rules in the driver policies.
The User Application driver provides the same flexible mechanisms for data synchronization as
other Identity Manager drivers.
Configuring the User Application Driver to Start Workflows 369

15.2 Setting Up Workflows to Start Automatically
Workflows are automatically started when a user starts a provisioning request by requesting a
resource. In addition, the Identity Manager User Application driver listens for events in the Identity
Vault and, when configured to do so, responds to events by starting the appropriate provisioning
workflows. For example, you can configure the User Application driver to automatically start a
provisioning workflow if a new user is added to the Identity Vault. You configure the User
Application driver to automatically start workflows using Identity Manager policies and rules.

15.2.1 About Policies
You can use filters and policies with the User Application driver in the same way that you can with
other Identity Manager drivers. When an event occurs in the Identity Vault, Identity Manager creates
an XML document that describes the event. The XML document is passed along the channel to the
connected system (in this case, the connected system is the User Application). Filters and policies
associated with a driver allow you to define how to respond to the event, and in the process
transform that XML document to the format that is expected by the connected system. Identity
Manager provides several categories of policies (for example, Event Transformation, Command
Transformation, Schema Mapping, Output Transformation) that you can apply, in a prescribed order,
to transform the XML document.

This section provides an example of starting a workflow based on events in the Identity Vault.
Although any of the policies can be used to trigger a workflow, the example presented in this section
demonstrates the easiest and most useful method.

When you create a User Application driver, an Event Transformation Policy is created for use by the
driver. The Event Transformation Policy is responsible for creating the XML document that is
processed by the remaining Subscriber channel policies.

NOTE: Do not change the Event Transformation policy that was created when the User Application
driver was created. The DN of this policy begins with Manage.Modify.Subscriber. Changing this
policy might cause the workflow process to fail.

An empty Schema Mapping Policy is also created. You can use this policy as a starting point for
triggering a workflow, based on events in the Identity Vault.

15.2.2 Using the Policy Builder
The easiest way to automatically start a workflow based on an Identity Vault event is to use the Policy
Builder. The Policy Builder provides a Start Workflow action that simplifies the process of setting up
a workflow to start automatically.

1 In iManager, expand the Identity Manager Role, then click Identity Manager Overview.
2 Specify a driver set.
3 Click the driver for which you want to manage policies. The Identity Manager Driver Overview

opens.
4 Click the policy that you want to edit.
5 Click Insert to open the Policy Builder.
370 NetIQ Identity Manager User Application: Administration Guide

6 Click Create a new policy.
7 Type a name for the policy.
8 Click Policy Builder.
9 Click OK.

iManager displays a screen that lists defined policy rules.

10 Click Append New Rule.
iManager displays the Rule Builder.
Configuring the User Application Driver to Start Workflows 371

11 Type a Description for the rule.
12 Select operation attribute for the If condition in Condition Group 1.

13 Use the Browse attributes button for the Enter name field to specify the Identity Vault attribute that
you want to use to start the workflow.
For example, to start a workflow when a telephone number changes, select the Telephone Number
attribute.

14 Use the Select Operator list to select the operator to use to test the specified attribute.
For example, to start a workflow when a telephone number changes, select changing.

15 Select start workflow from the Action list.
372 NetIQ Identity Manager User Application: Administration Guide

16 Use the Object Selector in the Enter provisioning request DN field to select the provisioning
request definition that you want to be executed when the if condition is true.

The Enter user application URL and Enter authorized user DN fields are filled in automatically.
17 Type the password for the User Application administrator in the Enter authorized user password

field.

We recommend using a named password, because typing a password in clear text is a security
risk.

18 In the Enter recipient DN field, specify the DN of the recipient of the workflow in LDAP format.
The expression for the recipient DN must evaluate to a DN that conforms to RFC 2253 format (in
other words, cn=user,ou=organizational unit,o=organization). For example, you can click the
Argument Builder button in the Enter recipient DN field to create the following expression to pass
the recipient’s DN to the workflow:

Parse DN("qualified-slash","ldap",XPath("@qualified-src-dn"))
Configuring the User Application Driver to Start Workflows 373

19 Specify the arguments for the workflow in the Enter additional arguments field.
You must use this field to specify the reason attribute, which is required by the workflow. You
can click the String Builder button in the Enter additional arguments field to specify the reason
attribute and create a value for the attribute (for example, “the recipient’s telephone number has
changed”).

20 Click OK to close the Rule Builder.
21 Click OK to close the Policy Builder.
22 Click OK to close the Policies screen.
23 Make sure that you add any attributes needed by the workflow to the filter.

In the example described in this procedure, you would need to add Telephone Number and CN to
the filter.

15.2.3 Using the Schema Mapping Policy Editor
The Schema Mapping Policy Editor provides an alternative method of starting a workflow
automatically, by mapping Identity Vault attributes to workflow runtime data. To get you started, the
User Application driver provides an empty policy to edit. Workflow runtime data is available from
the workflow definition template described in Chapter 16, “Managing Provisioning Request
Definitions,” on page 383.

When a workflow is created, the following global attributes are created in the Identity Vault:

<workflowName>_StartWorkflow. This attribute starts a workflow.
<workflowName>_recipient. This attribute accepts runtime data needed by the workflow from
the Identity Vault.
<workflowName>_reason. This attribute accepts runtime data needed by the workflow from the
Identity Vault.
374 NetIQ Identity Manager User Application: Administration Guide

Two other attributes always exist and accept runtime data needed by the workflow from the Identity
Vault:

AllWorkflows:reason
AllWorkflows:recipient

Ensure you have the following information before you set up a workflow to start based on an event in
the Identity Vault:

The name of the Identity Vault attribute that you want to use as a trigger for the workflow
The name of the workflow that you want to start. All workflows include a special attribute
named <workflowName>_StartApprovalFlow. You configure a workflow to start automatically
based on an event in the Identity Vault by mapping the desired eDirectory attribute to the
<workflowName>_StartApprovalFlow attribute for the workflow.

To set up a workflow to start based on an event in the Identity Vault:

1 In iManager, click the Identity Manager Overview link under Identity Manager in the iManager
navigation tree.

The Identity Manager Overview page displays. This page prompts you to select a driver set.
2 Click Search Entire Tree; then click Search. The Identity Manager Overview page displays, with a

graphic that depicts the drivers in the currently selected driver set.
3 Click the large driver icon for the User Application driver:

The Identity Manager Driver Overview displays:

The top horizontal arrow represents the Publisher channel (which is not used in the User
Application driver) and the bottom horizontal arrow represents the Subscriber channel. As you
pass the mouse pointer over an object in the graphic, a description of the object displays:
Configuring the User Application Driver to Start Workflows 375

4 Click the Schema Mapping Policies icon. The Schema Mapping Policies dialog box displays:

5 Click Edit. The Identity Manager Policy dialog box displays. (This dialog box maps Identity
Vault classes to application classes, but this procedure uses it to map eDirectory attributes to
global User Application attributes.)
376 NetIQ Identity Manager User Application: Administration Guide

6 Click Refresh Application Schema. A message displays informing you that the driver must be
stopped in order to read the schema, then restarted. It might take about 60 seconds to refresh the
schema. This step reads the latest set of workflow information in preparation for the following
step, which specifies the information to move from the Identity Vault to the workflow that will
be started.

7 Click OK to refresh the schema. A message displays when the schema refresh is completed.
8 Click OK to close the schema refresh message. You are returned to the Identity Manager Policy

dialog box.
9 Click Non Class Specific Attributes. The Identity Manager Schema Mapping Policy Editor

displays.
Configuring the User Application Driver to Start Workflows 377

The eDirectory Attributes drop-down list contains all eDirectory attributes.
The Application Attributes drop-down list contains the attributes in all active Workflows.
Attributes in the list are prefaced with either AllWorkflows (meaning that the attribute applies
to all workflows) or the name of a specific workflow. If you want the same eDirectory attribute
(for example manager) to be mapped to the manager attribute for all workflows, map manager to
Allworkflows:manager. If you want a different eDirectory attribute (for example, HRmanager)
to be used for a specific workflow, map the eDirectory attribute to the specific workflow
attribute (for example BusinessCardChange:manager).
Attributes that have been mapped are displayed side-by-side in the eDirectory Attributes and
Application Attributes columns.
In the following steps, map the eDirectory attribute that you want to use to start the workflow to
the _StartWorkflow attribute for that workflow. If additional eDirectory attributes are expected
by the workflow, you should also map those attributes. For example, if an eDirectory Address
attribute is the trigger for a workflow, the workflow can also require attributes like City and
State. Alternatively, these attributes can be mapped in policies.

10 In the Application Attributes list, select the _StartWorkflow attribute for the workflow that you
want to configure. The following example shows the _StartWorkflow attribute for a
BusinessCardChange workflow (BusinessCardChange_StartWorkflow).
378 NetIQ Identity Manager User Application: Administration Guide

11 In the eDirectory Attributes list, select the eDirectory attribute that you want to use to start the
workflow when that attribute changes. In the following example, the Telephone attribute is
selected. This means that the BusinessCardChange workflow starts whenever an employee’s
telephone number changes.
Configuring the User Application Driver to Start Workflows 379

12 Click Add. The eDirectory attribute is mapped to the Application attribute.

13 Repeat Step 10 through Step 12 to map eDirectory attributes to the workflow _reason and
_recipient attributes.

14 If additional eDirectory attributes are needed by the workflow, repeat Step 10 through Step 12
until you have mapped all of the attributes that you need to map.
The workflow starts automatically when a change occurs in the eDirectory attribute that is
mapped to an application _StartApprovalFlow attribute. However, the eDirectory attribute
only reaches the Schema Mapping policy if the eDirectory attribute is included in the Driver
Filter. In the following steps, add the eDirectory attribute to the Driver Filter.

15 Click OK to close the Schema Mapping Policy Editor.
16 Click OK to close the Identity Manager Policy dialog box.
17 Click Close to close the Schema Mapping Policies dialog box.
380 NetIQ Identity Manager User Application: Administration Guide

18 Click the Driver Filter icon.

The filter window displays:

Event filters specify the object classes and the attributes for which the Identity Manager engine
processes events. The read-only Filter list on the left shows the attributes of the class. The Class
Name list on the right displays options associated with the target object.

19 Click the name of the class to which the attribute that you want to add to the filter belongs (for
example, User).

20 Click Add Attribute. A list of attributes displays.
21 Select an attribute, then click OK. The attribute is added to the Filter list.
Configuring the User Application Driver to Start Workflows 381

22 Click the attribute name. The synchronization options for the attribute are displayed on the
panel on the right.

23 Under Subscribe, click Synchronize.

24 Specify any other attributes for the filter. Select Synchronize for an attribute if you want changes
to attribute values to be reported and synchronized. Select Ignore if you do not want changes to
attribute values to be reported and synchronized.

25 Click OK. A message displays asking you if you would like the driver to be restarted to put the
changes into effect.

26 Click OK. You are returned to the Identity Manager Driver Overview page.
382 NetIQ Identity Manager User Application: Administration Guide

16 16Managing Provisioning Request
Definitions

This section provides instructions for managing provisioning request definitions. Topics include:

Section 16.1, “About the Provisioning Request Configuration Plug-in,” on page 383
Section 16.2, “Working with the Installed Templates,” on page 384
Section 16.3, “Configuring a Provisioning Request Definition,” on page 387

16.1 About the Provisioning Request Configuration Plug-in
You can use the Provisioning Request Configuration plug-in to iManager to view a read-only display
of a provisioning request definition that was created in the Designer for Identity Manager. This plug-
in allows you to delete, activate, inactivate and retire existing provisioning request definitions.

NOTE: The Provisioning Request Configuration plug-in to iManager does not allow you to create or
edit provisioning request definitions. To create or edit a provisioning request definition, you need to
use the Designer for Identity Manager.

You can find the Provisioning Request Configuration plug-in in the Identity Manager category in
iManager. The plug-in includes the Provisioning Requests task in the Provisioning Configuration
role. The Provisioning Requests task consists of the panels described in Table 16-1.

Table 16-1 Provisioning Requests Task: Panels

Panel Description

Provisioning Driver Selection Gives you the opportunity to select an Identity Manager User
Application driver. The driver contains a set of predeployed
provisioning request definitions, so you need to pick a driver
before you can begin configuring your provisioning requests.
Managing Provisioning Request Definitions 383

16.2 Working with the Installed Templates
You can define provisioning request definitions from scratch in the Designer for Identity Manager.
Alternatively, you can define provisioning requests by modeling them after the provisioning request
templates that ship with the product. To use the templates, you define new objects based on the
installed templates and customize these objects to suit the needs of your organization.

The installed templates let you determine the number of approval steps required for the request to be
fulfilled. You can configure a provisioning request to require:

No approvals
One approval step
Two approval steps
Three approval steps
Four approval steps
Five approval steps

You can also specify whether you want to support sequential or parallel processing, and whether you
want to approve or deny the request in the event that the workflow times out during the course of
processing.

Identity Manager ships with the templates listed in Table 16-2.

Table 16-2 Templates for Provisioning Requests

Provisioning Request Configuration Provides tools that let you:

Browse the available provisioning request definitions
and select one to configure

Create a new provisioning request definition based on
an existing definition

Set the properties of a provisioning request definition

Assign the provisioning request definition to a
provisioned resource

Edit the addressee and timeout settings for each activity
in the associated workflow

When you choose to create a new provisioning request or
edit an existing one, the plug-in runs the Provisioning
Request Configuration Wizard.

Panel Description

Template Description

Self Provision Approval Allows a provisioning request to be fulfilled without any
approvals.

One Step Approval (Timeout Approves) Requires a single approval for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.
384 NetIQ Identity Manager User Application: Administration Guide

Two Step Sequential Approval (Timeout
Approves)

Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports sequential processing.

Three Step Sequential Approval (Timeout
Approves)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports sequential processing.

Four Step Sequential Approval (Timeout
Approves)

Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports sequential processing.

Five Step Sequential Approval (Timeout
Approves)

Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports sequential processing.

One Step Approval (Timeout Denies) Requires a single approval for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports sequential processing.

Two Step Sequential Approval (Timeout Denies) Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Three Step Sequential Approval (Timeout
Denies)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports sequential processing.

Four Step Sequential Approval (Timeout Denies) Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Five Step Sequential Approval (Timeout Denies) Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Template Description
Managing Provisioning Request Definitions 385

Workflows and provisioned resources. When you create a new provisioning request definition, you
bind it to a provisioned resource. You can change the provisioned resource associated with the
request definition, but not the workflow or its topology.

Categories for provisioning requests. Each provisioning request template is also bound to a
category. Categories provide a convenient way to organize provisioning requests for the end user.
The default category for all provisioning request templates is Entitlements. The category key, which is
the value of the srvprvCategoryKey attribute, is entitlements (lowercase).

Two Step Parallel Approval (Timeout Approves) Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports parallel processing.

Three Step Parallel Approval (Timeout
Approves)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Approves) Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Approves) Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports parallel processing.

Two Step Parallel Approval (Timeout Denies) Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

Three Step Parallel Approval (Timeout Denies) Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Denies) Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Denies) Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

Template Description
386 NetIQ Identity Manager User Application: Administration Guide

You can create your own categories by using the directory abstraction layer editor. When you create a
new category, make sure the category key (the value of srvprvCategoryKey) is lowercase. This is
necessary to ensure that categories work properly in the Identity Manager User Application.

For details on creating provisioning categories, see the Identity Manager User Application: Design
Guide.

16.3 Configuring a Provisioning Request Definition
Before configuring a provisioning request definition, you need to select the Identity Manager User
Application driver that contains the definition. Having selected the driver, you can create a new
provisioning request definition or edit an existing definition. You can also delete provisioning
request definitions, change the status of a request definition, or define rights for a request definition.

16.3.1 Selecting the Driver
To select an Identity Manager User Application driver:

1 Select the Identity Manager category in iManager.
2 Open the Provisioning Request Configuration role.
3 Click the Provisioning Requests task.

iManager displays the User Application Driver panel.

4 Specify the driver name in the User Application Driver field, then click OK.
iManager displays the Provisioning Request Configuration panel. The Provisioning Request
Configuration panel displays a list of available provisioning request definitions.
Managing Provisioning Request Definitions 387

The installed templates appear in dark text with a status of Template. Request definitions that are
templates do not display hypertext links because they are read only.

NOTE: If the request definitions were configured to use localized text, the names and
descriptions for these definitions show text that is suitable for the current locale.

Changing the driver. When you have selected a driver, the driver selection remains in effect for the
duration of your iManager session, unless you select a new driver. To select a new driver, click the
Actions command, then choose Select User Application Driver from the Actions menu.

16.3.2 Deleting a Provisioning Request
To delete a provisioning request:

1 Select the provisioning request you want to delete by clicking the check box next to the name.
You are not permitted to delete a provisioning request that is a template.
388 NetIQ Identity Manager User Application: Administration Guide

2 Click the Delete command in the Provisioning Request Configuration panel.

16.3.3 Filtering the List of Requests
To filter the list of requests:

1 Click the Actions command in the Provisioning Request Configuration panel.
2 Click the Define a Filter command on the Actions menu.

Specify the filter characteristics:

Choice Description

Turn off filtering Disables any existing filtering for the list.

Filter for status equals Filters based on the status. You can filter the list
based on any of the following status codes:

Active
Inactive
Template
Retired

Filter for category equals Filters based on category. Select any of the defined
categories.
Managing Provisioning Request Definitions 389

16.3.4 Changing the Status of an Existing Provisioning Request
To change the status of an existing provisioning request:

1 Select the provisioning request for which you want to change status by clicking the check box
beside the name.

2 Click the Actions command in the Provisioning Request Configuration panel.
3 Click the Change Status command on the Actions menu.

4 Click the status in the Status menu:

5 Click the button for the correct action (Grant or Revoke).
6 Click Finish.

16.3.5 Defining Rights on an Existing Provisioning Request
To define rights on an existing provisioning request:

1 Select the provisioning request for which you want to define rights by clicking the check box
beside the name.

Filter for description contains Allows you to search for text in the request
description. Type the string you want to search for.

Choice Description

Status Description

Active Available for use.

Inactive Temporarily unavailable for use.

Retired Permanently disabled.
390 NetIQ Identity Manager User Application: Administration Guide

2 Click the Actions command in the Provisioning Request Configuration panel.
3 Click the Define Rights command on the Actions menu.

4 Specify the rights for the request.

To define rights on a provisioning request with iManager:

1 Select the provisioning request for which you want to define rights by clicking the check box
beside the name.

2 Click the Actions command in the Provisioning Request Configuration panel.
3 Click the Define Rights with iManager command on the Actions menu.
Managing Provisioning Request Definitions 391

392 NetIQ Identity Manager User Application: Administration Guide

17 17Managing Provisioning Workflows

This section provides instructions for managing provisioning workflows at runtime. It also provides
instructions for configuring e-mail notification for provisioning workflows.

Topics include:

Section 17.1, “About the Workflow Administration Plug-in,” on page 393
Section 17.2, “Managing Workflows,” on page 394
Section 17.3, “Configuring the E-Mail Server,” on page 402
Section 17.4, “Working with E-Mail Templates,” on page 403
Section 17.5, “Allowing a Named Password to be Retrieved over LDAP,” on page 418

17.1 About the Workflow Administration Plug-in
The Workflow Administration plug-in to iManager provides a browser-based interface that lets you
view the status of workflow processes, reassign activities within a workflow, or terminate a workflow
in the event that it is stopped and cannot be restarted.

You can find the Workflow Administration plug-in in the Identity Manager category in iManager.
The plug-in includes the Workflows task in the Workflow Administration role.

The Workflow Administration role also includes the Email Templates and Email Server Options tasks.
These tasks are shortcuts to other tasks listed under the Passwords role.

The Workflows task comprises the panels listed in Table 17-1.

Table 17-1 Workflows Task: Panels

Panel Description

Workflows Provides the primary user interface for administering provisioning
workflows. The interface lists workflows currently being processed and
lets you perform various actions on these workflows.

When you first start the Workflows task, the Workflows panel requires
that you select an Identity Manager User Application driver. The driver
points to a workflow server. You need to select a driver before you can
log in to the server and begin workflow administration.

When you have selected a driver, you can specify search criteria for
selecting the workflows to manage.

Workflow Detail Provides a read-only user interface for viewing the details about a
specific workflow.
Managing Provisioning Workflows 393

17.2 Managing Workflows
This section includes procedures for managing provisioning workflows using the Workflow
Administration plug-in:

Section 17.2.1, “Connecting to a Workflow Server,” on page 394
Section 17.2.2, “Finding Workflows that Match Search Criteria,” on page 396
Section 17.2.3, “Controlling the Active Workflows Display,” on page 397
Section 17.2.4, “Terminating a Workflow Instance,” on page 399
Section 17.2.5, “Viewing Details about a Workflow Instance,” on page 399
Section 17.2.6, “Reassigning a Workflow Instance,” on page 399
Section 17.2.7, “Managing Workflow Processes in a Cluster,” on page 400

17.2.1 Connecting to a Workflow Server
Before you can begin managing workflows, you need to connect to a workflow server. If the User
Application driver is bound to a single workflow server, you can simply specify the name of the
driver to use. If the driver is associated with multiple workflow servers, you need to select the target
workflow server.

To connect to a workflow server:

1 Select the Identity Manager category in iManager.
2 Open the Workflow Administration role.
3 Click the Workflows task.

iManager displays the Workflows panel.

4 If you accessed the target workflow server previously, you can select the server from the
Previously accessed servers drop-down list.
iManager fills in the remaining fields on the panel.

5 If you have not yet accessed a workflow server, specify the driver name in the User Application
Driver field, then click OK.
394 NetIQ Identity Manager User Application: Administration Guide

iManager fills in the Workflow server URI and User fields.

6 Type the password for the user in the Password field.
7 Click Login.

The Workflow Administration plug-in displays a page that allows you to specify a filter for
finding workflows:
Managing Provisioning Workflows 395

17.2.2 Finding Workflows that Match Search Criteria
If the target workflow server is running a large number of workflow processes, you might want to
filter the list of workflows you see in iManager. To do this, you can specify search criteria.

1 Select Show Workflows with.

By default, Show all Workflows is selected. Do not change the default if you want to see the
complete list of workflows on the server.

2 Select the attribute for which you want to specify criteria.

3 Select an operator:

Attribute Description

Creation time Time that the workflow was initiated.

Initiator Username of the requestor.

Recipient Username of the recipient.

Process Status Status of the workflow process as a whole (Completed, Running, or
Terminated).

Approval status Status of the approval process (Approved, Denied, or Retracted).

Entitlement status Status of the entitlement initiated by the provisioning request (Error,
Fatal, Success, Unknown, or Warning).
396 NetIQ Identity Manager User Application: Administration Guide

4 Specify a value in the field below the attribute and operator.
For Creation time, you can use the Date and time control to select the value. For Initiator and
Recipient, you can use Object History or Object Selector to specify a value. For all other attributes,
select the value from the drop-down list.

5 Click OK.
iManager displays the workflows you have selected on the Workflows panel.

Changing the target server and filter. When you have selected a workflow server, this selection
remains in effect for the duration of your iManager session, unless you select a new server. To select a
new server, click the Actions command, then choose Select Server from the Actions menu.

To specify different search criteria, choose Define Filter on the Actions menu.

17.2.3 Controlling the Active Workflows Display
The Workflows panel lists the workflows that match the search criteria you specified. In addition to
filtering the list, you can control the display. For example, you can specify how often to refresh the list
and sort the list on a particular column.

Refreshing the List of Workflows
When the workflow server is very busy, the list of active workflows can change very frequently. In
this case, you should refresh the list of active workflows running on the server.

1 Click the Refresh command in the Workflows panel.
2 Specify the refresh interval you want to use by selecting one of these options from the Refresh

menu:
Refresh Off
Refresh Now
10 seconds
30 seconds
60 seconds
5 minutes

3 Click OK.

Operator Comment

Equals Supported for all attributes.

Before Only supported for the Creation time attribute.

After Only supported for the Creation time attribute.

Between Only supported for the Creation time attribute.
Managing Provisioning Workflows 397

Using Quick Filters to Control the Display
Sometimes you might want to show or hide workflows that have a particular status.

1 Click the Quick Filters command in the Workflows panel.
2 Select one of the following choices to filter the items in the list:

Sorting the List of Workflows
If you have a large number of request definitions, you might want to sort the list by a particular
column, such as Name or Description.

1 Click the heading for the sort column.

Displaying the Process Request ID
You can display and sort data based on the internal process ID for a request.

1 Click the Actions command in the Workflows panel.
2 Click Show Request ID on the Actions menu.

Depending on your display, you might need to scroll to the right to see the Request ID column.
To sort the data based on the process request ID, click the heading for the Request ID column.

Choice Description

Show all workflows Disables all previous filters and displays all
workflows in process.

Hide/show completed workflows Hides or shows workflows that have completed
processing.

Hide/show terminated workflows Hides or shows workflows that have been
terminated.

Hide/show stopped workflows Hides or shows workflows that have been stopped
by user action.

Hide/show running workflows Hides or shows workflows that are still running.
398 NetIQ Identity Manager User Application: Administration Guide

17.2.4 Terminating a Workflow Instance
If you do not want a workflow instance to continue its processing, you can terminate the workflow.

1 Select the workflow in the Workflows panel by clicking the check box next to the workflow
name.

2 Click the Terminate command in the Workflows panel.

17.2.5 Viewing Details about a Workflow Instance
When you have displayed a set of running workflows on a particular server, you can select a
workflow instance to see more details about the running process.

NOTE: If a workflow instance uses a serial processing design pattern, the display shows a single
activity as current because only one user can act on the work item at any point in time. However, if
the workflow handles parallel processing and branching, there might be multiple current activities
for a workflow instance.

To view details about a particular workflow instance:

1 Click the name of the workflow instance in the Workflows panel.
iManager displays the Workflow Detail panel.

17.2.6 Reassigning a Workflow Instance
If a workflow instance has stopped and cannot be restarted, you can reassign the work item to
another user or group.

1 Select the current activity associated with the workflow by clicking the check box next to the
name in the Workflow Detail panel.

2 Click the Reassign command in the Workflow Detail panel.
Managing Provisioning Workflows 399

3 Select the user or group to which you want to reassign the work item.

17.2.7 Managing Workflow Processes in a Cluster
You can use the Workflows screen to reassign processes from one workflow engine to another. For
example, you could use this feature to reassign processes back to a failed workflow engine when the
workflow engine is brought back online, or you could redistribute processes to other engines when
an engine is permanently removed from the cluster.

The source engine(s) must be a in a SHUTDOWN or TIMEDOUT state. The target engine must be
restarted in order to restart the processes that were reassigned to that engine.

Reassigning a Process from One Workflow Engine to Another
1 In the Workflows panel, select the workflow that you would like to reassign by clicking the

check box next to the workflow name.
2 Select Actions > Reassign.
400 NetIQ Identity Manager User Application: Administration Guide

3 Select the workflow engine to which you want to reassign the workflow process from the Target
Engine list.

4 Click OK.

Reassigning a Percentage of Processes from One Workflow Engine to Another
1 In the Workflows panel, select the workflow that you would like to reassign by clicking the

check box next to the workflow name.
2 Select Actions > Reassign Percentage.

3 In the Percentage field, type the percentage of workflow processes that you would like to reassign
from one workflow engine to another.

4 Use the Source engine list to select the workflow engine from which you want to reassign
processes.

5 Use the Target engine field to select the workflow engine to which you want to reassign processes.
6 Click OK.

Reassigning All Processes from One Workflow Engine to Another
1 In the Workflows panel, select the workflow that you would like to reassign by clicking the

check box next to the workflow name.
2 Select Actions > Reassign All.
Managing Provisioning Workflows 401

3 Use the Source engine list to select the workflow engine from which you want to reassign
processes.

4 Select the workflow engines to which you would like to reassign processes by clicking the check
box next to the name of the workflow engine.
If you select multiple target engines, the processes from the source engine will be evenly
distributed to the target engine.

5 Click OK.

17.3 Configuring the E-Mail Server
A workflow process often sends e-mail notifications at various points in the course of its execution.
For example, an e-mail might be sent when a user assigns a workflow activity to a new addressee.

Before you can take advantage of the e-mail notification capabilities of Identity Manager, you need to
configure the SMTP e-mail server. To do this, you need to use the Email Server Options task within the
Workflow Administration role in iManager.

NOTE: This task is a shortcut to the Email Server Options task under the Passwords role.

To configure the e-mail server:

1 Select the Identity Manager category in iManager.
2 Open the Workflow Administration role.
3 Click on the Email Server Options task.

iManager displays the Email Server Options panel.
402 NetIQ Identity Manager User Application: Administration Guide

4 Type the name (or IP address) of the host server in the Host Name field.
5 Type the e-mail address for the sender in the From field.

When the recipient opens the e-mail, this text is displayed in the From field of the e-mail header.
Depending on your mail server settings, the text in this field might need to match a valid sender
in the system in order to allow the mail server to do reverse lookups or authentication. An
example is helpdesk@company.com instead of descriptive text such as The Password
Administrator.

6 If your server requires authentication before sending e-mail, select the Authenticate to server using
credentials check box and specify the username and password.

7 When you are finished, click OK.

17.4 Working with E-Mail Templates
Identity Manager includes e-mail notification templates that are designed specifically for workflow-
based provisioning. These e-mail templates include the following.

New Provisioning Request (Provisioning Notification)
Availability Setting Notification (Availability)
Delegate Assignment Notification (Delegate)
Provisioning Approval Notification (Provisioning Approval Completed Notification)
Reminder - A request is waiting on your approval (Provisioning Reminder)
Proxy Assignment Notification (Proxy)
New Role Request (Role Request Notification)
Role Request Approval Notification (Role Request Approval Completed Notification)
Compliance Task (Attestation Notification)
New Resource Request (Resource Request Notification)
Resource Request Approval Notification (Resource Request Approval Completed Notification)

The subject lines are listed first above. The template names (as they appear in iManager and
Designer) are given in parentheses.
Managing Provisioning Workflows 403

You can edit the templates to change the content and format of e-mail messages. You can also create
new templates. If you create new templates, you need to follow these naming conventions.

The language-independent version of the Provisioning Notification template can have any name
you like. The default template for notification e-mail messages is called:

Provisioning Notification

The language-independent version of the Provisioning Reminder template can have any name
you like. The default template for reminder e-mail messages is called:
Provisioning Reminder

Each delegation template must have a name that begins with the word:
delegate

The language-independent name can be followed by one or more characters that describe the
purpose or content of the template.
Each proxy template must have a name that begins with the word:
proxy

The language-independent name can be followed by one or more characters that describe the
purpose or content of the template.
Each availability template must have a name that begins with the word:
availability

The language-independent name can be followed by one or more characters that describe the
purpose or content of the template.

Each language-specific version of a template must have a suffix that provides a language code (for
example, _fr for French, _es for Spanish, and so forth).

To create or edit an e-mail template, use the Email Templates task within the Workflow Administration
role in iManager.

NOTE: This task is a shortcut to the Edit Email Templates task under the Passwords role.

You also can create and edit e-mail templates in Designer.

When you create a User Application driver in iManager or Designer, any e-mail notification
templates that are missing from the standard set of e-mail notification templates are replaced.
Existing e-mail notification templates are not updated. This is to prevent overwriting e-mail
notification templates that you have customized. You can update existing e-mail notification
templates manually using Designer (see the section “About E-Mail Notification Templates” in the
Identity Manager User Application: Design Guide (http://www.netiq.com/documentation/idm402/
index.html)). For more information about e-mail notification templates, see “Setting up E-Mail
Notification Templates” in the Novell Designer for Identity Manager Administration Guide.

NOTE: When you use a localized e-mail template in a provisioning request definition, the preferred
locale setting of the recipient of the notification is ignored. For example, the Provisioning Notification
of a request using a localized e-mail notification template of Spanish will only send a Spanish e-mail,
regardless of the preferred locale setting for the user.
404 NetIQ Identity Manager User Application: Administration Guide

http://www.netiq.com/documentation/idm402/index.html

17.4.1 Default Content and Format
This section shows you what the content of the e-mail templates looks like after you install the
product. It also describes the replacement tags that can be used in the e-mail template.

New Provisioning Request
This template identifies the provisioning request definition that triggered the e-mail message. In
addition, it includes a URL that redirects the addressee to the task that requires approval, as well as a
URL that displays the complete list of tasks pending for that user.

Hi,

A new provisioning request has been submitted that requires your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this request at $PROTOCOL$://$HOST$:$PORT$/
$TASK_DETAILS$ to take the appropriate action.

You can review a list of all requests pending your approval at $PROTOCOL$://
$HOST$:$PORT$/$TASKLIST_CONTEXT$.

Table 17-2 New Provisioning Request Template: Replacement Tags

Tag Description

$userFirstName$ The first name of the addressee.

$requestTitle$ The display name of the provisioning request definition.

$initiatorFullName$ The full name of the initiator.

$recipientFullName$ The full name of the recipient.

$PROTOCOL$ The protocol for URLs included in the e-mail message.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the e-mail message.

$HOST$ The host for the JBoss application server that is running the
Identity Manager User Application. For information about
setting the value for this parameter, see Section 17.4.3,
“Modifying Default Values for the Template,” on page 416.

$PORT$ The port for the Identity Manager User Application. For
information about setting the value for this parameter, see
Section 17.4.3, “Modifying Default Values for the Template,”
on page 416.

$SECURE_PORT$ The secure port for the Identity Manager User Application. For
information about setting the value for this parameter, see
Section 17.4.3, “Modifying Default Values for the Template,”
on page 416.

$TASKLIST_CONTEXT$ The page that displays the list of all requests pending for the
addressee.

$TASK_DETAILS$ The page that displays details for the request for which this e-
mail message was generated.
Managing Provisioning Workflows 405

Availability Setting Notification
This template identifies a user whose availability has been updated. It includes the start time and
expiration time of the period for which the user is unavailable, and the resources for which the user is
unavailable.

Hi,

$submitterFirstName$ $submitterLastName$ has updated availability settings for
 $userFirstName$ $userLastName$.
 This user has $operation$ an availability setting that applies to the following
resources:

 $resources$

 This setting indicates that $userFirstName$ $userLastName$ is unavailable to work
on these resources during the timeframe outlined below:

 Start time: $startTime$
 Expiration time: $expirationTime$

 When a user is unavailable, any delegates assigned may handle resource requests
for that user.

You can review a list of your availability settings at $PROTOCOL$://$HOST$:$PORT$/
$AVAILABILITY_CONTEXT$.

Table 17-3 Availability Setting Notification Template: Replacement Tags

Tag Description

$submitterFirstName$ The first name of the user who updated the availability
setting.

$PROTOCOL$ The protocol for URLs included in the e-mail message.

$PORT$ The port for the Identity Manager User Application. For
information about setting the value for this parameter,
see Section 17.4.3, “Modifying Default Values for the
Template,” on page 416.

$startTime$ The start time of the workflow for this provisioning
request.

$resources$ The resources (provisioning requests) for which the
addressee is unavailable.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the e-mail
message.

$expirationTime$ The time at which the availability will expire.

$submitterLastName$ The last name of the user who updated the availability
setting.

$SECURE_PORT$ The secure port for the Identity Manager User
Application. For information about setting the value for
this parameter, see Section 17.4.3, “Modifying Default
Values for the Template,” on page 416.

$userFirstName$ The first name of the user to whom this availability
setting applies.
406 NetIQ Identity Manager User Application: Administration Guide

Delegate Assignment Notification
This template notifies a user when a provisioning request has been submitted that requires the user’s
approval. It includes the name of the request, the user who submitted the request, and the full name
of the recipient. It includes links for viewing the provisioning request and for viewing all
provisioning requests awaiting the user’s approval.

Hi,

A new provisioning request has been submitted that requires your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this request at $PROTOCOL$://$HOST$:$PORT$/
$TASK_DETAILS$ to take the appropriate action.

You can review a list of all requests pending your approval at $PROTOCOL$://
$HOST$:$PORT$/$TASKLIST_CONTEXT$.
_SUBJECT

Table 17-4 Delegate Assignment Notification: Replacement Tags

$userLastName$ The last name of the user to whom this availability
setting applies.

$HOST$ The host for the JBoss application server that is
running the Identity Manager User Application. For
information about setting the value for this parameter,
see Section 17.4.3, “Modifying Default Values for the
Template,” on page 416.

$ASSIGNMENT_LIST_CONTEXT$ The context or path of the URL to the provisioning
User Application.

Tag Description

$submitterFirstName$ The first name of the user who assigned the delegate.

$PROTOCOL$ The protocol for URLs included in the e-mail message.

$PORT$ The port for the Identity Manager User Application For
information about setting the value for this parameter,
see Section 17.4.3, “Modifying Default Values for the
Template,” on page 416.

$resources$ The resources (provisioning requests) for which the
delegate is available.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the e-mail
message.

$fromUsers$ The users for which the assigned delegate is
authorized to handle resource requests.

Tag Description
Managing Provisioning Workflows 407

Provisioning Approval Notification
This template notifies a user when an approval process for a provisioning request submitted by the
user has been completed.

Hi,

The approval process of your provisioning request has completed.

Request name: $requestTitle$
Request id: $requestId$
Submitted by: $initiatorFullName$
Submitted on: $requestSubmissionTime$
Recipient: $recipientFullName$

Status: $requestStatus$

$relationship$ The relationship defined in the directory abstraction
layer that was selected for this delegate assignment.

$expirationTime$ The time at which the delegate assignment will expire.

$fromContainers$ The containers for which the assigned delegate is
authorized to handle resource requests.

$fromGroups$ The groups for which the assigned delegate is
authorized to handle resource requests.

$submitterLastName$ The last name of the user who assigned the delegate.

$SECURE_PORT$ The secure port for the Identity Manager User
Application. For information about setting the value for
this parameter, see Section 17.4.3, “Modifying Default
Values for the Template,” on page 416.

$userFirstName$ The first name of the user who has been assigned as a
delegate.

$userLastName$ The last name of the user who has been assigned as a
delegate.

$HOST$ The host for the JBoss application server that is
running the Identity Manager User Application. For
information about setting the value for this parameter,
see Section 17.4.3, “Modifying Default Values for the
Template,” on page 416.

$ASSIGNMENT_LIST_CONTEXT$ The context or path of the URL to the provisioning
User Application.

Tag Description
408 NetIQ Identity Manager User Application: Administration Guide

Table 17-5 Provisioning Approval Notification: Replacement Tags

Reminder - A Request Is Waiting on Your Approval
This template reminds a user that a provisioning request that requires the user’s approval is waiting
in a queue for approval. It includes the name of the request, the user who submitted the request, and
the recipient. It includes links for viewing the provisioning request and for viewing all provisioning
requests awaiting the user’s approval.

Hi,

This is a reminder that a provisioning request is sitting in your queue waiting on
your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this request at $PROTOCOL$://$HOST$:$PORT$/
$TASK_DETAILS$ to take the appropriate action.

You can review a list of all requests pending your approval at $PROTOCOL$://
$HOST$:$PORT$/$TASKLIST_CONTEXT$.

Table 17-6 Reminder - A request is waiting on your approval: Replacement Tags

Tag Description

$initiatorFullName$ The full name of the initiator.

$requestSubmissionTime$ The time at which the request was submitted.

$requestTitle$ The display name of the provisioning request
definition.

$requestId The ID of the provisioning request.

$recipientFullName$ The full name of the recipient.

Tag Description

$TASKLIST_CONTEXT$ The page that displays the list of all requests pending
for the addressee.

$PROTOCOL$ The protocol for URLs included in the e-mail message.

$PORT$ The port for the Identity Manager User Application. For
information about setting the value for this parameter,
see Section 17.4.3, “Modifying Default Values for the
Template,” on page 416.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the e-mail
message.

$initiatorFullName$ The full name of the initiator.

$recipientFullName$ The full name of the recipient.

$TASK_DETAILS$ The page that displays details for the request for which
this e-mail message was generated.
Managing Provisioning Workflows 409

Proxy Assignment Notification
This template notifies the recipient that a proxy has been assigned. The user who has been assigned
as a proxy is identified, as are the users, groups, and containers for which the user is authorized to act
as proxy. It includes links for viewing the recipient’s list of proxy assignments.

Hi,

A proxy assignment that authorizes a user to act as proxy for
one or more users, groups, or containers was $operation$ by: $submitterFirstName$
$submitterLastName$.
Unlike delegate assignments, proxy assignments are independent of resource
requests, and therefore apply to all work and settings actions.

The user selected as proxy is:

$userFirstName$ $userLastName$

The assigned proxy is authorized to handle all work for these users, groups, and
containers:

Users: $fromUsers$
Groups: $fromGroups$
Containers: $fromContainers$

This proxy assignment expires at:

$expirationTime$

You can review a list of your proxy assignments at $PROTOCOL$://$HOST$:$PORT$/
$PROXY_CONTEXT$.

Table 17-7 Proxy Assignment Notification: Replacement Tags

$SECURE_PORT$ The secure port for the Identity Manager User
Application. For information about setting the value for
this parameter, see Section 17.4.3, “Modifying Default
Values for the Template,” on page 416.

$userFirstName$ The first name of the addressee.

$HOST$ The host for the JBoss application server that is
running the Identity Manager User Application. For
information about setting the value for this parameter,
see Section 17.4.3, “Modifying Default Values for the
Template,” on page 416.

$requestTitle$ The display name of the provisioning request
definition.

Tag Description

$submitterFirstName$ The first name of the user who assigned the proxy.

$PROTOCOL$ The protocol for URLs included in the e-mail message.

Tag Description
410 NetIQ Identity Manager User Application: Administration Guide

New Role Request
This template identifies the provisioning request definition that triggered the e-mail message. In
addition, it includes a URL that redirects the addressee to the task that requires approval, as well as a
URL that displays the complete list of tasks pending for that user.

$PORT$ The port for the Identity Manager User Application. For
information about setting the value for this parameter,
see Section 17.4.3, “Modifying Default Values for the
Template,” on page 416.

$resources$ The resources (provisioning requests) for which the
proxy is available.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the e-mail
message.

$fromUsers$ The users for which the assigned proxy is authorized
to handle resource requests.

$expirationTime$ The time at which the proxy assignment will expire.

$fromContainers$ The containers for which the assigned proxy is
authorized to handle resource requests.

$fromGroups$ The groups for which the assigned proxy is authorized
to handle resource requests.

$submitterLastName$ The last name of the user who assigned the proxy.

$SECURE_PORT$ The secure port for the Identity Manager User
Application. For information about setting the value for
this parameter, see Section 17.4.3, “Modifying Default
Values for the Template,” on page 416.

$userFirstName$ The first name of the user who has been assigned as a
proxy.

$userLastName$ The last name of the user who has been assigned as a
proxy.

$HOST$ The host for the JBoss application server that is
running the Identity Manager User Application. For
information about setting the value for this parameter,
see Section 17.4.3, “Modifying Default Values for the
Template,” on page 416.

$ASSIGNMENT_LIST_CONTEXT$ The context or path of the URL to the provisioning
User Application.

Tag Description
Managing Provisioning Workflows 411

Hi,

A new role request has been submitted that requires your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this role request at $PROTOCOL$://$HOST$:$PORT$/
$TASK_DETAILS$ to take the appropriate action.

You can review a list of all role requests pending your approval at $PROTOCOL$://
$HOST$:$PORT$/$TASKLIST_CONTEXT$.

Table 17-8 New Role Request Template: Replacement Tags

Role Request Approval Notification
This template notifies a user when an approval process for a role request submitted by the user has
been completed.

Tag Description

$userFirstName$ The first name of the addressee.

$requestTitle$ The display name of the request definition.

$initiatorFullName$ The full name of the initiator.

$recipientFullName$ The full name of the recipient.

$PROTOCOL$ The protocol for URLs included in the e-mail message.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the e-mail message.

$HOST$ The host for the JBoss application server that is running the
Identity Manager User Application. For information about
setting the value for this parameter, see Section 17.4.3,
“Modifying Default Values for the Template,” on page 416.

$PORT$ The port for the Identity Manager User Application. For
information about setting the value for this parameter, see
Section 17.4.3, “Modifying Default Values for the Template,”
on page 416.

$SECURE_PORT$ The secure port for the Identity Manager User Application. For
information about setting the value for this parameter, see
Section 17.4.3, “Modifying Default Values for the Template,”
on page 416.

$TASKLIST_CONTEXT$ The page that displays the list of all requests pending for the
addressee.

$TASK_DETAILS$ The page that displays details for the request for which this e-
mail message was generated.
412 NetIQ Identity Manager User Application: Administration Guide

Hi,

The approval process of your role request has completed.

Request name: $requestTitle$
Request id: $requestId$
Submitted by: $initiatorFullName$
Submitted on: $requestSubmissionTime$
Recipient: $recipientFullName$

Status: $requestStatus$

Table 17-9 Role Request Approval Notification: Replacement Tags

Compliance Task
This template notifies an attester when an attestation process has assigned a task to the attester.

Hi,

A new compliance activity has been submitted that requires your attention.

Request name: $requestTitle$
Submitted by: $initiatorFullName$

Please review the details of this compliance activity request at $PROTOCOL$://
$HOST$:$PORT$/$TASK_DETAILS$ to take the appropriate action.

You can review a list of all requests pending your action at $PROTOCOL$://
$HOST$:$PORT$/$TASKLIST_CONTEXT$.

Table 17-10 Compliance Task: Replacement Tags

New Resource Request
This template identifies the resource request definition that triggered the e-mail message. In addition,
it includes a URL that redirects the addressee to the task that requires approval, as well as a URL that
displays the complete list of tasks pending for that user.

Tag Description

$initiatorFullName$ The full name of the initiator.

$requestSubmissionTime$ The time at which the request was submitted.

$requestTitle$ The display name of the provisioning request
definition.

$requestId The ID of the role request.

$recipientFullName$ The full name of the recipient.

Tag Description

$initiatorFullName$ The full name of the initiator.

$requestTitle$ The display name of the attestation request.
Managing Provisioning Workflows 413

Hi,

A new resource request has been submitted that requires your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this role request at $PROTOCOL$://$HOST$:$PORT$/
$TASK_DETAILS$ to take the appropriate action.

You can review a list of all resource requests pending your approval at
$PROTOCOL$://$HOST$:$PORT$/$TASKLIST_CONTEXT$.

Table 17-11 New Resource Request Template: Replacement Tags

Resource Request Approval Notification
This template notifies a user when an approval process for a resource request submitted by the user
has been completed.

Hi,

The approval process of your resource request has completed.

Request name: $requestTitle$
Request id: $requestId$
Submitted by: $initiatorFullName$
Submitted on: $requestSubmissionTime$
Recipient: $recipientFullName$

Status: $requestStatus$

Tag Description

$userFirstName$ The first name of the addressee.

$requestTitle$ The display name of the request definition.

$initiatorFullName$ The full name of the initiator.

$recipientFullName$ The full name of the recipient.

$PROTOCOL$ The protocol for URLs included in the e-mail message.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the e-mail message.

$HOST$ The host for the JBoss application server that is running the
Identity Manager User Application.

$PORT$ The port for the Identity Manager User Application.

$SECURE_PORT$ The secure port for the Identity Manager User Application.

$TASKLIST_CONTEXT$ The page that displays the list of all requests pending for the
addressee.

$TASK_DETAILS$ The page that displays details for the request for which this e-
mail message was generated.
414 NetIQ Identity Manager User Application: Administration Guide

Table 17-12 Role Request Approval Notification: Replacement Tags

17.4.2 Editing E-mail Templates
You can change the content or format of the supplied e-mail templates. For information about
creating e-mail templates, see “Configuring E-Mail Notification” in the Novell Identity Manager
Administration Guide.

To edit a template:

1 Select the Identity Manager category in iManager.
2 Open the Workflow Administration role.
3 Click the Email Templates task.

iManager displays the Edit Email Templates panel.

4 Click the name of the e-mail template that you would like to edit.
iManager displays the Modify E-mail Message screen.

Tag Description

$initiatorFullName$ The full name of the initiator.

$requestSubmissionTime$ The time at which the request was submitted.

$requestTitle$ The display name of the provisioning request
definition.

$requestId The ID of the role request.

$recipientFullName$ The full name of the recipient.
Managing Provisioning Workflows 415

5 Make your changes in the Message Body box.
6 If necessary, copy one or more of the supplied tags in the Replacement Tags list to include

dynamic text in the message body.
For a description of the replacement tags, see Section 17.4.1, “Default Content and Format,” on
page 405.

7 When you are finished, click OK.

17.4.3 Modifying Default Values for the Template
At installation time, you can set default values for several of the replacement tags used in e-mail
templates. After you have completed the installation, you can also modify these values by using the
User Application Configuration tool.

1 Run the configupdate.sh script in the idm folder.

./configupdate.sh

On Windows, run configupdate.bat.
416 NetIQ Identity Manager User Application: Administration Guide

2 Make changes as necessary to any of the following fields:

3 Click OK to confirm your changes.

17.4.4 Adding Localized E-Mail Templates
To add localized e-mail templates:

1 Select the Identity Manager category in iManager.
2 Open the Workflow Administration role.
3 Click the Email Templates task.

iManager displays the Edit Email Templates panel.

Field Description

Email Notify Host Used to replace the $HOST$token in e-mail templates used in
approval flows. If left blank, computed by the server.

Email Notify Port Used to replace the $PORT$token in e-mail templates used in
approval flows.

Email Notify Secure Port Used to replace the $SECURE_PORT$token in e-mail templates
used in approval flows.
Managing Provisioning Workflows 417

4 Identify the e-mail template (without any locale in the name) that you want to copy.
4a Write down the template name to use in Step 5.
4b Click the template subject to open the template and view its message subject, body, and

replacement tags.
4c Copy the message subject, body (to be translated), and replacement tags that you want to

use in your new template.
4d Click Cancel.

5 Click Create, then enter the template name with a locale extension. For example, to create a
Forgot Hint template in German, enter the name Forgot Hint_de, where _de signifies Deutsch
(German).
If you use a two-letter language and two-letter country code, this works fine. If you attempt to
use a locale with a variant such as en_US_TX, only the variant and language are considered. Do
not use locale variants when naming e-mail templates.

6 Click OK.
7 In the template list, click the newly created template, for example Forgot Hint_de, and enter the

translated subject and message body. Be sure to preserve the replacement tags surrounded by
the dollar ($) sign in the message body.

8 If necessary, copy one or more of the supplied tags in the Replacement Tags list to include
dynamic text in the message body.
For a description of the replacement tags, see Section 17.4.1, “Default Content and Format,” on
page 405.

9 Click Apply.
10 Click OK.

NOTE: E-mail templates only send localized content if the preferred locale is set for the user (to
whom the mail is sent).

17.5 Allowing a Named Password to be Retrieved over LDAP
In release 4.0.2, a new boolean definition can be added to the User Application driver to allow a
named password to be retrieved over LDAP from a workflow. To take advantage of this feature, you
need to create a a global configuration value “allow-fetch-named-passwords”.

Here’s a sample definition:

<definitions>
 <definition display-name="Allow Named Password to be retrieved over LDAP"
name="allow-fetch-named-passwords" type="boolean">
 <value>false</value>
 <description>Allow Named Password to be retrieved over LDAP. If the
value is true, then the named password value can be fetched using the LDAP
extension
com.novell.nds.dirxml.ldap.GetNamedPasswordRequest/
com.novell.nds.dirxml.ldap.GetNamedPasswordResponse.</description>
 </definition>
</definitions>

If the global configuration is not present, the runtime functions as if the definition is present and the
value is set to false. If you then try to use the GCV script method getValueForNamedPassword(String
valueKey), an exception is thrown since the permission is set to false. If you want to be able to use the
method, then the value for allow-fetch-named-passwords variable must be true.
418 NetIQ Identity Manager User Application: Administration Guide

If the gcv variable allow-fetch-named-passwords does not exist, you have to create the variable and
set it to true. If it already exists, you can simply need to set the value to true.

NOTE: To retrieve a named password, you must use the GCV script method
getValueForNamedPassword on a GCV of the password-ref type, which points to the named
password. You cannot use the get script method.

To add the GCV value for the allow-fetch-named-passwords option:

1 In iManager, double click on the User Application driver.
2 Click on the Global Configuration Values tab.
3 Click on the Add button.
4 Fill out the definition, as described below:

4a Specify allow-fetch-named-passwords as the name for the global configuration
definition.

4b Specify Allow Named Password to be retrieved over LDAP as the display name.
4c Provide a description for the definition.
4d Specify boolean as the Type.

5 Click OK.
6 Set the value to true or false and click Apply.
7 Create a named password in your User Application driver.
8 Create a GCV of the type password-ref that points to the named password you want to be able

to read.
9 In your workflow, use the function getValueForNamedPassword to retrieve the value of the

named password, using the following syntax:

GCV.getValueForNamedPassword('PasswordRefGCV')
Managing Provisioning Workflows 419

420 NetIQ Identity Manager User Application: Administration Guide

VI VIWeb Service Reference

These sections describe the Web Service endpoints provided for the User Application.

Chapter 18, “Provisioning Web Service,” on page 423
Chapter 19, “Metrics Web Service,” on page 487
Chapter 20, “Notification Web Service,” on page 505
Chapter 21, “Directory Abstraction Layer (VDX) Web Service,” on page 515
Chapter 22, “Role Web Service,” on page 539
Chapter 23, “Resource Web Service,” on page 631
Chapter 24, “Forgot Password Web Service,” on page 665
Web Service Reference 421

422 NetIQ Identity Manager User Application: Administration Guide

18 18Provisioning Web Service

This section describes the Provisioning Web Service, which allows SOAP clients to access
Provisioning functionality. Topics include:

Section 18.1, “About the Provisioning Web Service,” on page 423
Section 18.2, “Developing Clients for the Provisioning Web Service,” on page 425
Section 18.3, “Provisioning Web Service API,” on page 435

18.1 About the Provisioning Web Service
The Identity Manager User Application includes a workflow system that executes approval flows. A
workflow process is based on a provisioning request definition, which is an XML document stored in
the Identity Vault. The provisioning request definition describes an arbitrary topology using
activities and links. For example, a provisioning request to grant an entitlement might have a
workflow that collects approvals from relevant users and writes the entitlement to the directory.

To support access by third-party software applications, the provisioning workflow system includes a
Web service endpoint. The endpoint offers all provisioning functionality (for example, allowing
SOAP clients to start a new approval flow, or list currently executing flows). The Web service is built
using the Novell Web Service SDK (WSSDK), which supports the WS-I Basic Profile, thus
guaranteeing interoperability with other standards based SOAP implementations.

This Appendix describes the provisioning Web service in detail and shows how to access it using the
Web or by writing a Java or C# client. We provide an overview of the operations in the SOAP
endpoint and describe how to use the Web interface. We show how to develop a Java client using the
SOAP toolkit included with Identity Manager provisioning, followed by how to write a C# client
using Mono. The sample source code a the Java client and associated ANT build file is provided.

18.1.1 Provisioning Web Service Overview
Identity Manager is composed of two main systems: the Identity Vault and the workflow application.
The Identity Vault is capable of connecting to a large number of different systems such as databases,
financial systems, and other enterprise applications, and keep these systems synchronized. The rules
for synchronizing the remote systems can be very complex and the Identity Vault engine supports a
sophisticated scripting language for expressing the rules.

The workflow application is composed of several subsystems. The User Application provides a user-
interface for workflows. The User Application is a Web application for requesting and managing
approval flows. The Web application runs in a portal, which also includes administration portlets.
The workflow application contains a security layer, a directory abstraction layer and a logging
subsystem, which can send log events to Novell Identity Audit and Novell Sentinel. The workflow
subsystem is responsible for executing approval flows. The User Application runs on an application
server (for example, JBoss) and uses a database (for example, Oracle, MySQL) for persistence.
Provisioning Web Service 423

The Web service for the workflow system is only used by the User Application driver, which is
capable of listening to certain events emitted by the Identity Vault engine and convert these events
into an appropriate SOAP message. For example, when a specific attribute in the Identity Vault
changes, the Identity Vault engine emits an event, which the User Application picks up from the
subscriber channel. The User Application driver then sends a SOAP message to the provisioning Web
service to start a new approval flow.

18.1.2 Removing Administrator Credential Restrictions
By default, the requirement for invoking the public interfaces for the SOAP services is that the HTTP
session logged in user must have administrator credentials. The Provisioning and Directory Services
require Provisioning Administrator credentials. The Role Service and Resource Service require Role
Administrator and Resource Administrator credentials respectively. The restrictions can be removed
to allow a session with a logged in user who does not have administrator credentials to invoke the
methods for the services by changing the configuration settings for the service. In order to do this,
you must extract the configuration files from the User Application war, make the appropriate
changes, and import the files back into the User Application WAR. The details for changing the
Provisioning Service follow. Instructions for the other SOAP services are provided with the
documentation for these services.

To remove the administrator credential restriction for the Provisioning Service:

1 Extract the WorkflowService-conf/config.xml file from the User Application WAR file's
IDMfw.jar file.

2 Change the WorkflowService/SOAP-End-Points-Accessible-By-ProvisioningAdminOnly
property from:

<property>
 <key>WorkflowService/SOAP-End-Points-Accessible-By- ProvisioningAdminOnly</
key>
 <value>true</value>
</property>

To the following:

<property>
 <key>WorkflowService/SOAP-End-Points-Accessible-By-ProvisioningAdminOnly</
key>
 <value>false</value>
</property>

3 Import the changes back into the WAR file.

These are the methods that can be invoked by users without Provisioning Administrator credentials
if the WorkflowService/SOAP-End-Points-Accessible-By-ProvisioningAdminOnly property is set to
false:

getAllProvisioningRequests(String)
getDataItems(String workId)
getDefinitionByID(String definitionID, String recipient)
getProvisioningCategories()
getProvisioningRequests(String recipient, String category, String operation)
getWork(String workId)
getWorkEntries(T_WorkEntryQuery query, int maxRecords)
start(String processId, String recipient, DataItemArray items)
startAsProxy(String processId, String recipient, DataItemArray items, String proxyUser)
424 NetIQ Identity Manager User Application: Administration Guide

startAsProxyWithDigitalSignature(String processId, String recipient, DataItemArray items,
String digitalSignature, SignaturePropertyArray digitalSignaturePropertyArray, String
proxyUser)
startWithCorrelationId(String processId, String recipient, DataItemArray items, String
digitalSignature, SignaturePropertyArray digitalSignaturePropertyArray, String proxyUser,
String correlationId)
startWithDigitalSignature(String processId, String recipient, DataItemArray items, String
digitalSignature, SignaturePropertyArray digitalSignaturePropertyArray)

All other methods for this service always require Provisioning Administrator credentials
independent of whether the WorkflowService/SOAP-End-Points-Accessible-By-
ProvisioningAdminOnly property is set to false.

18.1.3 Provisioning Web Service Method Categories
The methods provided by the provisioning Web service endpoint are divided into six categories:

Table 18-1 Provisioning Web Service Operation Categories

The methods provided by the provisioning Web service are described in detail in Section 18.3,
“Provisioning Web Service API,” on page 435.

18.2 Developing Clients for the Provisioning Web Service
This section includes the following topics:

Section 18.2.1, “Web Access to the Provisioning Web Service,” on page 426
Section 18.2.2, “A Java Client for the Provisioning Web Service,” on page 428
Section 18.2.3, “Developing a Mono Client,” on page 433

Category Description

Comments Methods for retrieving comments and for adding a
comment to a pending user activity

Configuration Methods for getting and setting configuration
parameters for the workflow system (for example,
timeouts, thread pool settings).

Miscellaneous Several unrelated methods (for example, for getting a
JPG with a provisioning request's topology, for getting
the XML definition of a provisioning request, and for
getting the XML for the request form).

Processes Methods for getting information about running and
completed workflow processes.

Provisioning Requests Methods for working with provisioning requests (for
example, listing available provisioning requests, listing
provisioning categories)

Work Entries Methods for retrieving and manipulating work entries
(items awaiting approval).
Provisioning Web Service 425

Section 18.2.4, “Sample Ant File,” on page 434
Section 18.2.5, “Sample Log4J File,” on page 435

18.2.1 Web Access to the Provisioning Web Service
A SOAP-based Web service is usually accessed by inserting a SOAP message in the body of an HTTP
Post request.The Web service toolkit used to build the provisioning Web service also supports access
using HTTP GET. In other words, you can open the URL of the Web service endpoint in a browser
and interact with the Web service. In particular, the provisioning Web service lets you invoke each of
its operations.

Accessing the Test Page
You can access the provisioning Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/provisioning/service?test

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/provisioning/service?test

The following page is displayed:

Figure 18-1 Web Service Test Page

You can also access the SOAP endpoint by going to the Administration within the User Application.
To do this, you need to select the Application Configuration tab, then select Web Services from the left-
navigation menu. After selecting Web Services, pick the Web Service endpoint you want from the list.
426 NetIQ Identity Manager User Application: Administration Guide

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment. For details on enabling the test page, see the instructions provided for the
Role Service in “Enabling the Test Page” on page 541.

Entering Arguments for Operations
To see an example of an operation that is particularly useful to invoke from the browser, scroll down
to the Miscellaneous section and click getGraph.

NOTE: The Graphviz program must be installed on the computer where the application server and
the IDM User Application is running. For more information about Graphviz, see Graphviz (http://
www.graphviz.org).

 A page is displayed that allows you to enter the parameters for the getGraph method.

Figure 18-2 Parameters for getGraph Method

The method takes one argument, which is the distinguished name of a provisioning request. Enter
the DN, and the underlying workflow is displayed as a JPG file..
Provisioning Web Service 427

http://www.graphviz.org

Figure 18-3 Output of getGraph

18.2.2 A Java Client for the Provisioning Web Service
This section describes how to develop a simple Java client for the provisioning Web service, which
lists all the processes in the workflow system. For complete source code for the client, see “Sample
Code for the Java Client” on page 431.

Prerequisites
To develop a Java client you must install a supported Java Developer’s Kit. Also, a client program
needs the following JAR files:

activation.jar
commons-httpclient.jar
IDMfw.jar
IDMrbac.jar
log4j.jar
saaj-api.jar
wssdk.jar
commons-codec-1.3.jar
commons-logging.jar
jaxrpc-api.jar
mail.jar
workflow.jar
xpp3.jar
428 NetIQ Identity Manager User Application: Administration Guide

Developing a Java Client
Developing a client that accesses a Web service consists of two steps:

Get the stub, which is the object that represents the remote service
Invoke one or more of the operations available in the remote service

The Java programming model for Web services is very similar to RMI. The first step is to lookup the
stub using JNDI:

InitialContext ctx = new InitialContext();
ProvisioningService service = (ProvisioningService)
ctx.lookup("xmlrpc:soap:com.novell.soa.af.impl.soap.ProvisioningService");
Provisioning prov = service.getProvisioningPort();

The first line of code creates the initial context for JNDI lookups. The second line looks up the service
object, which is a kind of factory that can be used to retrieve the stub for the provisioning Web
service. The last line gets the provisioning stub from the service.

Before invoking an operation on the provisioning stub, it is necessary to set some properties,
including the credentials used for authentication on the service, as well as the endpoint URL.

Stub stub = (Stub) prov;
// set username and password
stub._setProperty(Stub.USERNAME_PROPERTY, USERNAME);
stub._setProperty(Stub.PASSWORD_PROPERTY, PASSWORD);
// set the endpoint URL
stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, url);

These and other stub properties are described in more detail in “Frequently Used Stub Constants” on
page 430. Now that we have a fully configured stub, we can invoke the getAllProcesses operation
and dump information about each of the processes returned on the console:

// invoke the getAllProcesses method
ProcessArray array = prov.getAllProcesses();
Process[] procs = array.getProcess();
// print process array
System.out.println("list of all processes:");
if (procs != null) {
for (int i = 0; i < procs.length; i++) {
System.out.println(" process with request identifier " +
procs[i].getRequestId());
System.out.println(" initiator = " + procs[i].getInitiator());
System.out.println(" recipient = " + procs[i].getRecipient());
System.out.println(" processId = " + procs[i].getProcessId());
procs[i].getCreationTime().getTime());
if (null != procs[i].getCompletionTime()) {
System.out.println(" completed = " +
procs[i].getCompletionTime().getTime());
}
System.out.println(" approval status = " +
procs[i].getApprovalStatus());
System.out.println(" process status = " +
procs[i].getProcessStatus());
if (i != procs.length - 1)
System.out.println();
}
}

A method invocation on the stub results in a SOAP message being sent using the HTTP transport to
the provisioning Web service. For operations that have arguments, the stub takes care of marshaling
those Java objects into XML. The Web service returns a SOAP message, and the stub unmarshals the
XML, in this case converting it into a ProcessArray Java object.
Provisioning Web Service 429

Running the Client
The sample ANT build file has a target for running the client (see “Sample Ant File” on page 434).
The client needs the JAR files described in “Prerequisites” on page 428 to be in the CLASSPATH. You
can change the code to have a different default address for the provisioning Web service SOAP
endpoint, or simply specify it as a command line argument. For example:

ant -Durl=http://www.company.com:80/IDMProv/provisioning/service run

Frequently Used Stub Constants
The com.novell.soa.ws.portable.Stub class (which is part of WSSDK) supports several properties that
can be used to configure a stub instance (for example, to fine-tune aspects of the HTTP
communication). The following table lists a small subset of these properties, which are frequently
used:

Table 18-2 Provisioning Web Service Stub Constants

Property Type Description

ENDPOINT_ADDRESS_PROPERTY java.lang.String The URL of the Web service. The URL protocol
scheme can be HTTP or HTTPS depending on
the requirements of the server. The path portion
should be:

/IDMProv/provisioning/service

HTTP_HEADERS java.util.Map Additional HTTP headers as String name/value
pairs.

HTTP_TIME_OUT java.lang.Integer The number of milliseconds to wait to establish a
connection to the host before timing out.

HTTP_MAX_TOTAL_CONNECTIONS java.lang.Integer The number of concurrent connections that this
client program can establish to all server hosts it
accesses. The default limit is 20.

HTTP_MAX_HOST_CONNECTIONS java.lang.Integer The number of concurrent connections this client
program can establish to an individual server
host. The default limit is 2. This value may not
exceed that of
HTTP_MAX_TOTAL_CONNECTIONS, so if a client
requires more than 20 connections to the server,
it must also set
HTTP_MAX_TOTAL_CONNECTIONS to the
desired value.

USERNAME java.lang.String The user ID for HTTP authentication.

PASSWORD java.lang.String The password for HTTP authentication.

HTTP_PROXY_HOST java.lang.String The host DNS name of a proxy. Setting this
property requires setting HTTP_PROXY_PORT
as well.

HTTP_PROXY_PORT java.lang.Integer The port to use on a proxy. Setting this property
requires setting HTTP_PROXY_HOST as well.

HTTP_PROXY_AUTH_SCHEME java.lang.Integer The authentication scheme (Basic or Digest) to
use for a proxy.
430 NetIQ Identity Manager User Application: Administration Guide

The TCP Tunnel
The TCP Tunnel is a useful tool for looking at the SOAP messages that are exchanged between a
client and a server. The ANT build file (see “Sample Ant File” on page 434) has a target for starting
the tunnel. Once the tunnel starts you need to enter the port on which the tunnel will listen, and the
host/port of the remote Web service. The default settings cause the tunnel to listen on port 9999 and
connect to a service running on localhost port 8080. The client program (see “Developing a Java
Client” on page 429) uses the first command line parameter to set the
ENDPOINT_ADDRESS_PROPERTY. Using the default values, you can run the client using the
following command, after starting the tunnel:

ant -Durl=http://localhost:9999/IDMProv/provisioning/service run

Figure 18-4 shows the TCP tunnel with a request SOAP message in the left panel and the message in
the right panel.

Figure 18-4 TCP Tunnel

Sample Code for the Java Client
The following is the code for the Java client for listing all processes in the workflow system

HTTP_PROXY_USERNAME java.lang.String The user ID for HTTP authentication using a
proxy.

HTTP_PROXY_PASSWORD java.lang.String The password for HTTP authentication via proxy.

