
NetIQ® Identity Manager
Administrator’s Guide to Designing the

Identity Applications

February 2017



Legal Notice

For information about NetIQ legal notices, disclaimers, warranties, export and other use restrictions, U.S. Government 
restricted rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

Copyright (C) 2017 NetIQ Corporation. All rights reserved.

https://www.netiq.com/company/legal/


Contents
About this Book and the Library 11
About NetIQ Corporation 13

1 Introduction to the Identity Applications Design Tools 15

About the Provisioning View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
About the Directory Abstraction Layer Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
About the Provisioning Request Definition Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
About the ECMA Expression Builder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
About the Provisioning Team Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
About the Role Catalog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Documenting a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Provisioning Locales  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Directory Abstraction Layer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Provisioning Request Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Provisioning Teams  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Role Catalog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Working with the Provisioning View 19

Setting Up a Provisioning Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Adding a User Application Driver to the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Adding a Role Service Driver to the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Modifying the Role Service Driver Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
About Email Notification Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Email Based Approval  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Accessing the Provisioning View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Setting Provisioning View Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Importing Provisioning Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Importing from a Driver Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Importing from an Identity Vault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Exporting Provisioning Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Validating Provisioning Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Directory Abstraction Layer Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Provisioning Request Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Provisioning Teams  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Role Configuration Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
User Application Driver Locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Deploying Provisioning Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Deploying Provisioning Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Testing the Deployed Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Comparing Provisioning Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Specifying Locales and Localization Resource Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Specifying the Default Locale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Defining the User Application’s Supported Locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Creating a Custom Localization Resource Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Localizing Provisioning Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Using Designer to Localize  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Supported Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Contents 3



4 Con
Exporting and Importing Data to Localize  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Configuring the Directory Abstraction Layer 45

About the Directory Abstraction Layer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Analyzing the User Application’s Data Needs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
About the Directory Abstraction Layer Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
About Directory Abstraction Layer Editor Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Working with Entities and Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
About Entities and Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Adding Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Adding Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Updating the Schema Elements List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Working with Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Working with Queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Working with Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Working with Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Directory Abstraction Layer Property Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Entity Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Attribute Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Queries Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Relationship Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Configuring Provisioning Request Definitions 77

About Provisioning Request Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Using the Provisioning Request Definition Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Creating a Provisioning Request Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Starting the Provisioning Request Definition Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Creating a Provisioning Request Definition By Using a Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Creating a Custom Provisioning Request Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Creating a Roles Based Provisioning Request Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Modifying Settings of a Provisioning Request Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Provisioning and Workflow Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Step 1: Initiating the Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Step 2: Approving the Request  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Step 3: Fulfilling the Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Step 4: Completing the Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Creating Forms for a Provisioning Request Definition 95

About Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
About Form Control Data Binding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
About Forms and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

About the Forms Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
About Form Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
About Form Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Creating Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Creating New Forms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Adding Form Controls and Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Defining Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Using the Scripts Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Action Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Form Control Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Data Type for Roles Based Request Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Data Type for Resource Based Request Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Controls for User-Entered Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
tents



General Form Control Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
CheckBoxPickList  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
DatePicker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
DateTimePicker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
DNContainer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
DNDisplay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
DNLookup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
DNMaker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DNQuery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Global List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Localized Label  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
MVCheckbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
MVEditor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
PickList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
RadioButtons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Static List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Text Area  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Title. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
TrueFalseCheckBox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
TrueFalseRadioButtons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
TrueFalseSelectBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

 Working with Distinguished Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Formatting DNs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Working with Object Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Using DAL Queries in Forms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Printing Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Creating the Workflow for a Provisioning Request Definition 149

About the Workflow Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Palette  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Adding Activities to a Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Setting the General Properties of an Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Defining the Data Item Mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Defining the E-Mail Notification Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Adding Flow Paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Configuring Flow Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Guidelines for Creating Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Rules for Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Rules for Flow Paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Understanding Workflow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Guidelines for Creating Roles Based Workflows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
About Role Approval Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Writing Custom Role Workflows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
About Separation of Duties Approval Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Customizing the Standard Separation of Duties Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Guidelines for Creating Resource Based Workflows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
About Resource Approval Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Writing Custom Resource Workflows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Debugging a Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Using the Log Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Using the Workflow Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Changing Log Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Contents 5



6 Con
Provisioning Multiple Individuals with One Workflow Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Basic Steps for Using the Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Making Distinguished Name References Portable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7 Workflow Activity Reference 187

Start Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Approval Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Available ECMAScript Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Addressing an Approval Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Log Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Branch Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Merge Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Condition Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Mapping Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Workflow Status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Email Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Role Request Binding Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Role Request Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Resource Request Binding Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Resource Request Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
tents



Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Start Workflow Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Finish Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Rest Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Integration Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Entitlement Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Entity Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Data Item Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Email Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Working with Entity Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8 Working with Integration Activities 235

About the Integration Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Adding an Integration Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Moving Data to and from the Integration Activity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Using the Integration Activity Editor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

XML Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Action Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
WSDL Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Regenerating Code for the Action Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Adding Actions to the Action Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Data Exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9 Working with ECMA Expressions 271

About the ECMA Expression Builder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
About ECMAScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
ECMAScript Capabilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Using the ECMA Expression Builder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
About Java Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
About XPath Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Contents 7



8 Con
About Global Configuration Values Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
About Global ECMAScripts Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

ECMAScript Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
General Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Flowdata Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Form Control Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

User Application API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Form Action Script Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
IDVault Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
nrfRequest Properties and Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Role Vault API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
About the Role Vault API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Role Script API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Role Vault Bean API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

10 Configuring Provisioning Teams 321

About Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
About Team Requests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Using a Team to Manage Direct Reports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Managing Teams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Creating a Team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Deleting a Provisioning Team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Creating a Team to Manage Direct Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

11 Configuring Roles 325

About the Roles Based Provisioning Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
About the Role Catalog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
About the Role Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Understanding Role Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Using the Role Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Role Properties Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

About the Separation of Duties Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Using the Separation of Duties Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Separation of Duties Constraints Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

About the Role Configuration Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Role Configuration Editor Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Importing Roles Defined in CSV Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Setting Up the File to Import  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Required CSV File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Using the Wizard to Import Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

12 Configuring Resources 349

About Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
About the Resource Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

About Resource Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Using the Resource Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Resource Property Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Importing Resources Defined in CSV Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Setting Up the File to Import  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Required CSV File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Using the Wizard to Import Roles from a CSV File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
tents



A ECMAScript Core Reference 359

ECMAScript Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Functions/Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
DOM Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Element  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
CharacterData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
NodeList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
NamedNodeMap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
DocumentType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
DOMImplementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Entity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
ProcessingInstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

ECMAScript Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Array Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Boolean Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Date Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Function Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Math Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Number Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
String Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Contents 9



10



About this Book and the Library

The User Application: Design Guide describes how to use the Designer to create User Application 
components. It explains how to work with the Provisioning view, the directory abstraction layer editor, 
the provisioning request definition editor, the provisioning team editor, and the role catalog.

Intended Audience
This book provides information for individuals responsible for understanding administration concepts 
and implementing a secure, distributed administration model.

Other Information in the Library
The library provides the following information resources:

Identity Manager Setup Guide 

Provides overview of Identity Manager and its components. This book also provides detailed 
planning and installation information for Identity Manager.

Designer Administration Guide 

Provides information about designing, testing, documenting, and deploying Identity Manager 
solutions in a highly productive environment.

User Application: Administration Guide 

Describes how to administer the Identity Manager User Application.

User Application: User Guide 

Describes the user interface of the Identity Manager User Application and how you can use the 
features it offers, including identity self-service, the Work Dashboard, role and resource 
management, and compliance management.

Identity Reporting Module Guide 

Describes the Identity Reporting Module for Identity Manager and how you can use the features 
it offers, including the Reporting Module user interface and custom report definitions, as well as 
providing installation instructions.

Analyzer Administration Guide 

Describes how to administer Analyzer for Identity Manager.

Identity Manager Common Driver Administration Guide 

Provides information about administration tasks that are common to all Identity Manager drivers.

Identity Manager Driver Guides 

Provides implementation information about Identity Manager drivers.
About this Book and the Library 11



12 About this Book and the Library



About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in your 
environment: Change, complexity and risk—and how we can help you control them. 

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new 

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny 
you the control you need to securely measure, monitor, and manage your physical, virtual, and 
cloud computing environments. 

Enabling critical business services, better and faster 

We believe that providing as much control as possible to IT organizations is the only way to 
enable timelier and cost effective delivery of services. Persistent pressures like change and 
complexity will only continue to increase as organizations continue to change and the 
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software 

In order to provide reliable control, we first make sure we understand the real-world scenarios in 
which IT organizations like yours operate — day in and day out. That's the only way we can 
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And 
that's so much more rewarding than simply selling software. 

Driving your success is our passion 

We place your success at the heart of how we do business. From product inception to 
deployment, we understand that you need IT solutions that work well and integrate seamlessly 
with your existing investments; you need ongoing support and training post-deployment; and you 
need someone that is truly easy to work with — for a change. Ultimately, when you succeed, we 
all succeed.

Our Solutions
 Identity & Access Governance 

 Access Management 

 Security Management 

 Systems & Application Management 

 Workload Management 

 Service Management 
About NetIQ Corporation 13



Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot 
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. The documentation for this product is 
available on the NetIQ Web site in HTML and PDF formats on a page that does not require you to log 
in. If you have suggestions for documentation improvements, click comment on this topic at the 
bottom of any page in the HTML version of the documentation posted at www.netiq.com/
documentation. You can also email Documentation-Feedback@netiq.com. We value your input and 
look forward to hearing from you.

Contacting the Online User Community
NetIQ Communities, the NetIQ online community, is a collaborative network connecting you to your 
peers and NetIQ experts. By providing more immediate information, useful links to helpful resources, 
and access to NetIQ experts, NetIQ Communities helps ensure you are mastering the knowledge you 
need to realize the full potential of IT investments upon which you rely. For more information, visit 
http://community.netiq.com.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768 

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555 

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
14 About NetIQ Corporation

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com


1 1Introduction to the Identity Applications 
Design Tools

This section provides an overview of the tools available for designing and configuring the identity 
applications, particularly the User Application.

IMPORTANT: The identity applications, including the User Application, are a set of applications and 
not a framework. The areas within the identity applications that you should modify are outlined within 
the product documentation. Modifications to areas not outlined within the product documentation are 
not supported.

About the Provisioning View
In the User Application, the Provisioning view provides persistent access to Designer’s provisioning, 
roles, and compliance features. Use the Provisioning view to perform the following actions on 
provisioning and roles objects:

 Access the editors that allow you to create and manipulate User Application components, such 
as:

 The directory abstraction layer editor

 The provisioning request definitions editor

 The teams editor

 The role catalog

Double-clicking an item from the Provisioning view opens the editor for that item.

 Manipulate object definitions, such as:

 Importing and exporting object definitions from the Identity Vault or the local file system

 Validating local object definitions

 Deploying object definitions to the Identity Vault

 Comparing the objects on the local file system with those in the Identity Vault

 Define the User Application driver’s supported and default locales, including:

 Importing and exporting display labels and other User Application strings for localization

 Defining custom localization resource groups (used only for field localization)

About the Directory Abstraction Layer Editor
The directory abstraction layer editor allows you to define directory abstraction layer definitions. Use 
the directory abstraction layer editor to modify the User Application’s behavior by: 

 Adding new entities (Identity Vault objects).

 Defining the set of attributes for an entity.

 Specifying the contents of lists.
Introduction to the Identity Applications Design Tools 15



 Modeling relationships among entities.

 Defining automatic lookups between entities.

 Defining LDAP searches as Queries that you can run from request and approval forms.

About the Provisioning Request Definition Editor
The provisioning request definition editor allows you to create custom provisioning request definitions 
by using a rich set of Eclipse-based design tools. Use the provisioning request definition editor to: 

 Define the basic characteristics of the provisioning request.

 Design the associated workflow.

 Define the request and approval forms.

 Configure the activities and flow paths.

About the ECMA Expression Builder
Designer incorporates an ECMAScript interpreter and expression editor, which allows you create 
script expressions that refer to and modify workflow data. For example, you can use scripting to:

 Create new data items needed in a workflow under the flowdata element.

 Perform basic string, date, math, relational, concatenation, and logical operations on data.

 Call standard or custom Java classes for more sophisticated data operations.

 Use expressions for runtime control to: 

 Modify or override form field labels.

 Initialize form field data.

 Customize email addresses and content.

 Set entitlement grant/revoke rights and parameters. 

 Evaluate any past activity data to conditionally follow a workflow path by using the Condition 
Activity.

 Write different log messages that are conditionally triggered by using a single Log Activity.

About the Provisioning Team Editor
The provisioning team editor allows you to define a set of users who can act as a team within the 
User Application. The team definition determines who can manage provisioning requests and 
approval tasks associated with this team. The team definition consists of a list of team managers, 
team members, and team options. In addition, you can define the set of provisioning request objects 
that the team can act on. 

About the Role Catalog
The Role Catalog includes tools that let you define the contents of the Roles tab of the User 
Application. The tools available through the Role Catalog include:

 Resource editor:  Defines the set of available resources. Includes information about the 
resource’s trustees, owners, approval workflow, and entitlements.
16 Introduction to the Identity Applications Design Tools



 Role editor: Defines the set of available roles. Includes information about the role’s trustees, 
owners, role containment hierarchy, and entitlements. 

 Separation of Duties editor: Defines the separation of duties constraints and how to handle 
requests for exceptions to those constraints.

 Role Configuration editor: Lets you modify the roles subsystem administrative settings.

The Role Catalog also includes a menu option that enables you to import roles defined in a comma-
separated values (CSV) file. 

Documenting a Project
Designer provides a document generator that helps you quickly generate customized documentation 
for your Designer projects. You can define your own document style, but Designer ships with a default 
provisioning style. The default provisioning style includes sections for the User Application.

Provisioning Locales

Lists the supported locales and default locales along with the provisioning resource groups. 

Directory Abstraction Layer

Includes the following sections: 

 Entities: Including access properties, auxiliary classes, and LDAP classes. 

 Lists: Including key and display label.

 Queries: Including the query’s keys, parameters, and conditions.

 Relationships: Including key, parent key, parent attribute, child key, and child attribute.

 Configuration: Including default entity key, default locale, and container classes.

Provisioning Request Definitions

Includes:

 A table containing the definition’s category, status, and email notification.

 An image of the workflow’s structure.

 A section for each activity with a table that lists the data mappings for the activity or the 
expression (if supported by the activity type). 

 A section for each form. 

Provisioning Teams

Includes:

 Display name

 The team members

 The request type and scope

 The manager’s permissions
Introduction to the Identity Applications Design Tools 17



Role Catalog

Includes the following section:

 Roles: Including display name, description, role level, categories, and approval details.

 Separation of Duties Constraints: Including display name, description, conflicting roles, 
approval type, and approvers.

 Role Configuration: Including role removal grace period, role level display names and 
descriptions, approval types, and approval definitions.
18 Introduction to the Identity Applications Design Tools



2 2Working with the Provisioning View

To perform many of the operations available from the Provisioning view (such as compare, import, 
and deploy along with the wizards and editors), Designer must be able to establish a connection to 
the Identity Vault. Designer generates error messages when it cannot connect to the Identity Vault 
while performing these actions. To ensure that Designer is always able to connect to the Identity 
Vault, you can choose to save the password when you configure the Identity Vault credentials for your 
project. When you choose Save password, Designer saves the password to the local file system; it is 
not secure.

Setting Up a Provisioning Project
The Provisioning view is only available for Designer projects that contain a User Application driver. 
After you set up an Identity Manager project and configure an Identity Vault and driver set for the 
project, you add and configure a User Application driver. 

To use Designer to configure the Roles tab of the User Application, you must additionally add a Role 
Service driver to your project. 

Adding a User Application Driver to the Project

To add the User Application driver to a project, the driver must be installed and deployed in your 
environment. For more information, see Creating and Deploying the Drivers for the Identity 
Applications in the NetIQ Identity Manager Setup Guide.

1 In an open Designer project, create a new driver by using one of these methods:

 Click Provisioning in the Palette, then drag the User Application icon onto the modeler.

 Right-click the driver set for your project, then select New > Driver.

 Click the driver set for your project, then select Model > Driver > New.

2 Select User Application Base from the list of driver base packages in the Driver Configuration 
Wizard, then click Next.

3 Specify the properties you want to use for the driver:

Driver Name 

Specifies the either the User Application driver created when you installed Identity Manager 
or a new User Application driver.

Authentication ID 

Specifies the DN of the User Application Administrator.

Application Password 

Specifies the password for the User Application Administrator.

Host 

Specifies the name or IP address of the application server where you deployed the User 
Application.
Working with the Provisioning View 19

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#b17x77ky
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#b17x77ky
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#front


Identity Manager uses this information to perform the following actions:

 Trigger workflows on the application server to connect to access workflows, such 
terminate and retract

 Update cached data definitions

Port 

Specifies the port for the host server.

Application Context 

Specifies context of the User Application. For example, IDMProv.

Allow Initiator Override 

Applies to workflows that start automatically

Specifies whether you want to use an identity other than the User Application Administrator 
to start workflows. To use an alternate identity, select Yes.

For more information, see the Identity Manager User Application: Administration Guide.

4 Click Next, then Finish.

5 (Optional) Deploy the email templates to support email notifications in your workflows.

When you add a User Application driver, Identity Manager adds email templates to the Default 
Notification Collection. You must explicitly deploy the templates. They are not deployed by 
default when you deploy the driver. For more information about deploying the templates, see 
Setting Up E-Mail Notification Templates in the NetIQ Analyzer for Identity Manager 
Administration Guide.

Adding a Role Service Driver to the Project

1 In the same project where you created a User Application driver, click Provisioning in the 
Palette, then drag and drop the Role Service icon onto the Modeler.

2 Select Role and Resource Service Base from the list of driver base packages in the Driver 
Configuration Wizard, then click Next.

3 Specify the name you want to use for the driver and click Next.

4 Specify the properties you want to use for connecting the driver to the User Application. If you 
have already configured the User Application driver, the Driver Configuration Wizard should 
prepopulate the fields with the correct information, but we recommend you double-check the 
specified properties. Use the following information to configure the driver:
20 Working with the Provisioning View

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/designer_admin/designer_admin.pdf#notiftemploverview
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/analyzer_admin/analyzer_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/analyzer_admin/analyzer_admin.pdf#bookinfo


5 Click Next.

6 Click Finish.

Modifying the Role Service Driver Properties

After creating the Role Service driver, you can optionally modify some of the driver configuration 
settings and modify the additional settings described in Table 2-1. To customize the additional 
settings: 

1 In the Modeler, right-click the Role Service driver and select Driver > Properties.

2 Select Driver Configuration (in the left pane).

3 Click the Driver Parameters tab. 

4 Click the Driver Options tab. You can modify the driver’s properties that you specified when you 
created the driver as well as the properties described in Table 2-1.

5 Click OK to save the changes.

Field Description

User-Group base container DN Specify the DN of the root container that the Role 
Service driver services.

User Application Driver DN Specify the DN of the User Application Driver object 
that hosts the role system. For example, 
system\driverset1\UserApplication.

User Application URL Specify the URL used to connect to the User 
Application. The default URL is http://
127.0.0.1:8180/IDMProv.

User Application Identity Specify the DN of the User Application 
Administrator. For example, 
cn=admin,ou=sa,o=data.

User Application Password Specify the Application Password you specified for 
the User Application driver.
Working with the Provisioning View 21



Table 2-1   Additional Settings for Customizing the Role Service Driver

About Email Notification Templates

Identity Manager includes a standard set of email notification templates.

When you create a User Application driver, any email notification templates that are missing from the 
standard set are replaced. However, existing email notification templates, which might come from an 
earlier version of Identity Manager, are not updated. To replace existing templates with new 
templates: 

1 Expand the Outline view.

2 In the Default Notification Collection, delete the email notification templates that you want to 
replace.

3 Right-click Default Notification Collection and select Add Default Templates or Add All 
Templates.

You can also use this command at any time to update email notification templates without 
creating a new User Application driver.

4 To deploy the email notification templates to the Identity Vault, right-click Default Notification 
Collection and select Live > Deploy.

Email Based Approval

You can allow request reviewers to approve or deny a request using e-mail. The e-mail notification 
can include links that can be used for approving or rejecting requests to help you easily respond to 
the request without logging in to the identity applications.

IMPORTANT: If request reviewer forwards the mail to another user, action links for approval or 
rejection action do not work. 

Field Description

Number of days before processing removed request 
objects

The number of days the driver should wait before 
cleaning up request objects that have finished 
processing. This value determines how long you are 
able to track the status of requests that have been 
fulfilled.

Frequency of reevaluation of dynamic and nested 
groups (in minutes)

The number of minutes the driver should wait before 
reevaluating dynamic and nested groups. This 
value determines the timeliness of updates to 
dynamic and nested groups used by the User 
Application. In addition, this value can have an 
impact on performance. Therefore, before 
specifying a value for this option, you need to weigh 
the performance cost against the benefit of having 
up-to-date information in the User Application. 

Generate audit events Determines whether audit events are generated by 
the driver.
22 Working with the Provisioning View



An request reviewer can respond to the notification email in the following two ways:

 When the request reviewer clicks Approve or Deny link in the e-mail, the identity applications 
composes a new email with the required subject and content. The request reviewer can enter 
comments in the e-mail send it after adding the comments.

 • Before replying to a notification, a request reviewer can modify the subject line of the e-mail. 
However, ensure that the keyword (Approve or Deny) along with the alpha-numeric unique code 
is not changed.

IMPORTANT: To reply to the notification e-mail, set the ‘from’ address of request reviewer mail 
server as same as the incoming mail server.

Checklist to Setup Email Based Approval

Before setting up the Email Based Approval, review the following checklist:

Installing Email Based Approval Package

In Designer, open the project where you want to install Email Based Approval package and perform 
the following steps:

1 Right-click on the Identity Manager engine and select Properties > Packages.

2 Click  icon to add new package and select Email Based Approval Templates package. 

3 Install the package and click OK.

4 Expand Default Notification Collection and select all the Email Based Approval templates.

5 Deploy the selected templates on to your Identity Vault.

Checklist Items

 1. Ensure that the outgoing mail server is configured using Configuration Update Utility or 
iManager and verify whether outgoing mail is working. To configure the outgoing mail server 
using Configuration Update Utility, see Email Server Configuration in the NetIQ Identity 
Manager Setup Guide. If you are using iManager, see E-Mail Notification in the NetIQ 
iManager Administration Guide.

 2. Install Email Based Approval package in Designer. For more information, see “Installing Email 
Based Approval Package” on page 23.

 3. Choose the Email Based Approval Templates for workflows. For more information, see “Using 
Email Based Approval Templates for Workflow” on page 24.

 4. 4. For receiving emails, set up an account on an email server that supports POP3 or IMAP 
protocol. If you are using a POP3 type of server, the received emails are not marked as ‘read’ 
in the incoming mailbox. For more information, see Help in the Identity Manager Dashboard.

 5. Enable Email Based Approval and configure incoming Mail server properties from the User 
Application, see “Enabling Email Approval and Configuring Incoming Mail Server Properties 
from User Application” on page 24.

 6. (Conditional) To enable Digital Signature to sign an outgoing email, see “Enabling Digital 
Signature to Sign an Outgoing Email” on page 24.

 7. (Conditional) To enable Email Based Approval on Cluster Environment, see “Enabling Email 
Based Approval on Cluster Environment” on page 25.
Working with the Provisioning View 23

https://www.netiq.com/documentation/imanager-3/imanager_admin/data/b8qrt2a.html
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#b1bmija4
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#front
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#front


Using Email Based Approval Templates for Workflow

In Designer, select the required Email Based Approval templates to deploy the workflow:

1 Create a PRD workflow, select the Notify participants by E-mail check box.

2 Right-click on the Approver icon, and select Show E-mail Notification.

3 Select one of the following e-mail options as:

 Notify,

 Reminder

 Escalation Reminder

4 From E-mail Template drop-down list, select Email Based Approval Provisioning Notification 
template.

5 Repeat Step 1 through Step 4 for the workflows that requires approval.

NOTE: Email Based Approval allows request reviewers to process the requests which is not 
associated with complex forms.

6 Add the source ECMA script for the required field based on the selected template.

7 After creating a PRD, deploy the workflow.

Enabling Email Approval and Configuring Incoming Mail Server 
Properties from User Application

To allow users to approve or reject requests from an email:

1 Log in to the Identity Manager Dashboard.

2 Select Administration > Email-based approval.

For more information, see the Help in the Dashboard.

Enabling Digital Signature to Sign an Outgoing Email

To enable Digital Signature service, perform the following:

1 In Identity Manager Dashboard, navigate to the Email based Approval page.

2 In Email Content Options panel, select the Include action links with digital signature option.

In Configuration Update Utility, ensure that you have specified the Identity Vault certificates details 
and updated the Email Server Configuration fields to enable digital signature service on the outgoing 
e-mails. For more information about the User Application Parameters, see Email Server 
Configuration section in the NetIQ Identity Manager Setup Guide. 

To setup a digital signature support, perform the following steps:

1 In Configuration Update Utility, specify the private keystore and private key certificate properties.

NOTE: If private key certificate alias contains any special character, then rename the certificate 
alias. 

2 Import the private key certificate by running the following command:
24 Working with the Provisioning View

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#b1bmija4
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#b1bmija4
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#front


<JRE_BIN_PATH>/keytool -v -importkeystore -srckeystore 
<privatekey_certificate_path>-srcstoretype PKCS12 -destkeystore 
<keystore_path>  deststoretype JKS

3 (Conditional) Rename the imported certificate by running the following command:

<JRE_BIN_PATH>/keytool -changealias -keystore <privatekey_store_path> -alias 
"<old_alias_name>" -destalias <new_alias_name>

Enabling Email Based Approval on Cluster Environment

Ensure that the outgoing mail server is configured on each nodes of the cluster, you can configure 
this mail server using Configuration update Utility. For more information, see Email Server 
Configuration in the NetIQ Identity Manager Setup Guide.

On cluster environment, you must specify the IP address of the ActiveMQ server in server.xml file of 
the other nodes in the cluster, which is set to localhost by default. Look for the brokerURL attribute 
for the AcitveMQ server in the server.xml and replace the localhost with the ActiveMQ server IP 
address.

If you enable or disable the Email Based Approval (Off/On) or change the incoming mailbox 
properties, then restart all the cluster nodes for the change to take effect. You must also verify the 
connection between the mailbox host and other servers.

Troubleshooting Tips

This section helps you to troubleshoot the general issues while configuring Email Based Approval.

 In provisioning request e-mail, if recipient’s mail address, or Approval or Deny Tokens are 
missing, enable the Email Based Approval option.

 If a request reviewer cannot find the Approve or Deny link in the e-mail, review the Email Based 
Approval settings.

 If a request reviewer cannot compose an e-mail after clicking the Approve or Deny link, verify 
whether the default e-mail client is configured. (For example: Microsoft Outlook)

You can verify the Email Based Approval settings using the catlina.out events logs.

For example, if you want to verify the status of Email Based Approval, look for the following entries in 
the catlina.out property file:

INFO  com.novell.soa.notification.impl.EmailReceiverEngine- [RBPM] Email based 
approval feature is turned on. Starting the incoming mailbox service soon..
INFO  com.novell.soa.notification.impl.jms.JMSConnectionMediator- [RBPM] Starting 
JMS notification system
INFO  com.novell.soa.notification.impl.EmailReceiverEngine- [RBPM] Successfully 
started persistent JMS notification system for email based approval
INFO  com.novell.soa.notification.impl.EmailReceiverThread- [RBPM] Starting 
asynchronous notification system
INFO  com.novell.soa.notification.impl.EmailReceiverEngine- [RBPM] Mailbox service 
for incoming mail started successfully without any warning
INFO  com.novell.soa.notification.impl.EmailReceiverEngine- [RBPM] Email based 
approval token cleanup service started successfully.
Working with the Provisioning View 25

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#b1bmija4
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#b1bmija4
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/setup/setup.pdf#front


Accessing the Provisioning View
You can access the Provisioning view in the following ways: 

 Select Window > Show View > Provisioning.

 In the Modeler window, right-click the User Application, then select Show Provisioning View.

 In the Outline view, right-click the User Application, then select Show Provisioning View.

When it is open, the Provisioning view displays all of the provisioning projects located in the same 
workspace. The contents of the view depend on what version of the User Application driver youa 
selected when you created the project.

Figure 2-1   Sample Provisioning View

The Provisioning view displays icons to indicate the object’s status. The icons are described in Table 
2-2. 

Table 2-2   Provisioning View Status Icons

The User Application driver icon includes a tooltip that provides the project's Identity Vault name, the 
DriverSet, the driver name, and the version. 

TIP: If you do not see the User Applications that you expect, it might be because the project is 
corrupt. If your project is corrupt, you must re-create it. 

Icon Description

Indicates that the local object has changed.

Indicates that the local object contains a validation warning.

Indicates that the local object contains a validation error.
26 Working with the Provisioning View



Setting Provisioning View Preferences
You can customize some Provisioning view behaviors by setting preferences. You access the 
preferences page through Windows > Preferences > NetIQ > Provisioning.

Importing Provisioning Objects
The Provisioning view’s import feature lets you import provisioning objects in different ways. 

 “Importing from a Driver Configuration File” on page 27

 “Importing from an Identity Vault” on page 27

This feature is useful when you begin a new project based on one or more definitions from an existing 
project, or when you want to share definitions with other developers working on the same project. 

NOTE: When you change the Identity Vault or driver set’s deploy context, you must save the project 
before performing an import. If you do not save the change, Designer continues to use the old deploy 
context for import operations. 

Importing from a Driver Configuration File

To import objects from a driver configuration file:

1 Open the Provisioning view.

2 Select the root node representing the type of object you want to import. 

3 Right-click the container and select Import from File. Confirm the import operation (which might 
overwrite existing definitions of the same name) by clicking OK.

4 Specify the name of the driver configuration file you want to import, then click OK.

Trustee information is stored in the driver configuration file. When you import a driver configuration 
file using Designer, the trustee information is processed as expected. If you import the driver 
configuration file using iManager, the trustee information is ignored. 

Importing from an Identity Vault

1 Open the Provisioning view and select the container into which you want to import the 
definitions. 

To import a specific provisioning object, select that node in the Provisioning view. To import all 
objects of a specific type, select the root node representing that type. 

2 Right-click the container and select one of the following:

 Live > Import to import the contents of the currently selected container.

 Live > Import Object to browse the Identity Vault and select the object to import.

 Live > Import From to browse the Identity Vault and select a container whose contents you 
want to import objects from. 

If prompted, provide the Identity Vault credentials and click OK.

NOTE: For provisioning teams, Import Object imports only the team object. Import Team 
Requests imports any associated team request objects.
Working with the Provisioning View 27



3 Navigate to the Identity Vault container or object that you want to import and click OK.

4 Review the Import Summary page to determine how you want to proceed. To complete the 
import, click Import, or click Cancel. If you click Import, Designer performs the operation and 
displays a summary of the completed operation.

Exporting Provisioning Objects
The Provisioning view’s export feature allows you to move project components from one project to 
another without re-creating the contents. It also allows you to clone a project. You can use it to export 
provisioning objects (and their children) to an XML-based driver configuration file. You use the 
resulting file as the input to the Import from File feature, enabling you to easily share the contents of 
your provisioning project with other developers.

To export to a driver configuration file: 

1 Open the Provisioning view and select the object containing the definitions to export. 

To export a specific provisioning object, select that node in the Provisioning view. To export all of 
the objects of a specific type, select the root node representing that type. 

2 Right-click the container or object and select Export to File.

3 Provide the name and location of the file to generate, then click OK.

The default name for the file reflects the contents of the file. For example, if you export lists, the 
default name for the file is lists.xml. You can change the name as needed.

Validating Provisioning Objects
The Validation feature allows you to validate provisioning objects on the local file system before you 
deploy. The validation runs Designer’s project checker and displays the results in the Project Checker 
view.

You can validate provisioning objects individually, by node (such as the directory abstraction layer, a 
provisioning team, or a separation of duty constraint), or at the User Application driver level. Each 
node (individual, container-level, or driver-level) has a right-click menu item called Validate. In 
addition, when you open an object in the editor, you can access the Validate option, for that item, from 
Designer’s main menu and toolbar. For example, if you have a provisioning request definition open in 
the editor, the main menu and toolbar provides a PRD > Validate menu option. 

NOTE: Validation does not check the Identity Vault for the existence of any object.

Each object type has unique validation rules. They are described in each of the following sections: 

 “Directory Abstraction Layer Objects” on page 29

 “Provisioning Request Definitions” on page 29

 “Provisioning Teams” on page 29

 “Role Configuration Objects” on page 29

 “Roles” on page 30

 “Resources” on page 30

 “User Application Driver Locales” on page 30
28 Working with the Provisioning View



Directory Abstraction Layer Objects

Designer does the following:

 Verifies that the XML is well-formed and complies with the schema that defines the elements 
needed for entities, attributes, lists, relationships, and so on.

 Checks every entity to ensure that references to other entities and global lists are valid. 

For example, when validating an entity and its attributes, the validator checks that all references 
to other entities via the Edit Entity, DNLookup, and Detail Entity references exist.

 Ensures that every entity has at least one attribute defined.

 Ensures that every local and global list contains at least one item.

Provisioning Request Definitions

Designer does the following:

 Validates that every Provisioning Request Definition has at least one request form and one 
approval form. 

 Ensures that the Condition Activity has both an outbound true flow path and an outbound false 
flow path.

 Ensures that the Entitlement Activity Data Item Mapping for DirXML-Entitlement-DN is valid. 

 Ensures that the Final Timeout Action property (for User Activities) has a matching flow path link 
leading from the activity. For example, if Final Timeout Action=denied, there must be a denied 
link. 

 For Branch and Merge activities, ensures that a workflow has an equal number of Branch and 
Merge activities. It also ensures that all paths descending from a Branch activity merge into one 
Merge activity, that all merge activities have a branch activity, and that all Merge activities have a 
branch-activity-id attribute. 

 Ensures that static list keys contain the correct data for the decimal data type.

Provisioning Teams

Designer does the following:

 Validates that managers and members have been defined for the team.

 Validates that team requests are specified for the team. 

 If the request scope is Categories, it validates that the team request actually references a 
category. 

Role Configuration Objects

Designer does the following:

 Ensures that the Quorum value should be a number between 0 and 100. Validation rules take 
into consideration that a percentage can be entered.

 Ensures that the Removal Grace Period is a positive number.

 Ensures that Display Names and Descriptions use supported locales.
Working with the Provisioning View 29



 Ensures that the Provisioning Request Definitions defined for the Role Approval and SoD 
Conflict Approvals are valid, are not templates, and whose process types match properly.

 Separation of Duties (SoD) approvers must exist and be valid. 

Roles

Before deployment, Designer validates that: 

 The category exists.

 The description is provided for all supported languages.

 The Quorum is a valid expression.

 Approvers are present when the approval type is set to standard serial or parallel. 

On deploy, Designer validates that the following objects exist in the Identity Vault: 

 The entitlement

 The owner

 The Role Trustees

 The lower-level roles

 Groups

 Containers

 Approvers

 Provisioning request definition

Resources

Before deployment, Designer validates that:

 The category exists.

 The description is provided for all supported languages.

 The Quorum is a valid expression.

 Approvers are present when the approval type is set to standard serial or parallel.

On deploy, Designer validates that the following objects exist in the Identity Vault:

 The owner

 The Resource Trustees

 Approvers

 Provisioning request definition

User Application Driver Locales

For the User Application driver locales, Designer ensures that the locales contain descriptions and 
display names. You can turn off the validation of display names for each locale by setting a 
preference. For more information, see “Setting Provisioning View Preferences” on page 27.
30 Working with the Provisioning View



Deploying Provisioning Objects
The Provisioning view’s Deploy feature deploys your provisioning objects to the specified User 
Application driver. You must deploy any changes you’ve made to the provisioning objects in the 
design environment before you see them reflected in the Identity Manager User Application. The 
Provisioning view allows you to deploy a container and all its children (for example, all entities or all 
lists), or to deploy just a single provisioning object (such as a single list element). When you select an 
item to deploy, Designer compares it to the same item in the Identity Vault. If the items are equal, 
Designer prevents you from deploying. When there are differences, Designer displays them and 
allows you to proceed or to cancel the deployment.

NOTE: When you change the Identity Vault or driver set’s deploy context, you must save the project 
before performing a deploy. If you do not save the change, Designer continues to use the old deploy 
context for deploy operations. 

Deployment and Versions

If you deploy a User Application driver version 4.0 or later and the Identity Vault does not contain the 
necessary schema changes, the provisioning objects are not deployed and Designer displays an 
error message in the Deploy Results dialog box. This is to prevent you from deploying a 4.0 or later 
driver to a 3.0 Identity Vault.

Deploying Provisioning Objects

1 Save any changes.

If the objects contain unsaved changes, Designer displays the unsaved definitions and prompts 
you to save them. If you do not, Designer still deploys the objects but does not deploy the 
unsaved changes. Choosing not to save the changes does not cancel the deployment.

2 Open the Provisioning view, right-click the object to deploy, then select Live > Deploy or Live > 
Deploy All.

To deploy a specific provisioning object, select that node in the Provisioning view. To deploy all of 
the objects of a specific type, select the root node representing that type. 

Designer prompts you for Identity Vault credentials (if necessary), validates the objects, and 
writes any messages to the project checker view. 

When you deploy a driver that contains provisioning objects that fail validation, Designer deploys 
the driver but not the invalid objects (regardless of the deployment preferences). Designer 
displays the errors in the deployment result dialog box. 

When you deploy a provisioning object that contains validation errors, Designer performs the 
deployment based on the defined preferences and writes the errors to the Project Checker view. 