Property Type Description
Provisioning Web Service 431

package com.novell.examples;
import javax.naming.InitialContext;
import com.novell.soa.af.impl.soap.AdminException;
import com.novell.soa.af.impl.soap.Process;
import com.novell.soa.af.impl.soap.ProcessArray;
import com.novell.soa.af.impl.soap.Provisioning;
import com.novell.soa.af.impl.soap.ProvisioningService;
import com.novell.soa.ws.portable.Stub;
public class Client
{
private static final String USERNAME = "admin";
private static final String PASSWORD = "test";
public static void main(String[] args)
{
try {
String url = args.length > 0 ? args[0] :
"http://localhost:8080/IDMProv/provisioning/service";
listProcesses(url);
} catch (AdminException ex) {
System.out.println("command failed: " + ex.getReason());
} catch (Exception ex) {
ex.printStackTrace();
}
}
private static void listProcesses(String url)
throws Exception
{
// get the stub
InitialContext ctx = new InitialContext();
ProvisioningService service = (ProvisioningService)
ctx.lookup("xmlrpc:soap:com.novell.soa.af.impl.soap.ProvisioningService");
Provisioning prov = service.getProvisioningPort();
Stub stub = (Stub) prov;
// set username and password
stub._setProperty(Stub.USERNAME_PROPERTY, USERNAME);
stub._setProperty(Stub.PASSWORD_PROPERTY, PASSWORD);
// set the endpoint URL
stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, url);
// invoke the getAllProcesses method
ProcessArray array = prov.getAllProcesses();
Process[] procs = array.getProcess();
// print process array
System.out.println("list of all processes:");
if (procs != null) {
for (int i = 0; i < procs.length; i++) {
System.out.println(" process with request identifier " +
procs[i].getRequestId());
System.out.println(" initiator = " + procs[i].getInitiator());
System.out.println(" recipient = " + procs[i].getRecipient());
System.out.println(" processId = " + procs[i].getProcessId());
System.out.println(" created = " +
procs[i].getCreationTime().getTime());
if (null != procs[i].getCompletionTime()) {
System.out.println(" completed = " +
procs[i].getCompletionTime().getTime());
}
System.out.println(" approval status = " +
procs[i].getApprovalStatus());
System.out.println(" process status = " +
procs[i].getProcessStatus());
if (i != procs.length - 1)
System.out.println();
}
}
}
}

432 NetIQ Identity Manager User Application: Administration Guide

18.2.3 Developing a Mono Client
The previous section described how to create a Java client using the Web service toolkit and the pre-
compiled stub code included with Identity Manager. This section describes how to develop a client
using just the WSDL for the provisioning Web service. This example uses Mono and creates a C#
client that changes the default retention time of 120 days for completed workflows to 30.

Prerequisites
To get started, you need to download Mono and install it on your system (see the Mono Project
Website (http://www.mono-project.com/)). The version of Mono available at the time this document
was written did not support complex schema types in which an element has the nillable attribute set
to true. Because this construct is used in the provisioning WSDL, you must manually edit the
Provisioning.WSDL file and remove the three places where nillable="true" is used.

Generating the Stub
Compared to the Java client developed in “Developing a Java Client” on page 429, there is one
additional step required when building the C# client. Since the stub for accessing the Web service
SOAP endpoint is not provided, you must generate the stub from the WSDL document. Mono
includes a compiler called wsdl that processes the WSDL file and creates the stub. You can download
the WSDL file from your User Application server by accessing the following URL:

http://myserver:8080/IDMProv/provisioning/service?wsdl

Replace “myserver” with the name of your server, and “IDMProv” with the name of your User
Application war file.

Compile the WSDL file using the following command:

wsdl Provisioning.wsdl

This will generate a C# file called ProvisioningService.cs, which you need to compile into a DLL
using the following Mono C# compiler command:

mcs /target:library /r:System.Web.Services.dll ProvisioningService.cs

Compared to the Java client, the resulting ProvisioningService.dll file is the equivalent of
workflow.jar, which contains the stub code and supporting classes for accessing the provisioning
Web service. The following is the source code for the simple C# client that sets the flow retention time
and displays the new value on the console:
Provisioning Web Service 433

http://www.mono-project.com/
http://www.mono-project.com/

using System;
using System.Net;
class provclient {
public static void Main(string [] args) {
// create the provisioning service proxy
ProvisioningService service = new ProvisioningService();
// set the credentials for basic authentication
service.Credentials = new NetworkCredential("admin", "test");
service.PreAuthenticate = true;
// set the value for completed request retention to 30 days
setCompletedProcessTimeoutRequest req = new
setCompletedProcessTimeoutRequest();
req.arg0 = 30;
service.setCompletedProcessTimeout(req);
// display the new value on the console
getCompletedProcessTimeoutResponse res = service.getCompletedProcessTimeout(new
getCompletedProcessTimeoutRequest());
Console.WriteLine(res.result);
}
}

You need to edit the file using the administrator credentials on your deployed Identity Manager
system. Compile the client using the following command:

mcs /r:ProvisioningService.dll /r:System.Web provclient.cs

This generates the provclient.exe file.

Running the Client
Use the following command to run the client:

mono provclient.exe

18.2.4 Sample Ant File
The sample Ant file includes useful targets for extracting the necessary JAR files from the Identity
Manager installation, compiling and running the Java client, and for launching the TCP Tunnel.

<?xml version="1.0"?>
<project name="client" default="all" basedir=".">
<target name="all" depends="clean, extract, compile"></target>
<!-- main clean target -->
<target name="clean">
<delete quiet="true" dir="classes"/>

<delete quiet="true" dir="lib"/>
</target>
<!-- init sets up the build environment -->
<target name="init">
<mkdir dir="classes"/>
<copy todir="${basedir}/lib">
<fileset dir="${basedir}" includes="log4j.properties"/>
</copy>
<!-- classpath -->
<path id="CLASSPATH">
<pathelement location="${basedir}/classes"/>
<fileset dir="${basedir}/lib" includes="*.jar"/>
</path>
</target>
<!-- extract -->
<target name="extract">
<property name="idm.home" value="/opt/novell/idm3"/>
<property name="jboss.lib" value="${idm.home}/jboss-4.0.3/server/IDMProv/lib"/>
<mkdir dir="lib"/>
<unzip src="${idm.home}/IDMProv.war" dest="${basedir}/lib">
434 NetIQ Identity Manager User Application: Administration Guide

<patternset>
<include name="WEB-INF/lib/commons-codec-1.3.jar"/>
<include name="WEB-INF/lib/commons-httpclient.jar"/>
<include name="WEB-INF/lib/commons-logging.jar"/>
<include name="WEB-INF/lib/jaxrpc-api.jar"/>
<include name="WEB-INF/lib/saaj-api.jar"/>
<include name="WEB-INF/lib/xpp3.jar"/>
<include name="WEB-INF/lib/workflow.jar"/>
<include name="WEB-INF/lib/wssdk.jar"/>
<include name="WEB-INF/lib/IDMfw.jar"/>
</patternset>
</unzip>
<move todir="${basedir}/lib">
<fileset dir="${basedir}/lib/WEB-INF/lib" includes="*.jar"/>
</move>
<delete quiet="true" dir="${basedir}/lib/WEB-INF"/>
<copy todir="${basedir}/lib">
<fileset dir="${jboss.lib}" includes="activation.jar, mail.jar, log4j.jar"/>
</copy>
</target>
<!-- tunnel -->
<target name="tunnel" depends="init">
<java classname="com.novell.soa.ws.impl.tools.tcptunnel.Tunnel" fork="true"
spawn="true">
<classpath refid="CLASSPATH"/>
</java>
</target>
<!-- compile -->
<target name="compile" depends="init">
<javac srcdir="${basedir}" destdir="classes"
includes="Client.java">
<classpath refid="CLASSPATH"/>
</javac>
</target>
<!-- run -->
<target name="run" depends="init">
<property name="url" value="http://localhost:8080/IDMProv/provisioning/service"/>
<java classname="com.novell.examples.Client" fork="true">
<arg line="${url}"/>
<classpath refid="CLASSPATH"/>
</java>
</target>
</project>

18.2.5 Sample Log4J File
The following log4j file sets the default log level to “error”:

log4j.rootCategory=ERROR, R
log4j.appender.R=org.apache.log4j.ConsoleAppender
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%-5p: %m%n

18.3 Provisioning Web Service API
This section provides details about the Provisioning Web service methods.

All of the methods throw com.novell.soa.af.impl.soap.AdminException and
java.rmi.RemoteException. To improve readability, the throws clause has been omitted from the
method signatures.
Provisioning Web Service 435

This section includes the following topics:

Section 18.3.1, “Processes,” on page 436
Section 18.3.2, “Provisioning,” on page 445
Section 18.3.3, “Work Entries,” on page 456
Section 18.3.4, “Comments,” on page 471
Section 18.3.5, “Configuration,” on page 476
Section 18.3.6, “Miscellaneous,” on page 480
Section 18.3.7, “Cluster,” on page 484

18.3.1 Processes
This section provides reference information for each Processes method. The methods include:

“getProcessesByQuery” on page 436
“getProcessesByStatus” on page 437
“getProcesses” on page 437
“getAllProcesses” on page 438
“getProcessesArray” on page 439
“getProcessesById” on page 440
“terminate” on page 440
“getProcess” on page 441
“getProcessesByCreationTime” on page 442
“getProcessesByApprovalStatus” on page 443
“getProcessesByRecipient” on page 443
“getProcessesByInitiator” on page 443
“setResult” on page 443
“getProcessesByCreationInterval” on page 445

getProcessesByQuery
Used to get information about processes.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray
getProcessesByQuery(com.novell.soa.af.impl.soap.T_ProcessInfoQuery query, int
maxRecords)
436 NetIQ Identity Manager User Application: Administration Guide

Example
 //

 // Query information about processes for a user that are running and
 // have not been approved yet.
 String logic = "AND";
 T_ProcessInfoOrder order = T_ProcessInfoOrder.APPROVAL_STATUS;
 int CHOICE_SIZE = 4;
 Integer approvalStatusInteger = new Integer(ProcessConstants.PROCESSING);
 Integer processStatusInteger = new Integer(ProcessConstants.RUNNING);
 //
 // Setup the query with the above params
 T_ProcessInfoQueryChoice [] choice = new
T_ProcessInfoQueryChoice[CHOICE_SIZE];
 choice[0] = new T_ProcessInfoQueryChoice();
 choice[0].setApprovalStatus(approvalStatusInteger);
 choice[1] = new T_ProcessInfoQueryChoice();
 choice[1].setProcessStatus(processStatusInteger);
 choice[2] = new T_ProcessInfoQueryChoice();
 choice[2].setRecipient(recipient);
 choice[3] = new T_ProcessInfoQueryChoice();
 choice[3].setRequestId(requestId);

 int maxRecords = -1;
 T_ProcessInfoQuery processInfoQuery =
 new T_ProcessInfoQuery(T_Logic.fromString(logic), order, choice);
 ProcessArray processArray = stub.getProcessesByQuery(processInfoQuery,
maxRecords);

getProcessesByStatus
Used to get information about processes with a specified status (for example, running processes).

Method Signature
public com.novell.soa.af.impl.soap.ProcessArray
getProcessesByStatus(com.novell.soa.af.impl.soap.T_ProcessStatus status)

Example
 T_ProcessStatus processStatus = T_ProcessStatus.Running;
 //
 // Get processes by status
 ProcessArray processArray = stub.getProcessesByStatus(processStatus);
 Process [] process = processArray.getProcess();

getProcesses
Used to get information about processes, specified by processID.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcesses(java.lang.String id, long
time,com.novell.soa.af.impl.soap.T_Operator op, java.lang.String initiator,
java.lang.String recipient)
Provisioning Web Service 437

Parameters

Example
 int processMatchCount = 0;
 T_Operator operator = T_Operator.GT;
 long currentTimeInMillis = System.currentTimeMillis();
 String [] requestIds = requestIdArray.getString();
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();

 ProcessArray processArray = stub.getProcesses(processId,
currentTimeInMillis, operator, initiator, recipient);
 }

getAllProcesses
Used to get information about all running and completed provisioning requests.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getAllProcesses()

Parameter Description

processId The process Id (java.lang.String).

creationTime The time at which the process was started (long).

op The operator to use. The operators are:

EQ - equals
LT - less than
LE - less than or equal to
GT - greater than
GE - greater than or equal to

initiator The initiator of the workflow.

recipient The recipient of the approval activity.
438 NetIQ Identity Manager User Application: Administration Guide

Example
 ProcessArray array = stub.getAllProcesses();
 Process [] processes = array.getProcess();
 if(_process != null)
 {
 sb = new StringBuffer();
 sb.append("\nProcess List:");
 for(int index = 0; index < _process.length; index++)
 {
 String processId = _process[index].getProcessId();
 String approvalStatus = _process[index].getApprovalStatus();
 Calendar completionTime = _process[index].getCompletionTime();
 Calendar creationTime = _process[index].getCreationTime();
 String engineId = _process[index].getEngineId();
 String proxy = _process[index].getProxy();
 String initiator = _process[index].getInitiator();
 String processName = _process[index].getProcessName();
 String processStatus = _process[index].getProcessStatus();
 String p_recipient = _process[index].getRecipient();
 String p_requestId = _process[index].getRequestId();
 int valueOfapprovalStatus = _process[index].getValueOfApprovalStatus();
 int valueOfprocessStatus = _process[index].getValueOfProcessStatus();
 String version = _process[index].getVersion();
 }

getProcessesArray
Used to limit the number of processes returned. If the limit you specify is less than the system limit,
the number you specify is returned. If you exceed the system limit, the Workflow Engine returns the
system limit. If the limit you specify is less than or equal to 0, the Workflow Engine returns all
processes.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesArray(int maxRecords);

Example
 /**
 * Method to augment the getAllProcesses() method that impose limits
 * on the number of processes returned.
 * @throws TestProgramException
 */
 public void adding_Limits_To_getProcessArray_TestCase()
 throws TestProgramException
 {
 String recipient =
ServiceUtils.getInstance().getLoginData().getUsername(LoginData.RECIPIENT_TYPE);
 String requestNameToStart =
provUtils.getProvisioningResourceNameForRecipient(recipient,
 "Enable Active Directory");
 //
 // Get the stub
 Provisioning stub = ServiceUtils.getInstance().getProvisioningStub();
 try
 {
 //
 // Start multiple requests
 final int NUMBER_OF_REQUESTS_TO_START = 2;

 Map map = MapUtils.createAndSetMap(new Object[] {
 Helper.RECIPIENT, recipient,

IProvisioningConstants.PROVISIONING_REQUEST_TO_START, requestNameToStart});
Provisioning Web Service 439

 //
 // Start request(s)
 StringArray requestIdArray =
 provUtils.startMultipleProvisioningRequests(map, null,
NUMBER_OF_REQUESTS_TO_START);
 LoggerUtils.sleep(3);
 LoggerUtils.sendToLogAndConsole("Started " +
NUMBER_OF_REQUESTS_TO_START + " provisioning requests");
 //
 // New method to limit the number of processes returned
 //
 // Test Results : maxProcesses <= 0 returns all processes
 // maxProcesses up to system limit returns maxProcess
count
 // maxProcesses > system limit returns system limit
 int maxProcesses = 10;
 ProcessArray processArray = stub.getProcessesArray(maxProcesses);
 Process [] processes = processArray.getProcess();
 if(processes != null)
 {
 LoggerUtils.sendToLogAndConsole("Process count returned: " +
processes.length);
 Assert.assertEquals("Error: Processes returned shouldn't exceed max
count.",
 maxProcesses, processes.length);
 }
 }
 catch(AdminException error)
 {
 RationalTestScript.logError(error.getReason());
 throw new TestProgramException(error.getReason());
 }
 catch(RemoteException error)
 {
 RationalTestScript.logError(error.getMessage());
 throw new TestProgramException(error.getMessage());
 }
 }

getProcessesById
Used to get information about a specific process, specified by the Process Id.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesById(java.lang.String id)

Example
 Process [] allProcesses = stub.getAllProcesses().getProcess();
 if(allProcesses != null)
 {
 String processId = allProcesses[0].getProcessId;
 ProcessArray array = stub.getProcessesById(processId);
 Process [] processes = array.getProcess();
 }

terminate
Used to terminate a running provisioning request.
440 NetIQ Identity Manager User Application: Administration Guide

Method Signature
void terminate(java.lang.String requestId,
com.novell.soa.af.impl.soap.T_TerminationType state, java.lang.String comment)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Now retract the request
 T_TerminationType terminationType = T_TerminationType.RETRACT;
 stub.terminate(requestId, terminationType, terminationType.getValue() + " the
request");

getProcess
Used to get information about a running or completed provisioning request, specified by Request ID.

Method Signature
com.novell.soa.af.impl.soap.Process getProcess(java.lang.String requestId)

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request

Parametere Description

requestId The Id of the provisioning request.

state The reason for terminating the process. The choices
are:

RETRACT

ERROR

comment Adds a comment about the terminate action.
Provisioning Web Service 441

 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 boolean bMatchProcess = false;
 if((recipient.compareTo(process.getRecipient()) == 0) &&
(requestId.compareTo(process.getRequestId()) == 0))
 {
 bMatchProcess = true;
 }
 if(bMatchProcess)
 {
 String msg = "Found process with requestId : " + requestId;
 LoggerUtils.sendToLogAndConsole(msg);
 }
 //
 // Assert if we could not find a match
 Assert.assertTrue("Could not find process with request id: " + requestId,
bMatchProcess);
 }

getProcessesByCreationTime
Used to get information about processes created between the current time and the time at which the
workflow process was created.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesByCreationTime(long time,
com.novell.soa.af.impl.soap.T_Operator op)

Parameters

Example
 T_Operator operator = T_Operator.GT;
 //
 // Get processes with operator relative to the current time
 long currentTime = System.currentTimeMillis();//currentDateTime.getTime();
 ProcessArray processArray = stub.getProcessesByCreationTime(currentTime,
operator);

Parameter Description

creationTime The time at which the process was started.

op The operator to use. The operators are:

EQ - equals
LT - less than
LE - less than or equal to
GT - greater than
GE - greater than or equal to
442 NetIQ Identity Manager User Application: Administration Guide

getProcessesByApprovalStatus
Used to get information about processes with a specified approval status (Approved, Denied, or
Retracted).

Method Signature
com.novell.soa.af.impl.soap.ProcessArray
getProcessesByApprovalStatus(com.novell.soa.af.impl.soap.T_ApprovalStatus status)

Example
 T_ApprovalStatus approvalStatus = T_ApprovalStatus.Approved;
 //
 // Get all the processes based upon approval status above
 ProcessArray processArray = stub.getProcessesByApprovalStatus(approvalStatus);
 Process [] processes = processArray.getProcess();

getProcessesByRecipient
Used to get information about processes that have a specific recipient Id.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesByRecipient(java.lang.String
recipient)

Example
 String recipient = "cn=ablake,ou=users,ou=idmsample-komodo,o=novell";

 //
 // Get processes by recipient
 ProcessArray processArray = stub.getProcessesByRecipient(recipient);
 Process [] process = processArray.getProcess();

getProcessesByInitiator
Used to get information about processes that have a specific initiator Id.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesByInitiator(java.lang.String
initiator)

Example
 String initiator = "cn=admin,ou=idmsample-komodo,o=novell";

 //
 // Get processes by initiator
 ProcessArray processArray = stub.getProcessesByInitiator(initiator);
 Process [] process = processArray.getProcess();

setResult
Used to set the entitlement result (approval status) of a previously completed provisioning request.
Provisioning Web Service 443

Method Signature
void setResult(java.lang.String requestId,
com.novell.soa.af.impl.soap.T_EntitlementState state,
com.novell.soa.af.impl.soap.T_EntitlementStatus status, java.lang.String message)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if (process != null)
 processId = process.getProcessId();
 //
 // Reset the state of the provisioning request
 T_EntitlementState newEntitlementState =
T_EntitlementState.Revoked;
 T_EntitlementStatus newEntitlementStatus = T_EntitlementStatus.Success;
 String comment = "Revoked the provisioning request";
 stub.setResult(processId, newEntitlementState, newEntitlementStatus, comment);

Parameter Description

requestId The Id of the provisioning request.

state The state of the provisioning request. The possible
values are:

Unknown
Granted
Revoked

status The status of the provisioning request. The possible
values are:

Unknown
Success
Warning
Error
Fatal
Submitted

message A message about the entitlement result.
444 NetIQ Identity Manager User Application: Administration Guide

getProcessesByCreationInterval
Used to get information about processes started between two specified times.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesByCreationInterval(long
start, long end)

Parameters

Example
 long startTime = System.currentTimeMillis();
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

 long endTime = System.currentTimeMillis();
 //
 // Get all the processes between the start and end time ProcessArray
processArray = stub.getProcessesByCreationInterval(startTime, endTime);
 Process [] processes = processArray.getProcess();

18.3.2 Provisioning
This section provides reference information for each Provisioning method. The Provisioning
methods include:

“multiStart” on page 446
“start” on page 447
“getAllProvisioningRequests” on page 449
“getProvisioningRequests” on page 449
“getProvisioningCategories” on page 450
“startAsProxy” on page 450
“getProvisioningStatuses” on page 451
“startWithDigitalSignature” on page 453
“startAsProxyWithDigitalSignature” on page 454
“startWithCorrelationId” on page 455

Parameter Description

startTime The start time (YYYY/MM/DD).

endTime The end time (YYYY/MM/DD).
Provisioning Web Service 445

multiStart
Used to start a workflow request for each specified recipient.

Method Signature
com.novell.soa.af.impl.soap.StringArray multiStart(java.lang.String processId,
com.novell.soa.af.impl.soap.StringArray recipients,
com.novell.soa.af.impl.soap.DataItemArray items)

Parameters

Example
 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);

 //
 // If there are some then,
 if(requestArray != null)
 {
 String Id = " ";
 StringArray requestIdStringArray = null;
 String [] listOfRecipients = {recipient, addressee};
 //
 // Select a provisioning resource
 String requestNameToStart = "Enable Active Directory Account (Mgr Approve-
No Timeout)";
 //
 // Loop thru and find the request that we want to start
 ProvisioningRequest [] requests = requestArray.getProvisioningrequest();
 for(int index = 0; index < requests.length; index++)
 {
 //
 // Is this the name of the request to start?
 if(requests[index].getName().compareTo(requestNameToStart) == 0)
 {
 //
 // Get the current associated data items. Replicate a new
 // dataitem array excluding the null values.
 Id = requests[index].getId();
 DataItem [] dataItem = requests[index].getItems().getDataitem();
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 {
 DataItemArray newDataItemArray =

Parameter Description

processId The Id of the provisioning request to start.

recipients The DN of each recipient.

dataItem The list of data items for the provisioning request.
446 NetIQ Identity Manager User Application: Administration Guide

provUtils.replicateDataItemArray(dataItem);
 //
 // Create a string array initializing with multiple recipients
 StringArray listOfRecipientsStringArray = new
StringArray(listOfRecipients);
 //
 // Start the request for multiple recipients
 logStep("Calling stub.multiStart(" + Id +
",listOfRecipientsStringArray,newDataItemArray)");
 requestIdStringArray = stub.multiStart(Id,
listOfRecipientsStringArray, newDataItemArray);
 }
 }
}

start
Used to start a provisioning request.

Method Signature
java.lang.String start(java.lang.String processId, java.lang.String recipient,
com.novell.soa.af.impl.soap.DataItemArray items)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

The example above calls the startProvisioningRequest method. This method is not part of the IDM
User Application. We show it here to finish illustrating the example:

Parameter Description

processId The Id of the provisioning request to start.

recipient The DN of each recipient.

dataItem The list of data items for the provisioning request.
Provisioning Web Service 447

 /**
 *Method to start a provisioning request using the supplied
 *Map and dataitem object. Handling of digital certificate
 *resources is also handled.
 * @param _map
 * @param _in_dataItem
 * @return String
 * @throws TestProgrammException
 */
 public String startProvisioningRequest(Map _map, DataItem []
 _in_dataItem) throws TestProgramException
 {
 String requestId = null;
 try
 {
 String recipient =(String)_map.get(Helper.RECIPIENT);
 String requestToStart =
(String)_map.get(IProvisioningConstants.PROVISIONING_REQUEST_TO_START);
 String proxyUser =(String)_map.get(IWorkFlowConstants.PROXY_USER);
 String digitalSignature =
String)_map.get(IDigitalSignatureConstants.DIGITAL_SIGNATURE);
 RationalTestScript.logInfo("Step: Calling
startProvisioningRequest(_map)");
 //
 //Get the stub
 Provisioning stub = ServiceUtils.getInstance().getProvisioningStub();
 //
 //Get all the available resource requests for the recipient
 RationalTestScript.logInfo("Step: Calling stub.getAllProvisioningRequests("
+ recipient + ")");
 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);

 if(requestArray != null)
 {
 //
 //Get the provisioning request from the array
 ProvisioningRequest request =
getProvisioningRequestFromArray(requestArray, requestToStart);
 if(request != null)
 {
 DataItem [] dataItem = null;
 DataItemArray newDataItemArray = null;
 //
 // If the supplied data item is null then just replicate
 // what currently exists with the request.
 if(_in_dataItem == null)
 {
 //
 // Use the current data item associated with the request
 dataItem = request.getItems().getDataitem();
 if(dataItem != null)
 {
 newDataItemArray = replicateDataItemArray(dataItem);
 }
 }
 else
 {
 //
 // Set the incoming data item array
 newDataItemArray = new DataItemArray();
 newDataItemArray.setDataitem(_in_dataItem);
 }
448 NetIQ Identity Manager User Application: Administration Guide

 //
 // Start the Provisioning request for the recipient
 if(proxyUser == null && digitalSignature == null)
 {
 RationalTestScript.logInfo("Step: Calling stub.start(" +
request.getId() + "," + recipient + "dataItemArray)");
 requestId = stub.start(
 request.getId(),
 recipient,
 newDataItemArray);
 }
 else if(proxyUser != null && digitalSignature == null)
 }
 .

 .
 .

getAllProvisioningRequests
Used to return an array of available provisioning requests.

Method Signature
com.novell.soa.af.impl.soap.ProvisioningRequestArray
getAllProvisioningRequests(java.lang.String recipient)

Example
 //

 // Get all the provisioning requests for this recipient

 ProvisioningRequestArray provReqArray =
stub.getAllProvisioningRequests(recipient);
 ProvisioningRequest [] provRequest = provReqArray.getProvisioningrequest();
 if(provRequest != null)
 {
 String description = provRequest[0].getDescription();
 String category = provRequest[0].getCategory();
 String digitialSignatureType = provRequest[0].getDigitalSignatureType();
 String requestId = provRequest[0].getId();
 DataItemArray itemArray = provRequest[0].getItems();
 String legalDisclaimer = provRequest[0].getLegalDisclaimer();
 String name = provRequest[0].getName();
 String operation = provRequest[0].getOperation();
 }

getProvisioningRequests
Used to return an array of provisioning requests for a specified category and operation.

Method Signature
com.novell.soa.af.impl.soap.ProvisioningRequestArray
getProvisioningRequests(java.lang.String recipient, java.lang.String category,
java.lang.String operation)
Provisioning Web Service 449

Parameters

Example
 String operation = IProvisioningRequest.GRANT;
 try
 {
 //
 // Get the stub
 Provisioning stub = ServiceUtils.getInstance().getProvisioningStub();
 logStep("Calling stub.getProvisioningCategories()");
 StringArray categoriesStringArray = stub.getProvisioningCategories();
 String [] categories = categoriesStringArray.getString();
 //
 // Loop thru and get the provisioning requests for each category
 for(int index = 0; index < categories.length; index++)
 {
 //
 // Get the provisioning request based upon recipient
 logStep("Calling stub.getProvisioningRequests(" + recipient + "," +
categories[index] + "," + operation + ")");
 ProvisioningRequestArray provRequestArray =
stub.getProvisioningRequests(recipient, categories[index], operation);
 ProvisioningRequest [] provRequests =
provRequestArray.getProvisioningrequest();
 }

getProvisioningCategories
Used to get the list of available provisioning categories.

Method Signature
com.novell.soa.af.impl.soap.StringArray getProvisioningCategories()

Example
 StringArray categoriesStringArray = stub.getProvisioningCategories();
 String [] categories = categoriesStringArray.getString();

startAsProxy
Used to start a workflow as a proxy.

Method Signature
java.lang.String startAsProxy(java.lang.String processId, java.lang.String
recipient, com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String
proxyUser)

Parameter Description

recipient The recipient of the provisioning request.

category The category of the provisioning request.

operation The provisioning request operation
(0=Grant,1=Revoke, 2=Both)
450 NetIQ Identity Manager User Application: Administration Guide

Parameters

Example
 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);
 //
 // If there are some then,
 if(requestArray != null)
 {
 String Id = " ";
 String requestId = " ";
 String requestNameToStart = "Enable Active Directory Account (Mgr Approve-
No Timeout)";
 //
 // Loop thru and find the request that we want to start
 ProvisioningRequest [] requests = requestArray.getProvisioningrequest();
 for(int index = 0; index < requests.length; index++)
 {
 //
 // Is this the name of the request to start?
 if(requests[index].getName().compareTo(requestNameToStart) == 0)
 {
 //
 // Get the current associated data items. Replicate a new
 // dataitem array excluding the null values.
 Id = requests[index].getId();
 DataItem [] dataItem = requests[index].getItems().getDataitem();
 if(dataItem != null)
 {
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 DataItemArray newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 //
 // Start the Provisioning request for the recipient
 logStep("Calling stub.startAsProxy(" + Id + "," + recipient +
",newDataItemArray," + proxyUser + ")");
 requestId = stub.startAsProxy(Id, recipient, newDataItemArray,
proxyUser);
 }
 }
 }
 }

getProvisioningStatuses
Used to get the status of provisioning requests.

Parameter Description

processId The Id of the provisioning request.

recipient The recipient of the provisioning request.

Items The data items for the provisioning request.

proxyUser The DN of the proxy user.
Provisioning Web Service 451

Method Signature
com.novell.soa.af.impl.soap.ProvisioningStatusArray
getProvisioningStatuses(com.novell.soa.af.impl.soap.T_ProvisioningStatusQuery
query, int maxRecords)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 //
 T_ProvisioningStatusQueryChoice [] choice = new

Parameter Description

query Used to specify the provisioning status query. The
query has the following components:

choice - the parameters used to filter the
results. You can specify multiple parameters. The
possible parameters are:

Recipient - a DN
RequestID
ActivityID
Status (an integer)
State (an integer)
ProvisioningTime (YYYY/MM/DD)
ResultTime (YYYY/MM/DD)

logic - AND or OR

order - the order in which to sort the results.
Possible values for order are:

ACTIVITY_ID
RECIPIENT
PROVISIONING_TIME
RESULT_TIME
STATE
STATUS
REQUEST_ID
MESSAGE

maxRecords Used to specify maximum number of records to
retrieve. A value of -1 returns unlimited records.
452 NetIQ Identity Manager User Application: Administration Guide

T_ProvisioningStatusQueryChoice[3];
 choice[0] = new T_ProvisioningStatusQueryChoice();
 choice[0].setRecipient(recipient);
 choice[1] = new T_ProvisioningStatusQueryChoice();
 choice[1].setRequestId(requestId);
 choice[2] = new T_ProvisioningStatusQueryChoice();
 choice[2].setStatus(new Integer(ProcessConstants.PROCESSING));
 //
 // Initialize the query
 T_ProvisioningStatusQuery query = new T_ProvisioningStatusQuery(T_Logic.AND,
T_ProvisioningStatusOrder.STATUS, choice);
 //
 // Make the query
 StringBuffer sb = new StringBuffer();
 int maxRecords = -1;

 ProvisioningStatusArray provStatusArray = stub.getProvisioningStatuses(query,
maxRecords);

startWithDigitalSignature
Used to start a workflow and specify that a digital signature is required.

Method Signature
java.lang.String startWithDigitalSignature(java.lang.String processId,
java.lang.String recipient, com.novell.soa.af.impl.soap.DataItemArray items,
java.lang.String digitalSignature,
com.novell.soa.af.impl.soap.SignaturePropertyArray digitalSignaturePropertyArray)

Parameters

Example
 String recipient =
ServiceUtils.getInstance().getLoginData().getUsername(LoginData.RECIPIENT_TYPE);
 //
 // Get the digital signature string for admin
 String digitalSignature =
DigitalSignatureUtils.getDigitalSignatureFromFile(IDigitalSignatureConstants.ADMIN
_DIGITAL_SIGNATURE_FILENAME);

 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);
 //
 // If there are some then,

 if(requestArray != null)
 {
 String Id = " ";
 String requestId = " ";

Parameter Description

processId The request identifier.

recipient The request recipient.

items The data items for the provisioning request.

digital signature The digital signature.

digitalSignaturePropertyArray. The digital signature property map.
Provisioning Web Service 453

 String requestNameToStart = "Enable Active Directory Account (Mgr Approve-
No Timeout)";
 //
 // Loop thru and find the request that we want to start
 ProvisioningRequest [] requests = requestArray.getProvisioningrequest();
 for(int index = 0; index < requests.length; index++)
 {
 //
 // Is this the name of the request to start?
 if(requests[index].getName().compareTo(requestNameToStart) == 0)
 {
 //
 // Get the current associated data items. Replicate a new
 // dataitem array excluding the null values.
 Id = requests[index].getId();
 DataItem [] dataItem = requests[index].getItems().getDataitem();
 if(dataItem != null)
 {
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 DataItemArray newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 //
 // Start a digitally signed provisioning resource for the
recipient
 requestId = stub.startWithDigitalSignature(request.getId(),
recipient, newDataItemArray, digitalSignature, null); // Don't get any property
values (optional)
 }
 }
 }
 }

startAsProxyWithDigitalSignature
Used to start a workflow using a proxy for the initiator, and specify that a digital signature is
required.

Method Signature
java.lang.String startAsProxyWithDigitalSignature(java.lang.String processId,
java.lang.String recipient, com.novell.soa.af.impl.soap.DataItemArray items,
java.lang.String digitalSignature,
com.novell.soa.af.impl.soap.SignaturePropertyArray digitalSignaturePropertyArray,
java.lang.String proxyUser)

Parameters

Parameter Description

processId The request identifier.

recipient The request recipient.

items The data items for the provisioning request.

digital signature The digital signature.

digitalSignaturePropertyArray. The digital signature property map.

proxyUser The DN of the proxy user.
454 NetIQ Identity Manager User Application: Administration Guide

Example
 //
 // Get the digital signature string for admin
 String digitalSignature =
DigitalSignatureUtils.getDigitalSignatureFromFile(IDigitalSignatureConstants.ADMIN
_DIGITAL_SIGNATURE_FILENAME);

 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);
 //
 // If there are some then,
 if(requestArray != null)
 {
 String Id = " ";
 String requestId = " ";
 String requestNameToStart = "Enable Active Directory Account (Mgr Approve-
No Timeout)";
 //
 // Loop thru and find the request that we want to start
 ProvisioningRequest [] requests = requestArray.getProvisioningrequest();
 for(int index = 0; index < requests.length; index++)
 {
 //
 // Is this the name of the request to start?
 if(requests[index].getName().compareTo(requestNameToStart) == 0)
 {
 //
 // Get the current associated data items. Replicate a new
 // dataitem array excluding the null values.
 Id = requests[index].getId();
 DataItem [] dataItem = requests[index].getItems().getDataitem();
 if(dataItem != null)
 {
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 DataItemArray newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 //
 // Start a digitally signed provisioning resource as proxy for
the recipient

 requestId =
stub.startAsProxyWithDigitalSignature(request.getId(), recipient,
newDataItemArray, digitalSignature, null, proxyUser);
 }
 }
 }
 }

startWithCorrelationId
Used to start a workflow with a correlation ID. The correlation ID provides a way to track a set of
related workflow processes. When started with this method, workflow processes can be queried and
sorted by correlation ID.

Method Signature
java.lang.String startWithCorrelationId(java.lang.String processId,
java.lang.String recipient, com.novell.soa.af.impl.soap.DataItemArray items,
java.lang.String signature, com.novell.soa.af.impl.soap.SignaturePropertyArray
props, java.lang.String proxyUser, java.lang.String correlationId)
 throws com.novell.soa.af.impl.soap.AdminException, java.rmi.RemoteException;
Provisioning Web Service 455

Parameters

18.3.3 Work Entries
This section provides reference information for each Work Entries method. The Work Entries
methods include:

“forward” on page 456
“reassignWorkTask” on page 458
“getWork” on page 459
“forwardWithDigitalSignature” on page 460
“forwardAsProxy” on page 462
“unclaim” on page 463
“forwardAsProxyWithDigitalSignature” on page 464
“reassign” on page 466
“getWorkEntries” on page 467
“getQuorumForWorkTask” on page 469
“resetPriorityForWorkTask” on page 470

forward
Used to forward a task to the next activity in the workflow with the appropriate action (approve,
deny, refuse).

Method Signature
void forward(java.lang.String wid, com.novell.soa.af.impl.soap.T_Action action,
com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String comment)

Parameter Description

processId The request identifier.

recipient The request recipient.

items The data items for the provisioning request.

digital signature The digital signature.

digitalSignaturePropertyArray The digital signature property map.

proxyUser The DN of the proxy user.

correlationID The string that identities the correlation ID. The
correlation ID cannot be longer than 32 characters.
456 NetIQ Identity Manager User Application: Administration Guide

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // Create work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

 if(workEntry != null

 {
 for(int wIndex = 0; wIndex < workEntry.length; wIndex++)
 {
 String workId = workEntry[wIndex].getId();
 //
 //

Parameter Description

wid The work Id.

action The action to take (approve, deny, refuse).

items The data items required by the workflow.

comment The comment.
Provisioning Web Service 457

 LoggerUtils.sendToLogAndConsole("Forwarding : " +
workEntry[wIndex].getActivityName() + " work id: " + workId);
 //
 // Get the dataitem for this item of work
 DataItemArray dataItemArray = stub.getWork(workId);
 DataItem [] dataItem = dataItemArray.getDataitem();
 DataItemArray newDataItemArray = null;
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 newDataItemArray = provUtils.replicateDataItemArray(dataItem);
 else
 throw new TestProgramException("DataItem is null.");
 //
 // Claim request for recipient
 String comment = _action.toString() + " this request: " + requestId + "
for " + recipient;
 stub.forward(workId, _action, newDataItemArray, comment);
 }

 }

reassignWorkTask
Used to reassign a task from one user to another.

Method Signature
void reassignWorkTask(java.lang.String wid, java.lang.String addressee,
java.lang.String comment)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();

Parameter Description

wid The Id of the task.

addressee The addressee of the task.

comment A comment about the task.
458 NetIQ Identity Manager User Application: Administration Guide

 String initiator = process.getInitiator();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, initiator);
 WorkEntry [] workEntry = workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);

 if(workEntry == null)
 throw new TestProgramException("Work list is empty.");
 //
 // Reassign the work entry from recipient to the addressee
 //
 // Should only be one item
 String reassignComment = null;
 String workId = workEntry[0].getId();
 if(workId != null)
 {
 //
 // Reassign work entry(s) to addressee
 reassignComment = "Reassigning work entry " + workId + " from " +
recipient + " to " + addressee;
 stub.reassign(workId, addressee, reassignComment);
 LoggerUtils.sendToLogAndConsole("Reassign work entry " + workId + "
from " + recipient + " to " + addressee);
 }
 }

getWork
Used to retrieve data items for a work entry identified by the Id (UUID) of a task.

Method Signature
com.novell.soa.af.impl.soap.DataItemArray getWork(java.lang.String workId)

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
Provisioning Web Service 459

 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, initiator);
 WorkEntry [] workEntry = workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);
 //
 // Do assertion here
 Assert.assertNotNull("WorkEntry is null for recipient : " + recipient +
" with request id : " + requestId, workEntry);
 DataItemArray dataItemArray = stub.getWork(workEntry[0].getId());
 DataItem [] dataItem = dataItemArray.getDataitem();
 if(dataItem != null)
 LoggerUtils.sendToLogAndConsole(dataItem[0].getName());
 }

forwardWithDigitalSignature
Used to forward a provisioning request with a digital signature and optional digital signature
properties. For example, this can be used by an administrator to force a user-facing activity to be
approved, denied or refused.

Method Signature
void forwardWithDigitalSignature(java.lang.String wid,
com.novell.soa.af.impl.soap.T_Action action,
com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String comment,
java.lang.String digitalSignature,
com.novell.soa.af.impl.soap.SignaturePropertyArray digitalSignaturePropertyArray)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);

Parameter Description

wid The workId.

action The action to take (approve, deny, refuse).

items The data items required by the workflow.

comment A comment about the action.

digitalSignature The digital signature.

digitalSignaturePropertyArray The digital signature property map.
460 NetIQ Identity Manager User Application: Administration Guide

 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 // Get the digital signature string for admin
 String digitalSignature =
DigitalSignatureUtils.getDigitalSignatureFromFile(IDigitalSignatureConstants.ADMIN
_DIGITAL_SIGNATURE_FILENAME);

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // Create work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

 if(workEntry != null

 {
 for(int wIndex = 0; wIndex < workEntry.length; wIndex++)
 {
 String workId = workEntry[wIndex].getId();
 //
 //
 LoggerUtils.sendToLogAndConsole("Forwarding : " +
workEntry[wIndex].getActivityName() + " work id: " + workId);
 //
 // Get the dataitem for this item of work
 DataItemArray dataItemArray = stub.getWork(workId);
 DataItem [] dataItem = dataItemArray.getDataitem();
 DataItemArray newDataItemArray = null;
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 newDataItemArray = provUtils.replicateDataItemArray(dataItem);
 else
 throw new TestProgramException("DataItem is null.");
 //
 // Claim request for recipient
 String comment = _action.toString() + " this request: " + requestId + "
for " + recipient;
 stub.forwardWithDigitalSignature(workId, _action, newDataItemArray,
comment, digitalSignature, null);
 }

 }
Provisioning Web Service 461

forwardAsProxy
Used to forward a provisioning request. For example, this can be used by an administrator to force a
user-facing activity to be approved, denied or refused.

Method Signature
void forwardAsProxy(java.lang.String wid, com.novell.soa.af.impl.soap.T_Action
action, com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String comment,
java.lang.String proxyUser)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // Create work entry query

Parameter Description

wid The workId (activity Id).

action The action to take (approve, deny, refuse).

items The data items required by the workflow.

comment The comment to add to the activity.

proxyUser The DN of the proxy user.
462 NetIQ Identity Manager User Application: Administration Guide

 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

 if(workEntry != null

 {
 for(int wIndex = 0; wIndex < workEntry.length; wIndex++)
 {
 String workId = workEntry[wIndex].getId();
 //
 //
 LoggerUtils.sendToLogAndConsole("Forwarding : " +
workEntry[wIndex].getActivityName() + " work id: " + workId);
 //
 // Get the dataitem for this item of work
 DataItemArray dataItemArray = stub.getWork(workId);
 DataItem [] dataItem = dataItemArray.getDataitem();
 DataItemArray newDataItemArray = null;
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 newDataItemArray = provUtils.replicateDataItemArray(dataItem);
 else
 throw new TestProgramException("DataItem is null.");
 //
 // Claim request for recipient
 String comment = _action.toString() + " this request: " + requestId + "
for " + recipient;
 String proxyUser =
ServiceUtils.getInstance().getLoginData().getUsername(LoginData.PROXY_TYPE);
 stub.forwardAsProxy(workId, _action, newDataItemArray, comment,
proxyUser); }

 }

unclaim
Used to unclaim a provisioning request. This method only works if the request was claimed in the
User Application. You cannot unclaim a request once it has been forwarded using the SOAP
interface, because the forward API method (see “forward” on page 456) claims and forwards in one
operation.

Method Signature
void unclaim(java.lang.String wid, java.lang.String comment)

Parameters

Parameter Description

workId The Id of the activity to unclaim.

comment A comment about the action.
Provisioning Web Service 463

Example
 // Action and Approval Types
 final int SELECTED_ACTION = 0; final int CLAIMED_SELECTED_ACTION = 0;
 T_Action [] action = {T_Action.APPROVE, T_Action.REFUSE, T_Action.DENY};
 T_ApprovalStatus [] claimedAction = {T_ApprovalStatus.Approved,
T_ApprovalStatus.Retracted, T_ApprovalStatus.Denied};
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 //
 // Claim the request
 WorkEntry workEntry = workEntryUtils.claimWorkEntry(map,
action[SELECTED_ACTION]);
 if(workEntry != null)
 {
 //
 // Now unclaim the entry
 String workId = workEntry.getId();
 stub.unclaim(workId, "Unclaiming this work item : " + workId + " for request
id : " + requestId);
 }

forwardAsProxyWithDigitalSignature
Used to forward a provisioning request with a digital signature and digital signature properties. For
example, this can be used by an administrator to force a user-facing activity to be approved, denied
or refused.

Method Signature
void forwardAsProxyWithDigitalSignature(java.lang.String wid,
com.novell.soa.af.impl.soap.T_Action action,
com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String comment,
java.lang.String digitalSignature,
com.novell.soa.af.impl.soap.SignaturePropertyArray digitalSignaturePropertyArray,
java.lang.String proxyUser)

Parameters

Parameter Description

wid The workId (activity Id).

action The action to take (approve, deny, refuse).

items The data items required by the workflow.

comment The comment to add to the activity.

digitalSignature The digital signature.

digitalSignaturePropertyArray The digital signature property map.

proxyUser The DN of the proxy user.
464 NetIQ Identity Manager User Application: Administration Guide

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // Create work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

 if(workEntry != null

 {
 for(int wIndex = 0; wIndex < workEntry.length; wIndex++)
 {
 String workId = workEntry[wIndex].getId();
 //
 //
 LoggerUtils.sendToLogAndConsole("Forwarding : " +
workEntry[wIndex].getActivityName() + " work id: " + workId);
 //
 // Get the dataitem for this item of work
 DataItemArray dataItemArray = stub.getWork(workId);
 DataItem [] dataItem = dataItemArray.getDataitem();
 DataItemArray newDataItemArray = null;
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 newDataItemArray = provUtils.replicateDataItemArray(dataItem);
 else
Provisioning Web Service 465

 throw new TestProgramException("DataItem is null.");
 //
 // Claim request for recipient
 String comment = _action.toString() + " this request: " + requestId + "
for " + recipient;
 String digitalSignature =
DigitalSignatureUtils.getDigitalSignatureFromFile(IDigitalSignatureConstants.MMACK
ENZIE_DIGITAL_SIGNATURE_FILENAME);
 String proxyUser =
ServiceUtils.getInstance().getLoginData().getUsername(LoginData.PROXY_TYPE);

 stub.forwardAsProxyWithDigitalSignature(workId, _action,
newDataItemArray, comment, digitalSignature, null, proxyUser);
 }

 }

reassign
Used to reassign a task from one user to another.

Method Signature
void reassign(java.lang.String wid, java.lang.String addressee, java.lang.String
comment)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);

Parameter Description

wid The Id of the activity to be reassigned.

addressee The addressee of the activity.

comment A comment about the action.
466 NetIQ Identity Manager User Application: Administration Guide

 map.put(Helper.INITIATOR, initiator);
 WorkEntry [] workEntry = workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);

 if(workEntry == null)
 throw new TestProgramException("Work list is empty.");
 //
 // Reassign the work entry from recipient to the addressee
 //
 // Should only be one work item
 String reassignComment = null;
 String workId = workEntry[0].getId();
 if(workId != null)
 {
 //
 // Reassign work entry(s) to addressee
 reassignComment = "Reassigning work entry " + workId + " from " +
recipient + " to " + addressee;
 stub.reassign(workId, addressee, reassignComment);
 LoggerUtils.sendToLogAndConsole("Reassign work entry " + workId + "
from " + recipient + " to " + addressee);
 }
 }

getWorkEntries
Used to query the work entries (activities) and returns a list of WorkEntry objects that satisfy the
query.

Method Signature
com.novell.soa.af.impl.soap.WorkEntryArray
getWorkEntries(com.novell.soa.af.impl.soap.T_WorkEntryQuery query, int maxRecords)
Provisioning Web Service 467

Parameters

Parameter Description

query Used to specify the query used to retrieve the list of
activities. The query has the following components:

choice - the parameters used to filter the
results. You can specify multiple parameters. The
possible parameters are:

Addressee - Possible values for this parameter
are a DN or self. Use self if you want to
retrieve work entries for the caller of the query,
as identified by the authentication header of
the SOAP header.

ProcessId
RequestId
ActivityId
Status (an integer)
Owner
Priority
CreationTime (YYYY/MM/DD)
ExpTime (YYYY/MM/DD)
CompletionTime (YYYY/MM/DD)
Recipient
Initiator
ProxyFor

logic - AND or OR

order - the order in which to sort the results.
Possible values for order are:

ACTIVITY_ID
RECIPIENT
PROVISIONING_TIME
RESULT_TIME
STATE
STATUS
REQUEST_ID
MESSAGE

maxRecords Used to specify maximum number of records to
retrieve. A value of -1 returns unlimited records.
468 NetIQ Identity Manager User Application: Administration Guide

Example
 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // Create work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

getQuorumForWorkTask
Used to get information about the quorum for a workflow activity. A quorum must have actually
been specified for the workflow activity by the workflow designer for this method to work.

Method Signature
com.novell.soa.af.impl.soap.Quorum getQuorumForWorkTask((java.lang.String workId)

Example
 //

 // Note: Provisioning resource must contain a quorum in the flow for this api
method to work

 //
 // Action and Approval Types
 final int SELECTED_ACTION = 0; final int CLAIMED_SELECTED_ACTION = 0;
 T_Action [] action = {T_Action.APPROVE, T_Action.REFUSE, T_Action.DENY};
 T_ApprovalStatus [] claimedAction = {T_ApprovalStatus.Approved,
T_ApprovalStatus.Retracted, T_ApprovalStatus.Denied};
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, process.getInitiator());
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);

 Assert.assertNotNull("WorkEntry is null for recipient : " +
Provisioning Web Service 469

recipient + " with request id : " + requestId, workEntry);
 //
 //
 String workId = workEntry[0].getId();

 Quorum quorum = stub.getQuorumForWorkTask(workId);

 Assert.assertNotNull("Quorum for work task is null for recipient :
" + recipient + " with request id : " + requestId, quorum);
 //

 // Extract some data
 int approvalCondition = quorum.getApprovalCondition();
 int status = quorum.getStatus();
 int approveCount = quorum.getApproveCount();
 int participantCount = quorum.getParticipantCount();
 int refuseCount = quorum.getRefuseCount();

resetPriorityForWorkTask
Used to reset the priority for a task. You should only use this method on provisioning requests that
have a single approval branch.

Method Signature
void resetPriorityForWorkTask(java.lang.String workId, int priority,
java.lang.String comment)

Parameters

Example
// Calls method getProvisioningResourceNameForRecipient
// on the provUtils utility object, which refers to a utility class
// that does not ship with the Identity Manager User Application.
String requestNameToStart =
provUtils.getProvisioningResourceNameForRecipient(recipient, "Enable
Active Directory Account");
 Map map = MapUtils.createAndSetMap(new Object[] {
 Helper.RECIPIENT, recipient,
 IProvisioningConstants.PROVISIONING_REQUEST_TO_START,
requestNameToStart});
 //
 // Try and start the provisioning request
 String requestId =
provWrapper.startProvisioningRequest(recipient, requestNameToStart);
 RationalTestScript.sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 //
 // Setup for the query
 HashMap map = new HashMap();

Parameter Description

workId The Id of the activity.

priority The priority to set for the activity.

comment A comment about the action.
470 NetIQ Identity Manager User Application: Administration Guide

 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, process.getProcessId());
 map.put(Helper.INITIATOR, process.getInitiator());
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);
 //
 // Now reset the priority for this work item.
 String workId = workEntry[0].getId();
 String comment = "Resetting priority for this work item.";
 int priority = 0;
 stub.resetPriorityForWorkTask(workId, priority, comment);
}

18.3.4 Comments
This section provides reference information for each Comments method. The Comments methods
include:

“getCommentsByType” on page 471
“getCommentsByActivity” on page 472
“getCommentsByUser” on page 473
“getCommentsByCreationTime” on page 474
“addComment” on page 475
“getComments” on page 476

getCommentsByType
Used to get workflow comments that are of a specific type (for example, user, system).

Method Signature
com.novell.soa.af.impl.soap.CommentArray getCommentsByType(java.lang.String
requestId, com.novell.soa.af.impl.soap.T_CommentType type)

Parameters

Parameter Description

requestId The process identifier.

type The comment type (USER or SYSTEM)
Provisioning Web Service 471

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable
Active Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get the comments by type : either User or System
 T_CommentType [] commentTypes = {T_CommentType.User,
T_CommentType.System};

 for(int types = 0; types < commentTypes.length; types++)
 {
 CommentArray commentArray = stub.getCommentsByType(requestId,
commentTypes[types]);
 Comment [] comments = commentArray.getComment();
 if(comments != null)
 {
 for(int index = 0; index < comments.length; index++)
 {
 LoggerUtils.sendToLogAndConsole(" \nComment Type = " +
commentTypes[types].getValue() + "\n" +
 "Activity Id: " +
comments[index].getActivityId() + "\n" +
 "Comment : " + comments[index].getComment()
+ "\n" +
 "User : " + comments[index].getUser() + "\n"
+
 "System comment : " +
comments[index].getSystemComment() + "\n" +
 "Time stamp : " +
comments[index].getTimestamp().getTime().toString());
 }
 }
 }

getCommentsByActivity
Used to get the comments for a specific activity.

Method Signature
com.novell.soa.af.impl.soap.CommentArray getCommentsByActivity(java.lang.String
requestId, java.lang.String aid)

Parameters

Parameter Description

requestId The process identifier.

aid The activity identifier.
472 NetIQ Identity Manager User Application: Administration Guide

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable
Active Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, initiator);
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);
 //
 // Get the activity id associated with the item of work
 String activityId = workEntry[0].getActivityId();
 //
 // Get the comments based on activity
 if(activityId != null)
 {
 CommentArray commentArray =
stub.getCommentsByActivity(requestId, activityId);
 Comment [] comments = commentArray.getComment();
 }

 }

getCommentsByUser
Used to get the comments made by a specific user.

Method Signature
com.novell.soa.af.impl.soap.CommentArray getCommentsByUser(java.lang.String
requestId, java.lang.String user)

Parameters

Parameter Description

requestId The process identifier.

user The the DN of the user (recipient) who created the
comments
Provisioning Web Service 473

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable
Active Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,\
null);
 sleep(5);
 //
 // Get the comments by recipient (should be the same as user)
 CommentArray commentArray = stub.getCommentsByUser(requestId,
recipient);
 Comment [] comments = commentArray.getComment();

getCommentsByCreationTime
Used to get comments made at a specific time.

Method Signature
com.novell.soa.af.impl.soap.CommentArray
getCommentsByCreationTime(java.lang.String requestId, long time,
com.novell.soa.af.impl.soap.T_Operator op)

Parameters

Parameter Description

requestId The process identifier.

time The time stamp.

op The query operator to use. Possible values for
operator are:

EQ - equals
LT - less than
LE - less than or equal to
GT - greater than
GE - greater than or equal to
474 NetIQ Identity Manager User Application: Administration Guide

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable
Active Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get comments by creation time for the provisioning request
started above.
 long currentTime = System.currentTimeMillis();
 LoggerUtils.sendToLogAndConsole("-->Current date = " + new
java.util.Date(currentTime).toString());
 //
 //
 T_Operator operator = T_Operator.GT;
 CommentArray commentArray =
stub.getCommentsByCreationTime(requestId, currentTime, operator);
 Comment [] comments = commentArray.getComment();

addComment
Used to add a comment to a workflow activity.

Method Signature
void addComment(java.lang.String workId, java.lang.String comment)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active Directory
Account (Mgr Approve-No Timeout)");
 //
 // Start request

 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.

Parameter Description

workId The activity identifier (UUID).

comment A comment about the activity.
Provisioning Web Service 475

 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 WorkEntry [] workEntry = workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);
 //
 // Add comment to the work entry
 String workId = workEntry[0].getId();
 String processId = workEntry[0].getProcessId();
 String addComment = "Test comment for work id " + workId;
 stub.addComment(workId, addComment);
 sleep(2);

getComments
Used to get comments from a workflow.

Method Signature
com.novell.soa.af.impl.soap.CommentArray getComments(java.lang.String workId, int
maxRecords)

Parameters

Example
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.RECIPIENT, addressee);
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.ADDRESSEE, T_Logic.OR);
 //
 // Get all the comment records for this workId
 int maxRecords = -1;
 CommentArray commentArray = stub.getComments(workId, maxRecords);
 Comment [] comment = commentArray.getComment();

18.3.5 Configuration
This section provides reference information for each Configuration method. The Configuration
methods include:

“setCompletedProcessTimeout” on page 477
“setEngineConfiguration” on page 477
“getCompletedProcessTimeout” on page 478
“setEmailNotifications” on page 478

Parameter Description

workId The activity Id (UUID).

maxRecords An integer specifying the maximum number of records
to retrieve.
476 NetIQ Identity Manager User Application: Administration Guide

“clearNIMCaches” on page 478
“setWebServiceActivityTimeout” on page 479
“getUserActivityTimeout” on page 479
“getEmailNotifications” on page 479
“setUserActivityTimeout” on page 480
“getEngineConfiguration” on page 480
“getWebServiceActivityTimeout” on page 480

setCompletedProcessTimeout
Used to set the timeout for completed processes. Processes that were completed more than timeout
days ago are removed from the system. The default value is 120 days. The valid range is 0 days to 365
days.

Method Signature
void setCompletedProcessTimeout(int time)

Example
accessConfigurationSettings(SET_COMPLETED_PROCESS_TIMEOUT, new Integer(212));

setEngineConfiguration
Used to set workflow engine configuration parameters.

Method Signature
void setEngineConfiguration(com.novell.soa.af.impl.soap.Configuration config)

Parameters

Parameter Description

minPoolSize The minumum thread pool size.

maxnPoolSize The maximum thread pool size.

initialPoolSize The initial thread pool size.

keepAliveTime Thread pool keep live time.

pendingInterval The cluster synchronization time.

cleanupInterval The interval between purging processes from
databases.

retryQueueInterval The interval between retrying failed processes.

maxShutdownTime The maximum time to let threads complete work
before engine shutdown.

userActivityTimeout The default user activity timeout.

completedProcessTimeout The default completed process timeout.
Provisioning Web Service 477

Example
accessConfigurationSettings(SET_ENGINE_CONFIGURATION, new Integer(313));

getCompletedProcessTimeout
Used to get the timeout for completed processes.

Method Signature
int getCompletedProcessTimeout()

Example
accessConfigurationSettings(GET_COMPLETED_PROCESS_TIMEOUT, new Integer(121));

setEmailNotifications
Used to globally enable or disable e-mail notifications.

Method Signature
void setEmailNotifications(boolean enable)

Parameters

Example
accessConfigurationSettings(SET_EMAIL_NOTIFICATIONS, new Boolean(false));

clearNIMCaches
Clear the Novell Integration Manager (previously named exteNd Composer) caches.

webServiceActivityTimeout The default Web service activity timeout.

emailNotification Turns email notification on or off.

processCacheInitialCapacity The process cache initial capacity.

processCacheMaxCapacity The process cache maximum capacity.

processCacheLoadFactor The process cache load factor.

heartbeatInterval The heartbeat interval.

heartbeatFactor The heartbeat factor.

Parameter Description

enable E-mail notifications are enabled if true; otherwise they
are disabled.

Parameter Description
478 NetIQ Identity Manager User Application: Administration Guide

Method Signature
void clearNIMCaches()

Example
accessConfigurationSettings(CLEAR_NIM_CACHES, new Object());

setWebServiceActivityTimeout
Used to set the timeout for Web service activities. The default value is 50 minutes. The valid range is
1 minute to 7 days.

Method Signature
void setWebServiceActivityTimeout(int time)

Parameters

Example
accessConfigurationSettings(SET_WEBSERVICE_ACTIVITY_TIMEOUT, new Integer(767));

getUserActivityTimeout
Used to get the timeout for user-facing activities.

Method Signature
int getUserActivityTimeout()

Example
accessConfigurationSettings(GET_USER_ACTIVITY_TIMEOUT, new Integer(3767));

getEmailNotifications
Used to determine if global e-mail notifications are enabled or disabled.

Method Signature
boolean getEmailNotifications()

Example
accessConfigurationSettings(GET_EMAIL_NOTIFICATIONS, new Boolean(true));

Parameter Description

time The timeout value in minutes.
Provisioning Web Service 479

setUserActivityTimeout
Used to set the timeout for user-facing activities. The default value is no timeout (a value of zero). The
valid range is 1 hour to 365 days.

Method Signature
void setUserActivityTimeout(int time)

Parameters

Example
accessConfigurationSettings(SET_USER_ACTIVITY_TIMEOUT, new Integer(1767));

getEngineConfiguration
Used to get the workflow engine configuration parameters.

Method Signature
com.novell.soa.af.impl.soap.Configuration getEngineConfiguration()

Example
accessConfigurationSettings(GET_ENGINE_CONFIGURATION, new Integer(141));

getWebServiceActivityTimeout
Used to get the timeout for Web service activities.

Method Signature
int getWebServiceActivityTimeout()

Example
accessConfigurationSettings(GET_WEBSERVICE_ACTIVITY_TIMEOUT, new Integer(808));

18.3.6 Miscellaneous
This section provides reference information for each Miscellaneous method. The Miscellaneous
methods include:

“getGraph” on page 481
“getFlowDefinition” on page 481
“getFormDefinition” on page 482
“getVersion” on page 483

Parameter Description

time The timeout value in hours.
480 NetIQ Identity Manager User Application: Administration Guide

getGraph
Used to get a JPG image of the workflow. The Graphviz program must be installed on the computer
where the application server and the IDM User Application is running. For more information about
Graphviz, see Graphviz (http://www.graphviz.org).

Method Signature
byte[] getGraph(java.lang.String processId)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //

 //

 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 byte [] graph = null;
 if((recipient.compareTo(process.getRecipient()) == 0) &&
(requestId.compareTo(process.getRequestId()) == 0))
 {
 graph = stub.getGraph(process.getProcessId());
 }
 //
 // Do assert
 Assert.assertNotNull("Graph is null.", graph);
 }

getFlowDefinition
Used to get the XML for a provisioning request.

Method Signature
java.lang.String getFlowDefinition(java.lang.String processId)

Parameters Description

processId The request Id.
Provisioning Web Service 481

http://www.graphviz.org

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //

 //

 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String XMLFlowDefinition = null;
 if((recipient.compareTo(process.getRecipient()) == 0) &&
(requestId.compareTo(process.getRequestId()) == 0))
 {
 XMLFlowDefinition = stub.getFlowDefinition(process.getProcessId());
 }
 //
 // Do assert
 Assert.assertNotNull("Flow Definition is null.", XMLFlowDefinition);
 }

getFormDefinition
Used to get the XML for a form for a provisioning request.

Method Signature
java.lang.String getFormDefinition(java.lang.String processId)

Parameters

Parameters Description

processId The request Id.

Parameters Description

processId The request Id.
482 NetIQ Identity Manager User Application: Administration Guide

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //

 //

 Process process = stub.getProcess(requestId);
 if(process != null)
 {

 String XMLFormDefinition = null;
 if((recipient.compareTo(process.getRecipient()) == 0) &&
(requestId.compareTo(process.getRequestId()) == 0))
 {
 XMLFormDefinition =
stub.getFormDefinition(process.getProcessId());
 }
 //
 // Do assert
 Assert.assertNotNull("Form Definition is null.",
XMLFormDefinition);
 }

getVersion
Used to get the version of the workflow system.

Method Signature
com.novell.soa.af.impl.soap.T_Version getVersion()

Example
 StringBuffer result = new StringBuffer();

 T_Version version = stub.getVersion();
 if (version != null)
 {
 result.append(" Major = " + version.getMajor());
 result.append(" Minor = " + version.getMinor());
 result.append(" Revision = " + version.getRevision());

 System.out.println("Version Information " + result.toString());
 }
Provisioning Web Service 483

18.3.7 Cluster
This section provides reference information for each Cluster method. The Cluster methods include:

“getEngineState” on page 484
“reassignAllProcesses” on page 484
“getEngineState” on page 485
“reassignPercentageProcesses” on page 485
“reassignProcesses” on page 486
“removeEngine” on page 486

getEngineState
Used to get the IEngineState for a workflow engine, specified by engine Id.

Method Signature
com.novell.soa.af.impl.soap.EngineState getEngineState(java.lang.String engineId)

Parameters

Example
 EngineStateArray engineStateArray = stub.getClusterState();
 EngineState [] engineState = engineStateArray.getEngineStates();
 if(engineState != null)
 {
 LoggerUtils.sendToLogAndConsole("EngineCount in cluster:" +
engineState.length);
 for(int index = 0; index < engineState.length; index++)
 {
 EngineState engine =
stub.getEngineState(engineState[index].getEngineId());
 LoggerUtils.sendToLogAndConsole(
 "Engine Id: " + engine.getEngineId() + "\n" +
 "Engine status: " + engine.getEngineStatus() + "\n" +
 "Value of engine status: " +
engine.getValueOfEngineStatus() + "\n" +
 "Heartbeat: " + ((engine.getHeartbeat() != null) ?
engine.getHeartbeat().getTime().toString() : "null") + "\n" +
 "Shutdown time: " + ((engine.getShutdownTime()!= null)
? engine.getShutdownTime().getTime().toString() : "null") + "\n" +
 "Start time: " + ((engine.getStartTime() != null) ?
engine.getStartTime().getTime().toString() : "null"));
 }
 }

reassignAllProcesses
Used to reassign all processes from the source engine to a list of target engines.

Parameter Description

engineId The Id of the workfow engine.
484 NetIQ Identity Manager User Application: Administration Guide

Method Signature
int reassignAllProcesses(java.lang.String sourceEngineId,
com.novell.soa.af.impl.soap.StringArray targetEngineIds)

Parameters

getEngineState
Used to get a list that contains an IEngineState object for each engine in the cluster.

Method Signature
public com.novell.soa.af.impl.soap.EngineState getEngineState(java.lang.String
engineId)

Parameters

Example
 EngineStateArray engineStateArray = stub.getClusterState();
 EngineState [] engineState = engineStateArray.getEngineStates();
 if(engineState != null)
 {
 LoggerUtils.sendToLogAndConsole("EngineCount in cluster:" +
engineState.length);
 for(int index = 0; index < engineState.length; index++)
 {
 EngineState engine =
stub.getEngineState(engineState[index].getEngineId());
 LoggerUtils.sendToLogAndConsole(
 "Engine Id: " + engine.getEngineId() + "\n" +
 "Engine status: " + engine.getEngineStatus() + "\n" +
 "Value of engine status: " +
engine.getValueOfEngineStatus() + "\n" +
 "Heartbeat: " + ((engine.getHeartbeat() != null) ?
engine.getHeartbeat().getTime().toString() : "null") + "\n" +
 "Shutdown time: " + ((engine.getShutdownTime()!= null)
? engine.getShutdownTime().getTime().toString() : "null") + "\n" +
 "Start time: " + ((engine.getStartTime() != null) ?
engine.getStartTime().getTime().toString() : "null"));
 }
 }

reassignPercentageProcesses
Used to reassign a percentage of processes from the source engine to the target engine.

Parameter Description

sourceEngineId The Id of the source workflow engine.

targetEngineIds The Ids of the target workflow engines.

Parameter Description

engineId The Id of the workfow engine.
Provisioning Web Service 485

Method Signature
int reassignPercentageProcesses(int percent, java.lang.String sourceEngineId,
java.lang.String targetEngineId)

Parameters

reassignProcesses
Used to reassign one or more processes from the source engine to the target engine.

Method Signature
int reassignProcesses(com.novell.soa.af.impl.soap.StringArray requestIds,
java.lang.String sourceEngineId, java.lang.String targetEngineId)

Parameters

removeEngine
Used to remove an engine from the cluster state table. The engine must be in the SHUTDOWN or
TIMEDOUT state.

Method Signature
void removeEngine(java.lang.String engineId)

Parameters

Parameter Description

percent An integer representing the percentage of processes
to be reassigned.

sourceEngineId The Id of the source workflow engine.

targetEngineIds The Id of the target workflow engine.

Parameter Description

 requestIds A list of requestIds of the processes to be reassigned.

sourceEngineId The Id of the source workflow engine.

targetEngineIds The Id of the target workflow engine.