 “Tips for Deploying Provisioning Request Definitions” on page 31

 “Deploying Roles” on page 32

Tips for Deploying Provisioning Request Definitions

 If errors associated with activities are detected during deployment of a provisioning request 
definition, Designer identifies the activity in which the error occurred by activity Id. However, in 
the user interface, Designer by default displays activities by activity name. To make it easier to 
Working with the Provisioning View 31



identify the activity in an error message, turn on the display of activity Ids before you deploy the 
provisioning request definition. To turn on the display of activity Ids, right-click the Workflow 
canvas and select Show Activity Ids. 

 A common error occurs when you fail to replace a placeholder expression in an entitlement 
provisioning activity. If this is the case, correct the error, then deploy the provisioning request 
definition again.

 Designer cannot evaluate expressions at design time, so it might display a warning when you 
use an expression for an entitlement that must be resolved at runtime. This is not a fatal error 
and the deployment will succeed.

 Make sure that the Status is Active (in the Overview tab).

 If a provisioning request definition with the same CN already exists in the Identity Vault, the 
Deployment Summary displays the differences. You can review the differences before you 
decide to proceed.

Deploying Roles

Because roles can be related through a role hierarchy, Designer notifies you, on deploy, if the role you 
are deploying contains any dependent roles. To ensure that roles in the Identity Vault are in a valid 
state, Designer requires that you deploy the role and any dependent roles at the same time by 
displaying them in the dialog box shown in Figure 2-2 on page 32.

Figure 2-2   Deploying Dependent Roles

Testing the Deployed Changes

You can access the User Application from within Designer to view or test what you deploy: 

1 Select Tools > Access User Application.

2 Choose the project and User Application driver container associated with the User Application 
you want to view, then click OK.

Designer uses the driver configuration information that you defined for the project to make the 
connection. Designer uses the browser settings specified in Windows > Preferences > General > 
Web Browser
32 Working with the Provisioning View



Comparing Provisioning Objects
The Provisioning view’s Compare feature allows you to see the differences between the provisioning 
objects in the local file system and those that are running in the deployed User Application driver. 
When Designer encounters a difference, it allows you to specify what action you want to take on that 
difference. You can ignore or reconcile it. 

NOTE: When you change the Identity Vault or driver set’s deploy context, you must save the project 
before performing a compare. If you do not save the change, Designer continues to use the old 
deploy context for compare operations. 

To compare provisioning objects: 

1 Right-click a container or object in the Provisioning view, then select Live > Compare.

2 If prompted, provide Identity Vault credentials, then click OK.

Designer displays the results of the comparison. By default, only the differences are displayed, 
but you can show the full comparison by deselecting Only show differences.

NOTE: For provisioning teams, you must select the container to compare the provisioning 
request and provisioning team objects. If you select an individual team, it compares only the 
provisioning team objects.

3 If there are differences, select one of the following actions:

If a provisioning request definition or role object contains trustees, the trustees for the local object are 
compared with the trustees defined for the object in the Identity Vault. Trustees are not compared for 
directory abstraction layer objects.

Specifying Locales and Localization Resource 
Groups

 “Specifying the Default Locale” on page 34

 “Defining the User Application’s Supported Locales” on page 34

 “Creating a Custom Localization Resource Group” on page 37

Reconcile Status Description

Do not reconcile Do not change any definitions.

Update Designer Import the definitions from the Identity Vault.

Update eDirectory Deploy the definition from Designer to the Identity Vault.

Reconciled by parent For informational purposes. Specifies whether one of the parent objects is 
already being reconciled. It is always disabled and is only set if the parent 
object is already being reconciled to Designer or the Identity Vault. 
Working with the Provisioning View 33



Specifying the Default Locale

To specify the User Application driver’s default locale:

1 Right-click the User Application driver in the Provisioning view, then select Configure > Default 
Locale. 

2 Select the locale from the drop-down list box, then click OK. If you do not see the locale in the 
list, you must add it through the Locales dialog box. 

Defining the User Application’s Supported Locales

1 Right-click the User Application driver in the Provisioning view, then select Configure > Locales. 
Designer displays the Locales and Localization Resource Groups dialog box.

Button Description

Lets you add a new locale to the list of locales supported by the User Application 
driver. When you click the Add button, Designer prompts you for the Language and 
Country. You can either select them or type a value. The Language is required and 
displays as the locale. The country is not required.

Deletes the selected Locale from the supported list. Any files for the selected locale 
are not deleted. 
34 Working with the Provisioning View



2 Click , then select the Language and optionally the Country from the drop-down list, or type 
the value. The language is required, but the country is not. The language is displayed as the 
Locale in the Supported Locales dialog box. 

3 Click OK.

4 Click Localization Resource Groups, then click the localization resource group that you want to 
support the new locale.

Lets you localize all supported locales in one dialog box. When you click the button, 
it launches this dialog box:

You can select the source language from which you want to translate the names of 
the supported locales. Select the target language into which you want to translate 
the names of the supported locales. Type the translation in the Target field.

Lets you localize the display labels for the selected locale. This is the same 
procedure described in “Localizing Provisioning Objects” on page 39.

Button Description
Working with the Provisioning View 35



5 Click  in the Locales area, then select the locale from the Available Locales list and move it 
to the Selected Locales list, then click OK. 
36 Working with the Provisioning View



Creating a Custom Localization Resource Group

1 Right-click the User Application driver in the Provisioning view, then select Configure > Locales. 
Go to the Localization Resource Groups tab. 

2 Click . 
Working with the Provisioning View 37



3 Complete the fields as follows:

4 Click OK. The Localization Resource Groups property dialog box displays:

5 Complete the fields as follows:

Field Description

Identifier A unique name used to identify the localization resource group. 

Display Name The name displayed in Designer to correspond with this group. 

Button Description

Lets you add a new localization resource group. 

Deletes the current localization resource group. 

Lets you localize the localization resource groups in one dialog box. 

Description Lets you add descriptive text for this entry.
38 Working with the Provisioning View



Localizing Provisioning Objects
 “Using Designer to Localize” on page 40

 “Supported Languages” on page 41

 “Exporting and Importing Data to Localize” on page 41

Designer allows you to translate the names and descriptions of provisioning objects into multiple 
languages. Table 2-3 describes the types of provisioning objects that you can translate. 

Table 2-3   Localizable Objects

To localize the provisioning objects listed in Table 2-3: 

1 Verify that the locale (or language) is supported by the User Application driver. See “Supported 
Languages” on page 41 for the list of languages supported by default.

2 If necessary, add the new locale (or language) to the User Application driver and to the resource 
groups. For more information, see “Defining the User Application’s Supported Locales” on 
page 34.

Required Group Lets you specify dependencies on other localization resource groups. 

Localization resource groups are used for creating resource bundles for non-standard 
language. The required groups are defined in the User Application: Localization 
Toolkit Guide. Contact your Novell Sales Representative for more information about 
the toolkit. 

Locales Lets you add or remove the locales into which this localization resource group must be 
localized. If the locale is not on the list, see “To specify the User Application driver’s 
default locale:” on page 34.

Button Description

Designer Tool Description

Directory Abstraction Layer Editor  Entity and attribute display labels

 Relationship names

 Global and local list items

 Query display labels and parameter display labels

Provisioning Request Definition Editor  Activity properties that are displayed to the user

 Form properties that are displayed to the user

Provisioning Team Editor  Provisioning team display name and descriptions

Role Catalog  Resource display label and description

 Role display label and description

 Separation of Duties display label and description

 Role level display label and description
Working with the Provisioning View 39



3 Translate the names and descriptions in one of the following ways: 

3a Directly within Designer. 

NOTE: You cannot edit the provisioning request definitions in the Attestation category. For 
this reason, you cannot use this method for localizing them. You must use the method 
described in Step 3b.

For more information, see “Using Designer to Localize” on page 40.

3b By exporting the set of localizable objects into an external properties or XML file, translating 
the contents of the file, then importing the data back into the project.

For more information, see “Exporting and Importing Data to Localize” on page 41).

Using Designer to Localize

1 Click the localize button.

When you click this button, Designer displays a dialog box that lets you add the localized text. 
This is an example of the Localization dialog box.

The languages displayed in this dialog box are the languages currently supported by the User 
Application driver. If your language is not shown in this dialog, you must add it. For more information, 
see “Defining the User Application’s Supported Locales” on page 34. 
40 Working with the Provisioning View



The directory abstraction layer editor provides multiple ways to localize data. You can access the 
localization dialog boxes in these ways: 

Table 2-4   Accessing the Localization Dialog Boxes

Supported Languages

You can localize the display labels, display names, and descriptions into the languages listed in the 
localization dialog box. This list represents the languages (locales) supported by the User Application 
driver. For information about adding new languages to this list, see “Specifying Locales and 
Localization Resource Groups” on page 33.

The locale configuration is stored in the driver’s <default-locale> element in the 
AppConfig.AppDefs.locale-configuration XMLData attribute. 

You must provide a display label for the User Application driver’s default language, or the User 
Application generates the following runtime error: The resource resolver 
com.novell.soa.common.i18n.LocalizedMapResolver did not return a resource for the 
default locale of <locale>. It is required that a resource exist for the default 
local.

Exporting and Importing Data to Localize

You can export the localizable data (such as display names and descriptions) in your project to an 
XML or properties file. After the data in that file is translated, you can import it back to the Designer 
project. You can export an entire driver, one object, or a subset of objects. 

 “Exporting Data to Localize” on page 42

 “Importing Localized Files” on page 44

To define the localization text for... Perform this action...

Every localizable item in the directory 
abstraction layer

Select DAL > Set Global Localization.

or

Click Set Global Localization (from the editor’s toolbar), 
then select the Target Language before entering the 
localized text in the Target field.

A specific entity, relationship, or list From the tree view, right-click the object to localize, select 
Localize, then select the Target Language before entering 
the localized text in the Target field.

A single display label Select a specific entity or attribute, then click Localize 
Display Label (beside the Display Label field in the 
Property pane).
Working with the Provisioning View 41



Exporting Data to Localize 

1 Right-click a container node or an object in the Provisioning view.

2 Select Localize > Export Localization to File.
42 Working with the Provisioning View



3 Fill in the fields as follows:

4 Click Finish. Designer displays a message describing the result of the export operation and the 
location of the exported data.

Field Description

Store in folder Specify the name of a local folder where the 
exported files should be written.

Prefix for generated files Specify a prefix for the generated files. Determine a 
naming strategy so you are able to identity the files 
for projects.

File Type Select XML or Properties depending on the 
encoding or format you prefer. XML files are UTF-8 
encoded. Properties use Unicode*. 

Select the languages to export Select the languages you want localizations for. A 
file containing the display label key is generated for 
that language. The localizations need to be added 
to this file in the proper format so you can import 
them to the proper User Application driver objects.

Prompt before overwriting existing files If this option is selected, Designer prompts you 
before it overwrites any existing files of the same 
name in the target directory.
Working with the Provisioning View 43



Importing Localized Files

1 Right-click a container node or an object in the Provisioning view, then select Localize > Import 
Localization from File.

2 Fill in the fields as follows:

3 Click Finish to complete the import. Designer displays a status dialog box that describes the 
results including any errors reading the files and any warnings about display label keys that are 
unused. 

Field Description

Search in folder Specify the folder location where the files to import 
are located.

File Type Select XML if the file you want to import is in XML 
format.

Select Properties if the file you want to import is in 
the properties format.

Preferences Select Suppress warnings about unused strings 
if you want the wizard to suppress warning 
messages.

Select Create backup of existing display label 
strings if you want the wizard to create a backup of 
the existing strings before the import. Useful in case 
you need to revert. 

Files Select the files to import. This table is populated 
with the files from the folder location and file type 
specified above. If it is blank, no files of the 
specified type are located in the target folder. The 
wizard attempts to determine the language by 
looking at the filename. If the name cannot be 
determined, it defaults to English. 

You can change the Language column if the wizard 
assumes the wrong language. The wizard changes 
the filename to reflect the language you specify and 
import the display labels to the corresponding 
language. 
44 Working with the Provisioning View



3 3Configuring the Directory Abstraction 
Layer

This section provides details on configuring the directory abstraction layer.

About the Directory Abstraction Layer
The directory abstraction layer is a set of XML-based files that define a logical view of an Identity 
Vault for the User Application. The User Application uses the directory abstraction layer definitions to 
determine:

 The Identity Vault objects and attributes that the User Application can display or modify.

 How the User Application displays Identity Vault data.

 The relationships the User Application can display.

 The provisioning request categories, email notification types, and delegate relationships the 
User Application can display.

The User Application ships with a default set of entities, relationships, and lists that it needs to 
function, but you can add new or modify existing directory abstraction layer objects to customize the 
User Application for your own business needs. You use the directory abstraction layer editor to define 
the contents of the directory abstraction layer. 

Analyzing the User Application’s Data Needs

Before you make changes to the directory abstraction layer objects, analyze how you want to display 
your Identity Vault data in the User Application. Consider: 

 What parts of the Identity Vault you want to make available to the User Application.

For example, what objects do you want your users to be allowed to search and display? Check 
this list against the base set of abstraction layer definitions to determine if you need to add any 
new objects. 

 What is the structure of your Identity Vault schema? Have you added custom extensions and 
auxiliary classes?

 What is the structure of your data? 

 What is required and what is optional?

 What validation rules are in place? 

 What are the relationships between objects (DN references)?

 How are the attributes defined? (For example, an attribute that represents a phone number 
might be multi-valued for home, office, and cell phone numbers)

 Who sees the data? Is the User Application available as a public or private site?

Use the information about your data needs to map your Identity Vault objects to abstraction layer 
entities. 
Configuring the Directory Abstraction Layer 45



About the Directory Abstraction Layer Editor

The directory abstraction layer editor is a graphical tool for defining the directory abstraction layer 
files. When you add a User Application driver to an Identity Manager project and run the configuration 
wizard, Designer creates an initial set of directory abstraction layer files. If you do not run the 
configuration wizard, the initial files are not created. These base files are displayed when you start the 
directory abstraction layer editor.

To start the directory abstraction layer editor:

1 Open the Provisioning view and double-click the Directory Abstraction Layer node.

Designer displays the directory abstraction layer tree containing nodes for Entities, Lists, 
Queries, Relationships, and Configuration.

Node Description

Entities Entities represent the Identity Vault objects 
available to the User Application. There are two 
types of entities:

 Entities mapped from the schema: Entities 
that represent Identity Vault objects directly 
exposed to users via the User Application. 
Users can typically create, search, and modify 
the attributes of these entities.

 Entities representing LDAP relationships: 
Called DN lookups, these entities represent 
indexed searches and are used to support 
particular types of attributes in the User 
Application. DN lookup entities provide 
information about relationships between LDAP 
objects. DN lookup entities are:

 Used by the Org Chart portlet to 
determine relationships.

 Used in the Search List, Create, and 
Detail portlets to provide selection lists 
and DN contexts.

 Available to the workflow request and 
approval flow forms you define using the 
provisioning request definition editor.

Lists Defines the contents of global lists. Global lists are: 

 Associated with an attribute. The User 
Application displays the attribute values as a 
drop-down list in the User Application. 

 Used to display Resource Request categories. 

Queries Lets you define LDAP search criteria that can be run 
from a workflow form. 

Relationships Lets you map hierarchical relationships among 
schema-based entities. Used by the Organization 
Chart action of the Identity Self-Service tab of the 
User Application and in iManager when defining 
provisioning.

Configuration General configuration parameters.
46 Configuring the Directory Abstraction Layer



2 Use the left pane to navigate the directory abstraction layer nodes. When you select an item in 
the left pane, the right pane displays the properties for the selection.

3 Use the right pane to define the properties for the selection. For more information about the 
properties, see “Directory Abstraction Layer Property Reference” on page 59.

The following table describes the directory abstraction layer toolbar:

Table 3-1   Directory Abstraction Layer Toolbar

About Directory Abstraction Layer Editor Files

The directory abstraction layer files you work with are stored in the Designer project’s 
Provisioning\AppConfig\DirectoryModel directory. The filenames are derived from the object 
key. 

Table 3-2   Local Directory Abstraction Layer Directories

Designer creates the base set of directory abstraction layer files for each provisioning project. An 
identical set is added to the User Application driver when the User Application is installed. 

Toolbar Button Description

Launches the Add Entity Wizard.

Launches the Add Attribute Wizard.

Launches the New List Wizard.

Launches the New Query Wizard

Launches the New Relationship Wizard.

Launches the Set Global Access Modifiers dialog box.

Launches the Set Global Localization dialog box.

Expands and collapses the directory abstraction layer tree.

Directory name Description

ChoiceDefs Contains the files that define global lists. Files have the choice extension.

EntityDefs Contains the files that define the entities and attributes. Files have the entity 
extension.

QueryDefs Contains the files that define queries. Files have the query extension. 

RelationshipDefs Contains the files that define the relationships available to the Org Chart portlet 
and iManager provisioning configuration. These files have the relation 
extension. 
Configuring the Directory Abstraction Layer 47



To customize the Identity Manager User Application, you change the directory abstraction layer 
objects and the changes to the User Application driver. Some entities, attributes, lists, and 
relationships are required for the User Application to function properly. The editor displays a lock next 
to the definitions that you should not delete. From the list below, you can see that you should not 
delete the Group, User or User Lookup entities.

Figure 3-1   DAL User Application Default Entities, Lists, and Relationships

If you define multiple User Application drivers in a single project, Designer creates multiple AppConfig 
folders and names them AppConfig, AppConfig1, AppConfig2, and so on. 

Working with Entities and Attributes
You can customize your User Application by adding objects and their attributes based on the content 
of your own Identity Vault. You do this by adding new entities and attributes to the directory 
abstraction layer and deploying them to the User Application driver. 

To modify the entity files installed by default, see “Adding Entities” on page 49 and “Adding Attributes” 
on page 53. To modify the entity files of an already ed project or a set of files defined by another 
developer, you must first import the files to your design environment. For information on importing 
files, see “Importing Provisioning Objects” on page 27.

About Entities and Attributes

Any Identity Vault object that you want users to search, display, or edit in the Identity Manager User 
Application must be defined as an entity in the directory abstraction layer. For example, to use the 
inetOrgPerson Identity Vault object in the User Application, you must create an entity definition for it. 
There are two logical kinds of entities (but you create them the same way):

 Entities that are mapped from schema: These entities represent objects that exist in the 
Identity Vault that are directly exposed to users in the User Application. When defining this type 
of entity, expose all of the attributes that you want your users to work with. Examples of this 
entity type include User and Group. You can create more than one entity definition for the same 
object to expose different sets of attributes to different kinds of users. For more information, see 
“Creating Multiple Entity Definitions for a Single Object” on page 49.
48 Configuring the Directory Abstraction Layer



 Entities that represent LDAP relationships: This type of entity is known as a DNLookup and it 
is used by the User Application to: 

 Populate a list with the results of a DN search among related entities

 Maintain referential integrity across DN referenced attributes during updates and deletes

Entities that support DNLookups are used by the Org Chart portlet to determine relationships 
and are also used by the Search, Create, and Detail portlets to provide pop-up selection lists and 
DN contexts. The User Lookup entity is an example of this type of entity. For more information, 
see “Attributes and DNLookup Properties” on page 68.

Creating Multiple Entity Definitions for a Single Object

You can create more than one entity definition that represents the same Identity Vault object but 
provides a different view of the data. Within the entity definitions, you can define different attributes 
for each entity definition, or you can define the same attributes but specify different access properties 
that control how the attributes are searched, viewed, edited, or hidden.

NOTE: You can optionally define a filter to hide certain entities from the result set.

You can then use these different entity definitions in different parts of the user interface. For example, 
suppose that you want to create a directory of employees; one for a public site and one for an internal 
site. On the public site you want to supply first and last names and a phone number, but on the 
internal site, you want to list additional information like title, managers, and so on. Here’s how you can 
accomplish this:

1 Create two entity definitions (with different keys). 

Both entity definitions expose the same Identity Vault object, but one entity definition key is 
public-staff-information, and the other is internal-staff-information. 

2 Within each entity definition, define a different set of attributes: one for public-staff-information, 
the other for internal-staff-information. 

3 Use the Portal Administration tab of the Identity Manager User Application to create a portlet 
instance for the public page, and another one for the internal page.

For more information about creating portlet instances, see the Portlet Reference section in the 
Identity Manager 3.5 User Application: Administration Guide.

Adding Entities

You add entities through the Add Entity Wizard (described in the next procedure) or by clicking Add 
Entity (from the toolbar). 

NOTE: When using the Add Entity button, you are prompted to select the object class of the entity to 
create, and the editor automatically adds the required attributes to the entity. Use the Add Attribute 
dialog box to complete the entity definition. 

To add an entity using the Add Entity Wizard:

1 Launch the Add Entity Wizard in one of these ways:

From Designer’s menus:

 Select File > New > Provisioning. Choose Directory Abstraction Layer Entity, then click 
Next. 
Configuring the Directory Abstraction Layer 49



From the Provisioning view:

 Right-click the Entities node, then choose New.

From the directory abstraction layer editor:

 Select DAL > New > Entity

or

 Right-click the Entities node, then choose New Entity-Attributes Wizard.

The New Entity dialog box displays.

NOTE: If launched from the File menu, the dialog box contains the additional fields shown below.

2 Fill in the fields as follows: 

Field Description

Identity Manager Project and 
Provisioning Application

The Identity Manager project and the provisioning 
application where you want to add the entity and 
attributes.

NOTE: These fields display when you launch the wizard 
from the File menu.

Entity Key A unique identifier for the entity.

Display Label The string displayed when the entity is displayed by the 
User Application. You can localize this label. For more 
information, see “Localizing Provisioning Objects” on 
page 39.
50 Configuring the Directory Abstraction Layer



3 Click Next. The New Entity dialog box displays:

4 Choose the entity’s object class and add the attributes you want by double-clicking them in the 
Available Attributes for Entity list. Mandatory attributes are added when you select an Object 
Class, and you cannot remove them from the Selected Attributes in Entity list. 

TIP: If the entity’s object class is not shown in the Select Object Class list, you should update 
Designer’s local schema file by following the steps described in “Updating the Schema Elements 
List” on page 54.

5 Click Finish.

The property page displays for editing. For more information, see “Entity Properties” on page 60. 
You must deploy the entity before it is available to the User Application.
Configuring the Directory Abstraction Layer 51



Filter the Object Class List

You can limit the object classes shown in the New Entity dialog box by adding a filter. To add a filter: 

1 Click Configure Filter to launch the Class List Filters dialog box.

By default, Designer does not apply any class filters. The Class Filter dialog box contains two 
predefined filters (starts-with "DirXML" and starts-with "srvprv"). To activate them, click Select 
All, then click OK. The filters are immediately applied to the object class list. Filters are applied 
until you deselect them. 

2 Use the buttons as follows:

Adding Entity Filters

In the Directory Abstraction Layer Editor, you can define an entity filter to limit the entries returned for 
the specified entity. You define the filter based on attributes and their comparison to another value 
that you specify. For example, you can create a filter so that the User entity includes only those 
entries whose Region attribute contains Northeast. 

1 Click Add Condition Grouping.

2 Use the drop-down list on the left to select an attribute. 

3 Use the drop-down list in the middle to select a comparison operation.

4 Use the entry on the right to specify a value for comparison. 

5 To specify multiple condition groupings, repeat this procedure. Within a condition grouping, you 
specify each criterion that you want and connect them by using the logical operations: and, or.

The conditions are evaluated in the order in which you define them.

Button Description

Choose one of the string comparison operators, such as 
contains, starts-with, ends-with, then type the string to 
compare against.

Adds a filter. Enabled when you define the filter 
comparison value.

Removes the selected filter. 

Click this option when you want to use all of the filters. It 
selects all of the defined filters. 

Click this option when you want to deselect all of the 
defined filters. If you apply this change, no filters are 
used. 
52 Configuring the Directory Abstraction Layer



Adding Attributes

1 Select an entity.

2 Do any of the following to add an attribute: 

 Right-click an entity, then select Add Attribute.

 Click the Add Attribute button.

 Click DAL > New > Attribute.

You are prompted to choose the entity class that contains the attributes that you want to add to 
the entity. You can also add (and remove) auxiliary classes if you need to add a class that 
contains the attribute you are looking for. 

3 Add attributes by double-clicking them in the Available Attributes for Entity Class list.

LDAP operational attributes are supported by the directory abstraction layer editor and User 
Application; however, when you add an operational attribute, the Edit, Required, and Hidden 
properties are set to false and are disabled so you cannot change these property values. 

TIP: If the attribute you want to add is not displayed in the Available Attributes from Entity Class 
list, you should update Designer’s local schema file by following the procedure in “Updating the 
Schema Elements List” on page 54. 

4 Click OK. The property page displays for editing. 

For more information, see “Attribute Properties” on page 63. To make an attribute available to 
the User Application, you must deploy it.

Adding DAL Calculated Attributes

You can create an attribute that is derived from an expression. For example, you can concatenate two 
or more attributes to produce a single calculated value. The expressions are ECMAScript compatible 
and conform to the ECMA 262 Language specification. 

Restrictions:  Because this attribute type does not map to a specific attribute in the Identity Vault, 
these attributes cannot be updated, removed, multivalued, required, or searched. 

To create a calculated attribute:

1 Add an attribute as instructed in “Adding Attributes” on page 53 and make sure to select DAL 
Calculated Attribute from the Available Attributes for Entity Class list.

Designer adds the Attribute with the following restrictions: 

Table 3-3   Calculated Attribute Properties

Property Name Description

Expression Click Build ECMAScript Expression to launch the 
ECMA Expression Builder. To learn more about how to 
use the ECMA Expression Builder, see Chapter 9, 
“Working with ECMA Expressions,” on page 271.
Configuring the Directory Abstraction Layer 53



Updating the Schema Elements List

1 With the Identity Manager project open, right-click your Identity Vault, then select Live > Import 
Schema.

2 Choose Import from eDirectory and provide the specifications for the eDirectory host.

3 Click Next.

4 Select the classes and attributes to import, then click Finish.

Working with Lists
The lists node lets you define the contents of global lists. You can then define an attribute control type 
as a global list. When the User Application displays the attribute for editing, the contents of the global 
list are displayed in a drop-down list for the user to make a selection. By default, the directory 
abstraction layer includes the global lists described in Table 3-4. 

Table 3-4   Directory Abstraction Layer Default Global Lists

NOTE: You cannot delete these lists or change the key values for the lists. Except for the Email 
Notification types, you can add and remove items and change existing values and labels.

List Name Description

Delegate Relationship Defines the relationships that can be selected when making a Delegate 
Assignment by relationship. The contents of this list display in a drop-down 
list box. The values can only be DN attributes from the User entity.

Email Notification Types Represents the type of email notification that a user wants to receive when 
involved in proxy/delegate processing of resource requests. Types are 
locked. 

WARNING: Do not edit these values.

This is used by the Preferred Notification attribute of the user entity.

Provisioning Category Defines the set of categories that organize provisioned resources 
(entitlements) and provisioning requests. The categories in this list display in:

 Designer: Provisioning request definition editor plug-in

 iManager: Provisioning Request Configuration plug-in

 User Application: Make a Process Request page

Resources Category Defines the set of categories that organize resources. The categories are 
displayed in: 

 Designer: Role Plug-in 

 User Application: Roles and Resources tab

Roles Category Defines the set of categories that organize roles. The categories are 
displayed in: 

 Designer: Role plug-in

 User Application: Roles tab
54 Configuring the Directory Abstraction Layer



To create a new global list:

1 Launch the New List Wizard in one of these ways:

From Designer’s menus:

 Select File > New > Provisioning, select Directory Abstraction Layer List, then click Next.

When launched from the File menu, the dialog box contains fields not displayed when 
launched in other ways.

 Select DAL > New > List.

From the Provisioning view:

 Right-click the Lists node, then select New.

From the directory abstraction layer editor:

 Click New List.

 Right-click the Lists node, then select Add List.

The New List dialog box displays. 

2 Fill in the fields as follows: 

3 Click Finish.The Global Lists property page displays for editing.

4 Fill in the fields as follows: 

The following table describes the wizard’s buttons:

Field Description

Identity Manager Project and Provisioning 
Application

Select the Identity Manager project and 
provisioning application where you want to add 
the list.

NOTE: These fields display when you launch the 
wizard from the File menu.

List Key The unique identifier for the list.

Display Label The string used when the list is displayed in the 
User Application. You can localize this label. For 
more information, see “Localizing Provisioning 
Objects” on page 39.

Field Description

Display Label The name of the list. This is the name displayed in Designer. 

Labels The text for the list item to display in the User Application.

Values The list item value stored in the Identity Vault. Valid characters include 
letters, numbers, and the underscore (_) character.
Configuring the Directory Abstraction Layer 55



5 Save the project to make it available to the User Application. 

Working with Queries
The Queries node allows you to define commonly used LDAP searches that you can execute from a 
request or approval form by using the DNQuery control or by calling the globalQuery() method. To 
define the query, you specify the directory abstraction layer entity, the search root, the number of 
rows to retrieve, and the conditions for retrieving the source entity. You can hard-code the conditions 
(for example, Where LastName contains s) or specify one or more parameters that are supplied by 
the user on the request or approval form. 

To create a query:

1 Launch the New Query Wizard in any of these ways:

From Designer’s menus:

 Select File > New > Provisioning. Choose Directory Abstraction Layer Query, then click 
Next.

 Select DAL > New > Query.

From the Provisioning view:

 Right-click Query, then select Add. 

From the directory abstraction layer editor:

 Click the Add Query button.

 Right-click Query, then select Add Query. 

The New Query dialog box displays.

NOTE: When launched from the File menu, the dialog box contains fields not displayed when 
launched in other ways.

2 Fill in the fields as follows:

Button Description

Adds a new value

Moves the row up or down in the list. This order specifies how the labels are displayed 
in the User Application.

Displays the localization dialog box. For more information on using the dialog box, see 
“Localizing Provisioning Objects” on page 39.

Deletes the row.
56 Configuring the Directory Abstraction Layer



3 Click Finish.

The editor creates the query and opens the property page for editing.

4 Select a Query Entity. If the entity you want to use is not displayed, make sure it is defined in the 
Entities node.

5 In the Parameters section, define one or more parameters for the query. To add parameters: 

5a Click Add Row.

5b Specify a unique key and a display label for the parameter. You pass this key when calling 
the globalQuery() method on a form. For more information on globalQuery(), see 
“globalQuery(fieldname, key, param)” on page 297.

5c Add additional parameters by repeating these steps. 

6 To further refine the query, add Query Conditions. 

6a Click Add Condition Grouping (a Query Entity must be selected to enable Add Condition 
Grouping).

6b Use the drop-down list on the left to select an attribute. The attributes in this drop-down are 
the attributes on the selected Query Entity.

6c Use the drop-down in the middle to select a comparison operation to perform against your 
chosen attribute.

6d Use the entry on the right to specify a value to compare against your chosen attribute. You 
can select a variable name by clicking Predefined Parameters to launch the Predefined 
Parameters dialog box. 

If the query needs to filter on more than one attribute or condition and you want to control 
the order in which the conditions are evaluated, you can define multiple conditions or 
condition groups. Within a condition grouping, you specify each criterion that you want and 
connect them by using the logical operations: and, or.

7 To specify multiple condition groupings, click Add Condition Groupings and make your 
selections from the drop-down list boxes.

8 Define the query’s LDAP Search properties if you want to narrow the search further than already 
defined for the selected entity. The query’s search root, unlike the entity search root, does not 
support the use of predefined parameters. For more information, see “Queries Properties” on 
page 72.

9 Click Save.

10 the query to make it available to the User Application.

Field What to do

Identity Manager Project and 
Provisioning Application

Select the correct Identity Manager project and Provisioning 
Application.

NOTE: This field displays when you create queries from the 
File menu.

Query Key Type a unique value for the query key. This value is used in 
the Expression Builder to identify the query. 

Display Label Type a string to display in the directory abstraction layer 
editor and Provisioning view. This value is not visible in the 
Expression Builder.
Configuring the Directory Abstraction Layer 57



Working with Relationships
The Relationships node allows you to define relationships between entities defined in the directory 
abstraction layer. The relationships you define are used in the User Application by the Organization 
Chart and in iManager for defining the members within a group. 

The relationship you define can be between like entities (such as user/user) or unlike entities (such as 
user/device). You can define conditions for the relationship to further refine it. For example, you might 
want to create a condition that shows all Manager-Employee relationships and then refine it to show 
only employees in one particular region, or show all the subordinates of a vice president located in 
the eastern region.

The following relationships are defined, by default, for the User Application:

 Group’s membership (Org Chart only)

 Manager-Employee (Org Chart and Management)

 User groups (Org Chart only)

A relationship can only be used by Management when the Source and Target entities are both related 
to the InetOrgPerson object. 

To successfully deploy a relationship, all of the components (entities and attributes) of the relationship 
must already be deployed.

1 Create a new relationship in any of these ways:

From Designer’s menus:

 Select File > New > Provisioning. Choose Directory Abstraction Layer Relationship, then 
click Next.

 Select DAL > New > Relationship.

From the Provisioning view:

 Right-click Relationships, then select Add. 

From the directory abstraction layer editor:

 Click the Add Relationship button.

 Right-click Relationships, then select Add Relationship. 

The New Relationship dialog box displays.

NOTE: When launched from the File menu, the dialog box contains fields not displayed when 
launched in other ways.

2 Fill in the fields as follows:

Field What to do

Identity Manager Project and 
Provisioning Application

Select the correct Identity Manager project and Provisioning 
Application.

NOTE: This field displays when you create relationships from 
the File menu.

Relationship Key Type a unique value for the relationship key.

Display Label Type the string to display when the relationship displays in the 
User Application.
58 Configuring the Directory Abstraction Layer



3 Click Finish.

The editor creates the relationship and opens the property page for editing.

For property definitions, see “Relationship Properties” on page 73.

To delete a relationship:

1 Right-click the relationship you want to delete, then click Delete.

To add a relationship condition: 

1 Click Add Row.

2 Use the drop-down list box (on the left) to select an attribute. The attributes in this drop-down are 
attributes on the Target Object entity.

3 Select an operator from the middle drop-down list box. 

4 Use the text field on the right to specify the comparison value to complete the condition. 

You can create a condition that filters on more than one attribute or condition and connect the 
attributes by using the logical operations: and, or. The conditions are evaluated in the order in which 
you define them.

Working with Configuration Settings
The Configuration node allows you to set general configuration properties for the User Application.

Table 3-5   Configuration Settings

Directory Abstraction Layer Property Reference
This section provides definitions for the properties for the abstraction layer nodes.

Field Description

Default ‘My Profile’ Entity Defines the entity to display when the user clicks My Profile in the 
user interface. 

This field is restricted to show only entities whose object class is 
user (or LDAP inetOrgPerson). 

Default LDAP Naming Attribute Defines the default LDAP naming attribute if the entity’s Create 
Naming Attribute is not defined. 

Default Management Attributes The attributes used to look up members. In the User Application, 
the user is able to search for members by clicking the search icon. 
The search displays the attributes specified.

These settings only affect the lookups performed by Managers. The 
User Application administrator sees only First Name and Last 
Name.

Container Classes This provides the Create User or Group action with the contents of 
a selection list of container classes. The user selects a container 
from the selection list as the location for the newly created object. 
Configuring the Directory Abstraction Layer 59



Entity Properties

This section describes the properties you can set for entities.

Entity Access Properties

Access properties control how the User Application interacts with the entity. 

NOTE: You can also access the access properties by selecting DAL > Set Global Access.

Table 3-6   Entity Access Properties

Entity General Properties

Table 3-7   Entity General Properties

Property Name Description

Create When selected, this object can be created by the User Application.

Edit When deselected, this object cannot be changed by the User Application 
regardless of the underlying ACLs. 

When selected, this object is editable, but the Identity Vault ACLs are used to 
determine this.

View When selected, this object can be displayed by the User Application.

Remove When selected, this object can be deleted by the User Application.

Property Name Description

Key The unique identifier for this entity. It defines the way the User Application 
references this object. It is defined when the entity is created and cannot be 
modified after the entity is created.

Display Label Defines how the object is shown in the user interface. 

Class Name The eDirectory object class name.

LDAP Name The LDAP object class name. 

Include in Search When selected, this entity is searchable in the User Application. Entities used in 
queries by identity portlets (such as Entity Search List or Entity Org Chart) must 
be selected (True).
60 Configuring the Directory Abstraction Layer



Entity Auxiliary Properties

Table 3-8   Entity Auxiliary Properties

Entity Search Properties

Table 3-9   Entity Search Properties

Property Name Description

Auxiliary Classes A list of zero or more auxiliary classes for this entity. If you are adding auxiliary 
classes, you are prompted to define:

 The auxiliary class by selecting from the list of those available

 Whether it is searchable. Setting searchable to True applies a filter to 
LDAP searches that involve directory abstraction layer relationships. For 
example, if you added an aux class to the user entity and specified that the 
aux class was searchable, the Org Chart (using the manager-employee 
relationship) would display only the employees that have the aux class. 

 Whether to Add Always. When True (selected), the object class is 
automatically added when the entity is modified in the User Application. 
Modification includes create or update operations. When False, the object 
class is only added if an attribute associated with the auxiliary class is 
modified. 

Property Name Description

Search Container The distinguished name of the LDAP node or container where 
searching starts (the search root). For example: 

ou=sample,o=ourOrg

You can browse the Identity Vault to select the container, or you 
can use one of the predefined parameters described in “Using 
Predefined Parameters” on page 63.

Search Scope Specifies where the search occurs in relation to the search root. 
Values are:

<Default>: This search scope is the same as selecting 
Containers and subcontainers.

Container: The search occurs in the search root DN and all 
entries at the search root level.

Container and subcontainers: The search occurs in the search 
root DN and all subcontainers. This is the same as selecting 
<Default>.

Object: Limits the search to the object specified. This search is 
used to verify the existence of the specified object.

Search Time Limit [ms] Specify a value in milliseconds or specify 0 for no time limit.
Configuring the Directory Abstraction Layer 61



Entity Create Properties

Table 3-10   Entity Create Properties

Entity Password Management Properties

Table 3-11   Entity Password Management Properties

Max Search Entries Specify the maximum number of search result entries you want 
returned for a search. Specify 0 if you want to use the runtime 
setting. Recommendations: Set it between 100 and 200 for 
greatest efficiency. Do not set it over 1000.

Perform Automatic Query When selected, performs an automatic query of the entity and 
presents the results in a selectable list. Do not choose this option 
if the data returned will be a large number because it forces the 
user to scroll through a large result set.

When not selected, allows the user to specify the search criteria 
for the entity query, then presents the results in a selectable list.

Property Name Definition

Create Container The name of the container where a new entity of this type is created. 

You can browse the Identity Vault to select the container, or you can use 
one of the predefined parameters described in “Using Predefined 
Parameters” on page 63.

If you do not specify this value, then the Create portlet prompts the user to 
specify a container for the new object. The portlet uses the search root 
specified in the entity definition as the base and allows the user to drill 
down from there. If there is no search root specified in the entity definition 
then it uses the root DN specified during the User Application installation.

Create Naming Attribute The naming attribute of the entity. It is the relative distinguished name 
(RDN). This value is only necessary for entities where the access 
parameter Create is selected. 

LDAP attribute The LDAP attribute for the Create Naming Attribute.

Create Naming Label Display label displayed in the User Application for the Create Naming 
Attribute.

Property Name Definition

Password required when entity is created If the password attribute is required, set this value 
to True (selected) to ensure that one is required by 
the Create portlet. If a password is required, then 
you cannot create this entity in a workflow. 

Property Name Description
62 Configuring the Directory Abstraction Layer



Using Predefined Parameters

The directory abstraction layer editor allows you to use predefined parameters for certain values. 

Table 3-12   Predefined Parameters

Attribute Properties

This section describes the properties you can set for attributes.

Attribute Access Properties

NOTE: You can set attribute access for all of an entity’s attributes by selecting DAL > Set Attribute 
Access, right-clicking an entity, and selecting Set Attribute Access.

Table 3-13   Attribute Access Properties

Predefined Parameter Description

%driver-root% Represents the Provisioning Driver DN. This value is specified during 
the User Application configuration during installation or a later 
configuration. It is stored in the User Application’s realm configuration.

%user-root% Represents the User Container DN. This value is specified during the 
User Application configuration during installation or a later configuration. 
It is stored in the User Application’s realm configuration.

%group-root% Represents the Group Container DN.This value is specified during the 
User Application configuration during installation or a later configuration. 
It is stored in the User Application’s realm configuration.

Name Description

Edit When selected, this attribute can be edited/modified by the User Application. Even if 
it is selected (True), the attribute might still not be editable if the underlying Identity 
Vault ACLs/effective rights prevent it.

Enable When deselected, this attribute cannot be used by the User Application. It is the 
same as removing the entry from the file. 
Configuring the Directory Abstraction Layer 63



Hide Controls whether the Hide check box in the User Application is enabled or disabled. 
The Hide check box allows users to control whether an attribute (such as a photo) is 
displayed by the application. 

When deselected, the Hide check box is disabled for this attribute, so the user 
cannot choose to hide this attribute.

When selected, the Hide check box can be enabled in the User Application. 
However, the following must also be true of the logged-in user. 

 He or she is either the owner of the attribute or a User Application Administrator.

 He or she has Trustee rights to update the srvprvHideAttributes attribute on the 
Identity Vault. 

If these requirements are not met, then the Hide check box is disabled in the 
user interface even if this setting is selected (True).

TIP: When a user hides an attribute that contains an image, users who have viewed 
the image might continue to see it until their browser cache is refreshed.

The Search and Hide properties are mutually exclusive. If Hide is selected (True), 
Search cannot also be selected (True). If Search is selected (True), Hide cannot be 
selected (True).

Multivalue Specifies whether this attribute can be multivalued, for example, a phone number.

When selected, the attribute can be multivalued.

Read When this option is selected, the User Application can query this attribute. For most 
attributes this should be selected (True), but for some attributes, like password, it 
should be deselected. 

 You must set this value to True for attributes that you want to include in the Create 
User form. For more information about creating users, see Creating Users or Groups 
in the NetIQ Identity Manager - User’s Guide to the Identity Applications.

Require When this option is selected, the attribute must be supplied. 

Search When this option is selected, the User Application can search on this attribute. 
Attributes that are used in queries by identity portlets (such as Entity Search List or 
Entity Org Chart) or request and approval forms must be selected. 

TIP: If an attribute used in a search is also indexed in eDirectory, the search is faster. 

The Search and Hide properties are mutually exclusive. If Hide is selected (True), 
Search cannot also be selected (True). If Search is selected (True), Hide cannot be 
selected (True).

 You must set this value to True for attributes that you want to include in the Create 
User form. For more information about creating users, see Managing Your 
Permission Requests in the NetIQ Identity Manager - User’s Guide to the Identity 
Applications.

View When this option is selected, the User Application can display this attribute. In most 
cases this is selected, but for attributes like password, it should be deselected. If you 
specify it in a request or approval form, view must be selected. 

Name Description
64 Configuring the Directory Abstraction Layer

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#ugproIdentitycreate
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#t42j3itqfvaa
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#t42j3itqfvaa
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bookinfo


Attribute General Properties

Table 3-14   Attribute General Properties

Attribute Default Value Properties

This value is used when an object is created via the Create identity portlet or through a workflow. You 
can express the default value as a literal or an ECMAScript expression. You cannot use a default 
value as part of a calculated attribute. If defined as an ECMAScript expression, it is resolved at 
runtime. If you define both the literal and an expression, the expression takes precedence. 

TIP: If you want the default value to be displayed by the Create portlet, you must define the access 
property viewable as True (selected). If you want the user to be able to change the value, you must 
set the editable property to True.

Attribute UI Control Properties

Table 3-15   Attribute UI Control Properties

Property Name Description

Key The unique identifier for the attribute.

Display Label The label that is displayed in the User Application. 

Attribute Name The eDirectory name for this attribute.

LDAP Name The LDAP name for this attribute.

Property Name Description

Data Type Choose a data type from the following list:

 Binary

 Boolean

 DN

 Integer

 LocalizedString

NOTE: Selecting the LocalizedString Data Type causes the search to be 
case-sensitive in the UI.

 String

 Time
Configuring the Directory Abstraction Layer 65



Format Type Used by the User Application to format data. Format types include:

 None

 AOL IM

 Email

 Groupwise IM

 Image

 Phone Number

 Yahoo IM

 Image URL

 Date

 DateTime

The Format Types are dependent on the data type. For example, a Time data 
type can only be associated with Date and DateTime formats.

Property Name Description
66 Configuring the Directory Abstraction Layer



Control Type Types include:

DNLookup: Defines that this attribute contains a DN reference. Use when you 
want to:

 Populate a list with the results of a DN search among related entities.

 Maintain referential integrity across DN referenced attributes during 
updates and deletes.

 Use the attribute in an object selector dialog box. Object selectors are used 
by certain identity portlets, such as Detail, and are also available to the form 
controls you can define for provisioning request and approval forms.

The User Application uses this information to generate special user interface 
elements (such as an object selector), and to perform optimized searches based 
on the DNLookup definition.

For more information on defining this property, see the “Attributes and DNLookup 
Properties” on page 68. For more information on the object selector dialog box 
for request and approval forms, see “Working with Object Selectors” on 
page 141.

Global List: Display this attribute as a drop-down list whose contents are 
defined in a file outside of this attribute definition. Click Go to list to access the 
Global List editor for the selected list.

For more information, see “Working with Lists” on page 54.

Local List: Display this attribute as a drop-down list whose contents are defined 
with this attribute. To define a local list:

1. With the attribute selected, set the control type to Local List.

2. Use the buttons to add or remove list items. Use the up-arrow and down-
arrow buttons to change the position of the item in the list.

In the Value column, type the value to write to the Identity Vault. It can 
include letters, numbers, and the underscore (_) character.

3. In the Labels column, type the text you want displayed in the user 
interface.

Range: Use the Range control type with Integer data types to restrict user input 
to a sequential range of values. Define the range’s start and end values. 

Property Name Description
Configuring the Directory Abstraction Layer 67



Attributes and DNLookup Properties

When you define an attribute as a DNLookup control type, it means that: 

 This attribute can be used in an object selector dialog box that allows users to select from a list 
of possible values when searching on this attribute.

 When this attribute is created, populated, or deleted through the User Application, an attribute on 
a related entity is updated appropriately depending on the user action (create, delete, update) to 
maintain referential integrity.

 “DNLookups for Object Selectors” on page 68

 “DNLookups for Referential Integrity” on page 70

 “DNLookup Property Reference” on page 71

DNLookups for Object Selectors 

The DNLookup Display properties for a particular attribute define the contents of the object selectors 
in the User Application. Object selectors are displayed by the Identity Self-Service portlets and in 
workflow request and approval forms. They provide a convenient way for users for users to search 
and select objects that represent DNs (such as users or groups). The object selector displays a drop-
down list of attributes; the user can select one of the attributes and then enter search criteria for that 
attribute. In this example, the user searches for groups by group description.

Figure 3-2   Sample Object Selector
68 Configuring the Directory Abstraction Layer



The result of the user’s selection looks like this: 

Figure 3-3   Sample Object Selector Results

The DNLookup display properties control the contents of the object selector and the result set. The 
object selector, shown above, displays this way because it was based on the group attribute of the 
user entity. The group attribute is defined as a DNLookup control type as shown here: 

Figure 3-4   Group DNLookup Definition
Configuring the Directory Abstraction Layer 69



This definition also controls the way identity portlets provide a selection list of groups for a user. For 
example, a user might choose to do a Directory Search to find a user in a group, but the group name 
is unknown. The user would select User as the object to search for and select group as the search 
criteria, as follows:

Figure 3-5   Search Criteria

Because the members attribute is a DNLookup for the user entity, the Lookup icon displays. If the 
user selects it, then a list of possible groups displays. 

When the user picks a group, then he or she can select a group from the list and all of the members 
of that group are displayed. 

NOTE: When the Perform Automatic Query property is not selected (False), the object selector is not 
populated when first displayed to the user and the user must enter selection criteria. The example 
above illustrates the object selector that displays when the Perform Automatic Query property is 
selected (True). 

DNLookups for Referential Integrity

DNLookups for updates and synchronization are important because LDAP allows group relationships 
to map in both directions. For example, your data might be set up so that:

 The User object contains a group attribute. The group attribute is multi-valued and lists all of the 
groups to which a user belongs.

 The Group object contains a user attribute. The user attribute is multi-valued and lists all of the 
users that belong to the group.

This means that you can have an attribute on the user object that shows all the groups a user belongs 
to, and on the Group object you have a DN attribute that includes all the members of that group. 

When the user requests an update, the User Application must honor the relationships and ensure that 
the target and source attributes are synchronized. In the DNLookup, you specify both attributes that 
must be synchronized. You can use this technique to provide synchronization between any objects 
that are related not just group structural objects. Create this kind of DNLookup control type by 
specifying the advanced DNLookup properties described in the DNLookup Relational Integrity 
properties reference. 
70 Configuring the Directory Abstraction Layer



DNLookup Property Reference

Table 3-16   DNLookup Display Properties

Table 3-17   DNLookup Detail Properties

The DNLookup Relational Integrity properties are used for synchronizing data between two objects 
such as groups and group members.

Table 3-18   DNLookup Relational Integrity Properties

Property Name Description

Lookup Entity The name of the entity to search. For example, suppose that 
the User entity contains an attribute for Manager. To populate 
that field, you’d need to know which users are Managers. 

Lookup Attributes Choose one or more attributes to display when a search is 
performed.

Perform Automatic Query Defines how the Lookup Attributes are displayed. 

 When this option is selected, the form or portlet performs 
an automatic query of the entity and presents the results 
in a selectable list. This option is not recommended if a 
large amount of data can be returned because it forces 
the user to scroll through a large result set. 

 When this option is deselected, allows the user to 
specify the search criteria for the entity query, then 
presents the results in a selectable list.

Property Name Description

Detail entity The key of the entity whose details you want displayed if the 
user requests more information by clicking a hypertext link in 
the User Application. When you define a DNLookup, the 
identity portlets are able to provide a hypertext link that allows 
users to display the details of the linked object. 

Property Name Description

Source Attributes to Update Name of the attribute to update. The attribute must contain a DN 
reference to the Target Attributes to Update. This is required to 
synchronize attributes on two different objects.

Target Attributes to Update Name of the attribute that must be updated along with the Source 
Attributes to Update. This is an LDAP attribute name. This is 
required to synchronize attributes on two different objects. The 
attribute must contain a DN reference.

Target Auxiliary Classes Needed, if 
any

Name of the auxiliary class that contains the Target Attributes to 
Update. 
Configuring the Directory Abstraction Layer 71



Queries Properties

This section describes the Queries properties.

 “Queries General Properties” on page 72

 “Query Parameters Properties” on page 72

 “Query Search Properties” on page 72

Queries General Properties

Table 3-19   Queries General Properties

Query Parameters Properties

Table 3-20   Queries Parameters Properties

Query Search Properties

If left blank, the query search properties default to the search properties specified for the selected 
entity. Specify the query search properties to further refine the search scope already defined for the 
entity. You cannot specify predefined parameters (for example, %user-root%) in the query’s search 
properties. 

Property Name Description

Key A unique value for the query key. This value is used in the Expression Builder to 
identify the query. The key is specified at the query creation time. It cannot be 
modified after the query is created.

Query Entity Select an entity from the drop-down list box. The resulting LDAP search is on this 
entity.

Display Label Type a string to display in the directory abstraction layer editor and Provisioning 
view. This value is not visible in the Expression Builder.

Property Name Description

Parameter Keys A unique identifier for the key. You pass this key when calling the 
globalQuery() method on a form. 

Parameter Display Labels A label to identify the key. 
72 Configuring the Directory Abstraction Layer



Table 3-21   Query Search Properties

Relationship Properties

Relationship properties include:

 “Relationship Access Properties” on page 74

 “Relationship Properties” on page 74

Property Name Description

Search Root Specifies the location in the LDAP tree where the LDAP search defined by the 
query begins.

Search Scope Specifies where the search occurs in relation to the search root. Values are:

<Default>: This search scope is the same as selecting Containers and 
subcontainers.

Container: The search occurs in the search root DN and all entries at the 
search root level.

Container and subcontainers: The search occurs in the search root DN and 
all subcontainers. This is the same as selecting <Default>.

Object: Limits the search to the object specified. This search is used to verify 
the existence of the specified object.

Max Search Entries Specify the maximum number of search result entries you want returned for a 
search. Specify 0 if you want to use the runtime setting. Recommendations: Set 
it between 100 and 200 for greatest efficiency. Do not set it over 1000
Configuring the Directory Abstraction Layer 73



Relationship Access Properties

Table 3-22   Relationship Access Properties

Relationship Properties

Table 3-23   Relationship Properties

Property Name Description

Used by Organizational Chart When selected, this relationship can be used by the Org Chart portlet.

Used by Team-Management IMPORTANT: This option is only available if you select User for both the 
Source Entity and Target Entity relationship properties and This 
entity’s key for the Source Attribute relationship property. For more 
information about Relationship properties, see “Relationship Properties” 
on page 74.

When selected, this relationship can be used to define the provisioning 
members in iManager.

For example, if Used by Management is selected for the manager-
employee relationship, then the provisioning application administrator 
can use this relationship to define the members as all users that report to 
the manager.

Enable Cascading Relationship This option is only available if you select Used by Team-Management.

If Enable Cascading Relationship is selected, then the relationship can 
include several levels within the organization. You define the number of 
levels via Maximum Levels to Cascade.

Property Name Description

Key The read-only unique identifier for the relationship. 

TIP: You specify this value in the Org Chart Portlet preference sheet. 

Display Label Specify a name to display when this relationship is displayed in the User 
Application. For example, this value is displayed when users click Choose 
Org Chart from the Detail portlet.

Click Localize to provide the translation for the display label text.

Source Entity Choose an entity from the drop-down list. 

The entity that you choose becomes the parent or source object in the 
organization chart hierarchy. In a Manager-Employee relationship, the 
Source Entity is User. For a Group-Member relationship, the source entity 
is Group. 

Directory abstraction layer requirements: The entities in this list are a 
subset of the entities defined in the directory abstraction layer. Source 
entities must have the view access property selected (True).
74 Configuring the Directory Abstraction Layer



NOTE: The Org Chart portlet does not fully support dynamic groups; you cannot define a dynamic 
group as the Source entity, but you can define a dynamic group as the target entity. 

Source Attribute Choose an attribute from the drop-down list. 

This attribute is used to find matching target entities. When the value of 
this attribute matches a corresponding value on an attribute of the target 
entity (see Target Attribute below), then a relationship can be established. 

Directory abstraction layer requirements: This list of attributes is 
populated using the selected Source Entity’s attributes. It includes any 
attributes that are searchable and readable. 

Target Entity Choose an entity for the child object in the hierarchy. In a Manager-
Employee relationship, it is user. 

This entity must contain the attribute that is related to the Source attribute.

Target Attribute Choose the attribute that matches the Source Attribute. 

This is the target entity’s attribute used to find matching source entities. 
When the value of this attribute matches a corresponding value on the 
source entity (see Source Attribute above), then a relationship can be 
established. 

Property Name Description
Configuring the Directory Abstraction Layer 75



76 Configuring the Directory Abstraction Layer



4 4Configuring Provisioning Request 
Definitions

A provisioning request is a user or system action that initiates one or more provisioning workflows. 
These workflows can be used to grant or revoke resources or roles, or perform attestation processes. 
You use the provisioning request definition editor to create and deploy provisioning requests to the 
User Application driver. This section includes information about the provisioning request definitions 
shipped with the system and how to create new provisioning request definitions.

About Provisioning Request Definitions
Provisioning request definitions are directory objects that encapsulate the business rules for granting 
or revoking a corporate resource or role, and binding the corporate resource or role to a workflow. 
Provisioning request definitions can also be used to launch attestation workflows. They are used in 
the User Application to support:

 Resource requests on the Requests & Approvals tab 

Resource requests allow users to request access to resources such as accounts, applications, 
servers, and so forth. Novell provides a read-only resource-oriented provisioning request 
definition named Resource Approval.

For information about customizing the existing definition or writing your own resource based 
provisioning request definitions, see “Guidelines for Creating Resource Based Workflows” on 
page 177.

 Role assignment requests on the Roles tab. 

Role assignment requests allow users to request roles that grant them permissions to resources 
and not to the resources themselves. Novell provides these two read-only role-oriented 
provisioning request definitions:

 Role Approval: Manages role requests. 

 SoD Conflict Approval: Manages role requests that result in Separation of Duties (SoD) 
conflict overrides.

For information about customizing the existing definitions or writing your own roles based 
provisioning request definitions, see “Guidelines for Creating Roles Based Workflows” on 
page 168.

 Attestation process requests on the Compliance tab. 

Attestation process requests are used by Compliance Administrators and Attestation Officers to 
submit requests for attestation workflows. These workflows allow users to verify their own user 
profile information, to allow authorized users to verify the violations and exceptions to SoD 
constraints, or to verify role and user assignments. 

Designer provides these two attestation type provisioning request definitions: 

 Attestation Report: Manages the attestation process that allows users to verify the violations 
and exceptions for a set of SoD constraints.

 Attestation User Profile: Manages the attestation process that allows users to confirm that 
their user profiles contain accurate information.
Configuring Provisioning Request Definitions 77



Attestation type provisioning request definitions are not editable within Designer. You cannot 
define or use custom provisioning request definitions for attestation, and they are not visible on 
the Requests & Approval tab.

You use Designer to define the trustees for the attestation process requests, to deploy the 
provisioning request definitions, and to localize the text users see during the approval process. 
For information on localizing attestation provisioning request definition text, see “Localizing 
Provisioning Objects” on page 39.

Using the Provisioning Request Definition Editor
The provisioning request definition editor allows you to create provisioning request definitions that 
bind corporate resources or roles to a workflow. The provisioning request definition editor includes the 
following tools:

 Overview tab: Used to define the basic characteristics of the provisioning request.

 Workflow tab:  Used to define the associated workflow by configuring activities and flow paths.

 Form tab: Used to define the request and approval forms that the user interacts with in the 
Requests & Approvals tab. 

 Signature Declarations tab:  Used to define the Digital Signature declarations.

For provisioning request definitions that are not based on roles, you can use a provisioning request 
template to create your definitions. The templates model some common workflow design patterns. 
However, if you want complete control over the behavior of your workflows, you can create your own 
custom provisioning request definitions.

Creating a Provisioning Request Definition

This section describes how to create both provisioning requests that are based on roles and 
provisioning requests that are not based on roles by using the following methods: 

 From a template (not supported for roles based provisioning request definitions).

 From a copy of an existing provisioning request definition.

 As a custom provisioning request definition. 

When possible, you should use a template or a copy of an existing definition because it saves you 
time, and allows you to make targeted changes to an existing provisioning request definition. 
However, if no existing provisioning request definition resembles new work that you want to do, you 
can create a custom provisioning request. 
78 Configuring Provisioning Request Definitions



The following table describes the steps for defining a provisioning request.

Table 4-1   Basic Steps for Defining a Provisioning Request

Starting the Provisioning Request Definition Editor

1 Open the Provisioning view and double-click the Provisioning Request Definitions node.

Designer displays the provisioning request definitions tree containing nodes for the default 
provisioning definition request definition categories of Accounts, Attestations, Entitlements, 
Groups, Roles, and Uncategorized.

These default categories are defined by the directory abstraction layer Provisioning Category 
list. For information on managing categories, see “Working with Lists” on page 54.

The installed templates are available in the Entitlements node, and the default role provisioning 
request definitions are available in the Roles node.

Task Action For More Information

1 Create a provisioning request definition. Depending on what you want to create, 
see:

 “Creating a Provisioning Request 
Definition By Using a Template” on 
page 80

 “Creating a Custom Provisioning 
Request Definition” on page 84.

 “Creating a Roles Based 
Provisioning Request Definition” on 
page 84

 “Modifying Settings of a 
Provisioning Request Definition” on 
page 86

2 Create the request and approval forms.

TIP: Creating the forms before the workflow simplifies the 
process of mapping the form fields to the application data.

See Chapter 5, “Creating Forms for a 
Provisioning Request Definition,” on 
page 95

3 Create the workflow diagram by adding activities to the 
workflow diagram and connecting them with flow paths.

See Chapter 6, “Creating the Workflow 
for a Provisioning Request Definition,” 
on page 149

4 Configure the activities and flow paths by specifying the 
properties, data item mappings, and email notification 
settings for the activities. Then define the semantics for 
the flow paths.

See Chapter 7, “Workflow Activity 
Reference,” on page 187
Configuring Provisioning Request Definitions 79



2 Use the Provisioning view pane to navigate the provisioning request definition categories. The 
right-click menu is available from the top-level node or when you select an existing provisioning 
request definition. You cannot create a provisioning request definition by selecting a category 
node.

3 Double-click a provisioning request definition to open it in the editor in the right pane.

Provisioning request definitions are stored locally in the Provisioning\AppConfig\ 
RequestDefs directory within your workspace. 

Creating a Provisioning Request Definition By Using a 
Template

1 Launch the Create A New PRD wizard in one of these ways:

 From the Provisioning view, right-click the Provisioning Request Definitions node and 
choose New.

 From the Provisioning view, click a User Application or provisioning request container, then 
select Insert > Provisioning Request Definition.

 Select File > New > Provisioning > Provisioning Request Definition. Choose Provisioning 
Request Definition, then click Next. 

The first page of the Create a New PRD Wizard is displayed.

2 Fill in the fields as follows:

3 Click Next. The next page of the wizard is displayed.

4 Select Create a provisioning request definition using one of the templates, then select the 
desired template (for example, TemplateSingleApproval_TA) from the Available Templates list, 
then click Next.

You use the next panel of the wizard to specify the provisioning request definition’s category and 
trustees (the users, groups, or containers) who can access the provisioning request definition 
after it is deployed.

5 Select a category from the list. 

For details on using... See

Overview tab “Modifying Settings of a Provisioning Request Definition” on page 86.

Workflow tab Chapter 6, “Creating the Workflow for a Provisioning Request Definition,” 
on page 149.

Forms tab Chapter 5, “Creating Forms for a Provisioning Request Definition,” on 
page 95.

Field Description

Identifier (CN) The CN (common name) identifier for the provisioning request definition. 
The name cannot be longer than 64 characters.

Display Name The display name for the provisioning request definition. This is the name 
that is displayed in the Provisioning view.

Description A description of the provisioning request definition.
80 Configuring Provisioning Request Definitions



6 Select Notify participants by e-mail if you want approvers to be notified by email about pending 
approval tasks, and also want initiators to be notified by email of workflow completion. If Notify 
participants by email is not selected, users must look at the Task Notifications list on the Work 
Dashboard tab of the User Application for notifications about tasks.

7 Click the plus (+) icon to add a trustee. 

Designer displays a panel that allows you to browse the Identity Vault to select a trustee. You 
can select a user, group, or container. If you cannot connect to the Identity Vault, you can type 
trustee DNs directly in the Trustee DN field.

8 Select the trustee, then click OK. 

Designer returns you to the previous panel. If desired, add additional trustees by repeating the 
previous step. 

9 When you have finished adding trustees, click Finish. 

Designer displays the Provisioning Request Definition Details panel on the Overview tab (see 
“Modifying Settings of a Provisioning Request Definition” on page 86).

10 Click the Workflow tab. The Workflow view is displayed. 

The provisioning request definition template includes some default values that you must 
customize for your environment. For example, the Entitlement Provisioning Activity contains 
placeholder values for several data item mapping properties. You need to replace the 
placeholder values with the actual values for your provisioning request.

11 Click the Entitlement Provisioning activity, then click the Data Item Mapping tab.

12 Double-click in the Source Expression field to display the DirXML-Entitlement-DN target field, 
then click the button that appears in the field to display the ECMA Expression Builder. 

See Chapter 9, “Working with ECMA Expressions,” on page 271 for information about the ECMA 
Expression Builder. 

13 Use the ECMA Expression Builder to replace the placeholder expression with an expression that 
specifies the entitlement that you want to provision with this provisioning request.

14 Replace the placeholder expression in the Source Expression field for the DirXML-Entitlement-
Parameter.

15 Click the Forms tab and customize the forms for the provisioning request to meet your needs.

See Chapter 5, “Creating Forms for a Provisioning Request Definition,” on page 95.The template 
includes predefined request and approval forms. You might want to add additional forms, or add 
or remove form controls.

16 Click the Workflow tab and customize the properties of the workflow to your needs.

See Chapter 6, “Creating the Workflow for a Provisioning Request Definition,” on page 149 and 
Chapter 7, “Workflow Activity Reference,” on page 187. 

About the Installed Templates

Identity Manager ships with a set of preconfigured provisioning request definitions and workflows. 
You can use these as templates for building your own provisioning system. To set up your system, 
you define new objects based on the installed templates and customize these objects to suit the 
needs of your organization.

The installed templates let you determine the number of approval steps required for the request to be 
fulfilled. You can configure a provisioning request to require from zero to five approval steps.

You can also specify whether you want to support sequential or parallel processing, and whether you 
want to approve or deny the request if the workflow times out during the course of processing. 
Configuring Provisioning Request Definitions 81



The following table lists the templates included with Identity Manager.

Table 4-2   Preconfigured Provisioning Request Definitions and Workflows

Template Description

Self Provision Approval Allows a provisioning request to be fulfilled without any 
approvals.

One Step Approval (Timeout Approves) Requires a single approval for the provisioning request 
to be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded to 
the next activity.

Two Step Sequential Approval (Timeout 
Approves)

Requires two approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity approves 
the request and the work item is forwarded to the next 
activity.

This template supports sequential processing.

Three Step Sequential Approval (Timeout 
Approves)

Requires three approvals for the provisioning request 
to be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded to 
the next activity.

This template supports sequential processing.

Four Step Sequential Approval (Timeout 
Approves)

Requires four approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity approves 
the request and the work item is forwarded to the next 
activity.

This template supports sequential processing.

Five Step Sequential Approval (Timeout 
Approves)

Requires five approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity approves 
the request and the work item is forwarded to the next 
activity.

This template supports sequential processing.

One Step Approval (Timeout Denies) Requires a single approval for the provisioning request 
to be fulfilled. If an activity times out, the workflow 
denies the request.

Two Step Sequential Approval (Timeout Denies) Requires two approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports sequential processing.

Three Step Sequential Approval (Timeout 
Denies)

Requires three approvals for the provisioning request 
to be fulfilled. If an activity times out, the workflow 
denies the request.

This template supports sequential processing.

Four Step Sequential Approval (Timeout Denies) Requires four approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports sequential processing.
82 Configuring Provisioning Request Definitions



Five Step Sequential Approval (Timeout Denies) Requires five approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports sequential processing.

Two Step Parallel Approval (Timeout Approves) Requires two approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity approves 
the request and the work item is forwarded to the next 
activity.

This template supports parallel processing.

Three Step Parallel Approval (Timeout 
Approves)

Requires three approvals for the provisioning request 
to be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded to 
the next activity.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Approves) Requires four approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity approves 
the request and the work item is forwarded to the next 
activity.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Approves) Requires five approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity approves 
the request and the work item is forwarded to the next 
activity.

This template supports parallel processing.

Two Step Parallel Approval (Timeout Denies) Requires two approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports parallel processing.

Three Step Parallel Approval (Timeout Denies) Requires three approvals for the provisioning request 
to be fulfilled. If an activity times out, the workflow 
denies the request.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Denies) Requires four approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Denies) Requires five approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports parallel processing.

Template Description
Configuring Provisioning Request Definitions 83



About the Installed Templates and Flow Strategy

By default, provisioning request definition templates use the Single Flow flow strategy. The templates 
assume that the recipient is a user DN. If you change the flow strategy, you must modify the template. 
If you change the flow strategy to:

 Flow per member: Remove the recipient reference from the request form. 

 Single flow provision members: Remove the recipient from the request form and add logic to 
determine the addressee for the approval activity. The templates assume the recipient is a user 
DN, so you must determine if the recipient is a user or group DN. You can use the IDVault 
isGroup(String dn) method to determine if the DN is a group. If the recipient is a group DN, you 
must provide logic for assigning the approval activity addressee.

Creating a Custom Provisioning Request Definition

If no existing provisioning request definition resembles the new work that you want to do, then you 
need to build a custom provisioning request definition.You can still save time and effort by re-using 
forms from other workflows.

NOTE: The procedure in this section does not use roles. To create a custom roles based provisioning 
request definition, see “Creating a Roles Based Provisioning Request Definition” on page 84

1 Create the basic information for a new provisioning request definition (see “Creating a 
Provisioning Request Definition By Using a Template” on page 80). In step Step 4 on page 80, 
do not select Create a provisioning request definition using one of the templates, and do not 
select a template. When you are finished, the Overview tab for the new provisioning request is 
displayed.

2 Create the forms for the provisioning request definition. Defining forms before you create the 
workflow topology ensures that data bindings can be set up automatically for each activity when 
you create activities.

To create the forms, see “Creating Forms” on page 97.

3 Click the Workflow tab and create the workflow topology. 

You create the topology of a workflow by creating and linking activities into the desired workflow 
pattern, and by assigning rules to the flowpaths between activities. For information about 
creating a workflow topology, see Chapter 6, “Creating the Workflow for a Provisioning Request 
Definition,” on page 149. 

4 Specify the details (properties, data item mappings, email notification) for each workflow activity.

To specify workflow activity details, see Chapter 7, “Workflow Activity Reference,” on page 187. 

5 Configure the flowpaths between workflow activities.

To configure flowpaths, see “Configuring Flow Paths” on page 158.

Creating a Roles Based Provisioning Request Definition

Designer supplies two Roles Based provisioning request definitions that you should use as a basis for 
your custom roles based provisioning request definitions. They are:

 Role Approval

 SoD Conflict Approval
84 Configuring Provisioning Request Definitions



To create a copy and customize its contents: 

1 From the Provisioning view, open Roles in the Provisioning Request Definitions node.

2 Select one of the roles-based provisioning request definition (depending on which type of 
approval you want to create), right-click, then select Create From.

 Role Assignment/Revocation Approval: Choose this for role requests.

 SoD Conflict Approval: Choose this for SoD conflict approval requests.

Designer displays the Create a New PRD Wizard.

3 Fill in the fields as follows:

4 Click Next. Designer displays the following dialog box.

5 Specify Roles for the category. 

6 Select Notify participants by e-mail if you want approvers to be notified by email about pending 
approval tasks, and also want initiators to be notified by email of workflow completion. If Notify 
participants by e-mail is not selected, users must look at the Roles tab in the User Application 
for notifications about tasks.

7 (Optional) Click the plus (+) icon to add a trustee. 

Designer displays a panel that allows you to browse the Identity Vault to select a trustee. You 
can select an individual trustee or a group.If you cannot connect to the Identity Vault, you can 
type trustee DNs directly in the Trustee DN field.

8 (Optional) Select the trustee, then click OK. 

Field Description

Identifier (CN) The CN (common name) identifier for the provisioning request definition. 
The name cannot be longer than 64 characters.

Display Name The display name for the provisioning request definition. This is the name 
that is displayed in the Provisioning view.

Description A description of the provisioning request definition.
Configuring Provisioning Request Definitions 85



Designer returns you to the previous panel. Add additional trustees by repeating the previous 
step. 

9 Click Finish. 

Designer displays the Provisioning Request Definition Details panel on the Overview tab (see 
“Modifying Settings of a Provisioning Request Definition” on page 86).

For more details on defining the associated workflow, see “Guidelines for Creating Roles Based 
Workflows” on page 168.

Modifying Settings of a Provisioning Request Definition

You use the Overview tab to define the basic information about the provisioning request definition (for 
example, the name of the provisioning request definition, the category to which it belongs, and who 
can access it). 

Modifying Basic Settings

The following table describes each property that you can configure on the Overview tab.

Table 4-3   Overview Properties

Field Description

Identifier (CN) Displays the CN (common name) of the provisioning request definition. The CN cannot 
be changed.

Display Name Specifies the display name of the provisioning request definition. This is the name that 
is displayed to the user in Designer and Identity Manager.

Description Specifies the description of the provisioning request definition.

Category Specifies the category to which the provisioning request definition belongs from the list 
of Provisioning Categories defined in the directory abstraction layer. The Provisioning 
view displays the provisioning request definitions by categories. 

Status Specifies the status of the provisioning request definition: 

Active: Select this option to make the provisioning request definition available for use 
in the User Application.

Inactive: Select this option to make the provisioning request definition temporarily 
unavailable for use in the User Application. You can use this option when you want 
keep the roles of the person who develops the provisioning request definition separate 
from the person who activates the provisioning request definition. For example, a 
developer could be responsible for marking the provisioning request definition as 
Inactive, and an administrator could be responsible for changing the status to Active.

Template: Select this option if you want to use this provisioning request definition as 
the basis for other provisioning request definitions. Templates are not available for use 
in the User Application.

Retired: Select this option to mark the provisioning request definition as permanently 
unavailable for use in the User Application (you can still change the status of the 
provisioning request definition at any time). This status provides a way of keeping a 
historical record of a provisioning request definition that is no longer in use.
86 Configuring Provisioning Request Definitions



Flow Strategy Specifies the flow strategy for the provisioning request definition: 

Single Flow: This strategy allows one workflow with one recipient.

Flow per member: This strategy allows the recipient to be a group DN. If you select 
this strategy, the User Application starts a workflow instance for each member of the 
group, and each workflow can be approved or denied separately. For example, 
assume there is a provisioning request definition for the recipient Human Resources. 
The Human Resource group has the members ablake and kchester. The User 
Application passes the Human Resources DN to the provisioning start. The 
provisioning interface starts two workflow instances, one for ablake and one for 
kchester.

Single Flow Provision Members: This strategy allows the recipient to be a group 
DN. If you select this strategy, the User Application starts a single workflow for the 
group. The workflow spawns multiple provisioning steps (one for each member) within 
the single workflow. The workflow is approved or denied to the group as a whole, not 
for each individual member. 

Process Type Specifies the type of provisioning request definition. Values are:

Normal: Used for typical workflow definitions that are not related to roles. 

Role Approval: Specify this type if the workflow is used for roles approvals. When this 
is set, the workflow is available to the Roles Configuration editor and the SoD Editor. It 
ensures that the NrfRequest object data item is available in the data item mapping.

Resource Approval: Specify this type if the workflow is used for resource approvals. 
When this is set, the workflow is available to the Resource Editor. It ensures that the 
NrfResourceRequest object data item is available in the data item mapping.

Attestation: Used by Compliance Administrators and Attestation Officers to submit 
requests for attestation workflows. 

WARNING

 If you change the process type from Role Approval or Resource Approval to 
Normal, you must also remove any ECMA expressions related to the NrfRequest 
object. ECMA expressions related to the NrfRequest object are only valid in role 
based workflows and resource based workflows. Including these expressions in 
non-roles-related workflows or non-resource-related workflows cause runtime 
errors in the User Application.

 The driver must be Roles Based Provisioning 3.7 or higher.