Parameter Description

engineId The Id of the workflow engine to be removed.
486 NetIQ Identity Manager User Application: Administration Guide

19 19Metrics Web Service

This section describes the Metrics Web Service, which provides metrics for provisioning workflows.
Topics include:

Section 19.1, “About the Metrics Web Service,” on page 487
Section 19.2, “Metrics Web Service API,” on page 496
Section 19.3, “Metrics Web Service Examples,” on page 500

19.1 About the Metrics Web Service
The workflow engine includes a Web Service for gathering workflow metrics. The addition of the
Metrics Web Service to the workflow engine lets you monitor an approval flow process. In addition,
it provides indicators the business manager can use to modify the process for optimal performance.

The metrics are based on traditional business process flow management principles, which emphasize
the need for metrics to be actionable. This ensures that the metrics provided match what an
operations manager usually looks for when analyzing and optimizing business flows. Therefore, the
metrics identify bottlenecks and provide other capacity indicators. The Metrics Web Service allows
you to narrow down the metrics to a common and established set of data, instead of trying to
anticipate the myriad of metrics and reports that can be created for a business process flow.

When working with the Metrics Web Service, you should keep in mind that the service is not
intended to be an all-purpose metrics system:

The Metrics Web Service is not a reporting tool or reporting engine. Consequently it does not use
a complex query language.
The Metrics Web Service is not designed as an all-purpose performance management system.
This helps to limit the impact of the needed queries against the live system being monitored.

Operations management stresses three key internal process performance measures that together
capture the essence of process flow. These three measures can serve as leading indicators of customer
satisfaction: flow time, flow rate, and inventory.

With these measures, an operations manager can answer the following questions:

On average, how much time does a provisioning request spend within the process boundaries?
(Flow time)
On average, how many provisioning requests pass through the process per unit of time? (Flow
rate)
On average, how many provisioning requests are within the process boundaries at any point in
time? (Inventory)

These three measures are related by Little's law:

Inventory=Flow Rate*Flow Time
Metrics Web Service 487

19.1.1 Web Service Semantics
The following semantics apply to the use of the Metrics Web Service:

Activities in the Metrics Web Service refer only to user-facing activities (Approval Activities).
Negligible running time and the impossibility of controlling the other activities make collecting
metrics for these inappropriate.
The Metrics Web Service distinguishes between Working Days and Calendar Days. Calendar
Days refer to all days between two dates. Working Days refer only to working days between two
dates. Since working days may be specified differently in different environments, all Working
Days methods return a raw data set that can be used to compute what is appropriate. If no such
detail is required, the Calendar Days method will readily return the appropriate metric.

19.1.2 Accessing the Test Page
The Metrics Web Service endpoint can be accessed at the following URL:

http://server:port/warcontext/metrics/service

You can also access the SOAP endpoint by going to the Administration within the User Application.
To do this, you need to select the Application Configuration tab, then select Web Services from the left-
navigation menu. After selecting Web Services, pick the Web Service endpoint you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment. For details on enabling the test page, see the instructions provided for the
Role Service in “Enabling the Test Page” on page 541.

19.1.3 Web Service Methods Grouped by Security Permissions
The service is secured using Basic Authentication. Therefore, you should use SSL to connect to the
service. The service uses the same security layer as the User Application and consequently not all
service operations are allowed to all users. Only a Provisioning Administrator will have
unconditional access to all the methods. On the other hand team managers will only have access to
metrics that pertain to their team and team members.

Hence the Metrics Web Service operations are divided into 3 categories according to role and security
permissions:

Team manager operations
Provisioning Application Administrator operations
Utility operations

Team Metrics
Team managers can only retrieve metrics on a team for which they are managers. These are the
methods are available to team managers:
488 NetIQ Identity Manager User Application: Administration Guide

Table 19-1 Team Metrics Methods

Provisioning Administrator Metrics
This role is unrestricted and may perform any of the service's operations. These are the methods that
are only available to Provisioning Administrators.

Method Description

getClaimedFlowTimeCalendarDays Returns the average time in hours the provisioning
request was claimed for within the specified time
interval

getClaimedFlowTimeWorkingDays Returns the result set required to compute the average
time the provisioning request was claimed for the
specified time interval

getToClaimedFlowTimeCalendarDays Returns the average time in hours it took the
provisioning request to be claimed from the moment it
was available to addressees

getToClaimedFlowTimeWorkingDays Returns the average time it took the provisioning
request to be claimed from the moment it was
available to addresses, within the specified time
interval

getClaimedInventory Returns the average number of provisioning requests
claimed within the specified interval

getClaimedThroughputWorkingDays Returns the average number of provisioning requests
claimed within the specified interval

getTeamLongestRunning Returns a result set of the longest running request in
seconds for which members of the team acted as
addressees

getTeamFlowHistory Returns a result set of the activity outcomes,
addressee and addressee messages for the specified
list of provisioning requests

getTeamHistoryForInitiators Returns a result set of the provisioning request and
their status for which members of the team acted as
initiators

getTeamHistoryForRecipients Returns a result set of the provisioning request and
their status for which members of the team acted as
recipients

getTeamRunningTime Returns the average time in seconds the specified
provisioning requests have been running

getTeamDecisionCount Returns the number of decisions the team made as
addressees for the specified provisioning request

getTeamInitiatedCount Returns the number of provisioning requests initiated
by the team

getTeamRecipientCount Returns the provisioning requests for which a member
of the team acts as a recipient
Metrics Web Service 489

Table 19-2 Provisioning Administrator Metrics Methods

Method Description

getActivityFlowTimeCalendarDays Returns the average time in hours the user activity
took to complete

getActivityFlowTimeWorkingDays Returns the result set required to compute the average
time the user activity took to complete

getActivityInventory Returns the average number of provisioning requests
at any one time for the specified user activity

getActivityThroughputCalendarDays Returns the average number of provisioning requests
per hours that exited the specified user activity within
the specified time interval

getActivityThroughputWorkingDays Returns the result set required to compute average
time it takes a provisioning request to complete for the
specified time interval

getFlowTimeCalendarDays Returns average time in hours it takes a provisioning
request to complete for the specified time interval

getFlowTimeWorkingDays Returns the result set required to compute average
time it takes a provisioning request to complete for the
specified time interval

getInventory Returns the average number of provisioning requests
in the system at any one time for the specified time
interval

getLongestClaimed Returns a result set of the provisioning requests that
have been claimed but not acted upon (time in
seconds)

getLongestRunning Returns a result set of the longest running provisioning
requests (time in seconds)

getFlowCount Returns the number of provisioning requests

getFlowHistory Returns a result set of the activity outcomes,
addressee and addressee messages for the specified
list of provisioning requests

getFlowHistoryForInitiators Returns the list of provisioning requests and their
status for the specified initiators

getFlowHistoryForRecipients Returns the list of provisioning requests and their
status for the specified recipients

getRunningTime Returns the average running time in seconds for the
provisioning requests that are currently running

getThroughputCalendarDays Returns the average number of provisioning requests
per hour that completed within the specified interval

getThroughputWorkingDays Returns the result set required to compute the average
number per hour of provisioning requests that
completed within the specified interval
490 NetIQ Identity Manager User Application: Administration Guide

Utility Operations
Both team managers and administrators may perform these operations:

Table 19-3 Utility Operations

19.1.4 Specifying Filters
As mentioned above, the Metrics Webservice does not use a complex query language. Instead filters
can be use to narrow results by criteria such as date ranges or approval statuses.

These are the filters you can specify (see type FilterConstants in service’s WSDL):

Table 19-4 Filters for Narrowing Metric Results

Method Description

getVersion Returns the server version of the Web service. This
should always used to ensure version matching
between client and server code.

getAllProvisioningFlows Returns the list of provisioning flows that the logged in
user can see

getUserActivityOnlyFlow Returns a GraphViz DOT (http://www.graphviz.org/)
representation of the provisioning workflow

getTeams Returns the list of teams the logged in user manages

getTeamMembers Returns the list of team members for the specified
team

Filter Description

KEY_ACTIVITY_ID A User Activity Id as defined in the provisioning
request definition

KEY_APPROVAL_STATUS The approval status for the provisioning request.
Possible values are:

ApprovalStatusProcessing

ApprovalStatusDenied

ApprovalStatusRefused

ApprovalStatusApproved

ApprovalStatusRetract

ApprovalStatusError

KEY_ENTITLEMENT_STATE The state of the entitlement associated with the
provisioning request. Possible value are:

EntitlementUnknown

EntitlementGranted

EntitlementRevoked
Metrics Web Service 491

Here is a Java example. Note that your code will obviously differ depending on the platform you use
for your Web Service client:

 HashMap map=new HashMap();

 map.put(MetricsFilter.KEY_PROCESS_STATUS,

 MetricsFilter.ProcessStatusRunning);

 double flowtime = metrics.getFlowTimeCalendarDays(processId,

 processVer, activity, 5, calendar1.getTime(),

 calendar2.getTime(), MetricsFilter.ACTIVITY_CLAIMED,

KEY_ENTITLEMENT_STATUS The status of the entitlement associated with the
provisioning request. Possible values are:

EntitlementSuccess

EntitlementWarning

EntitlementError

EntitlementFatal

KEY_INITIATOR The user DN of the workflow initiator

KEY_L_COMPLETION_TIME The date indicating the start of the interval for workflow
completion

KEY_S_COMPLETION_TIME The date indicating the end of the interval for workflow
completion

KEY_L_ENTITLEMENT_TIME The date indicating the start of the interval for
entitlement time

KEY_S_ENTITLEMENT_TIME The date indicating the end of the interval for
entitlement time

KEY_S_START_TIME The date indicating the start of the interval for workflow
start

KEY_L_START_TIME The date indicating the end of the interval for workflow
start

KEY_PROCESS_ID The DN of the provisioning request

KEY_PROCESS_STATUS The status of the provisioning request. Possible values
are:

ProcessStatusRunning

ProcessStatusStopped

ProcessStatusTerminated

ProcessStatusCompleted

KEY_PROCESS_VERSION The process version associated with the workflow
version

KEY_RECIPIENT The user DN of the workflow recipient

KEY_REQUEST_ID The unique id associated with the workflow instance

Filter Description
492 NetIQ Identity Manager User Application: Administration Guide

 MetricsFilter.ACTIVITY_FORWARDED, map);

 ...

Please consult the WebService WSDL for more information:

http://server:port/warcontext/metrics/service?WSDL

19.1.5 Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the Novell WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.soa.af.metrics.soap.impl:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/jaxrpc-
api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar"; com.novell.soa.ws.impl.tools.wsdl2java.Main
-verbose -ds gensrc -d C:\ -noskel -notie -genclient -keep -package
com.novell.soa.af.metrics.soap.impl -javadoc metrics.wsdl

You can change the wsdl2java parameters to suit your requirements.

19.1.6 Obtaining the Remote Interface
Before you can begin calling methods on the Metrics Web Service, you need to have a reference to the
remote interface.

The code below shows how to obtain the remote interface.

import java.util.Locale;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.xml.rpc.Stub;
import com.novell.qa.soap.common.util.LoggerUtils;
import com.novell.qa.soap.common.util.LoginData;
import com.novell.qa.soap.common.util.ServiceUtils;
import com.novell.soa.af.ClusterException;
import com.novell.soa.af.impl.soap.Provisioning;
import com.novell.soa.af.impl.soap.ProvisioningService;
import com.novell.test.automator.framework.TestProgramException;
import com.rational.test.ft.script.RationalTestScript;
import com.novell.soa.af.metrics.soap.MetricsClientHelper;
import com.novell.soa.af.metrics.soap.MetricsStubWrapper;
import com.novell.soa.af.metrics.soap.impl.MetricsService;
import com.novell.soa.af.metrics.soap.impl.MetricsServiceException;
import com.novell.soa.af.metrics.soap.impl.IRemoteMetrics;

/**
* Method to obtain the remote interface to the Metrics endpoint
* @param _url
* @param _username
* @param _password
* @return IRemoteMetrics interface
* @throws Exception
*/
private IRemoteMetrics getStub(String _url, String _username, String _password)
throws Exception
Metrics Web Service 493

{
 Properties properties = new Properties();
 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");

 String lookup =
"xmlrpc:soap:com.novell.soa.af.metrics.soap.impl.MetricsService";

 InitialContext ctx = new InitialContext();
 MetricsService svc = (MetricsService) ctx.lookup(lookup);

 Stub stub = (Stub)svc.getIRemoteMetricsPort();

 stub._setProperty(Stub.USERNAME_PROPERTY, _username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, _password);
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);
 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, _url);

 return (IRemoteMetrics) stub;
}

Here’s the code to call the method defined above:

IRemoteMetrics stub = null;
 try
 {
 //
 // Get the stub
 String url = m_loginData.getURL();
 stub = getStub(url,_username,_password);
 }
 catch(Exception e)
 {
 String msg = e.getMessage();
 LoggerUtils.logError(msg);
 throw new TestProgramException(msg);
 }
 return stub;

In order for this code to work, the URL passed to the getStub() method would need to point to the
SOAP endpoint, as shown below:

http://myserver:8080/IDMProv/metrics/service

The user name needs to be a fully qualified DN such as the following:

"cn=admin,ou=idmsample,o=novell"

19.1.7 Metrics Configuration Settings
The Metrics Web Service impact on the live system is limited by 4 settings that may be modified in
the IDMfw.jar/WorkflowService-conf/config.xml file:

Table 19-5 Metrics Configuration Settings

Key in config.xml Description

<key>Metrics/TimeRequiredBetweenClientRequests</key> Required time between client requests in ms
(default is 250 ms)

<key>Metrics/MaxClients</key> Maximum number of concurrent client
sessions (default is 10)
494 NetIQ Identity Manager User Application: Administration Guide

When the limit has been reached for any of these settings a Web Service fault is generated indicating
the problem. In addition, for settings 1 and 2, the fault includes an error code.

If the fault is caused by a TimeRequiredBetweenClientRequests error, the error code is 100.
If the fault is caused by a MaxClients errors, the error code is 200.
If the fault is caused by a closed client connection error, the error code is 300.

Client consumers of the Metrics Web Service will have to include in their code provisions for retrying
a request. Here is a simple Java listing that shows how this can be achieved:

 try {
 for (int i = 0; i < retries; i++) {
 try {
 return metrics.getFlowCount(strDN, strId, new
 HashMap());
 } catch (MetricsServiceException e) {
 if (e.getErrorCode() == 100 //subsequent call
 error
 || e.getErrorCode() == 200) { //too many
 clients
 try {
 Thread.sleep(retryPause);
 }

 catch (Exception ex) {
 // to nothing
 }
 } else {
 throw e2;
 }
 } else {
 throw new RuntimeException(e);
 }
 } catch (Exception e) {
 throw e;
 }
 }
 throw new RuntimeException("Did not succeed making
 webservice call");
 } catch (Exception e) {
 throw e;
 }
 }
...

<key>Metrics/MaxRows</key> Maximum number of rows any query can
return

<key>Metrics/MaxTeamMembers</key> Maximum Number of Team Members

<key>Metrics/SecondsToAnythingDivider</key> The divider used in all throughput
computations (default 3600). Original values
are in seconds so all throughputs are
consequently per hour.

Key in config.xml Description
Metrics Web Service 495

19.2 Metrics Web Service API
This section provides details about the methods available with the Metrics web service.

All of the methods throw MetricsServiceException and RemoteException. To improve readability, the
throws clause has been omitted from the method signatures.

19.2.1 Team Manager Methods
This section provides reference information for each method available to team managers.

getClaimedFlowTimeCalendarDays
Syntax: Here’s the method signature:

double getClaimedFlowTimeCalendarDays(String processId, String processVersion,
Date startCompletionTime, Date endCompletionTime, String teamDN,Map filters)

getClaimedFlowTimeWorkingDays
Syntax: Here is the method signature:

MetricsResultset getClaimedFlowTimeWorkingDays(String processId, String
processVersion, Date startCompletionTime, Date endCompletionTime,String teamDN,
Map filters)

getToClaimedFlowTimeCalendarDays
Syntax: Here is the method signature:

 double getToClaimFlowTimeCalendarDays(String processId, String processVersion,
Date startCompletionTime, Date endCompletionTime, String teamDN,Map filters)

getToClaimedFlowTimeWorkingDays
Syntax: Here is the method signature:

 MetricsResultset getToClaimFlowTimeWorkingDays(String processId, String
processVersion, Date startCompletionTime, Date endCompletionTime,String teamDN,
Map filters)

getClaimedInventory
Syntax: Here is the method signature:

 double getClaimedInventory(String processId, String processVersion, Date
startCompletionTime, Date endCompletionTime, String teamDN, Map filters)

getClaimedThroughputCalendarDays
Syntax: Here is the method signature:

 double getClaimedThroughputCalendarDays(String processId, String processVersion,
Date startCompletionTime, Date endCompletionTime, String teamDN Map filters)
496 NetIQ Identity Manager User Application: Administration Guide

getClaimedThroughputWorkingDays
Syntax: Here is the method signature:

 MetricsResultset getClaimedThroughputWorkingDays(String processId, String
processVersion, Date startCompletionTime, Date endCompletionTime, String teamDN,
Map filters)

getTeamLongestRunning
Syntax: Here is the method signature:

MetricsResultset getTeamLongestRunning(String processId, String processVersion,
String teamDN, Map filters)

getTeamLongestClaimed
Syntax: Here is the method signature:

MetricsResultset getTeamLongestClaimed(String processId, String processVersion,
String teamDN, Map filters)

getTeamFlowHistory
Syntax: Here is the method signature:

MetricsResultset getTeamFlowHistory(List requestIds)

getTeamHistoryForInitiators
Syntax: Here is the method signature:

MetricsResultset getTeamHistoryForInitiators(String teamDN, Map filters)

getTeamHistoryForRecipients
Syntax: Here is the method signature:

MetricsResultset getTeamHistoryForRecipients(String teamDN, Map filters)

getTeamRunningTime
Syntax: Here is the method signature:

double getTeamRunningTime(String processId, String processVersion, String teamDN,
Map filters)

getTeamDecisionCount
Syntax: Here is the method signature:

int getTeamDecisionCount(String processId, String processVersion, String teamDN,
Map filters)
Metrics Web Service 497

getTeamInitiatedCount
Syntax: Here is the method signature:

 int getTeamInitiatedCount(String processId, String processVersion, String teamDN,
Map filters)

getTeamRecipientCount
Syntax: Here is the method signature:

 int getTeamRecipientCount(String processId, String processVersion, String teamDN,
Map filters)

19.2.2 Provisioning Application Administrator Methods
This section provides reference information for each method available to the Provisioning
Application Administrator.

getActivityFlowTimeCalendarDays
Syntax: Here is the method signature:

double getActivityFlowTimeCalendarDays(String processId, String processVer, String
activityId, Date startTime, Date completeTime, Map filters)

getActivityFlowTimeWorkingDays
Syntax: Here is the method signature:

 MetricsResultset getActivityFlowTimeWorkingDays(String processId, String
processVer, String activityId, Date startTime, Date completeTime, Map filters)

getActivityInventory
Syntax: Here is the method signature:

double getActivityInventory(String processId, String processVersion, String
activityId, Date startTime, Date completeTime, Map filters)

getActivityThroughputCalendarDays
Syntax: Here is the method signature:

double getActivityThroughputCalendarDays(String processId, String processVersion,
String activityId, Date startTime, Date completiontime, Map filters)

getActivityThroughputWorkingDays
Syntax: Here is the method signature:

 MetricsResultset getActivityThroughputWorkingDays(String processId, String
processVersion, String activityId, Date startTime, Date completiontime, Map
filters)
498 NetIQ Identity Manager User Application: Administration Guide

getInventory
Syntax: Here is the method signature:

double getInventory(String processId, String processVersion, Date startTime, Date
completeTime, Map filters)

getLongestClaimed
Syntax: Here is the method signature:

 MetricsResultset getLongestClaimed(String processId, String processVersion, Map
filters)

getLongestRunning
Syntax: Here is the method signature:

MetricsResultset getLongestRunning(String processId, String processVersion, Map
filters)

getFlowCount
Syntax: Here is the method signature:

int getFlowCount(String processId, String processVersion, Map filters)

getFlowHistory
Syntax: Here is the method signature:

MetricsResultset getFlowHistory(List requestIds)

getFlowHistoryForInitiators
Syntax: Here is the method signature:

 MetricsResultset getFlowHistoryForInitiators(List initiators, Map filters)

getFlowHistoryForRecipients
Syntax: Here is the method signature:

MetricsResultset getFlowHistoryForRecipients(List recipients, Map filters)

getRunningTime
Syntax: Here is the method signature:

 double getRunningTime(String processId, String processVersion, Map filters)

getThroughputCalendarDays
Syntax: Here is the method signature:
Metrics Web Service 499

double getThroughputCalendarDays(String processId, String processVersion, Date
startTime, Date completiontime, Map filters)

getThroughputWorkingDays
Syntax: Here is the method signature:

MetricsResultset getActivityThroughputWorkingDays(String processId, String
processVersion, String activityId, Date startTime, Date completiontime, Map
filters)

19.2.3 Utility Methods
This section provides reference information for each utility method. Both team managers and
administrators can call these methods.

getVersion
Syntax: Here is the method signature:

VersionVO getVersion()

getAllProvisioningFlows
Syntax: Here is the method signature:

MetricsResultset getAllProvisioningFlows()

getUserActivityOnlyFlow
Syntax: Here is the method signature:

BasicModelVO getUserActivityOnlyFlow(String processId, String processVer)

getTeams
Syntax: Here is the method signature:

MetricsResultset getTeams()

getTeamMembers
Syntax: Here is the method signature:

MetricsResultset getTeamMembers(String teamDN)

19.3 Metrics Web Service Examples
This section provides examples that show how to use the Metrics Web Service to gather workflow
metrics. The examples assume that you have obtained a stub, as shown in Section 19.1.6, “Obtaining
the Remote Interface,” on page 493, and potentially wrapped it in an object that handles the potential
error conditions, as described in Section 19.1.7, “Metrics Configuration Settings,” on page 494.
500 NetIQ Identity Manager User Application: Administration Guide

19.3.1 General Examples
This example uses the KEY_APPROVAL_STATUS filter to compare the decision outcomes for a
provisioning request type. This could be used to generate a pie chart for example.

FilterConstants constants=new FilterConstants();
Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
map.put(MetricsFilter.KEY_APPROVAL_STATUS,constants.getApprovalStatusApproved());
double accepted=stubWrapper.getFlowCount(processId,processVersion,map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,constants.getApprovalStatusDenied());
double denied=stubWrapper.getFlowCount(processId,processVersion,map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,constants.getApprovalStatusError());
double error=stubWrapper.getFlowCount(processId,processVersion,map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,constants.getApprovalStatusRetract());
double retracted=stubWrapper.getFlowCount(processId,processVersion,map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getApprovalStatusRefused());
double refused = stubWrapper.getFlowCount(processId,
processVersion, map);

Additional filters may be specified by adding appropriate entries to the filter map. The following
examples illustrate how you might add various types of filters.

Adding a start date filter
To add a start date filter (01/01/2006 < date < 02/01/2006):

Calendar startDate=Calendar.getInstance();
startDate.set(2006,0,1);
Calendar endDate=Calendar.getInstance();
endDate.set(2006,1,1);
map.put(MetricsFilter.KEY_L_START_TIME,startDate);
map.put(MetricsFilter.KEY_S_START_TIME,endDate)

Adding a completion date filter
To add a completion date filter (02/01/2005 < date <03/01/2005)

Calendar startDate=Calendar.getInstance();
startDate.set(2006,0,1);
Calendar endDate=Calendar.getInstance();
endDate.set(2006,1,1);
map.put(MetricsFilter.KEY_L_COMPLETION_TIME,startDate);
map.put(MetricsFilter.KEY_S_COMPLETION_TIME,endDate)

Narrowing requests to a specific initiator
To narrow down counted requests to a specific initiator

map.put(MetricsFilter.KEY_INITIATOR,"cn=admin,ou=idmsample,o=novell");

Narrowing requests to a specific recipient
To narrow down counted requests to a specific recipient

map.put(MetricsFilter.KEY_RECIPIENT,"cn=admin,ou=idmsample,o=novell");

19.3.2 Other Examples
The following examples illustrate the use of various methods for retrieving workflow counts.
Metrics Web Service 501

Retrieving decision counts for a team
This example describes how to retrieve the various decision outcomes of a team. The team's DN is
required and can be obtained by using the getTeams() method:

FilterConstants constants=new FilterConstants();
Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
map.put(MetricsFilter.KEY_ACTIVITY_END,
constants.getActivityApproved());
double accepted = stubWrapper.getTeamDecisionCount(processId,
processVersion, teamDN, map);
map.put(MetricsFilter.KEY_ACTIVITY_END, constants.getActivityDenied());
double denied = stubWrapper.getTeamDecisionCount(processId, processVersion,
teamDN, map);
map.put(MetricsFilter.KEY_ACTIVITY_END,
 constants.getActivityReassigned());
double reassigned = stubWrapper.getTeamDecisionCount(processId,
 processVersion, teamDN, map);
map.put(MetricsFilter.KEY_ACTIVITY_END,
 constants.getActivityRefused());
double refused = stubWrapper.getTeamDecisionCount(processId,
 processVersion, teamDN, map);

Retrieving decision counts for requests where team members are recipients
This example describes how to retrieve the various decisions outcomes for requests for which
members of the team act as recipients

FilterConstants constants = new FilterConstants();
Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getActivityApproved());
double accepted = stubWrapper.getTeamRecipientCount(processId, processVersion,
teamDN, map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getApprovalStatusDenied());
double denied = stubWrapper.getTeamRecipientCount(processId, processVersion,
teamDN, map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS, constants.getApprovalStatusError());
double error = stubWrapper.getTeamRecipientCount(processId, processVersion,
teamDN, map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS, constants.getApprovalStatusError());
double retracted = stubWrapper.getTeamRecipientCount(processId, processVersion,
teamDN, map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS, constants.getApprovalStatusRefused());
double refused = stubWrapper.getTeamRecipientCount(processId, processVersion,
teamDN, map);

Retrieving requests that have been claimed but not acted on
This example describes how to retrieve the requests started after 03/01/2006 that have been claimed
but not acted upon.

Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
Calendar startDate=Calendar.getInstance();
startDate.set(2006,2,1);
map.put(MetricsFilter.KEY_L_START_TIME,startDate);
MetricsResultset rset = stubWrapper.getLongestClaimed(processId, processVersion,
map);
502 NetIQ Identity Manager User Application: Administration Guide

Retrieving the longest running requests started by a particular user
This example describes how to retrieve the longest running requests that have been started by
initiator "cn=admin,ou=idmsample,o=novell";

Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
map.put(MetricsFilter.KEY_INITIATOR,""cn=admin,ou=idmsample,o=novell");
MetricsResultset rset = stubWrapper.getLongestRunning(processId, processVersion,
map);

Retrieving activity inventory
This example describes the average inventory for users handling decision with activity id
"managerApproval" between 01/01/2006 and 02/01/2006

Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
Calendar startDate=Calendar.getInstance();
startDate.set(2006,0,1);
Calendar endDate=Calendar.getInstance();
endDate.set(2006,1,1);
MetricsResultset rset = stubWrapper.getActivityInventory(processId,
processVersion,"managerApproval", startDate, endDate, map);

Retrieving the Claimed Throughput and Inventory for a Team
This example describes the team's throughput and inventory over the time interval between 01/01/
2006 and 02/01/2006

Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
Calendar startDate=Calendar.getInstance();
startDate.set(2006,0,1);
Calendar endDate=Calendar.getInstance();
endDate.set(2006,1,1);
double throughput = stubWrapper.getClaimedThroughputCalendarDays(processId,
processVersion, startDate, endDate,teamDN, map);
double inventory = stubWrapper.getClaimedInventory(processId, processVersion,
startDate, endDate, teamDN, map)
Metrics Web Service 503

504 NetIQ Identity Manager User Application: Administration Guide

20 20Notification Web Service

This section describes the Notification Web Service, which allows SOAP clients to use the e-mail
notification facility. Topics include:

Section 20.1, “About the Notification Web Service,” on page 505
Section 20.2, “Notification Web Service API,” on page 506
Section 20.3, “Notification Example,” on page 512

20.1 About the Notification Web Service
The Identity Manager User Application includes an e-mail notification facility that lets you send e-
mail messages to notify users of changes in the state of the provisioning system, as well as tasks that
they need to perform. To support access by third-party software applications, the notification facility
includes a Web service endpoint. The endpoint lets you send an e-mail message to one or more users.
When you send an e-mail, you include parameters that specify the target e-mail address, the e-mail
template to use, and the replacement values for tokens in the e-mail template.

This Appendix describes the programming interface for the Notification Web Service.

20.1.1 Accessing the Test Page
You can access the Notification Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/notification/service?test

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/notification/service?test

You can also access the SOAP endpoint by going to the Administration within the User Application.
To do this, you need to select the Application Configuration tab, then select Web Services from the left-
navigation menu. After selecting Web Services, pick the Web Service endpoint you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment. For details on enabling the test page, see the instructions provided for the
Role Service in “Enabling the Test Page” on page 541.

20.1.2 Accessing the WSDL
You can access the WSDL for the Notification Web Service using a URL similar to the following:

http://server:port/warcontext/notification/service?wsdl
Notification Web Service 505

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/notification/service?wsdl

20.1.3 Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the Novell WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.ws.client.notification:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/jaxrpc-
api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar"; com.novell.soa.ws.impl.tools.wsdl2java.Main
-verbose -ds gensrc -d C:\ -noskel -notie -genclient -keep -package
com.novell.ws.client.notification -javadoc notification.wsdl

You can change the wsdl2java parameters to suit your requirements.

20.2 Notification Web Service API
This section provides details about the methods available with the Notification Web service. This API
presumes you’re using Java code generated by the WSSDK toolkit. The API will be different if you’re
using another Web Service toolkit.

All of the methods throw RemoteException. To improve readability, the throws clause has been
omitted from the method signatures.

20.2.1 iRemoteNotification
This section provides reference information for each method associated with the iRemoteNotification
interface.

getVersion
Returns the version number of the notification facility you’re running.

Syntax: Here is the method signature:

VersionVO getVersion()

sendNotification
Sends an e-mail notification.

Syntax: Here is the method signature:

void sendNotification(NotificationMap arg0)
506 NetIQ Identity Manager User Application: Administration Guide

20.2.2 BuiltInTokens
This section provides reference information for each method associated with the BuiltInTokens class.

BuiltInTokens constructor
The BuiltInTokens class has a single constructor.

Syntax: Here is the constructor for the BuiltInTokens class:

BuiltInTokens()

getTO
Returns the fixed string TO, which can be used as a key to identify the value for the TO system token.

Syntax: Here is the method signature:

public java.lang.String getTO()

getCC
Returns the fixed string CC, which can be used as a key to identify the value for the CC system token.

Syntax: Here is the method signature:

public java.lang.String getCC()

getBCC
Returns the fixed string BCC, which can be used as a key to identify the value for the BCC system
token.

Syntax: Here is the method signature:

public java.lang.String getBCC()

getTO_DN
Returns the fixed string TO_DN, which can be used as a key to identify the value for the TO_DN
system token.

Syntax Here is the method signature:

public java.lang.String getTO_DN()

getCC_DN
Returns the fixed string CC_DN, which can be used as a key to identify the value for the CC_DN
system token.

Syntax: Here is the method signature:

public java.lang.String getCC_DN()
Notification Web Service 507

getBCC_DN
Returns the fixed string BCC_DN, which can be used as a key to identify the value for the BCC_DN
system token.

Syntax: Here is the method signature:

public java.lang.String getBCC_DN()

getREPLYTO
Returns the fixed string REPLYTO, which can be used as a key to identify the value for the REPLYTO
system token.

Syntax: Here is the method signature:

public java.lang.String getREPLYTO()

getREPLYTO_DN
Returns the fixed string REPLYTO_DN, which can be used as a key to identify the value for the
REPLYTO_DN system token.

Syntax: Here is the method signature:

public java.lang.String getREPLYTO_DN()

getLOCALE
Returns the fixed string LOCALE, which can be used as a key to identify the value for the LOCALE
system token.

Syntax: Here is the method signature:

public java.lang.String getLOCALE()

getNOTIFICATION_TEMPLATE_DN
Returns the fixed string NOTIFICATION_TEMPLATE, which can be used as a key to identify the
value for the NOTIFICATION_TEMPLATE system token.

Syntax: Here is the method signature:

public java.lang.String getNOTIFICATION_TEMPLATE_DN()

20.2.3 Entry
The Entry class represents an entry in an EntryArray object. It is used to specify a token in an e-mail
template.

This section provides reference information for each method associated with the Entry class.

Entry constructors
The Entry class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:
508 NetIQ Identity Manager User Application: Administration Guide

Entry()

Syntax 2: Here is the syntax for a constructor that takes two parameters, the key value and an array of
values:

Entry(java.lang.String KeyVal, StringArray ValuesVal)

getKey
Returns the key defined for the Entry object. The key identifies the token.

Syntax: Here is the method signature:

java.lang.String getKey()

setKey
Sets the key for the Entry object. The key identifies the token. If the object represents a built-in token,
you can use the BuiltInTokens class to set the key. Otherwise, you can pass a string to the setKey
method that specifies the key.

Syntax: Here is the method signature:

void setKey(java.lang.String KeyVal)

getValues
Returns a StringArray object representing the values for the Entry object.

Syntax: Here is the method signature:

StringArray getValues()

setValues
Sets the values for the Entry object.

Syntax: Here is the method signature:

void setValues(StringArray ValuesVal)

20.2.4 EntryArray
The EntryArray class is a container for an array of Entry objects. It is contained by the
NotificationMap object.

This section provides reference information on the methods associated with the EntryArray class.

EntryArray constructors
The EntryArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

EntryArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Entry objects as a parameter:
Notification Web Service 509

EntryArray(Entry[] EntryVal)

getEntry
Returns the Entry object contained within this EntryArray object.

Syntax: Here is the method signature:

Entry[] getEntry()

setEntry
Sets the Entry object for this EntryArray object.

Syntax: Here is the method signature:

void setEntry(Entry[] EntryVal)

20.2.5 NotificationMap
The NotificationMap object is a map that contains an EntryArray object. It is passed to the
sendNotification method on the stub.

This section provides reference information for the methods associated with the NotificationMap
class.

NotificationMap constructors
The NotificationMap class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

NotificationMap()

Syntax 2: Here is the syntax for a constructor that takes an EntryArray object as a parameter:

NotificationMap(EntryArray EntriesVal)

getEntries
Returns the EntryArray object contained by this NotificationMap object.

Syntax: Here is the method signature:

EntryArray getEntries()

setEntries
Sets the EntryArray object for this NotificationMap object.

Syntax: Here is the method signature:

void setEntries(EntryArray EntriesVal)

20.2.6 NotificationService
This section provides reference information for the NotificationService interface.
510 NetIQ Identity Manager User Application: Administration Guide

getIRemoteNotificationPort
Gets the stub for the remote service. The stub is a port of type IRemoteNotification.

Syntax: Here is the method signature:

IRemoteNotification getIRemoteNotificationPort() throws
javax.xml.rpc.ServiceException

20.2.7 StringArray
This section provides reference information for the StringArray class.

StringArray constructors
The StringArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringArray()

Syntax 2: Here is the syntax for a constructor that takes a String array as a parameter:

StringArray(java.lang.String[] StringVal)

getString
Returns the array of strings defined for this StringArray object.

Syntax: Here is the method signature:

java.lang.String[] getString()

setString
Sets the array of strings for this StringArray object. This method is called by the second constructor,
which takes a String array as a parameter.

Syntax: Here is the method signature:

void setString(java.lang.String[] StringVal)

20.2.8 VersionVO
This section provides reference information on the VersionVO class.

getValue
Returns the version number of the service.

Syntax: Here is the method signature:

java.lang.String getValue()
Notification Web Service 511

20.3 Notification Example
The following code example shows how one might use the Notification service to send an e-mail
message using a pre-defined system template. To get a reference to the SOAP endpoint for the
Notification service, a call is made to the getNotificationStub() method. After acquiring the stub
interface, the code sets the e-mail notification template as well as values for the built-in tokens in the
template. In addition, the code specifies values for the requestTitle and initiatorFullName tokens. For
each token, the code creates an Entry object. Once all of the entries have been created, it packages the
entry array into a map of type NotificationMap, which is then passed to the sendNotification method
on the stub.

import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.xml.rpc.Stub;
import java.rmi.RemoteException;
//
// Notification imports
import com.novell.ws.client.notification.IRemoteNotification;
import com.novell.ws.client.notification.BuiltInTokens;
import com.novell.ws.client.notification.Entry;
import com.novell.ws.client.notification.EntryArray;
import com.novell.ws.client.notification.StringArray;
import com.novell.ws.client.notification.NotificationMap;
import com.novell.ws.client.notification.IRemoteNotification;
import com.novell.ws.client.notification.NotificationService;

public class NotificationTest
{
 private static final int LOCALHOST = 0; // localhost
 private static final int TESTSERVER = 1; // testserver
 private static final int SELECTED_URL = TESTSERVER;

 private String [] SERVER_URLS = {
 "http://localhost:8080/IDMProv/notification/service",
 "http://testserver:8080/IDMProv/notification/service"
 };
 private String url = SERVER_URLS[SELECTED_URL];
 private String username = "cn=admin,ou=idmsample,o=novell";
 private String password = "test";

 public void emailNotificationTestCase()
 throws Exception
 {
 System.out.println("\nCalling emailNotificationTestCase() test
case");

 try
 {
 String targetEmailAddress = "jsmith@somewhere.com";
 //
 // Get the notification stub
 IRemoteNotification notificationStub =
getNotificationStub(url, username, password);

 BuiltInTokens builtInTokens = new BuiltInTokens();
 //
 // Set the To: entry
 Entry to = new Entry();
 to.setKey(builtInTokens.getTO());
 StringArray arr = new StringArray(new
String[]{targetEmailAddress});
 to.setValues(arr);
 //
512 NetIQ Identity Manager User Application: Administration Guide

 // Set which email template to use : list in iManager
(Workflow Admin->Email Templates)
 Entry notificationTemplate = new Entry();

notificationTemplate.setKey(builtInTokens.getNOTIFICATION_TEMPLATE_DN());
 //
 // Use one of the email templates specifying DN
 String EMAIL_TEMPLATE_NAME = "Provisioning Notification";
 String templateDN = "cn=" + EMAIL_TEMPLATE_NAME +
",cn=Default Notification Collection,cn=Security";
 arr = new StringArray(new String[]{templateDN});
 notificationTemplate.setValues(arr);
 //
 // Substitute key values defined in email templates
 Entry token1 = new Entry();
 token1.setKey("requestTitle"); // key is %requestTitle%
 arr = new StringArray(new String[]{"Sample Email using
Notification Web Service"});
 token1.setValues(arr);
 Entry token2 = new Entry();
 token2.setKey("initiatorFullName");
 arr = new StringArray(new String[]{username});
 token2.setValues(arr);
 //
 // Setup the notification map
 NotificationMap map = new NotificationMap();
 Entry[] entries = new
Entry[]{to,notificationTemplate,token1,token2};
 EntryArray entryArray = new EntryArray();
 entryArray.setEntry(entries);
 map.setEntries(entryArray);
 //
 // Make the notification endpoint call
 notificationStub.sendNotification(map);
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 /**
 * Method to obtain the remote interface to the Notification
endpoint
 * @param _url
 * @param _username
 * @param _password
 * @return IRemoteNotification interface
 * @throws Exception
 */
 private IRemoteNotification getNotificationStub(String _url,
String _username, String _password)
 throws Exception
 {
 Properties properties = new Properties();
 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");

 String lookup =
"xmlrpc:soap:com.novell.ws.client.notification.NotificationService";

 InitialContext ctx = new InitialContext();
 NotificationService svc = (NotificationService)
Notification Web Service 513

ctx.lookup(lookup);

 Stub stub = (Stub)svc.getIRemoteNotificationPort();

 stub._setProperty(Stub.USERNAME_PROPERTY, _username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, _password);
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY,
Boolean.TRUE);
 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, _url);

 return (IRemoteNotification) stub;
 }

}

514 NetIQ Identity Manager User Application: Administration Guide

21 21Directory Abstraction Layer (VDX) Web
Service

This section describes the VDX Web Service, which allows SOAP clients to access the directory
abstraction layer. Topics include:

Section 21.1, “About the Directory Abstraction Layer (VDX) Web Service,” on page 515
Section 21.2, “VDX Web Service API,” on page 517
Section 21.3, “VDX Example,” on page 529

21.1 About the Directory Abstraction Layer (VDX) Web Service
The directory abstraction layer provides a logical view of the Identity Vault data. To support access
by third-party software applications, the directory abstraction layer includes a Web service endpoint
called the VDX Web Service. This endpoint lets you access the attributes associated with entities
defined in the directory abstraction layer. It also lets you perform ad hoc searches for entities and
execute predefined searches called global queries. You can think of global queries as stored
procedures for LDAP.

This Appendix describes the programming interface for the VDX Web Service.

21.1.1 Accessing the Test Page
You can access the VDX Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/vdx/service?test

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/vdx/service?test

You can also access the SOAP endpoint by going to the Administration within the User Application.
To do this, you need to select the Application Configuration tab, then select Web Services from the left-
navigation menu. After selecting Web Services, pick the Web Service endpoint you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment. For details on enabling the test page, see the instructions provided for the
Role Service in “Enabling the Test Page” on page 541.

21.1.2 Accessing the WSDL
You can access the WSDL for the VDX Web Service using a URL similar to the following:
Directory Abstraction Layer (VDX) Web Service 515

http://server:port/warcontext/vdx/service?wsdl

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/vdx/service?wsdl

21.1.3 Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the Novell WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.ws.client.vdx:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/jaxrpc-
api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar"; com.novell.soa.ws.impl.tools.wsdl2java.Main
-verbose -ds gensrc -d C:\ -noskel -notie -genclient -keep -package
com.novell.ws.client.vdx -javadoc vdx.wsdl

You can change the wsdl2java parameters to suit your requirements.

21.1.4 Removing Administrator Credential Restrictions
The VDX Web Service supports two levels of security, one that restricts access to Provisioning
Administrators, and another that restricts access to the authenticated user. The default setting
restricts access to all operations to the Provisioning Administrator.

You can modify the security configuration by extracting the /VirtualDataService-conf/
config.xml file from the IDMfw.jar file in the IDMProv.war file, and editing the property settings.
Each property can be set to true or false. A value of true locks down the operation, whereas a value of
false opens up the operation. After making your changes, you need to import the file back into the
WAR file and redeploy.

You can open up the VDX Web Service to authenticated users by setting the VirtualDataService/soap
property to false. To open up a particular operation to authenticated users, you need to set the
property for that operation (VirtualDataService/soap/operation) to false as well. If you set all of the
properties to false, you can open up all operations to authenticated users. The operation names are the
same as the names of the methods supported by the service.

Example The following example shows a security configuration that would open up all operations
within the VDX Web Service:

 <property>
 <key>VirtualDataService/soap</key>
 <value>false</value>
 </property>

If you wanted to restrict globalQuery you would add the following property to the service's
config.xml settings:

 <property>
 <key>VirtualDataService/soap/globalQuery</key>
 <value>true</value>
 </property>
516 NetIQ Identity Manager User Application: Administration Guide

Even though the service does not require the Administrator credentials since you set the
VirtualDataService/soap property to false, the globalQuery operation will still require the
Administrator credentials since you set a property for the operation to true.

21.2 VDX Web Service API
This section provides details about the methods available with the VDX Web service. This API
presumes you’re using Java code generated by the WSSDK toolkit. The API will be different if you’re
using another Web Service toolkit.

All of the methods throw VdxServiceException. To improve readability, the throws clause has been
omitted from the method signatures.

21.2.1 IRemoteVdx
This section provides reference information for each method associated with the IRemoteVdx
interface.

getVersion
Returns the version number of the VDX service you’re running.

Syntax: Here is the method signature:

VersionVO getVersion() throws java.rmi.RemoteException;

globalQuery
Allows you to execute predefined searches called global queries. Global queries are saved searches
for LDAP. They provide some of the capabilities of stored procedures.

To define a global query, you need to use the directory abstraction layer editor. For details, see the
chapter on the directory abstraction layer editor in the Identity Manager User Application: Design Guide.

Syntax: Here is the method signature:

java.lang.String[] globalQuery(java.lang.String queryDN, StringMap
queryParameterValues) throws VdxServiceException, java.rmi.RemoteException;

query
Allows you to perform ad hoc queries by specifying an entity, a set of attributes, and a query
expression that filters the data returned.

Syntax: Here is the method signature:

EntityAttributeMap query(java.lang.String entityDefinition, java.lang.String[]
attributeKeys, java.lang.String queryFilter) throws VdxServiceException,
java.rmi.RemoteException;

Query Grammar
The queryFilter parameter of the query() method lets you pass in search criteria expressions that filter
the data returned. This section describes the grammar for these expressions.

Query syntax 1: The simplest form of a query is the following:
Directory Abstraction Layer (VDX) Web Service 517

RelationalExpression1

Query syntax 2: A query can also combine relational expressions with a logical operator:

RelationalExpession1 logicalOperator RelationalExpression2

Query syntax 3: Alternatively, a query can use parentheses to set off the expressions:

(RelationalExpession1) logicalOperator (RelationalExpression2)

Query syntax 4: A query can also use parentheses to set off sub queries:

RelationalExpession1 logicalOperator (RelationalExpression2 logicalOperator1
RelationalExpression3)

Relational expressions must be separated by a logical operator which must remain the same. In other
words, the following query is valid:

expression1 AND expression2 AND expression3

However, this query is not valid:

expression1 AND expression2 OR expression3

You can use parentheses to create a condition group, as in the following example:

expression1 AND (expression2 OR expression3)

Grammar for Relational Expressions
Relational expression syntax: A relational expression must conform to this syntax:

attribute relationalOperator value

Grammar for Operators and Values
Relational operators: The relational operator must be one of the following:

> , < , >= , <= , = , != , !< , !> , !<= , !>= , STARTWITH, !STARTWITH, IN , !IN ,
PRESENT, !PRESENT

Logical operators: The logical operator must be one of the following:

AND, OR

Value: The value side of an expression must be one of the following:

'foo',"foo", 1-9, true, false

The PRESENT and !PRESENT relational operators require no value.

getAttribute
Returns a single Attribute object that can be used to retrieve and examine data for an attribute in the
directory abstraction layer.

Syntax: Here is the method signature:

Attribute getAttribute(java.lang.String objectDN, java.lang.String
entityDefinition, java.lang.String attributeKey) throws VdxServiceException,
java.rmi.RemoteException;
518 NetIQ Identity Manager User Application: Administration Guide

getAttributes
Returns an array of Attribute objects that can be used to retrieve and examine data in the directory
abstraction layer.

Syntax: Here is the method signature:

Attribute[] getAttributes(java.lang.String objectDN, java.lang.String
entityDefinition, java.lang.String[] attributeKeys) throws VdxServiceException,
java.rmi.RemoteException;

21.2.2 Attribute
The Attribute class represents an attribute in the directory abstraction layer.

This section provides reference information for the Attribute class.

Attribute constructors
The Attribute class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no arguments:

Attribute()

Syntax 2: Here is the syntax for a constructor that takes arrays of all the supported data types as
arguments:

Attribute(ByteArrayArray BinariesVal, BooleanArray BooleansVal, DateArray
DatesVal, IntegerArray IntegersVal, StringArray StringsVal, AttributeType TypeVal)

getBinaries
Returns the ByteArrayArray object for the attribute.

Syntax: Here is the method signature:

ByteArrayArray getBinaries()

setBinaries
Sets the ByteArrayArray object for the attribute.

Syntax: Here is the method signature:

void setBinaries(ByteArrayArray BinariesVal)

getBooleans
Returns the BooleanArray object for the attribute.

Syntax: Here is the method signature:

BooleanArray getBooleans()

setBooleans
Sets the BooleanArray object for the attribute.
Directory Abstraction Layer (VDX) Web Service 519

Syntax: Here is the method signature:

void setBooleans(BooleanArray BooleansVal)

getDates
Returns the DateArray object for the attribute.

Syntax: Here is the method signature:

DateArray getDates()

setDates
Sets the DateArray object for the attribute.

Syntax: Here is the method signature:

void setDates(DateArray DatesVal)

getIntegers
Returns the IntegerArray object for the attribute.

Syntax: Here is the method signature:

IntegerArray getIntegers()

setIntegers
Sets the IntegerArray object for the attribute.

Syntax: Here is the method signature:

void setIntegers(IntegerArray IntegersVal)

getStrings
Returns the StringArray object for the attribute.

Syntax: Here is the method signature:

StringArray getStrings()

setStrings
Set the StringArray object for the attribute.

Syntax: Here is the method signature:

void setStrings(StringArray StringsVal)

getType
Returns the AttributeType object for the attribute.

Syntax: Here is the method signature:
520 NetIQ Identity Manager User Application: Administration Guide

AttributeType getType()

setType
Sets the AttributeType object for the attribute.

Syntax: Here is the method signature:

void setType(AttributeType TypeVal)

21.2.3 AttributeArray
This section provides reference information on the AttributeArray class.

AttributeArray constructors
The AttributeArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

AttributeArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

AttributeArray(Attribute[] AttributeVal)

getAttribute
Returns an array of Attribute objects.

Syntax: Here is the method signature:

Attribute[] getAttribute()

setAttribute
Sets the array of Attribute objects associated with the AttributeArray class.

Syntax: Here is the method signature:

void setAttribute(Attribute[] AttributeVal)

21.2.4 AttributeType
This section provides reference information on the AttributeType class.

AttributeType constructors
The AttributeType class supports a single constructor.

Syntax: Here is the syntax for the constructor:

protected AttributeType(java.lang.String value)
Directory Abstraction Layer (VDX) Web Service 521

getValue
Returns a String that indicates the attribute type.

Syntax: Here is the method signature:

java.lang.String getValue()

21.2.5 BooleanArray
This section provides reference information for the BooleanArray class.

BooleanArray constructors
The BooleanArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

BooleanArray()

Syntax 2: Here is the syntax for a constructor that takes a boolean value as a parameter:

BooleanArray(boolean[] BooleanVal)

getBoolean
Returns an array of boolean values for an attribute.

Syntax: Here is the method signature:

boolean[] getBoolean()

setBoolean
Sets an array of boolean values for an attribute.

Syntax: Here is the method signature:

void setBoolean(boolean[] BooleanVal)

21.2.6 ByteArrayArray
This section provides reference information on the ByteArrayArray class.

ByteArrayArray constructors
The ByteArrayArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

ByteArrayArray()

Syntax 2: Here is the syntax for a constructor that takes a Base 64 binary value as a parameter:

ByteArrayArray(byte[][] Base64BinaryVal)
522 NetIQ Identity Manager User Application: Administration Guide

getBase64Binary
Returns a two-dimensional array of bytes for an attribute.

Syntax: Here is the method signature:

byte[][] getBase64Binary()

setBase64Binary
Sets a two-dimensional array of bytes for an attribute.

Syntax: Here is the method signature:

void setBase64Binary(byte[][] Base64BinaryVal)

21.2.7 DateArray
This section provides reference information for the DateArray class.

DateArray constructors
The DateArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

DateArray()

Syntax 2: Here is the syntax for a constructor that takes a Calendar array as a parameter:

DateArray(java.util.Calendar[] DatetimeVal)

getDatetime
Returns an array of Calendar objects for an attribute.

Syntax: Here is the method signature:

java.util.Calendar[] getDatetime()

setDatetime
Sets an array of Calendar objects for an attribute.

Syntax: Here is the method signature:

void setDatetime(java.util.Calendar[] DatetimeVal)

21.2.8 EntryAttributeMap
The EntryAttributeMap class is a container for an EntryArray object. It is returned by the query
method on the stub.

This section provides reference information on the methods associated with the EntryAttributeMap
class.
Directory Abstraction Layer (VDX) Web Service 523

EntryAttributeMap constructors
The EntryAttributeMap class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

EntryAttributeMap()

Syntax 2: Here is the syntax for a constructor that takes an EntryArray object as a parameter:

EntityAttributeMap(EntryArray EntriesVal)

getEntries
Returns the EntryArray object contained within this EntryAttributeMap object.

Syntax: Here is the method signature:

EntryArray getEntries()

setEntries
Sets the EntryArray object for this EntryAttributeMap object.

Syntax: Here is the method signature:

void setEntry(EntryArray EntriesVal)

21.2.9 Entry
The Entry class represents an entry in an EntryArray object.

This section provides reference information for each method associated with the Entry class.

Entry constructors
The Entry class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

Entry()

Syntax 2: Here is the syntax for a constructor that takes two parameters, the key value and an array of
attribute values:

Entry(java.lang.String KeyVal, AttributeArray ValuesVal)

getKey
Returns the key defined for the Entry object. The key identifies the attribute.

Syntax: Here is the method signature:

java.lang.String getKey()

setKey
Sets the key for the Entry object. The key identifies the attribute.
524 NetIQ Identity Manager User Application: Administration Guide

Syntax: Here is the method signature:

void setKey(java.lang.String KeyVal)

getValues
Returns a AttributeArray object representing the values for the Entry object.

Syntax: Here is the method signature:

AttributeArray getValues()

setValues
Sets the values for the Entry object.

Syntax: Here is the method signature:

void setValues(AttributeArray ValuesVal)

21.2.10 EntryArray
The EntryArray class is a container for an array of Entry objects. It is contained by the
EntryAttributeMap object.

This section provides reference information on the methods associated with the EntryArray class.

EntryArray constructors
The EntryArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

EntryArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Entry objects as a parameter:

EntryArray(Entry[] EntryVal)

getEntry
Returns the Entry object contained within this EntryArray object.

Syntax: Here is the method signature:

Entry[] getEntry()

setEntry
Sets the Entry object for this EntryArray object.

Syntax: Here is the method signature:

void setEntry(Entry[] EntryVal)
Directory Abstraction Layer (VDX) Web Service 525

21.2.11 IntegerArray
This section provides reference information for the IntegerArray class.

IntegerArray constructors
The IntegerArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

IntegerArray()

Syntax 2: Here is the syntax for a constructor that takes an int array as a parameter:

IntegerArray(int[] IntVal)

getInt
Returns an array of integers for an attribute.

Syntax: Here is the method signature:

int[] getInt()

setInt
Sets an array of integers for an attribute.

Syntax: Here is the method signature:

void setInt(int[] IntVal)

21.2.12 StringArray
The StringArray class is a container for an array of String objects. When you call the query() and
getAttributes() methods, you pass in a StringArray object to specify which attributes you want to
retrieve values for.

This section provides reference information for the StringArray class.

StringArray constructors
The StringArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringArray()

Syntax 2: Here is the syntax for a constructor that takes an String array as a parameter:

StringArray(java.lang.String[] StringVal)

getString
Returns the array of String objects associated with the StringArray object.

Syntax: Here is the method signature:
526 NetIQ Identity Manager User Application: Administration Guide

java.lang.String[] getString()

setString
Sets the array of String objects associated with the StringArray object.

Syntax: Here is the method signature:

void setString(java.lang.String[] StringVal)

21.2.13 StringEntry
The StringEntry class is contained by the the StringEntryArray class.

This section provides reference information for the StringEntry class.

StringEntry constructors
The StringEntry class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringEntry()

Syntax 2: Here is the syntax for a constructor that takes a key and a String value as parameters:

StringEntry(java.lang.String KeyVal, java.lang.String ValuesVal)

getKey
Returns the key defined for the StringEntry object.

Syntax: Here is the method signature:

java.lang.String getKey()

setKey
Sets the key for the StringEntry object.

Syntax: Here is the method signature:

void setKey(java.lang.String KeyVal)

21.2.14 StringEntryArray
The StringEntryArray class is a container for an array of StringEntry objects. It is contained by the
StringMap object.

This section provides reference information for the StringEntryArray class.

StringEntryArray constructors
The StringEntryArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:
Directory Abstraction Layer (VDX) Web Service 527

StringEntryArray()

Syntax 2: Here is the syntax for a constructor that takes a StringEntry array as a parameter:

StringEntryArray(StringEntry[] StringentryVal)

getStringentry
Returns the key for the StringEntryArray object.

Syntax: Here is the method signature:

StringEntry[] getStringentry()

setStringentry
Sets the key for the StringEntryArray object.

Syntax: Here is the method signature:

void setStringentry(StringEntry[] StringentryVal)

21.2.15 StringMap
The StringMap is a container for a StringEntryArray object.

This section provides reference information on the StringMap class.

StringMap constructors
The StringMap class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringMap()

Syntax 2: Here is the syntax for a constructor that takes a StringEntryArray as a parameter:

StringMap(StringEntryArray EntriesVal)

getEntries
Returns the StringEntryArray object contained by this StringMap object.

Syntax: Here is the method signature:

StringEntryArray getEntries()

setEntries
Sets the StringEntryArray object for this StringMap object.

Syntax: Here is the method signature:

void setEntries(StringEntryArray EntriesVal)
528 NetIQ Identity Manager User Application: Administration Guide

21.2.16 VdxService
This section provides reference information for the VdxService interface.

getIRemoteVdxPort
Gets the stub for the remote service. The stub is a port of type IRemoteVdx.

Syntax: Here is the method signature:

IRemoteVdx getIRemoteVdxPort() throws javax.xml.rpc.ServiceException;

21.2.17 VersionVO
This section provides reference information on the VersionVO class.

getValue
Returns the version number of the service.

Syntax: Here is the method signature:

java.lang.String getValue()

21.3 VDX Example
The following code example shows how one might use the VDX service to access the attributes
associated with entities defined in the directory abstraction layer. It demonstrates the use of ad hoc
searches, as well as predefined searches called global queries. This code listing includes examples
that use the getAttribute(), getAttributes(), query(), and globalQuery() methods on the service.

To get a reference to the SOAP endpoint for the VDX service, it calls a method called getVdxStub().
The implementation for this method is shown at the end of the listing:

NOTE: This example presumes that you have generated client stubs from the WSDL file
IRemoteVdx.wsdl. Use the SOAP stack provider of your choice (such as AXIS or CFX) to generate
client stubs.

With Apache CXF, for example, you should be able to generate the stubs to match the package names
in the import statement by using the following command:

wsdl2java -p com.novell.ws.client.vdx IRemoteVdx.wsdl

import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.xml.rpc.Stub;
import java.rmi.RemoteException;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.rmi.RemoteException;
import java.util.Calendar;
import java.util.Date;
import java.util.Hashtable;
Directory Abstraction Layer (VDX) Web Service 529

import java.util.Map;
//
// Vdx imports
import com.novell.ws.client.vdx.IRemoteVdx;
import com.novell.ws.client.vdx.VdxService;
import com.novell.ws.client.vdx.VdxServiceException;
import com.novell.ws.client.vdx.VersionVO;
import com.novell.ws.client.vdx.Attribute;
import com.novell.ws.client.vdx.AttributeArray;
import com.novell.ws.client.vdx.AttributeType;
import com.novell.ws.client.vdx.ByteArrayArray;
import com.novell.ws.client.vdx.BooleanArray;
import com.novell.ws.client.vdx.DateArray;
import com.novell.ws.client.vdx.StringArray;
import com.novell.ws.client.vdx.IntegerArray;
import com.novell.ws.client.vdx.EntryArray;
import com.novell.ws.client.vdx.Entry;
import com.novell.ws.client.vdx.EntityAttributeMap;

public class ServiceTest
{
 public static final int VDX = 0;
 public static final int NOTIFICATION = 1;
 public static final int RESOURCE = 2;
 public static final int ENDPOINT_SERVICE = VDX;

 private static final int LOCALHOST = 0; // localhost
 private static final int TESTSERVER = 1; // testserver
 private static final int SELECTED_URL = TESTSERVER;

 private String [] SERVER_URLS = {
 "http://localhost:8080/IDMProv/vdx/service",
 "http://testserver:8080/IDMProv/vdx/service"
 };

 private String url = SERVER_URLS[SELECTED_URL];
 private String username = "cn=admin,ou=idmsample,o=novell";
 private String password = "test";

 private String [] userAttributes = {
 //"passwordAllowChange", // boolean
 "UserPhoto", // binary
 //"loginTime", // time
 "Department", // string
 "Title",
 "Email",
 "manager", // dn = string
 "TelephoneNumber",
 "directReports",
 "FirstName",
 //"surname",
 "group",
 "srvprvHideAttributes",
 "NotificationPrefs",
 "srvprvQueryList",
 "Location",
 };

 public ServiceTest() { };

 public static void main(String [] args)
 {
 ServiceTest serviceTest = new ServiceTest();
 //
 // Set default if no params are given
 int wService = ENDPOINT_SERVICE;
 if(args.length == 1)
 wService = Integer.parseInt(args[0]);
530 NetIQ Identity Manager User Application: Administration Guide

 try
 {
 serviceTest.run(wService);
 }
 catch(Exception e)
 {
 System.exit(-1);
 }
 }

 private void waitHere(long _time) { try { Thread.sleep(_time *
1000); } catch(InterruptedException ie) {} }

 public void run(int _service)
 throws Exception
 {
 if(_service == VDX)
 {
 System.out.println("Calling VDX endpoint");
 //
 // Get the version number
 getVersionTestCase();
 waitHere(2);
 //
 // Get attribute data for entity user
 getAttributeTestCase();
 waitHere(2);
 //
 // Get attributes
 getAttributesTestCase();
 waitHere(2);
 //
 // Query attributes
 queryAttributesTestCase();
 waitHere(2);
 //
 // Global query
 // Global query MUST be associated with a defined and
deployed query.
 // This can be done via the Designer.

 globalQueryTestCase();
 }
 else if(_service == NOTIFICATION)
 {
 System.out.println("Calling Notification endpoint");
 NotificationTest notificationTest = new
NotificationTest();
 //
 // Email Notification
 notificationTest.emailNotificationTestCase();
 }
 else if(_service == RESOURCE)
 {
 System.out.println("Calling Resource endpoint");
 }
 else
 {
 System.out.println("Unrecognized service selection");
 }
 }

public void globalQueryTestCase()
 throws Exception
 {

System.out.println("\n<=========queryAttributesTestCase=========>");
Directory Abstraction Layer (VDX) Web Service 531

 try
 {
 //
 // Get the vdx stub
 IRemoteVdx vdxStub = getVdxStub(url, username, password);
 //
 // Create entry items corresponding to param key in DAL
 StringEntry [] entry = {
 new StringEntry("titleattribute", "Chief Operating
Officer"),
 new StringEntry("managerattribute",
"cn=jmiller,ou=users,ou=idmsample-pproto,o=novell")
 };
 //
 // Create and set the array of entries (key,value pairs)
 StringEntryArray entryArr = new StringEntryArray();
 entryArr.setStringentry(entry);
 //
 // Create and set the map using the entries
 StringMap map = new StringMap();
 map.setEntries(entryArr);
 //
 // Define and execute the global query
 int QUERY_KEY_INDEX = 0;
 String [] queryKeyName = {"TestVdxGlobalQuery2",
"TestVdxGlobalQuery"};
 //
 // Results from global query TestVdxGlobalQuery2 ----->
cn=apalani,ou=users,OU=idmsample-pproto,O=novell
 //
 // Make the vdx endpoint call
 StringArray array =
vdxStub.globalQuery(queryKeyName[QUERY_KEY_INDEX], map);
 String [] str = array.getString();
 if(str == null)

 throw new Exception("Global query returns null for key
name " + queryKeyName);
 else
 {
 System.out.println("Results for global query : " +
queryKeyName[QUERY_KEY_INDEX]);

System.out.println("===
===");
 for(int index = 0; index < str.length; index++)
 {
 System.out.println(str[index]);
 }
 }
 }
 catch(VdxServiceException error)
 {
 System.out.println(error.getReason());
 throw new Exception(error.getReason());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 public void queryAttributesTestCase()
 throws Exception
 {
 System.out.println("\nCalling queryAttributesTestCase() test
case");
 try
532 NetIQ Identity Manager User Application: Administration Guide

 {
 IRemoteVdx vdxStub = getVdxStub(url, username, password);

 StringArray attributes = new StringArray();
 attributes.setString(new String[]{"FirstName", "Title",
"UserPhoto", "Department"});
 String expression1 = "FirstName STARTWITH 'J'";
 String expression2 = "Title = 'Controller'";
 String expression3 = "vdxInteger > 0";
 String expression4 = "TelephoneNumber != '(555) 555-1201'";
 //
 // Test Cases
 // expression1 --> Should yield all users whose firstname
starts with J
 // expression1 AND expression2 --> Should yield jkelley who
is the Controller
 // expression1 AND expression3 --> Should yield only jmiller
 // expression1 AND expression4 --> Should yield all users
starting with J EXCEPT jmiller
 String finalExpression = expression1 + " AND " +
expression2;
 //
 // Make the vdx endpoint call
 EntityAttributeMap map = vdxStub.query("user", attributes,
finalExpression);
 EntryArray entryArray = map.getEntries();
 Entry [] entries = entryArray.getEntry();
 if(entries != null)
 {
 for(int index = 0; index < entries.length; index++)
 {
 String dnKey = entries[index].getKey();
 System.out.println("DN Key = " + dnKey);
 AttributeArray attributeArray =
entries[index].getValues();
 Attribute [] attributeData =
attributeArray.getAttribute();
 for(int attrIndex = 0; attrIndex <
attributeData.length; attrIndex++)
 {
 //
 // Determine how to handle the return data
 examineAttributeData(attributeData[attrIndex],
" ");
 }

 }
 }
 }
 catch(VdxServiceException error)
 {
 System.out.println(error.getReason());
 throw new Exception(error.getReason());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 public void getVersionTestCase()
 throws Exception
 {
 System.out.println("\nCalling getVersionTestCase() test
case");

 try
 {
Directory Abstraction Layer (VDX) Web Service 533

 IRemoteVdx vdxStub = getVdxStub(url, username, password);
 VersionVO version = vdxStub.getVersion();
 System.out.println("Version : " + version.getValue());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 public void getAttributeTestCase()
 throws Exception
 {
 System.out.println("\nCalling getAttributeTestCase() test
case");

 try
 {
 IRemoteVdx vdxStub = getVdxStub(url, username, password);

 String recipient =
"cn=jmiller,ou=users,ou=idmsample,o=novell";
 String entity = "user";
 for(int attributeIndex = 0; attributeIndex <
userAttributes.length; attributeIndex++)
 {
 //
 // Now, get the values for each attribute from the VDX
layer
 Attribute attributeData =
vdxStub.getAttribute(recipient,
 entity, userAttributes[attributeIndex]);
 //
 // Determine how to handle the return data
 examineAttributeData(attributeData,
userAttributes[attributeIndex]);
 }
 }
 catch(VdxServiceException error)
 {
 System.out.println(error.getReason());
 throw new Exception(error.getReason());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 public void getAttributesTestCase()
 throws Exception
 {
 System.out.println("\nCalling getAttributesTestCase() test
case");

 try
 {
 IRemoteVdx vdxStub = getVdxStub(url, username, password);

 String recipient =
"cn=jmiller,ou=users,ou=idmsample,o=novell";
 String entity = "user";
 StringArray userAttributesArray = new
StringArray(userAttributes);
 AttributeArray attributeArray =
vdxStub.getAttributes(recipient,
 entity, userAttributesArray);
534 NetIQ Identity Manager User Application: Administration Guide

 Attribute [] attributeData = attributeArray.getAttribute();
 for(int index = 0; index < attributeData.length; index++)
 {
 //
 // Determine how to handle the return data
 examineAttributeData(attributeData[index],
userAttributes[index]);
 }
 }
 catch(VdxServiceException error)
 {
 System.out.println(error.getReason());
 throw new Exception(error.getReason());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 private void examineAttributeData(Attribute _attribute, String _attributeName)
 throws Exception
 {
 AttributeType type = _attribute.getType();
 System.out.println("Attribute type : " + type);
 //
 // What type are we dealing with?
 if(type.getValue().compareTo(AttributeType._Integer) == 0)
 {
 IntegerArray intArray = _attribute.getIntegers();
 int [] intData = intArray.getInt();
 if(intData == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int intIndex = 0; intIndex < intData.length;
intIndex++)
 {
 System.out.println(_attributeName + " attribute : "
+ intData[intIndex]);
 }
 }
 }
 else if(type.getValue().compareTo(AttributeType._Boolean) == 0)
 {
 BooleanArray boolArray = _attribute.getBooleans();
 boolean [] booleanData = boolArray.getBoolean();
 if(booleanData == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int boolIndex = 0; boolIndex < booleanData.length;
boolIndex++)
 {
 System.out.println(_attributeName + " attribute : "
+ booleanData[boolIndex]);
 }
 }
 }
 else if((type.getValue().compareTo(AttributeType._String) ==
0) ||
 (type.getValue().compareTo(AttributeType._DN) == 0))
 {
 StringArray dataArray = _attribute.getStrings();
 String [] stringData = dataArray.getString();
 if(stringData == null)
Directory Abstraction Layer (VDX) Web Service 535

 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int strIndex = 0; strIndex < stringData.length;
strIndex++)
 {
 System.out.println(_attributeName + " attribute : "
+ stringData[strIndex]);
 }
 }
 }
 else if(type.getValue().compareTo(AttributeType._Binary) == 0)
 {
 ByteArrayArray byteArray = _attribute.getBinaries();
 byte [][] byteData = byteArray.getBase64Binary();
 if(byteData == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int byteIndex = 0; byteIndex < byteData.length;
byteIndex++)
 {
 byte [] data = byteData[byteIndex];
 //
 // Save the data to a gif file and view it to
 // make sure the binary return data is correct.
 try
 {
 File fileObj = new File("C:\\temp\\photo.gif");
 if(fileObj.exists())
 fileObj.delete();
 FileOutputStream fout = new
FileOutputStream(fileObj);
 fout.write(data);
 fout.flush();
 }
 catch(FileNotFoundException fne)
 {
 throw new Exception(fne.getMessage());
 }
 catch(IOException ioe)
 {
 throw new Exception(ioe.getMessage());
 }
 }
 }
 }
 else if(type.getValue().compareTo(AttributeType._Time) == 0)
 {
 DateArray dateArray = _attribute.getDates();
 Calendar [] calendar = dateArray.getDatetime();
 if(calendar == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int calIndex = 0; calIndex < calendar.length;
calIndex++)
 {
 System.out.println(_attributeName + " attribute : "
+ calendar[calIndex].getTime().toString());
 }
 }
 }

 }
536 NetIQ Identity Manager User Application: Administration Guide

 /**
 * Method to obtain the remote interface to the Vdx endpoint
 * @param _url
 * @param _username
 * @param _password
 * @return IRemoteMetrics interface
 * @throws Exception
 */
 private IRemoteVdx getVdxStub(String _url, String _username, String
_password)
 throws Exception
 {
 Properties properties = new Properties();
 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");

 String lookup =
"xmlrpc:soap:com.novell.ws.client.vdx.VdxService";

 InitialContext ctx = new InitialContext();
 VdxService svc = (VdxService) ctx.lookup(lookup);

 Stub stub = (Stub)svc.getIRemoteVdxPort();

 stub._setProperty(Stub.USERNAME_PROPERTY, _username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, _password);
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY,
Boolean.TRUE);
 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, _url);

 return (IRemoteVdx) stub;
 }

}

Directory Abstraction Layer (VDX) Web Service 537

538 NetIQ Identity Manager User Application: Administration Guide

22 22Role Web Service

This section describes the Role Web Service, which allows SOAP clients to access the role
management and SoD management functions. Topics include:

Section 22.1, “About the Role Web Service,” on page 539
Section 22.2, “Role API,” on page 543
Section 22.3, “Role Web Service Examples,” on page 625

22.1 About the Role Web Service
To support access by third-party software applications, the Role subsystem includes a Web service
endpoint called the Role Web Service. It supports a wide range of role management and SoD
management functions.

This Appendix describes the programming interface for the Role Web Service.

22.1.1 Accessing the Test Page
You can access the Role Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/role/service?test

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/role/service?test

You can also access the SOAP endpoint by going to the Administration within the User Application.
To do this, you need to select the Application Configuration tab, then select Web Services from the left-
navigation menu. After selecting Web Services, pick the Web Service endpoint you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment.

Servlet Declaration for the Test Page
A SOAP service using WSSDK is deployed by adding the following declarations in the deployment
descriptor (i.e. WEB-INF/web.xml):

<servlet>
 <servlet-name>Role</servlet-name>
 <servlet-class>com.novell.idm.nrf.soap.ws.role.impl.RoleServiceSkeletonImpl</
servlet-class>
Role Web Service 539

<servlet-mapping>
 <servlet-name>Role</servlet-name>
 <url-pattern>/role/service</url-pattern>
</servlet-mapping>
</servlet>

This follows the normal servlet declaration pattern. It indicates that the servlet
com.novell.idm.nrf.soap.ws.role.impl.RoleServiceSkeletonImpl is deployed at /role/service.

When a user reaches this servlet using a HTTP GET by entering http://server-name/context/
role/service (for example, http://localhost:8080/IDMProv/role/service) in their browser,
the WSSDK provides a page that exposes some information about the deployed service. By default
the page looks like this:

Figure 22-1 SOAP Service with Test Page Disabled

After you enable the test page, the Test Service link is available:
540 NetIQ Identity Manager User Application: Administration Guide

Figure 22-2 SOAP Servlet with Test Page Enabled

On the test page, the user can retrieve the WSDL document that describes the Web Service, see the
Java Remote Interface that represents the service, and also see the type mappings from XML to Java.
In addition, the user can test the service by invoking individual methods.

Enabling the Test Page

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment.

To enable the test page, you need to update the WEB-INF/web.xml file in the IDMProv.war file.
Before you make your changes, the web.xml should look like this:

<servlet>
 <servlet-name>Role</servlet-name>
 <servlet-class>com.novell.idm.nrf.soap.ws.role.impl.RoleServiceSkeletonImpl</
servlet-class>
 <init-param>
 <param-name>com.novell.soa.ws.test.disable</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>

Change the servlet declaration, as follows:

<servlet>
 <servlet-name>Role</servlet-name>
 <servlet-class>com.novell.idm.nrf.soap.ws.role.impl.RoleServiceSkeletonImpl</
servlet-class>
</servlet>
Role Web Service 541

22.1.2 Accessing the WSDL
You can access the WSDL for the Role Web Service using a URL similar to the following:

http://server:port/warcontext/role/service?wsdl

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/role/service?wsdl

22.1.3 Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the Novell WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.soa.af.role.soap.impl:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/jaxrpc-
api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar"; com.novell.soa.ws.impl.tools.wsdl2java.Main
-verbose -ds gensrc -d C:\ -noskel -notie -genclient -keep -package
com.novell.soa.af.role.soap.impl -javadoc role.wsdl

You can change the wsdl2java parameters to suit your requirements.

22.1.4 Removing Administrator Credential Restrictions
The Role Web Service supports two levels of security, one that restricts access to Role Administrators,
and another that restricts access to the authenticated user. The default setting restricts access to all
operations to the Role Administrator.

You can modify the security configuration by extracting the /RoleService-conf/config.xml file
from the IDMfw.jar file in the IDMProv.war file, and editing the property settings. Each property can
be set to true or false. A value of true locks down the operation, whereas a value of false opens up the
operation. After making your changes, you need to import the file back into the WAR file and
redeploy.

You can open up the Role Web Service to authenticated users by setting the RoleService/Role/soap
property to false. To open up a particular operation to authenticated users, you need to set the
property for that operation (RoleService/Role/soap/operation) to false as well. If you set all of the
properties to false, you can open up all operations to authenticated users. The operation names are the
same as the names of the methods supported by the service.

Example The following example shows a security configuration that would open up all operations
within the Role Web Service:

 <property>
 <key>RoleService/Role/soap</key>
 <value>false</value>
 </property>

542 NetIQ Identity Manager User Application: Administration Guide

22.2 Role API
This section provides details about the methods available with the Role Web service. This API
presumes you’re using Java code generated by the WSSDK toolkit. The API will be different if you’re
using another Web Service toolkit.

22.2.1 IRemoteRole
This section provides reference information for each method associated with the IRemoteRole
interface.

createResourceAssociation
Create a resource association and return the resource association object with the newly created
resource association DN.

Syntax: Here is the method signature:

ResourceAssociation
createResourceAssociation(com.novell.idm.nrf.soap.ws.ResourceAssociation
resourceAssociation)
 throws com.novell.idm.nrf.soap.ws.NrfServiceException,
java.rmi.RemoteException;

deleteResourceAssociation
Deletes a resource association object.

Syntax: Here is the method signature:

void deleteResourceAssociation(com.novell.idm.nrf.soap.ws.DNString
resourceAssociationDn)
 throws com.novell.idm.nrf.soap.ws.NrfServiceException,
java.rmi.RemoteException;

getResourceAssociations
Retrieves resource association objects for a given role DN or resource DN. If the roleDn and
resourceDn parameters are null, the entire list is returned.

Syntax: Here is the method signature:

ResourceAssociation[] getResourceAssociations(com.novell.idm.nrf.soap.ws.DNString
roleDn, com.novell.idm.nrf.soap.ws.DNString resourceDn)
 throws com.novell.idm.nrf.soap.ws.NrfServiceException,
java.rmi.RemoteException;

createRole
Creates a new role according to the specified parameters and returns the DN of the created role.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteRoleRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

The correlation ID is used for auditing.

Syntax: Here is the method signature:
Role Web Service 543

public DNString createRole(RoleRequest role)
 throws NrfServiceException, RemoteException;

createRoleAid
Creates a new role with a correlation ID that you provide. The correlation ID is used for auditing to
link a set of related roles. This method returns the DN of the created role.

Syntax: Here is the method signature:

public DNString createRoleAid (RoleRequest role, String correlationId)
 throws NrfServiceException, RemoteException;

findRoleByExampleWithOperator
Finds an array of Role objects based on the search criteria specified in the given Role object. This
method also lets you specify whether to use AND as the operator for multi-value searches.

Syntax: Here is the method signature:

RoleArray findRoleByExampleWithOperator(Role searchCriteria, boolean
useAndForMultiValueSearch) throws NrfServiceException, java.rmi.RemoteException

This method follows a query by example approach. It allows you to populate a Role object to specify
the desired search criteria. An AND operation is always used across multiple attributes within the
Role search object. For example, you might provide a value for the name and description attributes,
which indicates that the criteria for both attributes must be satisfied for a successful search.

The second parameter (useAndForMultiValueSearch) allows you to specify which operator should be
used for multi-valued attributes (such as when multiple child roles are provided). A value of true
indicates that AND should be used for these operations, whereas a value of false indicates that OR
should be used.

Not all attributes in the Role object can be used for the search expression. Values found in the non-
supported search attributes are ignored.
544 NetIQ Identity Manager User Application: Administration Guide

Table 22-1 Guidelines for Defining Search Criteria in the Role Object

Attribute Supported? Description

approvers Yes Uses a standard LDAP equal operator for the search. You can enter
multiple approvers and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search. You need
to provide valid Dns for the approvers. Note that an approver is made
up of multiple parts. It is of type TypedNameSyntax. You need to specify
the sequence number of the approver to execute a successful search.
This is a limitation in LDAP.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:approvers>
<!--Zero or more repetitions:-->
<ser:approver>
<ser:approverDN>cn=ablake,ou=users,ou=medical-

idmsample,o=novell</ser:approverDN>
<ser:sequence>1</ser:sequence>
</ser:approver>
</ser:approvers>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles that have the specified
approver associated with them. An OR search is used since the
operator parameter is set to false.

childRoles Yes Uses a standard LDAP equal operator for the search. You can enter
multiple child roles and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search. You need
to provide valid Dns for the child roles.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:childRoles>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>cn=Doctor,cn=Level20,cn=RoleDefs,cn=Role

Config,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,
o=novell</ser:dn>

</ser:dnstring>
<ser:dnstring>
<ser:dn>cn=Nurse,cn=Level20,cn=RoleDefs,cn=RoleC

onfig,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o
=novell</ser:dn>

</ser:dnstring>
</ser:childRoles>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles with a child role of “Doctor”
or “Nurse. An OR search is used since the operator parameter is set to
false.
Role Web Service 545

description Yes Uses an LDAP contains search. All entries are prefixed and suffixed
with the * (wild card character). Therefore, a search for “Doctor”
translates to “*Doctor*”. This is to accommodate searches across any
localized language.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:description>Doctor</ser:description>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles with a description of
“Doctor”. This description string results in a search string of “*Doctor*”.

entityKey Yes If entered, this attribute causes a getRole operation to be performed. All
other search criteria are ignored in this case.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:entityKey>cn=Doctor,cn=Level20,cn=RoleDefs,cn

=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestDri
vers,o=novell</ser:entityKey>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to retrieve a role with a specific entity
key.

implicitContainers Yes Uses a standard LDAP equal operator for the search. You can enter
multiple implicit containers and use the operator parameter to determine
whether an AND or an OR will be used for the multi-valued search. You
need to provide valid Dns for the implicit containers.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:implicitContainers>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>ou=medical-idmsample,o=novell</ser:dn>
</ser:dnstring>
</ser:implicitContainers>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles that have the specified
implicit container associated with them. An OR search is used since the
operator parameter is set to false.

Attribute Supported? Description
546 NetIQ Identity Manager User Application: Administration Guide

implicitGroups Yes Uses a standard LDAP equal operator for the search. You can enter
multiple implicit groups and use the operator parameter to determine
whether an AND or an OR will be used for the multi-valued search. You
need to provide valid Dns for the implicit groups.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:implicitGroups>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>cn=HR,ou=groups,ou=medical-

idmsample,o=novell</ser:dn>
</ser:dnstring>
</ser:implicitGroups>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles that have the specified
implicit group associated with them. An OR search is used since the
operator parameter is set to false.

name Yes Uses an LDAP contains search. All entries will be prefixed and suffixed
with the * (wild card character). Therefore, a search for “Doctor”
translates to “*Doctor*”. This is to accommodate searches across any
localized language.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:name>Doctor</ser:name>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The above example shows how to find roles with a name of “Doctor”.
The name string results in a search string of “*Doctor*”.

Attribute Supported? Description
Role Web Service 547

owners Yes Uses a standard LDAP equal operator for the search. You can enter
multiple owners and use the operator parameter to determine whether
an AND or an OR is used for the multi-valued search. You must provide
valid Dns for the owners.

SoapUI Example Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:owners>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>cn=ablake,ou=users,ou=medical-

idmsample,o=novell</ser:dn>
</ser:dnstring>
<ser:dnstring>
<ser:dn>cn=mmackenzie,ou=users,ou=medical-

idmsample,o=novell</ser:dn>
</ser:dnstring>
</ser:owners>
</ser:role>
<ser:operator>true</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles that have the specified
owners. An AND search is used since the operator parameter is set to
true.

parentRoles Yes Uses a standard LDAP equal operator for the search. You can enter
multiple parent roles and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search. You must
provide valid Dns for the parent roles.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:parentRoles>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>cn=Doctor-

East,cn=Level30,cn=RoleDefs,cn=RoleConfig,cn=AppConf
ig,cn=PicassoDriver,cn=TestDrivers,o=novell</ser:dn>

</ser:dnstring>
<ser:dnstring>
<ser:dn>cn=Doctor-

West,cn=Level30,cn=RoleDefs,cn=RoleConfig,cn=AppConf
ig,cn=PicassoDriver,cn=TestDrivers,o=novell</ser:dn>

</ser:dnstring>
</ser:parentRoles>
</ser:role>
<ser:operator>true</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles that have the specified
parent roles. An AND search is used since the operator parameter is
set to true.

Attribute Supported? Description
548 NetIQ Identity Manager User Application: Administration Guide

quorum Yes Uses a standard LDAP equal operator for the search.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:quorum>50%</ser:quorum>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles with the specified quorum
search string. The search string can include the wild card character
(“*”).

requestDef Yes Uses a standard LDAP equal operator for the search. You must provide
a valid DN for the request definition.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:requestDef>cn=Role

Approval,cn=RequestDefs,cn=AppConfig,cn=PicassoDrive
r,cn=TestDrivers,o=novell</ser:requestDef>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles with the specified request
definition DN.

roleCategoryKeys Yes Uses a standard LDAP equal operator for the search. You can enter
multiple category keys and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:roleCategoryKeys>
<!--Zero or more repetitions:-->
<ser:categorykey>
<ser:categoryKey>doctor</ser:categoryKey>
</ser:categorykey>
<ser:categorykey>
<ser:categoryKey>nurse</ser:categoryKey>
</ser:categorykey>
</ser:roleCategoryKeys>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find roles with a category of “doctor”
or “nurse. An OR search is used since the operator parameter is set to
false.

Attribute Supported? Description
Role Web Service 549

findSodByExample
Finds all SoD objects based on the search criteria in the given SOD object.

Syntax: Here is the method signature:

SodArray findSodByExample(Sod sod) throws NrfServiceException,
java.rmi.RemoteException

findSodByExampleWithOperator
Finds all SoD objects based on the search criteria found in the given SOD object. This method also lets
you specify whether to use And as the operator for multi-value searches.

Syntax: Here is the method signature:

SodArray findSodByExampleWithOperator(Sod searchCriteria, boolean
useAndForMultiValueSearch) throws NrfServiceException, java.rmi.RemoteException

findSodById
Find by key.

Syntax: Here is the method signature:

Sod findSodById(java.lang.String entityKey) throws NrfServiceException,
java.rmi.RemoteException

getAssignedIdentities
Returns returns the list of identities having a particular role DN.

Syntax: Here is the method signature:

roleLevel Yes Uses a standard LDAP equal operator for the search. You can only
enter one level at a time.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:roleLevel>
<ser:level>10</ser:level>
</ser:roleLevel>
</ser:role>
 <ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>

The example above shows how to find all level 10 roles.

associatedRoles No Not supported.

entitlementRef No Not supported.

roleAssignments No Not supported.

systemRole No Not supported.

Attribute Supported? Description
550 NetIQ Identity Manager User Application: Administration Guide

RoleAssignment[] getAssignedIdentities(java.lang.String roleDN, IdentityType
identityType, boolean directAssignOnly)

getConfigProperty
Retrieves configuration properties stored in the User Application configuration XML files by passing
in a configuration property key or macro name.

Syntax: Here is the method signature:

public ConfigProperty getConfigProperty(String configPropertyKey) throws
NrfServiceException, RemoteException;

The configPropertyKey parameter can accept a fully qualified configuration key name from any of
the configuration XML files, such as the following:

DirectoryService/realms/jndi/params/USER_ROOT_CONTAINER

Alternativelly, the configPropertyKey parameter can accept a macro name that references a fully
qualified configuration key name. The following macro names are allowed:

Table 22-2 Macro Names Allowed

getConfiguration
Returns the role system configuration defined in the Role Catalog root (nrfConfiguration).

Syntax: Here is the method signature:

Configuration getConfiguration() throws NrfServiceException,
java.rmi.RemoteException

getContainer
Gets container and role information for a given container DN.

Syntax: Here is the method signature:

Container getContainer(java.lang.String containerDn) throws
NrfServiceException, java.rmi.RemoteException

getExceptionList
Returns a list of Sod instances for all SOD violations found for a specific identity and type.

Syntax: Here is the method signature:

Configuration Macro Name Configuration Key Value

USER_CONTAINER DirectoryService/realms/jndi/params/
USER_ROOT_CONTAINER

GROUP_CONTAINER DirectoryService/realms/jndi/params/
GROUP_ROOT_CONTAINER

ROOT_CONTAINER DirectoryService/realms/jndi/params/ROOT_NAME

PROVISIONING_DRIVER DirectoryService/realms/jndi/params/
PROVISIONING_ROOT
Role Web Service 551

SodArray getExceptionsList(java.lang.String identity, IdentityType identityType)
throws NrfServiceException, java.rmi.RemoteException

getGroup
Gets group and role information for a given group DN.

Syntax: Here is the method signature:

Group getGroup(java.lang.String groupDn) throws NrfServiceException,
java.rmi.RemoteException

getIdentitiesInViolation
Returns a map of identities which are in violation of a given SoD.

Syntax: Here is the method signature:

IdentityTypeDnMapArray getIdentitiesInViolation(java.lang.String sodDn) throws
NrfServiceException, java.rmi.RemoteException

getIdentityRoleConflicts
Returns a list of Sod instances for all SOD conflicts found for a given list of roles for a given identity.

Syntax: Here is the method signature:

SodArray getIdentityRoleConflicts(java.lang.String identity, IdentityType
identityType, DNStringArray requestedRoles) throws NrfServiceException,
java.rmi.RemoteException

getRole
Retrieves a role object defined by a role DN.

Syntax: Here is the method signature:

Role getRole(java.lang.String roleDn) throws NrfServiceException,
java.rmi.RemoteException

getRoleAssignmentRequestStatus
Returns a list of role assignment request status instances given a correlation ID.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray getRoleAssignmentRequestStatus(java.lang.String
correlationId) throws NrfServiceException, java.rmi.RemoteException

getRoleAssignmentRequestStatusByIdentityType
Returns a list of role assignment request status instances given an identity and an identity type.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatusByIdentityType(java.lang.String identityDn,
IdentityType identityType) throws NrfServiceException, java.rmi.RemoteException
552 NetIQ Identity Manager User Application: Administration Guide

getRoleAssignmentTypeInfo
Retrieves details about a RoleAssignmentType.

Syntax: Here is the method signature:

RoleAssignmentTypeInfo getRoleAssignmentTypeInfo(RoleAssignmentType type) throws
NrfServiceException, java.rmi.RemoteException

getRoleCategories
Gets role categories.

Syntax: Here is the method signature:

CategoryArray getRoleCategories() throws NrfServiceException,
java.rmi.RemoteException

getRoleConflicts
Returns a list of Sod instances found for all given roles. This method always returns a list.

Syntax: Here is the method signature:

SodArray getRoleConflicts(DNStringArray roles) throws NrfServiceException,
java.rmi.RemoteException

getRoleLevels
Gets the role levels.

Syntax: Here is the method signature:

RoleLevelArray getRoleLevels() throws NrfServiceException,
java.rmi.RemoteException

getRoleLocalizedStrings
Gets role localized strings, such as names and descriptions. The method takes an integer parameter
that allows you to specify the type of the string. The number 1 indicates names; the number 2
indicates descriptions.

Syntax: Here is the method signature:

public LocalizedValue[] getRoleLocalizedStrings(DNString roleDn, int type)
 throws NrfServiceException, RemoteException;

getRolesInfo
Returns a list of RoleInfo instances given a list of role DNs.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfo(DNStringArray roleDns) throws NrfServiceException,
java.rmi.RemoteException
Role Web Service 553

getRolesInfoByCategory
Returns a list of RoleInfo instances given a list of role category keys.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByCategory(CategoryKeyArray roleCategoryKeys) throws
NrfServiceException, java.rmi.RemoteException

getRolesInfoByLevel
Returns a list of RoleInfo instances given a list of role levels.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByLevel(LongArray roleLevels) throws
NrfServiceException, java.rmi.RemoteException

getTargetSourceConflicts
Returns a list of Sod instances for all SOD conflicts defined between the target role DN and the source
role DN.

Syntax: Here is the method signature:

SodArray getTargetSourceConflicts(java.lang.String targetName, java.lang.String
sourceName) throws NrfServiceException, java.rmi.RemoteException

getUser
Gets user info including all role assignments for a given user DN stored in a UserIdentity object.

Syntax: Here is the method signature:

User getUser(java.lang.String userDn) throws NrfServiceException,
java.rmi.RemoteException

getVersion
Returns the version of this Web Service.

Syntax: Here is the method signature:

VersionVO getVersion() throws java.rmi.RemoteException

isUserInRole
Returns boolean flag; true if role has been assigned to a User identity.

Syntax: Here is the method signature:

boolean isUserInRole(java.lang.String userDn, java.lang.String roleDn)
554 NetIQ Identity Manager User Application: Administration Guide

modifyRole
Modifies a role definition. This method does not update localized strings. Use the
getRoleLocalizedStrings(DNString roleDn, LocalizedString[] locStrings, int strType) method to
update localized names or descriptions for a role.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteRoleRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

The correlation ID is used for auditing.

Syntax: Here is the method signature:

public Role modifyRole(Role role)
 throws NrfServiceException, RemoteException;

modifyRoleAid
Modifies a role definition with a correlation ID that you provide. The correlation ID is used for
auditing to link a set of related roles. This method does not update localized strings. Use the
getRoleLocalizedStrings(DNString roleDn, LocalizedString[] locStrings, int strType) method to
update localized names or descriptions for a role.

Syntax: Here is the method signature:

public Role modifyRoleAid(Role role, String correlationId)
 throws NrfServiceException, RemoteException;

removeRoles
Deletes specified roles from the Role Catalog and returns an array of DNs for the deleted roles as a
confirmation.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteRoleRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

The correlation ID is used for auditing.

Syntax: Here is the method signature:

public DNString[] removeRoles(DNString[] roleDns)
 throws NrfServiceException, RemoteException;

removeRolesAid
Deletes specified roles from the Role Catalog with a correlation ID that you provide. The correlation
ID is used for auditing to link a set of related roles. This method returns an array of DNs for the
deleted roles as a confirmation.

Syntax: Here is the method signature:

public DNString[] removeRolesAid(DNString[] roleDns, String correlationId)
 throws NrfServiceException, RemoteException;
Role Web Service 555

requestRolesAssignment
Returns a list of request DNs created by the role assignment.

If you do not want to supply date (effective or expiration) for role assignments with the
requestRolesAssignment endpoint, then you must remove these two elements from the SOAP call.
They must not be included with empty tags:

<ser:effectiveDate/>
<ser:expirationDate/>

If you want to omit the effective date or the expiration date, a request similar to the following will
work:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://www.novell.com/role/service">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:requestRolesAssignmentRequest>
 <!--Optional:-->
 <ser:assignRequest>
 <ser:actionType>grant</ser:actionType>
 <ser:assignmentType>USER_TO_ROLE</ser:assignmentType>
 <ser:correlationID>testpolina</ser:correlationID>
 <ser:identity>cn=uaadmin,ou=sa,o=data</ser:identity>
 <ser:originator/>
 <ser:reason>test without expiration date</ser:reason>
 <ser:roles>
 <!--Zero or more repetitions:-->
 <ser:dnstring>
 <ser:dn>cn=test2
id,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=User Application
Driver,cn=driverset1,o=system</ser:dn>
 </ser:dnstring>
 </ser:roles>
 <ser:sodOveridesRequested/>
 </ser:assignRequest>
 </ser:requestRolesAssignmentRequest>
 </soapenv:Body>
</soapenv:Envelope>

With that said, without the these two elements in the soap request, the request will not validate. It
will work, but will not validate.

Syntax: Here is the method signature:

DNStringArray requestRolesAssignment(RoleAssignmentRequest roleAssignmentRequest)
throws NrfServiceException, java.rmi.RemoteException

setRoleLocalizedStrings
Sets role localized strings, such as names and descriptions.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteRoleRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

The correlation ID is used for auditing.

Syntax: Here is the method signature:

public LocalizedValue[] setRoleLocalizedStrings(DNString roleDn, LocalizedValue[]
locStrings, int type)
 throws NrfServiceException, RemoteException;
556 NetIQ Identity Manager User Application: Administration Guide

setRoleLocalizedStringsAid
Sets role localized strings, such as name and description, with a correlation ID that you provide. The
correlation ID is used for auditing to link a set of related roles.

Syntax: Here is the method signature:

public LocalizedValue[] setRoleLocalizedStringsAid(DNString roleDn, String
correlationId, LocalizedValue[] locStrings, int type)
 throws NrfServiceException, RemoteException;

22.2.2 Approver
Class to hold the approver information for SOD or normal request approvals.

Approver constructors
The Approver class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Approver()

getApproverDN
Gets the approver DN.

Syntax: Here is the method signature:

public java.lang.String getApproverDN()

getSequence
Gets the approver sequence.

Syntax: Here is the method signature:

public long getSequence()

setApproverDN
Sets the approver DN.

Syntax: Here is the method signature:

public void setApproverDN(java.lang.String approverDN)

setSequence
Sets the approver sequence.

Syntax: Here is the method signature:

public void setSequence(long sequence)
Role Web Service 557

22.2.3 ApproverArray
This section provides reference information on the ApproverArray class.

ApproverArray constructors
The ApproverArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

ApproverArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

ApproverArray(Approver[] ApproverVal)

getApprover
Returns an array of Approver objects.

Syntax: Here is the method signature:

Approver[] getApprover()

setApprover
Sets the array of Approver objects associated with the ApproverArray class.

Syntax: Here is the method signature:

void setApprover (Approver[] ApproverVal)

22.2.4 Category
Class to represent a role category.

Category constructors
The Category class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Category()

getCategoryKey
Gets the category key.

Syntax: Here is the method signature:

public java.lang.String getCategoryKey()

getCategoryLabel
Gets the category label.
558 NetIQ Identity Manager User Application: Administration Guide

Syntax: Here is the method signature:

public java.lang.String getCategoryLabel()

setCategoryKey
Sets the category key.

Syntax: Here is the method signature:

public void setCategoryKey(java.lang.String categoryKey)

setCategoryLabel
Sets the category label.

Syntax: Here is the method signature:

public void setCategoryLabel(java.lang.String categoryLabel)

22.2.5 CategoryArray
This section provides reference information on the CategoryArray class.

CategoryArray constructors
The CategoryArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

CategoryArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Category objects as a parameter:

CategoryArray(Category[] CategoryVal)

getCategory
Returns an array of Category objects.

Syntax: Here is the method signature:

Category[] getCategory()

setCategory
Sets the array of Category objects associated with the CategoryArray class.

Syntax: Here is the method signature:

void setCategory(Category[] CategoryVal)

22.2.6 CategoryKey
Class to hold a Category Key.
Role Web Service 559

CategoryKey constructors
The CategoryKey class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

CategoryKey()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

CategoryKey(java.lang.String categoryKey)

getCategoryKey()
Gets the categoryKey.

Syntax: Here is the method signature:

public java.lang.String getCategoryKey()

setCategoryKey
Sets the category key.

Syntax: Here is the method signature:

public void setCategoryKey(java.lang.String categoryKey)

22.2.7 CategoryKeyArray
This section provides reference information on the CategoryKeyArray class.

CategoryKeyArray constructors
The CategoryKeyArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

CategoryKeyArray()

Syntax 2: Here is the syntax for a constructor that takes an array of CategoryKey objects as a
parameter:

CategoryKeyArray(CategoryKey[] CategoryVal)

getCategorykey
Returns an array of Category objects.

Syntax: Here is the method signature:

CategoryKey[] getCategorykey()

setCategorykey
Sets the array of CategoryKey objects associated with the CategoryKeyArray class.

Syntax: Here is the method signature:
560 NetIQ Identity Manager User Application: Administration Guide

void setCategorykey(CategoryKey[] CategoryKeyVal)

22.2.8 Configuration
Class to represent the configuration object.

Configuration constructors
The Configuration class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Configuration()

getDefaultRequestDef
Gets the default request definition.

Syntax: Here is the method signature:

public java.lang.String getDefaultRequestDef()

getDefaultSODRequestDef
Gets the default SOD request definition.

Syntax: Here is the method signature:

public java.lang.String getDefaultSODRequestDef()

getRemovalGracePeriod
Gets the removal grace period.

Syntax: Here is the method signature:

public int getRemovalGracePeriod()

getReportContainer
Gets the report container.

Syntax: Here is the method signature:

public java.lang.String getReportContainer()

getRoleLevels
Gets the role levels.

Syntax: Here is the method signature:

public RoleLevelArray getRoleLevels()
Role Web Service 561

getRoleRequestContainer
Gets the role request container.

Syntax: Here is the method signature:

public java.lang.String getRoleRequestContainer()

getRolesContainer
Gets the role container.

Syntax: Here is the method signature:

public java.lang.String getRolesContainer()

getSODApprovers
Gets SOD approvers.

Syntax: Here is the method signature:

public ApproverArray getSODApprovers()

getSODContainer
Gets the SOD container.

Syntax: Here is the method signature:

public java.lang.String getSODContainer()

getSODQuorum
Gets the SOD quorum amount.

Syntax: Here is the method signature:

public java.lang.String getSODContainer()

getSODRequestDef
Gets the SOD request definition.

Syntax: Here is the method signature:

public java.lang.String getSODRequestDef()

setDefaultRequestDef
Sets the default request definition.

Syntax: Here is the method signature:

public void setDefaultRequestDef(java.lang.String defaultRequestDef)
562 NetIQ Identity Manager User Application: Administration Guide

setDefaultSODRequestDef
Sets the default SOD request definition.

Syntax: Here is the method signature:

public void setDefaultSODRequestDef(java.lang.String defaultSODRequestDef)

setRemovalGracePeriod
Sets the removal grace period.

Syntax: Here is the method signature:

public void setRemovalGracePeriod(int removalGracePeriod)

setReportContainer
Sets the report container.

Syntax: Here is the method signature:

public void setReportContainer(java.lang.String reportContainer)

setRoleLevels
Sets the role levels.

Syntax: Here is the method signature:

public void setRoleLevels(RoleLevelArray roleLevels)

setRoleRequestContainer
Sets the role request container.

Syntax: Here is the method signature:

public void setRoleRequestContainer(java.lang.String roleRequestContainer)

setRolesContainer
Sets the role container.

Syntax: Here is the method signature:

public void setRolesContainer(java.lang.String rolesContainer)

setSODApprovers
Sets the SoD approvers.

Syntax: Here is the method signature:

public void setSODApprovers(ApproverArray sODApprovers)
Role Web Service 563

setSODContainer
Sets the SoD container.

Syntax: Here is the method signature:

public void setSODContainer(java.lang.String sODContainer)

22.2.9 Container
Class to represent a Container object.

Container constructors
The Container class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Container()

getAssociatedRoles
Gets associated roles for this identity.

Syntax: Here is the method signature:

public DNStringArray getAssociatedRoles()

getEntityKey
Gets identity entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getIdentityType
Gets identity type.

Syntax: Here is the method signature:

public IdentityType getIdentityType()

getRoleAssignments
Gets role assignments for this identity.

Syntax: Here is the method signature:

public RoleAssignmentArray getRoleAssignments()

setAssociatedRoles
Sets the associated roles for this identity.

Syntax: Here is the method signature:
564 NetIQ Identity Manager User Application: Administration Guide

public void setAssociatedRoles(DNStringArray associatedRoles)

setEntityKey
Sets the identity entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setIdentityType
Sets the identity type.

Syntax: Here is the method signature:

public void setIdentityType(IdentityType identityType)

setRoleAssignments
Sets the role assignments for this identity.

Syntax: Here is the method signature:

public void setRoleAssignments(RoleAssignmentArray roleAssignments)

22.2.10 DNString
Class to hold a DN.

DNString constructors
The DNString class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

DNString()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

DNString(java.lang.String dn)

getDn
Gets the DN.

Syntax: Here is the method signature:

public java.lang.String getDn()

setDn
Sets the DN.

Syntax: Here is the method signature:

public void setDn(java.lang.String dn)
Role Web Service 565

22.2.11 DNStringArray
This section provides reference information on the DNStringArray class.

DNStringArray constructors
The DNStringArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

DNStringArray()

Syntax 2: Here is the syntax for a constructor that takes an array of DNString objects as a parameter:

DNStringArray(DNString[] DNStringVal)

getDnstring
Returns an array of DNString objects.

Syntax: Here is the method signature:

DNString[] getDnstring()

setDnstring
Sets the array of DNString objects associated with the DNStringArray class.

Syntax: Here is the method signature:

void setDnstring(DNString[] DnstringVal)

22.2.12 Entitlement
Class to hold Entitlement information.

Entitlement constructors
The Entitlement class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Entitlement()

getEntitlementDn
Gets the entitlement DN.

Syntax: Here is the method signature:

public java.lang.String getEntitlementDn()

getEntitlementParameters
Gets the entitlement parameters.
566 NetIQ Identity Manager User Application: Administration Guide

Syntax: Here is the method signature:

public java.lang.String getEntitlementParameters()

setEntitlementDn
Sets the entitlement DN.

Syntax: Here is the method signature:

public void setEntitlementDn(java.lang.String entitlementDn)

setEntitlementParameters
Sets the entitlement parameters.

Syntax: Here is the method signature:

public void setEntitlementParameters(java.lang.String entitlementParameters)

22.2.13 EntitlementArray
This section provides reference information on the EntitlementArray class.

EntitlementArray constructors
The EntitlementArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

EntitlementArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Entitlement objects as a
parameter:

EntitlementArray(Entitlement[] EntitlementVal)

getEntitlement
Returns an array of Entitlement objects.

Syntax: Here is the method signature:

Entitlement[] getEntitlement()

setEntitlement
Sets the array of Entitlement objects associated with the EntitlementArray class.

Syntax: Here is the method signature:

void setEntitlement(EntitlementArray EntitlementVal)

22.2.14 Group
Class to represent a Group object.
Role Web Service 567

Group constructors
The Group class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Group()

getAssociatedRoles
Gets associated roles for this identity.

Syntax: Here is the method signature:

public DNStringArray getAssociatedRoles()

getDescription
Gets group description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getEntityKey
Gets identity entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getIdentityType
Gets identity type.

Syntax: Here is the method signature:

public IdentityType getIdentityType()

getRoleAssignments
Gets role assignments for this identity.

Syntax: Here is the method signature:

public RoleAssignmentArray getRoleAssignments()

setAssociatedRoles
Sets the associated roles for this identity.

Syntax: Here is the method signature:

public void setAssociatedRoles(DNStringArray associatedRoles)
568 NetIQ Identity Manager User Application: Administration Guide

setDescription
Sets the group description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setEntityKey
Sets the identity entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setIdentityType
Sets the identity type.

Syntax: Here is the method signature:

public void setIdentityType(IdentityType identityType)

setRoleAssignments
Sets the role assignments for this identity.

Syntax: Here is the method signature:

public void setRoleAssignments(RoleAssignmentArray roleAssignments)

22.2.15 IdentityType
An JAX-RPC friendly representation of com.novell.idm.nrf.api.IdentityType.

Table 22-3 Field summary

IdentityType constructors
The IdentityType class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

IdentityType()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

Type Name

static IdentityType CONTAINER

static IdentityType GROUP

static IdentityType ROLE

static IdentityType USER
Role Web Service 569

IdentityType(java.lang.String value)

convertToAPI
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.api.IdentityType convertToAPI()

convertToRPC
Contructs an RPC friendly representation from an API object.

Syntax: Here is the method signature:

public static IdentityType convertToRPC(com.novell.idm.nrf.api.IdentityType type)

equals
This is an implementation of equals(). This implementation overrides the equals() method in
java.lang.Object.

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static IdentityType fromValue(java.lang.String value)

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This is an implementation of hashCode(). This implementation overrides the hashCode() method in
java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:
570 NetIQ Identity Manager User Application: Administration Guide

public void setValue(java.lang.String type)

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

22.2.16 IdentityTypeDnMap
Class to represent DNs grouped by identity type. Used for SOD violations.

IdentityTypeDnMap
The IdentityTypeDnMap class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

IdentityTypeDnMap()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

IdentityTypeDnMap(IdentityType identityType, DNStringArray dns)

getDns
Gets the DNs associated with the identity type.

Syntax: Here is the method signature:

public DNStringArray getDns()

getIdentityType
Gets identity type (USER, ROLE, GROUP, CONTAINER).

Syntax: Here is the method signature:

public IdentityType getIdentityType()

setDns
Sets the DNs to associate with the identity type.

Syntax: Here is the method signature:

public void setDns(DNStringArray dns)

setIdentityType
Sets the identity type (USER, ROLE, GROUP, or CONTAINER).

Syntax: Here is the method signature:

public void setIdentityType(IdentityType identityType)
Role Web Service 571

22.2.17 IdentityTypeDnMapArray
This section provides reference information on the IdentityTypeDnMapArray class.

IdentityTypeDnMapArray constructors
The IdentityTypeDnMapArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

IdentityTypeDnMapArray()

Syntax 2: Here is the syntax for a constructor that takes an array of IdentityTypeDnMap objects as a
parameter:

IdentityTypeDnMapArray(IdentityTypeDnMap[] IdentityTypeDnMapVal)

getIdentitytypednmap
Returns an array of IdentityTypeDnMap objects.

Syntax: Here is the method signature:

IdentityTypeDnMap[] getIdentitytypednmap()

setIdentitytypednmap
Sets the array of IdentityTypeDnMap objects associated with the IdentityTypeDnMapArray class.

Syntax: Here is the method signature:

void setIdentitytypednmap(IdentityTypeDnMap[] IdentityTypeDnMapVal)

22.2.18 LocalizedValue
The LocalizedValue class has been added to support management of localized strings for role
definitions.

getValue
Returns a localized string value.

Syntax: Here is the method signature:

public String getValue()

setValue
Sets a localized string value.

Syntax: Here is the method signature:

public void setValue(final String value)
572 NetIQ Identity Manager User Application: Administration Guide

getLocale
Returns a string representaton of the Locale object.

Syntax: Here is the method signature:

public String getLocale()

setLocale
Sets a string representation of the Locale object.

Syntax: Here is the method signature:

public void setLocale()

22.2.19 LongArray
This section provides reference information on the LongArray class.

LongArray constructors
The LongArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

LongArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Long objects as a parameter:

LongArray(long[] LongVal)

getLong
Returns an array of Long objects.

Syntax: Here is the method signature:

long[] getLong()

setLong
Sets the array of long objects associated with the LongArray class.

Syntax: Here is the method signature:

void setLong(LongArray LongVal)

22.2.20 NrfServiceException
This is the exception thrown by the remote Roles Web Service.

NrfServiceException constructors
The NrfServiceException class has two constructors.
Role Web Service 573

Syntax 1: Here is the syntax for a constructor that takes no parameters:

NrfServiceException()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

NrfServiceException(java.lang.String reason)

getReason
Returns the reason for the exception.

Syntax: Here is the method signature:

public java.lang.String getReason()

setReason
Sets the reason for the exception.

Syntax: Here is the method signature:

public void setReason(java.lang.String reason)

22.2.21 RequestCategoryType
An JAX-RPC friendly representation of com.novell.idm.nrf.persist.RequestCategoryType.

Table 22-4 Field Summary

RequestCategoryType constructors
The RequestCategoryType class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RequestCategoryType()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

Type Name

static RequestCategoryType ROLE_TO_CONTAINER_ADD

static RequestCategoryType ROLE_TO_CONTAINER_ADD_SUBTREE

static RequestCategoryType ROLE_TO_CONTAINER_REMOVE

static RequestCategoryType ROLE_TO_GROUP_ADD

static RequestCategoryType ROLE_TO_GROUP_REMOVE

static RequestCategoryType ROLE_TO_ROLE_ADD

static RequestCategoryType ROLE_TO_ROLE_REMOVE

static RequestCategoryType ROLE_TO_USER_ADD

static RequestCategoryType ROLE_TO_USER_REMOVE
574 NetIQ Identity Manager User Application: Administration Guide

RequestCategoryType(java.lang.String value)

equals
Implementation of equals(). This implementation overrides the equals() method in java.lang.Object.

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.persist.RequestCategoryType fromRPC() throws
com.novell.idm.nrf.exception.NrfException

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static RequestCategoryType fromValue(java.lang.String value)

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This implementation overrides the hashCode() method in java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toRPC
Constructs an RPC friendly representation off of an API object.

Syntax: Here is the method signature:
Role Web Service 575

public static RequestCategoryType
toRPC(com.novell.idm.nrf.persist.RequestCategoryType type)

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

22.2.22 RequestStatus
An JAX-RPC friendly representation of com.novell.idm.nrf.persist.RequestStatus.

Table 22-5 Field Summary

RequestStatus constructors
The RequestStatus class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RequestStatus()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

RequestStatus(java.lang.String value)

Type Name

static RequestStatus ACTIVATION_TIME_PENDING

static RequestStatus APPROVAL_PENDING

static RequestStatus APPROVAL_START_PENDING

static RequestStatus APPROVAL_START_SUSPENDED

static RequestStatus APPROVED

static RequestStatus CLEANUP

static RequestStatus DENIED

static RequestStatus NEW_REQUEST

static RequestStatus PROVISION

static RequestStatus PROVISIONED

static RequestStatus PROVISIONING_ERROR

static RequestStatus SOD_APPROVAL_START_PENDING

static RequestStatus SOD_APPROVAL_START_SUSPENDED

static RequestStatus SOD_EXCEPTION_APPROVAL_PENDING

static RequestStatus SOD_EXCEPTION_APPROVED

static RequestStatus SOD_EXCEPTION_DENIED
576 NetIQ Identity Manager User Application: Administration Guide

equals
Implementation of equals().

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.persist.RequestStatus fromRPC() throws
com.novell.idm.nrf.exception.NrfException

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static RequestStatus fromValue(java.lang.String value)

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This implementation overrides the hashCode() method in java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toRPC
Constructs an RPC friendly representation off of an API object.

Syntax: Here is the method signature:

public static RequestStatus toRPC(com.novell.idm.nrf.persist.RequestStatus type)
Role Web Service 577

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

22.2.23 ResourceAssociation
Supporting class that holds information about resource associations for a role.

getRole
Returns the DN for the role involved in the association.

public String getRole()

setRole
Sets the DN for the role involved in the association.

public void setRole(String role)

getEntityKey
Returns the entity key for the association.

public String getEntityKey()

setEntityKey
Sets the entity key for the association.

public void setEntityKey(String entityKey)

getResource
Returns the DN for the resource involved in the association.

public String getResource()

setResource
Sets the DN for the resource involved in the association.

public void setResource(String resource)

getDynamicParameters
Returns the list of dynamic parameters for the resource.

public DynamicParameter[] getDynamicParameters()
578 NetIQ Identity Manager User Application: Administration Guide

setDynamicParameters
Sets the list of dynamic parameters for the resource.

public void setDynamicParameters(DynamicParameter[] parameterValues)

getLocalizedDescriptions
Returns the list of localized descriptions.

public LocalizedValue[] getLocalizedDescriptions()

setLocalizedDescriptions
Sets the list of localized descriptions.

public void setLocalizedDescriptions(LocalizedValue[] descriptions)

getApprovalOverride
Returns the boolean flag indicating whether the role approval process overrides the resource
approval process.

public boolean getApprovalOverride()

setApprovalOverride
Sets the boolean flag indicating whether the role approval process overrides the resource approval
process.

public void setApprovalOverride(boolean override)

getStatus
Returns the status of the association.

public int getStatus()

setStatus
Sets the status of the association.

public void setStatus(int status)

toString
Converts the resource association to a string.

public String toString()

22.2.24 Role
Value class to hold the role information.
Role Web Service 579

Role constructors
The Role class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Role()

getApprovers
Gets the approvers of the role approval.

Syntax: Here is the method signature:

public ApproverArray getApprovers()

getAssociatedRoles
Gets the associated roles.

Syntax: Here is the method signature:

public DNStringArray getAssociatedRoles()

getChildRoles
Gets the children roles.

Syntax: Here is the method signature:

public DNStringArray getChildRoles()

getDescription
Gets the role description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getEntitlementRef
Gets the entitlement references.

Syntax: Here is the method signature:

public EntitlementArray getEntitlementRef()

getEntityKey
Gets the role entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()
580 NetIQ Identity Manager User Application: Administration Guide

getImplicitContainers
Gets the implicit container DNs.

Syntax: Here is the method signature:

public DNStringArray getImplicitContainers()

getImplicitGroups
Gets implicit group DNs.

Syntax: Here is the method signature:

public DNStringArray getImplicitGroups()

getName
Gets the role name.

Syntax: Here is the method signature:

public java.lang.String getName()

getOwners
Gets the owner DNs.

Syntax: Here is the method signature:

public DNStringArray getOwners()

getParentRoles
Gets the parent roles.

Syntax: Here is the method signature:

public DNStringArray getParentRoles()

getQuorum
Gets the quorum amount.

Syntax: Here is the method signature:

public java.lang.String getQuorum()

getRequestDef
Gets the request definition for approval processing.

Syntax: Here is the method signature:

public java.lang.String getRequestDef()
Role Web Service 581

getRoleAssignments
Gets the role assignments.

Syntax: Here is the method signature:

public RoleAssignmentArray getRoleAssignments()

getRoleCategoryKeys
Gets the role category keys.

Syntax: Here is the method signature:

public CategoryKeyArray getRoleCategoryKeys()

getRoleLevel
Gets the role level object.

Syntax: Here is the method signature:

public RoleLevel getRoleLevel()

getSystemRole
Gets the system role flag.

Syntax: Here is the method signature:

public boolean getSystemRole()

setApprovers
Sets the approvers for role approval processing.

Syntax: Here is the method signature:

public void setApprovers(ApproverArray approvers)

setAssociatedRoles
Sets the associated roles.

Syntax: Here is the method signature:

public void setAssociatedRoles(DNStringArray associatedRoles)

setChildRoles
Sets the children roles.

Syntax: Here is the method signature:

public void setChildRoles(DNStringArray childRoles)
582 NetIQ Identity Manager User Application: Administration Guide

setDescription
Sets the role description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setEntitlementRef
Sets the entitlement references.

Syntax: Here is the method signature:

public void setEntitlementRef(EntitlementArray entitlementRef)

setEntityKey
Sets the role entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setImplicitContainers
Sets the implicit container DNs.

Syntax: Here is the method signature:

public void setImplicitContainers(DNStringArray implicitContainers)

setImplicitGroups
Sets the implicit group DNs.

Syntax: Here is the method signature:

public void setImplicitGroups(DNStringArray implicitGroups)

setName
Sets the role name.

Syntax: Here is the method signature:

public void setName(java.lang.String name)

setOwners
Sets the owner DNs.

Syntax: Here is the method signature:

public void setOwners(DNStringArray owners)
Role Web Service 583

setParentRoles
Sets the parent roles.

Syntax: Here is the method signature:

public void setParentRoles(DNStringArray parentRoles)

setQuorum
Sets the quorum amount.

Syntax: Here is the method signature:

public void setQuorum(java.lang.String quorum)

setRequestDef
Sets the request definition for approval processing.

Syntax: Here is the method signature:

public void setRequestDef(java.lang.String requestDef)

setRoleAssignments
Sets the role assignments.

Syntax: Here is the method signature:

public void setRoleAssignments(RoleAssignmentArray roleAssignments)

setRoleCategoryKeys
Sets the role category keys.

Syntax: Here is the method signature:

public void setRoleCategoryKeys(CategoryKeyArray roleCategoryKeys)

setRoleLevel
Sets the role level object.

Syntax: Here is the method signature:

public void setRoleLevel(RoleLevel roleLevel)

setSystemRole
Sets the system role flag.

Syntax: Here is the method signature:

public void setSystemRole(boolean systemRole)
584 NetIQ Identity Manager User Application: Administration Guide

22.2.25 RoleAssignment
Value class to hold role assignment information.

RoleAssignment
The RoleAssignment class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleAssignment()

getAssignmentType
Gets the role assignment type.

Syntax: Here is the method signature:

public RoleAssignmentType getAssignmentType()

getCauseIdentities
Gets the cause identities DNs.

Syntax: Here is the method signature:

public IdentityTypeDnMapArray getCauseIdentities()

getEffectiveDate
Gets the effective date.

Syntax: Here is the method signature:

public java.util.Date getEffectiveDate()

getExpirationDate
Gets the expiration date.

Syntax: Here is the method signature:

public java.util.Date getExpirationDate()

getExplicitIdentities
Gets the explicit identities DNs.

Syntax: Here is the method signature:

public DNStringArray getExplicitIdentities()

getRole
Gets the role associated with the assignment.

Syntax: Here is the method signature:
Role Web Service 585

public java.lang.String getRole()

setAssignmentType
Sets the role assignment type.

Syntax: Here is the method signature:

public void setAssignmentType(RoleAssignmentType assignmentType)

setCauseIdentities
Sets the cause identities DNs.

Syntax: Here is the method signature:

public void setCauseIdentities(IdentityTypeDnMapArray causeIdentities)

setEffectiveDate
Sets the effective date.

Syntax: Here is the method signature:

public void setEffectiveDate(java.util.Date effectiveDate)

setExpirationDate
Sets the expiration date.

Syntax: Here is the method signature:

public void setExpirationDate(java.util.Date expirationDate)

setExplicitIdentities
Sets the explicit identities DNs.

Syntax: Here is the method signature:

public void setExplicitIdentities(DNStringArray explicitIdentities)

setRole
Sets role associated with this assignment.

Syntax: Here is the method signature:

public void setRole(java.lang.String role)

22.2.26 RoleAssignmentArray
This section provides reference information on the RoleAssignmentArray class.
586 NetIQ Identity Manager User Application: Administration Guide

RoleAssignmentArray constructors
The RoleAssignmentArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RoleAssignmentArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

RoleAssignmentArray(RoleAssignment[] RoleAssignmentVal)

getRoleassignment
Returns an array of RoleAssignment objects.

Syntax: Here is the method signature:

RoleAssignment[] getRoleassignment()

setRoleassignment
Sets the array of RoleAssignment objects associated with the RoleAssignmentArray class.

Syntax: Here is the method signature:

void setRoleassignment (RoleAssignment[] RoleAssignmentVal)

22.2.27 RoleAssignmentActionType
An JAX-RPC friendly representation of com.novell.idm.nrf.RoleAssignmentActionType.

Table 22-6 Field Summary

RoleAssignmentActionType constructors
The RoleAssignmentActionType class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RoleAssignmentActionType()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

RoleAssignmentActionType(java.lang.String value)

equals
Implementation of equals().

Type Name

static RoleAssignmentActionType EXTEND

static RoleAssignmentActionType GRANT

static RoleAssignmentActionType REVOKE
Role Web Service 587

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.RoleAssignmentActionType fromRPC()

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static RoleAssignmentActionType fromValue(java.lang.String value)

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This is an implementation of hashCode(). This implementation overrides the hashCode() method in
java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toRPC
Constructs an RPC friendly representation off of an API object.

Syntax: Here is the method signature:

public static RoleAssignmentActionType
toRPC(com.novell.idm.nrf.RoleAssignmentActionType type)

toString
Implementation of toString() that returns a string representation of the class.
588 NetIQ Identity Manager User Application: Administration Guide

Syntax: Here is the method signature:

public java.lang.String toString()

22.2.28 RoleAssignmentRequest
Class to represent a role assignment request.

RoleAssignmentRequest
The RoleAssignmentRequest class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleAssignmentRequest()

getActionType
Gets role assignment type (grant, revoke, extend).

Syntax: Here is the method signature:

public RoleAssignmentActionType getActionType()

getAssignmentType
Gets the role assignment type.

Syntax: Here is the method signature:

public RoleAssignmentType getAssignmentType()

getCorrelationID
Gets the correlation ID.

Syntax: Here is the method signature:

public java.lang.String getCorrelationID()

getEffectiveDate
Gets the effective date.

Syntax: Here is the method signature:

public java.util.Date getEffectiveDate()

getExpirationDate
Gets the expiration date.

Syntax: Here is the method signature:

public java.util.Date getExpirationDate()
Role Web Service 589

getIdentity
Gets the identity to assign roles to.

Syntax: Here is the method signature:

public java.lang.String getIdentity()

getReason
Gets the reason for the role assignment.

Syntax: Here is the method signature:

public java.lang.String getReason()

getRoles
Gets the roles to assign to the identity.

Syntax: Here is the method signature:

public DNStringArray getRoles()

getSodOveridesRequested
Gets the SOD DNs and justification to override.

Syntax: Here is the method signature:

public SodJustificationArray getSodOveridesRequested()

setActionType
Sets the action type (grant, revoke, extend).

Syntax: Here is the method signature:

public void setActionType(RoleAssignmentActionType actionType)

setAssignmentType
Sets the role assignment type.

Syntax: Here is the method signature:

public void setAssignmentType(RoleAssignmentType assignmentType)

setCorrelationID
Sets the correlation ID.

Syntax: Here is the method signature:

public void setCorrelationID(java.lang.String correlationID)
590 NetIQ Identity Manager User Application: Administration Guide

setEffectiveDate
Sets the effective date.

Syntax: Here is the method signature:

public void setEffectiveDate(java.util.Date effectiveDate)

setExpirationDate
Sets the expiration date.

Syntax: Here is the method signature:

public void setExpirationDate(java.util.Date expirationDate)

setIdentity
Sets the identity to assign roles to.

Syntax: Here is the method signature:

public void setIdentity(java.lang.String identity)

setReason
Sets the reason for the role assignment.

Syntax: Here is the method signature:

public void setReason(java.lang.String reason)

setRoles
Sets the roles to assign to the identity.

Syntax: Here is the method signature:

public void setRoles(DNStringArray roles)

setSodOveridesRequested
Sets the SOD DNs and justification to override.

Syntax: Here is the method signature:

public void setSodOveridesRequested(SodJustificationArray sodOveridesRequested)

22.2.29 RoleAssignmentRequestStatus
This class represents the status of a role assignment.

RoleAssignmentRequestStatus
The RoleAssignmentRequestStatus class supports a single constructor.

Syntax: Here is the syntax for the constructor:
Role Web Service 591

RoleAssignmentRequestStatus()

getCategory
Gets the request category.

Syntax: Here is the method signature:

public RequestCategoryType getCategory()

getCorrelationId
Gets the correlation ID.

Syntax: Here is the method signature:

public java.lang.String getCorrelationId()

getEffectiveDate
Gets the effective date.

Syntax: Here is the method signature:

public java.util.Date getEffectiveDate()

getEntityKey
Gets the entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getExpirationDate
Gets the expiration date.

Syntax: Here is the method signature:

public java.util.Date getExpirationDate()

getReason
Gets the reason for the role assignment.

Syntax: Here is the method signature:

public java.lang.String getReason()

getRequestDate
Gets the request date.

Syntax: Here is the method signature:

public java.util.Date getRequestDate()
592 NetIQ Identity Manager User Application: Administration Guide

getRequester
Gets the request DN.

Syntax: Here is the method signature:

public java.lang.String getRequester()

getSource
Gets the source Role DN.

Syntax: Here is the method signature:

public java.lang.String getSource()

getStatus
Gets the request status.

Syntax: Here is the method signature:

public RequestStatus getStatus()

getTarget
Gets the targeted identity DN.

Syntax: Here is the method signature:

public java.lang.String getTarget()

setCategory
Sets the request category.

Syntax: Here is the method signature:

public void setCategory(RequestCategoryType category)

setCorrelationId
Sets the correlation ID.

Syntax: Here is the method signature:

public void setCorrelationId(java.lang.String correlationId)

setEffectiveDate
Sets the effective date.

Syntax: Here is the method signature:

public void setEffectiveDate(java.util.Date effectiveDate)
Role Web Service 593

setEntityKey
Sets the entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setExpirationDate
Sets the expiration date.

Syntax: Here is the method signature:

public void setExpirationDate(java.util.Date expirationDate)

setReason
Sets the reason for the role assignment.

Syntax: Here is the method signature:

public void setReason(java.lang.String reason)

setRequestDate
Sets the request date.

Syntax: Here is the method signature:

public void setRequestDate(java.util.Date requestDate)

setRequester
Sets the requester DN.

Syntax: Here is the method signature:

public void setRequester(java.lang.String requester)

setSource
Sets the source Role DN.

Syntax: Here is the method signature:

public void setSource(java.lang.String source)

setStatus
Sets the request status.

Syntax: Here is the method signature:

public void setStatus(RequestStatus status)
594 NetIQ Identity Manager User Application: Administration Guide

setTarget
Sets the identity targeted DN.

Syntax: Here is the method signature:

public void setTarget(java.lang.String target)

22.2.30 RoleAssignmentType
An JAX-RPC friendly representation of com.novell.idm.nrf.RoleAssignmentType.

Table 22-7 Field Summary

RoleAssignmentType constructors
The CategoryKey class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

CategoryKey()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

CategoryKey(java.lang.String categoryKey)

convertToAPI
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.RoleAssignmentType convertToAPI()

convertToRPC
Constructs an RPC friendly representation off of an API object.

Syntax: Here is the method signature:

public static RoleAssignmentType
convertToRPC(com.novell.idm.nrf.RoleAssignmentType type)

equals
Implementation of equals().

Type Name

static RoleAssignmentType CONTAINER_TO_ROLE

static RoleAssignmentType CONTAINER_WITH_SUBTREE_TO_ROLE

static RoleAssignmentType GROUP_TO_ROLE

static RoleAssignmentType ROLE_TO_ROLE

static RoleAssignmentType USER_TO_ROLE
Role Web Service 595

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static RoleAssignmentType fromValue(java.lang.String value)

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This is an implementation of hashCode(). This implementation overrides the hashCode() method in
java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

22.2.31 RoleAssignmentTypeInfo
An JAX-RPC friendly representation of the details of the com.novell.idm.nrf.RoleAssignmentType
enumeration.

RoleAssignmentTypeInfo
The RoleAssignmentTypeInfo class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleAssignmentTypeInfo()
596 NetIQ Identity Manager User Application: Administration Guide

convertToRPC
Constructs an RPC friendly representation from an API object.

Syntax: Here is the method signature:

public static RoleAssignmentTypeInfo
convertToRPC(com.novell.idm.nrf.RoleAssignmentType type)

getIdentityType
Returns the JAX-RPC friendly identity type.

Syntax: Here is the method signature:

public IdentityType getIdentityType()

getSubtreeIncluded
Determines whether the sub tree is included.

Syntax: Here is the method signature:

public boolean getSubtreeIncluded()

getSupportsApproval
Determines whether the assignment supports approval.

Syntax: Here is the method signature:

public boolean getSupportsApproval()

getSupportsEffectiveDate
Determines whether the assignment supports an effective date.

Syntax: Here is the method signature:

public boolean getSupportsEffectiveDate()

getSupportsExpiration
Determines whether the assignment supports expiration.

Syntax: Here is the method signature:

public boolean getSupportsExpiration()

getSupportsSODApproval
Determines whether the assignment supports SOD approval.

Syntax: Here is the method signature:

public boolean getSupportsSODApproval()
Role Web Service 597

setIdentityType
Sets the JAX-RPC friendly identity type.

Syntax: Here is the method signature:

public void setIdentityType(IdentityType type)

setSubtreeIncluded
Sets whether the sub tree is included.

Syntax: Here is the method signature:

public void setSubtreeIncluded(boolean bool)

setSupportsApproval
Sets whether the assignment supports approval.

Syntax: Here is the method signature:

public void setSupportsApproval(boolean bool)

setSupportsEffectiveDate
Sets whether the assignment supports effective date.

Syntax: Here is the method signature:

public void setSupportsEffectiveDate(boolean bool)

setSupportsExpiration
Sets whethers the assignment supports expiration.

Syntax: Here is the method signature:

public void setSupportsExpiration(boolean bool)

setSupportsSODApproval
Sets whether the assignment supports SOD approval.

Syntax: Here is the method signature:

public void setSupportsSODApproval(boolean bool)

22.2.32 RoleInfo
Value class to hold main role information. This is a small subset of the role value class.

RoleInfo constructors
The RoleInfo class supports a single constructor.

Syntax: Here is the syntax for the constructor:
598 NetIQ Identity Manager User Application: Administration Guide

RoleInfo()

getDescription
Gets the role description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getEntityKey
Gets the role entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getName
Gets the role name.

Syntax: Here is the method signature:

public java.lang.String getName()

getRoleCategoryKeys
Gets the role category keys.

Syntax: Here is the method signature:

public CategoryKeyArray getRoleCategoryKeys()

getRoleLevel
Gets the role level object.

Syntax: Here is the method signature:

public RoleLevel getRoleLevel()

setDescription
Sets the role description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setEntityKey
Sets the role entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)
Role Web Service 599

setName
Sets the role name.

Syntax: Here is the method signature:

public void setName(java.lang.String name)

setRoleCategoryKeys
Sets the role category keys.

Syntax: Here is the method signature:

public void setRoleCategoryKeys(CategoryKeyArray roleCategoryKeys)

setRoleLevel
Sets role level object.

Syntax: Here is the method signature:

public void setRoleLevel(RoleLevel roleLevel)

22.2.33 RoleInfoArray
This section provides reference information on the RoleInfoArray class.

RoleInfoArray constructors
The RoleInfoArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RoleInfoArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

RoleInfoArray(RoleInfo[] RoleInfoVal)

getRoleinfo
Returns an array of RoleInfo objects.

Syntax: Here is the method signature:

RoleInfo[] getRoleinfo()

setRoleinfo
Sets the array of RoleInfo objects associated with the RoleInfoArray class.

Syntax: Here is the method signature:

void setRoleinfo (RoleInfo[] RoleInfoVal)
600 NetIQ Identity Manager User Application: Administration Guide

22.2.34 RoleLevel
This class represent a role level.

RoleLevel constructors
The RoleLevel class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleLevel()

getContainer
Gets the role level container.

Syntax: Here is the method signature:

public java.lang.String getContainer()

getDescription
Gets the role level description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getLevel
Gets the role level.

Syntax: Here is the method signature:

public long getLevel()

getName
Gets the role level name.

Syntax: Here is the method signature:

public java.lang.String getName()

setContainer
Sets the role level container.

Syntax: Here is the method signature:

public void setContainer(java.lang.String container)

setDescription
Sets the role level description.

Syntax: Here is the method signature:
Role Web Service 601

public void setDescription(java.lang.String description)

setLevel
Sets the role level.

Syntax: Here is the method signature:

public void setLevel(long level)

setName
Sets the role level name.

Syntax: Here is the method signature:

public void setName(java.lang.String name)

22.2.35 RoleLevelArray
This section provides reference information on the RoleLevelArray class.

RoleLevelArray constructors
The RoleLevelArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RoleLevelArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

RoleLevelArray(RoleLevel[] RoleLevelVal)

getRolelevel
Returns an array of RoleLevel objects.

Syntax: Here is the method signature:

RoleLevel[] getRolelevel()

setRolelevel
Sets the array of RoleLevel objects associated with the RoleLevelArray class.

Syntax: Here is the method signature:

void setRolelevel (RoleLevel[] RoleLevelVal)

22.2.36 RoleRequest
The Role Request class has been added to support the creation of roles. The Role Request class is a
value class used to hold information about a request to create a role.
602 NetIQ Identity Manager User Application: Administration Guide

getName
Gets the role name.

Syntax: Here is the method signature:

public String getName()

getDescription
Gets the role description.

Syntax: Here is the method signature:

public String getDescription()

getEntityKey
Gets the entity key for the role.

Syntax: Here is the method signature:

public String getEntityKey()

getRoleLevel
Gets the role level object.

Syntax: Here is the method signature:

public long getRoleLevel()

getRoleCategoryKeys
Gets the role category keys.

Syntax: Here is the method signature:

public CategoryKey[] getRoleCategoryKeys()

getQuorum
Gets the quorum amount.

Syntax: Here is the method signature:

public String getQuorum()

getRequestDef
Gets the provisioning request definition for approval processing.

Syntax: Here is the method signature:

public String getRequestDef()
Role Web Service 603

getApprovers
Gets the approvers for the role definition.

Syntax: Here is the method signature:

public Approver[] getApprovers()

getOwners
Gets the owner DNs.

Syntax: Here is the method signature:

public DNString[] getOwners()

getRoleAssignments
Gets the associated roles.

Syntax: Here is the method signature:

public String getRoleAssignments()

getSystemRole
Gets the system role flag, which indicates whether this is a system role.

Syntax: Here is the method signature:

public boolean getSystemRole()

getContainer
Gets the name of the role container.

Syntax: Here is the method signature:

public String getContainer()

setName
Sets the role name.

Syntax: Here is the method signature:

public void setName()

setDescription
Sets the role description.

Syntax: Here is the method signature:

public void setDescription()
604 NetIQ Identity Manager User Application: Administration Guide

setEntityKey
Sets the entity key for the role.

Syntax: Here is the method signature:

public void setEntityKey()

setRoleLevel
Sets the role level object.

Syntax: Here is the method signature:

public void setRoleLevel()

setRoleCategoryKeys
Sets the role category keys.

Syntax: Here is the method signature:

public void setRoleCategoryKeys()

setQuorum
Sets the quorum amount.

Syntax: Here is the method signature:

public void setQuorum()

setRequestDef
Sets the provisioning request definition for approval processing.