Notify participants by 
E-Mail

Specifies whether approvers are notified by email about pending approval tasks, and 
whether initiators are notified by email of workflow completion. If Notify participants 
by email is not selected, then users must look at the Task Notifications pane of the 
Work Dashboard tab in the User Application for notifications about tasks.

For information about selecting an email template and customizing email template 
parameters, see “Finish Activity” on page 220.

Restrict View Specifies that the list of tasks that can be viewed by the user in My Requests in the 
User Application is restricted to tasks initiated by the user. The default behavior (that 
is, Restrict View is not selected) is that the user can see any requests that the user 
initiated or for which the user is the recipient. 

Field Description
Configuring Provisioning Request Definitions 87



Designer allows you to modify the properties of more than one provisioning request definition at a 
time. The provisioning request definitions must be of the same category. You will see a different set of 
properties for provisioning request definitions whose categories are Attestations or Roles. See 
“Modifying Properties of Attestation or Roles Based Provisioning Request Definitions” on page 89.

1 With the Provisioning view open, select one or more provisioning request definitions, right-click, 
then select Properties. A dialog box like the following displays (the properties you can modify 
depend on the type of provisioning request definitions you have selected): 

Generate Comments Specifies that the workflow engine should generate comments as the workflow 
progresses. These comments can be displayed by clicking the following:

 View Comment and Flow History in a Request Detail form in the User 
Application

 View Comment History in a Task Detail form in the User Application

Set Default 
Completion Status to 
Approved

Specifies that the default completion status of the provisioning request is approved if 
selected, or denied if not selected. This feature can be useful for provisioning requests 
that do not contain a provisioning activity (an Entitlement or Entity). The value of this 
parameter can be overridden by explicitly setting the completion status by using a 
Provisioning activity or Workflow Status activity.

Trustee rights Specifies the users and groups that can use the provisioning request definition.

Global Scripts Specifies the global ECMA scripts that provisioning request definition imports while 
working with workflows and forms. Inline or extenal scripts can be added by specifying 
the type of the script. You can also specify when these scripts should be available to 
you. These scripts can be available on workflows, start activity, or forms.

Field Description
88 Configuring Provisioning Request Definitions



2 Modify the selected provisioning request definitions as desired by changing the value for that 
property.

If you have selected multiple provisioning request definitions and one of the properties does not 
contain a value, the corresponding field is blank. If you modify that field, then the value you 
specify is applied to all of the selected provisioning request definitions. 

3 For Trustees, delete, add, or merge the values for the selected provisioning request definitions.

A merge adds all of the trustees in the selected provisioning request definitions to all of the 
selected provisioning request definitions.

4 For Global Scripts, delete, add, or modify the values for the selected provisioning request 
definitions.

 External: The script is incorporated into the provisioning request definition by reference 
using the supplied ECMA Script DN. 

 Inline: The script is inserted directly into the provisioning request definition in a <script> 
block. You add your JavaScript using this ECMAScript Editor. To learn more about using the 
editor, click the editor’s help button. For inline scripts, the following is inserted in the page:

<script>whatever you type</script>

5 Click OK to save your changes.

Modifying Properties of Attestation or Roles Based Provisioning 
Request Definitions

The provisioning request definitions that support Attestations and Roles cannot be opened in the 
Provisioning Request Definition editor so you cannot set their properties by using the Overview tab. 
You can set several important properties, such as Trustee Rights, before deploying them. 

1 With the Provisioning view open, select one (or more) of the Roles or Attestation provisioning 
request definitions, right-click, then select Properties.

2 Fill in the fields as follows:

3 For Trustees, delete, add, or merge the values for the selected provisioning request definitions.

A merge adds all of the trustees in the selected provisioning request definitions to all of the 
selected provisioning request definitions.

Field Name Description

Notify by E-Mail Specifies whether approvers are notified by email about pending approval tasks, and 
whether initiators are notified by email of workflow completion. If Notify participants 
by email is not selected, then users must look at the Task Notifications pane of the 
Work Dashboard tab in the User Application for notifications about tasks.

For information about selecting an email template and customizing email template 
parameters, see “Finish Activity” on page 220.

Trustee Rights Specifies the users and groups that can use the provisioning request definition.

Global Scripts Specifies the global ECMA scripts that provisioning request definition imports while 
working with workflows and forms. Inline or external scripts can be added by 
specifying the type of the script. You can also specify when these scripts should be 
available to you. These scripts can be available on workflows, start activity, or forms.
Configuring Provisioning Request Definitions 89



4 For Global Scripts, delete, add, or modify the values for the selected provisioning request 
definitions.

5 Click OK to save your changes.

Provisioning and Workflow Example
This section describes a common provisioning and workflow scenario. It is designed to help you 
understand how the different objects that you create with the provisioning request editor are used by 
the User Application. 

Suppose a user needs an account on an IT system. To set up the account, the user initiates a request 
through the Identity Manager User Application. This request starts a workflow, which coordinates an 
approval process. When the necessary approvals have been granted, the request is fulfilled. 

Step 1: Initiating the Request

In the Identity Manager User Application, the user browses a list of resources by category and selects 
one to provision. In the Identity Vault, the selected provisioned resource is associated with a 
provisioning request definition. The provisioning request definition is the most prominent object in a 
provisioning system. It binds a provisioned resource to a workflow and acts as the means by which 
the workflow process is exposed to the end user. The provisioning request definition provides all the 
information required to display the initial request form to the user and to start the flow that follows the 
initial request. 

In this example, the user selects the New Account resource. When the user initiates the request, the 
Web application retrieves the initial request form and the description of the associated initial request 
data from the Provisioning System, which gets these objects from the provisioning request definition.

When a provisioning request is initiated, the Provisioning System tracks the initiator and the recipient. 
The initiator is the person who made the request. The recipient is the person for whom the request 
was made. In some situations, the initiator and the recipient can be the same individual.

Each provisioning request has an operation associated with it. The operation specifies whether the 
user wants to grant or revoke the resource.

Step 2: Approving the Request

After the user has initiated the request, the Provisioning System starts the workflow process, which 
coordinates the approvals. In this example, two levels of approvals are required, one from the user’s 
manager and a second from the manager’s supervisor. If approval is denied by any user in a 
workflow, the flow terminates and the request is denied.

Workflows can process approvals sequentially or in parallel. In a sequential workflow, as shown in the 
following figure, each approval task must be processed before the next approval task begins. 
90 Configuring Provisioning Request Definitions



Figure 4-1   Sequential Workflow with Two Approvals

In a parallel workflow, as shown in the following figure, users can work on the approval tasks 
simultaneously.

Figure 4-2   Parallel Workflow with Two Approvals
Configuring Provisioning Request Definitions 91



NOTE: The display labels (First approval, Second approval, and so on) can easily be changed to suit 
your application requirements. For parallel flows, you might want to specify labels that do not imply 
sequential processing. For example, you might want to assign labels such as One of Three Parallel 
Approvals, Two of Three Parallel Approvals, and so on.

The workflow definition is made up of the components shown in the following table: 

Table 4-4   Workflow Definition Components

Start activity: The workflow process begins with the execution of the Start activity. This activity 
displays the initial request form to the user. After the user has provided the initial request data, it 
initializes a work document using this data. The Start activity also binds several system values, such 
as the initiator and recipient, so that these can be used in script expressions. 

Approval activities: After the Start activity finishes, the Workflow System forwards processing to the 
first Approval activity in the flow. The Approval activity sends an email to the approver, notifying this 
user that his or her attention is needed. When the user claims the task, the Approval activity displays 
an approval form, which gives the user the ability to act on the request. In the workflow examples 
shown in “Step 2: Approving the Request” on page 90, “First approval” and “Second approval” are 
examples of Approval activities. The display labels for Approval activities can be localized to satisfy 
international requirements.

Process Component Description

Activities An activity is an object that represents a task. An activity can present 
information to the user and respond to user interactions. It can also perform 
background functions that are not visible to the user. 

In a workflow diagram, the activities are represented by boxes.

In the Identity Manager User Application, the activities that handle the 
approval process are referred to as tasks. An end user can see the list of 
tasks in his or her queue by clicking My Tasks in the My Work group of 
actions. To see which workflow activities have been processed for a 
particular task, the user can select the task and click the View Comment 
History button on the Task Detail form. 

To see which workflow activities have been processed for a particular 
provisioning request, the user can click My Requests, select the request, 
and click the View Comment and Flow History button on the Request 
Detail form. 

For more information on the My Tasks and My Requests actions, see the 
Identity Manager 3.6.1 User Application: User Guide.

Flow paths Flow paths tie the activities in a workflow together. A flow path represents a 
path to be followed between two activities.

An activity can have multiple incoming flow paths and multiple outgoing flow 
paths. When an activity has more than one outgoing flow path, the flow path 
selected often depends on the outcome of the activity. The outcome is the 
end result of processing performed by the activity. For example, an approval 
activity can have an outcome of approved or denied, depending on the 
action taken by the user.

In a workflow diagram, the flow paths are represented by arrows.
92 Configuring Provisioning Request Definitions



An Approval activity has five possible outcomes, each represented by a different flow path exiting the 
activity:

 Approved

 Denied

 Refused

 Error

 Timeout

NOTE: The Error and Timeout outcomes can occur without any action being taken by the user.

If the user approves the request, the workflow follows the approved flow path to the next activity in the 
flow. If no further approvals are needed, the resource can be provisioned. If the user denies the 
request, the workflow follows the denied flow path to the next activity in the flow. Alternatively, the 
user can reassign the task (if he or she is an Organizational Manager or User Application 
Administrator), which puts the task in another user’s queue.

The user to whom an Approval activity has been assigned is referred to as the addressee. The 
addressee for an activity can be notified of the assigned task via email. To perform the work 
associated with the activity, the addressee can click the URL in the email, find the task in the work list 
(queue), and claim the task. 

The addressee must respond to an Approval activity within a specified amount of time; otherwise, the 
activity times out. Typically the timeout interval is expressed in hours or days to allow the user 
sufficient time to respond.

When an activity times out, the workflow process might try to complete the activity again, depending 
on the escalation count specified for the activity. In some situations, the workflow process might be 
configured to escalate an activity that has timed out. In this case, the activity is reassigned to a new 
addressee (the user’s manager, for example) to give this user an opportunity to finish the work of the 
activity. If the last retry times out, the activity might be marked as approved or denied, depending on 
how the workflow was configured. 

Log activity: The Log activity is a system activity that writes messages to a log. To log information 
about the state of a workflow process, the Workflow System interacts with Novell Audit. During the 
course of its processing, a workflow might log information about various events that have occurred. 
Users can use the Novell Audit reporting tools to look at logging data.

Branch and Merge activities: In a workflow that supports parallel processing, the Branch activity 
allows two users to act on different areas of the work item in parallel. After the users have completed 
their work, the Merge activity synchronizes the incoming branches in the flow.

Condition activity: During the course of execution, a workflow process might perform a test and 
check the outcome to see what to do next. The Condition activity provides this capability. Condition 
activities use a scripting expression to define the condition to evaluate. In the workflow examples 
shown in “Step 2: Approving the Request” on page 90, “Approval Condition” is an example of a 
Condition activity.

The Condition activity supports three possible outcomes or exit paths:

 True

 False

 Error
Configuring Provisioning Request Definitions 93



Step 3: Fulfilling the Request

When a provisioning request has been approved, the Workflow System can begin the provisioning 
step. At this point, control passes back to the Provisioning System. 

To fulfill the provisioning request, the Provisioning System can execute an Identity Manager 
entitlement or directly manipulate an Identity Vault object and its attributes. These actions are 
performed by either the Entitlement activity or the Entity activity: 

 Entitlement activity: Fulfills the provisioning request by granting or revoking an entitlement. 
This activity is not usually executed unless all of the necessary approvals are given.

 Entity activity: Fulfills the provisioning request by directly manipulating an eDirectory object and 
its attributes. This activity is not normally executed unless all of the necessary approvals are 
given. 

Step 4: Completing the Workflow

When all other activities have terminated, the workflow executes the Finish activity, which is the final 
activity in a workflow. When all the activities in a flow have been completed and the final result of the 
flow is available, the Finish activity executes. The Finish activity sends a final email notification to 
inform participants of the completion of the workflow. 
94 Configuring Provisioning Request Definitions



5 5Creating Forms for a Provisioning 
Request Definition

This section provides details on creating and customizing the User Application’s request and 
approval forms.

About Forms
Forms allow the user to request a resource, approve a resource request, and work on a task. They 
are available when the user chooses any of the actions in the Task Notifications pane of the User 
Application’s Work Dashboard tab.

Figure 5-1 on page 100 is an example of a resource request form. At the top of the form is a read-only 
area that displays the details of the request (or approval for approval forms). In the Form Detail 
section at the bottom, the user provides input to the resource request (or approval) and takes some 
action on it. 

You use the Forms tab of the provisioning request definition editor to define the appearance and 
behavior of the Form Detail section of the User Application’s requests and approvals forms. 

About Request Forms

You can create one request form for a provisioning request definition. The request form is associated 
with the workflow’s Start Activity. 

About Approval Forms

You can define multiple approval forms for a provisioning request definition, but only one form per 
Approval Activity. You can specify the approval form to associate with an approval activity in the 
properties for the activity. You can create an approval form via the Forms tab or from the approval 
activities property sheet.

About Form Control Data Binding

All of the fields you define for a form are automatically available for data binding in the Data Item 
Mapping property sheet. Two bindings, or mappings, are possible for each form field: a pre-activity 
mapping to initialize or pre-load a form field with data, and a post-activity mapping to move modified 
form data into the workflow document called flowdata. These data-item bindings, and any script 
expressions they use, execute on the application server as preparation of the form before it is sent to 
the client browser for display to the user. Common uses for pre-activity data-item mappings and their 
expressions that operate against the flow-data document are for moving previous approval data into 
the current approval or for setting default values for fields. For more information on data item 
mappings, see “Defining the Data Item Mappings” on page 156. 

Some form controls allow you to initialize their values from data sources other than workflow data. For 
example, some list controls allow you to specify the initial value as a property of the control. For more 
information about defining initial values, see “Form Control Reference” on page 103.
Creating Forms for a Provisioning Request Definition 95



About Forms and Events

Designer allows you to define action scripts that execute on the form control’s onLoad, onChange, or 
custom events. Each form control supports an Events property where you supply the script for the 
event. The scripts you define have an event-level scope and execute in the browser of the user’s 
client machine.

The Events property provides access to Designer’s Event Action Expression Builder, which allows 
you to create script expressions that refer to and modify form and data. Because form control event 
scripts execute in the client browser, they do not have access to the flow-data document. They do 
have access to directory abstraction layer queries. 

The Event Action Expression Builder also provides access to the Form Action methods (shown in the 
left column). This column provides access to the form action script API along with directory 
abstraction layer query objects. The form action script API is written in JavaScript so that you can add 
conditions, loops, and user-defined functions. For more information about the Form Action API, see 
“Form Action Script Methods” on page 280. To import or include a JavaScript library, you use the 
Scripts tab of the Form Controls area. For more information, see “Using the Scripts Tab” on 
page 100.

About the Forms Tab
You use the Forms tab of the provisioning request definition editor to define the appearance and 
behavior of your request and approval forms.

The Forms tab contains a Form Selection section and a Form Controls section.

About Form Selection 

Use the Form Selection section to create, delete, or preview a form, or to create a form template. 
Click the Request or the Approval tab depending on the type of form you want to manipulate.

The Form Selection toolbar contains these options:

Table 5-1   Form Selection Toolbar Options

If you create a provisioning request definition from an existing template, and the template has forms 
associated with it, the Form Controls section displays them. You can modify the form instance by 
using the Form Controls section. 

Button Description

Click to launch the New Form Wizard.

Click to delete an existing form.

Click to save the form as a template. You can then base other forms on this template. Forms are 
saved as XML documents in the project directory. 

Templates are available only within the project in which you create them. 

Click to preview the form.
96 Creating Forms for a Provisioning Request Definition



About Form Controls

Use the Form Controls section to define or modify the form’s appearance and behavior. 

 Fields tab: Lets you add, delete, and change the data type, control type, and layout order of the 
controls on the form.

For information about adding controls, see “Creating Forms” on page 97. For more information 
about individual form controls, see “Form Control Reference” on page 103. 

 Actions tab: Lets you define the actions the user can perform on the form. Use the Actions 
toolbar to add, delete, and change the actions and layout order of the actions on the form. 

For more information about the supported actions, see “Action Reference” on page 102. 

 Scripts tab: Use the Scripts tab to define calls to external JavaScript files or to write JavaScript 
scripts that are stored as part of the form definition. When you have created a script by using this 
tab, it becomes available in the Action Script Expression Builder and you can call it from any 
form control event. These scripts have a page-scope rather than an event-scope. For more 
information about using the script tab, see “Using the Scripts Tab” on page 100. 

 Events tab

Creating Forms
This section describes how to create new forms and add controls to them.

Creating New Forms

1 With the provisioning request definition editor open, click the Forms tab.

2 In the Form Selection section of the page, click Add to access the New Form Wizard.

3 Fill in the fields as follows: 

4 Click OK to save the form or click Cancel to exit without saving.

Adding Form Controls and Actions

Use the Form Controls section to define the content and layout of the form. 

NOTE: The Designer places form controls on the form from top to bottom and left to right. Use 
Linebreaks to force spacing between controls

To add a control to a form:

1 Click Add. Designer adds a control named Field to the bottom line of the form. 

Field Description

Form Name Type the name of the form as you want it to appear 
in Designer.

Create a form using one of the templates If you want to base the new form on an existing 
template, select this option and select one of the 
forms from the Form templates list.
Creating Forms for a Provisioning Request Definition 97



If you add more than one control of the same name to the form, Designer adds a unique number 
to the end of the control name.

2 Define the following properties for the control:

Form field controls do not have Data Item Mappings or email notifications property sheets.

3 For each control, specify its properties in the Properties tab (available via Window > Show View 
> Properties). For more information, see “Form Control Reference” on page 103.

4 Click the Actions tab to define what the user can do with the form. For example, you can add 
actions that allow the user to submit a form or cancel it. 

A request form must have, at a minimum, a SubmitAction. Without a SubmitAction, the request 
does not process. Every form should have a CancelAction. Each approval form must have at 
least one action defined. 

5 In the Actions page, click Add to add a new Action. Fill in the fields as follows:

Field Description

Form Field Name A unique name for the field. The name is used in several different locations:

 The Workflow tab’s Data Item Mapping dialog box.

 The ECMA expression builder dialog box.

 An internal XML reference in the provisioning request definition file.

Consider the naming conventions you want to use for form fields, in order to avoid 
confusion in the Data Item Mapping and ECMA Expression Builder dialog boxes. 
For example, the request and approval forms might both contain a field called 
Reason. To make it clear which field you are working with while performing data 
mappings, you can preface the field name with the name of the form where it is 
used. You might name one reason field Req_Reason and the other 
App_Reason.

Data Type The field’s data type. The data type determines the valid control types and the type 
of validation performed. 

Control Type The type of visual control used to display or edit the data. The selection list is 
filtered based on the selected data type. 

Linebreaks Defines the number of lines you want inserted after the control. 
98 Creating Forms for a Provisioning Request Definition



6 Save the form. 

Defining Events

The scripts you attach to an event handler are scoped to the appropriate control, not the browser 
window. 

Defining an Event

1 Select the form control where you want to define an event and open the property sheet.

2 Navigate to the Event tab and add an event. Designer adds a row with the default event name 
onload. 

3 Click the Event Name field and select the onchange or onload event. For more information on 
adding other events, see “Creating Custom Events” on page 99.

4 Click the Action Expression field. You can type the script directly in this field, or click the button 
to access the Event Action Expression Builder. 

5 Define the action script, check the syntax, then click OK. Repeat this procedure to add more 
events to this control.

For more information on the onchange and onload events, see the events property description in 
“General Form Control Properties” on page 105.

Creating Custom Events

You can create your own events to notify other controls of conditions or user actions on the form. You 
create the event using the Events property. You can give the event any name. You must explicitly fire 
the event by using the fireEvent() method and passing in the name of the event. 

You might want to perform a query on the Groups container that returns only the groups that match 
the values entered by a user. In the example shown in Figure 5-7, the user types a value in the name 
field, When the user tabs to the next field, the contents of the drop-down list are populated from a 
query launched by the namechange custom event. 

Field Description

Actions Location Choose the location for the action buttons you add 
to the form. 

Bottom. Places the action buttons on the bottom of 
the form. (Default.)

Top: Places the action buttons on the top of the 
form.

Top and Bottom: Places the buttons at both the top 
and bottom of the form. 

Action Command Choose an action for the button. For more 
information, see “Action Reference” on page 102.

Linebreaks Defines the number of lines you want inserted after 
the action button.
Creating Forms for a Provisioning Request Definition 99



The Name field defines an Events property that fires the namechange event on an onchange event. 
The definition is shown in Figure 5-1. 

Figure 5-1   Sample field.FireEvent() Method

The namechange event contains an expression that executes a query called groups.

For more information on using queries, see “Using DAL Queries in Forms” on page 143.

Using the Scripts Tab

Use the Scripts tab to define a script that has a page-level scope. A page-level scope means that the 
script loads at page load time and is available through the life of the form. You can supply the script in 
one of the ways described in Table 5-2. 

Table 5-2   Script Types

Script Type Description

external The script is incorporated into the page by reference, using the supplied URL. The script block 
will look something like this: <script type="test/javascript" scr="http://
some.server/custom.js"></script>. The custom.js file is imported at form load. 

inline The script is inserted directly into the form in a <script> block. 
100 Creating Forms for a Provisioning Request Definition



Because these scripts are loaded at page load, the form controls and any of their associated event 
handler scripts are not in scope when the page is loaded. Avoid coding dependencies between page-
level scripts and event-level scripts; however, you can call page-level scripts from within an event-
level script. 

To add a link to an external JavaScript file:

1 With the Scripts tab open, click Add . 

2 Complete the fields as follows: 

To create an inline script: 

1 With the Scripts tab open, click Add . 

2 Complete the fields as follows: 

Field Description

ID Specify a meaningful name. This value displays in the Event 
Action Expression Builder. 

Type Select external.

URL/Inline Script Click within the field so that the ECMAScript Editor button 
displays to the right, then click the button to display the editor 
as a dialog box. 

Type the URL to the .js file in the Enter the URL String 
field, then click Retrieve. The script is fetched and displays in 
read-only mode. You can inspect the script, but you cannot 
change it. 

When you add an external link to a form, only the link is 
stored and deployed, for example:

<script src="someURL.com/script.js"/>

TIP: Designer cannot validate this external reference. You 
must ensure that it is accessible at runtime.

Field Description

ID Specify a meaningful name. This value displays in the Event 
Action Expression Builder. 

Type Select inline.

URL/Inline Script Click within the field so that the ECMAScript Editor button 
displays to the right, then click the button to display the editor 
as a dialog box.

You add your JavaScript by using this ECMAScript Editor. To 
learn more about using the editor, click the editor’s help 
button.

For inline scripts, the following is inserted in the page: 

<script>whatever you type</script>
Creating Forms for a Provisioning Request Definition 101



Both inline and external scripts are executed at page load but before the page loads the controls. In 
addition, they are also executed when specifically called on a form control event.

Action Reference
This section describes the actions you can add to forms. The actions are implemented as buttons. 
You can specify a custom display label for each button.

Table 5-3   Valid Actions

Action Name Form Type Description

ApprovalAction Approval Causes the Approval activity to complete and follow the approved 
flow path to the next activity. When you use this action, you must set 
the Hide If Read Only form property to True; otherwise the form fails 
validation when you submit it. 

TIP: An ApprovalAction requires the Approval Activity associated 
with the form to have an approved flow path exiting the activity.

CancelAction Request and 
Approval

For request forms, Cancel returns the user to the Request Resource 
Search Criteria form. For approval forms, Cancel returns the user to 
the My Tasks list.

CommentAction Approval forms Generates a button with the default label set to View Comment 
History. The button launches a Comments dialog box displaying the 
processing history for each activity from the workflow start to the 
present time. Data displayed includes Date, Activity Name, User, 
and Comment.

Comments are updated and persisted to the workflow database 
through the UpdateAction.

NOTE: Any forms containing this action must also contain a field 
named apwaComment. 

DenyAction Approval Causes the Approval activity to complete and follow the denied flow 
path. When you use this action, you must set the Hide If Read Only 
form property to True; otherwise, the form fails validation when you 
submit it. 

TIP: A DenyAction requires the Approval Activity associated with the 
form to have a deny flow path exiting the activity.

RefusalAction Approval Causes the Approval activity to complete and follow the refused flow 
path. When you use this action, you must set the Hide If Read Only 
form property to True; otherwise, the form fails validation on submit.

TIP: A RefusalAction requires the Approval Activity associated with 
the form to have a refusal flow path exiting the activity.

SubmitAction Request and 
Approval

Initiates the workflow and causes the workflow to execute the 
forward flow type. The workflow passes any user-entered data to the 
next activity in the workflow.
102 Creating Forms for a Provisioning Request Definition



The following table describes the properties you can set on actions.

Table 5-4   Action Properties

Form Control Reference
This section describes the controls you can add to a form. 

Table 5-5   Control Types and Supported Data Types

UpdateAction Approval Causes the Approval activity to write a user comment to the 
workflow database. There is typically a text area associated with an 
apwaComment form field. If the user enters text in this field and 
clicks this action, it is persisted to the afcomment table in the 
workflow database. The comment can be retrieved and viewed 
through the CommentAction (described above).

NOTE: The form must contain a field named apwaComment; 
otherwise, the provisioning request definition fails validation.

For more information about apwaComment, see “Controls for User-
Entered Comments” on page 105.

Property Name Description

Display Label Specifies the text to display on the button.

Visible If True, specifies whether the action is visible at runtime.

Block On Error If True, specifies that the action is blocked if any of the form’s controls fail validation. 
This is recommended for the SubmitAction. You should not set it to False if the action 
button submits data; otherwise, invalid data can be submitted, causing unexpected 
results.

Designer does not allow you to set this property to False for the ApprovalAction, 
DenyAction, or RefusalAction. 

Hide If Read Only If True, specifies that the action is hidden when the form is read-only. A form can be 
read-only when the user opens a task without claiming it first. If your form contains the 
ApprovalAction, DenyAction, or RefusalAction, this property must be set to True. If it is 
set to False, you encounter a validation error and cannot deploy the form. 

Action Name Form Type Description

Control Type Data Types

Boolean Date Decimal DN Integer String Time Resource
Request

CheckBoxPickList x x x x x

DatePicker x

DateTimePicker x

DNContainer x

DNDisplay x
Creating Forms for a Provisioning Request Definition 103



NOTE: Note that the session time-out value is not increased when specifying a value for a form 
control type that does not communicate with the User Application back-end. 

Data Type for Roles Based Request Forms

Designer supports a specialized form control called nrfRequestDN of data type Role Request. The 
control type is Text. It is defined by default when you create a copy of the standard roles based 
provisioning request definitions. It represents the Role Request object. 

Data Type for Resource Based Request Forms

Designer supports a specialized form control called nrfResourceRequestDN of data type Resource 
Request. The control type is Text. It is defined by default when you create a copy of the standard 
resource based provisioning request definitions. It represents the Resource Request object. You can 
add this control only once. nrfResourceRequestDN is the field name and it cannot be changed in the 
GUI.

DNLookup x

DNMaker x

DNQuery x

Global List x

Html x

Localized Label x

MVCheckbox x x x x

MVEditor x x x x

Password x

PickList x x x x

RadioButtons x

Static List x x x x

Text x x x x

Text Area x

Title x

TrueFalseCheckBox x

TrueFalseRadioButtons x

TrueFalseSelectBox x

Control Type Data Types

Boolean Date Decimal DN Integer String Time Resource
Request
104 Creating Forms for a Provisioning Request Definition



Controls for User-Entered Comments

Designer supports a special internal control you can add to a form to allow users to add comments to 
a workflow or to view previously entered comments. Comments are required on forms that use 
CommentAction or UpdateAction. The comments are not part of the workflow data so you cannot 
access them via the flowdata object. The comments are special data items stored in the afcomment 
table of the workflow database. The comments are persisted as long as the row for the requestid in 
the afprocess table exists.

To create a form that supports user comments:

1 Add a control to your form. Select Comment as the data type. The Form Field name is 
automatically defined as apwaComment and the Control Type is TextArea. A single form can 
contain only one comment field. 

2 Add a CommentAction or UpdateAction to the form. 

For more information, see “Action Reference” on page 102.

General Form Control Properties

The properties in the following table are available for each control.

Table 5-6   General Properties

Property Name Description

Display label Specifies the label to display to identify the control. It is localizable.

Editable Specifies if the control is editable (True). Otherwise, it displays as read-only.

NOTE: If this property is set to false, it remains read-only and any change to 
other properties of this filed cannot change the property value using ECMA 
scripting.

For example, in the onload event if you try to enable or disable the field like 
form.enable(Name), it cannot change the property value of the Name field 
when the editable property is set to false using designer.

Events Specifies an event for the control. Possible values include the following:

 OnChange: Fires when one of the following occurs: 

 Immediately after onload. 

 Another script changes the value of the control. 

 The user commits a change to the data value associated with the 
control. This occurs when the user has tabbed out of the control or 
otherwise caused it to lose focus. For example, this can happen when 
the user tabs away from the control (for text entry based controls like 
Text, TextArea, DatePicker), or when the user selects a different entry 
choice for choice-based controls like PickList, MVCheckbox, and 
StaticList).

 onLoad: The onload event for a control fires just once, when the control is 
loaded into the page for the first time. It can be used to set initial values or 
preselect entries; however, there is no guarantee that controls load in a 
particular order.
Creating Forms for a Provisioning Request Definition 105



Sort Order

List-based controls sort content alphabetically. For DN-based lists, the sort order is alphabetical 
based on the Display expression property result. For all other types, the sort order is based on the 
display label. 

CheckBoxPickList

Use the CheckBoxPickList control to allow users to view and choose one or more values from a 
dynamically generated list of choices displayed as check boxes. 

When the associated data type is a DN retrieved from the Identity Vault, you can display the check 
box label as the fully qualified DN or use the Display expression property to specify the attributes to 
display instead. 

Figure 5-2   Sample CheckBoxPickList Control

Table 5-7   CheckboxPickList Properties

Multivalued This is a read-only property. It specifies if the control supports multivalue 
attributes (True).

Required Specifies whether the control requires user input (True).

Tooltip Specifies the text for the control’s tooltip. It is localizable.

Visible Specifies whether the control is displayed in the user interface (True).

Property Name Description

Entity Key for DN expression lookup When you populate this control with a DN retrieved from the Identity 
Vault and you want that value to display in a user-friendly fashion, 
you should choose an entity from the drop-down list and specify a 
set of attributes in the Display expression property. 

Leave this value blank if you want to display the full DN or CN value 
retrieved from the Identity Vault. The entity you choose must have 
the directory abstraction layer View property set to True and be the 
entity whose DN you are retrieving from the Identity Vault.

Display expression Required when you specify an Entity Key for DN expression 
Lookup. Choose the attributes to display as the check box labels. 
For example, to display the user entity’s first and last name 
attributes, construct an expression like this: FirstName LastName.

The attribute’s directory abstraction layer properties for View, Read, 
Search, and Required must be set to True. 

Allow multiple selections When this option is set to True, users can select more than one 
entry.

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Property Name Description
106 Creating Forms for a Provisioning Request Definition



DatePicker

Use this control for display and entry of a date and time. This allows users to choose a date from a 
pop-up calendar or type a date in a text field. At runtime, the form automatically validates the date by 
using the format for the user’s locale and time zone. If the user enters an incorrect format, the form 
displays an error message. The DatePicker control’s tooltip displays the valid date format. The default 
DatePicker control looks like this:

Figure 5-3   Sample DatePicker Control

When the Show date picker property is True, the form displays the date field along with a button. 
When the user clicks the button, the form launches a calendar for the user to select the date. The 
calendar pop-up looks like this: 

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view 
the classes that are available for your User Application portal by 
logging into the User Application, navigating to Administration > 
Application Configuration > Theme Administration, then 
clicking the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall 
class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view 
the classes that are available for your User Application portal by 
logging into the User Application, navigating to Administration > 
Application Configuration > Theme Administration, then 
clicking the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel 
class.

Example: nv-color5

Separate class names with spaces.

Show 2 lists When this option is set to True, two lists are displayed, one for the 
unselected values and another for the selected values. 

The Allow multiple selections property must be set to True. If set to 
False, Show 2 lists is ignored.

Sort entries When this option is set to True, sorts results in ascending order. For 
details, see “Sort Order” on page 106.

Property Name Description
Creating Forms for a Provisioning Request Definition 107



Figure 5-4   Sample Calendar Control

Table 5-8   DatePicker Control Properties

Property name Description

Datetime indicator When this option is set to False, the Calendar pop-up does not display the time.

Day headers A comma-separated, single-quoted list of values displayed by the Calendar pop-up to 
indicate the day of the week. This value is localizable.

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class 
name(s)

Apply one or more CSS class styles to the field body. You can view the classes that are 
available for your User Application portal by logging into the User Application, 
navigating to Administration > Application Configuration > Theme Administration, 
then clicking the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field Width in pixels Use this field to configure the field’s visible width on the form. The default is 200 pixels.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class 
name(s)

Apply one or more CSS class styles to the field label. You can view the classes that are 
available for your User Application portal by logging into the User Application, 
navigating to Administration > Application Configuration > Theme Administration, 
then clicking the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Month names A comma-separated, single-quoted list of values displayed by the Calendar pop-up to 
indicate the month name. This value is localizable.

Show date picker When this option is set to True, displays the calendar pop-up. If it is set to False, the 
calendar pop-up does not display. Users must type the date in the text field by using 
the proper format for their locale.
108 Creating Forms for a Provisioning Request Definition



DateTimePicker

Use this control for display and entry of a date and time for a Time data type. This allows users to 
choose a date and time from a pop-up calendar or type a value in a text field. At runtime, the form 
automatically validates the date and time by using the format for the user’s locale and time zone. If 
the user enters an incorrect format, the form displays an error message. The DateTimePicker tooltip 
displays the valid date format. The default control looks like this:

Figure 5-5   Sample DateTimePicker Control

When the Show date picker property is set to True, the form displays a text field followed by a 
calendar button. When the user clicks the calendar button, the form launches a calendar control for 
the user to select the date and time values. The calendar pop-up looks like this: 

Figure 5-6   DateTimePicker Calendar Control

Table 5-9   DateTimePicker Control Properties

DNContainer

Use this control to allow users to select a container object from within the root container that you 
specify. You can use this control to limit the user to a subtree of a container. This is a specialized 
version of the DNLookup control.

Property name Description

Day headers A comma-separated, single-quoted list of values displayed by the Calendar pop-up to 
indicate the day of the week. This value is localizable.

Field width in pixels Use this field to configure the field’s visible width on the form. The default is 200 pixels.

isDateTime When this option is set to False, the Calendar pop-up does not display the time.

Month names A comma-separated, single-quoted list of values displayed by the Calendar pop-up to 
indicate the month name. This value is localizable.

Show date picker When this option is set to True, it displays the calendar pop-up. If it is set to False, the 
calendar pop-up does not display. Users must type the proper format for the locale 
when they type the date in the text field. 
Creating Forms for a Provisioning Request Definition 109



Figure 5-7   DNContainer Control With Root Container Specified

Table 5-10   DNContainer Control Properties

Property name Description

Entity key used for object lookup Choose an entity from the drop-down list. The entity that you choose 
limits the users ability to look up objects within the specified entity’s 
container. If you specify an entity key and a root container, the entity key 
takes precedence.

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the 
classes that are available for your User Application portal by logging into 
the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. The default 
is 200 pixels.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the 
classes that are available for your User Application portal by logging into 
the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Root container Specify a root container for lookups when users click the Object Selector 
button. 

Show clear button
If set to True, the form displays the  Reset field button 

Show object history button
If set to True, the form displays the  Show history button. 

Show object selector button
If set to True, the form displays the  Object Selector button. 
110 Creating Forms for a Provisioning Request Definition



Displaying the Container Description Instead of the Container O/OU 
Name

Some additional steps are required to take advantage of an Identity Manager 4.5 DNContainer form 
field enhancement. This enhancement allows you to display the container description instead of the 
container O/OU name. 

To enable the DNContainer enhancement, you need to manually update the Designer install to add 
properties to the DNContainer control. Then, you need to create a DAL entity corresponding to the 
container for which you want to display an attribute. Finally, you need to use the form editor to choose 
the entity and attribute.

1 Locate the following file in your Designer install:

/opt/novell/idm/Designer/plugins/com.novell.core.scriptengineshell_4.5*/lib/
UIRegistry.jar

2 Back it up first, then use a suitable jar/zip tool to modify the file within the jar:

com\novell\srvprv\impl\uictrl\UIControlRegistry.xml

3 Locate the <ctrl key="DNContainer" section and add the following properties at the end:

<prop name="display-entitydef" type="string" since="1.9">
     <display-label rb-key="LAB_DIS_ENTITYDEF"/>
</prop>
<prop name="display-exp" type="expression" since="1.9">
      <display-label rb-key="LAB_DIS_EXPRESSION"/>
</prop>

4 Put this file back into the JAR in its original location and start Designer.

5 In Designer, create a new DAL entry with an unused name, such as myDescriptionLookup.

6 For the base class of this DAL entry, choose Organization, and pick the attribute you want to 
show (for example Description).

7 When the DAL editor is open, change the LDAP name of the class to Top. This allows you to 
view the Description for Organizations, Organizational Units, and so forth.