Syntax: Here is the method signature:

public void setRequestDef()

setApprovers
Sets the approvers for role approval processing.

Syntax: Here is the method signature:

public void setApprovers()

setOwners
Sets the owner DNs.

Syntax: Here is the method signature:

public void setOwners()
Role Web Service 605

setSystemRole
Sets the system role flag, which determines whether this is a system role.

Syntax: Here is the method signature:

public void setSystemRole()

setContainer
Sets the role container.

Syntax: Here is the method signature:

public void setContainer()

22.2.37 RoleServiceDelegate
Delegate class to perform the actual call to the API layer. Should be used by all skeleton classes.

RoleServiceDelegate constructors
The RoleServiceDelegate class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleServiceDelegate(com.novell.srvprv.spi.security.ISecurityContext ctx,
java.util.Locale locale)

findSodByExample
Finds all SoD objects based on the search criteria in the given SOD object.

Syntax: Here is the method signature:

SodArray findSodByExample(Sod sod) throws NrfServiceException,
java.rmi.RemoteException

findSodByExampleWithOperator
Finds all SoD objects based on the search criteria found in the given SOD object

Syntax: Here is the method signature:

SodArray findSodByExampleWithOperator(Sod searchCriteria, boolean
useAndForMultiValueSearch) throws NrfServiceException, java.rmi.RemoteException

findSodById
Find by key.

Syntax: Here is the method signature:

Sod findSodById(java.lang.String entityKey) throws NrfServiceException,
java.rmi.RemoteException
606 NetIQ Identity Manager User Application: Administration Guide

getAssignedIdentities
Returns a list of role assignments for a specified identity.

Syntax: Here is the method signature:

RoleAssignmentArray getAssignedIdentities(java.lang.String identityDn,
IdentityType type, boolean direct) throws NrfServiceException,
java.rmi.RemoteException

getConfiguration
Returns the role system configuration defined in the role vault root (nrfConfiguration)

Syntax: Here is the method signature:

Configuration getConfiguration() throws NrfServiceException,
java.rmi.RemoteException

getContainer
Gets container and role information for a given container DN.

Syntax: Here is the method signature:

Container getContainer(java.lang.String containerDn) throws
NrfServiceException, java.rmi.RemoteException

getExceptionList
Returns a list of Sod instances for all SOD violations found for a specific identity and type.

Syntax: Here is the method signature:

SodArray getExceptionsList(java.lang.String identity, IdentityType identityType)
throws NrfServiceException, java.rmi.RemoteException

getGroup
Gets group and role information for a given group DN.

Syntax: Here is the method signature:

Group getGroup(java.lang.String groupDn) throws NrfServiceException,
java.rmi.RemoteException

getIdentitiesInViolation
Returns a map of identities which are in violation of a given SoD.

Syntax: Here is the method signature:

IdentityTypeDnMapArray getIdentitiesInViolation(java.lang.String sodDn) throws
NrfServiceException, java.rmi.RemoteException

getIdentityRoleConflicts
Returns a list of Sod instances for all SOD conflicts found for a given list of roles for a given identity.
Role Web Service 607

Syntax: Here is the method signature:

SodArray getIdentityRoleConflicts(java.lang.String identity, IdentityType
identityType, DNStringArray requestedRoles) throws NrfServiceException,
java.rmi.RemoteException

getRole
Retrieves a role object defined by a role DN

Syntax: Here is the method signature:

Role getRole(java.lang.String roleDn) throws NrfServiceException,
java.rmi.RemoteException

getRoleAssignmentRequestStatus
Returns a list of role assignment request status instances given a correlation ID.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray getRoleAssignmentRequestStatus(java.lang.String
correlationId) throws NrfServiceException, java.rmi.RemoteException

getRoleAssignmentRequestStatusByIdentityType
Returns a list of role assignment request status instances given an identity and an identity type.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatusByIdentityType(java.lang.String identityDn,
IdentityType identityType) throws NrfServiceException, java.rmi.RemoteException

getRoleAssignmentTypeInfo
Retrieves details about a RoleAssignmentType.

Syntax: Here is the method signature:

RoleAssignmentTypeInfo getRoleAssignmentTypeInfo(RoleAssignmentType type) throws
NrfServiceException, java.rmi.RemoteException

getRoleCategories
Gets role categories.

Syntax: Here is the method signature:

CategoryArray getRoleCategories() throws NrfServiceException,
java.rmi.RemoteException

getRoleConflicts
Returns a list of Sod instances found for all given roles. This method always returns a list.

Syntax: Here is the method signature:
608 NetIQ Identity Manager User Application: Administration Guide

SodArray getRoleConflicts(DNStringArray roles) throws NrfServiceException,
java.rmi.RemoteException

getRoleLevels
Gets role levels.

Syntax: Here is the method signature:

RoleLevelArray getRoleLevels() throws NrfServiceException,
java.rmi.RemoteException

getRolesInfo
Returns a list of RoleInfo instances given a list of role DNs.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfo(DNStringArray roleDns) throws NrfServiceException,
java.rmi.RemoteException

getRolesInfoByCategory
Returns a list of RoleInfo instances given a list of role category keys.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByCategory(CategoryKeyArray roleCategoryKeys) throws
NrfServiceException, java.rmi.RemoteException

getRolesInfoByLevel
Returns a list of RoleInfo instances given a list of role levels.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByLevel(LongArray roleLevels) throws
NrfServiceException, java.rmi.RemoteException

getTargetSourceConflicts
Returns a list of Sod instances for all SOD conflicts defined between the target role DN and the source
role DN.

Syntax: Here is the method signature:

SodArray getTargetSourceConflicts(java.lang.String targetName, java.lang.String
sourceName) throws NrfServiceException, java.rmi.RemoteException

getUser
Gets user info including all role assignments for a given user DN stored in a UserIdentity object.

Syntax: Here is the method signature:

User getUser(java.lang.String userDn) throws NrfServiceException,
java.rmi.RemoteException
Role Web Service 609

getVersion
Returns the version of this Web Service.

Syntax: Here is the method signature:

VersionVO getVersion() throws java.rmi.RemoteException

isUserInRole
Returns boolean flag; true if role has been assigned to a User identity

Syntax: Here is the method signature:

boolean isUserInRole(java.lang.String userDn, java.lang.String roleDn)

requestRoleAssignment
Returns a list of request DNs created by the role assignment

Syntax: Here is the method signature:

DNStringArray requestRolesAssignment(RoleAssignmentRequest roleAssignmentRequest)
throws NrfServiceException, java.rmi.RemoteException

22.2.38 RoleServiceSkeletonImpl
Class to represent the skeleton server side implementation of the Role Based offered services.

RoleServiceSkeletonImpl
The RoleServiceSkeletonImpl class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleServiceSkeletonImpl()

findSodByExample
Finds all SoD objects based on the search criteria in the given SOD object.

Syntax: Here is the method signature:

SodArray findSodByExample(Sod sod) throws NrfServiceException,
java.rmi.RemoteException

findSodByExampleWithOperator
Finds all SoD objects based on the search criteria found in the given SOD object

Syntax: Here is the method signature:

SodArray findSodByExampleWithOperator(Sod searchCriteria, boolean
useAndForMultiValueSearch) throws NrfServiceException, java.rmi.RemoteException
610 NetIQ Identity Manager User Application: Administration Guide

findSodById
Find by key.

Syntax: Here is the method signature:

Sod findSodById(java.lang.String entityKey) throws NrfServiceException,
java.rmi.RemoteException

getAssignedIdentities
Returns a list of role assignments for a specified identity.

Syntax: Here is the method signature:

RoleAssignmentArray getAssignedIdentities(java.lang.String identityDn,
IdentityType type, boolean direct) throws NrfServiceException,
java.rmi.RemoteException

getConfiguration
Returns the role system configuration defined in the role vault root (nrfConfiguration)

Syntax: Here is the method signature:

Configuration getConfiguration() throws NrfServiceException,
java.rmi.RemoteException

getContainer
Gets container and role information for a given container DN.

Syntax: Here is the method signature:

Container getContainer(java.lang.String containerDn) throws
NrfServiceException, java.rmi.RemoteException

getExceptionList
Returns a list of Sod instances for all SOD violations found for a specific identity and type.

Syntax: Here is the method signature:

SodArray getExceptionsList(java.lang.String identity, IdentityType identityType)
throws NrfServiceException, java.rmi.RemoteException

getGroup
Gets group and role information for a given group DN.

Syntax: Here is the method signature:

Group getGroup(java.lang.String groupDn) throws NrfServiceException,
java.rmi.RemoteException

getIdentitiesInViolation
Returns a map of identities which are in violation of a given SoD.
Role Web Service 611

Syntax: Here is the method signature:

IdentityTypeDnMapArray getIdentitiesInViolation(java.lang.String sodDn) throws
NrfServiceException, java.rmi.RemoteException

getIdentityRoleConflicts
Returns a list of Sod instances for all SOD conflicts found for a given list of roles for a given identity.

Syntax: Here is the method signature:

SodArray getIdentityRoleConflicts(java.lang.String identity, IdentityType
identityType, DNStringArray requestedRoles) throws NrfServiceException,
java.rmi.RemoteException

getRole
Retrieves a role object defined by a role DN

Syntax: Here is the method signature:

Role getRole(java.lang.String roleDn) throws NrfServiceException,
java.rmi.RemoteException

getRoleAssignmentRequestStatus
Returns a list of role assignment request status instances given a correlation ID.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray getRoleAssignmentRequestStatus(java.lang.String
correlationId) throws NrfServiceException, java.rmi.RemoteException

getRoleAssignmentRequestStatusByIdentityType
Returns a list of role assignment request status instances given an identity and an identity type.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatusByIdentityType(java.lang.String identityDn,
IdentityType identityType) throws NrfServiceException, java.rmi.RemoteException

getRoleAssignmentTypeInfo
Retrieves details about a RoleAssignmentType.

Syntax: Here is the method signature:

RoleAssignmentTypeInfo getRoleAssignmentTypeInfo(RoleAssignmentType type) throws
NrfServiceException, java.rmi.RemoteException

getRoleCategories
Gets role categories.

Syntax: Here is the method signature:
612 NetIQ Identity Manager User Application: Administration Guide

CategoryArray getRoleCategories() throws NrfServiceException,
java.rmi.RemoteException

getRoleConflicts
Returns a list of Sod instances found for all given roles. This method always returns a list.

Syntax: Here is the method signature:

SodArray getRoleConflicts(DNStringArray roles) throws NrfServiceException,
java.rmi.RemoteException

getRoleLevels
Gets role levels.

Syntax: Here is the method signature:

RoleLevelArray getRoleLevels() throws NrfServiceException,
java.rmi.RemoteException

getRolesInfo
Returns a list of RoleInfo instances given a list of role DNs.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfo(DNStringArray roleDns) throws NrfServiceException,
java.rmi.RemoteException

getRolesInfoByCategory
Returns a list of RoleInfo instances given a list of role category keys.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByCategory(CategoryKeyArray roleCategoryKeys) throws
NrfServiceException, java.rmi.RemoteException

getRolesInfoByLevel
Returns a list of RoleInfo instances given a list of role levels.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByLevel(LongArray roleLevels) throws
NrfServiceException, java.rmi.RemoteException

getTargetSourceConflicts
Returns a list of Sod instances for all SOD conflicts defined between the target role DN and the source
role DN.

Syntax: Here is the method signature:

SodArray getTargetSourceConflicts(java.lang.String targetName, java.lang.String
sourceName) throws NrfServiceException, java.rmi.RemoteException
Role Web Service 613

getUser
Gets user info including all role assignments for a given user DN stored in a UserIdentity object.

Syntax: Here is the method signature:

User getUser(java.lang.String userDn) throws NrfServiceException,
java.rmi.RemoteException

getVersion
Returns the version of this Web Service.

Syntax: Here is the method signature:

VersionVO getVersion() throws java.rmi.RemoteException

isUserInRole
Returns boolean flag; true if role has been assigned to a User identity

Syntax: Here is the method signature:

boolean isUserInRole(java.lang.String userDn, java.lang.String roleDn)

requestRoleAssignment
Returns a list of request DNs created by the role assignment

Syntax: Here is the method signature:

DNStringArray requestRolesAssignment(RoleAssignmentRequest roleAssignmentRequest)
throws NrfServiceException, java.rmi.RemoteException

22.2.39 Sod
Value object to hold SOD information.

Sod constructors
The Sod class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Sod()

getApprovalType
Gets the SOD approval type.

Syntax: Here is the method signature:

public SodApprovalType getApprovalType()

getApprovers
Gets SOD approvers.
614 NetIQ Identity Manager User Application: Administration Guide

Syntax: Here is the method signature:

public ApproverArray getApprovers()

getDescription
Gets the SOD description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getEntityKey
Gets the SOD entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getName
Gets the SOD name.

Syntax: Here is the method signature:

public java.lang.String getName()

getQuorum
Gets the SOD quorum amount.

Syntax: Here is the method signature:

public java.lang.String getQuorum()

getRequestDef
Gets the request definition for approval processing.

Syntax: Here is the method signature:

public java.lang.String getRequestDef()

getRoles
Gets the SOD roles.

Syntax: Here is the method signature:

public DNStringArray getRoles()

setApprovalType
Sets the SOD approval type.

Syntax: Here is the method signature:
Role Web Service 615

public void setApprovalType(SodApprovalType approvalType)

setApprovers
Sets the SOD approvers.

Syntax: Here is the method signature:

public void setApprovers(ApproverArray approvers)

setDescription
Sets the SOD description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setEntityKey
Sets the SOD entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setName
Sets the SOD name.

Syntax: Here is the method signature:

public void setName(java.lang.String name)

setQuorum
Sets the SOD quorum amount.

Syntax: Here is the method signature:

public void setQuorum(java.lang.String quorum)

setRequestDef
Sets the request definition for approval processing.

Syntax: Here is the method signature:

public void setRequestDef(java.lang.String requestDef)

setRoles
Sets the SOD roles.

Syntax: Here is the method signature:

public void setRoles(DNStringArray roles)
616 NetIQ Identity Manager User Application: Administration Guide

22.2.40 SodArray
This section provides reference information on the SodArray class.

SodArray constructors
The SodArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

SodArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

SodArray(Sod[] SodVal)

getSod
Returns an array of Sod objects.

Syntax: Here is the method signature:

Sod[] getSod()

setSod
Sets the array of Sod objects associated with the SodArray class.

Syntax: Here is the method signature:

void setSod (Sod[] SodVal)

22.2.41 SodApprovalType
An JAX-RPC friendly representation of com.novell.idm.nrf.api.SodApprovalType.

Table 22-8 Field Summary

SodApprovalType constructors
The SodApprovalType class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

SodApprovalType()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

SodApprovalType(java.lang.String value)

Type Name

static SodApprovalType ALLOW_WITH_WORKFLOW

static SodApprovalType ALWAYS_ALLOW
Role Web Service 617

equals
Implementation of equals().

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.api.SodApprovalType fromRPC() throws
com.novell.idm.nrf.exception.NrfException

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static SodApprovalType fromValue(java.lang.String value)

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This is an implementation of hashCode(). This implementation overrides the hashCode() method in
java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.api.SodApprovalType fromRPC() throws
com.novell.idm.nrf.exception.NrfException
618 NetIQ Identity Manager User Application: Administration Guide

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

22.2.42 SodJustification
Class to represent an SOD DN to override with a justification. Used for assignment of roles to be able
to pass in a justification for overrides of SODs.

SodJustification constructors
The SodJustification class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

SodJustification()

Syntax 2: Here is the syntax for a constructor that takes two String values as parameters:

SodJustification(java.lang.String sodDN, java.lang.String justification)

getJustification
Gets the SOD justification for override.

Syntax: Here is the method signature:

public java.lang.String getJustification()

getSodDN
Gets the SOD DN for override.

Syntax: Here is the method signature:

public java.lang.String getSodDN()

setJustification
Sets the justification for override.

Syntax: Here is the method signature:

public void setJustification(java.lang.String justification)

setSodDN
Sets the SOD DN for override.

Syntax: Here is the method signature:

public void setSodDN(java.lang.String sodDN)
Role Web Service 619

22.2.43 SodJustificationArray
This section provides reference information on the SodJustificationArray class.

SodJustificationArray constructors
The SodJustificationArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

SodJustificationArray()

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

SodJustificationArray(SodJustification[] SodJustificationVal)

getSodjustification
Returns an array of SodJustification objects.

Syntax: Here is the method signature:

SodJustification[] getSodjustification()

setSodjustification
Sets the array of SodJustification objects associated with the SodJustificationArray class.

Syntax: Here is the method signature:

void setSodjustification (SodJustification[] SodJustificationVal)

22.2.44 User
Value class to hold user identity information.

User constructors
The User class supports a single constructor.

Syntax: Here is the syntax for the constructor:

User()

getAssociatedRoles
Gets the associated roles for this identity.

Syntax: Here is the method signature:

public DNStringArray getAssociatedRoles()

getCn
Gets the cn.
620 NetIQ Identity Manager User Application: Administration Guide

Syntax: Here is the method signature:

public java.lang.String getCn()

getContainerRoles
Gets the container roles.

Syntax: Here is the method signature:

public DNStringArray getContainerRoles()

getEmail
Gets the email address.

Syntax: Here is the method signature:

public java.lang.String getEmail()

getEntityKey
Gets the identity entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getExplicitAssignments
Gets the explicit role assignments.

Syntax: Here is the method signature:

public RoleAssignmentArray getExplicitAssignments()

getFirstName
Gets the first name.

Syntax: Here is the method signature:

public java.lang.String getFirstName()

getGroupRoles
Gets the group roles.

Syntax: Here is the method signature:

public DNStringArray getGroupRoles()

getIdentityType
Gets identity type.

Syntax: Here is the method signature:
Role Web Service 621

public IdentityType getIdentityType()

getImplicitAssignments
Gets the implicit role assignments.

Syntax: Here is the method signature:

public RoleAssignmentArray getImplicitAssignments()

getInheritedAssignments
Gets the inherited role assignments.

Syntax: Here is the method signature:

public RoleAssignmentArray getInheritedAssignments()

getInheritedRoles
Gets the inherited roles.

Syntax: Here is the method signature:

public DNStringArray getInheritedRoles()

getLastName
Gets the last name.

Syntax: Here is the method signature:

public java.lang.String getLastName()

getRoleAssignments
Gets the role assignments for this identity.

Syntax: Here is the method signature:

public RoleAssignmentArray getRoleAssignments()

setAssociatedRoles
Sets the associated roles for this identity.

Syntax: Here is the method signature:

public void setAssociatedRoles(DNStringArray associatedRoles)

setCn
Sets the CN.

Syntax: Here is the method signature:

public void setCn(java.lang.String cn)
622 NetIQ Identity Manager User Application: Administration Guide

setContainerRoles
Sets the container roles.

Syntax: Here is the method signature:

public void setContainerRoles(DNStringArray containerRoles)

setEmail
Sets the email address.

Syntax: Here is the method signature:

public void setEmail(java.lang.String email)

setEntityKey
Sets the identity entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setExplicitAssignments
Sets the explicit role assignments.

Syntax: Here is the method signature:

public void setExplicitAssignments(RoleAssignmentArray explicitAssignments)

setFirstName
Sets the first name.

Syntax: Here is the method signature:

public void setFirstName(java.lang.String firstName)

setGroupRoles
Sets the group roles.

Syntax: Here is the method signature:

public void setGroupRoles(DNStringArray groupRoles)

setIdentityType
Sets the identity type.

Syntax: Here is the method signature:

public void setIdentityType(IdentityType identityType)
Role Web Service 623

setImplicitAssignments
Sets the implicit role assignments.

Syntax: Here is the method signature:

public void setImplicitAssignments(RoleAssignmentArray implicitAssignments)

setInheritedAssignments
Sets the inherited role assignments.

Syntax: Here is the method signature:

public void setInheritedAssignments(RoleAssignmentArray inheritedAssignments)

setInheritedRoles
Sets the inherited roles.

Syntax: Here is the method signature:

public void setInheritedRoles(DNStringArray inheritedRoles)

setLastName
Sets the last name.

Syntax: Here is the method signature:

public void setLastName(java.lang.String lastName)

setRoleAssignments
Sets the role assignments for this identity.

Syntax: Here is the method signature:

public void setRoleAssignments(RoleAssignmentArray roleAssignments)

22.2.45 VersionVO
A value object for Version.

VersionVO constructors
The VersionVO class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

VersionVO()

Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

VersionVO(java.lang.String version)
624 NetIQ Identity Manager User Application: Administration Guide

getValue
Gets the version.

Syntax: Here is the method signature:

public java.lang.String getValue()

setValue
Sets the version.

Syntax: Here is the method signature:

public void setValue(java.lang.String version)

22.3 Role Web Service Examples
This section provides examples that demonstrate how you might use the Role service.

22.3.1 Retrieving Roles for a Group
This example shows how to retrieve the role assignments for a given group:

public void getGroupTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling
getGroupTestCase()********************************");
 String groupDN = "cn=HR,ou=groups,ou=medical-idmsample,o=novell";
 try
 {
 IRemoteRole stub = getRolesStub(username, password, acceptlanguage);
 Group group = stub.getGroup(groupDN);
 //Assert.assertNotNull("Group not found", group);
 if (group != null)
 {
 System.out.println("Group Found:");
 System.out.println(" entityKey : " + group.getEntityKey());
 System.out.println(" identityType : " +
group.getIdentityType().getValue());
 System.out.println(" description : " + group.getDescription());

 DNString[] roles = group.getAssociatedRoles().getDnstring();
 if (roles != null)
 {
 System.out.println("no of associated roles: " + roles.length);
 for (int rIndex = 0; rIndex < roles.length; rIndex++)
 {
 System.out.println(" role: " + rIndex);
 }
 }
 else
 {
 System.out.println("no of associated roles:0");
 }

 RoleAssignment[] assignments =
group.getRoleAssignments().getRoleassignment();
 PrintRoleUtils.getAssignments(assignments);
 }
 else
 System.out.println("Group not found");
Role Web Service 625

 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }
 }

...
 /**
 * Returns the Roles remote stub
 * @param username - user name
 * @param password - password
 * @param acceptLanguage - HTTP header Accept-Language
 * @return the Roles remote stub
 * @throws Exception - catch all exceptions
 */
 public static IRemoteRole getRolesStub(String username,
 String password,
 String acceptLanguage)
 throws Exception
 {
 Stub stub = null;
 String stubCacheKey = username + ":" + password;
 if (g_rolesStubCache.containsKey(stubCacheKey)) {
 g_log.debug("Using Cached Roles stub for [" + username + "]");
 stub = (Stub) g_rolesStubCache.get(stubCacheKey);
 } else {
 g_log.debug("Using New Roles stub");
 RoleService service = new RoleServiceImpl();
 stub = (Stub) service.getIRemoteRolePort();

 if (username != null && password != null) {
 stub._setProperty(Stub.USERNAME_PROPERTY, username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, password);
 }

 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
ServletParameters.getInstance().getUserAppUrl() + ROLES_SERVICE);
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);

 g_rolesStubCache.put(stubCacheKey, stub);
 }

 Properties props = new Properties();
 props.setProperty("Accept-Language", acceptLanguage);
 stub._setProperty(Stub.HTTP_HEADERS, props);

 return (IRemoteRole) stub;
 }

22.3.2 Retrieving Role Assignment Request Status
Returns a list of role assignment request status instances given a correlation ID.
626 NetIQ Identity Manager User Application: Administration Guide

 public void getRoleAssignmentRequestStatusTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling

getRoleAssignmentRequestStatusTestCase()********************************");
 String correlationId = "9a5feec728864b55ac443724a915e831";
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);
 RoleAssignmentRequestStatusArray reqArray =
stub.getRoleAssignmentRequestStatus(correlationId);
 RoleAssignmentRequestStatus[] reqStatus =
reqArray.getRoleassignmentrequeststatus();
 //Assert.assertNotNull("RoleAssignmentRequestStatus object is null for

getRoleAssignmentRequestStatus", reqStatus);
 if (reqStatus != null)
 System.out.println(PrintRoleUtils.getRequestStatus(reqStatus));
 else
 System.out.println("RoleAssignmentRequestStatus object is null for

getRoleAssignmentRequestStatus");

 //result += Util.getRequestStatus(reqStatus);
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }

22.3.3 Retrieving Type Information for a Role Assignment
This example shows how to retrieve the type for a role assignment:

 public void getRoleAssignmentTypeInfoTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling

getRoleAssignmentTypeInfoTestCase()********************************");
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);

 RoleAssignmentTypeInfo info =

stub.getRoleAssignmentTypeInfo(RoleAssignmentType.fromValue("ROLE_TO_ROLE"));
 //Assert.assertNotNull("Role Assignment Type Info Not Found for
getRoleAssignmentTypeInfo", info);
 if (info != null)
 {
 System.out.println("Role Assignment Type Info:");
 System.out.println(" identity type: " +
info.getIdentityType().getValue());
 System.out.println(" subtree included: " +
info.getSubtreeIncluded());
 System.out.println(" suports approvals: " +
Role Web Service 627

info.getSupportsApproval());
 System.out.println(" supports effective date: " +
info.getSupportsEffectiveDate());
 System.out.println(" supports expiration: " +
info.getSupportsExpiration());
 System.out.println(" supports SOD Approval: " +
info.getSupportsSODApproval());
 }
 else
 System.out.println("Role Assignment Type Info Not Found for
getRoleAssignmentTypeInfo");
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }

22.3.4 Retrieving Role Categories
This example shows how to retrieve the defined role categories:

 public void getRoleCategoriesTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling
getRoleCategoriesTestCase()********************************");
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);
 CategoryArray entriesArray = stub.getRoleCategories();
 Category[] entries = entriesArray.getCategory();
 Assert.assertNotNull("No categories found.", entries);
 if (entries != null)
 {
 System.out.println("no of categories:" + entries.length);

 for (int i = 0; i < entries.length; i++)
 {
 System.out.println(" category key : " + entries[i].getCategoryKey());
 System.out.println(" category label: " + entries[i].getCategoryLabel());
 }
 }
 else
 System.out.println("No categories found.");
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }

22.3.5 Retrieving Role Levels
This example shows how to retrieve the defined role levels:
628 NetIQ Identity Manager User Application: Administration Guide

 public void getRoleLevelsTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling
getRoleLevelsTestCase()********************************");
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);
 RoleLevelArray roleLevelArray = stub.getRoleLevels();
 RoleLevel[] entries = roleLevelArray.getRolelevel();
 //Assert.assertNotNull("No role levels found.", entries);
 if (entries != null)
 {
 System.out.println("no of levels:" + entries.length);

 for (int index = 0; index < entries.length; index++)
 {
 System.out.println(" Level : " + entries[index].getLevel());
 System.out.println(" Name : " + entries[index].getName());
 System.out.println(" Description: " + entries[index].getDescription());
 System.out.println(" Container : " + entries[index].getContainer());
 }
 }
 else
 System.out.println("No role levels found.");
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }

22.3.6 Verifying Whether a User Is In a Role
This example shows how to determine whether a user has been assigned to a role:

 public void isUserInRoleTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling
isUserInRoleTestCase()********************************");
 String[] DNs = {
 "cn=ablake,ou=users,ou=medical-idmsample,o=novell",

"cn=Doctor,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=HajenDriver,cn=Tes
tDrivers,o=novell"
 };
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);
 boolean inRole = stub.isUserInRole(DNs[0], DNs[1]);

 String sInRole = "User Not In Role";
 if (inRole)
Role Web Service 629

 sInRole = new String("User In Role");

 System.out.println(sInRole);
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }
630 NetIQ Identity Manager User Application: Administration Guide

23 23Resource Web Service

This section describes the Resource Web Service, which allows SOAP clients to invoke a subset of
actions that apply to resources. Topics include:

Section 23.1, “About the Resource Web Service,” on page 631
Section 23.2, “Resource Web Service Interface,” on page 634
Section 23.3, “Resource Web Service Examples,” on page 662

23.1 About the Resource Web Service
The Resource Web Service exposes a small set of actions for the resource model. The service allows
remote clients to request that a resource be granted or revoked, and also to check on the status of
resource requests. By exposing these actions, the service makes it possible for a provisioning
workflow to invoke resource requests through the Integration activity.

Calls to the Resource Web Service calls require HTTP authentication. By default, access to the
resource service methods is restricted to Resource Administrators.

23.1.1 Accessing the Test Page
You can access the Resource Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/resource/service?test

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/resource/service?test

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment.

Servlet declaration for the Resource Service
A SOAP service using WSSDK is deployed by adding the following declarations in the deployment
descriptor (i.e. WEB-INF/web.xml):

<servlet>
 <servlet-name>Resource</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.role.impl.ResourceServiceSkeletonImpl</servlet-
class>
Resource Web Service 631

<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>/resource/service</url-pattern>
</servlet-mapping>
</servlet>

This follows the normal servlet declaration pattern. It indicates that the servlet
com.novell.idm.nrf.soap.ws.resource.impl.ResourceServiceSkeletonImpl is deployed at /resource/
service.

When a user reaches this servlet using a HTTP GET by entering http://server-name/context/
resource/service (for example, http://localhost:8080/IDMProv/resource/service) in their
browser, the WSSDK provides a page that exposes some information about the deployed service.

Enabling the Test Page

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment.

To enable the test page, you need to update the WEB-INF/web.xml file in the IDMProv.war file.
Before you make your changes, the web.xml should look like this:

<servlet>
 <servlet-name>Resource</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.resource.impl.ResourceServiceSkeletonImpl</
servlet-class>
 <init-param>
 <param-name>com.novell.soa.ws.test.disable</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>

Change the servlet declaration, as follows:

<servlet>
 <servlet-name>Resource</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.resource.impl.ResourceServiceSkeletonImpl</
servlet-class>
 <init-param>
 <param-name>com.novell.soa.ws.test.disable</param-name>
 <param-value>false</param-value>
 </init-param>
</servlet>

23.1.2 Accessing the WSDL
You can access the WSDL for the Resource Web Service using a URL similar to the following:

http://server:port/warcontext/resource/service?wsdl

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/resource/service?wsdl
632 NetIQ Identity Manager User Application: Administration Guide

23.1.3 Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the Novell WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.soa.af.resource.soap.impl:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/jaxrpc-
api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar"; com.novell.soa.ws.impl.tools.wsdl2java.Main
-verbose -ds gensrc -d C:\ -noskel -notie -genclient -keep -package
com.novell.soa.af.resource.soap.impl -javadoc resource.wsdl

You can change the wsdl2java parameters to suit your requirements.

23.1.4 Removing Administrator Credential Restrictions
The Resource Web Service supports two levels of security, one that restricts access to Resource
Administrators, and another that restricts access to the authenticated user. The default setting
restricts access to all operations to the Resource Administrator.

You can modify the security configuration by extracting the /ResourceService-con/config.xml
file from the IDMfw.jar file in the IDMProv.war file, and editing the property settings. Each property
can be set to true or false. A value of true locks down the operation, whereas a value of false opens up
the operation. After making your changes, you need to import the file back into the WAR file and
redeploy.

You can open up the Resource Web Service to authenticated users by setting the ResourceService/
Resource/soap property to false. To open up a particular operation to authenticated users, you need
to set the property for that operation (ResourceService/Resource/soap/operation) to false as well. If
you set all of the properties to false, you can open up all operations to authenticated users. The
operation names are the same as the names of the methods supported by the service.

The following methods can be invoked by users without Resource Administrator credentials if the
property ResourceService/Resource/soap property is set to false:

requestResourceGrant
requestResourceRevoke
getResourceRequestStatusByCorrelationId
getResourceRequestStatusForCurrentUser
getResourceAssignmentsForCurrentUser

If you wish to change the restriction for a particular operation, you can modify the property
ResourceService/Resource/soap/operation for the method, setting its value to true to restrict access to
administrators for the operation and false to remove the restriction. If the ResourceService/Resource/
soap property is true, all methods are restricted to Resource Administrator credentials.

Example The following example shows a security configuration that would open up all operations
within the Resource Web Service, except for the getResourceRequestStatusByIdentity operation,
which would only be accessible to the Resource Administrator:
Resource Web Service 633

 <property>
 <key>ResourceService/Resource/soap</key>
 <value>false</value>
 </property>
 <property>
 <key>ResourceService/Resource/soap/requestResourceGrant</key>
 <value>false</value>
 </property>
 <property>
 <key>ResourceService/Resource/soap/requestResourceRevoke</key>
 <value>false</value>
 </property>
 <property>
 <key>ResourceService/Resource/soap/
getResourceRequestStatusByCorrelationId</key>
 <value>false</value>
 </property>
 <property>
 <key>ResourceService/Resource/soap/getResourceRequestStatusForCurrentUser</
key>
 <value>false</value>
 </property>
 <property>
 <key>ResourceService/Resource/soap/getResourceRequestStatusByIdentity</key>
 <value>true</value>
 </property>

23.2 Resource Web Service Interface
This section provides details about the methods available with the Resource Web service. This
programming interface presumes you’re using Java code generated by the WSSDK toolkit. The
interface will be different if you’re using another Web Service toolkit.

23.2.1 IRemoteResource
This section provides reference information for each method associated with the IRemoteResource
interface.

checkCodeMapValueStatus
Checks to see if a particular value exists in the code map table for a specified entitlement and logical
system. The method returns the status for the code map value as a CodeMapValueStatus object.

This method is one of three new SOAP endpoints added in release 4.0.2 to help you keep the code
map tables for the Roles Based Provisioning Module synchronized with the code map tables for the
Role Mapping Administrator. In release 4.0.2, the user interface for the Role Mapping Administrator
can trigger a code map refresh if a mismatch is discovered while a user is creating mappings. In
addition, the Roles Based Provisioning Module allows you to use the three new SOAP endpoints to
refresh selected entitlements within its code map tables.

In addition to checkCodeMapValueStatus, the Roles Based Provisioning Module includes the
following new endpoints to help with code map synchronization:

getRefreshStatus
refreshCodeMap
634 NetIQ Identity Manager User Application: Administration Guide

The Entitlement Query Settings section of the Configure Roles and Resources Settings page in the User
Application allows you to specify how often the Roles Based Provisioning Module code map tables
are refreshed and also start a manual refresh. However, this page does not allow to refresh selected
entitlements. To control which entitlements are refreshed, you need to use the new SOAP endpoints
added for release 4.0.2.

For additional information on the getRefreshStatus endpoint, see “getRefreshStatus” on page 637.
For additional information on the refreshCodeMap endpoint, see “refreshCodeMap” on page 642.

For code samples that use the new methods for code map synchronization, see Section 23.3.1, “Code
Map Synchronization Code Samples,” on page 662.

Syntax: Here is the method signature:

public CodeMapValueStatus checkCodeMapValueStatus(String entitilementDN, String
connectionName, String codeMapValue)
 throws NrfServiceException, RemoteException;

The parameters are described below:

entitlementDN entitlement DN as a string.

For example:

cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system

connectionName connection (logical system) name. This is an optional parameter. Only fanout
drivers need to specify the connection name.
codeMapValue code map value to verify.
For example:

\TEST1\data\groups\netiq\cambridge\rbpm\4AlphaGroup

SOAP Request: Here is the SOAP request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://www.novell.com/resource/service">
<soapenv:Header/>
<soapenv:Body>
<ser:checkCodeMapValueStatusRequest>
<!--Optional:-->
<ser:entitilementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system</
ser:entitilementDN>
<!--Optional:-->
<ser:connectionName/>
<!--Optional:-->
<ser:codeMapValue>\WILLIAMS1\data\groups\netiq\cambridge\rbpm\4AlphaGroup</
ser:codeMapValue>
</ser:checkCodeMapValueStatusRequest>
</soapenv:Body>
</soapenv:Envelope>

SOAP Response: Here is the SOAP response:
Resource Web Service 635

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
<SOAP-ENV:Body>
<ns1:checkCodeMapValueStatusResponse xmlns="http://www.novell.com/resource/
service" xmlns:ns1="http://www.novell.com/resource/service">
<result>
<refreshStatus>
<connectionName xsi:nil="1"/>
<entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system</
entitlementDN>
<guid>\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99</guid>
<lastRefresh>1329431650891</lastRefresh>
<status>SUCCESS</status>
</refreshStatus>
<upToDate>true</upToDate>
<value>\WILLIAMS1\data\groups\netiq\cambridge\rbpm\4AlphaGroup</value>
</result>
</ns1:checkCodeMapValueStatusResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

createResource
Creates a new resource according to the specified parameters, and returns a DN of the created
resource.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteResourceRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

The correlation ID is used for auditing.

Syntax: Here is the method signature:

public String createResource(Resource resource)
 throws NrfServiceException, RemoteException;

The parameters are described below:

resource specifies the resource object to create.

createResourceAid
Creates a new resource, with a correlation ID that you provide. The correlation ID is used for
auditing to link a set of related resources. This method creates the resource according to the specified
parameters, and returns a DN of the created resource.

Syntax: Here is the method signature:

public String createResourceAid(Resource resource, String correlationId)
 throws NrfServiceException, RemoteException;

findResourceByExampleWithOperator
Finds all Resource objects based on the search criteria specified in the given Resource object.

Syntax: Here is the method signature:

public Resource[] findResourceByExampleWithOperator(Resource searchCriteria,
boolean useAndForMultiValueSearch)
 throws NrfServiceException, RemoteException;
636 NetIQ Identity Manager User Application: Administration Guide

The parameters are described below:

searchCriteria specifies Query by Example (QBE) search criteria within a Resource object.
useAndForMultiValueSearch determines whether AND or OR will be used for multi-value search
expressions. If you specify a value of true, AND will be used for multi-value searches; if you
specify a value of false, OR will be used.

getEntitlementCodeMap
Returns an array of ProvisioningCodeMap objects, which include code map information from the
code map and code map label tables.

Syntax: Here is the method signature:

ProvisioningCodeMap[] getEntitlementCodeMap(java.lang.String codeMapKey, int type)
 throws com.novell.idm.nrf.soap.ws.resource.NrfServiceException,
java.rmi.RemoteException;

The parameters are described below:

codeMapKey specifies the code map key to retrieve values from. The codeMapKey is a GUID that
acts as a unique identifier for the code map. For example:

\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99

type specifies the code map type. A value of 0 filters the list to include entitlement code maps
only.

getRefreshStatus
Gets the refresh status of a code map based on a specified entitlement DN. This method returns the
status as an array of CodeMapRefreshStatus objects. The structure returned contains the DN, GUID,
connection name status, and last refresh time.

This method is one of three new SOAP endpoints added in release 4.0.2 to help you keep the code
map tables for the Roles Based Provisioning Module synchronized with the code map tables for the
Role Mapping Administrator. In release 4.0.2, the user interface for the Role Mapping Administrator
can trigger a code map refresh if a mismatch is discovered while a user is creating mappings. In
addition, the Roles Based Provisioning Module allows you to use the three new SOAP endpoints to
refresh selected entitlements within its code map tables.

In addition to getRefreshStatus, the Roles Based Provisioning Module includes the following new
endpoints to help with code map synchronization:

checkCodeMapValueStatus
refreshCodeMap

The Entitlement Query Settings section of the Configure Roles and Resources Settings page in the User
Application allows you to specify how often the Roles Based Provisioning Module code map tables
are refreshed and also start a manual refresh. However, this page does not allow to refresh selected
entitlements. To control which entitlements are refreshed, you need to use the new SOAP endpoints
added for release 4.0.2.

For additional information on the checkCodeMapValueStatus endpoint, see
“checkCodeMapValueStatus” on page 634. For additional information on the refreshCodeMap
endpoint, see “refreshCodeMap” on page 642.
Resource Web Service 637

For code samples that use the new methods for code map synchronization, see Section 23.3.1, “Code
Map Synchronization Code Samples,” on page 662.

Syntax: Here is the method signature:

 public CodeMapRefreshStatus[] getRefreshStatus(String entitlementDN)
 throws NrfServiceException, RemoteException;

The parameters are described below:

entitlementDN entitlement DN as a string

For example:

cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system

SOAP Request: Here is the SOAP request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://www.novell.com/resource/service">
<soapenv:Header/>
<soapenv:Body>
<ser:getRefreshStatusRequest>
<!--Optional:-->
<ser:entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system</
ser:entitlementDN>
</ser:getRefreshStatusRequest>
</soapenv:Body>
</soapenv:Envelope>

SOAP Response: Here is the SOAP response:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
<SOAP-ENV:Body>
<ns1:getRefreshStatusResponse xmlns="http://www.novell.com/resource/service"
xmlns:ns1="http://www.novell.com/resource/service">
<result>
<codemaprefreshstatus>
<connectionName xsi:nil="1"/>
<entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system</
entitlementDN>
<guid>\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99</guid>
<lastRefresh>1329100366090</lastRefresh>
<status>SUCCESS</status>
</codemaprefreshstatus>
</result>
</ns1:getRefreshStatusResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

getResourceAssignmentsForCurrentUser
Returns the resource assignments for the current user.

Syntax: Here is the method signature:

ResourceAssignment[] getResourceAssignmentsForCurrentUser()
 throws com.novell.idm.nrf.soap.ws.resource.NrfServiceException,
java.rmi.RemoteException;

getResourceAssignmentsForUser
Returns the resource assignments for a particular user.
638 NetIQ Identity Manager User Application: Administration Guide

Syntax: Here is the method signature:

ResourceAssignment[] getResourceAssignmentsForUser(java.lang.String userDn)
 throws com.novell.idm.nrf.soap.ws.resource.NrfServiceException,
java.rmi.RemoteException;

The parameters are described below:

userDn DN of the target user

getAssignmentsForResource
Returns the resource assignments for a particular resource.

Syntax: Here is the method signature:

ResourceAssignment[] getAssignmentsForResource(java.lang.String resourceDn)
 throws com.novell.idm.nrf.soap.ws.resource.NrfServiceException,
java.rmi.RemoteException;

The parameters are described below:

resourceDn DN of the target resource

getResourceRequestStatusByCorrelationId
Returns all resource request status items for a given correlation ID.

Syntax: Here is the method signature:

public ResourceAssignmentRequestStatus[]
 getResourceRequestStatusByCorrelationId
 (String correlationId, String locale)
 throws NrfServiceException, RemoteException;

The parameters are described below:

correlationId specifies a resource assignment request correlation ID.
locale supplies an iso639 language code to format localized string values; if the parameter is null,
the language defaults to the servlet request locale.

This method returns all resource request status instances for the specified correlationId parameter
value. For more information on the ResourceAssignmentRequestStatus class, see Section 23.2.9,
“ResourceAssignmentRequestStatus,” on page 659.

getResourceRequestsStatusForCurrentUser
Returns all resource request status items for the authenticated user.

Syntax: Here is the method signature:

 public ResourceAssignmentRequestStatus[]
 getResourceRequestStatusForCurrentUser(String locale)
 throws NrfServiceException, RemoteException;

The parameters are described below:

locale supplies an iso639 language code to format localized string values; if the parameter is null,
the language defaults to the servlet request locale.
Resource Web Service 639

This method returns all resource request status instances for the specified correlationId parameter
value. For more information on the ResourceAssignmentRequestStatus class, see Section 23.2.9,
“ResourceAssignmentRequestStatus,” on page 659.

getResourceRequestStatusByIdentity
Returns all resource assignment request status items for a particular user identity.

Syntax: Here is the method signature:

public ResourceAssignmentRequestStatus[]
 getResourceRequestStatusByIdentity(String identity, String locale)
 throws NrfServiceException, RemoteException;

The parameters are described below:

identity specifies the DN for a user.
locale supplies an iso639 language code to format localized string values; if the parameter is null,
the language defaults to the servlet request locale.

This method returns all resource request status instances for the specified correlationId parameter
value. For more information on the ResourceAssignmentRequestStatus class, see Section 23.2.9,
“ResourceAssignmentRequestStatus,” on page 659.

getCodeMapValues
Returns a list of code map values for a specified code map.

Syntax: Here is the method signature:

public CodeMapValue[] getCodeMapValues(String codeMapKey, String locale)
 throws NrfServiceException, RemoteException;

The parameters are described below:

codeMapKey specifies the code map key to retrieve values from. The codeMapKey is a GUID that
acts as a unique identifier for the code map. For example:

\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99

locale supplies an iso639 language code to format localized string values; if the parameter is null,
the language defaults to the servlet request locale.

getResource
Returns a resource object.

Syntax: Here is the method signature:

 public Resource getResource(String dn, String locale)
 throws NrfServiceException, RemoteException;

The parameters are described below:

dn specifies the DN of the resource you want to retrieve.
locale supplies an iso639 language code to format localized string values; if the parameter is null,
the language defaults to the servlet request locale.
640 NetIQ Identity Manager User Application: Administration Guide

getResourceLocalizedStrings
Gets the localized strings for a resource, such as the names and descriptions. The type parameter lets
you specify whether the names or descriptions should be retrieved.

Syntax: Here is the method syntax:

public LocalizedValue[] getResourceLocalizedStrings(String resourceDn, int
type)throws NrfServiceException, RemoteException;

The parameters are described below:

resourceDn specifies the DN of the resource for which you want to get the localized strings.
type specifies the type of localized strings you want to retrieve. A type value of 1 retrieves a list of
names for the resource, whereas a type value of 2 retrieves a list of descriptions.

getResourcessInfoByCategory
Returns a list of ResourceInfo instances given a list of category keys.

Syntax: Here is the method signature:

public ResourceInfo[] getResourcessInfoByCategory(CategoryKey[]
resourceCategoryKeys)
 throws NrfServiceException, RemoteException;

The parameters are described below:

resourceCategoryKeys specifies the list of resource category keys to retrieve resource information
objects for.

getResourcessInfo
Returns a list of ResourceInfo instances given a list of resource DNs.

Syntax: Here is the method signature:

public ResourceInfo[] getResourcessInfo(DNString[] resDns)
 throws NrfServiceException, RemoteException;

The parameters are described below:

resDns provides a list of resource DNs for which you want to retrieve resource information
objects.

modifyResource
Modifies a resource definition. This method does not perform a localized string modification update.
To update the localized names or descriptions for a resource, you need to use the
setResourceLocalizedStrings method.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteResourceRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Syntax: Here is the method signature:

public Resource modifyResource(Resource resource)
 throws NrfServiceException, RemoteException;
Resource Web Service 641

The parameters are described below:

resource specifies the resource object to modify.

modifyResourceAid
Modifies a resource definition, with a correlation ID that you provide. The correlation ID is used for
auditing to link a set of related resources. This method does not perform a localized string
modification update. To update the localized names or descriptions for a resource, you need to use
the setResourceLocalizedStrings method.

Syntax: Here is the method signature:

public Resource modifyResourceAid(Resource resource, String correlationId)
 throws NrfServiceException, RemoteException;

refreshCodeMap
Refreshes the code map based on a specified entitlement DN. The method returns the status of the
refresh operation in the form of an EntitlementRefreshInfo object. This structure includes the detailed
status as an array of CodeMapRefreshStatus objects.

This method is one of three new SOAP endpoints added in release 4.0.2 to help you keep the code
map tables for the Roles Based Provisioning Module synchronized with the code map tables for the
Role Mapping Administrator. In release 4.0.2, the user interface for the Role Mapping Administrator
can trigger a code map refresh if a mismatch is discovered while a user is creating mappings. In
addition, the Roles Based Provisioning Module allows you to use the three new SOAP endpoints to
refresh selected entitlements within its code map tables.

In addition to refreshCodeMap, the Roles Based Provisioning Module includes the following new
endpoints to help with code map synchronization:

checkCodeMapValueStatus
getRefreshStatus

The Entitlement Query Settings section of the Configure Roles and Resources Settings page in the User
Application allows you to specify how often the Roles Based Provisioning Module code map tables
are refreshed and also start a manual refresh. However, this page does not allow to refresh selected
entitlements. To control which entitlements are refreshed, you need to use the new SOAP endpoints
added for release 4.0.2.

For additional information on the checkCodeMapValueStatus endpoint, see
“checkCodeMapValueStatus” on page 634. For additional information on the getRefreshStatus
endpoint, see “getRefreshStatus” on page 637.

For code samples that use the new methods for code map synchronization, see Section 23.3.1, “Code
Map Synchronization Code Samples,” on page 662.

Syntax: Here is the method signature:

public EntitlementRefreshInfo refreshCodeMap(String entitlementDN)
 throws NrfServiceException, RemoteException;

The parameters are described below:

entitlementDN entitlement DN to refresh the code map
642 NetIQ Identity Manager User Application: Administration Guide

For example:

cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system

SOAP Request: Here is the SOAP request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://www.novell.com/resource/service">
<soapenv:Header/>
<soapenv:Body>
<ser:refreshCodeMapRequest>
<!--Optional:-->
<ser:entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system</
ser:entitlementDN>
</ser:refreshCodeMapRequest>
</soapenv:Body>
</soapenv:Envelope>

SOAP Response: Here is the SOAP request:

<SOAP-ENV:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <SOAP-ENV:Body>
 <ns1:refreshCodeMapResponse xmlns="http://www.novell.com/resource/service"
xmlns:ns1="http://www.novell.com/resource/service">
 <result>
 <detailedStatus>
 <codemaprefreshstatus>
 <connectionName xsi:nil="1"/>

<entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system</
entitlementDN>
 <guid>\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99</guid>
 <lastRefresh>1329244784180</lastRefresh>
 <status>SUCCESS</status>
 </codemaprefreshstatus>
 </detailedStatus>

<entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system</
entitlementDN>
 <guid>\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99</guid>
 <status>true</status>
 </result>
 </ns1:refreshCodeMapResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

removeResource
Deletes a specified resource from the Resource Catalog. Returns the DN for the deleted resource as a
confirmation.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteResourceRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

The correlation ID is used for auditing.

Syntax: Here is the method signature:

 public DNString removeResource(DNString resourceDn)
 throws NrfServiceException, RemoteException;

The parameters are described below:

resourceDn specifies the DN of the resource to delete.
Resource Web Service 643

removeResourceAid
Deletes a specified resource from the Resource Catalog, with a correlation ID that you provide. The
correlation ID is used for auditing to link a set of related resources. This method returns the DN for
the deleted resource as a confirmation.

Syntax: Here is the method signature:

 public DNString removeResourceAid(DNString resourceDn, String correlation Id)
 throws NrfServiceException, RemoteException;

requestResourceGrant
Makes a grant resource request and returns a resource request correlation ID.

Syntax: Here is the method signature:

public String requestResourceGrant(String resourceTarget, String requester, String
userTarget, String reasonForRequest,
 ResourceRequestParam[] requestParams, String correlationId)
 throws NrfServiceException, RemoteException;

The parameters are described below:

resourceTarget specifies the target resource DN.
requester supplies an identifier for the remote client application making the request to grant the
resource.
The requester parameter on this SOAP endpoint identifies the originator of the request. This
value is set in the resource request object nrfOriginator attribute, following this convention:

For a SOAP call: “REMOTE_CLIENT:<requester param value>”
For a workflow action: “WF:<wf process id>”
For the user application user interface: “USER_APP”

userTarget specifies the DN for the being granted the resource.
reasonForRequest provides a reason for the request.
requestParams provides the parameter values for the request.
correlationId specifies a resource assignment request correlation ID; if the parameter is null, a
correlation ID is generated.

The requester parameter is a client-supplied identifier for the agent making the request. For example,
an identifier such as IRemote-MyApplicationName might be used to identify a request from
MyApplicationName. The requestParams are the dynamic parameter values required by the resource
to make a request. If no values are required, the parameter value can be null or an empty array. The
correlationId allows a client to group request for the purpose of checking the staus. If the parameter
value is null, the service generates a unique correlation id. The correlation id is returned to the caller.

requestResourceRevoke
Makes a revoke resource request and returns a resource request correlation ID.

The revoke invocation behavior mirrors the behavior for a grant opeation, except that a revoke
request for the resource is posted on the server.

Syntax: Here is the method signature:
644 NetIQ Identity Manager User Application: Administration Guide

public String requestResourceRevoke(String resourceTarget,
 String requester, String userTarget, String reasonForRequest,
 ResourceRequestParam[] requestParams, String instanceGuid, String
correlationId)
 throws NrfServiceException, RemoteException;

The parameters are described below:

resourceTarget specifies the target resource DN.
requester supplies an identifier for the remote client application making the request to revoke the
resource.
The requester parameter on this SOAP endpoint identifies the originator of the request. This
value is set in the resource request object nrfOriginator attribute, following this convention:

For a SOAP call: “REMOTE_CLIENT:<requester param value>”
For a workflow action: “WF:<wf process id>”
For the user application user interface: “USER_APP”

userTarget specifies the DN for the user being granted the resource.
reasonForRequest provides a reason for the request.
requestParams provides the parameter values for the request.
instanceGuid provides a GUID identifier for the resource assignment instance. The resource
assignment instance GUID supports revoking a single instance of a multi-value resource
assignment, if not all instances are to be revoked.

IMPORTANT: If you do not specify the instanceGuid value, and the user has more than one
value of that resource assigned, all instances of the resource assignment will be removed.

When you create a new resource assignment request, the instanceGuid is included just above the
correlationid field:

<ser:instanceGuid></ser:instanceGuid>

You need to specify the instance of the resource you want to revoke by supplying the value in
the instanceGuid parameter.
To find out which resources are assigned to a user, you need to use the
getResourceAssignmentsForUser method. This method returns the following data structure,
which also includes the instanceGuid:

<resourceassignment>
 <instanceGuid>1b335aa9f4a14bd4a2a802eb4ba092da</instanceGuid>
 <reason>3b-Test</reason>
 <recipientDn>cn=ablake,ou=users,o=data</recipientDn>
 <requestDate>2011-08-18T14:25:21</requestDate>
 <requestParams>
 <resourcerequestparam>
 <name>param1</name>
 <value>3a3a</value>
 </resourcerequestparam>
 </requestParams>
 <requesterDn>cn=uaadmin,ou=sa,o=data</requesterDn>

<resourceDn>cn=Vodacom,cn=ResourceDefs,cn=RoleConfig,cn=AppConfig,cn=User
Application Driver,cn=driverset1,o=system</resourceDn>
 </resourceassignment>

correlationId specifies a resource assignment request correlation ID; if the parameter is null, a
correlation ID is generated.
Resource Web Service 645

setResourceLocalizedStrings
Sets the localized strings for a resource, such as the names and descriptions.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteResourceRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Syntax: Here is the method signature:

public LocalizedValue[] setResourceLocalizedStrings(String resourceDn,
LocalizedValue[] locStrings, int type)
 throws NrfServiceException, RemoteException;

The parameters are described below:

resourceDn specifies the DN of the resource for which you want to set the localized strings.
locStrings provides an array of localized strings you want to define.
type specifies the type of localized strings you want to retrieve. A type value of 1 retrieves a list of
names for the resource, whereas a type value of 2 retrieves a list of descriptions.

setResourceLocalizedStringsAid
Sets the localized strings for a resource, such as the names and descriptions, with a correlation ID that
you provide. The correlation ID is used for auditing to link a set of related resources.

Syntax: Here is the method signature:

public LocalizedValue[] setResourceLocalizedStringsAid(String resourceDn,
LocalizedValue[] locStrings, int type, String correlationId)
 throws NrfServiceException, RemoteException;

23.2.2 CodeMapRefreshStatus
Supporting class that provides details about the status of a code map refresh.

getConnectionName
Returns the name of the connected system.

Syntax: Here is the method signature:

public String getConnectionName()

getEntitlementDN
Returns the DN for the entitlement.

Syntax: Here is the method signature:

public String getEntitlementDN()

getGuid
Returns the GUID for the entitlement.

Syntax: Here is the method signature:
646 NetIQ Identity Manager User Application: Administration Guide

public String getGuid()

getLastRefresh
Returns the timestamp for the last refresh.

Syntax: Here is the method signature:

public long getLastRefresh()

getStatus
Returns the refresh status as a string indicating whether the refresh was successful.

Syntax: Here is the method signature:

public String getStatus()

setConnectionName
Sets the name of the connection system.

Syntax: Here is the method signature:

public void setConnectionName(final String connectionName)

setEntitlementDN
Sets the entitlement DN.

Syntax: Here is the method signature:

public void setEntitlementDN(String entitlementDN)

setGuid
Sets the GUID for the entitlement.

Syntax: Here is the method signature:

public void setGuid(String guid)

setLastRefresh
Sets the last refresh timestamp.

Syntax: Here is the method signature:

public void setLastRefresh(final long lastRefresh)

setStatus
Sets the refresh status.

Syntax: Here is the method signature:

public void setStatus(String status)
Resource Web Service 647

23.2.3 CodeMapValueStatus
Supporting class that provides details about the status of a refresh for a code map value.

getUpToDate
Returns true or false to indicate whether the status is up-to-date.

Syntax: Here is the method signature:

public boolean getUpToDate()

getRefreshStatus
Returns the refresh status as a CodeMapRefreshStatus object.

Syntax: Here is the method signature:

public CodeMapRefreshStatus getRefreshStatus()

getValue
Gets the code map value.

Syntax: Here is the method signature:

public String getValue()

setRefreshStatus
Sets the refresh as a CodeMapRefreshStatus object.

Syntax: Here is the method signature:

public void setRefreshStatus(final CodeMapRefreshStatus refreshStatus)

setUpToDate
Sets a boolean indicating whether the status is up-to-date.

Syntax: Here is the method signature:

public void setUpToDate(final boolean upToDate)

setValue
Sets the code map value.

Syntax: Here is the method signature:

public void setValue(final String value)

23.2.4 EntitlementRefreshInfo
Supporting class that provides refresh information for an entitlement after a code map refresh has
been performed.
648 NetIQ Identity Manager User Application: Administration Guide

getDetailedStatus
Returns the detailed status as an array of CodeMapRefreshStatus objects.

Syntax: Here is the method signature:

public CodeMapRefreshStatus[] getDetailedStatus()

getEntitlementDN
Returns the DN for the entitlement.

Syntax: Here is the method signature:

public String getEntitlementDN()

getGuid
Returns the GUID for the entitlement.

Syntax: Here is the method signature:

public String getGuid()

getStatus
Returns the status of the refresh as a boolean flag.

Syntax: Here is the method signature:

public boolean getStatus()

setDetailedStatus
Sets the detailed status as an array of CodeMapRefreshStatus objects.

Syntax: Here is the method signature:

public void setDetailedStatus(final CodeMapRefreshStatus[] detailedStatus)

setEntitlementDN
Sets the DN for the entitlement.

Syntax: Here is the method signature:

public void setEntitlementDN(String entitlementDN)

setGuid
Sets the GUID for the entitlement.

Syntax: Here is the method signature:

public void setGuid(String m_guid)
Resource Web Service 649

setStatus
Sets the status as a boolean flag.

Syntax: Here is the method signature:

public void setStatus(boolean m_status)

23.2.5 ProvisioningCodeMap
Value class to hold code map information from the code map and code map label tables.

getDescription
Returns the description

public String getDescription()

getName
Returns the name.

public String getName()

getEntityKey
Returns the entity key.

public String getEntityKey()

getEntityType
Returns the entity type.

public int getEntityType()

getQueryKey
Returns the query key.

public String getQueryKey()

getViewId
Returns the view ID.

public String getViewId()

getLastRefreshed
Returns the timestamp for the last refresh.

public long getLastRefreshed()
650 NetIQ Identity Manager User Application: Administration Guide

setDescription
Sets the description.

public void setDescription(String description)

setName
Sets the name.

public void setName(String name)

setEntityKey
Sets the entity key.

public void setEntityKey(String entityKey)

setEntityType
Sets the entity type.

public void setEntityType(int entityType)

setQueryKey
Sets the query key.

public void setQueryKey(String queryKey)

setViewId
Sets the view ID.

public void setViewId(String viewId)

setLastRefreshed
Sets the timestamp for the last refresh.

public void setLastRefreshed(long lastRefreshed)

getLabels
Returns the code map labels.

public ProvisioningCodeMapLabel[] getLabels()

setLabels
Sets the code map labels.

public void setLabels(ProvisioningCodeMapLabel[] labels)
Resource Web Service 651

getEntitlementDn
Returns the DN for the entitlement.

public String getEntitlementDn()

setEntitlementDn
Sets the DN for the entitlement.

public void setEntitlementDn(String entitlementDn)

getDriverDn
Returns the DN for the driver.

public String getDriverDn()

setDriverDn
Sets the DN for the driver.

public void setDriverDn(String driverDn)

getDriverDisplayName
Returns the display name for the driver.

public String getDriverDisplayName()

setDriverDisplayName
Sets the display name for the driver.

public void setDriverDisplayName(String driverDisplayName)

23.2.6 Resource
Supporting class that provides information about resources.

getName
Returns the name of the resource.

public String getName()

setName
Sets the name of the resource.

public void setName(String name)
652 NetIQ Identity Manager User Application: Administration Guide

getDescription
Returns the description of the resource.

public String getDescription()

setDescription
Sets the description of the resource.

public void setDescription(String description)

getEntityKey
Returns the entity key for the resource.

public String getEntityKey()

setEntityKey
Sets the entity key for the resource.

public void setEntityKey(String entityKey)

getResourceCategoryKeys
Returns the keys for the resource categories.

public CategoryKey[] getResourceCategoryKeys()

setResourceCategoryKeys
Sets the keys for the resource categories.

public void setResourceCategoryKeys(CategoryKey[] resourceCategoryKeys)

getEntitlementRef
Returns the entitlement reference for the resource.

public NrfEntitlementRef[] getEntitlementRef()

setEntitlementRef
Sets the entitlement reference for the resource.

public void setEntitlementRef(NrfEntitlementRef[] entitlementRef)

getGrantApprovers
Returns the list of approvers for resource grant operations.

public Approver[] getGrantApprovers()
Resource Web Service 653

setGrantApprovers
Sets the list of approvers for resource grant operations.

public void setGrantApprovers(Approver[] grantApprovers)

getGrantQuorum
Returns the quorum condition for grant operations.

public String getGrantQuorum()

setGrantQuorum
Sets the quorum condition for grant operations.

public void setGrantQuorum(String grantQuorum)

getGrantRequestDef
Returns the provisioning request definition for grant operations.

public String getGrantRequestDef()

setGrantRequestDef
Sets the provisioning request definition for grant operations.

public void setGrantRequestDef(String grantRequestDef)

getRevokeQuorom
Returns the quorum condition for revoke operations.

public String getRevokeQuorum()

setRevokeQuorom
Sets the quorum condition for revoke operations.

public void setRevokeQuorum(String revokeQuorum)

getRevokeRequestDef
Returns the provisioning request definition for revoke operations.

public String getRevokeRequestDef()

setRevokeRequestDef
Sets the provisioning request definition for revoke operations.

public void setRevokeRequestDef(String revokeRequestDef)
654 NetIQ Identity Manager User Application: Administration Guide

getRevokeApprovers
Returns the list of approvers for revoke operations.

public Approver[] getRevokeApprovers()

setRevokeApprovers
Sets the list of approvers for revoke operations.

public void setRevokeApprovers(Approver[] revokeApprovers)

getOwners
Returns the list of owners for the resource.

public DNString[] getOwners()

setOwners
Sets the list of owners for the resource.

public void setOwners(DNString[] owners)

getParameters
Returns the list of entitlement parameters defined for the resource.

public ResourceParameter[] getParameters()

setParameters
Sets the list of entitlement parameters for the resource.

public void setParameters(ResourceParameter[] parameters)

getActive
Returns a boolean flag indicating whether the resource is still active, or has been approved or denied.

public boolean getActive()

setActive
Sets the boolean flag indicating whether the resource is still active.

public void setActive(final boolean active)

getAllowOverride
Returns a boolean flag indicating whether the approval process for the resource can be overridden by
the approval process for a role.

public boolean getAllowOverride()
Resource Web Service 655

setAllowOverride
Sets the boolean flag indicating whether the approval process for the resource can be overridden by
the approval process for a role.

public void setAllowOverride(final boolean allowOverride)

getAllowMulty
Returns a boolean indicating whether the resource allows a user to request multiple resource values.

public boolean getAllowedMulty()

setAllowMulty
Sets the boolean indicating whether the resource allows a user to request multiple resource values.

public void setAllowedMulty(final boolean allowedMulty)

23.2.7 ResourceAssignment
Supporting class that holds resource assignment information.

setResourceDn
Sets the DN for the resource.

public void setResourceDn(String resourceDn)

getResourceDn
Returns the DN for the resource.

public String getResourceDn()

setRequesterDn
Sets the DN for the requester.

public void setRequesterDn(String requesterDn)

getRequesterDn
Returns the DN for the requester.

public String getRequesterDn()

getRecipientDn
Returns the DN for the recipient of the assignment.

public String getRecipientDn()
656 NetIQ Identity Manager User Application: Administration Guide

setRecipientDn
Sets the DN for the recipient of the assignment.

public void setRecipientDn(String recipientDn)

getReason
Returns the reason for the assignment.

public String getReason()

setReason
Sets the reason for the assignment.

public void setReason(String reason)

getRequestDate
Returns the date of the assignment request.

public Date getRequestDate()

setRequestDate
Sets the date of the assignment request.

public void setRequestDate(Date requestDate)

setRequestParams
Sets the parameters for the request.

public void setRequestParams(ResourceRequestParam[] params)

getRequestParams
Returns the parameters for the request.

public ResourceRequestParam[] getRequestParams()

setInstanceGuid
Sets the instanceGuid for the resource assignment.

public void setInstanceGuid(String instanceGuid)

getInstanceGuid
Returns the instanceGuid for the resource assignment.

public String getInstanceGuid()
Resource Web Service 657

23.2.8 ResourceRequestParam
Supporting class that holds the name and value for a resource request parameter value.

ResourceRequestParam Constructors
The ResourceRequestParam class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

public ResourceRequestParam()
 {
 }

Syntax 2: Here is the syntax for a constructor that takes two String parameters:

public ResourceRequestParam(String name, String value)
 {
 m_name = name;
 m_value = value;
 }

setName
Sets a parameter name.

Syntax: Here is the method signature:

public void setName(String name)

getName
Returns a parameter name.

Syntax: Here is the method signature:

public String getName()

setValue
Sets the value of a parameter.

Syntax: Here is the method signature:

public void setValue(String value)

getValue
Returns the value of a parameter.

Syntax: Here is the method signature:

public String getValue()
658 NetIQ Identity Manager User Application: Administration Guide

23.2.9 ResourceAssignmentRequestStatus
Supporting class that holds a resource request status item. The interface includes methods for getting
and setting various request status properties. However, you will not need to call the methods for
setting property values, since you are using this class to retrieve information about the request status.
After calling the requestResourceGrant() or the requestResourceRevoke() methods, you can use the
get methods to get the properties for each status object returned in the
ResourceAssignmentRequestStatus array.

setEntityKey
Sets the entity key.

Syntax: Here is the method signature:

public void setEntityKey(String entityKey)

getEntityKey
Gets the entity key.

Syntax: Here is the method signature:

public String getEntityKey()

setReason
Sets the reason for the role assignment.

Syntax: Here is the method signature:

public void setReason(String reason)

getReason
Gets the reason for the role assignment.

Syntax: Here is the method signature:

public String getReason()

setStatusValue
Sets the status value for the request.

Syntax: Here is the method signature:

public void setStatusValue(int value)

setStatusDescription
Sets the status description for the request.

Syntax: Here is the method signature:

public void setStatusDescription(String description)
Resource Web Service 659

getStatusValue
Gets the status value for the request.

Syntax: Here is the method signature:

public int getStatusValue()

getStatusDescription
Gets the localized description for the request.

Syntax: Here is the method signature:

public String getStatusDescription()

setCorrelationId
Sets the correlation ID.

Syntax: Here is the method signature:

public void setCorrelationId(String correlationId)

getCorrelationId
Gets the correlation ID.

Syntax: Here is the method signature:

public String getCorrelationId()

setRequester
Sets the requester DN.

Syntax: Here is the method signature:

public void setRequester(String requester)

getRequester
Gets the requester DN.

Syntax: Here is the method signature:

public String getRequester()

setRequestDate
Sets the request date.

Syntax: Here is the method signature:

public void setRequestDate(Date requestDate)
660 NetIQ Identity Manager User Application: Administration Guide

getRequestDate
Gets the request date.

Syntax: Here is the method signature:

public Date getRequestDate()

setSource
Sets the source resource DN.

Syntax: Here is the method signature:

public void setSource(String source)

getSource
Gets the source resource DN.