8 To use the new DAL entry, open a PRD and go to a form. Add or pick a dn/DNContainer field.

9 Fill in the two new fields (Entity key for DN expression lookup, Display expression) with the 
values specified above (myDescriptionLookup, Description).

10 Deploy the new DAL entry and the PRD.

11 On the User Application, clear the cache or restart the server.

12 Test the new PRD to ensure that the descriptions are shown instead of the cn in the 
DNContainer control.

Make sure the containers you are going to show have a Description value; otherwise, cn is used. 
Containers, by default, leave this value blank.

DNDisplay

Use this control to display a read-only DN. You populate the control from flowdata. The control can 
display the full DN or a set of attributes associated with the DN depending on the properties you set. 
The DNDisplay control cannot be modified by the workflow engine. For this reason, it is not available 
for post activity mapping. 
Creating Forms for a Provisioning Request Definition 111



Figure 5-8   Sample DNDisplay

Figure 5-9   Sample DNDisplay with Display Expression Specified

Table 5-11   DNDisplay Control Properties

Property name Description

Display expression Leave this value blank if you want to display the full DN or CN value. 

If you want to mask the DN by displaying attributes instead, launch 
the expression builder and select the desired attributes from the list. 
(You must first specify an Entity key for DN expression lookup.) 

For example, to show the user entity’s first and last name attributes, 
construct an expression like this: FirstName LastName.

Make sure the attribute’s View, Read, Search, and Required 
properties are set to True in the directory abstraction layer. See 
“Attribute Properties” on page 63.

Entity key for DN expression lookup Leave this value blank if you want to display the full DN or CN value 
retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes instead, 
choose the entity from the drop-down list and specify a set of 
attributes in the Display expression property. 

The entity you choose must:

 Have the directory abstraction layer View property set to True. 

 Be the entity of the DN you are working with. 

For more information, see “Working with Distinguished Names” on 
page 140.

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view 
the classes that are available for your User Application portal by 
logging into the User Application, navigating to Administration > 
Application Configuration > Theme Administration, then clicking 
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.
112 Creating Forms for a Provisioning Request Definition



DNLookup

Use this control to allow users to search and retrieve DNs from the Identity Vault. You can initialize the 
control with a DN from the flowdata. You set properties to control the entities and containers that the 
user can search and the format of the DN. 

Figure 5-10   Sample DNLookup Control

The buttons associated with the DNLookup control are described in Table 5-12.

Table 5-12   DNLookup Control Buttons

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view 
the classes that are available for your User Application portal by 
logging into the User Application, navigating to Administration > 
Application Configuration > Theme Administration, then clicking 
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Button Description

Launches an object lookup dialog box. You define whether the dialog box displays 
containers or objects via the Object Selector type property.

The attributes shown in the drop-down list (Description in the above example) are 
specified in the directory abstraction layer. The availability of this button is controlled by 
the Show object selector property. 

Show history. Allows users to view the history of objects that they have searched. They 
can select from this list or clear its contents. The availability of this button is controlled 
by the Show object history button property.

Reset field. Deletes the field contents. The availability of this button is controlled by the 
Show clear button property.

Property name Description
Creating Forms for a Provisioning Request Definition 113



Table 5-13   DNLookup Control Properties

Property Name Description

Display expression This property only applies when you initialize the control from 
flowdata. Leave this value blank if you want to display the full DN or 
CN value.

If you want to mask the DN by displaying attributes instead, launch 
the Expression Builder and select the desired attributes from the list. 
(You must first specify an Entity key for DN expression lookup.) 

For example, to show the user entity’s first and last name attributes, 
construct an expression like this: FirstName LastName.

Make sure the attribute’s View, Read, Search, and Required 
properties are set to True in the directory abstraction layer. See 
“Attribute Properties” on page 63.

Entity key for DN expression lookup This property specifies the entity or containers that will be searched 
when you click the object selector button.

If you initialize the control from flowdata, you can configure the 
control to display an attribute value of the entity rather than the full 
DN or CN value. If you want to mask the DN or CN by displaying 
attributes instead, choose the entity from the drop-down list, specify 
a set of attributes in the Display expression property.

The entity you choose must:

 Have the directory abstraction layer View property set to True. 

 Be the entity of the DN you are working with. 

For more information, “Working with Distinguished Names” on 
page 140.

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view 
the classes that are available for your User Application portal by 
logging into the User Application, navigating to Administration > 
Application Configuration > Theme Administration, then clicking 
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red
114 Creating Forms for a Provisioning Request Definition



DNMaker

Use this control to allow users to construct a DN value by specifying a naming value and choosing a 
container. 

Figure 5-11   Sample DNMaker Control

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view 
the classes that are available for your User Application portal by 
logging into the User Application, navigating to Administration > 
Application Configuration > Theme Administration, then clicking 
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Object Selector type Determines whether the object selector dialog box performs an 
Object Lookup or a Container Lookup. 

paramlist: Causes the object selector dialog box to perform an 
object lookup. You specify the lookup criteria via the Entity key for 
DN Expression lookup property. 

container: Causes the object selector dialog box to display one or 
more containers for selection. The containers for searching are 
determined by the Search container property, which is specified in 
the directory abstraction layer for the entity named in the required 
Entity Key for DN Expression lookup property. For example, if the 
Entity key for DN Expression lookup property is Group, the search 
container is set to %group-root% by default. If no search container 
is used, the search root specified during the User Application 
installation is used.

Field width in pixels Use this field to configure the field’s visible width on the form. The 
default is 200 pixels.

Show clear button If this option is set to True, the form displays the Reset field button.

Show object history button If this option is set to True, the form displays the Show history 
button.

Show object selector button If this option is set to True, the form displays the object selector 
button.

Property Name Description
Creating Forms for a Provisioning Request Definition 115



Table 5-14   DNMaker Control Buttons

Table 5-15   DNMaker Control Properties

Button Description

Launches an object selector for container searches.

The container search root is defined for the entity specified in the Entity used for object 
lookup property. The availability of this button is controlled by the Show object selector 
property. 

Show history. Allows users to view the history of objects that they have searched. 
They can select from this list or clear its contents. The availability of this button is 
controlled by the Show object history button property.

If the root container is specified for lookups, the Show history button is not shown even 
if the property is set to True. This has been done for security reasons.

Reset field. Deletes the field contents. The availability of this button is controlled by 
the Show clear button property.

Property Description

Entity key used for object 
lookup

A required field. Choose an entity from the drop-down list. This determines 
the search that is launched when the user clicks the object selector 
button. 

If you specify an entity key and a root container, the entity key takes 
precedence

Naming attribute The naming attribute used to construct the final DN. This value displays 
next to the control’s display label as an extra hint to the user. 

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the 
classes that are available for your User Application portal by logging into 
the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red
116 Creating Forms for a Provisioning Request Definition



DNQuery

DNQuery is a specialized version of the DNLookup control. Like DNLookup, DNQuery allows users to 
search and retrieve DNs from the Identity Vault; however, with the DNQuery, the object selector 
content can be driven by the result of a directory abstraction layer Queries object rather than from 
properties. 

Table 5-16   DNQuery Control Properties 

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the 
classes that are available for your User Application portal by logging into 
the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Root container Specify a root container for lookups when users click the object selector 
button. If you do not specify a Root container, the User Application uses 
the container for the entity in the directory abstraction layer property called 
Search Container. If a search container is not specified for the specified 
entity, then the Root Container DN specified during the User Application 
installation is used. If you specify an entity key and a root container, the 
entity key takes precedence.

Show clear button If this option is set to True, the form displays the Reset field button.

Show object history button If this option is set to True, the form displays the Show history button.

Show object selector button If this option is set to True, the form displays the object selector button.

Property Name Description

DAL global query key Specifies the key of the DAL Queries object you want executed. 
You can select it from the Event Action Expression Builder. For 
more information about using DAL queries, see “Using DAL 
Queries in Forms” on page 143. For more information about 
defining DAL queries, see “Working with Queries” on page 56. 

DAL global query parameter(s) Specifies the value for the query parameters. For example, this 
passes the String Sales to the Queries parameter called 
groupname:

 (function (){return {"groupname":"Sales"}})();

Display expression When you populate the control with initial data from a Data Item 
Mapping value, use this property to specify the attributes to 
display.

Property Description
Creating Forms for a Provisioning Request Definition 117



Entity key for DN expression lookup This property only applies when you initialize the control from 
flowdata. Leave this value blank if you want to display the full DN 
or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes instead, 
choose the entity from the drop-down list, then specify a set of 
attributes in the Display expression property. 

The entity you choose must:

 Have the directory abstraction layer View property set to 
True. 

 Be the entity of the DN you are working with. 

For more information, “Working with Distinguished Names” on 
page 140.

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can 
view the classes that are available for your User Application portal 
by logging into the User Application, navigating to 
Administration > Application Configuration > Theme 
Administration, then clicking the Preview button for the portal 
theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall 
class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. The 
default is 200 pixels.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can 
view the classes that are available for your User Application portal 
by logging into the User Application, navigating to 
Administration > Application Configuration > Theme 
Administration, then clicking the Preview button for the portal 
theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel 
class.

Example: nv-color5

Separate class names with spaces.

Show clear button
If set to True, the form displays the  Reset field button 

Show object selector button
If set to True, the form displays the  Object Selector button. 

Property Name Description
118 Creating Forms for a Provisioning Request Definition



Global List

Use this control to allow users to select a single entry from a drop-down list. The contents of the list 
are defined in a directory abstraction layer global list element.

Figure 5-12   Sample Global List Control

Table 5-17   Global List Properties

Property Name Description

DAL global list key Specifies the unique identifier of the global list. This 
must correspond to the key specified in the directory 
abstraction layer.

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class names with spaces.
Creating Forms for a Provisioning Request Definition 119



For more information about global lists, see “Working with Lists” on page 54.

Localized Label

Use this control if you want to allow the user to provide translated text for the field. This control 
displays the standard icon that indicates the text can be localized. 

Figure 5-13   LocalizedLabel Control

If the user clicks the icon, they are able to type the text for each language supported by the User 
Application driver. The list of languages displayed for this control is determined by the contents of the 
locale resource group called base-resgrp. 

Figure 5-14   LocalizedLabel Control 
120 Creating Forms for a Provisioning Request Definition



Table 5-18   LocalizedLabel Control Properties

Html

Use this control to add HTML fragments to the Form Detail. You can do this by specifying the HTML 
fragments in the HTML content property. In addition, you can conditionally add the HTML fragment 
via an event on the form control. In either case, specify the HTML through the use of an anonymous 
function, such as: ( function() { return "<yourTag yourAttr='your attr value' />"; } ) 
();

For example:

(function(){ return "<table bgcolor='#C0C0C0'><th colspan='3' align='center'>Table 
Header Goes Here</th><tr><td>Value 1.1</td><td>Value 1.2</td></tr><tr><td>Value 
2.1</td><td>Value 2.2</td></tr></table>"; })() 

Table 5-19   HTML Control Properties

Property Name Description

Field CSS class name(s) Apply one or more CSS class styles to the field body. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label CSS class name(s) Apply one or more CSS class styles to the field label. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Property Name Description

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red
Creating Forms for a Provisioning Request Definition 121



MVCheckbox

Use this control to display a set of labeled check boxes. You specify the label and its associated 
values through the List item property. A sample MVCheckbox control is shown below. 

Figure 5-15   Sample MVCheckbox Control

Table 5-20   MVCheckbox Control Properties

Field CSS class name(s) Apply one or more CSS class styles to the field body. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Property Name Description

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Property Name Description
122 Creating Forms for a Provisioning Request Definition



TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not flowdata.get(). 
If you use flowdata.get(), you get only the first value.

For more information on preselecting values, see the “Form Control Examples” on page 279.

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the 
classes that are available for your User Application portal by logging 
into the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the 
classes that are available for your User Application portal by logging 
into the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

List item Allows you to define a set of static values that comprise the check box 
labels and values. Click the List property button to launch the list 
value dialog box shown here:

Property Name Description
Creating Forms for a Provisioning Request Definition 123



MVEditor

Use this control to allow users to display, edit, or add multiple values in a drop-down list box. You can 
load the data dynamically from the Identity Vault, or allow users to enter the values. 

The control’s appearance varies depending on the data type of the control and the properties that you 
specify. For example, if the data type is a DN, you can set properties that display specific attributes 
related to the DN. You can also enable an object selector button that allows users to search and 
select values by setting the Entity key for DN expression lookup property. 

There are also properties that let you specify a DAL Global Query to execute or specify a root DN to 
drive the object picker.

Table 5-21   MVEditor with Object Selector Properties Set Control Buttons

Button Description

Launches a search dialog box called an object 
selector. The object selector dialog box looks like this: 

The user can select a value from the list to populate 
the control. The attribute displayed in the drop-down 
list (Description in the above example) is specified in 
the directory abstraction layer. You specify it in the 
attribute’s UIControl property. See “Attribute UI Control 
Properties” on page 65. The availability of this button 
is controlled by the Show object selector property. 

Show history. Allows users to view the history of 
objects that they have searched. They can select from 
this list or clear its contents. The availability of this 
button is controlled by the Show object history button 
property.
124 Creating Forms for a Provisioning Request Definition



If you do not set the object lookup properties, the MVEditor displays a simple edit control. 

Figure 5-16   Sample MVEditor without Object Lookup Properties Set

Table 5-22   MVEditor Control Buttons

TIP: When the MVEditor control’s Editable property is set to False, this control is read-only and the 
form does not display any MVEditor control buttons.

Table 5-23   MVEditor Control Properties

Reset field. Deletes the field contents. The availability 
of this button is controlled by the Show clear button 
property.

Button Description

Adds an item to the end of the list.

Deletes the selected list item.

Edits the selected list item.

Property Name Description

Add data entry text field When this option is set to True and there is a single row of 
data (and the data is not a DN), the control displays a data 
entry text field. The text field is displayed when the field is 
empty or contains only one value. Otherwise, the drop-down 
list is displayed. If more than one row of data exists, then the 
drop-down list always displays.

DAL Global Query Specify this value if you want the control populated by the 
results of the Global Query that you specify. You specify the 
key name. You can select it from the Event Action Expression 
Builder. For more information about using queries in forms, 
see “Using DAL Queries in Forms” on page 143. For 
information about defining queries, see “Working with 
Queries” on page 56.

DAL Global Query Parameter(s) Specifies the value for the query parameters. For example, 
this passes the String Sales to the queries parameter called 
groupname.

 (function (){return {"groupname":"Sales"}})(); 

Button Description
Creating Forms for a Provisioning Request Definition 125



Display expression Leave this value blank if you want to display the full DN or CN 
value. 

If you want to mask the DN or CN by displaying attributes 
instead, launch the Expression Builder and select the desired 
attributes from the list. (You must first specify an Entity key 
for DN expression lookup.) 

For example, to show the user entity’s first and last name 
attributes, construct an expression like this: FirstName 
LastName.

Make sure the attribute’s View, Read, Search, and Required 
properties are set to True in the directory abstraction layer. 
See “Attribute Properties” on page 63.

Enforce uniqueness Forces user-entered list items to be unique.

Entity key for DN expression lookup Leave this value blank if you want to display the full DN or CN 
value retrieved from the Identity Vault. 

If you want to mask the DN or CN by displaying attributes 
instead, choose the entity from the drop-down list and specify 
a set of attributes in the Display expression property. 

The entity you choose must 

 Have the directory abstraction layer View property set to 
True. 

 Be the entity whose DN you are retrieving from the 
Identity Vault. 

See “Working with Distinguished Names” on page 140 for 
more information. 

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can 
view the classes that are available for your User Application 
portal by logging into the User Application, navigating to 
Administration > Application Configuration > Theme 
Administration, then clicking the Preview button for the 
portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall 
class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Property Name Description
126 Creating Forms for a Provisioning Request Definition



Label CSS class name(s) Apply one or more CSS class styles to the field label. You can 
view the classes that are available for your User Application 
portal by logging into the User Application, navigating to 
Administration > Application Configuration > Theme 
Administration, then clicking the Preview button for the 
portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel 
class.

Example: nv-color5

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. 
The default is 200 pixels.

Ignore case If this option is set to True, ignore case when enforcing 
uniqueness.

Lower bound (for numbers only) Minimum integer or decimal value.

Maximum length Maximum number of characters for string values. The control 
blocks input when this value is reached.

Minimum length Minimum number of characters for string values. The control 
validates that the user enters at least this number of 
characters.

Number of lines displayed The number of lines displayed by the control. This is not the 
number of records retrieved or displayed, but the vertical size 
of the control. If you set this number to 10 and there are only 5 
records to display, the control size is still 10 lines. 

You can set the number of lines to 1 or to 3 or greater. You 
cannot set it to 2 because it does not leave enough space for 
the browser to display scroll bars. If you set it to 2, Designer 
generates a warning in the Project Checker view and resets it 
to 3.

NOTE: When displaying large result sets in a multivalued 
control, different browsers render controls at different speeds. 
We recommend limiting the number of lines displayed in a 
control to a maximum of 150 lines.

Numbers only If this option is set to True, only numbers can be entered.

Property Name Description
Creating Forms for a Provisioning Request Definition 127



TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not flowdata.get(). 
If you use flowdata.get(), you get only the first value.

Object Selector type Determines whether the object selector dialog box performs 
an Object Lookup or a Container Lookup. The following is an 
example of an Object Lookup:

paramlist: Causes the object selector dialog box to perform 
an object lookup. You specify the lookup criteria via the Entity 
key for DN expression lookup property. 

container: Causes the object selector to display one or more 
containers for selection. The containers for searching are 
determined by the Search container property, which is 
specified in the directory abstraction layer for the entity named 
in the Entity key for DN expression lookup property. For 
example, if the Entity key for DN expression lookup property is 
Group, the search container is set to %group-root% by default. 
If no search container is used, the search root specified during 
the User Application installation is used. 

Resolve DN When set to False, the DN is displayed rather than the Display 
expression. Consider using this when you expect a large 
number of DNs to be returned, and you are concerned about 
performance. 

Root Container Specify a root container for lookups when users click the 
object selector button. If you specify an entity key and a root 
container, the entity key takes precedence.

Show object history button When this option is set to True, displays the Object History 
button next to the control.

Show object selector button When this option is set to True, displays the Object Selector 
button next to the control.

Sort entries When this option is set to True, sorts the results in ascending 
order. For details, see “Sort Order” on page 106.

Upper bound (for Numbers only) The maximum numeric value users can enter.

Property Name Description
128 Creating Forms for a Provisioning Request Definition



For more information about preselecting items, see Chapter 9, “Working with ECMA Expressions,” on 
page 271.

Password

Use the Password control to allow users to mask all of the user’s entries with the * character.

The password control can only be submitted. It does not support any script such as getValues() or 
setValues(). 

Table 5-24   Password Control Properties

PickList

Use the PickList control to allow users to view and choose one or more values from a dynamically 
generated list of choices. The list items are DN or CN values retrieved from the Identity Vault. You can 
display the full DN or CN or use the PickList properties to specify the attributes to display instead. 

Figure 5-17   Sample PickList Control without DN Masking

Figure 5-18   Sample PickList Control with DN Masking

Property Name Description

Field width in pixels Use this field to configure the field’s visible width on 
the form. The default is 200 pixels.

Lower bounds (for numbers only) The lowest number allowed for decimal or integer 
values.

Maximum length Maximum number of characters for string values. The 
control blocks input when this value is reached.

Minimum length Minimum number of characters for string values. The 
control validates that the user enters at least this 
number of characters.

Number of characters allowed Specifies the number of characters a user is allowed to 
enter. This is related to Field width in pixels.

Upper bound (for numbers only) The highest number allowed for decimal or integer 
values. 

Validation Mask (regular expression) An expression used for validating the field’s data. 
Designer provides a default set of validation masks by 
default. You must enable them through Windows > 
Preferences > Provisioning > Validation Mask. For 
more information, see “Setting Provisioning View 
Preferences” on page 27.
Creating Forms for a Provisioning Request Definition 129



Table 5-25   PickList Control Properties

Property Name Description

Allow multiple selections When this option is set to True, the user can select 
more than one list value using their platform-specific 
multi-select keys.

When this option is set to True, the control displays a 
minimum of three lines regardless of the value 
specified in the Number of lines displayed property. If 
this value is False, the Number of lines displayed 
property is used.

Display expression Leave this value blank if you want to display the full 
DN or CN value. 

If you want to format the DN or CN by displaying 
attributes instead, launch the Expression Builder and 
select the desired attributes from the list. (You must 
first specify an Entity key for DN expression 
lookup.) 

For example, to show the user entity’s first and last 
name attributes, construct an expression like this: 
FirstName LastName.

Make sure the attribute’s View, Read, Search, and 
Required properties are set to True in the directory 
abstraction layer. See “Attribute Properties” on 
page 63.

Entity key for DN expression lookup Leave this value blank if you want to display the full 
DN or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying 
attributes instead, choose the entity from the drop-
down list and specify a set of attributes in the Display 
expression property. 

The entity you choose must:

 Have the directory abstraction layer View 
property set to True. 

 Be the entity whose DN you are retrieving from 
the Identity Vault. 

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red
130 Creating Forms for a Provisioning Request Definition



Field CSS class name(s) Apply one or more CSS class styles to the field body. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on 
the form. The default is 200 pixels.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Number of lines displayed The number of lines displayed by the control. This is 
not the number of records retrieved or displayed, but 
the vertical size of the control. If you set this number to 
10 and there are only 5 records to display, the control 
size is still 10 lines. 

The number of lines displayed is related to the Allow 
multiple selections setting. When Allow multiple 
selections is set to True, the number of lines displayed 
is always 3 (or more). When Allow multiple selections 
is set to False, you can set the number of lines to 1 or 
to 3 or greater. You cannot set it to 2 because it does 
not leave enough space for the browser to display 
scroll bars. If you set it to 2, Designer generates a 
warning in the Project Checker view and resets it to 3.

NOTE: When displaying large result sets in a 
multivalued control, different browsers render controls 
at different speeds. We recommend limiting the 
number of lines displayed in a control to a maximum of 
150 lines.

Property Name Description
Creating Forms for a Provisioning Request Definition 131



TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not flowdata.get(). 
If you use flowdata.get(), you get only the first value.

For more information on displaying the control with a preselected option, see “Form Control 
Examples” on page 279.

RadioButtons

Use this control to display a choice of items as a set of radio buttons. Only one item can be selected.

Table 5-26   RadioButtons Control Properties

Show 2 lists When this option is set to True, two lists are displayed. 
A list on the left displays the unselected values, and 
the list on the right displays the selected values. 

The Allow multiple selections property must be set to 
True. If set to false Show 2 lists is ignored.

Sort Entries When this option is set to True, sorts results in 
ascending order. For details, see “Sort Order” on 
page 106.

Property Name Description

Allow multiple selections When this option is set to True, the user can select 
more than one list value using their platform-specific 
multi-select keys.

When this option is set to True, the control displays a 
minimum of three lines regardless of the value 
specified in the Number of lines displayed property. If 
this value is False, the Number of lines displayed 
property is used.

Display expression Leave this value blank if you want to display the full 
DN or CN value. 

If you want to format the DN or CN by displaying 
attributes instead, launch the Expression Builder and 
select the desired attributes from the list. (You must 
first specify an Entity key for DN expression 
lookup.) 

For example, to show the user entity’s first and last 
name attributes, construct an expression like this: 
FirstName LastName.

Make sure the attribute’s View, Read, Search, and 
Required properties are set to True in the directory 
abstraction layer. See “Attribute Properties” on 
page 63.

Property Name Description
132 Creating Forms for a Provisioning Request Definition



Entity key for DN expression lookup Leave this value blank if you want to display the full 
DN or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying 
attributes instead, choose the entity from the drop-
down list and specify a set of attributes in the Display 
expression property. 

The entity you choose must:

 Have the directory abstraction layer View 
property set to True. 

 Be the entity whose DN you are retrieving from 
the Identity Vault. 

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on 
the form. The default is 200 pixels.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Property Name Description
Creating Forms for a Provisioning Request Definition 133



Static List

Use this control to display a list of items in a drop-down list from which users can select a single item. 
The list items are static and are stored with the provisioning request definition. The text “Click here to 
select” only appears if the field is not set to Required.

Figure 5-19   Sample Static List Control

Table 5-27   Static List Properties

Number of lines displayed The number of lines displayed by the control. This is 
not the number of records retrieved or displayed, but 
the vertical size of the control. If you set this number to 
10 and there are only 5 records to display, the control 
size is still 10 lines. 

The number of lines displayed is related to the Allow 
multiple selections setting. When Allow multiple 
selections is set to True, the number of lines displayed 
is always 3 (or more). When Allow multiple selections 
is set to False, you can set the number of lines to 1 or 
to 3 or greater. You cannot set it to 2 because it does 
not leave enough space for the browser to display 
scroll bars. If you set it to 2, Designer generates a 
warning in the Project Checker view and resets it to 3.

NOTE: When displaying large result sets in a 
multivalued control, different browsers render controls 
at different speeds. We recommend limiting the 
number of lines displayed in a control to a maximum of 
150 lines.

Sort Entries When this option is set to True, sorts results in 
ascending order. For details, see “Sort Order” on 
page 106.

Property Name Description

Autoselect first value Allows you to configure the form to automatically select the first value 
in the static list. You can select yes, no, or only if required is true.

If you select only if required is true, the form only automatically selects 
the first value in the list if the value of the default Required property is 
true.

Property Name Description
134 Creating Forms for a Provisioning Request Definition



Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the 
classes that are available for your User Application portal by logging 
into the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. The 
default is 200 pixels.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the 
classes that are available for your User Application portal by logging 
into the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

List item Allows you to define a set of labels and values that comprise the static 
list. Click the List property button to launch the list value dialog box 
shown here:

Click Add to add list items. Each list item must have a unique key. The 
dialog box automatically generates a unique key when you insert a 
new list item. You can click the key name and change it. A blank key 
(null) is valid, so it is possible to have a list item with a blank key and a 
blank label. The displayed label is the one defined for the default 
language. 

Property Name Description
Creating Forms for a Provisioning Request Definition 135



Text

Use the Text control for data display or user input. User input is validated depending on the control’s 
data type. 

Figure 5-20   Sample Text Control

Table 5-28   Text Control Properties

Property Name Description

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the 
classes that are available for your User Application portal by logging 
into the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. The 
default is 200 pixels.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the 
classes that are available for your User Application portal by logging 
into the User Application, navigating to Administration > Application 
Configuration > Theme Administration, then clicking the Preview 
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Lower bounds (for numbers only) The lowest number allowed for decimal or integer values.

Maximum length The maximum length for string values. Blocks input when this length is 
reached. 

Minimum length The minimum length for string values. Validates that the user enters a 
string at least this long. 

Number of characters allowed Specifies the number of characters a user is allowed to enter. This is 
related to Field width in pixels.

Upper bound (for numbers only) The highest number allowed for decimal or integer values. 
136 Creating Forms for a Provisioning Request Definition



Text Area

Use this control to display or accept input of multi-line data. Users can select multiple lines of data 
using the multi-select key combination for their platform.

Figure 5-21   Sample Text Area Control

Table 5-29   Text Area Control Properties

Validation Mask (regular 
expression)

An expression used for validating the field’s data. Designer provides a 
default set of validation masks by default. You must enable them 
through Windows > Preferences > Provisioning > Validation Mask. 
For more information, see “Setting Provisioning View Preferences” on 
page 27.

Property Name Description

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Property Name Description
Creating Forms for a Provisioning Request Definition 137



Title

Use this read-only control to label your form or provide instructions. 

Table 5-30   Title Control Properties

TrueFalseCheckBox

Use this control to allow the user to select or deselect a choice. The values returned by the control 
are true (selected) and false (not selected). The returned values are always strings. 

NOTE: This control returns a boolean value of True or False depending on the selection made by the 
user. The display values of the control can be set to a more user friendly or informative value such as 
Yes/No or Accept/Reject depending on the intended use of the form; however, the underlying value 
always returns either True or False. If the control is used to return anything other than True or False 
or more than two values, for example (Yes/No/Maybe), by default it returns the value as False if it is 
not True.

You can initialize the control from a JavaScript Boolean Object. The field.getValue() returns a 
JavaScript Boolean Object. 

Use setValues(["true"]) not setValues[true]), the setValues() method expects a string or an 
array of string values.

Label CSS class name(s) Apply one or more CSS class styles to the field label. 
You can view the classes that are available for your 
User Application portal by logging into the User 
Application, navigating to Administration > 
Application Configuration > Theme 
Administration, then clicking the Preview button for 
the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

Number of columns displayed The visible width of the control; the number of 
characters wide.

Number of lines displayed The number of lines to display at one time.

Property Name Description

Display title in signed 
form document

When this option is set to False and the form is a signed form (using digital 
signatures), the title control is not displayed.

Font-size Specify small, medium, or large.

Style class Choose a font style (such as bold) and colors from a palette.

Property Name Description
138 Creating Forms for a Provisioning Request Definition



Table 5-31   TrueFalseCheckBox Control Properties

TrueFalseRadioButtons

Use this control to display a choice of True or False as a set of radio buttons.

Figure 5-22   Sample TrueFalseRadioButtons Control

This control has no custom properties.

NOTE: This control returns a Boolean value of True or False depending on the selection made by the 
user. The display values of the control can be set to a more user friendly or informative value such as 
Yes/No or Accept/Reject depending on the intended use of the form; however, the underlying value 
always returns either True or False. If the control is used to return anything other than True or False 
or more than two values, for example (Yes/No/Maybe), by default it returns the value as False if it is 
not True.

Property Name Description

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Field CSS class 
name(s)

Apply one or more CSS class styles to the field body. You can view the classes that 
are available for your User Application portal by logging into the User Application, 
navigating to Administration > Application Configuration > Theme 
Administration, then clicking the Preview button for the portal theme you are 
using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. The default is 200 
pixels.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class 
name(s)

Apply one or more CSS class styles to the field label. You can view the classes that 
are available for your User Application portal by logging into the User Application, 
navigating to Administration > Application Configuration > Theme 
Administration, then clicking the Preview button for the portal theme you are 
using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.

Example: nv-color5

Separate class names with spaces.
Creating Forms for a Provisioning Request Definition 139



TrueFalseSelectBox

Use this control to display a choice of True or False in a drop-down list.

Figure 5-23   Sample TrueFalseSelectBox Control

NOTE: This control returns a Boolean value of True or False depending on the selection made by the 
user. The display values of the control can be set to a more user friendly or informative value such as 
Yes/No or Accept/Reject depending on the intended use of the form; however, the underlying value 
always returns either True or False. If the control is used to return anything other than True or False 
or more than two values, for example (Yes/No/Maybe), by default it returns the value as False if it is 
not True.

Table 5-32   TrueFalsSelectBox Properties

 Working with Distinguished Names
The following controls provide specialized support for distinguished names (DNs):

 DNDisplay

 DNLookup

 DNMaker

 MVEditor

 PickList

This section describes the specialized support, including the following:

 “Formatting DNs” on page 140

 “Working with Object Selectors” on page 141

Formatting DNs

If you have a DN value, you can display either the DN or a set of attributes related to that DN. For 
example, if the control displays the DN of a user entity, you could display the user entity's First Name 
and Last Name attributes instead. The controls that support this feature are DNDisplay, DNLookup, 
MVEditor, and Picklist. 

You define the attributes to display in the control’s Display Expression property. This display 
expression resolves at runtime by replacing the attribute keys with the attribute values. 

Property Name Description

Field width in pixels Use this field to configure the field’s visible width on 
the form. The default is 200 pixels.
140 Creating Forms for a Provisioning Request Definition



Working with Object Selectors

In some cases, you might want the user to search for and select a DN from a list of possible values. 
The object selector dialog box (also called the object lookup dialog box) provides this functionality. 
The contents of the object selector dialog box are controlled by the form control’s properties (see 
Table 5-33), and by how DAL properties are defined (see “DNLookup Control Type Definitions and 
Object Selector Contents” on page 141).

The object selector only supports attributes of String or DNLookup data types whose directory 
abstraction layer access properties for required and searchable are set to true. 

Table 5-33   Properties for Defining the Object Selector Dialog Box

DNLookup Control Type Definitions and Object Selector Contents

When you specify an Entity key for DN expression lookup, the object selector’s contents are defined 
by the attribute’s DNLookup control type definition (in the directory abstraction layer). For example, if 
you specified the User entity as the object lookup and the manager as the attribute, the object 
selector would allow the user to search on the First Name and Last Name attributes because the 
object selector uses the manager’s DNLookup control type definition to determine the lookup criteria. 
The DNLookup definition for the manager entity is shown in Figure 5-24.

Property Description

Entity key for DN expression lookup This is the key to the directory abstraction layer entity whose DN 
you want to search for or display. This is a required field. 

Object selector type paramlist: Causes the object selector dialog box to perform an 
object lookup. You specify the lookup criteria via the Entity key for 
DN expression lookup property. 

container: Causes the object selector dialog box to display one or 
more containers for selection. The containers for searching are 
determined by the Search container property that is specified in 
the directory abstraction layer for the entity named in the Entity 
key for DN expression lookup property. For example, if the Entity 
key for DN expression lookup property is Group, the search 
container is set to %group-root% by default. If no entity is 
specified you will get an error message about missing or bad 
Container Selector properties 

Show object selector button If this option is set to True, the object selector button shows up on 
the control. Otherwise, it does not.
Creating Forms for a Provisioning Request Definition 141



Figure 5-24   Manager Attribute on User DNLookup Property Definition

The resulting object selector is shown in Figure 5-25.

Figure 5-25   Sample Object Selector

You can change the attributes that are used by the object selector by changing the Lookup attributes. 
To allow other attributes in the object selector:

1 Determine if the desired attribute is defined for the entity specified as the Lookup Entity. (In this 
example, it is Manager Lookup.)

2 If the attribute you want is available on the lookup entity, you can just add it to the Lookup 
Attributes. Make sure that it has the Search and Read properties set to True; otherwise, they 
won’t appear in the object selector dialog box. 
142 Creating Forms for a Provisioning Request Definition



3 If the attribute does not already exist for the Lookup Entity, you must do the following:

 Add the attribute to the Lookup Entity. For example, to display another attribute in a 
manager lookup like the one above, add the attribute to the Manager Lookup entity. For 
more information, see “Adding Attributes” on page 53.

 Add the attribute to the DNLookup definition. 

 Deploy the changed definitions. In this example, you’d redeploy the Manager Lookup entity 
(if you added a new attribute to its definition) and the User entity because you changed the 
definition of the manager attribute.

 Refresh the application server’s DirectoryAbstractionLayerDefinitions cache. 

Using DAL Queries in Forms
The Query objects defined in the directory abstraction layer let you predefine LDAP searches that you 
can then execute from a workflow form. The information in this section illustrates how you can define 
a query and use it in a form. 

Suppose that you want to distribute calling cards to certain employees, but you only want to distribute 
calling cards to employees who work at home, and whose homes are located outside of the local 
office’s area code. You create a workflow form that allows the employee to:

 Verify that they qualify to receive a card.

 Submit a request for a card if they do qualify.

On your form, you allow users to enter the area code of their own local office (and based on that area 
code) review a list of users that qualify for a card. The runtime form is shown in Figure 5-26.
Creating Forms for a Provisioning Request Definition 143



Figure 5-26   Sample Calling Card Request Form

The data in the Candidates Picklist control is populated from the results of a query that is defined as 
shown in Figure 5-27.
144 Creating Forms for a Provisioning Request Definition



Figure 5-27   Calling Card Queries Definition

The query takes a single input parameter, AreaCodeParam, for the user-entered area code. The 
query then searches the User entity (in the idmsample-alh container) and returns the users whose 
telephone numbers do not start with the same value entered in the AreaCodeParam. 

The form has an input field called OfficeAreaCode. It is the text field where the user enters the area 
code of the local office. The properties for OfficeAreaCode are show in Figure 5-28.
Creating Forms for a Provisioning Request Definition 145



Figure 5-28   OfficeAreaCode Properties

Notice that the Text control defines an onchange event. The onchange event fires when the user tabs 
from the Text control. The onchange event fires the getCandidates custom event as shown in Figure 
5-29.
146 Creating Forms for a Provisioning Request Definition



Figure 5-29   OnChange Event Properties

The getCandidates event is defined as a property on the Candidates Picklist control. 

Figure 5-30   Candidates PickList Properties
Creating Forms for a Provisioning Request Definition 147



When the event is fired, the getCandidates event performs an action expression that calls the 
globalQuery() method (as shown in Figure 5-31). This method populates the value of the Candidates 
PickList control with the results of the query called EEOutsideLocalAreaCode (defined in Figure 5-27 
on page 145). It passes the value of the OfficeAreaCode text field as the query’s input parameter 
AreaCodeParam.

Figure 5-31   GetCandidates Event

Printing Forms
You can add a Print button to a request form by using JavaScript. 

TIP: Approval forms automatically contain a Print button. 

To add the ability to print a request form, add the URL to the JavaScript library PrintForm.js. The 
library is located in the User Application WAR at this URL: ./javascript/JUICE/form/
PrintForm.js. Two techniques for including a print button are described below:

 To display a print preview popup when submitting a request form (after data is validated), add the 
following to the form onload event: 

form.interceptAction("SubmitAction", "around",
      function (invocation)

{var pf = new PrintForm("SubmitAction");
 pf.printFormInterceptor(invocation);
 } );

 To add a Print button next to one of the fields on your form, add the following script to the field’s 
onload event: 

var ctrl = JUICE.UICtrlUtil.getControl(field.getName());
var btn = JUICE.UICtrlUtil.addButton(ctrl, "printid", "Print", "Print", 
"javascript:var p = new PrintForm();
p.printFormAfterValidation(\"printid\");");
148 Creating Forms for a Provisioning Request Definition



6 6Creating the Workflow for a Provisioning 
Request Definition

This section provides details on creating the workflow for a provisioning request definition.

About the Workflow Tab
You use the Workflow tab to display the Workflow page. You use the Workflow page to define the 
behavior of the workflow for the provisioning request definition. The Workflow page consists of a 
canvas, a palette, and associated views. 

Figure 6-1   Workflow Page

Canvas

The canvas provides a graphical view of the activities in the workflow. When you create a new 
provisioning request definition that is not based on a template, the canvas is blank except for a Start 
activity and Finish activity.

If you right-click anywhere on the canvas, a menu is displayed. The menu includes the following 
commands:
Creating the Workflow for a Provisioning Request Definition 149



Table 6-1   Workflow Menu 

You can use the Zoom and Scale sliders on the toolbar to make it easier to view the workflow:

 Zoom: Increases or decreases the magnification of the workflow display. You can make portions 
of the workflow display larger and view more detail, or make the workflow display smaller and 
view more of the workflow. Click the rectangle to the right of the Zoom slider to return to 100% 
magnification.

 Scale: Increases or decreases the spacing between items in the workflow display. For example, 
if your workflow has items with many flowpaths between them, you can increase the scale to 
make it easier to see individual flow paths. Click the rectangle to the right of the Scale slider to 
return to 100% scale. 

Item Description

Delete Deletes the selected activity or flow path.

Show Activity Ids Switches the workflow editor between displaying activity names and 
Activity Ids. 

Use the Activity Id property to specify a meaningful value for the 
Activity Id. By default, the value is ActivityNN where NN is a unique 
number (associated with the order in which the activity was added to 
the palette). When errors associated with activities are detected during 
validation, Designer identifies the activity in which the error occurred 
by activity ID. When this is the case, turn on the display of activity IDs 
in order to locate the activity on the canvas. 

You can specify whether activity names or activity Ids are displayed by 
default by choosing Window > Preferences > Provisioning > 
Workflows > Diagram Preferences > Show Activity Ids. 

Show Flow Path Types Turns the display of flow path types (for example, forward, approved, 
denied) on and off. When Show Flow Path Types is turned on, a label 
is displayed on each flow path indicating the flow path type. 

Show Properties Displays the Properties view for the selected activity. If no activity is 
selected, it displays the Properties view for the Workflow itself. 

Show Data Item Mapping Displays the Data Item Mapping view for the selected activity.

Show E-Mail Notification Displays the E-Mail Notification view for the selected activity.
150 Creating the Workflow for a Provisioning Request Definition



Palette

The palette provides icons for activities that can be dragged onto the canvas to create the workflow. It 
also provides tools for manipulating the icons and for linking activities:

Figure 6-2   Workflow Palette
Creating the Workflow for a Provisioning Request Definition 151



The palette includes the following tools:

Table 6-2   Workflow Palette 

Views

The Workflow page also includes the Properties, Data Item Mapping, and E-Mail Notification views:

Figure 6-3   Workflow Views

You can right-click the icon for an activity to select a view from a context menu. Not all activities utilize 
all views. The following table identifies the views and the activities that use them:

Table 6-3   Views for Activities 

Tool Description

Select Selects individual nodes or flow paths. To select a node, click the Select tool, 
then click a node.

Marquee Selects multiple nodes or flow paths. Use this tool to move items as a group. To 
select multiple items, click the Marquee tool, then click in an area outside of the 
items that you want to select. Hold down the mouse button and drag over the 
items that you want to select, then release the mouse button.

When multiple items are selected, only the properties for the first item selected 
are displayed in the Properties view (see “Views” on page 152 for information 
about Views).

Flow Path Creates flow paths between nodes. Flow paths provide connection logic for 
connecting nodes. For information about connecting nodes, see “Adding Flow 
Paths” on page 158.

Activities (for example, Start, 
Approval, Log)

Inserts the selected activity into the workflow. For information about adding 
activities, see “Adding Activities to a Workflow” on page 153. For detailed 
descriptions of the activities, see Chapter 7, “Workflow Activity Reference,” on 
page 187.

Activity Properties E-Mail Notification Data Item Mapping

Start X X

Approval X X X

Log X

Branch X
152 Creating the Workflow for a Provisioning Request Definition



Adding Activities to a Workflow
1 Click the Workflow tab. A graphical representation of the workflow for the provisioning request 

definition is displayed: 

Because every workflow must have a Start activity and Finish activity, these activities are added 
to the canvas automatically. The Start Activity is connected to the Finish Activity with a forward 
link. 

2 To add an activity to the workflow, click the icon for the desired activity in the palette and drag the 
icon onto the workspace. 

You can insert an activity between activities that are linked by a flow path by dropping the activity 
onto the flow path. For information about defining flow paths between activities, see “Adding 
Flow Paths” on page 158. After you have added an activity to the workflow, you should set the 
properties of the activity (see “Setting the General Properties of an Activity” on page 154). For 
detailed information about configuring the different types of activities, see Chapter 7, “Workflow 
Activity Reference,” on page 187 and Chapter 8, “Working with Integration Activities,” on 
page 235.

Merge X

Condition X

Mapping X X

Workflow Status X X

Email X X

Role Binding X

Resource Request X

Role Request X

Start Workflow X X

Finish X X

Rest X X

Integration X X

Entitlement X X

Entity X X

Activity Properties E-Mail Notification Data Item Mapping
Creating the Workflow for a Provisioning Request Definition 153



Setting the General Properties of an Activity

1 Right-click the activity icon for which you want to set properties and select Show Properties from 
the menu.

You can also display the Properties tab by selecting Show Properties from the PRD menu.

The Properties view is displayed:

2 Click in the column for a property to set the property. For information about the properties for 
each activity, see Chapter 7, “Workflow Activity Reference,” on page 187.

Each activity has a default name. We strongly recommend that you replace the default names of 
activities with a descriptive Activity Id that describe the specific purpose of the activity in the 
workflow. This makes it easier to understand the workflow when you look at the graphical display 
of the workflow. It also makes comments displayed in the User Application easier to understand. 
For example, the following figures show comments in the User Application using default IDs and 
descriptive IDs. 

Figure 6-4   Activity in User Comments Using Default Name
154 Creating the Workflow for a Provisioning Request Definition



Figure 6-5   Activity in User Comments Using Descriptive Name

To change the Activity Id: 

1 Right-click the activity icon for which you want to change the Activity Id and select Edit Activity 
Id. 

The Edit Activity Id wizard displays.

2 Type the Activity Id name you want to use. The name can include letters, numbers, and the 
underscore (_) character.
Creating the Workflow for a Provisioning Request Definition 155



3 If the activity was not used to define any expressions, click Finish. If the activity was used in 
expressions, click Next. The wizard displays the expressions where the Activity Id should be 
updated with the new name. 

4 Review the items displayed in the panel. For items that you do not want updated, deselect the 
checkbox in the Update column. 

5 Click Finish when complete. 

Defining the Data Item Mappings

You use the Data Item Mapping view to map data from the data flow into fields in a form (pre-activity 
mapping) and to map data from the form back to the data flow (post-activity mapping). 

1 Right-click the activity icon for which you want to set data item mappings and select Show Data 
Item Mapping from the menu.

You can also display the Data Item Mappings tab by selecting Show Data Item Mapping from the 
PRD menu.

The Data Item Mapping view is displayed:
156 Creating the Workflow for a Provisioning Request Definition



2 For pre-activity mapping, click in the Source Expression field for the item that you want to map, 
then specify an expression. For post-activity mapping, click in the Target Expression field for the 
item that you want to map, then specify an expression. 

Pre-activity maps can be used for

 Initializing form control values.

 Setting default values for form controls.

 Populating complex form controls with data lists derived from LDAP queries.

 Passing data from form controls of a previous activity to a form control in the current activity.

 Calling external Java classes to process data.

Post-activity maps can be used for

 Creating new data items in flowdata.

 Moving form control data from an activity into flowdata.

 Calling external Java classes to process data.

For detailed information about data item mapping for the different types of activities, see 
Chapter 7, “Workflow Activity Reference,” on page 187.

The Start Activity can have hard-coded strings, system variables like process locale and 
recipient, and Identity Vault expressions (created using the ECMA Expression Builder VDX Expr 
Panel) in pre-activity maps. 

Leave the Source Expression blank in pre-activity maps for form fields that the user is expected 
to fill in. Alternatively, create a source expression to supply a default value for form fields that the 
user is expected to fill in. In either case the form field needs to be defined as editable. See 
“General Form Control Properties” on page 105 for information about setting the properties of 
form fields.

Defining the E-Mail Notification Settings

You use the E-Mail Notification view to select an email template, and to specify expressions to 
provide values for named parameters included in the email template. Emails are sent when a new 
Approval activity starts (to notify approvers that they have work to do) and when the Finish activity 
completes (to notify the initiator that the workflow is done). 

1 Right-click the activity icon for which you want to set properties and select Show E-Mail 
Notification from the menu.

You can also display the E-Mail Notification tab by selecting Show E-Mail Notification from the 
PRD menu.

The E-Mail Notification view is displayed:
Creating the Workflow for a Provisioning Request Definition 157



2 Click the E-Mail Template field, then select an email template from the list of defined templates.

Editing an email template: You can edit an email template in Designer. To do this, select an 
Identity Vault in the Modeler, then scroll to Default Notification Collection in the Outline View. 
Right-click a template, then select Edit Template. 

Localized email templates: By default, Designer displays the default email notification 
templates. When you select a default template, the email is in the user’s default language (if the 
default is a supported language). You can set the Show all localized e-mail templates 
preference to True so that Designer also allows you to select from the list of localized email 
templates. The localized templates have the same name as the default, but the Java language 
code is appended to the name of the email template. For example, cn=Provisioning 
Notification Activity_es, cn=Default Notification Collection, cn=security 
indicates this is the Spanish language version of this template. When you select a localized 
template, the email is in the language of the template regardless of the user’s default language. 

3 Click in the Source field for a Target token and specify an ECMAScript expression that assigns a 
value to the token. 

See Chapter 7, “Workflow Activity Reference,” on page 187 for information about email 
notification settings.

Adding Flow Paths
1 Click the Flow Path tool in the palette:

The mouse pointer turns into a flow path pointer:

2 Click the activity from which you want the flow path to begin, then click the activity on which you 
want the flow path to end. The activities are connected. 

3 To configure the flow path, click the Select tool in the palette, right-click the flow path, then select 
Show Properties. 

For information about configuring flow paths, see “Configuring Flow Paths” on page 158.

Configuring Flow Paths
After you have added a flow path to a workflow diagram, you can specify the path type. For details on 
adding flow paths to a workflow, see “Adding Flow Paths” on page 158.

To configure a flow path:

1 Click the flow path in the workflow diagram.
158 Creating the Workflow for a Provisioning Request Definition



2 Set the flow type on the Properties tab by selecting one of the options in the Type drop-down list. 
Creating the Workflow for a Provisioning Request Definition 159



The flow path types are described in the following table:

If the Properties tab is not displayed, right-click the flow path in the workflow diagram and select 
Show Properties.

Guidelines for Creating Workflows
To create well-formed workflows, you need to understand the rules for adding activities and flow 
paths. In addition, you need to understand how to manipulate workflow data. 

NOTE: You can validate a provisioning request definition before you deploy it. For more information, 
see “Validating Provisioning Objects” on page 28.

Rules for Activities

When adding activities to a workflow, follow these rules:

 A workflow must have only one Start activity and one Finish activity.

Flow Type Description

forward Forwards control to the next activity in a workflow.

The forward flow path is available after all activities except:

 Approval

 Condition

 Finish

approved Determines what happens when a user approves a request. 

The approved flow path is valid only after the Approval activity. 

denied Determines what happens when a user denies a request. 

The denied flow path is valid only after the Approval activity. 

refused Determines what happens when a user refuses a request. 

The refused flow path is valid only after the Approval activity. 

timedout Determines what happens when an Approval activity times out because the 
user did not respond. 

The timedout flow path is valid only after the Approval activity. 

error Determines what happens when an Approval or Condition activity terminates 
with an error. 

The error flow path is valid only after the Approval and Condition activities. 

true Determines what happens when a conditional expression evaluates to True.

The True flow path is valid only after the Condition activity.

false Determines what happens when a conditional expression evaluates to False.

The False flow path is valid only after the Condition activity.
160 Creating the Workflow for a Provisioning Request Definition



 A workflow can have zero or more of the following activity types: 

Approval activity

Log activity

Branch activity

Merge activity

Condition activity

Mapping activity

Workflow Status

Email activity

Role Request activity

Role Request Binding activity

Start Workflow

Rest activity

Integration activity

Entitlement activity

Entity activity

 Each Branch activity must have a corresponding Merge activity. 

 The role activities (Role Request and Role Request Binding) can only be used for workflows that 
support roles.

 The resource activities (Resource Request and Resource Request Binding) can only be used for 
workflows that support resources.

 To ensure that the provisioning step is performed, a workflow must have at least one Entitlement 
activity or Entity activity. 

Rules for Flow Paths

When adding flow paths to a workflow, follow these rules:

 With the exception of the Start activity, all activities can have one or more incoming flow paths. 
The Start activity cannot have any incoming flow paths. 

 The Finish activity cannot have any outgoing flow paths. 

 There can be only one flow path out of the Start activity. The flow path type must be forward. 

 There can be between one and five flow paths out of the Approval activity. The valid flow path 
types are approved, denied, refused, timedout, and error. At runtime, only one of the flow paths 
is executed. 

 There can be only one flow path out of the Entitlement, Entity, Log, and Merge activities. The 
flow path type must be forward. 

 There can be two or three flow paths out of the Condition activity. The valid flow path types are 
true, false, and error. The true and false flow paths are required; the error flow path is optional. 

 There can be one or more flow paths out of the Branch activity. The flow path type must be 
forward for each path. At runtime, all of the flow paths execute. 

 Flows paths out of Role Binding activities must connect to the Finish activity.

 There can be between one and three flow paths out of the Rest activity. The valid flow path types 
are forward, error, and timeout.

The following table summarizes the rules for adding flow paths into and out of an activity:
Creating the Workflow for a Provisioning Request Definition 161



Table 6-4   Number of Flow Paths Permitted for Each Activity 

The following table summarizes which activity types can be a source or target for each of the 
available flow path types:

Table 6-5   Flow Path Types Allowed for Each Activity

Activity Inbound Paths Outbound Paths

Start 0 1 Must always be forward.

Approval 1 to n 1 to 5 Approved, denied, refused, timedout, or error

Log 1 to n 1 Must always be forward

Branch 1 to n 1 to n

Merge 1 to n 1 Must always be forward

Condition 1 to n 2 to 3 True and false are required; error is optional

Mapping 1 to n 1

Workflow Status 1 to n 1 Must always be forward

Email 1 to n 1 Must always be forward

Role Request Binding 1 1 Must always be forward and connect to Finish activity

Role Request 1 2 forward, error

Resource Request 
Binding

1 1 Must always be forward and connect to Finish activity

Resource Binding 1 2 forward, error

Start Workflow 1 2 forward, error

Finish 1 to n 0

Rest 1 to n

Integration 1 to n 1 to 4 Success, timedout, error, fault

Entitlement 1 to n 1 Must always be forward

Entity 1 to n 1 Must always be forward

Activity Forward Approved Denied Refused Timedout True False Error Success Fault

Start Source

Approval Target Source/
Target

Source/
Target

Source/
Target

Source/
Target

Target Target Source
/Target

Log Source/
Target

Target Target Target Target Target Target Target

Branch Source/
Target

Target Target Target Target Target Target Target

Merge Source/
Target

Target Target Target Target Target Target Target
162 Creating the Workflow for a Provisioning Request Definition



Understanding Workflow Data

When you’re creating a workflow, you can manipulate workflow data to suit the needs of your 
provisioning application. 

 “Data Objects and Variables” on page 164

 “Creating New Data Items” on page 165

 “Modifying Data Items” on page 166

 “Working with Complex Data Item Mappings” on page 166

 “Moving Form Control Data to Flowdata” on page 166

 “Moving Flowdata to Form Controls” on page 167

 “About Mapping Activity Operations” on page 167

Condition Target Target Target Target Target Source
/Target

Source
/Target

Source
/Target

Mapping Source Target Target Target Target Target Target Target

Workflow 
Status

Source/
Target

Email Source/
Target

Role 
Request 
Binding

Source/
Target

Target Target Target Target Target

Role 
Request

Source/
Target

Target Target Target Target Source
/Target

Resource 
Request 
Binding

Source/
Target

Target Target Target Target Target

Resource 
Request

Source/
Target

Target Target Target Target Source
/Target

Start 
Workflow

Source/
Target

Target Target Target Target Source
/Target

Finish Target Target Target Target Target Target Target Target

Rest Source/
Target

Target Target Target Source/
Target

Target Target Source
/Target

Target Target

Integratio
n

Source/
Target

Target Target Target Source/
Target

Target Target Source
/Target

Source Sourc
e

Entitleme
nt

Source/
Target

Target Target Target Target Target Target Target

Entity Source/
Target

Target Target Target Target Target Target Target

Activity Forward Approved Denied Refused Timedout True False Error Success Fault
Creating the Workflow for a Provisioning Request Definition 163



Data Objects and Variables

The workflow uses a single process object to manage information about the process. A separate 
activity object is created for each activity in the workflow and form data is maintained for each activity 
that provides for user interaction. 

The data objects associated with each user interface control on a form (text field, drop-down list, and 
so forth) can be modified immediately prior to the execution of the corresponding activity (Start 
activity or Approval activity). In addition, this data can be retrieved immediately after execution of the 
activity. After control has been passed to the next activity, the form control data is no longer available. 
For this reason, the workflow provides a special object called flowdata that allows you to define your 
own data items. You can add your own variables to this object to keep track of information that is 
important to your workflow, including form data that would otherwise be lost. 

The following table summarizes the categories of workflow data: 

Table 6-6   Categories of Workflow Data

NOTE: The workflow designer is the person who creates the workflow in Designer.

The following table describes the variables for each type of object:

Table 6-7   Data Variables in a Workflow

Data Object Lifetime Editable Creator

process Workflow No System

activities Workflow No System

activity forms Activity Yes System and workflow designer

flowdata Workflow Yes Workflow designer

Object Variable Description

process approvalStatus The current status of the process. 

category The provisioning category (for example, Entitlements) 
selected by the person who initiated the request.

container dn The distinguished name of the container defined for the user 
application at install time.

description The description of the provisioning request definition.

group container dn The distinguished name of the group container defined for the 
user application at install time. 

id The unique IDVault ID (CN) of the provisioning request 
definition.

initiator The distinguished name of the person who initiated the 
request.

locale The current locale. 

name The workflow process name.
164 Creating the Workflow for a Provisioning Request Definition



You can reference these objects in ECMAScript expressions. Script expressions in a workflow can at 
any time refer to data items that are bound upstream in the flow. However, workflow expressions 
cannot refer to data items that are created downstream (because these data items don’t exist yet) or 
to data bound on other branches in a flow that supports parallel processing (because these branches 
could be executing concurrently with the current activity).

Creating New Data Items

You can create a new data item on the flowdata object by specifying a post-activity target expression 
on the Data Item Mapping tab for the Start or Approval activities. If you specify a name for a new data 
item in the Target Expression column, this automatically creates the variable. Any activity executed 
after this activity can then access the data item. 

For example, you might want to map the form field called reason to the target expression 
flowdata.myReason. The variable myReason then becomes a new data item that is available to all 
activities executed later in the workflow. 

provisioning driver dn The distinguished name of the provisioning driver defined for 
the user application at install time.

recipient The distinguished name of the intended target of the 
provisioned resource.

user container dn The distinguished name of the user container defined for the 
user application at install time.

requestID The ID for the provisioning request.

timestamp The time the process was initiated.

approval-
activity-name

action The action taken by the user. 

addressee The current addressee for the approval activity.

name The name of the activity.

timestamp The time that the activity was queued on the work list.

user The user who is associated with the current activity.

workId The system generated unique ID of the current workflow 
activity.

form-name custom-form-controls Any user interface control you add to a form.

flowdata custom-variables Any custom variables you create to hold data needed for the 
workflow.

If you use one of the installed templates to create your 
workflow, the flowdata object can have a variable called 
reason, which contains text copied from the reason field on 
the initial request form.

Object Variable Description
Creating the Workflow for a Provisioning Request Definition 165



Modifying Data Items

You can modify a data item by specifying a pre-activity expression on the Data Item Mapping tab for 
the Start or Approval activities. For example, to prepend a dollar sign to a price, you might map the 
following source expression to a target form field called Price:

"$" + flowdata.get('cost')

When the form displays to the user, the Price data appears as follows:

$xx.xx

Another example might be computing the total cost by adding the tax to the base cost. To do this, you 
could map the following source expression to a target form field called TotalCost:

Number(flowdata.get('cost')) + Number(flowdata.get('tax')) 

Working with Complex Data Item Mappings

All data in the flowdata object is maintained in XML, so you can create data items in a hierarchical 
fashion as well. For example, suppose you have a workflow form that allows a user to ask for access 
to two internal systems, one for accounts payable and one for receivables. Suppose the form has 
(among other fields) two Yes/No fields named Acct_Pay and Acct_Rec. In the post-activity data item 
mappings, you might create two mappings as follows:

Table 6-8   Complex Data Item Mapping Examples

This would create an XML element named SystemAccess with two child elements named AcctPay 
and AcctRec. One reason to structure data in this way is for clearer organization and management of 
data in complex workflows containing many forms and data items. To retrieve data from these 
hierarchies, the following syntax would be used: 

flowdata.get('SystemAccess/AcctPay')

For complete details on building ECMAScript expressions, see Chapter 9, “Working with ECMA 
Expressions,” on page 271.

Moving Form Control Data to Flowdata

All form controls you create (except for DNDisplay) are automatically made available for use in pre-
activity and post-activity expressions on the Data Item Mapping tab for the activity that uses the form. 
For example, suppose you want to make a user’s entry data in control ACONTROL on form AFORM 
in AACTIVITY available for use in a subsequent activity. To do this, you would select AACTIVITY in 
the workflow, select the Data Item Mapping tab, and click the Post Activity Mapping radio button. 
Next to the source form field ACONTROL, you would then enter a target expression in the following 
format: 

flowdata.my_ACONTROL

Any subsequent activity in the workflow would then be able to access this data by using pre-activity 
source expressions such as these:

Source Form Field Target Expression

Acct_Pay flowdata.SystemAccess/AcctPay

Acct_Rec flowdata.SystemAccess/AcctRec
166 Creating the Workflow for a Provisioning Request Definition



flowdata.get('my_ACONTROL')

flowdata.getObject('my_ACONTROL')

Moving Flowdata to Form Controls

You can also move flowdata values into form controls. The simplest case is moving a single text value 
into a form control. In the example above, suppose ACONTROL is a simple text entry field. In this 
case, to move it into another text entry field in an activity called ZACTIVITY, you would select 
ZACTIVITY in the workflow, select the Data Item Mapping tab, and click the Pre Activity Mapping 
radio button. Next to the target form field, you would then enter this source expression: 

flowdata.my_ACONTROL

To move more complex form control data (for example, a MultiValue DN control) into another form 
control, you can use the getObject() expression syntax. For example, assuming ACONTROL is a 
MultiValue DN control, you could use this source expression: 

flowdata.getObject('my_ACONTROL')

To move data into a form control, you need to be aware of type constraints. For example, you should 
not try to move text-based data into a numeric control, or a Boolean value into a DN control.

About Mapping Activity Operations

In the mapping activity, the source expressions are evaluated before they are assigned to the target 
expression. If the source expression does not exist prior to the mapping activity, no value is assigned 
to the target expression.

For example, if flowdata.get(“textfield”) maps to flowdata.copyoftextfield and 
flowdata.get("copyoftextfield") maps to flowdata.copyoftextfield2, the value of 
flowdata.copyoftextfield2 is empty at the end of the mapping activity because the value of the 
flowdata.copyoftextfield is assigned only after the mapping activity. 

To assign values to the target expression, you can use either of these options:

 Multiple mapping-activities. 

 Single mapping-activity but repeat the source expression. 

When you repeat the source expression, the flowdata.get(“textfield”) maps to 
flowdata.copyoftextfield and flowdata.get("textfield") maps to flowdata.copyoftextfield2. 
Creating the Workflow for a Provisioning Request Definition 167



Guidelines for Creating Roles Based Workflows
Roles based workflows must follow the same guidelines outlined in “Guidelines for Creating 
Workflows” on page 160. In addition, roles based workflows have their own unique requirements. 
They are described in the following sections: 

 “About Role Approval Workflows” on page 168

 “Writing Custom Role Workflows” on page 170

 “About Separation of Duties Approval Workflows” on page 174

 “Customizing the Standard Separation of Duties Workflow” on page 177

About Role Approval Workflows

Role approval workflows are specialized workflows that provide support for role approval and 
revocation on the User Application’s Roles tab. The Roles Based Provisioning Module includes a 
read-only Role Approval workflow (named Role Approval) whose design pattern supports:

 The ability to process role approvals in either serial or quorum mode.

 The retrieval of approver DNs from the role object (nrfRequest). If you create a custom workflow, 
the approvers must be defined in the workflow. However, this might lead to addressee evaluation 
problems and less security concerning who can approve a role.

 The ability to display the role using localized display names. 

 All nrfRequest object mappings for request and approval forms.

 Logging and reporting functions.

 Read-only display of request information. The role approval workflow does not allow changes to 
the request. Approvers have only the ability to approve or deny the role request.

 An email notification is sent to all approvers of role approval workflows. A completed notification 
email is sent upon completion of the role approval workflow. The recipient email address is used 
when the workflow is intended to be assigned to a user identity.

This pattern is shown in Figure 6-6.
168 Creating the Workflow for a Provisioning Request Definition



Figure 6-6   Default Role Approval Workflow

The components of this workflow, and their responsibilities are summarized in Table 6-9.

Table 6-9   Standard Role Approval Activities

Activity Name Activity Type Description

Start Start Logical starting point for all workflows. For role 
approvals it must instantiate the nrfRequest object. 

Set up counter Mapping Sets up the counter for the number of approvers in 
case the mode is Serial.

Localize Display Mapping Sets up the display labels for each of the associated 
display names for the user’s locale.
Creating the Workflow for a Provisioning Request Definition 169



To use the standard Role Approval workflow in your user application, you must specify your own 
users as Trustees. For information on setting the Trustees property, see “Modifying Settings of a 
Provisioning Request Definition” on page 86. 

Writing Custom Role Workflows

If the standard role approval workflow does not support your business needs, and cannot be 
customized to do so, you can write your own. At a minimum, a custom role approval workflow must: 

 Contain two Role Binding activities

One Role Binding activity must be set to approved and the other set to denied. You must link 
each of the Role Binding activities to the Finish activity. If the workflow does not meet this 
requirement, it is invalid, and Designer prevents you from deploying it. The Role Service driver 
needs these values to set the status for the workflow and to then apply the logic to associate the 
role to the identity.

Check for Processing 
Type

Condition Determines whether the approval is a quorum 
condition by setting the Condition property to this 
ECMA expression: 

nrfRequest.isQuorumProcess()

If the quorum condition exists, control proceeds to the 
Approve Role Request (Quorum). If the quorum 
condition does not exist, control proceeds to the 
Approve Role Request (Serial). 

You specify the processing type for the role approval 
when you set up the Role Catalog. 

Approve Role Request 
(Quorum)

Approval This is where the decision to approve or deny the 
request is recorded as part of the workflow instance. 
The quorum condition required to make the process 
successful is retrieved from the nrfQuorum attribute of 
the nrfRequest object. 

Approve Role Request 
(Serial)

Approval This is where the decision to approve or deny the 
request is recorded as part of the data flow associated 
with the workflow instance. 

The workflow loops through the list of approvers found 
in the nrfRequest object. The request is approved if all 
approvers in the serial process approve the request. 
The request is denied upon the first rejection from an 
approver in the serial process

Deny Assignment of Role Role Binding Changes the deny attribute in the nrfRequest object to 
true.

Approve Assignment of 
Role

Role Binding Changes the approve attribute in the nrfRequest 
object to true.

Finish Finish Logical end point of all workflows.

Activity Name Activity Type Description
170 Creating the Workflow for a Provisioning Request Definition



 Contain the following control in the request form:

 Form Field Name: nrfRequestDN

 Data Type: Role Request

 Control Type: Text

 Instantiate the nrfRequestDN in the Pre Activity Data Item Mapping.

 Contain the following in the Post Activity Data Item Mapping: 

 Source Form Field: nrfRequestDN

 Target Expression: flowdata.nrfRequest/DN

 Data Type: dn

 Not contain the following ECMA expressions in the Data Item Mapping or Properties definitions 
because they might return null:

 getApprovalDN()

 getAllApproversDN()

 getAllSodApproversDN()

Because Designer and the User Application user interface do not allow entry of approvers for 
custom role approval workflows, you must specify the approvers in the workflow itself. Therefore, 
if you create a custom workflow based on a copy of the Role Approval or SoD Conflict Approval 
provisioning request definitions, you must remove the ECMA methods from Data Item Mapping 
or Properties definitions.
Creating the Workflow for a Provisioning Request Definition 171



In the following example, a user requests a role and the user’s manager approves it. 

Figure 6-7   Sample Custom Role Approval Workflow
172 Creating the Workflow for a Provisioning Request Definition



The components of this workflow, and their responsibilities are summarized in Table 6-10.

Table 6-10   Sample Custom Workflow Components

The data item mapping for the sample custom role approval workflow is defined in Table 6-11

Table 6-11   Sample Custom Role Approval Workflow Data Item Mapping

Activity Name Activity Type Description

Start Start Logical starting point of all workflows.

Localize Display Mapping Sets up the display labels for the user’s locale.

Manager Approval Approval This is where the decision to approve or deny 
the request is recorded as part of the workflow 
instance. The role request approval is needed 
only by the requestor’s manager. 

Approve Assignment of Role Role Binding Changes the approve attribute in the 
nrfRequest object to true.

Deny Assignment of Role Role Binding Changes the deny attribute in the nrfRequest 
object to true.

Finish Finish Logical end point of all workflows. 

Activity Name Property Type Property Value

Start Data Item Pre Activity Source Expression: None

Target Form Field: nrfRequestDN

Data Type: dn

Data Item Post Activity Source Form Field: nrfRequestDN

Target Expression: flowdata.nrfRequest/DN

Data Type: DN

Localize Display Data Item Source and 
Target mapping

Manager Approval Addressee Property Addressee  
IDVault.get(recipient,'user','manager')
Creating the Workflow for a Provisioning Request Definition 173



About Separation of Duties Approval Workflows

Separation of Duties approval workflows are specialized workflows that allows a Separation of Duties 
constraint to be overridden. The Roles Based Provisioning Module includes a read-only Separation of 
Duties Approval workflow (named SoD Conflict Approval) whose design pattern supports:

 The ability to process SoD conflicts in either serial or quorum mode.

 The retrieval of SoD approver DNs from the request object (nrfRequest). If you create a custom 
workflow, the approvers must be defined in the workflow; however, this might lead to addressee 
evaluation problems and less security concerning who can approve an SoD.

 The ability to display the SoD using localized display names. 

 All nrfRequest object mappings for request and approval forms.

 Logging and reporting functions.

 Read-only display of requests. Approvers can only approve or deny the SoD conflict. 

 An email notification is sent to all approvers per SoD conflict found for SoD workflow approvals. 
A completed notification email is sent upon completion of the SoD approval workflow. The 
recipient email address is used when the workflow is intended to be assigned to a user identity.

This pattern is shown in Figure 6-6 on page 169.

The roles subsystem allows one Separation of Duties approval flow for the Role subsystem. If you 
choose to use a custom SoD approval flow, make sure that it works for all SoD situations. 

Data Item Pre Activity

Data Item Post Activity None

Approve Assignment of 
Role

Action Property approved

Deny Assignment of 
Role

Action Property denied

Finish None

Activity Name Property Type Property Value
174 Creating the Workflow for a Provisioning Request Definition



Figure 6-8   Standard SoD Approval Workflow
Creating the Workflow for a Provisioning Request Definition 175



The components of the workflow are described in the following table:

Table 6-12   Standard SoD Constraint Exception Approval Workflow Activities

Activity Name Activity Type Description

Start Start Logical starting point of all workflows.

Localize Display Mapping Sets up the display labels for each of the 
associated Display Names for the user’s locale for 
the SoD conflicting Role.

Localize SoD Name Mapping Sets up the display labels for each of the 
associated Display Names for the user’s locale for 
the SoD conflicting Role.

Check for Processing Type Condition Determines whether the approval is a quorum 
condition by setting the Condition property to this 
ECMA expression: 

nrfRequest.isSodQuorumProcess()

If the quorum condition exists, control proceeds to 
the Approve SoD Conflict (Quorum). If the quorum 
condition does not exist, control proceeds to the 
Approve SoD Conflict (Serial). 

You specify the processing type for the role 
approval when you set up the Role Catalog. 

Approve SoD Conflict (Quorum) Approval This is where the decision to approve or deny the 
request is recorded as part of the workflow 
instance. The quorum condition required to make 
the process successful is retrieved from the 
nrfQuorum attribute of the nrfRequest object. 

Approve SoD Conflict (Serial) Approval This is where the decision to approve or deny the 
request is recorded as part of the data flow 
associated with the workflow instance. 

The workflow loops through the list of approvers 
found in the nrfRequest object. The request is 
approved if all approvers in the serial process 
approve the request. The request is denied upon 
the first rejection from an approver in the serial 
process

Deny SoD Conflict Role Binding Changes the deny attribute in the nrfRequest 
object to true.

Approve SoD Conflict Role Binding Changes the approve attribute in the nrfRequest 
object to true.

Has More SoD Conflicts and 
Increment SoD Counter 

Condition and 
Mapping activity

Loops through the SoD requests.

Finish Finish Logical end point of all workflows.
176 Creating the Workflow for a Provisioning Request Definition



Customizing the Standard Separation of Duties Workflow

Separation of Duties conflict approval workflows are complex. Therefore, it is not recommended that 
you write a custom version. Rather, it is recommended that you add new activities to a copy of the 
standard SoD approval workflow. For example, you might want to add additional logging or 
messages. This example illustrates a customized workflow that includes a new logging activity.

Figure 6-9   Adding Activities to the SoD Workflow

The Log Activity properties are shown in Figure 6-10.

Figure 6-10   Log Activity Properties

SoD Conflict approval workflows must follow the same rules as the role approval workflows as 
described on “Writing Custom Role Workflows” on page 170.

Guidelines for Creating Resource Based Workflows
Resource based workflows must follow the same guidelines outlined in “Guidelines for Creating 
Workflows” on page 160. In addition, resource based workflows have the unique requirements 
described in the following sections: 

 “About Resource Approval Workflows” on page 178

 “Writing Custom Resource Workflows” on page 180
Creating the Workflow for a Provisioning Request Definition 177



About Resource Approval Workflows

Resource approval workflows are specialized workflows that provide support for resource approval 
and revocation on the User Application’s Roles tab. The Roles Based Provisioning Module includes a 
read-only Resource Approval workflow (named Resource Approval) whose design pattern supports:

 The ability to process resource approvals in either serial or quorum mode.

 The retrieval of approver DNs from the resource object (nrfResourceRequest). If you create a 
custom workflow, the approvers must be defined in the workflow; however, this might lead to 
addressee evaluation problems and less security concerning who can approve a resource.

 The ability to display the resource using localized display names. 

 All nrfResourceRequest object mappings for request and approval forms.

 Logging and reporting functions.

 Read-only display of request information. The resource approval workflow does not allow 
changes to the request. Approvers have only the ability to approve or deny the resource request.

 An email notification is sent to all approvers of resource approval workflows. A completed 
notification email is sent upon completion of the resource approval workflow. The recipient email 
address is used when the workflow is intended to be assigned to a user identity.

This pattern is shown in Figure 6-11.

Figure 6-11   Default Resource Approval Workflow
178 Creating the Workflow for a Provisioning Request Definition



The components of this workflow, and their responsibilities are summarized in Table 6-13.

Table 6-13   Standard Resource Approval Activities

To use the standard Resource Approval workflow in your user application, you must specify your own 
users as Trustees. For information on setting the Trustees property, see “Modifying Settings of a 
Provisioning Request Definition” on page 86. 

Activity Name Activity Type Description

Start Start Logical starting point for all workflows. For resource 
approvals it must instantiate the nrfResourceRequest 
object. 

Set up counter Mapping Sets up the counter for the number of approvers in 
case the mode is Serial.

Localize Display Mapping Sets up the display labels for each of the associated 
display names for the user’s locale.

Check for Processing 
Type

Condition Determines whether the approval is a quorum 
condition by setting the Condition property to this 
ECMA expression: 

nrfResourceRequest.isQuorumProcess()

If the quorum condition exists, control proceeds to the 
Approve Resource Request (Quorum). If the quorum 
condition does not exist, control proceeds to the 
Approve Resource Request (Serial). 

Approve Resource 
Request (Quorum)

Approval This is where the decision to approve or deny the 
request is recorded as part of the workflow instance. 
The quorum condition required to make the process 
successful is retrieved from the nrfQuorum attribute of 
the nrfResourceRequest object. 

Approve Resource 
Request (Serial)

Approval This is where the decision to approve or deny the 
request is recorded as part of the data flow associated 
with the workflow instance. 

The workflow loops through the list of approvers found 
in the nrfResourceRequest object. The request is 
approved if all approvers in the serial process approve 
the request. The request is denied upon the first 
rejection from an approver in the serial process

Deny Assignment of 
Resource

Resource Request Binding Changes the deny attribute in the 
nrfResourceRequest object to true.