Syntax: Here is the method signature:

public String getSource()

setTarget
Sets the DN for the target identity.

Syntax: Here is the method signature:

public void setTarget(String target)

getTarget
Gets the DN for the target identity.

Syntax: Here is the method signature:

public String getTarget()

setRequestParams
Sets the dynamic request parameters.

Syntax: Here is the method signature:

public void setRequestParams(ResourceRequestParam[] params)

getRequestParams
Gets the dynamic request parameters.

Syntax: Here is the method signature:

public ResourceRequestParam[] getRequestParams()
Resource Web Service 661

23.3 Resource Web Service Examples
This section provides examples of using the Resource Web Service.

23.3.1 Code Map Synchronization Code Samples
This section provides code samples for using the new SOAP endpoints added for code map
synchronization in version 4.0.2.

public IRemoteResource stub;
stub=getResourcesStub(url,adminname,password);

//refreshCodeMap
EntitlementRefreshInfo refreshResult =
stub.refreshCodeMap("cn=Devices,cn=DevicesLoopback,cn=driverset1,o=system");
System.out.println(refreshResult .getDetailedStatus());
System.out.println(refreshResult .getEntitlementDN());
System.out.println(refreshResult .getGuid());
System.out.println(refreshResult .getStatus());

//getRefreshStatus
CodeMapRefreshStatus[] refreshStatus
=stub.getRefreshStatus("cn=Devices,cn=DevicesLoopback,cn=driverset1,o=system");
for (CodeMapRefreshStatus item : refreshStatus) {
 System.out.println("Connection Name is: " + item.getConnectionName());
 System.out.println("Entitlement DN is: " + item.getEntitlementDN());
 System.out.println("Entitlement GUID is: " + item.getGuid());
 System.out.println("Last Refresh of this Entitlement is: " +
item.getLastRefresh());
 System.out.println("Status is: " + item.getStatus());
 }

//checkCodeMapValueStatus
String connectionName="SAP123";
CodeMapValueStatus checkStatus =
String codeMapValue=null;

stub.checkCodeMapValueStatus("cn=Devices,cn=DevicesLoopback,cn=driverset1,o=system
",connectionName, codeMapValue);

 System.out.println("Connection Name is: " +
checkStatus.getRefreshStatus().getConnectionName());
 System.out.println("Entitlement DN is: " +
checkStatus.getRefreshStatus().getEntitlementDN());
 System.out.println("Entitlement GUID is: " +
checkStatus.getRefreshStatus().getGuid());
 System.out.println("Last Refresh of this Entitlement is: " +
checkStatus.getRefreshStatus().getLastRefresh());
 System.out.println("Status is: " +
checkStatus.getRefreshStatus().getStatus());

 System.out.println(checkStatus.getUpToDate());
 System.out.println(checkStatus.getValue());

private static IRemoteResource getResourcesStub(String url,
 String username, String password) throws ServiceException {
662 NetIQ Identity Manager User Application: Administration Guide

 Stub stub = null;

 ResourceService service = new ResourceServiceImpl();
 stub = (Stub) service.getIRemoteResourcePort();
 stub._setProperty(Stub.USERNAME_PROPERTY, username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, password);

 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,url +"/resource/
service");
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);

 return (IRemoteResource) stub;
 }
Resource Web Service 663

664 NetIQ Identity Manager User Application: Administration Guide

24 24Forgot Password Web Service

This section describes the Forgot Password Web Service, which allows SOAP clients to invoke a
subset of the actions available through the Password Management system. Topics include:

Section 24.1, “About the Forgot Password Web Service,” on page 665
Section 24.2, “Password Management Web Service Interface,” on page 666
Section 24.3, “ForgotPasswordWSBean,” on page 669

24.1 About the Forgot Password Web Service
The Forgot Password Web Service exposes a small set of actions from the Password Management
system. The service allows remote clients to retrieve information about the forgot password
configuration. In addition, it allows clients to retrieve information about the forgot password settings
for a particular user, and perform challenge response and change password operations for a user.

The Forgot Password Web Service does not support the full range of password self-service
operations. The Forgot Password Web Service is only for forgot password operations. If you want to
create a custom user interface for performing password self service functions, such as answering or
updating the user’s hint or answer, or updating the challenge response questions, or checking on the
password policy status, you need to use the REST endpoints that have been added to RBPM.

Calls to the Forgot Password Web Service require HTTP authentication.

24.1.1 Accessing the Service
You can access the Forgot Password Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/pwdmgt/service

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/pwdmgmt/service

NOTE: The URL for the Forgot Password Web Service can be changed on the Forgot Password Settings
page on the Administration tab in the User Application. To change the URL, enter the new URL in
the Forgot Password Web Service URL field at the bottom of the page.

24.1.2 Accessing the WSDL
You can access the WSDL for the Forgot Password Web Service using a URL similar to the following:

http://server:port/warcontext/pwdmgt/service?wsdl
Forgot Password Web Service 665

For example, if your server is named “myserver”, your User Application is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/pwdmgt/service?wsdl

24.1.3 Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the Novell WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.soa.af.pwdmgt.soap.impl:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/jaxrpc-
api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar"; com.novell.soa.ws.impl.tools.wsdl2java.Main
-verbose -ds gensrc -d C:\ -noskel -notie -genclient -keep -package
com.novell.soa.af.pwdmgt.soap.impl -javadoc pwdmgt.wsdl

You can change the wsdl2java parameters to suit your requirements.

24.2 Password Management Web Service Interface
This section provides reference information for each forgot password operation available through the
Password Management interface.

24.2.1 processForgotConf
Gets the forgot password configuration parameters.

This method returns an object of type ForgotPasswordConfWSBean. This object contains the
following information about the configuration:

Table 24-1 ForgotPasswordConfWSBean Data

Syntax: Here is the method signature:

public ForgotPasswordConfWSBean processForgotConf()
 throws RemoteException;

Field Description

Configured Return Link Provides the forgot password return link.

Show Return Link Indicates whether to show the forgot password return
link.
666 NetIQ Identity Manager User Application: Administration Guide

24.2.2 processUser
Retrieves forgot password configuration information for a user.

This method returns an object of type ForgotPasswordWSBean. If no match is found for the the user
name specified, an error message is returned in the getUsers() method of ForgotPasswordWSBean. If
multiple matches are found, the getUsers() method is returned with a String array of users. If a single
match is found, the getUsers() method has a length of 1, and the following methods in
ForgotPasswordWSBean are set:

getConfiguredRtnLink()
getShowReturnLink()
getShowHint()
getHint()
getShowFullDN()
getUserDisplayDN()
getUserDN()
getUser()
getMessage()
getAction()
getChallengeQuestions()
getChaResInUser()
getMessage()

When a single user match is found, the user should be presented with the Challenge Response
screen. If getChaResInUse() returns false, then call processChaRes() and show the Forgot Success
screen directly without presenting the Challenge Response screen.

Syntax: Here is the method signature:

public ForgotPasswordWSBean processUser(final String userName)
 throws RemoteException;

The parameters are described below:

userName specifies the name of a user.

24.2.3 processChaRes
Processes one or more challenge response answers for a particular user.

If the challenge response operation is authenticated, the following events may occur:

If the password policy action is EmailHint, the operation will send an email with the hint to the
user, and set the message to indicate that the operation succeeded. Therefore, the caller of this
method should go to the Forgot Password Change Success screen, and display the message.
If the password policy action is ShowHint, the operation will set the message to the user’s hint.
Therefore, the caller of this method should go to the Forgot Password Change Success screen,
and display the message with the hint on the page.
Forgot Password Web Service 667

If the password policy action is EmailPassword, the operation will set send the password to the
user. Therefore, the caller of this method should go to the Forgot Password Change Success
screen, and display the message.
If the password policy action is ChangePassword, the operation will set the password rules and
the password hint. Therefore, the caller of this method should go to the Forgot Password Change
screen.

This method returns an object of type ForgotPasswordWSBean. After the processCharRes operation
is called, the following methods are populated with values:

getTimeout()
getRules()
getLocked()
getError()
getMessage()

If the getAction() method returned by the processUser() operation is ChangePassword, then present
the user with the Password Change screen. Otherwise, go to the Forgot Success screen and present
the user with the message returned from the getMessage() method.

Syntax: Here is the method signature:

public ForgotPasswordWSBean processChaRes(final String userDN, final String[]
chaAnswers) throws RemoteException;

The parameters are described below:

userDN specifies the DN for a particular user.
chaAnswers provides an array of challenge response answers. The answers are processed in the
order in which they are presented.

24.2.4 processChgPwd
Resets the password for a particular user.

After the processChgPwd operation is called, the following events may occur:

If the change password operation succeeds, the caller of this method should go to the Forgot
Password Success screen, and display the success message.
If the change password operation fails, the error field on the ForgotPasswordWSBean object is
set to true, and the message field is populated with the corresponding error message. Therefore,
the caller of this method should stay on the password screen and display the error message.

This method returns an object of type ForgotPasswordWSBean. After the processChgPwd operation
is called, the following methods are populated with values:

getTimeout()
getError()

If the getError() method returns false, you need to present the user with the Password Change
Success screen.

Syntax: Here is the method signature:
668 NetIQ Identity Manager User Application: Administration Guide

public ForgotPasswordWSBean processChgPwd(final String userDN, final String
newPassword, final String confirmPassword)
 throws RemoteException;

The parameters are described below:

userDN specifies the DN for a particular user.
newPassword supplies a password for the user.

confirmPassword repeats the password for confirmation.

24.3 ForgotPasswordWSBean
Here is the complete structure of the ForgotPasswordWSBean object:

Table 24-2 ForgotPasswordWSBean Structure

Field Description

Users Provides a list of the users that match the search
criteria specified. When the wildcard feature is
enabled, multiple matches may be found.

Challenge Questions Supplies the challenge questions associated with the
user.

Configured Return Link Shows the Return link to be used after the user
performs a forgot password operation.

Show Return Link Indicates whether to show the Return link after the
user performs a forgot password operation.

Show Hint Indicates whether to show the user's password hint on
the Forgot Password Change screen.

Show Full DN Indicates whether to show the user's full DN or just the
CN name after the user performs a forgot password
operation.

User DN Shows the user's DN.

User Display DN Shows the user's display DN. For example,
cn=ablake,ou=users,o=novell or
workforceID=ablake,ou=users,o=novell.

User Provides the user's display name.

Error Returns true if an error occurs.

Message Returns a message in the event that there is an
application-specific error.

Action Specifies the policy action, which is one of the
following values: ShowHint, EmailHint,
EmailPassword, ChangePassword.

Hint Specifies the user's password hint.

Rules Lists the password policy rules.
Forgot Password Web Service 669

Is Challenge Response in User Indicates whether the challenge response feature is
enabled for this user. If challenge response in use is
false, then the user can only perform the email hint
and show hint functions.

Locked Indicates whether the user account is locked.

Timeout Indicates whether a session timeout occurred.

Login Attribute Specifies the user's Login Attribute.

Field Description
670 NetIQ Identity Manager User Application: Administration Guide

VII VIIREST Services

These sections tell you how to use the REST services. Topics include:

Chapter 25, “Introduction to Resource Information Services,” on page 673
Chapter 26, “Identities Service,” on page 693
Chapter 27, “Password Management and SSO Services,” on page 699
Chapter 28, “Resources Service,” on page 709
Chapter 29, “Roles Service,” on page 715
Chapter 30, “Work Items Service,” on page 725
Chapter 31, “Workflow Process and Definition Service,” on page 737
REST Services 671

672 NetIQ Identity Manager User Application: Administration Guide

25 25Introduction to Resource Information
Services

This section describes the Work Items Service. Topics include:

Section 25.1, “About RIS,” on page 673
Section 25.2, “Security,” on page 677
Section 25.3, “WADL Document,” on page 688

25.1 About RIS
This section describes the Resource Information Services (RIS) facility, which is a standalone
component that interacts with the Identity Manager User Application. RIS is built on a Resource
Oriented Architecture (ROA). The RIS implementation resides in a WAR file called RIS.WAR, where
RIS refers to Resource Information Services. The REST resources exposed through RIS make SOAP
calls to gather information from various RBPM systems.

The methodology used to define these ROA services is based on the steps described by Leonard
Richardson & Sam Ruby in the RESTful Web Services by O'Reilly.

25.1.1 How it Works
The code for RIS is contained in a WAR outside of the User Application. This is a standalone WAR
(RIS.war) that uses SOAP calls to extract the necessary work item data.

Language support is determined by the “Accept-Language” header parameter.

The media type is determined by the “Accept” header parameter and must be equal to “application/
json”.

The implementation does not support the use of extensions. It does not support the ability to enter a
language or media extension at the end of a URI.

This implementation is based on the JSR-311 specification implemented by Sun's Jersey product.

You may see this error on the console:

09:52:52,684 ERROR [STDERR] Sep 30, 2008 9:52:52 AM
com.sun.jersey.api.core.ClasspathResourceConfig init
INFO: Root resource classes found:
 class com.novell.ris.spi.impl.Root

This is a Jersey message that is simply informational. The application should function normally. You
can ignore the message.

NOTE: During the deployment of the RIS.war on WebSphere, you might see the following error
message in the server log:
Introduction to Resource Information Services 673

WebApp W Error while adding servlet mapping --> /* Please set
fileServingEnabled=false in the ibm-web-ext.xmi file which is under WEB-INF
folder.

This message does not affect the functions of RIS.

Caching the SOAP stubs The web.xml file in the RIS.war includes an element that allows you to
control the size of the stub connection pool.

<init-param>
 <param-name>STUB_CONNECTION_POOL</param-name>
 <param-value>100</param-value>
</init-param>

The STUB_CONNECTION_POOL element defines the size of a pool for caching the SOAP stubs
created by each user. The cache uses a Least Recently Used (LRU) eviction policy and defaults to a
size of 10 if the element is not defined in web.xml.

Removing the administrator credential restrictions By default, the requirement for invoking the
REST and SOAP services is that the HTTP session logged in user must have administrator
credentials. The Provisioning and Directory Web Services require Provisioning Administrator
credentials. The Roles Web Service requires Role Administrator credentials. The restrictions can be
removed to allow a session with a logged in user who does not have administrator credentials to
invoke the methods for the services by changing the configuration settings for the service. In order to
do this, you must extract the configuration files from the User Application war, make the appropriate
changes, and import the files back into the User Application WAR. The details for removing the
restrictions is included with the documentation for each of the underlying SOAP services. For
example, to remove the credential restriction for the Role Service, see Section 22.1.4, “Removing
Administrator Credential Restrictions,” on page 542.

Media Type Supported
The only media type supported is JSON (application/json). The service uses a JSON Array format for
list of items and a single JSON object for detail information. The media type is determined by the
“Accept” header parameter. The implementation uses the Jettison JSON APIs to create the JSON
structures.

Digital Signatures Not Supported
The REST interfaces do not support digital signatures. If you attempt to process a digital signature
workflow through REST, an internal server error message will appear.

API Version Optional in URIs
The REST URIs work with or without the API version. For example, to access the roles service, you
could specify either of the following URIs:

/RIS/v1/roles
/RIS/roles

25.1.2 Configuring the RIS WAR
This section provides manual instructions for setting up the RIS WAR on JBoss, WebSphere, and
WebLogic. In this release, the RIS WAR is configured automatically, so these steps are not required in
most environments.
674 NetIQ Identity Manager User Application: Administration Guide

JBoss Configuration
To configure the RIS WAR on JBoss:

1 Modify the host, port, and WAR context information for the RBPM deployment on JBoss in the
web.xml of the RIS WAR.
1a Copy the RIS.war file to a test folder.

For example: /home/lab/RIS
1b Extract the web.xml from the RIS war, maintaining the folder structure.

This will create the following structure: /home/lab/RIS/WEB-INF/web.xml
1b1 Open the web.xml in a text editor.
1b2 Locate the following entry:

<init-param>
 <param-name>USER_APP_URL</param-name>
 <param-value>http://localhost:8080/IDMProv</param-value>
</init-param>

1b3 Modify the param-value as necessary. You need to use either the DNS name or the IP
address of the server on which the RBPM war is deployed.

IMPORTANT: Do not use localhost if you plan to use the REST identity services to
access user photos. The photo URL is dependent on this entry. The photo URL must
point to the User Application to retrieve the photo. The REST identity service does not
provide the binaries for the photo, but does provide a link, which is based on this
entry.

1b4 Save the file.
1c Add the web.xml file back to the RIS war using the jar command from the SUN JDK.

For example: /home/lab/jdk1.6.0_11/bin/jar -uf RIS.war WEB-INF/web.xml
2 Copy the RIS war to the deployment directory of the JBoss server.
3 Extract the commons-codec.jar from the RBPM war into the %context%/lib directory of the JBoss

server where the RIS WAR will be deployed. Make sure to not maintain folder structure when
extracting the file.
For example: /home/lab/IDM370/idm/jboss/server/IDMProv/lib

4 Start JBoss.

WebSphere Configuration
To configure the RIS WAR on WebSphere:

1 Modify the host, port, and war context information for the RBPM deployment on WebSphere in
the web.xml of the RIS WAR.
1a Copy the RIS war to a test folder.

For example: /home/lab/RIS
1b Extract the web.xml from the RIS war, maintaining the folder structure.

This will create the following structure: /home/lab/RIS/WEB-INF/web.xml
1b1 Open the web.xml in a text editor.
1b2 Locate the following entry:
Introduction to Resource Information Services 675

<init-param>
 <param-name>USER_APP_URL</param-name>
 <param-value>http://localhost:8080/IDMProv</param-value>
</init-param>

1b3 Modify the param-value as necessary. You need to use either the DNS name or the IP
address of the server on which the RBPM war is deployed.

IMPORTANT: Do not use localhost if you plan to use the REST identity services to
access user photos. The photo URL is dependent on this entry. The photo URL must
point to the User Application to retrieve the photo. The REST identity service does not
provide the binaries for the photo, but does provide a link, which is based on this
entry.

1b4 Save the file.
1c Add the web.xml file back to the RIS war using the jar command from the IBM JDK.

For example: /home/lab/WAS61/IBM/WebSphere/AppServer/java/bin/jar -uf
RIS.war WEB-INF/web.xml

2 Extract the commons-httpclient.jar and log4j.jar from the RBPM war that was created for
WebSphere into your test folder/WEB-INF/lib directory.
For example: /home/lab/RIS/WEB-INF/lib

3 Add the two jars to the RIS war using the jar command from the IBM JDK.
For example:

/home/lab/WAS61/IBM/WebSphere/AppServer/java/bin/jar -uf RIS.war WEB-INF/lib/
commons-httpclient.jar
/home/lab/WAS61/IBM/WebSphere/AppServer/java/bin/jar -uf RIS.war WEB-INF/lib/
log4j.jar

4 Deploy the RIS WAR to WebSphere.

NOTE: You may see a warning message in the WebSphere logs when deploying the RIS.war.
However, the deployment should complete successfully.

Error while adding servlet mapping --> /* Please set fileServingEnabled=false
in the ibm-web-ext.xmi file which is under WEB-INF folder.

WebLogic Configuration
To configure the RIS WAR on WebLogic:

1 Modify the host, port, and war context information for the RBPM deployment on WebLogic in
the web.xml of the RIS WAR.
1a Copy the RIS war to a test folder.

For example: /home/lab/RIS
1b Extract the web.xml from the RIS war, maintaining the folder structure.

This will create the following structure: /home/lab/RIS/WEB-INF/web.xml
1b1 Open the web.xml in a text editor.
1b2 Locate the following entry:

<init-param>
 <param-name>USER_APP_URL</param-name>
 <param-value>http://localhost:8080/IDMProv</param-value>
</init-param>
676 NetIQ Identity Manager User Application: Administration Guide

1b3 Modify the param-value as necessary. You need to use either the DNS name or the IP
address of the server on which the RBPM war is deployed.

IMPORTANT: Do not use localhost if you plan to use the REST identity services to
access user photos. The photo URL is dependent on this entry. The photo URL must
point to the User Application to retrieve the photo. The REST identity service does not
provide the binaries for the photo, but does provide a link, which is based on this
entry.

1b4 Save the file.
1c Add the web.xml file back to the RIS war using the jar command from the JRocket JDK.

For example: /home/lab/WL103/bea/jrockit_160_05/bin/jar -uf RIS.war WEB-INF/
web.xml

2 Add the jar to the RIS war using the jar command from the JRocket JDK.
For example:

home/lab/WL103/bea/jrockit_160_05/bin/jar -uf RIS.war WEB-INF/lib/commons-
httpclient.jar

3 Deploy the RIS WAR to WebLogic.

The RIS WAR is unable to connect to the User Application Driver running on WebLogic if the
enforce-valid-basic-auth-credentials flag is set to true. For this connection to succeed, you
must disable this flag.

To disable the enforce-valid-basic-auth-credentials flag, follow these instructions:

1 Open the config.xml file in the <WLHome>\user_projects\domains\idm\config\ folder.
2 Add the following line in the <security-configuration> section right before the closing of

this section:

<enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-
credentials>
</security-configuration>

3 Save the file and restart the server.

25.2 Security
This section describes the security model used for the REST services.

The security model attempts to satisfy these objectives:

Protects against CSRF attacks
Allows the client to pass in user credentials
Uses an HTTP Authorization or an HTTP Session Secret header for the REST requests
Introduction to Resource Information Services 677

25.2.1 Architecture
The security model supports two options for making requests. The first one (Option 1) consists of
passing in the user credentials in an HTTP header (default: RESTAuthorization). The second
approach (Option 2) consists of a two request approach. In the second option, an authorization
request is required first and all subsequent requests pass in the session secret token in an HTTP
header. The header defaults to RESTSessionSecret.

Both options require the passing of sensitive data on the wire. Therefore, Novell highly recommends
that you run this application in a TLS/SSL environment (HTTPS). Otherwise the user credentials
could be exposed to a man-in-the-middle attack.

Either approach will work. However, Novell recommends using Option 2 (the Session Secret Security
Model approach) rather than Option 1 (the Authorization Security Model approach). Option 2 offers
more protection against discovering the actual user credentials. The credentials are maintained by
the RIS server and are discovered using a unique access token through the RESTSessionSecret HTTP
header.

Option 1: Authorization Security Model
This model is the same as the Basic authorization model. This model is recommended for developers
who do not use JavaScript for their client application.

Here is the flow of control used with this option:

1. Developers must include the Base64(username:password)) string in an HTTP header
(RESTAuthorization) before making the call to the REST service. The HTTP header name can be
configured at installation time. The default name is:

RESTAuthorization

2. The client application sends the request to the RIS server.
3. The RIS server extracts the credentials from the header and passes those credentials onto the

SOAP service. The actual authentication check is performed at the User Application server.
4. The User Application SOAP call is either granted or denied and the result is returned to the RIS

server.
5. The RIS server returns the result to the client application.

The following picture illustrates the flow:
678 NetIQ Identity Manager User Application: Administration Guide

Figure 25-1 Option 1 Authorization Flow

Example

Suppose you issue the following REST call:

/v1/wf/definitions

Here is the request:

GET /RIS/v1/wf/definitions HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.7) Gecko/2009022800
SUSE/3.0.7-1.4 Firefox/3.0.7
Accept: application/json
Accept-Language: en,it;q=0.8,fr;q=0.6,de;q=0.4,en-us;q=0.2
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
RESTAuthorization: YWRtaW4tcHJvdjp0ZXN0

Here is the response:
Introduction to Resource Information Services 679

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
Content-Type: application/json
Transfer-Encoding: chunked
Date: Tue, 31 Mar 2009 13:48:05 GMT

7d2
[
 {
 "Links": [
 {
 "Link": "/RIS/v1/wf/
processes?filter=Definition=cn=Change+Title+Single+Approval,cn=RequestDefs,cn=AppC
onfig,cn=PicassoDriver,cn=TestDrivers,o=novell",
 "Type": "wf/processes",
 "Value": "Workflow Processes"
 },
 {
 "Link": "/RIS/v1/wf/
workitems?filter=Definition=cn=Change+Title+Single+Approval,cn=RequestDefs,cn=AppC
onfig,cn=PicassoDriver,cn=TestDrivers,o=novell",
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 }
],
 "DataItems": [],
 "DN": "cn=Change Title Single
Approval,cn=RequestDefs,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o=novell",
 "GUID": "5a4f7af2142189430d935a4f7af21421",
 "Link": "/RIS/v1/wf/definitions/5a4f7af2142189430d935a4f7af21421",
 "Value": "Change Title Single Approval",
 "Category": "accounts",
 "DigitalSignatureType": "not-required",
 "Description": "Change Title",
 "Operation": "0",
 "Recipient": ""
 },
 {
 "Links": [
 {
 "Link": "/RIS/v1/wf/
processes?filter=Definition=cn=Change+Title,cn=RequestDefs,cn=AppConfig,cn=Picasso
Driver,cn=TestDrivers,o=novell",
 "Type": "wf/processes",
 "Value": "Workflow Processes"
 },
 {
 "Link": "/RIS/v1/wf/
workitems?filter=Definition=cn=Change+Title,cn=RequestDefs,cn=AppConfig,cn=Picasso
Driver,cn=TestDrivers,o=novell",
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 }
],
 "DataItems": [],
 "DN": "cn=Change
Title,cn=RequestDefs,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o=novell",
 "GUID": "71e22c1cf4b4e74fbdb871e22c1cf4b4",
 "Link": "/RIS/v1/wf/definitions/71e22c1cf4b4e74fbdb871e22c1cf4b4",
 "Value": "Change Title",
 "Category": "accounts",
 "DigitalSignatureType": "not-required",
 "Description": "Change Title",
 "Operation": "0",
 "Recipient": ""
 }
]

680 NetIQ Identity Manager User Application: Administration Guide

Option 2: Session Secret Security Model
The session secret security model allows a developer to ask for an authorization unique id. This
session secret ID is then used on all subsequent calls. This is to allow client developers to be more
secured than passing user credentials for every call.

Here is the flow of control used with this option:

1. Developers must first make a call to the /v1/AuthorizationSession REST service to obtain a
session token. This is a POST call with the credentials (Base64(username:password)) in the
content of the message in a JSON object (see section 4).

2. The RIS server will then create a session object and stores the credentials in memory for the
duration of the session. The session secret token is returned to the client application via a JSON
object.

3. Developers must include the Session Secret token string in an HTTP header (RESTSessionSecret)
before making any subsequent REST service calls. The HTTP header name can be configured at
installation time. The default name is:

RESTSessionSecret

4. The client application sends the request to the RIS server.
5. The RIS server extracts the session secret token from the HTTP header and retrieves the

credentials from memory based on the token for that session. The credentials are passed onto he
SOAP service. The actual authentication check is performed at the User Application server.

6. The User Application SOAP call is either granted or denied and the result is returned to the RIS
server.

7. The RIS server returns the result to the client application.

The following picture illustrates the flow:
Introduction to Resource Information Services 681

Figure 25-2 Option 2 Authorization Flow

Example

First, you issue the following call to the Authorization REST Service:

/v1/AuthorizationSession

Here is the request:
682 NetIQ Identity Manager User Application: Administration Guide

POST /RIS/v1/AuthorizationSession HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.7) Gecko/2009022800
SUSE/3.0.7-1.4 Firefox/3.0.7
Accept: application/json
Accept-Language: en,it;q=0.8,fr;q=0.6,de;q=0.4,en-us;q=0.2
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: application/json; charset=UTF-8
Content-Length: 47
Pragma: no-cache
Cache-Control: no-cache

{
 "Authorization" : "YWRtaW4tcHJvdjp0ZXN0"
}

Here is the response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
Set-Cookie: JSESSIONID=17B5528DEEC66610D0FBB456992E10ED; Path=/RIS
Content-Type: application/json
Transfer-Encoding: chunked
Date: Tue, 31 Mar 2009 13:54:26 GMT

35
{"SessionSecret": "17B5528DEEC66610D0FBB456992E10ED"}

Next, you issue the REST call:

/v1/wf/definitions

Here is the request:

GET /RIS/v1/wf/definitions HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.7) Gecko/2009022800
SUSE/3.0.7-1.4 Firefox/3.0.7
Accept: application/json
Accept-Language: en,it;q=0.8,fr;q=0.6,de;q=0.4,en-us;q=0.2
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
RESTSessionSecret: 17B5528DEEC66610D0FBB456992E10ED

Here is the response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
Content-Type: application/json
Transfer-Encoding: chunked
Date: Tue, 31 Mar 2009 13:48:05 GMT

7d2
[
 {
 "Links": [
 {
 "Link": "/RIS/v1/wf/
processes?filter=Definition=cn=Change+Title+Single+Approval,cn=RequestDefs,cn=AppC
onfig,cn=PicassoDriver,cn=TestDrivers,o=novell",
 "Type": "wf/processes",
 "Value": "Workflow Processes"
Introduction to Resource Information Services 683

 },
 {
 "Link": "/RIS/v1/wf/
workitems?filter=Definition=cn=Change+Title+Single+Approval,cn=RequestDefs,cn=AppC
onfig,cn=PicassoDriver,cn=TestDrivers,o=novell",
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 }
],
 "DataItems": [],
 "DN": "cn=Change Title Single
Approval,cn=RequestDefs,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o=novell",
 "GUID": "5a4f7af2142189430d935a4f7af21421",
 "Link": "/RIS/v1/wf/definitions/5a4f7af2142189430d935a4f7af21421",
 "Value": "Change Title Single Approval",
 "Category": "accounts",
 "DigitalSignatureType": "not-required",
 "Description": "Change Title",
 "Operation": "0",
 "Recipient": ""
 },
 {
 "Links": [
 {
 "Link": "/RIS/v1/wf/
processes?filter=Definition=cn=Change+Title,cn=RequestDefs,cn=AppConfig,cn=Picasso
Driver,cn=TestDrivers,o=novell",
 "Type": "wf/processes",
 "Value": "Workflow Processes"
 },
 {
 "Link": "/RIS/v1/wf/
workitems?filter=Definition=cn=Change+Title,cn=RequestDefs,cn=AppConfig,cn=Picasso
Driver,cn=TestDrivers,o=novell",
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 }
],
 "DataItems": [],
 "DN": "cn=Change
Title,cn=RequestDefs,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o=novell",
 "GUID": "71e22c1cf4b4e74fbdb871e22c1cf4b4",
 "Link": "/RIS/v1/wf/definitions/71e22c1cf4b4e74fbdb871e22c1cf4b4",
 "Value": "Change Title",
 "Category": "accounts",
 "DigitalSignatureType": "not-required",
 "Description": "Change Title",
 "Operation": "0",
 "Recipient": ""
 }
]

25.2.2 Authorization REST Service
The Authorization REST Service lets you obtain a session token. When you make a call to the service,
the RIS server creates a session object and stores the credentials in memory for the duration of the
session. The session secret token is returned to the client application via a JSON object. The only
media type supported is application/json, which uses a JSON Array format for the list of items and a
single JSON object for detailed information.

The following table shows the complete URI syntax for all resource end points associated with the
Authorization REST Service, along with a description for each URI and a list of supported HTTP
methods:
684 NetIQ Identity Manager User Application: Administration Guide

Table 25-1 URI Syntax for the Authorization REST Service

The following matrix parameters are available for debugging and displaying the schema:

URI Description

/v1/AuthorizationSession Creates a new session authorization session and
obtains a session token. The following HTTP methods
are supported:

GET – Not supported

POST – Creates a new authorization session object
and returns the session secret token in the response.

Request JSON Object:

{

 "Authorization" : Base64(username:password)

}

Response JSON Object:

{

 "SessionSecret": "session secret token”

}

PUT – Not supported

DELETE – Not supported

/v1/AuthorizationSession/{session secret token} Deletes and invalidates the authorization session
object. The following HTTP methods are supported:

GET – Not supported

PUT – Not supported

POST – Not supported

DELETE – Deletes and invalidates the authorization
session object.

POST with Matrix parameter DELETE – Same as
DELETE because of limitations in browsers to set the
DELETE method
Introduction to Resource Information Services 685

Table 25-2 Matrix Parameters for Debugging and Displaying the Schema

Example

Here is an example of a call to the Authorization service that includes the debug and schema
parameters:

/v1/AuthorizationSession;debug;schema

Here is the request:

POST /RIS/v1/AuthorizationSession;schema;debug HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.7) Gecko/2009022800
SUSE/3.0.7-1.4 Firefox/3.0.7
Accept: application/json
Accept-Language: en,it;q=0.8,fr;q=0.6,de;q=0.4,en-us;q=0.2
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: application/json; charset=UTF-8
Content-Length: 38
Pragma: no-cache
Cache-Control: no-cache

{
 "Authorization" : "YWRtaW4tcHJvdjp0ZXN0"
}

Here is the response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
Content-Type: application/json
Transfer-Encoding: chunked
Date: Tue, 31 Mar 2009 13:18:45 GMT

171
{
 "Request": {"SessionInfo": {
 "description": "schema for: /v1/AuthorizationSession",
 "type": "object",
 "properties": {"Authorization": {"type": "string"}}
 }},
 "Response": {"SessionSecret": {
 "description": "schema for: /v1/AuthorizationSession",
 "type": "object",
 "properties": {"SessionSecret": {"type": "string"}}
 }}
}

URI Description

/v1/AuthorizationSession;debug This debug matrix parameter displays the JSON
structure of the content type in human readable
format, as opposed to compressed format. This matrix
parameter can be put anywhere in the URI.

/v1/AuthorizationSession;schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the workitems.
686 NetIQ Identity Manager User Application: Administration Guide

25.2.3 Configuration Parameters
The RIS.war uses the following filter parameters, all of which are set in the WEB.XML file.

Table 25-3 Filter Parameters

In addition to these filter parameters, the configuration also supports the following session
parameter:

Table 25-4 Session Parameter

Here is a sample Web.XML that illustrates the use of the configuration parameters:

Parameter Description

AUTHORIZATION_HEADER The AUTHORIZATION_HEADER filter parameter
specifies the HTTP header name for option 1 -
Authorization Security model. If not supplied, then the
default will be:

RESTAuthorization

This HTTP header will hold the user credentials.

Example:

RESTAuthorization: Base64(username:password)

SESSION_SECRET_HEADER The SESSION_SECRET_HEADER filter parameter
specifies the HTTP header name to hold the session
secret for Option 2 – Session Secret Security Model. If
not supplied, then the default will be:

RESTSessionSecret

 This HTTP header will hold the session secret
returned from the RIS server when an access token is
requested via the REST service:

/RIS/v1/AuthenticationSession

Example:

RESTSessionSecret: <token>

USER_APP_URL The USER_APP_URL filter parameter will point to the
User Application associated with the RIS server. All
SOAP calls will use this URL for the SOAP end point.

STUB_CONNECTION_POOL The STUB_CONNECTION_POOL filter parameter
holds the number of connection that we want to
maintain from the RIS server to the User Application
server. This is to make the client perform better.

Parameter Description

Session Timeout This setting is used to control the length of the
sessions. It is specified in minutes.
Introduction to Resource Information Services 687

<filter>
 <filter-name>Authorization Filter</filter-name>
 <filter-class>com.novell.ris.common.impl.ServletFilter</filter-class>
 <init-param>
 <param-name>AUTHORIZATION_HEADER</param-name>
 <param-value>RESTAuthorization</param-value>
 </init-param>
 <init-param>
 <param-name>SESSION_SECRET_HEADER</param-name>
 <param-value>RESTSessionSecret</param-value>
 </init-param>
 <init-param>
 <param-name>USER_APP_URL</param-name>
 <param-value>http://localhost:8080/IDMProv</param-value>
 </init-param>
<!-- If not entered, Stub Connection size will default to 10 stub connections -->
 <init-param>
 <param-name>STUB_CONNECTION_POOL</param-name>
 <param-value>10</param-value>
 </init-param>
 </filter>
….
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>

25.3 WADL Document
To see the Web Application Description Language (WADL) document for the RIS facility, enter the
following URI on whatever server the RIS.war has been deployed to.

RIS/application.wadl

The WADL document shows the available resource paths for the RIS application, as shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
 <doc xmlns:jersey="http://jersey.dev.java.net/" jersey:generatedBy="Jersey:
1.0.3 04/15/2009 11:52 PM"/>
 <resources base="http://emily:8080/RIS/">
 <resource path="/v1">
 <method name="GET" id="getRootJSON">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <resource path="roles">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
style="template" name="roles"/>
 <method name="GET" id="getListJSON">
 <request>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="query" name="filter"/>
 </request>
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <resource path="{GUID}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="GET" id="getRoleJSON">
 <response>
 <representation mediaType="application/json"/>
 </response>
688 NetIQ Identity Manager User Application: Administration Guide

 </method>
 <resource path="/sods">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="GET" id="getSoDListJSON">
 <response>
<representation mediaType="application/json"/>
 </response>
 </method>
 </resource>
 <resource path="/sods/{SODID}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="SODID"/>
 <method name="GET" id="getSoDJSON">
 <response>
<representation mediaType="application/json"/>
 </response>
 </method>
 </resource>
 <resource path="/assignments">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="GET" id="getAssigmentListJSON">
 <response>
<representation mediaType="application/json"/>
 </response>
 </method>
 <method name="PUT" id="postAssignment">
 <request>
<representation mediaType="*/*"/>
 </request>
 </method>
 </resource>
 <resource path="/assignments/{ASSIGNMENTID}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="ASSIGNMENTID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="GET" id="getAssignmentJSON">
 <response>
<representation mediaType="application/json"/>
 </response>
 </method>
 <method name="DELETE" id="deleteAssignment"/>
 </resource>
 </resource>
 </resource>
 <resource path="identities">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
style="template" name="identities"/>
 <method name="GET" id="getListJSON">
 <request>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
default="" type="xs:string" style="query" name="filter"/>
 </request>
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <resource path="{GUID}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="GET" id="getIdentityJSON">
 <response>
 <representation mediaType="application/json"/>
 </response>
Introduction to Resource Information Services 689

 </method>
 <resource path="/{ATTRIBUTE}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="ATTRIBUTE"/>
 <method name="GET" id="getAttributeJSON">
 <response>
<representation mediaType="application/json"/>
 </response>
 </method>
 <method name="POST" id="updateAttribute">
 <request>
<representation mediaType="*/*"/>
 </request>
 </method>
 </resource>
 </resource>
 </resource>
 <resource path="AuthorizationSession">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
style="template" name="AuthorizationSession"/>
 <method name="POST" id="createAuthorizationSession">
 <request>
 <representation mediaType="application/json"/>
 </request>
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <resource path="{GUID}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="DELETE" id="terminateSession"/>
 <method name="POST" id="postTerminateSession"/>
 </resource>
 </resource>
 <resource path="wf/definitions">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
style="template" name="wf/definitions"/>
 <method name="GET" id="getListJSON">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <resource path="{GUID}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="POST" id="startProcess">
 <request>
 <representation mediaType="application/json"/>
 </request>
 </method>
 <method name="GET" id="getDefinitionJSON">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 </resource>
 </resource>
 <resource path="wf/processes">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
style="template" name="wf/processes"/>
 <method name="GET" id="getListJSON">
 <request>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
690 NetIQ Identity Manager User Application: Administration Guide

type="xs:string" style="query" name="filter"/>
 </request>
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <resource path="{GUID}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="GET" id="getProcessJSON">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <method name="DELETE" id="terminateProcess"/>
 <method name="POST" id="postItem"/>
 </resource>
 </resource>
 <resource path="wf/workitems">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
style="template" name="wf/workitems"/>
 <method name="GET" id="getListJSON">
 <request>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="query" name="filter"/>
 </request>
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <resource path="{GUID}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
type="xs:string" style="template" name="GUID"/>
 <method name="GET" id="getItemJSON">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <method name="PUT" id="putItemJSON">
 <request>
 <representation mediaType="application/json"/>
 </request>
 </method>
 <method name="POST" id="postItemJSON">
 <request>
 <representation mediaType="application/json"/>
 </request>
 </method>
 </resource>
 </resource>
 </resource>
 </resources>
</application>
Introduction to Resource Information Services 691

692 NetIQ Identity Manager User Application: Administration Guide

26 26Identities Service

This section describes the Identities Service. Topics include:

Section 26.1, “About the Identities Service,” on page 693
Section 26.2, “Accessing and Using the Identities Service,” on page 693

26.1 About the Identities Service
The Identities Service provides a REST endpoint for retrieving information about identities.

26.2 Accessing and Using the Identities Service
The Identities Service exposes resources to retrieve identity information. The service allows a user to
retrieve lists of identities or access specific identities by filter expression or identity ID.

26.2.1 Available Resources
There are several types of resources available for the service. These resources are described in the
sections that follow:

“Identities Service” on page 693
“Services for Filtering, Debugging, and Displaying Schema Information” on page 693

Identities Service
The service provides a resource URI for every object exposed. The Identities resource supports two
basic URI patterns:

Resource for returning a collection of identities
Resource for returning a specific identity instance

Services for Filtering, Debugging, and Displaying Schema Information
The service supports the following paramters to allow you to perform operations on the primary
identities data set:

A filter parameter to enable the filtering of result sets
A debug matrix parameter to enable you to return the JSON structures in a human readable
format
A schema matrix parameter to enable you to return the schema for the data set
Identities Service 693

26.2.2 Complete URI Syntax
The following table shows the complete URI syntax for all resource end points associated with the
Identities Service, along with a description for each URI and a list of supported HTTP methods:

Table 26-1 Resource URIs

URI Description

/v1 Entry point for the service.

/vi/identities Will return a list of identities with minimum information
and a list of identity URI links that include the identity
GUID. The VDX services will be used to provide
identity information. This information will be based on
how the DAL user entity is defined. All attributes
defined by the DAL entry will be made available to the
identity JSON payload.

The following HTTP methods are supported with this
URI:

GET - This will return a collection of identies (JSON
Array).

POST – Not supported

PUT – Not supported

DELETE – Not supported

identities?filter={identity filter} GET - The Identity ID parameter will be a GUID to
identify a specific identity within the LDAP realm. The
payload will include links to the identity's roles,
resources, and work items. The VDX services will be
used to provide identity information. This information
will be based on how the DAL user entity is defined. All
attributes defined by the DAL entry will be made
available to the identity JSON payload.

POST – Not supported

PUT – Not supported

DELETE – Not supported

If the “Accept” header is “image/gif”, then the identity
photo will be returned.
694 NetIQ Identity Manager User Application: Administration Guide

Table 26-2 Matrix Parameters for Debugging and Displaying the Schema

identities/{Identity Id} GET - The Identity ID parameter will be a GUID to
identify a specific identity within the LDAP realm. The
payload will include links to the identity's roles,
resources, and work items. The VDX services will be
used to provide identity information. This information
will be based on how the DAL user entity is defined. All
attributes defined by the DAL entry will be made
available to the identity JSON payload. In the case of
image type data, this might be just a link to this
information (still needs to be flushed out)

POST – Not supported

PUT – Not supported

DELETE – Not supported

If the “Accept” header is “image/gif”, then the identity
photo will be returned.

identities/{Identity Id}/{attribute ID} GET - A specific attribute for a specific identity ID.

POST – Not supported

PUT – Not supported

DELETE – Not supported

Note: application/json will be returned for all attributes
except for the attribute types of binary which an
“image/gif” content type will be returned.

identities/{GUID} GET - Retrieves a user by GUID.

identities/{Fully qualified DN} GET - Retrieves a user by fully qualified DN.

Example: /v1/identities/
cn=ablake,ou=users,ou=idmsample,o=novell

identities/{GUID}/{ATTRIBUTE} GET - Retrieves a specific attribute for a user by
GUID.

identities/{Fully qualified DN}/{ATTRIBUTE} GET - Retrieves a specific attribute for a user by fully
qualified DN.

URI Description

identities;debug This debug matrix parameter displays the identities
JSON structure in human readable format, as opposed
to compressed format. This matrix parameter can be
put anywhere in the URI.

identities;schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the workitems.

URI Description
Identities Service 695

26.2.3 JSON Representations Received by the Client
This section shows the JSON structures received by the client for each resource. In each case, the
HTTP method is GET.

Identities Endpoint
The identities end point (/identities) returns a collection (JSON Array) of identities available to the
Directory Abstraction Layer (DAL).

[
{
 "Managers": [{
 "DN": "cn=mmackenzie,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "1b9d83fa6f03b64e5bba1b9d83fa6f03",
 "Link": "/RIS/v1/identities/1b9d83fa6f03b64e5bba1b9d83fa6f03",
 "Value": "Margo MacKenzie"
 }],
 "DirectReports": [{}],
 "Groups": [{
 "DN": "cn=HR,ou=groups,ou=medical-idmsample,o=novell",
 "GUID": "7f7f381d9cc3ad4694967f7f381d9cc3",
 "Link": "",
 "Value": "Human Resources"
 }],
 "Links": [
 {
 "Type": "wf/workitems",
 "Value": "Workitems",
 "Link": "/RIS/v1/wf/
workitems?filter=Addressee%3Dcn%3Dablake%2Cou%3Dusers%2Cou%3Dmedical-
idmsample%2Co%3Dnovell"
 },
 {
 "Type": "roles",
 "Value": "Roles",
 "Link": "/RIS/v1/
roles?filter=User%3Dcn%3Dablake%2Cou%3Dusers%2Cou%3Dmedical-
idmsample%2Co%3Dnovell"
 }
],
 DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107",
 "FirstName": "Allison",
 "LastName": "Blake",
 "Title": "Payroll",
 "Department": "HR",
 "Location": "Northeast",
 "Email": "mthibault@novell.com",
 "TelephoneNumber": "(555) 555-1222",
 "City": "",
 "Country": "",
 "PostalCode": "",
 "State": "",
 "Street": ""
},
…. More identities
]

696 NetIQ Identity Manager User Application: Administration Guide

Identities/{Identity Id} Endpoint
The identities/{Identity Id} endpoint returns specific identity information from the Directory
Abstraction Layer This information will be based on how the DAL user entity is defined. All
attributes defined by the DAL entry are made available to the identity JSON payload.

{
 "Managers": [{
 "DN": "cn=mmackenzie,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "1b9d83fa6f03b64e5bba1b9d83fa6f03",
 "Link": "/RIS/v1/identities/1b9d83fa6f03b64e5bba1b9d83fa6f03",
 "Value": "Margo MacKenzie"
 }],
 "DirectReports": [{}],
 "Groups": [{
 "DN": "cn=HR,ou=groups,ou=medical-idmsample,o=novell",
 "GUID": "7f7f381d9cc3ad4694967f7f381d9cc3",
 "Link": "",
 "Value": "Human Resources"
 }],
 "Links": [
 {
 "Type": "wf/workitems",
 "Value": "Workitems",
 "Link": "/RIS/v1/wf/
workitems?filter=Addressee%3Dcn%3Dablake%2Cou%3Dusers%2Cou%3Dmedical-
idmsample%2Co%3Dnovell"
 },
 {
 "Type": "roles",
 "Value": "Roles",
 "Link": "/RIS/v1/
roles?filter=User%3Dcn%3Dablake%2Cou%3Dusers%2Cou%3Dmedical-
idmsample%2Co%3Dnovell"
 }
],
 DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107",
 "FirstName": "Allison",
 "LastName": "Blake",
 "Title": "Payroll",
 "Department": "HR",
 "Location": "Northeast",
 "Email": "mthibault@novell.com",
 "TelephoneNumber": "(555) 555-1222",
 "City": "",
 "Country": "",
 "PostalCode": "",
 "State": "",
 "Street": ""
}

identities/{Identity Id}/{attribute ID} Endpoint
The identities/{Identity Id} endpoint returns a specific identity attribute.

{
 DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107",
 "FirstName": "Allison"
}

Identities Service 697

26.2.4 Event Status Codes
This section shows the event status codes for the available resources:

Table 26-3 Event Status Codes

The Jersey implemented error conditions are used. When server errors are found, Jersey returns the
appropriate 400 and 500 level codes.

URI Status codes

identities HTTP GET - Status 200 - OK

identities?filter={identity filter} HTTP GET - Status 200 - OK

identities/{Identity Id} HTTP GET - Status 200 - OK

identities/{Identity Id}/{attribute ID} HTTP GET - Status 200 - OK
698 NetIQ Identity Manager User Application: Administration Guide

27 27Password Management and SSO
Services

This section describes the Password Management and SSO Services. Topics include:

Section 27.1, “About the Password Management and SSO Services,” on page 699
Section 27.2, “Accessing and Using the Password Management and SSO Services,” on page 699

27.1 About the Password Management and SSO Services
The Password Management and SSO Service provide REST endpoints for password management
and single-on.

27.2 Accessing and Using the Password Management and SSO
Services
The Password Management Service exposes resources to perform various password management
functions. The SSO Service retrieves all SSO information related to a particular user.

NOTE: To test the REST service from remote client application, e.g. JAVA Swing, the client needs to
pass a Base64 encoded user/password in the RESTAuthorization HTTP header. For example:

HttpURLConnection passwordURL = (HttpURLConnection) new
URL(password).openConnection();
passwordURL.setRequestMethod("GET");
passwordURL.setDoOutput(true);
passwordURL.setReadTimeout(20000);
passwordURL.setRequestProperty("RESTAuthorization", new
String(Base64.encodeBase64("username:password".getBytes("UTF-8")), "UTF-8"));
passwordURL.connect();

27.2.1 Available Resources
There are several types of resources available for the Password Management and SSO Services:

Password Challenge Response
Password Hint Change
Change Password
Password Policy Status
Password Sync Status
Locale Change
SSO
Password Management and SSO Services 699

27.2.2 Complete URI Syntax
The following table shows the complete URI syntax for all resource end points associated with the
Password Management and SSO Services, along with a description for each URI and a list of
supported HTTP methods:

Table 27-1 Resource URIs

URI Description

http(s)://host:port/war_context/roa/v1/pwdmgt/user/
{userDN}/chares

Password challenge response endpoint. Here is a
sample URL:

http://localhost:9000/IDMProv/roa/v1/
pwdmgt/user/
cn=restuser,ou=Password,ou=medical-
idmsample,o=novell/chares

Supported HTTP methods:

GET: Get all challenge response information related to
the user DN specified in the URI in JSON format. -
Authentication needed.

POST: Post user answered challenge response
answers to the server and save.

http(s)://host:port/war_context/roa/v1/pwdmgt/user/
{userDN}/hint

Password hint change endpoint. Here is a sample
URL:

http://localhost:9000/IDMProv/roa/v1/
pwdmgt/user/
cn=restuser,ou=Password,ou=medical-
idmsample,o=novell/hint

GET: Get all hint information related to the user DN
specified in the URI in JSON format - Authentication
needed.

POST: Post user entered hint to the server and save.

http(s)://host:port/war_context/roa/v1/pwdmgt/user/
{userDN}/password

Change password endpoint. Here is a sample URL:

http://localhost:9000/IDMProv/roa/v1/
pwdmgt/user/
cn=restuser,ou=Password,ou=medical-
idmsample,o=novell/password

Supported HTTP methods:

GET: Get all password information related to the user
DN specified in the URI in JSON format -
Authentication needed.

POST: Post user entered new password to the server
and save.
700 NetIQ Identity Manager User Application: Administration Guide

27.2.3 JSON Representations Received by the Client
This section provides details about the JSON representations returned by the client.

http(s)://host:port/war_context/roa/v1/pwdmgt/user/
{userDN}/policy

Password policy status endpoint. Here is a sample
URL:

http://localhost:9000/IDMProv/roa/v1/
pwdmgt/user/
cn=restuser,ou=Password,ou=medical-
idmsample,o=novell/policy

Supported HTTP methods:

GET: Get all password policy information related to the
user DN specified in the URI in JSON format -
Authentication needed.

http(s)://host:port/war_context/roa/v1/pwdmgt/user/
{userDN}/sync

Password synchronization status endpoint. Here is a
sample URL;

http://localhost:9000/IDMProv/roa/v1/
pwdmgt/user/
cn=restuser,ou=Password,ou=medical-
idmsample,o=novell/sync

Supported HTTP methods:

GET: Get all password synchronization status
information related to the user DN specified in the URI
in JSON format - Authentication needed.

http(s)://host:port/war_context/roa/v1/pwdmgt/user/
{userDN}/locale

Locale change endpoint. Here is a sample URL:

http://localhost:9000/IDMProv/roa/v1/
pwdmgt/user/
cn=restuser,ou=Password,ou=medical-
idmsample,o=novell/locale

Supported HTTP methods:

GET: Get all locale information related to the user DN
specified in the URI in JSON format - Authentication
needed.

POST: Post user entered new locale to the server and
save.

http(s)://host:port/war_context/roa/v1/sso/user/
{userDN}/sso

Single sign-on end point. Here is a sample URL:

http://localhost:9000/IDMProv/roa/v1/
sso/user/cn=admin,ou=medical-
idmsample,o=novell/sso

Supported HTTP methods:

GET: Get all SSO information related to the user DN
specified in the URI in JSON format - Authentication
needed.

POST: Post user entered SSO information to the
server and save.

URI Description
Password Management and SSO Services 701

Password Challenge Response
Here is some sample return data:

[{"error_message":""},{"have_stored_challenges":"true","use_mask":"false"},{"0":"W
hat is your mother's maiden
name?"},{"1":"color1"},{"use_grace_login":"true","grace_login_remaining":"3"}]

Each element is described below:

error_message: Any errors occurred during retrieving challenges data.
have_stored_challenges: Indicates if the user has a stored challenge question.
use_mask: Indicates if user's challenge answers should be marked when user enters challenge
answers, this is configured through User Application password administration screen.
{"0":"What is your mother's maiden name?"},{"1":"color1"}: Challenge questions starting from
index 0. First group is administrator defined questions, second group is user defined questions.
use_grace_login Indicates whether the user is in grace login.
grace_login_remaining: Number of grace logins remaining.

Here is some sample POST data:

Table 27-2 Sample POST data

NOTE: _question0 _question1, _answer0, _answer1 are the challenge questions and answers
sequence. _from_seq0 and _from_seq1 are corresponding to challenge questions and answers pair 0
and 1, this is because when form validation is kicked in, if validation failed, the error message sent
back will refer to form fields starting from 1, instead of 0.

Here is some sample return data from the POST:

[{"success_message":"Challenge responses were saved successfully"}]

Each element is described below:

success_message: Success message indicating that the save operation succeeded.
error_message: Error message indicating that the save operation failed.

Password Hint Change
Here is some sample return data:

Field Name Field Value

_answer0maiden

_answer1redred

_from_seq0 1

_from_seq1 2

_question0 What is your mother’s maiden name?

_question1 color1
702 NetIQ Identity Manager User Application: Administration Guide

[{"hint":"new hint message","hint_in_use":"Hint is not in
use","hint_invalid":"Hint is invalid","message":"Any other error
message"},{"use_grace_login":"true","grace_login_remaining":"3"}]

Each element is described below:

hint: Password hint.
hint_in_use: If this field exists in the returned JSON message, then it indicates the password hint
is not in use with this user.
hint_invalid:If this field exists in the returned JSON message, then it indicates the password hint
is invalid.
message: If this field exists in the returned JSON message, then it indicates some error occurred.
use_grace_login: Indicates whether the user is in grace login.
grace_login_remaining: Number of grace logins remaining.

Here is some sample POST data:

Table 27-3 Sample POST Data

Here is some sample return data from the POST:

[{"success_message":"Success"}]

Each element is described above:

success_message: Indicates that the hint save operation was successful.
error_message: Indicates that the hint save operation failed.

Change Password
Here is some sample return data:

[{"hintInUse":"true","hint":"rest user
name","showSyncStatus":"false","rules":"<tr><td class=\"nv-fontSmall \">Your
password must have the following properties:<\/td><\/tr><tr><td class=\"nv-
fontSmall nv-fontBold \"><\/td><\/tr><tr><td><li class=\"nv-
fontSmall\">Minimum number of characters in password: 4<\/li><li class=\"nv-
fontSmall\">Maximum number of characters in password: 12<\/li><\/ul><\/td><\/
tr><tr><td class=\"nv-fontSmall\">You may use numbers in your password.<\/td><\/
tr><tr><td class=\"nv-fontSmall nv-fontBold\"><\/td><\/tr><tr><td><\/ul><\/
td><\/tr><tr><td class=\"nv-fontSmall\">The password is case sensitive.<\/td><\/
tr><tr><td class=\"nv-fontSmall nv-fontBold\"><\/td><\/tr><tr><td><\/ul><\/
td><\/tr><tr><td class=\"nv-fontSmall\">You may use special characters in your
password.<\/td><\/tr><tr><td class=\"nv-fontSmall nv-fontBold\"><\/td><\/
tr><tr><td><\/ul><\/td><\/tr>"},{"error_message","Error has
occurred"},{"use_grace_login":"true","grace_login_remaining":"5"}]

Each element is described below:

hint_in_use: Indicates whether password hint is in use with this user.
hint: User's password hint.
ShowSyncStatus: If to show password sync status screen after user changes password.
rules: User's password rules.

Field Name Field Value

hint REST user name
Password Management and SSO Services 703

error_message: Error message if error has occurred.
use_grace_login: Indicates whether the user is in grace login.
grace_login_remaining: Number of grace logins remaining.

Here is some sample POST data:

Table 27-4 Sample POST Data

Here is some sample return data from the POST:

[{"pwdChgRtnPage":"","accessMgr":"false","pwd_chg_rtn_page":"Password Change
Return Page","success_message":"Your password has been changed successfully."}]

Each element is described above:

pwdChgRtnPage: Password change return page link - this is used when access manager is used
when accessing REST service, so user knows where he can go after changing password.
accessMgr: Indicates whether REST service is accessed through access manager.
pwd_chg_rtn_page: This is just a localized label for pwdChgRtnPage link.
success_message: Indicates that the password change is successful.
error_message: Indicates that the password change failed.

Password Policy Status
Here is some sample return data:

[{"challengeresponse_status":"Valid","hint_status":"Invalid","password_status":"Va
lid"},{"error":"error
occurred"},{"use_grace_login":"true","grace_login_remaining":"3"}]

Each element is described below:

challengeresponse_status: Indicates if challenge response status is valid.
hint_status: Indicates if hint status is valid.
password_status: Indicates if password change is needed. If password change is needed, then
this field will return “Invalid”, else return “Valid”.
error: If exists, then error occurred.
use_grace_login: Indicates whether the user is in grace login.
grace_login_remaining: Number of grace logins remaining.

Password Synchronization Status
Here is some sample return data:

Field Name Field Value

oldPassword test

newPassword novell

retypeNewPassword novell
704 NetIQ Identity Manager User Application: Administration Guide

[{"0004":"Success","check_timeout":"3000","unchecked":"Unchecked","buffer_time":"0
","0001":"Warning"
,"0000":"Error","0003":"Fatal","0002":"Retry","image_servlet":"passwordSyncAppImag
e","error_occurred":"Error occurred, please contact
administrator.","error_complete":"Application synchronization status check
completed with errors. Contact your administrator for more
details.","supervisor":"false","check_exceeded":"Check count
exceeded.","timeout_message":"Application synchronization status check
timeout.","success_complete":"Application synchronization status check completed
successfully.","images_per_row":"4","processing":"Processing......","no_app_config
ured":"There are no applications configured for Password Synchronization at this
time.","process_count":"3","timeout":"300000","invalid-hash":"Hash Not
Match"},{"D37BBE8D658A344C4AADD37BBE8D658A":"App2"},{"error_message":""},{"use_gra
ce_login":"true","grace_login_remaining":"2"}]

Each element is described below:

Group 1: Returns a list of localized status message for displaying password sync status.
Group 2: Returns a list of Configured Applications to check for password sync status. For each
configured application, will return "App's GUID" and "App's Name" which is configured by
User Application administrator.
Group 3:

error_message: If an error occurs, this field shows the message.
Group 4:

use_grace_login: Indicates whether the user is in grace login.
grace_login_remaining: Number of grace logins remaining.

Here is some sample POST data:

Table 27-5 Sample POST Data

Here is some sample return data from the POST:

[{"status":"0002"},{"error_message":"Error occurred"}]

Each element is described above:

Group 1: Returns user's password sync status on this application indicated by GUID.
Group 2: If an error occurs, the error_message field shows the message.

Locale Change
Here is some sample return data:

[{"en":"English"},{"NOT_AN_OPTION":"Select a locale to add...","zh-CN":"Chinese
(China)","zh-TW":"Chinese
(Taiwan)","nl":"Dutch","fr":"French","de":"German","it":"Italian","ja":"Japanese",
"pt":"Portuguese","ru":"Russian","es":"Spanish","sv":"Swedish"},{"message":""},{"d
isplay_name":"FirstName
LastName","use_grace_login":"true","grace_login_remaining":"5"}]

Field Name Field Value

guid Application GUID

userDN If checking user using Administrator credentials, then
pass userDN, if user is self checking password sync
status, then pass blank value.
Password Management and SSO Services 705

Each element is described below:

Group 1: Returns a list of the user's configured locales.
Group 2: Returns a list of available locales.
Group 3: Any error messages are returned here.
Group 4:

use_grace_login: Indicates whether the user is in grace login.
grace_login_remaining: Number of grace logins remaining.

Here is some sample POST data:

Table 27-6 Sample POST Data

Here is some sample return data from the POST:

[{"message":"Locale Preferences Saved"}]

SSO
Here is some sample return data:

[{"ssoEnabled":"false","signingKey":"Unassigned","signingCert":"Unassigned","chang
es":[{"ssoEnabled":"unchanged","signingKey":"unchanged","signingCert":"unchanged"}
]},{"kerberos":{"expInt":"","header":"","attr":"","ssoEnabled":"false","signingKey
":"Unassigned","signingCert":"Unassigned","certPath":"","libPath":"","isChanged":"
false","changes":[{"expInt":"unchanged","serverPassword":"unchanged","ssoEnabled":
"unchanged","server":"unchanged","attr":"unchanged","signingCert":"unchanged","sig
ningKey":"unchanged","header":"unchanged"}]},"sap":{"expInt":"","header":"","attr"
:"","ssoEnabled":"false","signingKey":"Unassigned","signingCert":"Unassigned","cer
tPath":"","libPath":"","isChanged":"false","changes":[{"expInt":"unchanged","libPa
th":"unchanged","certPath":"unchanged","ssoEnabled":"unchanged","attr":"unchanged"
,"signingCert":"unchanged","signingKey":"unchanged","header":"unchanged"}]}},{"sso
":"sso"}]

Here is some sample POST data:

Table 27-7 Sample POST Data

Field Name Field Value

locale en|fr

Field Name Field Value

Framework enable=true&header=fw&signKeyPassword=novell

Here is some sample return data from the POST:

[{"validKey":"Valid","validCert":"Valid"
,"ssoEnabled":"true","success_message":"
fw saved successfully. Values will be
reflected on server restart."}]
706 NetIQ Identity Manager User Application: Administration Guide

Kerberos attr=cn&byAttr=true&byDN=false&byKey=false&byPa
ssword=true&enable=false&header=kerberos&int=35
&server=server&serverPassword=password&signKey
Password=novell

Here is some sample return data from the POST:

[{"validKey":"Valid","validCert":"Valid"
,"success_message":"kerberos saved
successfully. Values will be reflected
on server restart."}]

sap attr=cn&byAttr=true&byDN=false&certPath=locations
&enable=true&header=sap&int=40&libPath=paths&sig
nKeyPassword=novell

Here is some sample return data from the POST:

[{"validKey":"Valid","validCert":"Valid"
,"success_message":"sap saved
successfully. Values will be reflected
on server restart."}]

custom attr=cn&byAttr=true&byDN=false&enable=true&heade
r=custom&int=40

Here is some sample return data from the POST:

[{"validKey":"Invalid","validCert":"Vali
d","success_message":"custom saved
successfully. Values will be reflected
on server restart."}]

Field Name Field Value
Password Management and SSO Services 707

708 NetIQ Identity Manager User Application: Administration Guide

28 28Resources Service

This section describes the Resources Services. Topics include:

Section 28.1, “About the Resources Service,” on page 709
Section 28.2, “Accessing and Using the Resources Service,” on page 709

28.1 About the Resources Service
The Resources Service provides a REST endpoint for retrieving information about resources.

28.2 Accessing and Using the Resources Service
The Resources Service exposes resources to retrieve resources information. The service allows you to
retrieve lists of resources or access specific resources by filter expression or resource ID.

IMPORTANT: To view resource detail and resource assignments by using the resource/{resource id}
and resource/{resource id}/assignments end points, you need to be a Resource Administrator and a
Provisioning Administrator. The Resource Administrator must have appropriate permissions on the
Provisioning domain. To provide these permissions:

1. Log into the User Application as the Provisioning Administrator.
2. Give all domain rights to the Resource Administrator including rights on the Provisioning

domain.
3. Login to iManager.
4. Add Resource Administrator as a trustee of Resource-Config in iManager.

28.2.1 Available Resources

Resources Service
The service provides a resource URI for every object exposed. The Roles resource supports the
following URI patterns:

Resource for returning a collection of resources
Resource for returning a specific resource instance
Resource for returning all assignments for a specific resource instance
Resource for returning a particular resource assignment
Resources Service 709

Services for Filtering, Debugging, and Displaying Schema Information
The service supports the following parameters to allow you to perform operations on the primary
resources data set:

A filter parameter to enable the filtering of result sets
A debug matrix parameter to enable you to return the JSON structures in a human readable
format
A schema matrix parameter to enable you to return the schema for the data set

28.2.2 Complete URI Syntax
The following table shows the complete URI syntax for all resource end points associated with the
Resources Service, along with a description for each URI and a list of supported HTTP methods:

Table 28-1 Resource URIs

URI Description

/resources GET - Will return a list of resources with minimal
information and a list of role URI links that include the
role GUID

POST – Not supported

PUT – Not supported

DELETE – Not Supported

/resources/{ResourceId} GET - The Resource ID parameter is a GUID used to
identify a specific resource within the LDAP realm

POST – Not supported

PUT – Not supported

DELETE – Not Supported

/resources/{ResourceId}/assignments GET - Will return a list of assignments for a specific
resource. This will be a list of assignments to users.

POST – Not supported

PUT – Not supported

DELETE – Not Supported

/resources/{ResourceId}/assignments/{assignment id} GET - Displays information on a specific resource
assignment.

POST – Not supported

PUT – Not supported

DELETE – Not Supported
710 NetIQ Identity Manager User Application: Administration Guide

The following table lists the parameters for debugging and displaying the schema:

Table 28-2 Matrix Parameters for Debugging and Displaying the Schema

/resources/refreshCodeMap GET - Not supported

POST – Triggers a code map refresh for an
entitlement. The request to trigger the refresh takes in
an entitlement DN and the response includes a
detailed status containing information about the
codemap refresh, such as the last refresh time and
refresh status.

PUT – Not supported

DELETE – Not Supported

/resources/refreshStatus/{GUID} GET - Fetches the status of a code map refresh
(RUNNING, COMPLETED, FAILED). The request to
fetch the refresh status takes in an entitlement DN and
returns details outlining the status of the code map
refresh that was triggered previously.

POST – Not supported

PUT – Not supported

DELETE – Not Supported

/resources/checkCodeMapValueStatus GET - Not supported

POST – Checks for the existence of an entitlement
value in the RBPM code map.

PUT – Not supported

DELETE – Not Supported

/resources/checkMultiCodeMapValueStatus GET - Not supported

POST – Checks for the existence of multiple
entitlement values in the RBPM code map.

PUT – Not supported

DELETE – Not Supported

URI Description

resources;debug This debug matrix parameter displays the resources
JSON structure in human readable format, as opposed
to compressed format. This matrix parameter can be
put anywhere in the URI.

resources;schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the resources.

URI Description
Resources Service 711

28.2.3 JSON Representations
This section provides the JSON representation for the resources endpoint.

Resources Endpoint
JSON Response The resources end point (/resources) returns a collection (JSON Array) of resources.

{
 "Link": "\/RIS\/resources\/9ca222fa9f942e4a7f879ca222fa9f94",
 "DN":
"cn=BuildingAccessWest,cn=ResourceDefs,cn=RoleConfig,cn=AppConfig,cn=DoradoDriver,
cn=TestDrivers,o=novell",
 "GUID": "9ca222fa9f942e4a7f879ca222fa9f94"
 "Name": "West Building Access",
 "description" : "West Building Access",
 "CategoryKey": ["default"],
}

RefreshCodeMap Endpoint
JSON Request The refreshCodeMap endpoint (/resources/refreshCodeMap) sends a JSON request in
this format.