Approve Assignment of 
Role

Resource Request Binding Changes the approve attribute in the 
nrfResourceRequest object to true.

Finish Finish Logical end point of all workflows.
Creating the Workflow for a Provisioning Request Definition 179



Writing Custom Resource Workflows

If the standard resource approval workflow does not support your business needs, and cannot be 
customized to do so, you can write your own. At a minimum, a custom resource approval workflow 
must: 

 Contain two Resource Request Binding activities

One Resource Request Binding activity must be set to approved and the other set to denied. You 
must link each of the Resource Request Binding activities to the Finish activity. If the workflow 
does not meet this requirement, it is invalid, and Designer prevents you from deploying it. The 
Role and Resource Service driver needs these values to set the status for the workflow and to 
then apply the logic to associate the resource to the identity.

 Contain the following control in the request form:

 Form Field Name: nrfResourceRequestDN

 Data Type: Resource Request

 Control Type: Text

 Instantiate the nrfResourceRequestDN in the Pre Activity Data Item Mapping.

 Contain the following in the Post Activity Data Item Mapping: 

 Source Form Field: nrfResourceRequestDN

 Target Expression: flowdata.nrfResourceRequestDN

 Data Type: dn

 Not contain the following ECMA expressions in the Data Item Mapping or Properties definitions 
because they might return null:

 getApprovalDN()

 getAllApproversDN()

 getAllSodApproversDN()

Because Designer and the User Application user interface do not allow entry of approvers for 
custom resource approval workflows, you must specify the approvers in the workflow itself. 
Therefore, if you create a custom workflow based on a copy of the Resource Approval 
provisioning request definition, you must remove the ECMA methods from Data Item Mapping or 
Properties definitions.
180 Creating the Workflow for a Provisioning Request Definition



In the following example, a user requests a resource and the user’s manager approves it. 

Figure 6-12   Sample Custom Resource Approval Workflow
Creating the Workflow for a Provisioning Request Definition 181



The components of this workflow, and their responsibilities are summarized in Table 6-14.

Table 6-14   Sample Custom Workflow Components

The data item mapping for the sample custom resource approval workflow is defined in Table 6-15

Table 6-15   Sample Custom Resource Approval Workflow Data Item Mapping

Activity Name Activity Type Description

Start Start Logical starting point of all workflows.

Localize Display Mapping Sets up the display labels for the user’s locale.

Manager Approval Approval This is where the decision to approve or deny 
the request is recorded as part of the workflow 
instance. The resource request approval is 
needed only by the requestor’s manager. 

Approve Assignment of Role Role Binding Changes the approve attribute in the 
nrfResourceRequest object to true.

Deny Assignment of Role Role binding Changes the deny attribute in the 
nrfResourceRequest object to true.

Finish Finish Logical end point of all workflows. 

Activity Name Property Type Property Value

Start Data Item Pre Activity Source Expression: None

Target Form Field: nrfResourceRequestDN

Data Type: dn

Data Item Post Activity Source Form Field: nrfResourceRequestDN

Target Expression: flowdata.nrfResourceRequest/DN

Data Type: DN

Localize Display Data Item Source and 
Target mapping

Manager Approval Addressee Property Addressee  
IDVault.get(recipient,'user','manager')

Data Item Pre Activity
182 Creating the Workflow for a Provisioning Request Definition



Debugging a Workflow
When testing a workflow, you might need to see the values of the variables you’re using in the flow. 
Some options include: 

 “Using the Log Activity” on page 183

 “Using the Workflow Database” on page 183

 “Changing Log Levels” on page 183

Using the Log Activity

Use the Log activity to display messages containing the variables you need to look at. After you’ve 
configured the Log activity, you can then see the messages in the console. In the Log activity, you can 
use scripting expressions in the Message property to retrieve the values you need. For example, you 
might use this expression to log a message containing the value of a variable defined on the flowdata 
object: 

flowdata.get('my_variable')

For details on using the Log activity, see “Log Activity” on page 204.

Using the Workflow Database

Look in the workflow database to see how the data associated with the flowdata object changes as 
the workflow progresses from one activity to the next. To see this data, you can look at the 
afdocument table.

Changing Log Levels

During the debugging process, you can change the log levels associated with the workflow system 
(com.novell.soa.af.impl), the provisioning requests component of the User Application 
(com.novell.srvprv.apwa), and the evaluation of server side scripts (com.novell.soa.script). 
This approach might generate more information than you need, but sometimes it can be helpful. To 
change logging levels, go to the Logging page within the Administration tab of the User Application. 

Data Item Post Activity None

Approve Assignment of 
Resource

Action Property approved

Deny Assignment of 
Resource

Action Property denied

Finish None

Activity Name Property Type Property Value
Creating the Workflow for a Provisioning Request Definition 183



Provisioning Multiple Individuals with One Workflow 
Instance 

You can configure a provisioning request definition so that one individual (for example, a manager) 
can provision multiple individuals (for example, members of a group) with one workflow. The 
provisioning request definition can be configured to provision any one of the following:

 Multiple individual users from the default user container

 All members of a group from the default group container (for example, Sales, Marketing, HR, IT)

 All members of any arbitrary Identity Vault container

To create this type of workflow, create the provisioning request definition as you normally would. On 
the Overview panel, select Single Flow Provision Members from the Flow Strategy list.

 “Basic Steps for Using the Workflow” on page 184

Basic Steps for Using the Workflow

This section describes the basic steps for using a workflow that utilizes the Single Flow Provision 
Members flow strategy. For more detailed information about making process requests, see “Making a 
Team Process Request” in the NetIQ Identity Manager - User’s Guide to the Identity Applications.

1 Log in to the user application as a user application administrator.

2 Click Work Dashboard.

3 In the left pane, click Settings > Team Settings > Make Team Process Requests.

4 Click Select a team to select the team for which you have been designated a Team Manager.

5 Click Continue.

6 Select the process request category to which the request belongs, then click Continue.

7 Click the name of the workflow you want to use.

8 Click the resource name you want to request.

9 Click the name of the recipient you want to receive the request, then click Continue.

Making Distinguished Name References Portable
When you use a DN in an expression in a provisioning request definition, the expression might fail if 
you deploy the provisioning request definition to an Identity Vault with a different structure. You 
typically specify DNs in: 

 Overview panel: Trustee specification.

 User activity: Addressee and escalation addressee.
184 Creating the Workflow for a Provisioning Request Definition

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bkufva4
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bkufva4
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_user/identity_apps_user.pdf#bookinfo


 Entity activity: Entitlement reference and entity DN.

 Many other expressions, for example, IDVault.get(dn, class, attribute).

Some expressions, such as recipient, are portable. The following expressions, which are used by 
default in the User activity, are also portable: 

IDVault.get(recipient,'user','manager')

IDVault.get(approval_A.getAddressee(),'user','manager')

To ensure that your DN expressions are portable across Identity Vaults, you can use one of the 
following variables:

 ROOT_CONTAINER: For example, ou=idm-prov,o=novell

 PROVISIONING_DRIVER: For example, cn=UserApplication,cn=TestDrivers,o=novell

 USER_CONTAINER: For example, ou=users,ou=idm-prov,o=novell

 GROUP_CONTAINER: For example, ou=groups,ou=idm-prov,o=novell

These variables are defined during installation of the user application and are resolved at runtime by 
the ECMAScript engine. You can find them in the ECMA Expression Builder under the process node. 
Suppose you wanted to reference an entitlement at the following DN: 

'cn=myEntitlement,cn=UserApplication,cn=TestDrivers,o=novell'

You could use the following expression to make the DN portable to any identity vault:

''cn=MyEntitlement,' + PROVISIONING_DRIVER

You can use this technique for users and groups also.

NOTE: Trustees are not expressions so you cannot use this technique with Trustees.
Creating the Workflow for a Provisioning Request Definition 185



186 Creating the Workflow for a Provisioning Request Definition



7 7Workflow Activity Reference

This section provides details on configuring the different types of workflow activities.

The display names for all activities can be localized by clicking the Localize Strings button (see 
“Localizing Provisioning Objects” on page 39) for the activity name property. Activity display names 
are also exported as part of the Provisioning view’s Export > Export Localization to File (see 
“Exporting and Importing Data to Localize” on page 41) so that you can send the activity names to be 
localized as part of the rest of the User Application display labels and strings.

Start Activity
The Start activity is the first activity to execute in a workflow. It begins execution when the user makes 
a request to provision a resource. After the user makes the request, the Start activity displays the 
initial request form to the user. On the initial request form, the user can be asked to specify a 
comment that indicates the reason for the request. 

You can customize the initial request form to suit your application requirements. For details on 
customizing forms, see Chapter 5, “Creating Forms for a Provisioning Request Definition,” on 
page 95.

Before displaying the form to the user, the Start activity performs any pre-activity data mappings 
specified for the activity. 

After the user submits the form, the Start activity performs any post-activity data mappings specified 
for the activity. These mappings typically include copying data from form fields into the flowdata 
object. 

Properties

The Start activity has the following properties:

Table 7-1   Start Activity Properties

Property Name Description

Name Provides a name for the activity.
Workflow Activity Reference 187



Data Item Mapping

To bind the data items associated with the Start activity, you define pre-activity and post-activity 
mappings. The pre-activity mappings initialize data in the request form with constants or values 
retrieved from the flowdata object. The post-activity mappings move form data back into the flowdata 
object.

Table 7-2   Start Activity Data Item Mappings

Resource Name 
Override

Allows you to override the provisioning request definition’s display name. This is the 
name that displays in the Resource column when the user selects My Requests or 
Requests. The name can be a constant or the result of an ECMA expression, and it 
can be localized for each supported locale. To access the dialog boxes that let you 
specify the constant or ECMA expression, the Localize Strings button in the Value 
column.

To specify a constant, click  and type the value in the field. The value is displayed 
exactly as entered in this field. 

To specify an ECMA expression, click  and specify the expression. 

TIP: If the value is an ECMA expression, any constants within the expression must 
be in single quotes.

If you specify both a constant and ECMA expression, the runtime displays whichever 
value was the last one entered as shown in the dialog box (above).

Setting Description

Pre-Activity Allows you to specify one or more pre-activity mappings. When 
this option is selected, you can double-click a cell in the Source 
Expression column to specify where the initial request form 
gets data for a particular target form field. 

The Pre-activity Mapping expression is evaluated twice before 
the form is presented, once during the initial presentation to the 
form and then again prior to the post to ensure that all the 
values on the form have a valid type, even those that were not 
initialized. Because of this behavior, any calls made to external 
systems are made twice. For example, a call that retrieves a 
unique counter for a value makes two calls that allocates two 
counters with the last one requested being used. 

NOTE: When the Pre-Activity option is selected, the cells in the 
Target Form Field column are not editable. 

Post-Activity Allows you to specify one or more post-activity mappings. When 
this radio button is selected, you can double-click a cell in the 
Target Expression column to specify where data from a form 
field should be copied after the form has been processed. 

The DNDisplay control is not available for post activity 
mappings.

NOTE: When the Post-Activity option is selected, the cells in 
the Source Form Field column are not editable. 

Property Name Description
188 Workflow Activity Reference



For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on 
page 271.

Email Notification

Not supported with this activity.

Approval Activity
The Approval activity is a user-facing activity that displays an approval form to the user. On the 
approval form, the user can approve, deny, or refuse a provisioning request. The Approval activity 
can have multiple outgoing flow paths, but only one of the paths is executed at runtime.

You can customize the approval form to suit your application requirements. For details on customizing 
forms, see Chapter 5, “Creating Forms for a Provisioning Request Definition,” on page 95.

Before displaying the form to the user, the Approval activity performs any pre-activity data mappings 
specified for the activity. 

After the user submits the form, the Approval activity performs any post-activity mappings specified 
for the activity. These mappings typically include copying data from form fields into the flowdata 
object. 

 “Properties” on page 189

 “Data Item Mapping” on page 194

 “Available ECMAScript Methods” on page 195

 “Email Notification” on page 196

 “Addressing an Approval Activity” on page 198

Properties

The Approval activity has the following properties:

Table 7-3   Approval Activity Properties

Source Expression Specifies a source expression for a pre-activity mapping. When 
you click a cell in the Source Expression column, the ECMA 
Expression Builder displays to help you define your expression. 

Target Expression Specifies a target expression for a post-activity mapping. When 
you click a cell in the Target Expression column, the ECMA 
Expression Builder displays to help you define your expression.

Setting Description

Property Name Description

Name Provides a name for the activity.
Workflow Activity Reference 189



Addressee Specifies a dynamic expression that identifies the addressee for the 
activity. The addressee is the approver of the workflow. 

The addressee is determined at runtime, based on evaluation of the 
expression. Designer validates that the expression is a valid ECMA 
expression. It cannot validate whether the expression resolves to a valid 
object (such as a role) or whether that object will exist at runtime. 

For information on specifying addressees (such as specifying a role as 
the approver), see “Specifying the Addressee Property” on page 198.

For more information about developing valid Addressee expressions, 
and about how Addressee interacts with the Approver Type property, 
see “Addressing an Approval Activity” on page 198.

TIP: To simplify the process of testing a new workflow, you can set the 
addressee to be the recipient. This removes the need to log out of the 
User Application and log in again as a manager each time you want to 
test your forms. This technique is particularly useful when the workflow 
involves multiple levels of approval. After the testing phase is complete, 
you can change the addressee to the correct value. 

For details on building ECMA expressions, see Chapter 9, “Working 
with ECMA Expressions,” on page 271. For descriptions of the system 
variables available in a workflow, see “Understanding Workflow Data” on 
page 163.

Reminder Start Specifies a dynamic expression that defines, in milliseconds, the time at 
which the first reminder email should be sent. The start value is an offset 
from the time of the first assignment associated with the activity. You 
can pick predefined expressions that represent common intervals (for 
example, hour, day, week) in the ECMAScript Objects pane of the 
ECMA Expression Builder.

This is part of the reminder email function. If this activity is considered 
important and needs to be acted on quickly, you can configure the 
activity to send a reminder email to the activity addressee. For example, 
you can set the reminder settings to send a reminder email 5 days 
before the activity times out, and on a daily basis until the activity times 
out. To do this, specify a Reminder Start time, a Reminder Interval, 
and the email to be sent (see “Email Notification” on page 196).

For details on building ECMA expressions, see Chapter 9, “Working 
with ECMA Expressions,” on page 271. For descriptions of the system 
variables available in a workflow, see “Understanding Workflow Data” on 
page 163.

Reminder Interval Specifies a dynamic expression that defines the interval between which 
reminder emails are sent. You can pick predefined expressions that 
represent common intervals (for example, hour, day, week) in the 
ECMAScript Objects pane of the ECMA Expression Builder.

Property Name Description
190 Workflow Activity Reference



Escalation Addressee Not available when the approver type is Multiple or Quorum

Specifies a dynamic expression that identifies the user who should get 
this task if the timeout limit has been reached.

The escalation addressee is determined at runtime, based on how the 
expression is evaluated.

For details on building ECMA expressions, see Chapter 9, “Working 
with ECMA Expressions,” on page 271. For descriptions of the system 
variables available in a workflow, see “Understanding Workflow Data” on 
page 163.

Escalation Count Not available when the approver type is Multiple or Quorum.

Specifies the number of times to retry the activity in the event of a 
timeout.

When an activity times out, the workflow process can try to complete the 
activity again, depending on the escalation count specified for the 
activity. With each retry, the workflow process can escalate the activity 
to another user. In this case, the activity is reassigned to another user 
(the user’s manager, for example) to give this user an opportunity to 
finish the work of the activity. If the last retry times out, the activity can 
be marked as approved, denied, refused, timedout, or in error, 
depending on the final timeout action specified for the activity.

The Timeout interval (see Timeout in this table) takes precedence over 
the Escalation Interval. For example, if you set the timeout to 10 
minutes, and specify an Escalation Count of 3 and Escalation Interval of 
5 minutes, the activity finishes after 10 minutes without attempting all of 
the retries. In this example, the second retry would be canceled, and the 
workflow would finish processing for the activity. At the conclusion of the 
activity, the workflow engine would follow the link defined by the final 
timeout action.

Escalation Interval Not available when the approver type is Multiple or Quorum.

Specifies a dynamic expression that defines the period of time allotted 
for the addressee to complete the task. The escalation interval applies 
each time the activity is executed by the addressee.

The Timeout interval (see Timeout in this table) takes precedence over 
the Escalation Interval. For example, if you set the timeout to 10 
minutes, and specify an Escalation Count of 3 and Escalation Interval 
of 5 minutes, the activity will finish after 10 minutes without attempting 
all of the retries. In this example, the second retry would be canceled, 
and the workflow would finish processing for the activity. At the 
conclusion of the activity, the workflow engine would follow the link 
defined by the final timeout action.

For details on building ECMA expressions, see Chapter 9, “Working 
with ECMA Expressions,” on page 271. For descriptions of the system 
variables available in a workflow, see “Understanding Workflow Data” on 
page 163.

Property Name Description
Workflow Activity Reference 191



Escalation Reminder Start Not available when the approver type is Multiple or Quorum.

Specifies a dynamic expression that defines the time at which the first 
reminder email (see Reminder Start in this table) should be sent to the 
Escalation Addressee. The start value is an offset from the time of the 
escalation assignment. You can pick predefined expressions that 
represent common intervals (for example, hour, day, week) in the 
ECMAScript Objects pane of the ECMA Expression Builder.

Escalation Reminder Interval Not available when the approver type is Multiple or Quorum.

Specifies a dynamic expression that defines how often messages are 
sent to the Escalation Addressee after the first escalation reminder is 
sent. You can pick predefined expressions that represent common 
intervals (for example, hour, day, week) in the ECMAScript Objects 
pane of the ECMA Expression Builder.

Final Timeout Action Determines the final state of the request in the event that the workflow 
times out. The choices are 

 approved

 denied

 refused

 timedout

 error

Timeout Specifies a dynamic expression that defines the period of time allotted 
for the addressee to complete the task. The timeout interval applies 
each time the activity is executed by the addressee.

The Timeout setting takes precedence over the Escalation Count and 
Escalation Interval values. If the Timeout setting for the activity is 
reached before one or more of the escalation attempts have been tried, 
the activity finishes processing without executing these escalation 
attempts. For example, if you set the timeout to 10 minutes, and specify 
an Escalation Count of 3 and Escalation Interval of 5 minutes, the 
activity finishes after 10 minutes without attempting all of the escalation 
attempts. In this example, the second escalation attempt would be 
canceled, and the workflow would finish processing for the activity. At 
the conclusion of the activity, the workflow engine would follow the link 
defined by the final timeout action.

For details on building ECMA expressions, see Chapter 9, “Working 
with ECMA Expressions,” on page 271. For descriptions of the system 
variables available in a workflow, see “Understanding Workflow Data” on 
page 163.

Timeout Units Determines the unit of measure used for the timeout interval. The 
choices are 

 Milliseconds

 Days

 Hours

 Minutes

 Seconds

Property Name Description
192 Workflow Activity Reference



Form Specifies the name of the approval form to display at runtime, or lets you 
define a new form. Select the name of the form you want to use or 
create new form. When you choose to create a new form, the Create 
New Form Wizard launches 

Select the data items to include in the form from the data items listed, 
then click Finish. The Approval Form Wizard generates each of the 
selected data items as a String type field in the new form. 

An Approval activity must have a form associated with it. If no form is 
specified, an error message is displayed at runtime. 

Exclude Requestor Specifies whether requestors can approve their own provisioning 
requests. 

 True: The requestor is not allowed to approve their own 
provisioning requests.

 False: The requestor is allowed to approve their own provisioning 
requests.

Approver Type Specifies the number of addresses that are allowed and the approval 
pattern that is enforced for this activity. The choices are 

 Normal: Action by the addressee is required to complete the 
approval.

 Group: Action by one addressee in the group is required to 
complete the approval.

 Multiple:  Action by all of the addressees is required to complete 
the approval.

You cannot use post activity data item mapping with the Multiple 
Approver Type.

 Quorum: Action by a percentage of addressees or an absolute 
number of addressees (see Quorum property in this table) is 
required to complete the approval.

You cannot use post-activity data item mapping with the Quorum 
Approver Type.

For information about how the Approver Type property interacts with 
the Addressee property, see “Addressing an Approval Activity” on 
page 198.

Notify by E-Mail Specifies whether this activity should send email notifications. Set to 
True to notify by email; otherwise, set to False.

You specify the email to send using the E-Mail Notification tab (see 
“Email Notification” on page 196).

To use this feature, the Notify participants by E-Mail parameter for the 
provisioning request definition must be set to True (see Table 4-3, 
“Overview Properties,” on page 86). 

Property Name Description
Workflow Activity Reference 193



NOTE: To enable delegation to a group DN, you can have an approver type of Group or Normal, but 
the Addressee value must be an expression that returns the user DNs for each member of that group 
For example, IDVault.get(groupdn, ‘sales’, ‘members’)

Data Item Mapping

To bind the data items associated with the Approval activity, you define pre-activity and post-activity 
mappings. The pre-activity mappings initialize data in the approval form with constants, values 
retrieved from the flowdata object, system process variables, system activity variables, and data 
retrieved via expression calls to the directory abstraction layer. The post-activity mappings move form 
data back into the flowdata object.

Table 7-4   Approval Activity Data Item Mappings

Quorum Not available when the approver type is Normal, Group, or Multiple.

Allows you to specify a constant value or to create an ECMA expression 
that specifies a percentage (for example, '75%') of approvals that is 
required before a quorum is achieved, or an absolute number (for 
example, '3') of approvals that are required before a quorum is 
achieved.

Priority Specifies a dynamic expression that defines the priority of the approval 
activity. Valid priority values are 1, 2, or 3. You can also define an 
expression to determine the priority from workflow data. For example, 
flowdata.get("Priority").

In the User Application, users can sort the list of tasks by the priority 
values of the tasks.

Setting Description

Pre Activity Allows you to specify one or more pre-activity mappings. When this option 
is selected, you can double-click a cell in the Source Expression column to 
specify where the approval form gets data for a particular target form field. 

The Pre-activity Mapping expression is evaluated twice before the form is 
presented, once during the initial presentation to the form and then again 
prior to the post to ensure that all the values on the form have a valid type, 
even those that were not initialized. Because of this behavior, any calls 
made to external systems are made twice. For example, a call that retrieves 
a unique counter for a value makes two calls that allocates two counters 
with the last one requested being used. 

NOTE: When the Pre-Activity choice is selected, the cells in the Target 
Form Field column are not editable. 

Property Name Description
194 Workflow Activity Reference



For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on 
page 271.

Available ECMAScript Methods

The Approval activity provides several default methods to use in ECMAScript expressions. Some 
methods are displayed in the ECMAScript Objects pane of the ECMA Expression Builder, while 
others must be entered manually into the text area provided in the ECMA Expression Builder.

Table 7-5   Available ECMAScript Methods for Approval Activities

Post Activity Allows you to specify one or more Post Activity mappings. When this 
option is selected, you can double-click a cell in the Target Expression 
column to specify where data from a form field should be copied after the 
form has been processed. 

You cannot use Post Activity mapping with the Multiple and Quorum 
approver types (see “Properties” on page 189).

The DNDisplay control is not available for post activity mappings. 

The form for an Approval activity includes a special internal control called 
apwaComment. This control causes user comments to be written to the 
workflow database. It should not have a post-activity mapping. For more 
information on this control, see “DNMaker” on page 115.

NOTE: When the Post-Activity option is selected, the cells in the Source 
Form Field column are not editable. 

Source Expression Specifies a source expression for a pre-activity mapping. When you click a 
cell in the Source Expression column, the ECMA Expression Builder 
displays to help you define your expression. 

Target Expression Specifies a target expression for a post-activity mapping. When you click a 
cell in the Target Expression column, the ECMA Expression Builder 
displays to help you define your expression.

Object Method Description

action Activity-name.getAction() Returns the approval action taken by 
the activity. Possible options are:

 APPROVED

 DENIED

 REFUSED

 TIMEDOUT

 ERROR

addressee Activity-name.getAddressee() Returns the DN of the user who 
needs to approve or deny the 
requested action.

name Activity-name.getName(locale) Returns the name of the approval 
activity for the specified locale.

Setting Description
Workflow Activity Reference 195



Email Notification

To enable email notification for the Approval activity, you need to specify the email template to use, as 
well as source expressions for target tokens in the email body. 

Table 7-6   E-mail Notification Settings for the Approval Activity

timestamp Activity-name.getTimestamp() Returns the date and time of any 
Approval actions taken by the user or 
system, including APPROVED, 
DENIED, REFUSED, TIMEDOUT, or 
ERROR.

user Activity-name.getUser() Returns the DN of the owner of the 
work task for the activity.

workId Activity-name.getWorkId() Returns the work item ID for the 
activity.

N/A Activity-name.getAddresseeList() Returns a list of DNs of all users who 
need to approve or deny the 
requested action.

NOTE: This method is not displayed 
in the ECMAScript Objects pane and 
must be entered manually.

N/A Activity-
name.getNotifyAddressee()

Returns the full name of the user who 
needs to approve or deny the 
requested action.

NOTE: This method is not displayed 
in the ECMAScript Objects pane and 
must be entered manually.

Setting Description

Notify Specifies that this email notification is a notification email.

Reminder Specifies that this email notification is a reminder email.

Retry Reminder Specifies that this email notification is a retry reminder email.

Show System Tokens Displays system tokens (for example, TO, CC, BCC, 
REPLYTO, TO_DN, CC_DN, and BCC_DN) in the Target 
column.

E-Mail Template Specifies the name of the email template to use. By default, 
the Approval activity uses the Provisioning Notification 
template.

You can edit an email template in Designer. For more 
information, see “Editing an email template:” on page 158. 

Object Method Description
196 Workflow Activity Reference



NOTE

 Email notification is supported only when the Notify participants by E-Mail check box is selected 
on the Overview tab, and the Notify by E-Mail property for the Approval activity is set to True.

 When you create a workflow for use with the Resource Request portlet, and you use the 
“_default_” as the expression for the TO token, the addressee expression must be an IDVault 
expression.

 If you create an activity using any of the target tokens TO_DN, CC_DN, or BCC_DN, you must 
specify a user’s DN or an expression that resolves to a user’s DN as the source expression for 
the token.

 If you create an activity using both the target tokens TO and TO_DN, the workflow sends out 
duplicate notification emails to the target users.

Source/Target Specifies the source expressions for target tokens in the email 
body. 

The list of target tokens is determined by the selected email 
template. You cannot add new tokens, but you can assign 
values to the tokens by building your own source expressions. 
At runtime, source expressions are evaluated to determine 
the value of each token.

The available target tokens are listed below:

 TO

 CC

 BCC

 REPLYTO

 TO_DN

 CC_DN

 BCC_DN

 recipientFullName

 initiatorFullName

 requestTitle

 userFirstName

If you use a provisioning request definition template to create 
your workflow, each token has a default source expression. 
The default expressions retrieve values from the workflow 
process (the process object) or from the data abstraction layer 
(IDVault object). You can modify these expressions to suit 
your application requirements. 

For details on building ECMA expressions, see Chapter 9, 
“Working with ECMA Expressions,” on page 271.

Setting Description
Workflow Activity Reference 197



Addressing an Approval Activity

To address an Approval activity, you must enter a valid expression for the Addressee property. The 
Addressee is the approver for the activity. The number of approvals that are required to approve the 
activity is determined by the relationship between the Addressee property and the Approver Type 
property as described in “Relationship Between Addressee and Approver Type” on page 199. 

Specifying the Addressee Property

To build the addressee expression:

1 Click the  button in the Addressee property Value column. 

Designer launches the dialog box where you can add or remove an expression. The following 
dialog only displays when the Approver Type is Group, Multiple, or Quorum.

2 Click + to add a new addressee expression by using the Expression Builder. 

You can choose one of the ECMAScript Objects to build the addressee expression, or use the 
Identity Vault or Search Roles buttons to select a specific object. The Search Roles button is not 
available when Approver Type is Normal.

2a To specify a Role as the Addressee, click Search Roles.

2b In the dialog box, specify the CN, Display Name, Description, Role Category, and Role 
Level on which you want to search. 

For CN, Display Name, and Description, you can enter a wildcard (such as S*, *S) or 
regular expressions (such as [A-Zoo-z]*).

You can enter a value for all of the fields or none of the fields. If you do not supply a value in 
a particular field, the search returns all of the possible values for that field. If you enter 
values in one or more of the fields, the values are ANDed together to create the search 
filter. The search occurs on the roles defined locally. Roles matching the search criteria are 
displayed in the Matching Roles selection list.

2c Select a role from the Roles selection list, then click OK. The role is added to the expression 
area.

3 Click OK after you are satisfied with expression. 

Valid Addressee Expressions

An Addressee expression must resolve to one of the following at runtime:

 A valid individual addressee that can be a user DN, a group DN, or a role DN. 

 A valid list of addressees (for example, created using a Java vector object) that can contain 
multiple User DNs, multiple group DNs, or multiple role DNs, or a mixture of both. 

Because the addressee is the approver, the maximum number of approvals possible equals the 
number of Addressees (the number of User DNs plus the number of Group DNs or Role DNs) and 
does not include or count the individual members of a Group or Roles.

NOTE: A Group DN or a Role DN is always processed to contribute a single vote (that is, when one 
member of a group or role claims an activity, the rest of the members of the group or role can no 
longer see or claim the activity), regardless of the Approver Type.
198 Workflow Activity Reference



The following table provides examples of valid addressee expressions that you can create using the 
ECMA Expression Builder.

Table 7-7   Examples of Addressee Expressions

Relationship Between Addressee and Approver Type

Because the addressee is the approver, the behavior of the workflow and the total number of 
affirmative approvals needed varies depending on the type of Addressee that is specified by the 
Addressee expression, and the Approver Type that is selected. 

 “Normal Approver Type” on page 199

 “Group Approver Type” on page 200

 “Multiple Approver Type” on page 201

 “Quorum Approver Type” on page 202

Normal Approver Type

The following table describes the workflow behavior when different types of addressee are used with 
the Normal Approver Type.

Table 7-8   Workflow Behavior with the Normal Approver Type

Type of Expression Example

Individual user DN 'cn=jdoe,ou=users,ou=mysample,o=myorg'

Individual group DN 'cn=Accounting,ou=groups,ou=mysample,o=myorg'

Individual role DN 'CN=Administer 
Drugs,CN=Level10,CN=RoleDefs,CN=RoleConfig,CN=AppConfig,' + 
PROVISIONING_DRIVER'

A vector of DNs (can 
include user, group, or 
role DNs

function DNVector() { v=new java.util.Vector(); v.add('CN=jdoe,' + 
USER_CONTAINER); v.add('CN=Accounting,' + GROUP_CONTAINER); 
v.add('CN=jsmith,' + USER_CONTAINER); v.add('CN=bsmith,' +  
USER_CONTAINER);

v.add('CN=Administer 
Drugs,CN=Level10,CN=RoleDefs,CN=RoleConfig,CN=AppConfig,' + 
PROVISIONING_DRIVER);

return v; }; 

DNVector();

Addressee Value Description

Individual User DN  Only the user can see the Approval activity in his or her task list. 

 Only one approval is needed to complete the activity as Approved.

Individual Group DN  Each member of Group can see the activity in the task list. 

 When one member claims the activity, it is removed from the task lists of 
others. 

 Only one approval is needed to complete the activity as Approved.
Workflow Activity Reference 199



Group DNs and Proxy Processing

If a workflow is assigned to a Group and email notification is used for the approvals, all members of 
the group are sent an email. If a proxy user is assigned to any members of the group, the processing 
works as follows:

 If the approver is a single user then the email notification is sent to both users (the original and 
proxy users).

 If the approver is a group DN and one of the users in the group is assigned a proxy user, the user 
who is the proxy is not notified by email when a new request is placed in the task list.

If you want the proxy user to be notified by email, assign the approval task to the members of the 
group and set the approver type to Group Approver. For example, if you assign the approval 
activity to:

IDVault.get('cn=Marketing,ou=groups,ou=idmsample,o=novell' , 'group',
'Member') 

When you set the approval type to Group, a notification is sent to each member's proxy, if the 
member has a proxy. One member of the group can claim and act on the approval task which is 
the same behavior as if you assigned it directly to the group DN.

Group Approver Type

The following table describes the workflow behavior when different types of addressee are used with 
the Group Approver Type.

Table 7-9   Workflow Behavior with the Group Approver Type

Individual Role DN  Each member of the role can see the activity in the task list. 

 When one role member claims the activity, it is removed from the task lists 
of others. 

 Only one approval is needed to complete the activity as Approved.

Multiple User DNs Not allowed.

Multiple Group DNs Not allowed.

Multiple Role DNs Not allowed.

Mixture of Users, Groups, 
and Roles

Not allowed.

Addressee Value Description

Individual User DN  Only the user can see the Approval activity in his or her task list. 

 Only one approval is needed to complete the activity as Approved.

Individual Group DN  Each member of Group can see the activity in his or her task list. 

 When one member claims the activity, it is removed from task lists of 
others. 

 Only one approval is needed to complete the activity as Approved. 

Addressee Value Description
200 Workflow Activity Reference



Multiple Approver Type

The following table describes the workflow behavior when different types of addressee are used with 
the Multiple Approver Type.

Table 7-10   Workflow Behavior with the Multiple Approver Type

Individual Role DN  Each member of the Role can see the activity in his or her task list. 

 When role one member claims the activity, it is removed from task lists of 
others. 

 Only one approval is needed to complete the activity as Approved. 

Multiple User DNs  Each user in the virtual group can see the activity in his or her task list. 

 When one user from the virtual group claims the activity, the activity is 
removed from the task lists of others. 

 Only one approval is needed to complete the activity as Approved.

Multiple Group DNs  Each member in each of the groups can see the activity in his or her task 
list. 

 When one user from the virtual group claims the activity, the activity is 
removed from the task lists of others in all of the groups. 

 Only one approval is needed to complete the activity as Approved. 

Multiple Role DNs  Each member in each of the roles can see the activity in his or her task 
list. 

 When one user from the one of the roles claims the activity, the activity is 
removed from the task lists of others in all of the other roles. 

 Only one approval is needed to complete the activity as Approved. 

Mixture of Users, Groups, and 
Roles

 Each user and member of each Group or Role can see the activity in his 
or her task list. 

 When one of the approvers claims the activity, the activity is removed 
from the task lists of others. 

 Only one approval is needed to complete the activity as Approved.

Addressee Value Description

Individual User DN  Only the user can see the activity in his or her task list. 

 Only one approval is needed to complete the activity as Approved.

Individual Group DN  Each member of the group can see the activity in his or her task list. 

 When one member claims the activity, the activity is removed from the 
task lists of others. 

 Only one approval is needed to complete the activity as Approved.

Individual Role DN  Each member of the role can see the activity in his or her task list. 

 When one role member claims the activity, the activity is removed from the 
task lists of others in the role. 

 Only one approval is needed to complete the activity as Approved.

Addressee Value Description
Workflow Activity Reference 201



Quorum Approver Type

The following table describes the workflow behavior when different types of addressee are used with 
the Quorum Approver Type.

Table 7-11   Workflow Behavior with the Quorum Approver Type

Multiple User DNs  Each user can see the activity in his or her task list. 

 Each user can claim the activity. 

 Approval of each user is needed to complete the activity as Approved.

 Any single denial completes the activity as Denied.

Multiple Group DNs  Each member in each of the groups can see the activity in his or her task 
list. 

 When one member from a group claims the activity, the activity is 
removed from the task list of others in that Group. 

 Each group must supply one approval to complete the activity as 
Approved.

 Any single denial completes the activity as Denied.

Multiple Role DNs  Each member in each of the roles can see the activity in his or her task 
list. 

 When one member from a role claims the activity, the activity is removed 
from the task list of others in that role. 

 Each role must supply one approval to complete the activity as Approved.

 Any single denial completes the activity as Denied.

Mixture of Users, Groups, and 
Roles

 Each user and each member of each group or role can see the activity in 
his or her task list. 

 Each user can claim the activity, and one member of each group or role 
can claim the activity (then others in the group or role do not see the task.) 

 Each user and one member of each group or role must approve to 
complete the activity as Approved.

 Any single denial completes the activity as Denied.

Addressee Value Description

Individual User DN  Only the user can see the activity in his or her task list. 

 Only one approval is needed to complete the activity as Approved.

Individual Group DN  Each member of the group can see the activity in his or her task list. 

 When one member claims the activity, the activity is removed from the task 
lists of others. 

 Only one approval is needed to complete the activity as Approved.

Addressee Value Description
202 Workflow Activity Reference



Troubleshooting Invalid Addressees

If the expression specified in the Addressee property of an Approval activity evaluates to a non-
existent DN (for example, if the expression was hard-coded incorrectly, calculated incorrectly, or 
submitted incorrectly by a user selection), no indication is given that the workflow is not processing 
normally, when it is in fact orphaned. The application server console displays a normal forward 
message, and the Comment and Flow history shows a normal “assigned” message. To avoid this 
problem, we recommend that you follow these best practices:

1. Use a Condition activity before the Approval activity and validate the addressee in the Condition 
activity.

2. Since the addressee could still be deleted after the addressee is validated in the Condition 
activity, you should specify, for the Approval activity, a timeout interval and a link that performs 
the desired action in case the workflow times out.

Individual Role DN  Each member of the role can see the activity in his or her task list. 

 When one member claims the activity, the activity is removed from the task 
lists of others. 

 Only one approval is needed to complete the activity as Approved.

Multiple User DNs  Each user can see the activity in his or her task list. 

 All users can claim the activity simultaneously. 

 An absolute number or specified percentage of Addressees must approve 
to complete the activity as Approved.