{
"DN" : "cn=Building Pass,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell"
}

JSON Response The refreshCodeMap endpoint (/resources/refreshCodeMap) returns a detailed
status containing information about the code map refresh.

{"GUID":"46d1b6b9aea3264b9ca946d1b6b9aea3","Status":"true","DN":"cn=Building
Pass,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell","DetailedStatus":[[{"GUI
D":"46d1b6b9aea3264b9ca946d1b6b9aea3","Status":"SUCCESS","Entitlement-
DN":"cn=Building Pass,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell","Last-
Refresh":"1329373072390","Connection-Name":"1111"}]]}

RefreshStatus Endpoint
JSON Response The refreshStatus endpoint (/resources/refreshStatus/{GUID}) returns details
outlining the status of a previously triggered code map refresh.

{"CodeMapRefreshStatus":[{"GUID":"46d1b6b9aea3264b9ca946d1b6b9aea3","Status":"1329
373072390","Entitlement-DN":"cn=Building
Pass,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell","Last-
Refresh":"1329373072390","Connection-Name":"1111"}]}

CheckCodeMapValueStatus Endpoint
JSON Request The checkCodeMapValueStatus endpoint (/resources/checkCodeMapValueStatus)
sends a JSON request in this format:

{
"entitlementDN" : "cn=Building
Pass,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell",
"connectionName" : "test",
"codeMapValue" : "Waltham:Spring Street"
}

JSON Response The checkCodeMapValueStatus endpoint (/resources/checkCodeMapValueStatus)
returns the status for an entitlement value in this format:
712 NetIQ Identity Manager User Application: Administration Guide

{"UpToDate":"false","Value":"Waltham:Spring
Street","RefreshStatus":{"GUID":"46d1b6b9aea3264b9ca946d1b6b9aea3","Status":"SUCCE
SS","Entitlement-DN":"cn=Building
Pass,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell","Last-
Refresh":"1329712008390","Connection-Name":"test"}}

CheckMultiCodeMapValueStatus Endpoint
JSON Request The checkMultiCodeMapValueStatus endpoint (/resources/
checkMultiCodeMapValueStatus) sends a JSON request in this format:

{ "entitlementParams" : [
 {
 "entitlementDN" : "cn=Building
Pass,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell",
 "connectionName" : "test",
 "codeMapValue" : "Waltham:Spring Street"
 },
 {
 "entitlementDN" : "cn=Parking
Permission,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell",
 "connectionName" : "test1",
 "codeMapValue" : "Cambridge:Main Street"
 }
]
}

JSON Response The checkCodeMapValueStatus endpoint (/resources/
checkMultiCodeMapValueStatus) returns the status for the specified entitlement values in this
format:

{"CodeMapValueStatus":[{"UpToDate":"false","Value":"Waltham:Spring
Street","RefreshStatus":{"GUID":"46d1b6b9aea3264b9ca946d1b6b9aea3","Status":"SUCCE
SS","Entitlement-DN":"cn=Building
Pass,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell","Last-
Refresh":"1329712008390","Connection-
Name":"test"}},{"UpToDate":"false","Value":"Cambridge:Main
Street","RefreshStatus":{"GUID":"d33a80ae1cb82e4c80b9d33a80ae1cb8","Status":"SUCCE
SS","Entitlement-DN":"cn=Parking
Permission,cn=GroupEntitlementLoopback,cn=TestDrivers,o=novell","Last-
Refresh":"1329686444156","Connection-Name":"test1"}}]}
Resources Service 713

714 NetIQ Identity Manager User Application: Administration Guide

29 29Roles Service

This section describes the Roles Service. Topics include:

Section 29.1, “About the Role Service,” on page 715
Section 29.2, “Accessing and Using the Role Service,” on page 715

29.1 About the Role Service
The Roles Service provides a REST endpoint for retrieving information about roles.

29.2 Accessing and Using the Role Service
The Roles Service exposes resources to retrieve roles information. The service allows you to retrieve
lists of roles or access specific roles by filter expression or role ID.

IMPORTANT: To view role detail and role assignments by using the role/{role id} and role/{role id}/
assignments end points, you need to be a Role Administrator and a Provisioning Administrator. The
Role Administrator must have appropriate permissions on the Provisioning domain. To provide
these permissions:

1. Log into the User Application as the Provisioning Administrator.
2. Give all domain rights to the Role Administrator including rights on the Provisioning domain.
3. Login to iManager.
4. Add Role Administrator as a trustee of Role-Config in iManager.

29.2.1 Available Resources
There are several types of resources available for the service. These resources are described in the
sections that follow:

“Roles Service” on page 715
“Services for Filtering, Debugging, and Displaying Schema Information” on page 716

Roles Service
The service provides a resource URI for every object exposed. The Roles resource supports the
following URI patterns:

Resource for returning a collection of roles
Resource for returning a specific role instance
Roles Service 715

Resource for returning assignments for a specific role instance
Resource for returning SoDs for a specific role instance

Services for Filtering, Debugging, and Displaying Schema Information
The service supports the following parameters to allow you to perform operations on the primary
roles data set:

A filter parameter to enable the filtering of result sets
A debug matrix parameter to enable you to return the JSON structures in a human readable
format
A schema matrix parameter to enable you to return the schema for the data set

29.2.2 Complete URI Syntax
The following table shows the complete URI syntax for all resource end points associated with the
Roles Service, along with a description for each URI and a list of supported HTTP methods:

Table 29-1 Resource URIs

URI Description

/roles GET - Will return a list of roles with minimum
information and a list of role URI links that include the
role GUID

POST – Not supported

PUT – Future. The PUT operation with the appropriate
JSON structure will be used to create a new role. The
Role JSON structure will be the same as the one used
for the /roles/{RoleID} GET end point

DELETE – Not Supported
716 NetIQ Identity Manager User Application: Administration Guide

/roles?filter={role filter expression} GET - The above list can then be filtered by entering a
role filter expression on the URI.

The role filter expression must use the following
syntax:

Attribute%20Operator%20'Value'

Attribute must be one of the following:

Name

Description

Operator must be one of the following:

equal

startwith

endwith

notequal

For example:

/roles?filter=Description%20
startwith%20'test'

NOTE: The expression must include spaces between
the Attribute, Operator, and Value elements,
and the Value must be enclosed in single quotes (').

/roles/{RoleId} GET - The Role ID parameter will be a GUID to identify
a specific role within the LDAP realm.

POST – Future. Provide ability to modify a specific
role.

PUT – Not supported

DELETE – Future. Will remove the role.

/roles/{RoleId}/assignments GET - Will return a list of assignments for a specific
role. This will include assignments to other users,
groups, and containers assigned to a role. It does not
include role relationship information (information about
roles assigned to another to a role).

PUT – Future. The PUT operation with the appropriate
JSON structure will be used to assign the role to
another role, user, group, or container.

POST – Not supported

DELETE – Not supported

URI Description
Roles Service 717

Table 29-2 Matrix Parameters for Debugging and Displaying the Schema

29.2.3 JSON Representations
This section shows the JSON structures received by the client for each resource. In each case, the
HTTP method is GET.

Roles Endpoint
The roles end point (/roles) returns a collection (JSON Array) of roles.

/roles/{RoleId}/assignments/{assignmentID} GET – Display information on a specific role
assignment. The assignment ID will be a GUID
representing either a role, group, user or container.

PUT – Not supported

POST – Not supported

DELETE – Future. Remove the specific assignment

/roles/{RoleId}/sods GET - Will return a list of SODs for a specific role. This
information will be crucial for clients that want to assign
roles. Before the assignment, this REST end point
should be executed to determine if any SODs exist for
that particular role.

PUT – Not supported

POST – Not supported

DELETE – Not supported

/roles/{RoleId}/sods/{sodID} GET – Display information on a specific SOD.

PUT – Not supported

POST – Not supported

DELETE – Not supported

URI Description

roles;debug This debug matrix parameter displays the roles JSON
structure in human readable format, as opposed to
compressed format. This matrix parameter can be put
anywhere in the URI.

roles;schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the roles.

URI Description
718 NetIQ Identity Manager User Application: Administration Guide

[
 {
 "Links": [{
 "Link": "/RIS/v1/roles/372c47071345ae463db5372c47071345/assignments",
 "Type": "Assignments",
 "Value": "Assignments"
 },
 {
 "Link": "/RIS/v1/roles/372c47071345ae463db5372c47071345/sods",
 "Type": "SODS",
 "Value": "SODS"
 }],
 "DN": "cn=Scheduler System
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestD
rivers,o=novell",
 "GUID": "372c47071345ae463db5372c47071345",
 "Link": "/POC/roa/v1/roles/372c47071345ae463db5372c47071345",
 "Name": "Scheduler System Access",
 "Description": "Scheduler System Access",
 "CategoryKey": ["system"],
 "RoleLevel": {
 "Name": "Permission Role",
 "Description": "Permission to connected systems",
 "level": "10"
 }
 },
 {
 "Links": [{
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8/assignments",
 "Type": "Assignments",
 "Value": "Assignments"
 },
 {
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8/sods",
 "Type": "SODS",
 "Value": "SODS"
 }],
 "DN": "cn=ER Access-
West,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestDri
vers,o=novell",
 "GUID": "3059a9b358c8ba4f0ab53059a9b358c8",
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8",
 "Name": "ER Access(West Campus)",
 "Description": "ER Access (West Campus)",
 "CategoryKey": ["building"],
 "RoleLevel": {
 "Name": "Permission Role",
 "Description": "Permission to connected systems",
 "level": "10"
 }
 },
…..
]

Roles/{RoleId} Endpoint
The roles/{RoleId} endpoint returns specific role information.
Roles Service 719

{
 "Links": [{
 "Link": "/RIS/v1/roles/372c47071345ae463db5372c47071345/assignments",
 "Type": "Assignments",
 "Value": "Assignments"
 },
 {
 "Link": "/RIS/v1/roles/372c47071345ae463db5372c47071345/sods",
 "Type": "SODS",
 "Value": "SODS"
 }],
 "DN": "cn=Scheduler System
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestD
rivers,o=novell",
 "GUID": "372c47071345ae463db5372c47071345",
 "Link": "/POC/roa/v1/roles/372c47071345ae463db5372c47071345",
 "Name": "Scheduler System Access",
 "Description": "Scheduler System Access",
 "CategoryKey": ["system"],
 "RoleLevel": {
 "Name": "Permission Role",
 "Description": "Permission to connected systems",
 "level": "10"
 }
}

Roles/{RoleId}/assignments Endpoint
This endpoint returns a list of assignments for a specific role.

{
 "Containers": [],
 "Groups": [],
 "Roles": [
 {
 "DN": "cn=Write
Prescriptions,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,c
n=TestDrivers,o=novell",
 "GUID": "7cee8c618a2e8a436eb87cee8c618a2e",
 "Value": "Write Prescription",
 "link": "/RIS/v1/roles/7cee8c618a2e8a436eb87cee8c618a2e"
 },
 {
 "DN": "cn=Administer
Drugs,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestDr
ivers,o=novell",
 "GUID": "edcc5430f3e1a74041acedcc5430f3e1",
 "Value": "Administer Drug",
 "Link": "/RIS/v1/roles/edcc5430f3e1a74041acedcc5430f3e1"
 },
 {
 "DN": "cn=Order Medical
Tests,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestDr
ivers,o=novell",
 "GUID": "1a3381b0b849c04c1f981a3381b0b849",
 "Value": "",
 "Link": "/RIS/v1/roles/1a3381b0b849c04c1f981a3381b0b849"
 },
 {
 "DN": "cn=Perform Medical
Tests,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestDr
ivers,o=novell",
 "GUID": "4146615061202f4231b6414661506120",
 "Value": "",
 "Link": "/RIS/v1/roles/4146615061202f4231b6414661506120"
 }
],
720 NetIQ Identity Manager User Application: Administration Guide

 "Users": [{
 "DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Value": "Allison Blake",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107"
 }],
 "DN":
"cn=Doctor,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=T
estDrivers,o=novell",
 "GUID": "80146f8473973942ceb380146f847397",
 "Link": "/RIS/v1/roles/80146f8473973942ceb380146f847397",
 "Name": "Doctor",
 "Description": "Doctor"
}

Roles/{RoleId}/assignments/{assignmentID} Endpoint
This endpoint returns information on a specific role assignment.

{
 "Users": [{
 "DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Value": "Allison Blake",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107"
 }],
 "DN":
"cn=Doctor,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=T
estDrivers,o=novell",
 "GUID": "80146f8473973942ceb380146f847397",
 "Link": "/RIS/v1/roles/80146f8473973942ceb380146f847397",
 "Name": "Doctor",
 "Description": "Doctor"
}

Roles/{RoleId}/sods Endpoint
This endpoint return a list of SoDs for a specific role. This information is crucial for clients that want
to assign roles. Before the assignment, this REST end point should be executed to determine if any
SODs exist.

[
{
 "DN":
"cn=SOD,cn=SodDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o=no
vell",
 "GUID": "80146f8473973942ceb380146f847397",
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8/sods/
80146f8473973942ceb380146f847397",
 "Name" : "sod name",
 "Description" : "sod description",
 "Quorum" : "50%",
 "ApprovalType" : "SOD approval type",
 "Roles" : [{"DN":
"cn=Doctor,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=T
estDrivers,o=novell",
 "GUID": "3059a9b358c8ba4f0ab53059a9b358c8",
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8",
 "Name": "Doctor",
 "Description": "Doctor"},
 {"DN":
"cn=Nurse,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=Te
stDrivers,o=novell",
 "GUID": "3059a9b358c8ba4f0ab53059a9b358c8",
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8",
 "Name": "Nurse",
Roles Service 721

 "Description": "Nurse"}
]
 "RequestDefinition" : {
 "Value": "Role Approval",
 "DN": "cn=Role
Approval,cn=RequestDefs,cn=AppConfig,cn=CaribouDriver,cn=TestDrivers,o=novell",
 "GUID": "c24dc77790ea497eb07617341c01e718",
 "Link": "/RIS/wf/definition/c24dc77790ea497eb07617341c01e718"
 },
 "Approvers" : [{"DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107",
 "Value" : "Allison Blake"},
 {"DN": "cn=mmackenzie,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107",
 "Value" : "Margo Mackenzie"}
} ,
….
]

Roles/{RoleId}/sods/{sodID}
This endpoint returns information on a specific SoD.

{
 "DN":
"cn=SOD,cn=SodDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o=no
vell",
 "GUID": "80146f8473973942ceb380146f847397",
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8/sods/
80146f8473973942ceb380146f847397",
 "Name" : "sod name",
 "Description" : "sod description",
 "Quorum" : "50%",
 "ApprovalType" : "SOD approval type",
 "Roles" : [{"DN":
"cn=Doctor,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=T
estDrivers,o=novell",
 "GUID": "3059a9b358c8ba4f0ab53059a9b358c8",
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8",
 "Name": "Doctor",
 "Description": "Doctor"},
 {"DN":
"cn=Nurse,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=Te
stDrivers,o=novell",
 "GUID": "3059a9b358c8ba4f0ab53059a9b358c8",
 "Link": "/RIS/v1/roles/3059a9b358c8ba4f0ab53059a9b358c8",
 "Name": "Nurse",
 "Description": "Nurse"}
]
 "RequestDefinition" : {
 "Value": "Role Approval",
 "DN": "cn=Role
Approval,cn=RequestDefs,cn=AppConfig,cn=CaribouDriver,cn=TestDrivers,o=novell",
 "GUID": "c24dc77790ea497eb07617341c01e718",
 "Link": "/RIS/wf/definition/c24dc77790ea497eb07617341c01e718"
 },
 "Approvers" : [{"DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107",
 "Value" : "Allison Blake"},
 {"DN": "cn=mmackenzie,ou=users,ou=medical-idmsample,o=novell",
 "GUID": "26b65d8611075849e2b226b65d861107",
 "Link": "/RIS/v1/identities/26b65d8611075849e2b226b65d861107",
 "Value" : "Margo Mackenzie"}
}
722 NetIQ Identity Manager User Application: Administration Guide

29.2.4 Event Status Codes
This section shows the event status codes for the available resources:

Table 29-3 Event Status Codes

The Jersey implemented error conditions are used. When server errors are found, Jersey returns the
appropriate 400 and 500 level codes.

URI Status codes

roles HTTP GET - Status 200 - OK

HTTP PUT – Status 200 - OK

roles/{RoleId} HTTP GET - Status 200 - OK

HTTP POST – Status 200 – OK

HTTP DELETE – Status 204 – No Content

roles/{RoleId}/assignments HTTP GET - Status 200 - OK

HTTP PUT – Status 200 - OK

roles/{RoleId}/assignments/{assignmentID} HTTP GET - Status 200 - OK

HTTP DELETE – Status 204 – No Content

roles/{RoleId}/sods HTTP GET - Status 200 - OK

roles/{RoleId}/sods/{sodID} HTTP GET - Status 200 - OK
Roles Service 723

724 NetIQ Identity Manager User Application: Administration Guide

30 30Work Items Service

This section describes the Work Items Service. Topics include:

Section 30.1, “About the Work Items Service,” on page 725
Section 30.2, “Accessing and Using the Work Items Service,” on page 725

30.1 About the Work Items Service
The Work Items Service provides a REST endpoint for retrieving work items associated with
provisioning workflows.

30.2 Accessing and Using the Work Items Service
The Provisioning Work Items Service exposes resources to retrieve provisioning work item
information. The service allows a user is able to retrieve all work items related to himself or herself
and then act upon a specific work item if so desired (Approve, Deny, Refuse).

Removing Administrator Credential Restrictions By default, the Provisioning Work Items Service
requires that the HTTP session logged in user have administrator credentials. This restriction can be
removed to allow a session with a logged in user who does not have administrator credentials to
invoke the methods for the service. To allow non-administrative users to call workflow endpoints,
you need to modify your configuration as described in Section 18.1, “About the Provisioning Web
Service,” on page 423 and Section 21.1, “About the Directory Abstraction Layer (VDX) Web Service,”
on page 515.

30.2.1 Available Resources
There are three types of resources available for the service. These resources are described in the
sections that follow:

“Entry Point” on page 725
“Workitems Resource” on page 726
“Resources for Filtering, Debugging, and Displaying Schema Information” on page 726

Entry Point
The entry point URI for the Provisioning Work Items Service is:

/v1

The root entry point returns a list of all resources available.
Work Items Service 725

Workitems Resource
The service provides a resource URI for every object exposed. The Work Items resource supports two
basic URI patterns:

Resource for returning a collection of work items
Resource for returning a specific work item instance

Resources for Filtering, Debugging, and Displaying Schema Information
The service supports the following parameters to allow you to perform operations on the primary
work items data set:

A filter parameter to enable the filtering of result sets
A debug matrix parameter to enable you to return the JSON structures in a human readable
format
A schema matrix parameter to enable you to return the schema for the data set

30.2.2 Complete URI Syntax
The following table shows the complete URI syntax for all resource end points associated with the
Work Items Service, along with a description for each URI and a list of supported HTTP methods:

Table 30-1 Resource URIs

URI Description

/v1 Entry point for the service.

/v1/wf/workitems Will return a collection (JSON Array) of work items
available in the work flow sub system.

Note: the URI is preceded with “wf/” this is to allow us
to introduce other work flow related ROA services in
the future such as “wf/processes” which will list all
processes available in the work flow sub system.

The following HTTP methods are supported with this
URI:

GET - This will return a collection of work items (JSON
Array).

POST – Not supported

PUT – Not supported

DELETE – Not supported
726 NetIQ Identity Manager User Application: Administration Guide

/v1/wf/workitems?filter={parameter}={value} Return a collection of work items (JSON Array) for a
specific addressee DN.

The possible query parameters are listed below:

Addressee Addressee DN

DefinitionId Process DN

ProcesstId Process request instance ID (GUID)

ActivityId Activity ID

Status Status code (Integer)

Owner Owner DN

Priority Priority (Integer)

CreationTime Creation time (date-time format)
followed by operator (EQ, LT, LE, GT, GE). Example:
20080723044715000-0400EQ

ExpTime Expiry time(date-time format) followed by
operator (EQ, LT, LE, GT, GE). Example:
20080723044715000-0400EQ

CompletionTime Completion time(date-time format)
followed by operator (EQ, LT, LE, GT, GE). Example:
20080723044715000-0400EQ

Recipient Recipient DN

Initiator Initiator DN

Here is an example that illustrates filtering by
addressee:

/v1/wf/
workitems?filter=addressee%3dcn%3dadmin,
ou%3didmsample,o%3dnovell

/v1/wf/workitems?filter=workid={work id} Return a specific work item (JSON Array) instance
based on the work item GUID.

Example:

/v1/wf/
workitems?filter=workid%3d456789afbc78

Note: the URI must be fully URL encoded.

URI Description
Work Items Service 727

Table 30-2 Matrix Parameters for Debugging and Displaying the Schema

30.2.3 JSON Representations Received by the Client
This section shows the JSON structures received by the client for each resource. In each case, the
HTTP method is GET.

In all JSON structures, date-time values follow this format:

yyyyMMddhhmmssSSS-ZZZZ

Here is an example that illustrates the format:

20080723044715000-0400

/v1/wf/workitems/{WorkId} This will return a single JSON Object with all the work
item details. This will include the data items and
actions allowed on the work item.

The following HTTP methods are supported with this
URI:

GET - Return a specific work item instance (JSON
Object) with all details. This will include the actions
supported and data items available for that work item

PUT – Forward the appropriate action on the work
item.

POST – Same as PUT because of limitations in
browsers to set the PUT method

DELETE – Not supported

URI Description

/v1/wf/workitems;debug This debug matrix parameter displays the workitems
JSON structure in human readable format, as opposed
to compressed format. This matrix parameter can be
put anywhere in the URI.

/v1/wf/workitems/{WorkId};debug This debug matrix parameter displays the work ID
JSON structure in human readable format, as opposed
to compressed format. This matrix parameter can be
put anywhere in the URI.

/v1/wf/workitems;schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the workitems.

/v1/wf/workitems/{WorkId};schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the work ID.

URI Description
728 NetIQ Identity Manager User Application: Administration Guide

Root entry point
The root entry point returns this structure:

[
 {
 "Link": "/RIS/v1/wf/workitems",
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 }
]

Where:

Link – relative link to the service available

Type – Non localized internal code for the service.

Value – Localized value of the service.

Workitems end point
The workitems end point (/v1/wf/workitems) returns a collection (JSON Array) of work items
available in the Workflow subsystem.

[
 {
 "AvailableActions": [
 {
 "Value": "Deny",
 "Code": "1"
 },
 {
 "Value": "Approve",
 "Code": "0"
 }
],
 "GUID": "6d8650ac062548fb84cb0e21bfc3cea6",
 "Link": "/RIS/v1/wf/workitems/
6d8650ac062548fb84cb0e21bfc3cea6?filter=ProcessId%3Dc24dc77790ea497eb07617341c01e7
18",
 "ActivityId": "Activity",
 "ActivityName": "Approve Role Request (Serial)",
 "Addressee": {
 "DN": "cn=admin,ou=medical-idmsample,o=novell",
 "Value": "Application Administrator Of Sample Data",
 "GUID": "",
 "Link": ""
 },
 "AssignmentType": "0",
 "Created": "20080723044715000-0400",
 "Owner": "Unclaimed",
 "Priority": "2",
 "Definition": {
 "Value": "Role Approval",
 "DN": "cn=Role
Approval,cn=RequestDefs,cn=AppConfig,cn=CaribouDriver,cn=TestDrivers,o=novell",
 "GUID": "",
 "Link": "",
 "Version": "8"
 },
 "Process": {
 "GUID": "c24dc77790ea497eb07617341c01e718",
 "Link":""
 },
Work Items Service 729

 "Status": "0",
 "DigitalSignatureType": "not-required",
 "Initiator": {
 "DN": "CN=admin,OU=medical-idmsample,O=novell",
 "Value": "Application Administrator Of Sample Data",
 "GUID": "",
 "Link":""
 },
 "Recipient": {
 "DN": "cn=admin,ou=medical-idmsample,o=novell",
 "Value": "Application Administrator Of Sample Data",
 "GUID": "",
 "Link":""
 }
 },

]

Single workitem end point
The end point for accessing a single workitem (/v1/wf/workitems/{work id} returns a single JSON
Object with all the workitem details. This object includes the data items and actions allowed on the
workitem.

{"AvailableActions":[{"Code":"0","Value":"Approve"}],"DataItems":[{"Name":"unmappe
d","Type":"string","Values":[{"Value":""}],"MultiValued":false},{"Name":"reason","
Type":"string","Values":[{"Value":"test"}],"MultiValued":false},{"Name":"requester
","Type":"dn","Values":[{"Value":"cn=uaadmin,ou=sa,o=data"}],"MultiValued":false},
{"Name":"multivaluedField","Type":"string","Values":[{"Value":"one"},{"Value":"two
"}],"MultiValued":true}],"GUID":"2417e36457f44a4d908aa3265e0f1e09","Link":"\/RIS\/
wf\/workitems\/
2417e36457f44a4d908aa3265e0f1e09","ActivityId":"Activity1","ActivityName":"Approva
l
iPhone","Addressee":{"DN":"CN=uaadmin,OU=sa,O=data","GUID":"7f39d29c9e1de04b31bb7f
39d29c9e1d","Link":"","Value":"aaron
admin"},"AssignmentType":"0","Created":"20120402174027000-
0400","Owner":"Unclaimed","Priority":"2","Definition":{"DN":"cn=startFromIphoneMul
tivalued,cn=RequestDefs,cn=AppConfig,cn=UserApplication,cn=Driver
Set,o=novell","GUID":"368c905cf6f3d048e2ac368c905cf6f3","Link":"\/RIS\/wf\/
definitions\/368c905cf6f3d048e2ac368c905cf6f3","Value":"start
from iphone
multivalued"},"Process":{"GUID":"fa463317b85849bba3f6118bf4ff4dab","Link":"\/RIS\/
wf\/processes\/
fa463317b85849bba3f6118bf4ff4dab"},"Status":"0","Completed":"","Initiator":{"DN":"
cn=uaadmin,ou=sa,o=data","GUID":"7f39d29c9e1de04b31bb7f39d29c9e1d","Link":"\/RIS\/
identities\/7f39d29c9e1de04b31bb7f39d29c9e1d","Value":"aaron
admin"},"Recipient":{"DN":"cn=uaadmin,ou=sa,o=data","GUID":"7f39d29c9e1de04b31bb7f
39d29c9e1d","Link":"\/RIS\/identities\/
7f39d29c9e1de04b31bb7f39d29c9e1d","Value":"aaron
admin"},"Comment":""}

30.2.4 JSON Representations Sent by the Client
This section shows the JSON structure sent by the client for the single workitem end point when the
HTTP PUT or HTTP POST method is used.

Single workitem end point
When the client uses the HTTP PUT or HTTP POST method with the /v1/wf/workitems/{work id}
URI, the JSON Object structure is the same as the GET operation. However, the only information
used by the server is the AvailableActions and the DataItems sections. The first available action found
is taken as the forwarding action to perform on the work item.
730 NetIQ Identity Manager User Application: Administration Guide

{"AvailableActions":[{"Code":"0","Value":"Approve"}],"DataItems":[{"Name":"unmappe
d","Type":"string","Values":[{"Value":""}],"MultiValued":false},{"Name":"reason","
Type":"string","Values":[{"Value":"test"}],"MultiValued":false},{"Name":"requester
","Type":"dn","Values":[{"Value":"cn=uaadmin,ou=sa,o=data"}],"MultiValued":false},
{"Name":"multivaluedField","Type":"string","Values":[{"Value":"one"},{"Value":"two
"}],"MultiValued":true}],"GUID":"2417e36457f44a4d908aa3265e0f1e09","Link":"\/RIS\/
wf\/workitems\/
2417e36457f44a4d908aa3265e0f1e09","ActivityId":"Activity1","ActivityName":"Approva
l
iPhone","Addressee":{"DN":"CN=uaadmin,OU=sa,O=data","GUID":"7f39d29c9e1de04b31bb7f
39d29c9e1d","Link":"","Value":"aaron
admin"},"AssignmentType":"0","Created":"20120402174027000-
0400","Owner":"Unclaimed","Priority":"2","Definition":{"DN":"cn=startFromIphoneMul
tivalued,cn=RequestDefs,cn=AppConfig,cn=UserApplication,cn=Driver
Set,o=novell","GUID":"368c905cf6f3d048e2ac368c905cf6f3","Link":"\/RIS\/wf\/
definitions\/368c905cf6f3d048e2ac368c905cf6f3","Value":"start
from iphone
multivalued"},"Process":{"GUID":"fa463317b85849bba3f6118bf4ff4dab","Link":"\/RIS\/
wf\/processes\/
fa463317b85849bba3f6118bf4ff4dab"},"Status":"0","Completed":"","Initiator":{"DN":"
cn=uaadmin,ou=sa,o=data","GUID":"7f39d29c9e1de04b31bb7f39d29c9e1d","Link":"\/RIS\/
identities\/7f39d29c9e1de04b31bb7f39d29c9e1d","Value":"aaron
admin"},"Recipient":{"DN":"cn=uaadmin,ou=sa,o=data","GUID":"7f39d29c9e1de04b31bb7f
39d29c9e1d","Link":"\/RIS\/identities\/
7f39d29c9e1de04b31bb7f39d29c9e1d","Value":"aaron
admin"},"Comment":""}

30.2.5 Event Status Codes
This section shows the event status codes for the available resources:

Table 30-3 Event Status Codes

The Jersey implemented error conditions are used. When server errors are found, Jersey returns the
appropriate 400 and 500 level codes.

30.2.6 JSON Schema
The service supports the use of a schema matrix parameter to return the JSON schema for any
returned data set. The JSON schema is based on the proposed schema for JSON as described at:

http://www.json.com/json-schema-proposal/

Root entry point schema
The schema for the root ROA entry point (/v1;schema) is as follows:

URI Status codes

/v1 HTTP GET - Status 200 - OK

/v1/wf/workitems HTTP GET - Status 200 - OK

v1/wr/workitems/{work id} HTTP GET – Status 200 – OK

HTTP PUT – Status 204 – OK with no content

HTTP POST – Status 204 – OK with no content
Work Items Service 731

{
 “description” : “schema for: /v1”,
 "type" : "array",
 “properties” :

 {
 "Link": {"type" : “string”,
 "enum": ["/RIS/v1/wf/workitems"]
 },
 "Type": {"type" : "string",
 “enum“: [“wf/workitems“]
 },
 "Value":{“type” : “string”,
 "enum": ["Workflow Workitems"]
 }
 }
}

Workitems end point schema
The schema for the workitems end point (/v1/wf/workitems;schema) is as follows:

{
 “description” : “schema for: /v1/wf/workitems”,
 "type" : "array",
 “properties” :
 {
 "AvailableActions" :
 { "type" : "array",
 “properties” :
 {
 "Value" :
 { "type" : "string",
 “enum“: [“Approve”, “Deny“, “Refuse”]
 }
 "Code" :
 { "type" : "integer",
 “enum“: [0, 1, 2]
 }
 },
 "DataItems":
 { “type” : “array”,
 "properties" :
 {
 "Name": { "type" : "string"},
 "Type": { “type” : “string”},
 "Value": { "type" : "string"}
 }
 },
 "GUID" : { “type” : “string”},
 "Link" : { "type" : "string"},
 "ActivityId" : { “type” : “string”},
 "ActivityName" : { "type" : "string"},
 "Addressee":
 { "type" : "object",
 “properties” :
 {
 "DN": { “type” : “string”},
 "Value": { "type" : "string"},
 "GUID": { “type” : “string”},
 "Link": { "type" : "string"}
 },
 "AssignmentType": { "type" : "integer"},
 "Created":
 { "type" : "string",
 “format” : “date-time”
 },
 "ExpiryDate":
732 NetIQ Identity Manager User Application: Administration Guide

 { "type" : "string",
 “format” : “date-time”,
 "optional" : "true"
 },
 "Owner": { "type" : "string"},
 "Priority": { “type” : “integer”},
 "Definition":
 { “type” : “object”,
 "properties" :
 {
 "Value": { "type" : "string"},
 "DN": { “type” : “string”},
 "GUID": { "type" : "string"},
 "Link": { “type” : “string”},
 "Version": { "type" : "string"}
 }
 },
 "Process":
 { "type" : "object",
 “properties” :
 {
 "GUID": { “type” : “string”},
 "Link": { "type" : "string"}
 }
 },
 "Status": { “type” : “integer”,
 "minimum" : 0,
 “maximum” : 5
 },
 "LegalDisclaimer": { "type": "string",
 "optional": true
 }
 "DigitalSignatureType":
 { “type” : “string”,
 "enum": ["data". "form", "not-required"]
 },
 "Completed":
 { “type” : “string”,
 "format" : "date-time",
 “optional” : “true”
 },
 "Initiator":
 { "type" : "object",
 “properties” :
 {
 "DN": { “type” : “string”},
 "Value": { "type" : "string"},
 "GUID": { “type” : “string”},
 "Link": { "type" : "string"}
 }
 },
 "Recipient":
 { "type" : "object",
 “properties” :
 {
 "DN": { “type” : “string”},
 "Value": { "type" : "string"},
 "GUID": { “type” : “string”},
 "Link": { "type" : "string"}
Work Items Service 733

 }
 },
 "ProxyFor": { "type": "object",
 "properties":
 {
 "DN": {"type": "string"},
 "Value": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"
 },
 "optional": true
 }
 }
}

Single workitem end point schema
The schema for the single workitem end point (/v1/wf/workitems/{work id};schema) is as follows:

{
 “description” : “schema for: /v1/wf/workitems{work id}”,
 "type" : "object",
 “properties” :
 {
 "AvailableActions" :
 { "type" : "array",
 “properties” :
 {
 "Value" :
 { "type" : "string",
 “enum“: [“Approve”, “Deny“, “Refuse”]
 }
 "Code" :
 { "type" : "integer",
 “enum“: [0, 1, 2]
 }
 },
 "DataItems":
 { “type” : “array”,
 "properties" :
 {
 "Name": { "type" : "string"},
 "Type": { “type” : “string”},
 "Value": { "type" : "string"}
 }
 },
 "GUID" : { “type” : “string”},
 "Link" : { "type" : "string"},
 "ActivityId" : { “type” : “string”},
 "ActivityName" : { "type" : "string"},
 "Addressee":
 { "type" : "object",
 “properties” :
 {
 "DN": { “type” : “string”},
 "Value": { "type" : "string"},
 "GUID": { “type” : “string”},
 "Link": { "type" : "string"}
 },
 "AssignmentType": { "type" : "integer",
 “minimum” : 0,
 "maximum" : 17
 },
 "Created":
 { “type” : “string”,
 "format" : "date-time"
 },
 "ExpiryDate":
734 NetIQ Identity Manager User Application: Administration Guide

 { “type” : “string”,
 "format" : "date-time",
 “optional” : “true”
 },
 "Owner": { “type” : “string”},
 "Priority": { "type" : "integer"},
 "Definition":
 { "type" : "object",
 “properties” :
 {
 "Value": { “type” : “string”},
 "DN": { "type" : "string"},
 "GUID": { “type” : “string”},
 "Link": { "type" : "string"},
 "Version": { “type” : “string”}
 }
 },
 "Process":
 { “type” : “object”,
 "properties" :
 {
 "GUID": { "type" : "string"},
 "Link": { “type” : “string”}
 }
 },
 "Status": { "type" : "integer",
 “minimum” : 0,
 "maximum" : 5
 },
 "LegalDisclaimer": { "type": "string",
 "optional": true
 }
 "DigitalSignatureType":
 { "type" : "string",
 “enum“: [“data“. “form”, “not-required”]
 },
 "Completed":
 { "type" : "string",
 “format” : “date-time”,
 "optional" : "true"
 },
 "Initiator":
 { “type” : “object”,
 "properties" :
 {
 "DN": { "type" : "string"},
 "Value": { “type” : “string”},
 "GUID": { "type" : "string"},
 "Link": { “type” : “string”}
 }
 },
 "Recipient":
 { “type” : “object”,
 "properties" :
 {
 "DN": { "type" : "string"},
 "Value": { “type” : “string”},
 "GUID": { "type" : "string"},
Work Items Service 735

 "Link": { “type” : “string”}
 }
 },
 "ProxyFor": { "type": "object",
 "properties":
 {
 "DN": {"type": "string"},
 "Value": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"
 },
 "optional": true
 }
}

736 NetIQ Identity Manager User Application: Administration Guide

31 31Workflow Process and Definition Service

This section describes the Workflow Process and Definition Service. Topics include:

31.1 About the Workflow Process and Definition Service
The Workflow Process and Definition Service provides a REST interface for retrieving information
about running workflow processes and provisioning request definitions (PRDs) available to the
Workflow system.

The Workflow Process and Definition Service provides a REST interface for managing workflow
processes. This will include REST end points for the identification and definitions of existing
workflows and the ability to start an existing work flow. REST end points are also provided to allow
you to display the status of current work flows in the Workflow system. Existing processes will also
have a link to connect to the existing work items that are associated with that particular workflow
process.

Workflow Processes Behave Differently in REST than in the User Application Workflows
executed within the REST environment behave somewhat differently than the same processes
running within the User Application. For example, a workflow request submitted through REST may
succeed without providing any values for a mandatory field. This is because the User Application
has access to the workflow form, whereas the REST interface does not. There is no way for the REST
interface to know whether the data items are mandatory. It is up to the REST client to introspect the
data items and enforce the business requirements.

31.2 Accessing and Using the Workflow Process and Definition
Service
The Workflow Process and Definition Service exposes resources for managing workflow processes.
The service allows a way for you to retrieve all provisioning request definitions in the system, or
access a particular definition by ID. In addition, the service provides a way to retrieve all existing
workflow processes, or access a particular process by ID.

31.2.1 Available Resources
There are four basic types of resources available with the Workflow Process and Definition Service:

Entry Point
The entry point URI for the Workflow Process and Definition Service is:

/v1

The root entry point returns a list of all resources available.
Workflow Process and Definition Service 737

Definitions Resource
The Definitions resource supports two basic URI patterns:

Resource for returning a collection of provisioning request definitions (PRDs)
Resource for returning a specific PRD

Processes Resource
The Processes resource supports two basic URI patterns:

Resource for returning a collection of existing workflow processes
Resource for returning a specific process

Resources for Filtering, Debugging, and Displaying Schema Information
The service supports the following parameters to allow you to perform operations on the primary
work items data set:

A filter parameter to enable the filtering of result sets
A debug matrix parameter to enable you to return the JSON structures in a human readable
format
A schema matrix parameter to enable you to return the schema for the data set

31.2.2 Complete URI Syntax
The following table shows the complete URI syntax for all resource end points associated with the
Workflow Process and Definition Service, along with a description for each URI and a list of
supported HTTP methods:

Table 31-1 Resource URIs

URI Description

/v1 Entry point for the service.

/v1/wf/definitions Returns a collection (JSON Array) of workflow
definitions (provisioning request definitions) available
in the Workflow system.

The following HTTP methods are supported with this
URI:

GET - This will return a collection of workflow
definitions in JSON Array.

POST – Not supported

PUT – Not supported

DELETE – Not supported
738 NetIQ Identity Manager User Application: Administration Guide

/v1/wf/definitions/{definition ID} Returns a specific workflow definition (JSON Object)
available in the Workflow system.

The following HTTP methods are supported with this
URI:

GET - Returns a specific workflow definition (JSON
Object) with all the details. This will include the data
items associated with that definition.

PUT – Not supported.

POST – Start a work flow process.

DELETE – Not supported

Starting a workflow process To start a workflow
process, you need to perform a GET operation to
retrieve a provisioning request definition first. Once
you have the JSON structure for the definition, you
need to massage this JSON structure and perform a
POST. For details on the JSON structure for GET
operations, see Section 31.2.3, “JSON
Representations Received by the Client,” on
page 741. For details on the minimal JSON structure
required for POST operations, see Section 31.2.4,
“JSON Representations Sent by the Client,” on
page 744.

/v1/wf/processes Returns a collection of workflow processes in a JSON
Array.

The following HTTP methods are supported with this
URI:

GET - Returns a collection of workflow processes
currently in the Workflow system in a JSON Array.

POST – Not supported

PUT – Not supported

DELETE – Not supported

/v1/wf/processes/{process id} Returns a single JSON Object with all the workflow
process details.

The following HTTP methods are supported with this
URI:

GET - Returns a specific work flow process (JSON
Object) with all the details.

PUT – Not supported.

POST – Same as DELETE because of limitations in
browsers to set the DELETE method

DELETE – Terminates a work flow process

/v1/wf/processes/{process id}/comments GET - Returns all comments for a specified workflow
process.

URI Description
Workflow Process and Definition Service 739

Table 31-2 Matrix Parameters for Debugging and Displaying the Schema

/v1/wf/processes?filter={process parameter}={process
value}

Returns a collection of work flow processes (JSON
Array) for a specific process query parameter and
value.

The possible process query parameters are listed
below:

Definition Definition DN

ProcesstId Process request instance ID (GUID)

EngineId Engine ID

Recipient Recipient DN

Initiator Initiator DN

ApprovalStatus Approval status code (Integer)

ProcessStatus Process status code (Integer)

CreationTime Creation time (date-time format)
followed by operator (EQ, LT, LE, GT, GE). Example:
20080723044715000-0400EQ

CompletionTime Completion time(date-time format)
followed by operator (EQ, LT, LE, GT, GE). Example:
20080723044715000-0400EQ

CorrelationId Correlation ID

Here is an example that illustrates filtering by recipient:

/v1/wf/
processes?filter=recipient%3dcn%3dadmin,
ou%3didmsample,o%3dnovell

URI Description

/v1/wf/definitions;debug This debug matrix parameter displays the definitions
JSON structure in human readable format, as opposed
to compressed format. This matrix parameter can be
put anywhere in the URI.

/v1/wf/definitions/{DefinitionID};debug This debug matrix parameter displays the definition ID
JSON structure in human readable format, as opposed
to compressed format. This matrix parameter can be
put anywhere in the URI.

/v1/wf/definitions;schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the definitions.

URI Description
740 NetIQ Identity Manager User Application: Administration Guide

31.2.3 JSON Representations Received by the Client
This section shows the JSON structures received by the client for each resource. In each case, the
HTTP method is GET.

In all JSON structures, date-time values follow this format:

yyyyMMddhhmmssSSS-ZZZZ

Here is an example that illustrates the format:

20080723044715000-0400

Root entry point
The root entry point returns this structure:

[
 {
 "Link": "/RIS/v1/wf/workitems",
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 }
]

Where:

Link – relative link to the service available

Type – Non localized internal code for the service.

/v1/wf/definitions/{Definition ID};schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the specified definition ID.

/v1/wf/processes;debug This debug matrix parameter displays the workflow
processes JSON structure in human readable format,
as opposed to compressed format. This matrix
parameter can be put anywhere in the URI.

/v1/wf/processes/{Process ID};debug This debug matrix parameter displays the process ID
JSON structure in human readable format, as opposed
to compressed format. This matrix parameter can be
put anywhere in the URI.

/v1/wf/processes;schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the workflow processes.

/v1/wf/processes/{Process ID};schema The schema matrix parameter can be put anywhere in
the URI and in combination with the “Accept” header
type will return the appropriate schema document for
the content type. In this case a JSON schema
document is returned for the specified process ID.

URI Description
Workflow Process and Definition Service 741

Value – Localized value of the service.

Definitions end point
The definitions end point (/v1/wf/definitions) returns a collection (JSON Array) of provisioning
request definitions available in the Workflow System.

[
 {
 "Links": [
 {
 "Link": "/RIS/v1/wf/
processes?filter=Definition%3Dcn%3DPageWizardForm%2Ccn%3DRequestDefs%2Ccn%3DAppCon
fig%2Ccn%3DPicassoDriver%2Ccn%3DTestDrivers%2Co%3Dnovell",
 "Type": "wf/processes",
 "Value": "Workflow Processes"
 },
 {
 "Link": "/RIS/v1/wf/
workitems?filter=Definition%3Dcn%3DPageWizardForm%2Ccn%3DRequestDefs%2Ccn%3DAppCon
fig%2Ccn%3DPicassoDriver%2Ccn%3DTestDrivers%2Co%3Dnovell",
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 }
],
 "DataItems": [{
 "Name": "recipient",
 "Type": "string",
 "Value": ""
 }],
 "Value": "PageWizardForm",
 "DN":
"cn=PageWizardForm,cn=RequestDefs,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o=n
ovell",
 "GUID": "8d64ba822ada934512968d64ba822ada",
 "Link": "/RIS/v1/wf/definitions/8d64ba822ada934512968d64ba822ada",
 "Category": "entitlements",
 "DigitalSignatureType": "not-required",
 "Description": "PageWizardForm",
 "Operation": "0"
 },
......
]

Single definition end point
The end point for accessing a single definition (/v1/wf/workitems/{work id} returns a single JSON
Object with all the details for the definition. The return payload also includes the data items required
to start a work flow process.

{
 "Links": [
 {
 "Link": "/RIS/v1/wf/
processes?filter=Definition%3Dcn%3DPageWizardForm%2Ccn%3DRequestDefs%2Ccn%3DAppCon
fig%2Ccn%3DPicassoDriver%2Ccn%3DTestDrivers%2Co%3Dnovell",
 "Type": "wf/processes",
 "Value": "Workflow Processes"
 },
 {
 "Link": "/RIS/v1/wf/
workitems?filter=Definition%3Dcn%3DPageWizardForm%2Ccn%3DRequestDefs%2Ccn%3DAppCon
fig%2Ccn%3DPicassoDriver%2Ccn%3DTestDrivers%2Co%3Dnovell",
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
742 NetIQ Identity Manager User Application: Administration Guide

 }
],
 "DataItems": [{
 "Name": "recipient",
 "Type": "string",
 "Value": ""
 }],
 "Value": "PageWizardForm",
 "DN":
"cn=PageWizardForm,cn=RequestDefs,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o=n
ovell",
 "GUID": "8d64ba822ada934512968d64ba822ada",
 "Link": "/RIS/v1/wf/definitions/8d64ba822ada934512968d64ba822ada",
 "Category": "entitlements",
 "DigitalSignatureType": "not-required",
 "Description": "PageWizardForm",
 "Operation": "0"
 }

Workflow processes end point
The workflow processes end point (/v1/wf/processes) returns a collection (JSON Array) of running
workflow processes available in the Workflow System.

[
 {
 "Links": [{
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 "Link": "/POC/roa/v1/wf/
workitems?filter=ProcessId%3De11a2f10c90f489895f968d565b15091"
 }],
 "GUID": "e11a2f10c90f489895f968d565b15091",
 "Link": "/RIS/v1/wf/processes/e11a2f10c90f489895f968d565b15091",
 "Initiator": {
 "DN": "CN=admin,OU=medical-idmsample,O=novell",
 "Value": "Application Administrator Of Sample Data",
 "GUID": "",
 "Link": ""
 },
 "Recipient": {
 "DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "Value": "Allison Blake",
 "GUID": "",
 "Link": ""
 },
 "Definition": {
 "Value": "Role Approval",
 "DN": "cn=Role
Approval,cn=RequestDefs,cn=AppConfig,cn=CaribouDriver,cn=TestDrivers,o=novell",
 "GUID": "d8c8e1a6d6432341fa84d8c8e1a6d643",
 "Link": "/RIS/v1/wf/definitions/e11a2f10c90f489895f968d565b15091",
 "Version":"8"
 },
 "Created": "20080723044715000-0400",
 "Completed": "",
 "ApprovalStatus": "Processing",
 "ProcessStatus": "Running",
 "Version": "8",
 "EngineId": "ENGINE"
 }
]

Workflow Process and Definition Service 743

Single workflow process end point
The end point for accessing a single process (/v1/wf/processes/{process id} returns a single JSON
Object with all the details for the process.

{
 "Links": [{
 "Type": "wf/workitems",
 "Value": "Workflow Workitems"
 "Link": "/POC/roa/v1/wf/
workitems?filter=ProcessId%3De11a2f10c90f489895f968d565b15091"
 }],
 "GUID": "e11a2f10c90f489895f968d565b15091",
 "Link": "/RIS/v1/wf/processes/e11a2f10c90f489895f968d565b15091",
 "Initiator": {
 "DN": "CN=admin,OU=medical-idmsample,O=novell",
 "Value": "Application Administrator Of Sample Data",
 "GUID": "",
 "Link": ""
 },
 "Recipient": {
 "DN": "cn=ablake,ou=users,ou=medical-idmsample,o=novell",
 "Value": "Allison Blake",
 "GUID": "",
 "Link": “"
 },
 "Definition": {
 "Value": "Role Approval",
 "DN": "cn=Role
Approval,cn=RequestDefs,cn=AppConfig,cn=CaribouDriver,cn=TestDrivers,o=novell",
 "GUID": "d8c8e1a6d6432341fa84d8c8e1a6d643",
 "Link": "/RIS/v1/wf/definitions/e11a2f10c90f489895f968d565b15091",
 “Version”:”8”
 },
 "Created": "20080723044715000-0400",
 "Completed": "",
 "ApprovalStatus": "Processing",
 "ProcessStatus": "Running",
 "Version": "8",
 "EngineId": "ENGINE"
 }

31.2.4 JSON Representations Sent by the Client
This section shows the JSON structure sent by the client for the single workitem end point when the
HTTP PUT or HTTP POST method is used.

Single definition end point
When the client uses the HTTP POST method with the /v1/wf/definitions/{definition id} URI, the
following minimum information from a definition JSON structure is required to start a workflow
process.

{
 "DataItems": [{
 "Name": "reason",
 "Type": "string",
 "Values": [{"Value": ""}],
 "MultiValued": false
 }],
 "Recipient": "cn=ablake,ou=users,ou=medical-idmsample,o=novell"
}

744 NetIQ Identity Manager User Application: Administration Guide

All elements of the JSON object received from a GET call can be returned to the server. However, only
the two items shown above are necessary. All other elements will be ignored by the server.

Single workflow process end point
When the client uses the HTTP DELETE method with the /v1/wf/processes{process id} URI, there is
no need to send a JSON object to the server. This action terminates the specified workflow process.
The key to the process instance is specified as part of the URI.

31.2.5 Event Status Codes
This section shows the event status codes for the available resources:

Table 31-3 Event Status Codes

31.2.6 JSON Schema
The service supports the use of a schema matrix parameter to return the JSON schema for any
returned data set. The JSON schema is based on the proposed schema for JSON as described at:

http://www.json.com/json-schema-proposal/

Root entry point schema
The schema for the root ROA entry point (/v1;schema) is as follows:

URI Status Codes

/v1 HTTP GET - Status 200 - OK

/v1/wf/definitions HTTP GET - Status 200 - OK

/v1/wf/definitions/{Definition ID} HTTP GET – Status 200 – OK

HTTP POST – Status 204 – OK with no content

/v1/wf/processes HTTP GET - Status 200 - OK

/v1/wf/processes/{Process ID} HTTP GET – Status 200 – OK

HTTP DELETE – Status 204 – OK with no content

HTTP POST – Status 204 – OK with no content
Workflow Process and Definition Service 745

{"Link": {
 "description": "schema for: /v1",
 "type": "array",
 "properties": {
 "Link": {"type": "string"},
 "Type": {
 "type": "string",
 "enum": [
 "root",
 "wf/definitions",
 "wf/processes",
 "wf/workitems"
]
 },
 "Value": {"type": "string"}
 }
}}

Definitions end point schema
The schema for the definitions end point (/v1/wf/definitions;schema) is as follows:

{"DefinitionInfo": {
 "description": "schema for: /v1/wf/definitions",
 "type": "array",
 "properties": {
 "Links": {
 "type": "array",
 "properties": {
 "Link": {"type": "string"},
 "Type": {
 "type": "string",
 "enum": [
 "root",
 "wf/definitions",
 "wf/processes",
 "wf/workitems"
]
 },
 "Value": {"type": "string"}
 }
 },
 "DataItems": {
 "type": "array",
 "properties": {
 "Name": {"type": "string"},
 "Type": {"type": "string"},
 "Value": {"type": "string"}
 }
 },
 "Value": {"type": "string"},
 "DN": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"},
 "Category": {"type": "string"},
 "LegalDisclaimer": {"type": "string"},
 "DigitalSignatureType": {"type": "string"},
 "Description": {"type": "string"},
 "Operation": {"type": "string"},
 “Recipient”: {“type”: “string”}
 }
}}
746 NetIQ Identity Manager User Application: Administration Guide

Single definition end point schema
The schema for the single definition end point (/v1/wf/definitions/{Definition id};schema) is as
follows:

{
 "description": "schema for: /v1/wf/definitions/{Definition ID}",
 "type": "object",
 "properties": {
 "Links": {
 "type": "array",
 "properties": {
 "Link": {"type": "string"},
 "Type": {
 "type": "string",
 "enum": [
 "root",
 "wf/definitions",
 "wf/processes",
 "wf/workitems"
]
 },
 "Value": {"type": "string"}
 }
 },
 "DataItems": {
 "type": "array",
 "properties": {
 "Name": {"type": "string"},
 "Type": {"type": "string"},
 "Value": {"type": "string"}
 }
 },
 "Value": {"type": "string"},
 "DN": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"},
 "Category": {"type": "string"},
 "LegalDisclaimer": {"type": "string"},
 "DigitalSignatureType": {"type": "string"},
 "Description": {"type": "string"},
 "Operation": {"type": "string"},
 “Recipient”: {“type”: “string”}
 }

Workflow processes end point schema
The schema for the processes end point (/v1/wf/processes;schema) is as follows:

{"ProcessInfo": {
 "description": "schema for: /v1/wf/processes",
 "type": "array",
 "properties": {
 "Links": {
 "type": "array",
 "properties": {
 "Link": {"type": "string"},
 "Type": {
 "type": "string",
 "enum": [
 "root",
 "wf/definitions",
 "wf/processes",
 "wf/workitems"
]
 },
 "Value": {"type": "string"}
Workflow Process and Definition Service 747

 }
 },
 "GUID": {"type": "string"},
 "Link": {"type": "string"},
 "Initiator": {
 "type": "object",
 "properties": {
 "DN": {"type": "string"},
 "Value": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"}
 }
 },
 "Recipient": {
 "type": "object",
 "properties": {
 "DN": {"type": "string"},
 "Value": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"}
 }
 },
 "Definition": {
 "type": "object",
 "properties": {
 "Value": {"type": "string"},
 "DN": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"}
 }
 },
 "Created": {
 "type": "string",
 "format:": "date-time"
 },
 "Completed": {
 "type": "string",
 "format:": "date-time",
 "optional": true
 },
 "Proxy": {
 "type": "string",
 "optional": true
 },
 "CorrelationId": {
 "type": "string",
 "optional": true
 },
 "ApprovalStatus": {"type": "string"},
 "ProcessStatus": {"type": "string"},
 "Version": {"type": "string"},
 "EngineId": {"type": "string"}
 }
}}

Single process end point schema
The schema for the single process end point (/v1/wf/processes/{Process ID};schema) is as follows:
748 NetIQ Identity Manager User Application: Administration Guide

{
 "description": "schema for: /v1/wf/processes/{Process ID}",
 "type": "object",
 "properties": {
 "Links": {
 "type": "array",
 "properties": {
 "Link": {"type": "string"},
 "Type": {
 "type": "string",
 "enum": [
 "root",
 "wf/definitions",
 "wf/processes",
 "wf/workitems"
]
 },
 "Value": {"type": "string"}
 }
 },
 "GUID": {"type": "string"},
 "Link": {"type": "string"},
 "Initiator": {
 "type": "object",
 "properties": {
 "DN": {"type": "string"},
 "Value": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"}
 }
 },
 "Recipient": {
 "type": "object",
 "properties": {
 "DN": {"type": "string"},
 "Value": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"}
 }
 },
 "Definition": {
 "type": "object",
 "properties": {
 "Value": {"type": "string"},
 "DN": {"type": "string"},
 "GUID": {"type": "string"},
 "Link": {"type": "string"},
 "Version": {"type": "string"}
 }
 },
 "Created": {
 "type": "string",
 "format:": "date-time"
 },
 "Completed": {
 "type": "string",
 "format:": "date-time",
 "optional": true
 },
Workflow Process and Definition Service 749

 "Proxy": {
 "type": "string",
 "optional": true
 },
 "CorrelationId": {
 "type": "string",
 "optional": true
 },
 "ApprovalStatus": {"type": "string"},
 "ProcessStatus": {"type": "string"},
 "Version": {"type": "string"},
 "EngineId": {"type": "string"}
 }
}

31.2.7 Testing the Client with the CURL Command
You can use the CURL command to test the REST client.

NOTE: To use the CURL command, you must also use either RESTAuthorization or RESTSecret.

Table 31-4 CURL Commands for Testing the Client

URI Command

 http://domain:port/RIS/v1 curl -v -H "Accept: application/json" http://domain:port/
RIS/v1

 wf/definitions curl -v -H "Accept: application/json" http://domain:port/
RIS/v1/wf/definitions

 wf/definitions/{defintion id} curl -v -H "Accept: application/json" http://domain:port/
RIS/v1/wf/definitions/{definition id}

 wf/definitions/{definition id}

To start a process, store the JSON structure in a file
and pass it to the curl command.

curl -v -H "Accept: application/json" -H "Content-Type:
application/json" -X POST --data-binary @<filename of
JSON structure> http://domain:port/RIS/v1/wf/
definitions/{definition id}

 wf/processes curl -v -H "Accept: application/json" http://domain:port/
RIS/v1/wf/processes

 wf/processes/{request id} curl -v -H "Accept: application/json" http://domain:port/
RIS/v1/wf/processes/{request id}

 wf/processes/{request id}

To terminate a process, store the JSON structure in a
file and pass it to the curl command.

curl -v -H "Accept: application/json" -X DELETE http://
domain:port/RIS/v1/wf/processes/{request id}
750 NetIQ Identity Manager User Application: Administration Guide

VIII VIIIAppendixes

The following sections provide additional reference information and advanced topics for the Identity
Manager User Application.

Appendix A, “Configuring the Identity Manager Approvals App,” on page 753
Appendix B, “Schema Extensions for the User Application,” on page 765
Appendix C, “JavaScript Search API,” on page 773
Appendix D, “Trouble Shooting,” on page 783
Appendixes 751

752 NetIQ Identity Manager User Application: Administration Guide

A AConfiguring the Identity Manager
Approvals App

The NetIQ Identity Manager Approvals app allows managers and resource owners to approve or
deny requests remotely, using an iPhone or iPad with the iOS operating system installed. Your users
can see and work with the same approval tasks in the app that they would normally see in the User
Application interface. All changes are synchronized between the Approvals app and the User
Application.

This appendix provides information about configuring your environment to allow users to use the
new interfaces. The following sections are intended to provide necessary information to
administrators who want to enable and configure the Approvals app in their environment.

Most users should not need to refer to this document, but should instead be able to install, configure,
and use the app without additional instructions. For information about installing or using the
Approvals app, see “Using the Identity Manager Approvals App” in the User Application: User Guide.

For more detailed information about configuring the Approvals app, see the following sections:

Section A.1, “Product Requirements,” on page 753
Section A.2, “Setting Up the Approvals App,” on page 754
Section A.3, “Optimizing Designer Forms for the Approvals App,” on page 762
Section A.4, “Understanding Language Support in the Approvals App,” on page 762

A.1 Product Requirements
The Approvals app requires the following prerequisites:

On the Roles Based Provisioning Manager server:
Identity Manager 4.0.2 Advanced Edition Patch B or later

NOTE: Identity Manager 4.0.2 Standard Edition does not support the Approvals app.

Identity Manager Roles Based Provisioning Module 4.0.2 Patch B or later
Designer for Identity Manager 4.0.2 or later with User Application driver and latest User
Application Base package installed
SSL

NOTE: For detailed information on configuring and enabling SSL in your Identity Manager
environment, see “Enabling SSL” on page 48.

On the device: Apple iPhone or iPad with Apple iOS 5, iOS 6 or iOS 7
Configuring the Identity Manager Approvals App 753

https://www.netiq.com/documentation/idm402/pdfdoc/ugpro/ugpro.pdf#b13iylfy
https://www.netiq.com/documentation/idm402/pdfdoc/ugpro/ugpro.pdf#front

Enabling Non-Administrators to Use the Approvals App
If you want users who are not provisioning administrators on the Roles Based Provisioning Manager
server to use the Approvals app, you must open the SOAP endpoints used by the server and app to
non-provisioning administrator users.

NOTE: Opening SOAP endpoints to non-provisioning administrator users does not compromise
security. Identity Manager continues to enforce all other existing security checks.

Complete the following steps to open the SOAP endpoints on the Roles Based Provisioning Module
server:

1 Stop the server.
2 Create a backup of the existing IDMProv.war file.
3 Open the IDMProv.war file.
4 In IDMProv.war, open the file WEB-INF/lib/IDMfw.jar.
5 In IDMfw.jar, change the following configuration file properties to the specified values:

6 Save and close all files.
7 Restart the server.

A.2 Setting Up the Approvals App
Before your users can use the Approvals app, you must first configure your Identity Manager Roles
Based Provisioning Module environment.

After installing the app, users can configure the app manually or automatically. Because manually
configuring the Approvals app can be difficult, we recommend that administrators simplify the
configuration process by providing users the necessary information as part of the provisioning
process.

You provide configuration information to your users through a configuration link you customize for
your Identity Manager Roles Based Provisioning Module environment. The structure of the
configuration link is as follows:

Configuration File Property Value

WorkflowService-conf/
config.xml

WorkflowService/SOAP-
End-Points-Accessible-
By-
ProvisioningAdminOnly

false

WorkflowService/soap/
addComment

false

WorkflowService/soap/
getComments

false

VirtualDataService-
conf/config.xml

VirtualDataService/
soap

false
754 NetIQ Identity Manager User Application: Administration Guide

idmapproval://settings/
?userid=Username&passwordInKeychain=Password&host=HostName&port=PortNumber&
rbpmContext=Context&userContainer=UserContainer&timeout=Timeout&vdxUserEntity=User
Entity&
vdxNameFormatAttribute=NameFormat&vdxFirstNameAttribute=FirstNameAttr&vdxLastNameA
ttribute=
LastNameAttr&vdxPhotoAttribute=UserPhotoAttr&vdxPhotoAttributeLdap=PhotoLDAPAttr&v
dxPhoneAttribute=
WorkPhoneAttr&vdxMobileAttribute=MobilePhoneAttr&vdxEmailAttribute=EmailAttr&namin
gAttribute=
NamingAttr&provAdminGetTasksWorkaroundInPlace=ProvisioningAdmin

The link must include settings specific to your environment, so that users can easily connect to the
Roles Based Provisioning Module server from the Approvals app. However, none of the settings are
explicitly required for the link. If you leave any setting values empty, each user must configure those
settings on their device.

For example, if you want to provide a standard configuration link for all users in your environment,
you would leave the userid and passwordInKeychain values empty:

idmapproval://settings/?userid=&passwordInKeychain=&host=123.112.20.109&port=8180&
rbpmContext=IDMProv&userContainer=ou=users,o=data&timeout=5&vdxUserEntity=user&vdx
NameFormatAttribute=
FirstName%20LastName&vdxFirstNameAttribute=FirstName&vdxLastNameAttribute=LastName
&
vdxPhotoAttribute=UserPhoto&vdxPhotoAttributeLdap=photo&vdxPhoneAttribute=Telephon
eNumber&
vdxMobileAttribute=mobile&vdxEmailAttribute=Email&namingAttribute=cn&
provAdminGetTasksWorkaroundInPlace=YES

For detailed information about the configuration settings, see “Understanding Approvals App
Settings” on page 755.

You can provide a configuration link to your users in one of the following ways:

Customize and deploy the default “Request Mobile Approval App” process request definition
(PRD) to your User Application. A user can log into the User Application and request access to
the app using the PRD, which sends an email notification with a personalized configuration link
that includes information specific to that user.
Embed your custom configuration link in an HTML page hosted on a Web server in your
environment. All users in your environment can navigate to the HTML page in a browser on
their device and then click the configuration link.
Create a QR code from the configuration link and embed the QR code in an HTML page. Users
can use a QR code reader on their device to scan the code.

For more information on the different ways you can use to provide configuration information, see the
following sections:

Section A.2.1, “Understanding Approvals App Settings,” on page 755
Section A.2.2, “Customizing and Using the Default Approvals App Provisioning Request
Definition,” on page 757
Section A.2.3, “Creating and Deploying a Custom Configuration Link,” on page 761
Section A.2.4, “Creating and Deploying a Custom Configuration QR Code,” on page 761

A.2.1 Understanding Approvals App Settings
An Approvals app configuration link can include the following settings:
Configuring the Identity Manager Approvals App 755

Configuration Setting Name Login Setting Description

userid Specifies the user name the user uses to access the
Roles Based Provisioning Module server.

passwordInKeychain Specifies the password the user uses to access the
Roles Based Provisioning Module server.

host Specifies the fully qualified domain name or IP address
of the Roles Based Provisioning Module server.

port Specifies the HTTPS port the app uses to connect to
the server.

rbpmContext Specifies the context used when installing the User
Application WAR file. The default value is IDMProv.

userContainer Specifies the full DN of the Identity Vault container that
contains the user LDAP entry.

NOTE: If you specify a user container to use, the
Approvals app uses that container. If you do not
specify a user container, the app attempts to detect the
appropriate user container in the Identity Vault,
searching all containers and subcontainers starting
with the user container dn specified when running the
User Application Configuration (configupdate) utility.

If your Roles Based Provisioning Module environment
includes a number of user containers, we recommend
that you specify the container you want the app to use.

You can configure a provisioning request definition
(PRD) like the default “Request Mobile Approval App”
definition to easily provision and configure your mobile
end users. For more information about customizing the
default PRD, see “Customizing and Using the Default
Approvals App Provisioning Request Definition” on
page 757.

timeout Specifies the number of seconds the app waits when
attempting to connect to the server before cancelling
the connection. The default value is 5 seconds.

vdxUserEntity Specifies the LDAP entity that represents a user in the
Identity Vault. The default value is user.

vdxNameFormatAttribute Specifies the DAL attribute representation the app
uses to format a user’s full name. The default value is
FirstName%20LastName.

vdxFirstNameAttribute Specifies the name of the DAL attribute that represents
a user’s first name. The default value is FirstName.

vdxLastNameAttribute Specifies the name of the DAL attribute that represents
a user’s last name. The default value is LastName.
756 NetIQ Identity Manager User Application: Administration Guide

A.2.2 Customizing and Using the Default Approvals App Provisioning
Request Definition
As an administrator, you can use Designer to customize a generic “Request Mobile Approval App”
PRD that your users can use, through the User Application, to request access to the Approvals
application.

When a user requests access, Identity Manager then verifies that the user has the permissions
required to access the mobile interface and that the Roles Based Provisioning Module server supports
the application. If the server is not configured correctly or does not have the correct patch installed,
the PRD generates a task for the provisioning administrator that lets the administrator know what
needs to be fixed in order to enable use of the Approvals app.

After Identity Manager verifies the user and environment meet all requirements, the PRD triggers an
email notification to the user. The user should open this email on the iPhone or iPad where the user
has already installed the Approvals app.

This email notification includes a special idmapproval://settings link that automatically provides
the settings the user needs to access the Approvals app from their device. The user clicks the link
from their device and can then access their tasks through the Approvals app.

The default “Request Mobile Approval App” is included in the User Application Base package,
which you can upgrade in Designer.

vdxPhotoAttribute Specifies the name of the DAL attribute that contains a
user’s photo. The default value is UserPhoto.

NOTE: If a user does not have a picture configured in
the Identity Manager or has configured their Identity
Manager settings to not display a picture, the app
displays a generic image instead.

vdxPhotoAttributeLdap Specifies the name of the LDAP attribute that contains
the photo of the user. The default value is photo.

vdxPhoneAttribute Specifies the name of the DAL attribute that represents
a user’s work phone number. The default value is
TelephoneNumber.

vdxMobileAttribute Specifies the name of the DAL attribute that represents
a user’s mobile phone number. The default value is
mobile.

vdxEmailAttribute Specifies the name of the DAL attribute that represents
a user’s email address. The default value is Email.

namingAttribute Specifies the naming DAL attribute used in the Identity
Vault to describe a name. The default value is cn.

provAdminGetTasksWorkaroundInPlace Specifies whether the user is a Provisioning
Administrator on the Roles Based Provisioning Module
server. The default value is YES.

Configuration Setting Name Login Setting Description
Configuring the Identity Manager Approvals App 757

NOTE: The PRD and notification template provided in the User Application Base package are
generic. Most administrators need to modify the generic PRD and template for their specific
environments. However, we recommend that only users familiar with PRDs modify the default
templates.

Customizing the Generic Notification Template
We recommend customizing the generic email notification template for your environment. To
customize the default template to notify users they have access to the Approvals app and provide a
link to automatically configure the app:

1 Ensure your Identity Manager environment meets all necessary requirements. For more
information about prerequisites for using the Approvals app, see “Product Requirements” on
page 753.

2 In Designer, ensure you have a valid User Application driver in production. If a User
Application driver does not exist in your Designer installation, install the driver before
proceeding.

3 Upgrade the User Application Base package to the latest available version and install any
dependent packages. For information about upgrading packages in Designer, see “Upgrading
Installed Packages” (https://www.netiq.com/documentation/idm402/designer_admin/data/
packman.html#packmanupgrade), in the Designer for Identity Manager Administration Guide
(https://www.netiq.com/documentation/idm402/designer_admin/data/front.html).

4 In the Outline view, expand Default Notification Collection.
5 Right-click IDM Approval Mobile Access Granted and select Edit.
6 Modify the Subject field, if necessary.
7 In the Message field, modify the notification HTML as necessary for your environment. You can

customize the email message text sent to your users, include graphics, or change the color and
layout of the message to fit your company’s branding. The following image shows the default
email message in the template editor:
758 NetIQ Identity Manager User Application: Administration Guide

https://www.netiq.com/documentation/idm402/designer_admin/data/front.html

WARNING: If you customize or modify the default notification template, do not remove or
modify the token $idmapprovalUrl$, either in the Tokens list or in the HTML. The PRD uses the
$idmapprovalUrl$ token to provide the notification template a customized configuration link
for the requesting user.

8 When finished making any customizations, close and save the notification template.
9 In the Outline view, right-click IDM Approval Mobile Access Granted and select Live > Deploy.

10 Click Deploy.
11 Click OK.

Customizing the Generic PRD
We recommend customizing the generic PRD for your environment. You can customize the category,
workflow activities, entities, and forms. The PRD includes three forms by default:

request_form: Request form users use to request access to the Approvals app.
approval_form: Approval form managers use to approve or deny requests for access.
approval_form_prov_admin: Approval form provisioning administrators use to fix issues with
the provisioning server configuration.

To create and customize a PRD to automatically configure your users’ settings in the Approvals app:

1 In the Outline view, navigate to the User Application driver.
2 Expand User Application Driver > Provisioning Request Definitions > Accounts.
3 Right-click Request Mobile Approval Access and select Edit.
4 Modify the Display Name and Description fields, if necessary.
5 (Optional) If you want to move the PRD from the default Accounts category, click the Category

drop-down menu and select the category you want to use.

NOTE: Most users do not need to modify the Status, Flow Strategy, and Process Type fields for the
generic PRD. We recommend only advanced users modify these fields.

6 (Optional) By default, the User DAL entity does not have an attribute configure for a user’s
mobile telephone number. If you do not currently have a Mobile attribute configured for User
entities in your environment, you may need to add the attribute. Complete the following steps to
add the attribute to the entity:
6a In the Provisioning view, expand User Application Driver > Directory Abstraction Layer >

Entities.
6b Right-click User and select Edit.
6c In the Data Abstraction Layer view, expand Entities > User.
6d Right-click User and select Add Attribute.
6e In the Add Attribute window, select the mobile attribute in the Available Attributes for

Entity Class list.
6f Click Add Attribute to move the attribute to the Entity Attributes list.

6g Click OK.
6h Close and save the Data Abstraction Layer.

7 Click the Workflow tab.
8 Click Mobile Configuration (prov admin must edit these).
Configuring the Identity Manager Approvals App 759

9 Click Data Item Mapping.
10 Edit the data item mapping expressions for the Mobile Configuration workflow activity. Ensure

that the data item mapping matches the way your DAL User entity is configured.
The following image shows the workflow activity and data item mapping:

11 (Optional) If you want to modify the default Trustee rights for the PRD, complete the following
steps:
11a Click the Overview tab.
11b Click the plus icon.
11c Select the group or user you want to be able to request access to the Approvals app.

NOTE: By default, the PRD trustee rights are set to [ROOT]. This default setting allows all
users to request access to the Approvals app. Administrators can configure the trustee
rights to limit access to only certain users, if necessary.

11d Click OK.
12 (Optional) If you want to customize the default PRD request and approval forms, complete the

following steps:
12a In the Forms view, click the name of the form.
12b Modify the fields in the Form Controls window, as necessary.
760 NetIQ Identity Manager User Application: Administration Guide

12c Click the Preview icon to view the form.
12d Click OK when finished.

13 When finished, close and save the Request Mobile Approval App tab.
14 In the Outline view, right-click Request Mobile Approval App and select Sync to Package.
15 Right-click Request Mobile Approval App and select Live > Deploy.
16 Click Deploy.
17 Click OK.

A.2.3 Creating and Deploying a Custom Configuration Link
If you want to provide a “generic” set of configuration settings to any user who installs the
Approvals app, you can embed a configuration link in an HTML page on a Web server your users can
access.

Include the standard configuration link syntax in a link, as in the following example:

<a href="idmapproval://settings/
?userid=&passwordInKeychain=&host=123.112.20.109&port=8180&rbpmContext=IDMProv&
userContainer=ou=users,o=data&timeout=5&vdxUserEntity=user&vdxNameFormatAttribute=
FirstName%20LastName&
vdxFirstNameAttribute=FirstName&vdxLastNameAttribute=LastName&vdxPhotoAttribute=Us
erPhoto&vdxPhotoAttributeLdap=
photo&vdxPhoneAttribute=TelephoneNumber&vdxMobileAttribute=mobile&vdxEmailAttribut
e=Email&namingAttribute=cn&
provAdminGetTasksWorkaroundInPlace=YES">Configure Approvals App

Unless you create a custom link for one specific user, most configuration links should leave the
userid and passwordInKeychain values blank, providing the Roles Based Provisioning Module
server information and Identity Vault information users need to be able to use the app.

A user clicks the link, and the link automatically configures the app with any settings you include in
the link. The user then manually configures their Username and Password settings within the app.

A.2.4 Creating and Deploying a Custom Configuration QR Code
If your users cannot access their work email from their devices, you can create a QR code from the
Approvals app configuration link and email that code to your users.

You can use any QR code generator you want to create the code, generating the code using a
configuration link customized for your environment. Embed the code in an HTML page on a Web
server your users can access.

For the example provided in “Setting Up the Approvals App” on page 754, the QR code could look
like the following image:
Configuring the Identity Manager Approvals App 761

A user can then install the app, open the email on their work computer, and use a QR code reader on
their device to scan the code displayed on the screen.

The QR code acts as a configuration link, automatically configuring the app with any settings you
include in the link. In most environments, your users need to then manually configure their
Username and Password settings within the app.

A.3 Optimizing Designer Forms for the Approvals App
The Approvals app renders Designer forms using either native iOS controls or HTML, depending on
the complexity of each specific form. Native iOS controls provide a more standard look and feel to
forms, while HTML-rendered forms look similar to forms in the User Application interface.

When creating new forms in Designer, we recommend simplifying forms as much as possible so that
the app uses native iOS controls.

You can also configure your forms to display a more complex version of the form in the User
Application and a less complex version in the Approvals app, using the suffix _mobile.

For example, if you have an Approval activity form called approveLaptop, you can create a new
form called approveLaptop_mobile that acts as a simplified version of the original Approval activity
form. In order for data item mapping to function correctly, the _mobile form must include the same
fields as the original. We recommend you keep both versions of the form synchronized.

The following steps can help you optimize your forms so the app can render using iOS controls:

1 Ensure the Roles Based Provisioning Module server has the correct version and patch installed.
The server must have version 4.0.2 Patch B or later installed.

2 Ensure the form has no scripts.
3 Ensure the form contains only fields with the following supported data types and control types:

boolean: any control type
date: any control type
time: any control type
decimal or integer: Text control type only
dn: DNDisplay or read-only MVEditor control types only
string: Text, Password, Title, TextArea, or read-only MVEditor control types only

For more detailed information about creating forms in Designer, see “Creating Forms for a
Provisioning Request Definition,” in the User Application: Design Guide.

A.4 Understanding Language Support in the Approvals App
The Approvals app includes localized text for all built-in text strings. For example, the titles
displayed at the top of a view within the app are available in multiple languages, depending on the
user’s locale. Approvals app strings are provided in the following languages, by default:

Chinese (Simplified)
Chinese (Traditional)
Danish
Dutch
762 NetIQ Identity Manager User Application: Administration Guide

https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#prdefcreateformschapter
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#prdefcreateformschapter
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#bookinfo

English
French
German
Italian
Japanese
Portuguese (Brazilian)
Russian
Spanish
Swedish

As an administrator, you can also localize the form text displayed in the Approvals app. For example,
the Approvals app does not provide localized text for specific Approval tasks. You must localize text
strings for each of your PRDs, including form text, using Designer. For information about localizing
objects in Designer, see “Localizing Provisioning Objects,” in the User Application: Design Guide.
Configuring the Identity Manager Approvals App 763

https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#pallocalizingdisplaylabels
https://www.netiq.com/documentation/idm402/pdfdoc/dgpro/dgpro.pdf#bookinfo

764 NetIQ Identity Manager User Application: Administration Guide

B BSchema Extensions for the User
Application

This section describes the schema extensions used by the User Application. It includes these sections:

Section B.1, “Attribute Schema Extensions,” on page 765
Section B.2, “Objectclass Schema Extensions,” on page 768
Section B.3, “Resource Definition Object (nrfResource),” on page 769
Section B.4, “Resource Request Object (nrfResourceRequest),” on page 770
Section B.5, “Role-Resource Configuration (nrfConfiguration),” on page 772
Section B.6, “Resource Binding to Users (nrfIdentity),” on page 772
Section B.7, “Resource Containers,” on page 772

B.1 Attribute Schema Extensions

Attribute Name Description

srvprvAllowMgrInitiate A flag that indicates if the manager is allowed to
initiate a provisioning request.

srvprvAllowMgrRetract A flag to indicate if the manager is allowed to retract a
provisioning request.

srvprvAllowMgrSetAvailability A flag that indicates whether the manager can set a
proxy for the team.

srvprvAllowMgrSetDelegate A flag to indicate if the manager is allowed to set
delegates for a provisioning request.

srvprvAllowMgrSetProxy A flag to indicate if the manager is allowed to set a
team proxy.

srvprvAllowMgrTaskClaim A flag to indicate if the manager is allowed to claim a
provisioning approval task.

srvprvAllowMgrTaskReassign A flag to indicate if the manager is allowed to reassign
a provisioning approval task.

srvprvAllRequests A flag to indicate if the assignment covers all
provisioning request definitions for a team.

srvprvAOLIMAddress AOL IM address.

srvprvAssetRef Representation of the aggregate asset properties for a
named asset associated to a user via the
srvprvAssetRecipientAux class.
Schema Extensions for the User Application 765

srvprvAssignExpiration Time at which a proxy or delegate assignment expires.

srvprvAssignFromContainer Container subjects of a proxy or delegate assignment.

srvprvAssignFromGroup Group subjects of a proxy or delegate assignment.

srvprvAssignFromUser User subjects of a proxy or delegate assignment.

srvprvAssignStartTime Time at which a delegation assignment takes effect.

srvprvAssignToRelationship A target relationship of a delegate assignment.

srvprvAssignToUser The User targets of a proxy or delegate assignment.

srvprvAutoDisplayTeam Automatically display team members.

srvprvCapabilities1-5 Listing of skills for a user.

srvprvCategoryKey Associates a given Provisioning Request Definition to
a set of provisioning categories. Values are keys to a
srvprvChoice instance.

srvprvCurrentDelegatees The delegations associated with a user.

srvprvCurrentDelegators The delegations associated with a user.

srvprvDefaultTheme The default theme.

srvprvDelegateeDef The delegates definition DN.

srvprvDelegationDef The delegation definition DN.

srvprvDelegators The users who are defined as delegators by this
assignment.

srvprvEntitlementRef Reference to a DirXML-Entitlement.

srvprvEntityType Specifies Directory Abstraction Layer Entity definition
type.

srvprvFlowStrategy Specifies the flow invocation strategy to be used for
the Provisioning Request Definition.

srvprvGrant Flag which if true specifies that the Provisioning
Request Definition supports a Grant operation.

srvprvGroupwiseIMAddress Groupwise IM address.

srvprvHideAttributes Flag indicating if certain attributes should be hidden
and not displayed.

srvprvHideUser Flag indicating if the user should be hidden when
search list queries are executed.

srvprvIMAddress Instant Messenger address.

srvprvIsTaskManager Indicates if user is a task group manager.

srvprvLocalizedDescrs Provides set of localized description strings for the
provisioning web applications, Designers and
iManager.

Attribute Name Description
766 NetIQ Identity Manager User Application: Administration Guide

srvprvLocalizedNames Provides set of localized display name strings for the
provisioning web applications, Designers and
iManager.

srvprvManager Indicates users who are managers.

srvprvManagerGroup Indicates a group containing managers.

srvprvManagerNotMember Indicates that the manager is not a member of the
team.

srvprvMember Indicates users who are team members.

srvprvMemberContainer The name of the container containing team members.

srvprvMemberGroup The name of the group containing team members.

srvprvMemberRelationship The name of the directory abstraction layer
relationship that determines members based attribute
in manager object.

srvprvModified Flag to indicate changes to definitions object
instances in the directory model container.

srvprvNotificationPrefs Defines the set of notification types users want to
receive.

srvprvPreferredLocale Users preferred locale.

srvprvProcessXML XML document representing a Provisioning process
definition including Workflow and Provisioning Action.

srvprvQueryList List of saved query/search criteria.

srvprvRelationship Defines relationships between objects in the identity
vault.

srvprvRequest Exposes one item to be granted or revoked, including
the workflow process which defines the run-time
aspects of the Workflow and Provisioning Target.

srvprvRequestDefName The provisioning request definition name associated
with a delegate definition.

srvprvRequestScope The scope of provisioning requests.

srvprvRequestXML XML document representing the initial request form
and its data bindings.

srvprvRevoke If true, this flag specifies that the Provisioning Request
Definition supports a Revoke operation.

srvprvStatus Specifies the status of the Provisioning Object
Supported values.

srvprvTaskGroups Groups for which the user is a task manager.

srvprvTaskManager Task manager of the task group.

srvprvTaskScopeAddressee The addressee’s task scope.

srvprvTaskScopeRecipient The recipient’s task scope.

srvprvTeam The container for team definitions.

Attribute Name Description
Schema Extensions for the User Application 767

B.2 Objectclass Schema Extensions

srvprvUser The users associated with a delegation assignment.

srvprvUUID Unique identifier for portlet.

srvprvYahooIMAddress Yahoo* IM address.

Attribute Name Description

Objectclass Name Description

srvprvAppConfig Container for application configuration objects of the
Provisioning System to which its DirXML-Driver
parent connects.

srvprvAppDefs Container for configuration objects used to initialize
the Provisioning run-time environment, such as
themes for the Identity Portal.

srvprvAssetRecipientAux Records the provisioning of non-IT assets on a user.

srvprvChoice Enumeration of values that can be assigned to a
particular attribute, used in a query, for use in the
Identity Portlets and other Web Application
components.

srvprvChoiceDefs Container for Directory Abstraction Layer Choice
definitions, to be exposed by the Identity Portlets and
Web Applications.

srvprvDelegateeAssignment Delegates assignment definition.

srvprvDelegateeDefs Container for delegates definitions.

srvprvDelegationAssignment Delegation or availability assignment definition.

srvprvDelegationDefs Container for delegation and delegators definitions.

srvprvDelegatorAssignment Delegation or availability assignment definition.

srvprvDirectoryModel Container for Directory Abstraction Layer meta-level
objects, selected contents of the directory to be
exposed by the Identity Portlets and Web
Applications.

srvprvDirectoryModelConfig Runtime Directory Abstraction Layer configuration
parameters.

srvprvEntity Defines a view of selected attributes for defined
classes in the directory, used by the Identity Portlets
and other Web Application components.

srvprvEntityAux Standard ObjectClass.

srvprvEntityDefs Container for Directory Abstraction Layer Entity
definitions, to be exposed by the Identity Portlets and
Web Applications.

srvprvProxyAssignment Proxy assignment definition.
768 NetIQ Identity Manager User Application: Administration Guide

B.3 Resource Definition Object (nrfResource)
The schema object that contains provisioning resource definitions.

srvprvProxyDefs Container for proxy definitions.

srvprvQuery Directory abstraction layer query definition.

srvprvQueryDefs Container for directory abstraction layer query
definition.

srvprvRelationship Defines relationships between objects in the
directory, for use in the Identity Portlets and other
Web Application components.

srvprvRelationshipDefs Container for Directory Abstraction Layer
Relationship definitions, to be exposed by the Identity
Portlets and Web Applications.

srvprvRequest Exposes one item to be granted or revoked, including
the workflow process which defines the run-time
aspects of the Workflow and Provisioning Target.

srvprvRequestDefs Container for Provisioning Request Definitions, the
set of items to the Web Application run-time.

srvprvResource Defines the set of directory assignments to execute
for a provisioning fulfillment operation (either Grant or
Revoke).

srvprvResourceDefs Container for Provisioning Target definitions,
including design-time descriptions plus any template
or unused targets.

srvprvService Describes how to invoke a specific Web Service from
an Workflow This includes specification of input and
return values.

srvprvServiceDefs Container for Service Definition objects, which wrap
Web Services called by Workflows.

srvprvTaskGroupAux Service provisioning task group.

srvprvTeam Team for provisioning request management.

srvprvTeamDefs Container for team definitions.

srvprvTeamRequest Team provisioning requests.

srvprvTheme Theme Object.

srvprvUserAux Service provisioning user entity.

srvprvWebAppConfig Web Application configuration object.

srvprvWorkflow Defines the network of activities including traversal
conditions to be executed in order to obtain approval
for a provisioning action.

srvprvWorkflowDefs Container for Workflow objects, including design-time
descriptions plus any template or unused flows.

Objectclass Name Description
Schema Extensions for the User Application 769

Table B-1 Resource Definition Object Schema Definition

B.4 Resource Request Object (nrfResourceRequest)
The schema object whose instances contain a resource request object. The resource request object is
used by the resource driver to provision the resource.

Table B-2 Resource Request Object Sechema Definition

Attribute Name Description

nrfLocalizedName The localized name of the resource.

nrfLocalizedDescrs The localized description of the resource.

Owner The owner of the resource. It is the DN of an inetOrgPerson user.

nrfRequestDefGrant Provisioning request definition used for approving the granting of a
resource assignment.

nrfRequestDefRevoke Provisioning request definition usef for approving the revocation of a
resource assignment.

nrfEntitlementRef IDM entitlement associated with the resource. Supports embedding of
dynamic parameter macros to allow users to specify values at request
time.

nrfApprovers Resource approvers. Order of approvers is maintained by an integer in
the second element.

nrfQuorum Used to support quorum approvals in tempated PRDs. This is the
quorum condition. Can be percentage or number of approvers required.

nrfDynamicParameters XML document that describes allowable parameter values that can be
specified at request time when the resource is being granted.

nrfCategoryKey Used to categorize resource.

nrfAllowAprOveride Allow requesting system (such as role provisioning) to override approval
of the resource provisioning.

nrfAllowMulti Allow the resource to be assigned to the same user multiple times.

Attribute Description

nrfRequestDate Date-time resource request started.

nrfCategory 10-Resource To User Add

15 - Resource to User Remove

nrfResource DN of resource to grant or revoke.

nrfEntitlementRef Entitlement reference value of the resource being granted. This value is
copied from the resource definition with parameter values populated at the
time of the request.

nrfTargetDN DN of user who will be granted the resource or from whom the resource will
be revoked.

nrfRequester DN of user or role that requested assignment.
770 NetIQ Identity Manager User Application: Administration Guide

B.4.1 Resource Request Status Codes (nrfStatus)

Table B-3 Valid Resource Request (nrfStatus) Status Codes

nrfStatus Status of request. Valid codes are described in Section B.4.1, “Resource
Request Status Codes (nrfStatus),” on page 771.

nrfDescription Description/Comment of the resource request.

nrfRequestDef Provisioning request definitoin used for approving the role

nrfApprovers Resource approvers. Order of approvers can be maintained by an integer
in the second element.

nrfQuorum Used to support quorum approvals in templated PRDs. The quorum
condition can be percentage or numbers of approvers required.

nrfApprovalInfo Holds approval data needed by resource view and reports.

nrfApprovalProcessid Workflow process instance ID for resource assignment approval.

Attribute Description

Status
Code

Key Description

01 New Request Initial value when request is created

12 Approval_Retry

13 Pending_Approval_RETRY

15 Approval Pending Set by driver after successful
assignment/revocation workflow.

20 Approved Set by resource assignment/
revocation workflow when approved.

30 Provision/Deprovision Set by driver after all necessary
approvals have been approved and
role activation time has been
reached.

50 Provisioned/Deprovisioned Set by driver after role has been
provisioned or deprovisioned.

70 Cancel Request cancellation

75 Cancelled Cancellation request completed.

80 Provisioning Error Set by driver when an error occurred
during provisioning or
deprovisioning.

95 DeniedSet Set by assignment/revocation
workflow when approved.

100 CleanupSet When nrfResourceRequest
workflow should be deleted.
Schema Extensions for the User Application 771

B.5 Role-Resource Configuration (nrfConfiguration)
Table B-4 Role-Resource Configuration Object Schema

B.6 Resource Binding to Users (nrfIdentity)
Table B-5 Resource Binding to Users Object Schema

B.7 Resource Containers
ResourceRequests (nrfResourceRequests): A container objects that persists resource requests.

ResourceDefs (nrfResourceDefs): A container object that persists the definition of a resource.

Attribute Definition

nrfResourceRequestContainer Root container for resource requests.

nrfResourcesContainer Root container for resource definitions.

nrfResourceRevokeRequestDef Default PRD for approving resource
revocations

nrfResourceGrantRequestDef Default PRD for approving resource
assignments.

Attribute Description

nrfResource Currently assigned and assigned
resources. Attribute contains DN for the
resource DN, the binding state of the
resource, and the cause of the assignment
and approval information.

nrfResourceHistory Contains historical information about each
resource grant, revocation, denial.
Contains the resource as well as XML that
contains the resource binding state,
(0=inactive, 1=active, 2=pending, 3=
deactivated). The XML also contains the
entitlement reference value used to grant
the entitlement, grant history (who and
when), and revocation history (similar to
approval information)
772 NetIQ Identity Manager User Application: Administration Guide

C CJavaScript Search API

The underlying framework for the Identity Manager User Application supports a JavaScript API for
executing searches that access the Directory Abstraction Layer. This API lets you build, save, and
execute queries from a JSP page running outside of the User Application itself. To run a query, you
can invoke the services of the SearchListPortlet, passing parameters that specify the search criteria
and formatting options. Alternatively, you can run a search by using the API directly without
involving the SearchListPortlet.

This document covers the following topics:

Section C.1, “Launching a Basic Search using the SearchListPortlet,” on page 773
Section C.2, “Creating a New Query using the JavaScript API,” on page 777
Section C.3, “Performing an Advanced Search Using a JSON-formatted Query,” on page 780
Section C.4, “Retrieving all Saved Queries for the Current User,” on page 780
Section C.5, “Running an Existing Saved Query,” on page 781
Section C.6, “Performing a Search on All Searchable Attributes,” on page 781

C.1 Launching a Basic Search using the SearchListPortlet
To perform a basic search, you can specify a deep link to the SearchListPortlet from a JSP page. The
URL for the portlet must either pass a simple set of request parameters that specify the search criteria,
or pass a JSON-formatted query string. A basic search defines a single search criterion, such as the
following:

First Name starts with A

To launch a search, you can call the single portlet render url for the SearchListPortlet. You must pass
the request parameter MODE=MODE_RESULTS_LIST

C.1.1 Passing Request Parameters
You can pass a simple set of request parameters to the SearchListPortlet. These parameters specify an
entity, an attribute to search on, an operator, and a search string. The following script shows the URL
for the portlet, as well as the four request parameters you need to use:
JavaScript Search API 773

<script type="text/javascript">
function openSearchResults(extraUrlParams) {
 var url = "/IDMProv/portal/portlet/SearchListPortlet?";
 url += "urlType=Render&novl-regid=SearchListPortlet";
 url += "&novl-inst=IDMProv.SearchListPortlet";
 url += "&wsrp-mode=view&wsrp-windowstate=normal";
 url += "&MODE=MODE_RESULTS_LIST&";
 url += extraUrlParams;
 var feat = "width=700,height=600";
 feat += ",menubar=no,resizable=yes,toolbar=no,scrollbars=yes";
 var win = window.open(url, "TestSearchPopup", feat);
 if (win) win.focus();
}

var search1a = "ENTITY_DEF=user";
search1a += "&COND_ROW_ATTR=FirstName";
search1a += "&COND_ROW_REL_OP=starts-with";
search1a += "&COND_ROW_VAL=A";
...

To call this function, you might have a button on the form with onclick event that looks like this:

<input type="button" value="GO" onclick="openSearchResults(search1a)"/>

The following table describes the request parameters:

Table C-1 Request Parameters for Basic Search

Request Parameter Description

ENTITY_DEF Specifies the key value for an entity in the Directory
Abstraction Layer.

COND_ROW_ATTR Specifies the attribute to search on.
774 NetIQ Identity Manager User Application: Administration Guide

C.1.2 Using a JSON-formatted String to Represent a Query
If you prefer to format your query as a JSON string, you need to pass the QUERY parameter to the
SearchListPortlet, instead of the request parameters described in the section above. The JavaScript
variable shown below illustrates how the QUERY parameter is constructed:

var search1b ='QUERY={"k":"Lastname starts with B","mxPg":"10",';
search1b +='"mxRes":"0","ptr":"1","grp":[{"map":{"row":[{"map":{';
search1b +='"rowRop":"starts-with","rowVal":"B","rowAttr":"LastName"';
search1b +='}}],"rowLop":"and"}}],';
search1b +='"orderBy":"LastName","entDef":"user",';
search1b +='"sScope":"","sRoot":"","grpLop":"and",';
search1b +='"selAttr":["FirstName","LastName",';
search1b +='"Title","Email","TelephoneNumber"]}';

The JSON structure gives you a way to specify values for most of the settings and preferences
associated with the SearchListPortlet.

The following table describes the JSON name/value pairs that define the QUERY parameter passed to
the SearchListPortlet:

COND_ROW_REL_OP Specifies the operator to use in the search expression.
The following operators are supported for attributes of
type string, boolean, integer, time, dn_lookup,
dynamic_list, and static_list:

equals
present
not_equals
not_present

The following operators are supported for attributes of
type string:

starts_with
ends_with
contains
not_starts_with
not_ends_with
not_contains

The following operators are supported for attributes of
type integer and time:

greater
greater_or_equal
less
less_or_equal
not_greater
not_greater_or_equal
not_less
not_less_or_equal

COND_ROW_VAL The value to search on.

Request Parameter Description
JavaScript Search API 775

Table C-2 JSON Structure for Defining the QUERY Parameter

The following table describes the JSON structure for defining a condition group:

Table C-3 JSON Structure for Defining a Condition Group

The following table describes the JSON structure for defining a condition row:

Table C-4 JSON Structure for Defining the Fields for a Condition Row

JSON Setting Description

k Specifies a name for the search. (Optional)

mxPg Specifies the maximum number of rows per page.
(Optional)

mxRes Specifies the maximum number of total rows retrieved.
(Optional)

ptr Sets the scroll pointer, which defines the pagination
offset. (Optional)

grp Defines a condition group. You can specify one or
more condition groups. For details on the settings for a
condition group, see Table C-3 on page 776.

orderBy Specifies the attribute to sort on. (Optional)

entDef Specifies an entity in the Directory Abstraction Layer.

sScope Sets the search scope. (Optional)

sRoot Sets the search root. (Optional)

grpLop Defines the logical operator (and or or) for groups
within this query.

selAttr Lists the attributes to include in the search results.

JSON Setting Description

row Defines a condition row. You can specify one or more
condition rows. For details on the settings for a
condition row, see Table C-4 on page 776.

rowLop Defines the logical operator (and or or) for rows within
this group.

JSON Setting Description

rowRop Defines the relational operator. The relational
operators supported in JSON are the same as those
for basic searches using request parameters. For a
complete list of the relational operators, see the
description of COND_ROW_REL_OP in Table C-1 on
page 774.

rowVal Sets the search value.
776 NetIQ Identity Manager User Application: Administration Guide

C.2 Creating a New Query using the JavaScript API
As an alternative to using the basic search request parameters, or the JSON structure, you can call a
JavaScript API to execute queries. This section describes some simple techniques for using the API, as
well as reference documentation for the API.

The search API relies on the ajax framework embedded in the User Application component named
JUICE. JUICE (JavaScript UI Controls and Extensions) is compliant with and uses the dojo library.
JUICE is merged into the dojo release used in the User Application.

Therefore, to use JUICE on a custom page within the IDM User Application WAR file, you need to
have a script reference to dojo.js (not to JUICE). After adding the reference to dojo.js, you can add a
JavaScript line to tell dojo to download JUICE.

Before using the JavaScript API, you need to perform some setup steps on the page to make the dojo
module available for use:

1 Add a script tag for dojo.js in the HTML header. The reference to dojo.js must be in the header
(not the body), as shown below.

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>JavaScript Search</title>
<script type="text/javascript">
 if(typeof dojo=="undefined"){
 var djConfig={isDebug: false,
 baseScriptUri: "/IDMProv/javascript/dojo/"};
 var buf="<script type='text\/javascript' ";
 buf+="src='/IDMProv/UIQuery?js=dojo\/dojo.js'><\/script>";
 document.writeln(buf);
 }
</script>
</head>

2 Add this JavaScript statement to load JUICE into the browser’s memory:

<script type="text/javascript">
 //This line must precede any code using JUICE.
 dojo.require("JUICE.*");
</script>

3 To take advantage of the JUICE.IDM services, which include entity searching, also add this
JavaScript statement:

<script type="text/javascript">
 //This line must precede any code using JUICE.IDM services.
 dojo.require("JUICE.IDM.*");
</script>

To build the query, you need to call the create() method on the JUICE.IDM.Entities.Search object,
passing in the name you want to give to the query. The create() method is a static method. Here’s how
you invoke it:

var newQuery = JUICE.IDM.Entities.Search.create("My New Search");

rowAttr Specifies the attribute to search on.

JSON Setting Description
JavaScript Search API 777

Once you’ve created the query object, you can call methods on this object to define the basic settings
for the query, as well as the condition groups and condition rows. The query structure you create
with the JavaScript API follows the model of the JSON representation. After you’ve created the query
object you append it to the QUERY request parameter.

The JavaScript example shown below illustrates how you use the JavaScript API to build a query:

function buildQuery3() {
 var newQuery = JUICE.IDM.Entities.Search.create("My New Search");
 newQuery.setFrom("user");
 var selAttrs = ["FirstName","LastName"];
 newQuery.setSelects(selAttrs);
 var newCondGrp1 = newQuery.addConditionGroup();
 var newCondRow1_1 = newCondGrp1.addConditionRow();
 newCondRow1_1.setRowAttr("FirstName");
 newCondRow1_1.setRowRop("contains");
 newCondRow1_1.setRowVal("C");
 openSearchResults("QUERY=" + newQuery);
}

C.2.1 JavaScript API
This section provides reference documentation for the JavaScript API for searching entities in the
Directory Abstraction Layer.

The following table describes the static methods for the JUICE.IDM.Entities.Search object:

Table C-5 Static methods for JUICE.IDM.Entities.Search

The following table describes the methods for the Query object:

Table C-6 Methods for the Query object

Method Description

<Query> create(searchName) Creates a new Query with the searchName

<void> load(uuid) Loads a user's saved search with the uuid

 <Query> get(uuid) Returns the user's saved search with uuid as a Query

<String[]> getNames() Returns the names of all the logged in user's saved
searches

<String> getUUID(searchName) Returns the uuid of the saved search with the
searchName

 Method Description

 <void> setKey(searchName) Sets the searchName

 <void> setFrom(defKey) Sets the from entity-definition

 <void> setSelects(attrKey[]) Sets the selects (optional, if using SearchListPortlet)

 <void> setSearchScope(scp) Sets the search scope (optional)

 <void> setSearchRoot(rt) Sets the search root (optional)

 <void> setMaxPage(int) Sets the max rows per page (optional)
778 NetIQ Identity Manager User Application: Administration Guide

The following table describes the methods for the CondGroup object:

Table C-7 Methods for the CondGroup object

The following table describes the methods for the CondRow object:

 <void> setMaxResults(int) Sets the max rows in total (optional)

 <void> setOrderBy(attrKey) Sets the sort (optional)

 <void> setPointer(int) Sets the pagination offset (optional)

 <void> setGroupLop(lop) Sets the inter-group logical operator

 <String> getKey() Gets the searchName

 <String> getFrom() Gets the from entity-definition

 <String> getSelects() Gets the selects

 <String> getSearchScope() Gets the search scope

 <String> getSearchRoot() Gets the search root

 <int> getMaxPage() Gets the max rows per page

 <int> getMaxResults() Gets the max rows in total

 <String> getOrderBy() Gets the sort

 <int> getPointer() Gets the pagination offset

 <String> getGroupLop() Gets the inter-group logical operator

 <int> nbConditionGroups Returns the number of condition groups

 <CondGroup> addConditionGroup Creates and returns a new condition group
(CondGroup object) appended to the query

 <void> removeConditonGroup(i) Removes the condition group at i

 <CondGroup> getConditonGroup(i) Returns the condition group at i

Method Description

<void> setRowLop(lop) Sets the intra-group logical operator

 <String> getRowLop() Gets the intra-group logical operator

<int> nbConditionRows() Returns the number of condition rows

<CondRow> addConditionRow() Creates and returns a new condition row appended to
the condition group

<void> removeConditionRow(i) Removes the condition row at i

<CondRow> getConditionRow(i) Returns the condition row at i

 Method Description
JavaScript Search API 779

Table C-8 Methods for the CondRow object

C.3 Performing an Advanced Search Using a JSON-formatted
Query
You can use the QUERY parameter to perform an advanced search using JSON. The JSON syntax
rules are the same as those for the basic search. The only difference is that an advanced search
typically defines multiple condition groups and condition rows. The JavaScript variable shown
below illustrates how the QUERY parameter might be constructed for a search that uses several
condition groups and condition rows:

var search2 = 'QUERY={"k":"Complicated Search All
OK","mxPg":"10","mxRes":"0","ptr":"1","grp":[{"map":{"row":[{"map":{"rowRop":"equa
ls","rowVal":"cn=bg1,ou=groups,ou=idmsample,o=novell","rowAttr":"group"}},{"map":{
"rowRop":"contains","rowVal":"0","rowAttr":"FirstName"}}],"rowLop":"and"}},{"map":
{"row":[{"map":{"rowRop":"not-
present","rowVal":"","rowAttr":"TelephoneNumber"}},{"map":{"rowRop":"equals","rowV
al":"cn=ablake,ou=users,ou=idmsample,o=novell","rowAttr":"directReports"}},{"map":
{"rowRop":"equals","rowVal":"cn=cnano,ou=users,ou=idmsample,o=novell","rowAttr":"m
anager"}}],"rowLop":"and"}},{"map":{"row":[{"map":{"rowRop":"not-
present","rowVal":"","rowAttr":"TelephoneNumber"}},{"map":{"rowRop":"equals","rowV
al":"cn=ablake,ou=users,ou=idmsample,o=novell","rowAttr":"directReports"}},{"map":
{"rowRop":"equals","rowVal":"cn=cnano,ou=users,ou=idmsample,o=novell","rowAttr":"m
anager"}}],"rowLop":"and"}}],"orderBy":"LastName","entDef":"user","sScope":"","sRo
ot":"","grpLop":"or","selAttr":["FirstName","Title","Email","TelephoneNumber"]}';

For details on each of the JSON settings, see Section C.1.2, “Using a JSON-formatted String to
Represent a Query,” on page 775.

C.4 Retrieving all Saved Queries for the Current User
You can use the JavaScript API to retrieve all saved queries for the user who is currently logged on.
To do this, you need to call the getNames() static method on the JUICE.IDM.Enities.Search object.

The following JavaScript example illustrates the procedure for retrieving all saved queries for the
current user:

function query4GetSavedQueries() {
 var searchNames = JUICE.IDM.Entities.Search.getNames();
 var replaceDiv = document.getElementById("savedQueryNames");
 replaceDiv.innerHTML = searchNames;
}

Method Description

<void> setRowAttr(attrKey) Sets the attribute

<void> setRowRop(rop) Sets the relational operator.

<void> setRowVal(val) Sets the search value

<String> getRowAttr() Gets the attribute

<String> getRowRop() Gets the relational operator

<String> getRowVal() Gets the search value
780 NetIQ Identity Manager User Application: Administration Guide

C.5 Running an Existing Saved Query
You can use the JavaScript API to execute a saved query. Before you execute a saved query, you need
to perform the following JavaScript statement to retrieve the saved queries (as described in the
previous section):

JUICE.IDM.Entities.Search.getNames();

You need to call getNames() first, even if you know the name of the saved search you want to run.

After calling the getNames() function, you need to perform these steps to execute the saved search:

1 Call the getUUID() method to access the UUID associated with the search name.
2 Call the load() method on the JUICE.IDM.Entities.Search object to load the saved query with the

UUID.
3 Call the get() method to retrieve the saved query structure.

All of these methods are static methods.

Once you have the query structure, you can use it to construct a QUERY request parameter.

The following JavaScript example illustrates the procedure for launching a saved query:

function runQuery4() {
 var textField = document.getElementById("savedQueryToRun");
 var queryName = textField.value;
 var queryUUID = JUICE.IDM.Entities.Search.getUUID(queryName);
 JUICE.IDM.Entities.Search.load(queryUUID);
 var myQuery = JUICE.IDM.Entities.Search.get(queryUUID);

 openSearchResults("QUERY=" + myQuery);
}

C.6 Performing a Search on All Searchable Attributes
You can use the JavaScript API to search all of the searchable attributes for an entity. This type of
search only applies to attributes that have a type of string. Therefore, it does not work with DN, date,
integer, boolean, and so forth.

To perform a search on all searchable attributes, you create a query object in the same manner that
you would using other search techniques (as described above). Then you need to get the list of
attributes for an entity definition by calling JUICE.IDM.Definition.load(). Once you have the list of
attributes, you need to verify that each attribute is a string and is searchable. For each attribute that is
a string and is searchable, you can now add a condition row by calling the addConditionRow()
method on the condition group object. When all condition rows have been added, you can execute
the search.

The following JavaScript example illustrates how to perform a search on all searchable attributes.
JavaScript Search API 781

function buildQuery5() {
 var searchStr = document.getElementById("query5Text").value;
 if (searchStr == "") {
 alert("Enter a search string in the text field.");
 return;
 }
 var newQuery = JUICE.IDM.Entities.Search.create("My New Search");
 var entDef = "user";
 newQuery.setFrom(entDef);
 var selAttrs = new Array();
 selAttrs.push("FirstName");
 selAttrs.push("LastName");
 newQuery.setSelects(selAttrs);
 var newCondGrp1 = newQuery.addConditionGroup();
 newCondGrp1.setRowLop("or");

 //get all the searchable attributes of entity-definition user that are type
string (excludes DN, date, integer, boolean, etc)
 JUICE.IDM.Definitions.load(entDef);
 var attrKeys = JUICE.IDM.Definitions.getAttributeKeys(entDef);
 for (var i = 0; i < attrKeys.length; i++) {
 var attrDef = JUICE.IDM.Definitions.getAttribute(entDef, attrKeys[i]);
 var attrType = attrDef.getType();
 var searchable = attrDef.isSearchable();

 if (attrType == "String" && searchable) {
 var newCondRow = newCondGrp1.addConditionRow();
 newCondRow.setRowAttr(attrKeys[i]);
 newCondRow.setRowRop("contains");
 newCondRow.setRowVal(searchStr);
 }
 }
 openSearchResults("QUERY=" + newQuery);
}

782 NetIQ Identity Manager User Application: Administration Guide

D DTrouble Shooting

This section describes tips for working around common errors. It includes:

Section D.1, “Permgen Space Error,” on page 783
Section D.2, “E-Mail Notification Templates,” on page 783
Section D.3, “Org Chart and Guest Access,” on page 783
Section D.4, “Provisioning Notification,” on page 784
Section D.5, “javax.naming.SizeLimitExceededException,” on page 784
Section D.6, “Linux Open Files Error,” on page 785

D.1 Permgen Space Error
You might encounter the following error when you redeploy the User Application:

11:32:20,194 ERROR [[PortalAggregator]] Servlet.service() for servlet
PortalAggregator threw exception java.lang.OutOfMemoryError: PermGen space

To avoid this error, either:

Restart the JBoss server.

or

Or, increase the PermSpace value by passing -XX:MaxPermSize to the Java virtual machine by
means of JAVA_OPTS in the start-jboss script, for example:

-XX:MaxpermSize=128m

D.2 E-Mail Notification Templates
If your e-mail notification templates are displaying in a single language and not in the user’s default
locale as you expect, check to see what notification template is selected. You can select a default
template or a localized version of the template. When you select a localized template, the language of
the localized template is used regardless of the user’s default language. When you select the default
template (the template without a locale code), the e-mail is in the user’s default language (if the
default is a supported language).

D.3 Org Chart and Guest Access
If you encounter an error like this at runtime, then you must modify the service definitions in the
User Application WAR:
Trouble Shooting 783

error: "an error occurred Control instantiation of JUICE.OrgChartCtrl failed
(Object doesn't support this property or method). Please contact your system
administrator. Detailed information can be found in the console." when accessing
the portlet in a browser.

To learn more about fixing this message, see Section 12.3, “Configuring Org Chart for Guest Access,”
on page 349.

D.4 Provisioning Notification
If the Notify Other Users of these Changes check box does not display on the following pages:

Edit Availability
My Proxy Assignments
My Delegate Assignments
Team Proxy Assignments
Team Delegate Assignments
Team Availability

Verify that Email Notification templates have been defined. You define them through the
Administration > RBPM Provisioning and Security > Delegation and Proxy.

D.5 javax.naming.SizeLimitExceededException
If you encounter a javax.naming.SizeLimitExceededException when you use the Administration >
Page Admin > Set As Default, you might have encountered a maximum size limit. You can modify this
limit in the PortalGroupPageDefaults portlet settings in the portlet.xml as follows:

<portlet>
 <portlet-name>PortalGroupPageDefaults</portlet-name>
 <portlet-class>
com.novell.afw.portal.portlet.core.permission.PortalGroupPageDefaults
</portlet-class>
 <init-param>
 <name>MIN_CACHE_SIZE</name>
 <value>20</value>
 </init-param>
 <init-param>
 <name>MAX_CACHE_SIZE</name>
 <value>200</value>
 </init-param>
 <init-param>
 <name>PAC_MAX_RESULTS</name>
 <value>2000</value>
 </init-param>
 ...
</portlet>

If you have more than 200 groups and want to assign groups to the View permissions for the Page
Admin tab, you also need to update the settings for the PortalUserGroupSelection portlet. Modify
this limit in the portlet.xml as follows:
784 NetIQ Identity Manager User Application: Administration Guide

<portlet>
 <portlet-name>PortalUserGroupSelection</portlet-name>
 <portlet-class>
com.novell.afw.portal.portlet.core.permission.PortalUserGroupSelection
</portlet-class>
 <init-param>
 <name>MIN_CACHE_SIZE</name>
 <value>20</value>
 </init-param>
 <init-param>
 <name>MAX_CACHE_SIZE</name>
 <value>200</value>
 </init-param>
 <init-param>
 <name>PAC_MAX_RESULTS</name>
 <value>2000</value>
 </init-param>
 ...
</portlet>

Redeploy the User Application after you make your changes.

D.6 Linux Open Files Error
If you run the User Application on Linux, you might encounter a Too Many Open Files Error.

Linux allows 1024 open files for each process, but the User Application often requires more. Novell
suggests increasing the number of open files to 4096 to avoid the Too Many Open Files error.

Use the ulimit command to increase the number of open files. There are some restrictions on ulimit
for non-root users. Here is an example of how you can use the ulimit command to increase the
number of open files to 4096 for a non-root user:

1 Log in as root.
2 Edit the file /etc/security/limits.conf. Add an entry for the user named smith and allow nofile up

to 4096:

smith hard nofile 4096

3 Log in as user smith and pass 4096 to the ulimit -n command. You can issue the command
again with no argument to see the current value:

smith@myhost:~> ulimit -n 4096
smith@myhost:~> ulimit -n

You might want to specify ulimit in the user environment or the start-jboss script so that the new
value is always used.
Trouble Shooting 785

786 NetIQ Identity Manager User Application: Administration Guide

	NetIQ Identity Manager User Application: Administration Guide
	About This Guide
	I Overview
	1 Introduction to the User Application
	1.1 About the User Application
	1.1.1 About Identity Self-Service
	1.1.2 About Roles-Based Provisioning
	1.1.3 About Resource-Based Provisioning
	1.1.4 About Workflow-Based Provisioning
	1.1.5 About Compliance

	1.2 User Application Architecture
	1.2.1 User Interface
	1.2.2 Directory Abstraction Layer
	1.2.3 Workflow Engine
	1.2.4 SOAP Endpoints
	1.2.5 Application Server (J2EE-Compliant)
	1.2.6 Database
	1.2.7 User Application Driver
	1.2.8 Role and Resource Service Driver
	1.2.9 Designer for Identity Manager
	1.2.10 iManager
	1.2.11 Identity Manager Engine
	1.2.12 Identity Vault
	1.2.13 Novell Identity Audit

	1.3 User Application User Types
	1.3.1 Administrative Users
	1.3.2 Domain Administrators, Domain Managers, and Team Managers
	1.3.3 Designers
	1.3.4 Business Users

	1.4 Design and Configuration Tools
	1.5 What’s Next

	II Configuring the User Application Environment
	2 Designing the Production Environment
	2.1 Topology
	2.1.1 Design Constraints
	2.1.2 High Availability Design

	2.2 Security
	2.2.1 Security Overview
	2.2.2 Enabling SSL
	2.2.3 Turning on SOAP Security
	2.2.4 Mutual Authentication
	2.2.5 Third-Party Authentication and Single Sign-On
	2.2.6 Encryption of Sensitive User Application Data
	2.2.7 Preventing XSS Attacks
	2.2.8 Modifying the Trustee Rights for User Preferences
	2.2.9 Modifying the Trustee Rights for a Provisioning Request Definition
	2.2.10 Disabling the JMX Management Console on JBoss

	2.3 Single Sign-On (SSO) Configuration
	2.4 Digital Signature Configuration
	2.4.1 Setting Up the User Certificates
	2.4.2 Configuring the Application Server
	2.4.3 Configuring Logging
	2.4.4 Configuring the User Application
	2.4.5 Configuring the Provisioning Request Definitions

	2.5 Enabling Anonymous or Guest Access to the User Application
	2.5.1 Establishing the Guest Account

	2.6 Configuring Forgotten Password Self-Service
	2.6.1 Accessing an External Password WAR

	2.7 Performance Tuning
	2.7.1 Logging
	2.7.2 Identity Vault
	2.7.3 JVM
	2.7.4 Session Time-out Value
	2.7.5 Tuning JBoss
	2.7.6 Using Secure Sockets for User Application Connections to the Identity Vault

	2.8 Clustering
	2.8.1 Clustering an Application Server
	2.8.2 Things to Do Before Installing the User Application
	2.8.3 Installing the User Application to a JBoss Cluster
	2.8.4 Installing the User Application to a WebSphere Cluster
	2.8.5 Installing the User Application to a WebLogic Cluster
	2.8.6 Things to Do After Installing the User Application

	2.9 Localizing and Customizing User Application Strings and Name Formats
	2.9.1 Localizing User Application Strings
	2.9.2 Customizing Text
	2.9.3 Configuring the Format of Localized User Names
	2.9.4 Ensuring that Characters Display Properly in Role Report PDF Files
	2.9.5 Ensuring that Dates Display Correctly in Norwegian

	2.10 Configuring the Roles and Resources Tab
	2.10.1 Role Service Driver Configuration
	2.10.2 User Application Configuration
	2.10.3 Security Roles
	2.10.4 View Request Status Search Limit
	2.10.5 Provisioning Display Settings
	2.10.6 E-Mail Notification
	2.10.7 Enabling Drivers for Resource Mappings
	2.10.8 Creating a List in the RBPM Database

	2.11 Configuring the Compliance Tab
	2.11.1 Security Roles
	2.11.2 E-Mail Notification

	2.12 Configuring the Work Dashboard Tab
	2.13 Recreating the Database After Installation
	2.14 Changing the Default Administrator Assignments After Installation
	2.14.1 Granting or Removing Assignments in the User Application
	2.14.2 Changing the Assignments in Configupdate Without Removing the Existing Users
	2.14.3 Changing the Assignments in Configupdate and Removing the Existing Users

	2.15 Setting up JMS in WebSphere and WebLogic
	2.15.1 Setting up JMS on WebSphere 6.1
	2.15.2 Setting up JMS on WebSphere 7.0
	2.15.3 Setting up JMS on WebLogic 10.3

	3 Setting Up Logging
	3.1 About Event Logging
	3.1.1 About the Log Level Settings
	3.1.2 Changing the User Application Log Level Settings

	3.2 Logging to a Novell Identity Audit or Sentinel Server
	3.2.1 Adding the Identity Manager Application Schema to your Novell Identity Audit Server as a Log Application
	3.2.2 Enabling Audit or Sentinel Logging
	3.2.3 Log Reports

	3.3 Logging to OpenXDAS
	3.3.1 Using OpenXDAS with Sentinel
	3.3.2 Enabling OpenXDAS Logging in the User Application
	3.3.3 Troubleshooting

	3.4 Log Events

	III Administering the User Application
	4 Using the Administration Tab
	4.1 About the Administration Tab
	4.2 Who Can Use the Administration Tab
	4.3 Accessing the Administration Tab
	4.4 Administration Tab Actions You Can Perform

	5 Application Configuration
	5.1 Portal Configuration Tasks
	5.1.1 Caching Management
	5.1.2 Driver Status
	5.1.3 Identity Vault Settings
	5.1.4 Logging Configuration
	5.1.5 Portal Settings
	5.1.6 Single Sign-On (SSO) Configuration
	5.1.7 Theme Administration
	5.1.8 Assigning the User Application Administrator

	5.2 Working with the Import and Export Tools
	5.2.1 Requirements
	5.2.2 Restrictions
	5.2.3 Exporting Portal Data
	5.2.4 Importing Portal Data

	5.3 Password Management Configuration
	5.3.1 About Password Management Features
	5.3.2 Configuring Challenge Response
	5.3.3 Configuring Forgotten Password
	5.3.4 Configuring Login
	5.3.5 Configuring Password Sync Status
	5.3.6 Configuring Password Hint Change
	5.3.7 Configuring Change Password

	5.4 Web Services
	5.4.1 Directory Layer Service
	5.4.2 Metrics Service
	5.4.3 Notification Service
	5.4.4 Provisioning Service
	5.4.5 Role Service

	6 Page Administration
	6.1 About Page Administration
	6.1.1 About Container Pages
	6.1.2 About Shared Pages
	6.1.3 An Exception to Page Usage

	6.2 Creating and Maintaining Container Pages
	6.2.1 Creating Container Pages
	6.2.2 Adding Content to a Container Page
	6.2.3 Deleting Content from a Container Page
	6.2.4 Modifying the Layout of a Container Page
	6.2.5 Arranging Content on the Container Page
	6.2.6 Displaying a Container Page

	6.3 Creating and Maintaining Shared Pages
	6.3.1 Creating Shared Pages
	6.3.2 Adding Content to a Shared Page
	6.3.3 Deleting Content from a Shared Page
	6.3.4 Modifying the Layout of a Shared Page
	6.3.5 Arranging Content on the Shared Page
	6.3.6 Displaying a Shared Page

	6.4 Assigning Permissions for Pages
	6.4.1 Assigning Page View Permission
	6.4.2 Assigning Shared Page Owners
	6.4.3 Enabling User Access to the Create User or Group Page
	6.4.4 Enabling User Access to Individual Administration Pages

	6.5 Setting Default Pages for Groups
	6.6 Selecting a Default Shared Page for a Container Page

	7 Portlet Administration
	7.1 About Portlet Administration
	7.2 Administering Portlet Definitions
	7.2.1 Accessing Portlet Definitions in the Deployed Portlet Application
	7.2.2 Registering Portlet Definitions
	7.2.3 Viewing Information About Portlet Definitions

	7.3 Administering Registered Portlets
	7.3.1 Accessing Portlet Registrations in the Deployed Portlet Application
	7.3.2 Viewing Information about Portlet Registrations
	7.3.3 Assigning Categories to Portlet Registrations
	7.3.4 Modifying Settings for Portlet Registrations
	7.3.5 Modifying Preferences for Portlet Registrations
	7.3.6 Assigning Security Permissions for Portlet Registrations
	7.3.7 Unregistering a Portlet

	8 RBPM Provisioning and Security Configuration
	8.1 About RBPM Provisioning and Security Configuration
	8.2 Provisioning Configuration
	8.2.1 Configuring Delegation and Proxy Settings
	8.2.2 Configuring the Digital Signature Service
	8.2.3 Configuring the Provisioning UI Display Settings
	8.2.4 Configuring the Workflow Engine and Cluster Settings

	8.3 Administrator Assignments
	8.3.1 Viewing Administrator Assignments
	8.3.2 Creating New Assignments
	8.3.3 Editing an Existing Assignment
	8.3.4 Deleting Assignments
	8.3.5 Refreshing the Assignment List

	8.4 Team Configuration
	8.4.1 Viewing Team Configurations
	8.4.2 Creating New Teams
	8.4.3 Editing an Existing Team
	8.4.4 Deleting Teams
	8.4.5 Refreshing the Team List

	8.5 Navigation Access Permissions

	IV Portlet Reference
	9 About Portlets
	9.1 Accessory Portlets
	9.2 Admin Portlets
	9.3 Identity portlets
	9.4 System Components

	10 Create Portlet Reference
	10.1 About the Create portlet
	10.2 Configuring the Create Portlet
	10.2.1 Directory Abstraction Layer Setup

	10.3 Setting Preferences
	10.4 Configuring the Create Portlet for Self-Registration
	10.4.1 Guest Access Required Settings

	11 Detail Portlet Reference
	11.1 About the Detail portlet
	11.1.1 Displaying Entity Data
	11.1.2 Editing Entity Data
	11.1.3 E-Mailing Entity Data
	11.1.4 Linking to an organization chart
	11.1.5 Linking to Details of Other Entities
	11.1.6 Printing Entity Data
	11.1.7 Setting Preferred Locale
	11.1.8 Overriding the Default Entity

	11.2 Prerequisites
	11.2.1 Configuring the Directory Abstraction Layer
	11.2.2 Assigning rights to entities

	11.3 Launching Detail from Other Portlets
	11.3.1 Launching Detail from the Search List Portlet
	11.3.2 From the Org Chart Portlet

	11.4 Using Detail on a Page
	11.5 Setting Preferences
	11.5.1 About the Preferences

	11.6 Setting up Detail for Anonymous Access

	12 Org Chart Portlet Reference
	12.1 About Org Chart
	12.1.1 About Org Chart Relationships
	12.1.2 About Org Chart Display

	12.2 Configuring the Org Chart Portlet
	12.2.1 Directory Abstraction Layer Setup
	12.2.2 Setting Preferences
	12.2.3 Dynamically Loading Images

	12.3 Configuring Org Chart for Guest Access
	12.3.1 Modifying the Org Chart Preferences
	12.3.2 Modifying the User Application WAR

	13 Resource Request Portlet
	13.1 About the Resource Request Portlet
	13.2 Configuring the Resource Request Portlet
	13.2.1 Setting Preferences

	14 Search List Portlet Reference
	14.1 About Search List
	14.1.1 About Results List Display Formats

	14.2 Configuring the Search List portlet
	14.2.1 Directory Abstraction Layer Setup
	14.2.2 Setting Search List preferences

	14.3 Configuring Search List for Anonymous Access

	V Configuring and Managing Provisioning Workflows
	15 Configuring the User Application Driver to Start Workflows
	15.1 About the User Application Driver
	15.2 Setting Up Workflows to Start Automatically
	15.2.1 About Policies
	15.2.2 Using the Policy Builder
	15.2.3 Using the Schema Mapping Policy Editor

	16 Managing Provisioning Request Definitions
	16.1 About the Provisioning Request Configuration Plug-in
	16.2 Working with the Installed Templates
	16.3 Configuring a Provisioning Request Definition
	16.3.1 Selecting the Driver
	16.3.2 Deleting a Provisioning Request
	16.3.3 Filtering the List of Requests
	16.3.4 Changing the Status of an Existing Provisioning Request
	16.3.5 Defining Rights on an Existing Provisioning Request

	17 Managing Provisioning Workflows
	17.1 About the Workflow Administration Plug-in
	17.2 Managing Workflows
	17.2.1 Connecting to a Workflow Server
	17.2.2 Finding Workflows that Match Search Criteria
	17.2.3 Controlling the Active Workflows Display
	17.2.4 Terminating a Workflow Instance
	17.2.5 Viewing Details about a Workflow Instance
	17.2.6 Reassigning a Workflow Instance
	17.2.7 Managing Workflow Processes in a Cluster

	17.3 Configuring the E-Mail Server
	17.4 Working with E-Mail Templates
	17.4.1 Default Content and Format
	17.4.2 Editing E-mail Templates
	17.4.3 Modifying Default Values for the Template
	17.4.4 Adding Localized E-Mail Templates

	17.5 Allowing a Named Password to be Retrieved over LDAP

	VI Web Service Reference
	18 Provisioning Web Service
	18.1 About the Provisioning Web Service
	18.1.1 Provisioning Web Service Overview
	18.1.2 Removing Administrator Credential Restrictions
	18.1.3 Provisioning Web Service Method Categories

	18.2 Developing Clients for the Provisioning Web Service
	18.2.1 Web Access to the Provisioning Web Service
	18.2.2 A Java Client for the Provisioning Web Service
	18.2.3 Developing a Mono Client
	18.2.4 Sample Ant File
	18.2.5 Sample Log4J File

	18.3 Provisioning Web Service API
	18.3.1 Processes
	18.3.2 Provisioning
	18.3.3 Work Entries
	18.3.4 Comments
	18.3.5 Configuration
	18.3.6 Miscellaneous
	18.3.7 Cluster

	19 Metrics Web Service
	19.1 About the Metrics Web Service
	19.1.1 Web Service Semantics
	19.1.2 Accessing the Test Page
	19.1.3 Web Service Methods Grouped by Security Permissions
	19.1.4 Specifying Filters
	19.1.5 Generating the Stub Classes
	19.1.6 Obtaining the Remote Interface
	19.1.7 Metrics Configuration Settings

	19.2 Metrics Web Service API
	19.2.1 Team Manager Methods
	19.2.2 Provisioning Application Administrator Methods
	19.2.3 Utility Methods

	19.3 Metrics Web Service Examples
	19.3.1 General Examples
	19.3.2 Other Examples

	20 Notification Web Service
	20.1 About the Notification Web Service
	20.1.1 Accessing the Test Page
	20.1.2 Accessing the WSDL
	20.1.3 Generating the Stub Classes

	20.2 Notification Web Service API
	20.2.1 iRemoteNotification
	20.2.2 BuiltInTokens
	20.2.3 Entry
	20.2.4 EntryArray
	20.2.5 NotificationMap
	20.2.6 NotificationService
	20.2.7 StringArray
	20.2.8 VersionVO

	20.3 Notification Example

	21 Directory Abstraction Layer (VDX) Web Service
	21.1 About the Directory Abstraction Layer (VDX) Web Service
	21.1.1 Accessing the Test Page
	21.1.2 Accessing the WSDL
	21.1.3 Generating the Stub Classes
	21.1.4 Removing Administrator Credential Restrictions

	21.2 VDX Web Service API
	21.2.1 IRemoteVdx
	21.2.2 Attribute
	21.2.3 AttributeArray
	21.2.4 AttributeType
	21.2.5 BooleanArray
	21.2.6 ByteArrayArray
	21.2.7 DateArray
	21.2.8 EntryAttributeMap
	21.2.9 Entry
	21.2.10 EntryArray
	21.2.11 IntegerArray
	21.2.12 StringArray
	21.2.13 StringEntry
	21.2.14 StringEntryArray
	21.2.15 StringMap
	21.2.16 VdxService
	21.2.17 VersionVO

	21.3 VDX Example

	22 Role Web Service
	22.1 About the Role Web Service
	22.1.1 Accessing the Test Page
	22.1.2 Accessing the WSDL
	22.1.3 Generating the Stub Classes
	22.1.4 Removing Administrator Credential Restrictions

	22.2 Role API
	22.2.1 IRemoteRole
	22.2.2 Approver
	22.2.3 ApproverArray
	22.2.4 Category
	22.2.5 CategoryArray
	22.2.6 CategoryKey
	22.2.7 CategoryKeyArray
	22.2.8 Configuration
	22.2.9 Container
	22.2.10 DNString
	22.2.11 DNStringArray
	22.2.12 Entitlement
	22.2.13 EntitlementArray
	22.2.14 Group
	22.2.15 IdentityType
	22.2.16 IdentityTypeDnMap
	22.2.17 IdentityTypeDnMapArray
	22.2.18 LocalizedValue
	22.2.19 LongArray
	22.2.20 NrfServiceException
	22.2.21 RequestCategoryType
	22.2.22 RequestStatus
	22.2.23 ResourceAssociation
	22.2.24 Role
	22.2.25 RoleAssignment
	22.2.26 RoleAssignmentArray
	22.2.27 RoleAssignmentActionType
	22.2.28 RoleAssignmentRequest
	22.2.29 RoleAssignmentRequestStatus
	22.2.30 RoleAssignmentType
	22.2.31 RoleAssignmentTypeInfo
	22.2.32 RoleInfo
	22.2.33 RoleInfoArray
	22.2.34 RoleLevel
	22.2.35 RoleLevelArray
	22.2.36 RoleRequest
	22.2.37 RoleServiceDelegate
	22.2.38 RoleServiceSkeletonImpl
	22.2.39 Sod
	22.2.40 SodArray
	22.2.41 SodApprovalType
	22.2.42 SodJustification
	22.2.43 SodJustificationArray
	22.2.44 User
	22.2.45 VersionVO

	22.3 Role Web Service Examples
	22.3.1 Retrieving Roles for a Group
	22.3.2 Retrieving Role Assignment Request Status
	22.3.3 Retrieving Type Information for a Role Assignment
	22.3.4 Retrieving Role Categories
	22.3.5 Retrieving Role Levels
	22.3.6 Verifying Whether a User Is In a Role

	23 Resource Web Service
	23.1 About the Resource Web Service
	23.1.1 Accessing the Test Page
	23.1.2 Accessing the WSDL
	23.1.3 Generating the Stub Classes
	23.1.4 Removing Administrator Credential Restrictions

	23.2 Resource Web Service Interface
	23.2.1 IRemoteResource
	23.2.2 CodeMapRefreshStatus
	23.2.3 CodeMapValueStatus
	23.2.4 EntitlementRefreshInfo
	23.2.5 ProvisioningCodeMap
	23.2.6 Resource
	23.2.7 ResourceAssignment
	23.2.8 ResourceRequestParam
	23.2.9 ResourceAssignmentRequestStatus

	23.3 Resource Web Service Examples
	23.3.1 Code Map Synchronization Code Samples

	24 Forgot Password Web Service
	24.1 About the Forgot Password Web Service
	24.1.1 Accessing the Service
	24.1.2 Accessing the WSDL
	24.1.3 Generating the Stub Classes

	24.2 Password Management Web Service Interface
	24.2.1 processForgotConf
	24.2.2 processUser
	24.2.3 processChaRes
	24.2.4 processChgPwd

	24.3 ForgotPasswordWSBean

	VII REST Services
	25 Introduction to Resource Information Services
	25.1 About RIS
	25.1.1 How it Works
	25.1.2 Configuring the RIS WAR

	25.2 Security
	25.2.1 Architecture
	25.2.2 Authorization REST Service
	25.2.3 Configuration Parameters

	25.3 WADL Document

	26 Identities Service
	26.1 About the Identities Service
	26.2 Accessing and Using the Identities Service
	26.2.1 Available Resources
	26.2.2 Complete URI Syntax
	26.2.3 JSON Representations Received by the Client
	26.2.4 Event Status Codes

	27 Password Management and SSO Services
	27.1 About the Password Management and SSO Services
	27.2 Accessing and Using the Password Management and SSO Services
	27.2.1 Available Resources
	27.2.2 Complete URI Syntax
	27.2.3 JSON Representations Received by the Client

	28 Resources Service
	28.1 About the Resources Service
	28.2 Accessing and Using the Resources Service
	28.2.1 Available Resources
	28.2.2 Complete URI Syntax
	28.2.3 JSON Representations

	29 Roles Service
	29.1 About the Role Service
	29.2 Accessing and Using the Role Service
	29.2.1 Available Resources
	29.2.2 Complete URI Syntax
	29.2.3 JSON Representations
	29.2.4 Event Status Codes

	30 Work Items Service
	30.1 About the Work Items Service
	30.2 Accessing and Using the Work Items Service
	30.2.1 Available Resources
	30.2.2 Complete URI Syntax
	30.2.3 JSON Representations Received by the Client
	30.2.4 JSON Representations Sent by the Client
	30.2.5 Event Status Codes
	30.2.6 JSON Schema

	31 Workflow Process and Definition Service
	31.1 About the Workflow Process and Definition Service
	31.2 Accessing and Using the Workflow Process and Definition Service
	31.2.1 Available Resources
	31.2.2 Complete URI Syntax
	31.2.3 JSON Representations Received by the Client
	31.2.4 JSON Representations Sent by the Client
	31.2.5 Event Status Codes
	31.2.6 JSON Schema
	31.2.7 Testing the Client with the CURL Command

	VIII Appendixes
	A Configuring the Identity Manager Approvals App
	A.1 Product Requirements
	A.2 Setting Up the Approvals App
	A.2.1 Understanding Approvals App Settings
	A.2.2 Customizing and Using the Default Approvals App Provisioning Request Definition
	A.2.3 Creating and Deploying a Custom Configuration Link
	A.2.4 Creating and Deploying a Custom Configuration QR Code

	A.3 Optimizing Designer Forms for the Approvals App
	A.4 Understanding Language Support in the Approvals App

	B Schema Extensions for the User Application
	B.1 Attribute Schema Extensions
	B.2 Objectclass Schema Extensions
	B.3 Resource Definition Object (nrfResource)
	B.4 Resource Request Object (nrfResourceRequest)
	B.4.1 Resource Request Status Codes (nrfStatus)

	B.5 Role-Resource Configuration (nrfConfiguration)
	B.6 Resource Binding to Users (nrfIdentity)
	B.7 Resource Containers

	C JavaScript Search API
	C.1 Launching a Basic Search using the SearchListPortlet
	C.1.1 Passing Request Parameters
	C.1.2 Using a JSON-formatted String to Represent a Query

	C.2 Creating a New Query using the JavaScript API
	C.2.1 JavaScript API

	C.3 Performing an Advanced Search Using a JSON-formatted Query
	C.4 Retrieving all Saved Queries for the Current User
	C.5 Running an Existing Saved Query
	C.6 Performing a Search on All Searchable Attributes

	D Trouble Shooting
	D.1 Permgen Space Error
	D.2 E-Mail Notification Templates
	D.3 Org Chart and Guest Access
	D.4 Provisioning Notification
	D.5 javax.naming.SizeLimitExceededException
	D.6 Linux Open Files Error