Multiple Group DNs  Each member in each group can see the activity in his or her task list. 

 One member of each group can claim the task (then others in the group do 
not see the task). 

 An absolute number or specified percentage of Addressees must approve 
to complete the activity as Approved. 

Multiple Role DNs  Each member in each role can see the activity in his or her task list. 

 One member of each role can claim the task (then others in the roles do 
not see the task). 

 An absolute number or specified percentage of Addressees must approve 
to complete the activity as Approved. 

Mixture of Users, Groups, 
and Roles

 Each user and each member of each Group or Role can see the activity in 
his or her task list. 

 Each user can claim the activity, and one member of each group or role 
can claim the activity (then others in the group do not see the task). 

 An absolute number or specified percentage of Addressees must approve 
to complete the activity as Approved.

Addressee Value Description
Workflow Activity Reference 203



Log Activity
The Log activity is a system activity that writes messages to a log. To log information about the state 
of a workflow process, the Workflow System interacts with Novell Audit. 

NOTE: Novell Audit can be configured to send its information to Novell Sentinel for additional logging 
and reporting features.

During the course of its processing, a workflow can log information about various events that have 
occurred. Users can then use the reporting tools to look at logged data.

Before you can use logging, you must enable logging in the user application. 

NOTE: During the course of workflow execution, many system events are logged that are not 
controlled by the Log activity. For example, the Workflow System writes a message to the log 
whenever a workflow is started or stopped, or when it is approved, denied, or refused.

Properties

The Log activity has the following properties:

Table 7-12   Log Activity Properties

Data Item Mapping

Not supported with this activity.

Property Name Description

Name Provides a name for the activity.

Audit Specifies whether log messages should be sent. When this property is set to True, 
messages are sent to all log4j channels, including Novell Audit. When this property is 
set to False, no log messages are sent.

Author Defines the author for the message. By default, the author is the initiator of the 
provisioning request.

Message Specifies an ECMA expression that defines text for the log message. Typically, this 
text indicates where this Log activity is being executed within the process and provides 
other information that makes the log easy to understand.

For details on building ECMA expressions, see Chapter 9, “Working with ECMA 
Expressions,” on page 271. For descriptions of the system variables available in a 
workflow, see “Understanding Workflow Data” on page 163.

Comment Specifies an ECMA expression that defines text that can be displayed in the user 
comments. You might use it to record the reason for a request or a request’s 
completed approval status. Some examples include: 

"Reason for request: "+ flowdata.get('reason')

or

"Process has been " + flowdata.get(IDM_COMPLETED_APPROVAL_STATUS')
204 Workflow Activity Reference



Email Notification

Not supported with this activity.

Branch Activity
In a workflow that supports parallel processing, the Branch activity allows multiple users to act on 
different areas of the work item in parallel. After the users have completed their work, the Merge 
activity synchronizes the incoming branches in the flow. 

A workflow can have multiple Branch activities, but each Branch activity must have an associated 
Merge activity. All flow paths leading out of a Branch activity will execute. 

The Branch activity does not support synchronization between the branches while they are executing. 
Each branch must not depend on data being updated in another branch. The data synchronization is 
enforced by the Merge activity. After the Merge activity completes, all of the data set in the branches 
is available. 

Properties

The Branch activity has the following properties:

Table 7-13   Branch Activity Properties

Data Item Mapping

Not supported with this activity.

Email Notification

Not supported with this activity.

Merge Activity
In a workflow that supports parallel processing, the Merge activity synchronizes the incoming 
branches in the flow. The Merge activity is used in conjunction with the Branch activity, which allows 
two users to act on different areas of the work item in parallel. After the users have completed their 
work, the Merge activity synchronizes the incoming branches. 

A workflow can have multiple Branch activities, but each Branch activity must have an associated 
Merge activity. 

Property Name Description

Name Provides a name for the activity.
Workflow Activity Reference 205



Properties

The Merge activity has the following properties:

Table 7-14   Merge Activity Properties

Data Item Mapping

Not supported with this activity.

Email Notification

Not supported with this activity.

Condition Activity
The Condition activity lets you add conditional logic to a workflow. This logic can be used to control 
what happens when the workflow executes. In the Condition activity, you define logic as an ECMA 
expression that evaluates to a Boolean value.

Each Condition activity must have two outgoing flow paths, one that handles conditions that evaluate 
to True and another that handles conditions that evaluate to False. Optionally, a third flow path can be 
added to handle error conditions that occur if the ECMA expression evaluation fails. 

 “Properties” on page 206

 “Data Item Mapping” on page 207

 “Email Notification” on page 207

Properties

The Condition activity has the following properties:

Table 7-15   Condition Activity Properties

Property Name Description

Name Provides a name for the activity.

Property Name Description

Name Provides a name for the activity.
206 Workflow Activity Reference



Data Item Mapping

Not supported with this activity.

Email Notification

Not supported with this activity.

Mapping Activity
The Mapping activity allows you to add or manipulate data in a workflow. It evaluates the source 
expression and saves the result in the target expression of the associated data items. You can use it 
as a way to combine data from parallel-processed approval forms after their data is moved to 
flowdata. 

For example, in a parallel approval context you might need to collect data from more than one 
approval form that is dependent on each other or needs to be calculated with each other. To 
accomplish this, place a Mapping activity after a Merge activity and before any activities that 
consume the results (for example, Condition, Entity, Provisioning or another Approval activity). 

You can also use the Mapping activity to isolate calls to external Java routines that might manipulate 
data and be resource intensive, thereby not slowing down user-based Approval activities in either 
their pre-activity or post-activity mapping phase.

 “Properties” on page 208

 “Data Item Mapping” on page 208

 “Email Notification” on page 208

Condition Expression Specifies an ECMA expression that returns True or False. The 
value returned determines which flow path is followed after the 
activity has finished executing.

TIP: If you need to test whether two objects are equal in a 
conditional expression, you should use the == operator, rather 
than the equals() method, unless you are certain that the objects 
being compared are Java objects of the same type. For instance, 
use this expression: 

(approval_A.getAction() == "DENIED")

instead of this one: 

(approval_A.getAction()).equals("DENIED")

For details on building ECMA expressions, see Chapter 9, 
“Working with ECMA Expressions,” on page 271. For descriptions 
of the system variables available in a workflow, see 
“Understanding Workflow Data” on page 163.

Property Name Description
Workflow Activity Reference 207



Properties

The Mapping activity has the following properties:

Table 7-16   Mapping Activity Properties

Data Item Mapping

To bind the data items associated with the Mapping activity, you define pre-activity and post-activity 
mappings. The pre-activity mappings initialize data in flowdata with constants, values retrieved from 
the flowdata object, system process variables, system activity variables, or data retrieved via 
expression calls to the directory abstraction layer. The post-activity mappings move data into the 
flowdata object.

Table 7-17   Mapping Activity Data Item Mappings

Email Notification

Not supported with this activity

Workflow Status
The Workflow Status activity lets you specify the approval status (approved or denied) for workflows 
that do not contain a provisioning activity (an Entitlement or Entity).

 “Properties” on page 209

 “Data Item Mapping” on page 209

 “Email Notification” on page 209

Property Name Description

Name Provides a name for the activity.

Setting Description

Source Expression Specifies a source expression. When you click a cell in the 
Source Expression column, the ECMA Expression Builder 
displays to help you define your expression. For example, 

function list() { s=new java.lang.String(); if 
(wi.XPath('count(flow-data/groups)' ) > 0) 
s="There was a group selected"; return s;}; 
list();

Target Expression Specifies a target expression. When you click a cell in the 
Target Expression column, the ECMA Expression Builder 
displays to help you define your expression or you can click 
the Map All button. An example of a target expression is: 

flowdata.testexpression
208 Workflow Activity Reference



Properties

The Workflow Status activity has the following properties:

Table 7-18   Workflow Status Activity Properties

Data Item Mapping

Not supported with this activity. 

Email Notification

Not supported with this activity. 

Email Activity
The Email activity provides a way to send an email to interested parties outside of an approval 
process.

Properties

The Email activity has the following properties:

Table 7-19   Email Activity Properties

Data Item Mapping

Not supported with this activity.

Property Description

Name Specifies the name of the activity.

Workflow Status Specifies the approval status as an expression: either Approved or 
Denied.

Property Name Description

Name Provides a name for the activity.

Notify by E-Mail Specifies whether this activity should send email notifications. Set to True to notify 
by email; otherwise, set to False.

You specify the email to send by using the E-Mail Notification tab (see “Email 
Notification” on page 210).

To use this feature, the Notify participants by E-Mail parameter for the 
provisioning request definition must be set to true (see Table 4-3, “Overview 
Properties,” on page 86). 
Workflow Activity Reference 209



Email Notification

To enable email notification for this activity, you need to specify the email template to use, as well as 
source expressions for target tokens in the email body. 

Table 7-20   E-Mail Notification Settings for the E-Mail Activity

Setting Description

E-Mail Template Specifies the name of the email template to use. By default, 
the Approval activity uses the Provisioning Notification 
template.

You can edit an email template in Designer. For more 
information, see “Editing an email template:” on page 158. 

Source/Target Specifies the source expressions for target tokens in the email 
body. 

The list of target tokens is determined by the selected email 
template. You cannot add new tokens, but you can assign 
values to the tokens by building your own source expressions. 
At runtime, source expressions are evaluated to determine 
the value of each token.

The available target tokens are listed below:

 TO

To specify multiple recipients, use the following syntax:

'mail1@domain1.com||mail2@domain1.com'

 CC

 BCC

 REPLYTO

 TO_DN

 CC_DN

 BCC_DN

 recipientFullName

 initiatorFullName

 requestTitle

 userFirstName

If you use a provisioning request definition template to create 
your workflow, each token has a default source expression. 
The default expressions retrieve values from the workflow 
process (the process object) or from the data abstraction layer 
(IDVault object). You can modify these expressions to suit 
your application requirements. 

For details on building ECMA expressions, see Chapter 9, 
“Working with ECMA Expressions,” on page 271.
210 Workflow Activity Reference



NOTE

 Email notification is supported only when the Notify participants by E-Mail check box is selected 
on the Overview tab, and the Notify by E-Mail property for the activity is set to True.

 When you create a workflow for use with the Resource Request portlet, and you use the 
“_default_” as the expression for the TO token, the addressee expression must be an IDVault 
expression.

 If you create an activity using any of the target tokens TO_DN, CC_DN, or BCC_DN, you must 
specify a user’s DN or an expression that resolves to a user’s DN as the source expression for 
the token.

 If you create an activity using both the target tokens TO and TO_DN, the workflow sends out 
duplicate notification emails to the target users.

Role Request Binding Activity
The Role Request Binding activity changes the approve or deny attribute in the nrfRequest object. 
Two such activities are required in any workflow of Flow Type Role Approval or SoD Approval. One 
Role Request Binding handles the approve condition from an Approval activity and the other handles 
the deny condition from an Approval activity. The Role Request Binding activities must be completed 
before the Finish activity or the workflow is considered invalid and cannot be deployed by Designer. 

Properties

The Role Request Binding activity has the following properties:

Table 7-21   Role Request Binding Properties

Data Item Mapping

Not supported with this activity.

Email Notification

Not supported with this activity.

Property Description

Name Provides a name for the activity.

Action approved: Changes the approve attribute in the nrfRequest object to true. 

denied: Changes the deny attribute in the nrfRequest object to true.
Workflow Activity Reference 211



Role Request Activity
The Role Request activity allows you to automate the granting or revoking of roles to users, groups, 
or containers. For example, you might write a provisioning request definition that provisions all of the 
resources and roles a new employee needs on their first day. Using the role request activity, you can 
automate the approval of that employee for specified roles.

You can also configure the activity to respond to Separation of Duty (SoD) constraint overrides by 
always approving, or allowing specific cases. You can use the activity to configure the effective and 
expiration dates for the role, or use it to extend the expiration date of a role. 

The Role Request activity runs within the system service security context. 

There is no limit on the number of Role Request activities allowed within a workflow. 

The Role Request activity fails if the requested role DN or the target DN is invalid, or does not exist. 

The result of the role request is written as a system comment to the comment history.

The Role Request activity does not support the ability to set the originator of the request. Use Simple 
Object Access Protocol (SOAP) calls rather than this activity when you need this information.

Properties

The Role Request activity has the following properties:

Table 7-22   Role Request Properties

Property Name Description

Name Required. Provides a localizable name for the activity.

Description Required. Text that describes the reason for the assignment request. This 
corresponds to the Initial Request Description field of the Request 
Roles Assignment tab.

Action Specifies the action the activity should perform. Select a value from the 
drop-down list. The values are:

 grant (default): Use this value if the role should be granted.

 revoke: Use this value if the role should be revoked.

 extend: Use this value to extend the expiration date of the specified 
role. The role must already be granted, and the value that you 
specify in Expiration Date must be later than the one currently 
specified. 

Roles Required. An expression that resolves to a list of requested roles. For 
information on building this expression, see “Specifying the Roles and 
Targets Properties” on page 215.

This is an example of the script to request a specific role: 

'CN=Administer 
Drugs,CN=Level10,CN=RoleDefs,CN=RoleConfig,CN=AppConfig,' + 
PROVISIONING_DRIVER

In this script example, the value is retrieved from flowdata: 

flowdata.get('Start/request_form/role')
212 Workflow Activity Reference



Target Type Required. Specifies the type of object that the requested role will be 
assigned. Choose one of the values from the list. The values are: 

 user (default)

 group

 container

 container with subtree

Effective Date The date when the role assignment goes into effect. If no date is specified, 
the assignment is effective immediately after it is requested. You can use 
the Expression Builder convenience methods to specify this value. 

Targets Required. An expression that resolves to the DN of the object for whom 
the role is requested. The target can be users, groups, or containers 
depending on Target Type value. The targets that you specify must 
resolve to the Target Type specified.

For information on building this expression, see “Specifying the Roles and 
Targets Properties” on page 215.

The following examples show a script for targets: 

'cn=ablake,ou=users,ou=medical-idmsample,o=novell'

To retrieve the value from flowdata:

flowdata.get('Start/request_form/group')

Expiration Date The date when the role assignment expires. If not specified, the 
assignment remains in effect indefinitely. You can use the Expression 
Builder’s convenience methods to specify this value. 

Correlation ID An optional string field. If not supplied, it defaults to the process instance 
ID. This string must be less than or equal to 64 characters.

Property Name Description
Workflow Activity Reference 213



SoD Override Request Optional field. Defines how the Role Request activity should handle a 
request that causes an SoD constraint violation. Values are: 

 true: SoD override is requested for all encountered conflicts. 

 false (default): An SoD override is not requested for all encountered 
conflicts. Role Request activity uses the list of SoDs in the SoD 
Overrides property to determine which SoD constraints to override. 

Override Justification Optional field. Available when SoD Override Request is false. Describes 
why an exception to the SoD constraint is necessary. If no value is 
specified, the Description is used. This example shows how to retrieve 
the value from flowdata.

flowdata.get('Start/request_form/reason')

SoD Overrides Available when the SoD Override Request is false. It is a list of one or 
more SoD constraints to override. When an SoD constraint is encountered 
and the constraint is in this list, the role request activity will request the 
role. It the SoD is not in this list, the role request activity will stop executing 
and follow the error link. 

You can use the Expression Builder’s convenience methods to build the 
expression. The list contains the local list of SoDs defined for this project. 
For example: 

Selecting the Doctor-Nurse SoD generates an expression like this: 

'cn=Doctor-Nurse,cn=SoDDefs,cn=RoleConfig,

cn=AppConfig,' + PROVISIONING_DRIVER'

Property Name Description
214 Workflow Activity Reference



Specifying the Roles and Targets Properties

Designer provides a convenient way to build the Roles and Targets expressions using the Expression 
Builder.

1 Click the  button in the property’s Value column. 

Designer launches this dialog box for adding or removing expressions. 

2 Click + to add a new Roles or Targets expression by using the Expression Builder. 

The dialog box displayed by Designer varies depending on whether you are specifying Roles or 
Targets. This dialog shows an example of the dialog box displayed to specify Roles because it 
includes the Search Roles button.
Workflow Activity Reference 215



You can choose one of the ECMAScript Objects to build the Roles or Targets expression, or use 
the Identity Vault button to select a specific object. Click Search Roles to locate a role. 

2a To choose specify a Role, click Search Roles.

2b In the dialog box, specify the CN, Display Name, Description, Role Category, and Role 
Level on which you want to search. 

For CN, Display Name, and Description, you can enter a wildcard (such as S*, *S) or 
regular expressions (such as [A-Z][a-z]*).

You can enter a value for all of the fields or none of the fields. If you do not supply a value in 
a particular field, the search returns all of the possible values for that field. If you enter a 
value in one or more of the fields, the values are ANDed together to create the search filter. 
The search occurs on the roles defined locally. Roles matching the search criteria are 
displayed in the Matching Roles selection list.

2c Select a role from the Roles selection list, then click OK. The role is added to the expression 
area.

3 Click OK after you are satisfied with expression. Repeat Step 2 to continue to add more 
expressions. 

Data Item Mapping

Not supported with this activity.

Email Notification

Not supported with this activity.

Resource Request Binding Activity
The Resource Request Binding activity changes the approve or deny attribute in the 
nrfResourceRequest object. Two such activities are required in any workflow of Flow Type Resource 
Approval. One Resource Request Binding handles the approve condition from an Approval activity 
and the other handles the deny condition from an Approval activity. The Resource Request Binding 
activities must be directly before the Finish activity or the workflow is considered invalid and cannot 
be deployed by Designer. 
216 Workflow Activity Reference



Properties

The Resource Request Binding activity has the following properties:

Table 7-23   Resource Request Binding Properties

Data Item Mapping

Not supported with this activity.

Email Notification

Not supported with this activity.

Resource Request Activity
The Resource Request activity allows you to automate the granting or revoking of resources to users. 
For example, you might write a provisioning request definition that provisions all of the resources a 
new employee needs on their first day. Using the resource request activity, you can automate the 
approval of that employee for specified resources.

The Resource Request activity runs within the system service security context. 

There is no limit on the number of Resource Request activities allowed within a workflow. 

The Resource Request activity fails if the requested resource DN or the target DN is invalid, or does 
not exist. 

The result of the resource request is written as a system comment to the comment history.

The Resource Request activity does not support the ability to set the originator of the request. Use 
SOAP calls rather than this activity when you need this information.

Properties

The Resource Request activity has the following properties:

Table 7-24   Role Request Properties

Property Description

Name Provides a name for the activity.

Action approved: Changes the approve attribute in the nrfResourceRequest object to true. 

denied: Changes the deny attribute in the nrfResourceRequest object to true.

Property Name Description

Name Required. Provides a localizable name for the activity.
Workflow Activity Reference 217



Specifying the Resource and Targets Properties

Designer provides a convenient way to build the Resource and Targets expressions by using the 
Expression Builder.

1 Click the  button in the property’s Targets or Entitlement Params column. 

Designer launches this dialog box for adding or removing expressions. 

2 Click + to add a new Resource or Targets expression by using the Expression Builder. 

You can choose one of the ECMAScript Objects to build the Resource or Targets expression, or 
use the Identity Vault button to select a specific resource.

Resources Required. An expression that resolves to a list of requested resources. For 
information on building this expression, see “Specifying the Resource and 
Targets Properties” on page 218.

This is an example of the script to request a specific resource: 

'CN=Administer 
Drugs,CN=ResourceDefs,CN=ResourceConfig,CN=AppConfig,' + 
PROVISIONING_DRIVER

In this script example, the value is retrieved from flowdata: 

flowdata.get('Start/request_form/resource')

Description Required. Text that describes the assignment request. This corresponds 
to the Initial Request Description field of the Request Resources 
Assignment tab.

Action Specifies the action the activity should perform. Select a value from the 
drop-down list. The values are:

 grant (default): Use this value if the resource should be granted.

 revoke: Use this value if the resource should be revoked.

 extend: Use this value to extend the expiration date of the specified 
resource. The resource must already be granted, and the value that 
you specify in Expiration Date must be later than the one currently 
specified. 

Correlation ID An optional string field. If not supplied, it defaults to the process instance 
ID. This string must be less than or equal to 64 characters.

Targets Required. An expression that resolves to the DN of the object for whom 
the resource is requested. The target must be an object of the User class 
only. The targets that you specify must resolve to the Target Type 
specified.

For information on building this expression, see “Specifying the Resource 
and Targets Properties” on page 218.

The following examples show a script for targets: 

'cn=ablake,ou=users,ou=medical-idmsample,o=novell'

Entitlement Params Optional. A parameter required by the entitlement driver. For example, if 
the entitlement operation grants access to the Sales group, the parameter 
might specify the group.

Property Name Description
218 Workflow Activity Reference



3 Click OK after you are satisfied with expression. Repeat Step 2 to continue to add more 
expressions. 

IMPORTANT: You cannot specify values to the resource request form fields at the time of 
resource request activity through Designer.

Data Item Mapping

Not supported with this activity.

Email Notification

Not supported with this activity.

Start Workflow Activity
The Start Workflow activity allows you to invoke a workflow instance from within a provisioning 
request definition. The workflows you invoke branch; they are not subflows. 

You can group these related workflows by using the Correlation ID.

Properties

The Start Workflow activity has the following properties:

Table 7-25   Start Workflow Properties

Property Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids are written to 
the user application’s log file. Specifying a meaningful Activity Id makes it easier 
to understand the data written to the logs. You can specify letters, numbers, and 
the underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN, where the 
NN represents the order in which the activity was added to the workflow.

Name Provides a name for the activity. 

Provisioning Request 
Defn to start

An expression that resolves to the distinguished name of the provisioning 
request definition to invoke. You can select the provisioning request from the 
Expression Builder. The possible selections are provisioning requests whose 
Status is Active and whose Process Type is Normal. 

Recipient An expression that resolves to one or more user or group distinguished names.

To specify multiple values, click Recipient List (in the ECMAScript Objects panel 
of the Expression Builder). This generates a pre-built function called 
multirecipient(). Replace ‘Enter recipient‘ with the distinguished name of a user 
or group as needed to include all of the recipients for the workflow.

A separate workflow process is created for each recipient that you specify. 
Workflow Activity Reference 219



Data Item Mapping

To pass the data needed by the workflow you want to start, you must specify data item mappings. The 
data items you must specify depend on the workflow that is to be started. The Data Item Mapping 
view displays the fields required by the Provisioning Request Defn to start. Because the Provisioning 
Request Defn to start is an expression, it might evaluate properly only at runtime. This would be the 
case in a workflow where the user could choose a workflow to start from a form field, and that value 
gets mapped to flowdata, and that flowdata expression is used in the Provisioning Request Defn to 
start property. To account for this, the Data Item Mapping view changes based on whether the 
workflow to start can be determined at design time. If so, then the data items to start that workflow are 
shown. However, if the workflow is not known at design time, then the workflow developer must 
specify them. 

The Start Workflow activity has the following data item mappings:

Table 7-26   Start Workflow Data Item Mapping Properties 

Email Notification

Not supported with this activity.

Finish Activity
The Finish activity marks the completion of a workflow. When the Finish activity executes, an email 
message is sent to notify participants that the workflow has finished.

 “Properties” on page 221

 “Data Item Mapping” on page 221

 “Email Notification” on page 221

Correlation ID An expression that lets you group the workflows invoked from this activity. If you 
do not supply a value, the workflow engine supplies a default, which is the 
request ID of the current workflow. 

Setting Description

Source Expression An expression used to initialize the data items needed by the Provisioning 
Request Defn to Start. When you click a cell in the Source Expression column, 
the ECMA Expression Builder displays to help you define your expression.

Target Form Field A read-only field that specifies target fields for the initialization data specified in 
the Source Expression. If the workflow cannot be determined at design time, this 
field is editable.

Data Type Specify the data type for this data item. 

Multivalued A read-only field that specifies if the workflow can accept multiple values for this 
parameter. If this value is true, you can specify multiple values by using the syntax 
provided in the Expression Builder. If the workflow cannot be determined at design 
time, this field is not present. 

Property Description
220 Workflow Activity Reference



Properties

The Finish activity has the following properties:

Table 7-27   Finish Activity Properties

Data Item Mapping

Not supported with this activity.

Email Notification

To enable email notification for the Finish activity, you need to specify the email template to use, as 
well as source expressions for target tokens in the email body. 

Table 7-28   E-Mail Notification Settings for the Finish Activity

Property Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids 
are written to the user application’s log file. Specifying a meaningful 
Activity Id makes it easier to understand the data written to the logs. 
You can specify letters, numbers, and the underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN 
where the NN represents the order in which the activity was added 
to the workflow.

Name Provides a name for the activity.

Notify by E-Mail Provides a method of triggering an email notification when the 
Finish activity is executed. When this property is set to True, an 
email notification is sent. When this property is set to False, no 
email notification is sent. 

See “Email Notification” on page 221 for information about setting 
up the email notification.

Setting Description

E-Mail Template Specifies the name of the email template to use. By default, the 
Finish activity uses the Provisioning Approval Completed 
Notification template.

You can edit an email template in Designer. See “Editing an email 
template:” on page 158 for more information. 
Workflow Activity Reference 221



NOTE

 Email notification is supported only when the Notify participants by E-Mail check box is selected 
on the Overview tab. 

 When you create a workflow for use with the Resource Request portlet, and you use _default_ 
as the expression for the TO token, the addressee expression must be an IDVault expression.

 If you create an activity using any of the target tokens TO_DN, CC_DN, or BCC_DN, you must 
specify a user’s DN or an expression that resolves to a user’s DN as the source expression for 
the token.

 If you create an activity using both the target tokens TO and TO_DN, the workflow sends out 
duplicate notification emails to the target users.

Source

Target

Specifies the source expressions for target tokens in the email 
body. 

The list of target tokens is determined by the selected email 
template. You cannot add new tokens, but you can assign values 
to the predefined tokens by building your own source expressions. 
At runtime, the source expressions are evaluated to determine the 
value of each token.

The available target tokens for the Provisioning Approval 
Completed Notification email template are listed below:

 TO

 CC

 BCC

 REPLYTO

 TO_DN

 CC_DN

 BCC_DN

 requestStatus

 requestSubmissionTime

 requestID

 recipientFullName

 initiatorFullName

 requestTitle

If you use a provisioning request definition template to create your 
workflow, each token has a default source expression. The default 
expressions retrieve values from the workflow process (the 
process object) or from the data abstraction layer (IDVault object). 
You can modify these expressions to suit your application 
requirements. 

For details on building ECMA expressions, see Chapter 9, 
“Working with ECMA Expressions,” on page 271.

Setting Description
222 Workflow Activity Reference



Rest Activity
The Rest activity enables users to call REST endpoints or resources when processing workflow data. 
The activity allows workflows to exchange data with arbitrary REST services. Data sent to a REST 
service can integrate a workflow with other systems inside and outside the organization. Data 
received from a REST service can provide decision support information on approval forms. You 
create flowdata variables to move data between the workflow and the REST service.

Properties

The Rest activity has the following properties. Note that most activity properties are ECMAScript 
expressions, so ensure that you configure each property by clicking the “E” icon in the property field 
to open the ECMA Expression Builder.

Table 7-29   Rest Activity Properties

Property Name Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids 
are written to the user application’s log file. Specifying a 
meaningful Activity Id makes it easier to understand the data 
written to the logs. You can specify letters, numbers, and the 
underscore (_) character.

If you do not specify a value, the Activity Id defaults to 
ActivityNN where the NN represents the order in which the 
activity was added to the workflow.

Name Provides a name for the activity.

Protocol Specifies the protocol the activity uses when calling the REST 
server. You can specify either http or https.

NOTE: If you specify https, you must also configure the Trust 
Manager property for the activity.

Host Specifies the REST server the activity calls to request or modify 
data.

Port Specifies the port number the activity uses when calling the REST 
server.

Path Specifies the encoded URL path the activity uses when calling the 
REST server. If the path includes any reserved characters, you 
must URL encode the path. For more information about URL 
encoding, see http://en.wikipedia.org/wiki/Percent-encoding (http:/
/en.wikipedia.org/wiki/Percent-encoding).

In the ECMA Expression Builder, select URL Path Encoding > 
URL encode the path and modify the path to include the URL 
path expression to encode.
Workflow Activity Reference 223

http://en.wikipedia.org/wiki/Percent-encoding


Method Specifies the method the activity uses to retrieve data from or 
modify data on the REST server. The choices are:

 get

 put

 post

 delete

 head

Authorization Header Specifies the Authorization header the activity uses when calling 
the REST server. In many cases, the REST server expects the 
header to be in the “Basic Authentication” format. For more 
information about the “Basic Authentication” format, see http://
en.wikipedia.org/wiki/Basic_authentication (http://
en.wikipedia.org/wiki/Basic_authentication).

If this is the case, in the ECMA Expression Builder, select Basic 
Auth Header and modify the header to include the username and 
password used to access the REST server.

Accept Header Specifies the Accept header the activity uses when receiving data 
from the REST server. The Accept header tells the REST server 
the format in which it should return data. The activity can receive 
data in either XML or JSON format. The choices are:

 application/json

 application/xml

Http Headers Specifies any additional HTTP headers the activity uses when 
calling the REST server. Specify both header name and value 
expressions, as necessary, using quotation marks around each 
expression.

Timeout Specifies a dynamic expression that defines the period of time, in 
milliseconds, allotted for the Rest activity to complete. The timeout 
interval applies each time the activity is executed by the 
addressee.

For details on building ECMA expressions, see Chapter 9, 
“Working with ECMA Expressions,” on page 271. For descriptions 
of the system variables available in a workflow, see 
“Understanding Workflow Data” on page 163.

Trust Managers If the activity uses the https protocol, this property specifies one or 
more trust managers used to authenticate the connection to the 
REST server. The property expression must evaluate to 
TrustManager, TrustManager[], or List<TrustManager>.

The default choices available in the ECMA Expression Builder 
are:

 Trust All Certs

 Trust Certs in default keystore

 Trust Certs in specified keystore

Property Name Description
224 Workflow Activity Reference

http://en.wikipedia.org/wiki/Basic_authentication
http://en.wikipedia.org/wiki/Basic_authentication


Data Item Mapping

To bind the data items associated with the Rest activity, you define pre-activity and post-activity 
mappings. The pre-activity mappings map values retrieved from the flowdata object to attributes in 
the Input message for the REST server that will be accessed by the Rest activity. The post-activity 
mappings map the response from the REST server back into the flowdata object.

Table 7-30   Rest Activity Data Item Mappings

Setting Description

Pre-Activity If the REST service you want to call requires payload data, you need 
to specify pre-activity mappings. This is normally the case when you 
use a PUT or POST request.

When this option is selected, you can double-click a cell in the 
Source Expression column to specify where the Rest activity gets 
data for a particular REST server input field. In particular, you can 
set a source expression for Content Type and Content, as follows:

 Content Type: The value of this type of expression is normally 
either application/json or application/xml, depending 
on the data type you want to send to the server.

 Content: This type of expression evaluates to a JSON- or 
XML-formatted string for the expected payload. If the expected 
format is JSON, look at the helper functions in the ECMA 
Expression Builder, under Vault Expressions > Script Vault. 
In particular, the helper function Convert object to JSON may 
be useful, as it enables you to create a JSON string from an 
ECMAScript object.

While you can build the JSON string using conventional 
expressions, the Convert object to JSON function may be 
easier and less prone to errors, especially for complex JSON 
expressions. See the following example for one possible 
expression using the function:

ScriptVault.JSON.stringify( (function () { var test 
= {}; test.val = "1"; test.arrayVal = ["one","two"]; 
return test;} () ))
Workflow Activity Reference 225



Email Notification

Not supported with this activity.

Post-Activity If the REST service returns data you want to capture, you need to 
specify post-activity mappings. This is normally the case for most 
requests.

When this radio button is selected, you can double-click a cell in the 
Target Expression column to specify where data from a REST 
server output field should be copied after the form has been 
processed. In particular, you can set a source expression for Status 
Code, Content Type, and Content, as follows:

 Status Code: The value of this expression is the HTTP status 
code from the REST call.

 Content Type: The value of this type of expression is normally 
either application/json or application/xml, depending 
on the format of the data the server returns.

 Content: This type of expression evaluates to a JSON- or 
XML-formatted string the returned data. If the format of the 
returned data is JSON, look at the helper functions in the 
ECMA Expression Builder, under Vault Expressions > Script 
Vault. In particular, the helper function Convert object to 
JSON may be useful, as it enables you to create a JSON string 
from an ECMAScript object.

You can use the Map All button to map the Content field into 
flowdata in the Rest activity, then use the content by extracting 
fields in a subsequent activity using the Convert object to 
JSON helper function. For example, in a workflow where you 
have mapped the content returned from the REST call to 
flowdata.processInstances, you can use the following 
expression to obtain the JSON property totalSize:

(function () { var processInstances = 
ScriptVault.JSON.parse( 
flowdata.get('processInstances') ); var size = 
processInstances.totalSize; return size;}) ();

Source Expression Specifies a source expression. When you click a cell in the Source 
Expression column, the ECMA Expression Builder displays to help 
you define your expression. It is recommended that you click the 
Map All button to allow Designer to generate this expression for 
you.

Target Expression Specifies a target expression. When you click a cell in the Target 
Expression column, the ECMA Expression Builder displays to help 
you define your expression. It is recommended that you click the 
Map All button to allow Designer to generate this expression for 
you.

Setting Description
226 Workflow Activity Reference



Integration Activity
The Integration activity provides a way to use a Web service to process workflow data. For detailed 
information about using the Integration activity, see Chapter 8, “Working with Integration Activities,” 
on page 235.

 “Properties” on page 227

 “Data Item Mapping” on page 228

 “Email Notification” on page 229

Properties

The Integration activity has the following properties.

Table 7-31   Integration Activity Properties

Property Name Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids 
are written to the user application’s log file. Specifying a 
meaningful Activity Id makes it easier to understand the data 
written to the logs. You can specify letters, numbers, and the 
underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN 
where the NN represents the order in which the activity was 
added to the workflow.

Name Provides a name for the activity.

WSDL Resource Specifies a Web Services Description Language (WSDL) file for 
the Web service to be used in the Integration activity. After it is 
specified, the WSDL is incorporated into the provisioning request 
definition file. 

When you select a WSDL file, a dialog box is displayed that you 
use to select the Web service port type and operation that you 
want to use in the Integration activity.

You can also specify a SOAP endpoint for the Integration activity 
and configure authentication for the SOAP service. For more 
information about specifying a WSDL file and configuring the 
Integration activity, see “Adding an Integration Activity” on 
page 235.

Timeout Specifies a dynamic expression that defines the period of time 
allotted for the Integration activity to complete. The timeout 
interval applies each time the activity is executed by the 
addressee.

For details on building ECMA expressions, see Chapter 9, 
“Working with ECMA Expressions,” on page 271. For descriptions 
of the system variables available in a workflow, see 
“Understanding Workflow Data” on page 163.
Workflow Activity Reference 227



Data Item Mapping

To bind the data items associated with the Integration activity, you define pre-activity and post-activity 
mappings. The pre-activity mappings map values retrieved from the flowdata object to attributes in 
the Input message for the Web service that will be accessed by the Integration activity. The post-
activity mappings map the response from the Web service back into the flowdata object. For more 
information about data item mapping for Integration activities, see “Moving Data to and from the 
Integration Activity” on page 237.

Table 7-32   Integration Activity Data Item Mappings

Retry Count Specifies the number of times to retry the activity in the event of a 
timeout.

When an activity times out, the workflow process can try to 
complete the activity again, depending on the retry count specified 
for the activity. If the last retry times out, the activity can be 
marked as success, fault, error, or timed out, depending on the 
final timeout action specified for the activity.

Final Timeout Action Determines the final state of the request in the event that the 
Integration activity times out. The choices are:

 success

 fault

 error

 timedout

Setting Description

Pre-Activity Allows you to specify one or more pre-activity mappings. 
When this option is selected, you can double-click a cell in the 
Source Expression column to specify where the Integration 
activity gets data for a particular Web service input field. 

NOTE: When the Pre-Activity option is selected, the cells in 
the Web Service Input Field column are not editable. 

Post-Activity Allows you to specify one or more post-activity mappings. 
When this radio button is selected, you can double-click a cell 
in the Target Expression column to specify where data from a 
Web service output field should be copied after the form has 
been processed. 

NOTE: When the Post-Activity option is selected, the cells in 
the Web Service Output Field column are not editable. 

Source Expression Specifies a source expression. When you click a cell in the 
Source Expression column, the ECMA Expression Builder 
displays to help you define your expression. For example, 
flowdata.get('Start/RequestRate/Country1') for a 
Web service input, or flowdata.Start/RequestRate/
Country1 for a Web service output field.

Property Name Description
228 Workflow Activity Reference



Email Notification

Not supported with this activity.

Entitlement Activity
The Entitlement activity grants or revokes an entitlement for a user or other entity type.

A workflow must have at least one Entitlement or Entity activity. 

Properties

The Entitlement activity has the following properties:

Table 7-33   Entitlement Activity Properties

Web Service Input Field This column displays all of the input fields for the port type and 
operation specified when the WSDL file was selected. The 
fields in this column are automatically populated. If you want to 
remove an input field, click Mapping, expand the nodes of the 
sample document and deselect any input fields that you want 
to remove. 

Web Service Output Field This column displays all of the output fields for the port type 
and operation specified when the WSDL file was selected. The 
fields in this column are automatically populated. If you want to 
remove an output field, click Mapping, expand the nodes of 
the sample document and deselect any output fields that you 
want to remove.

Mapping Displays a hierarchical view of the sample document for the 
inputs to or outputs from the Web service. You can use this 
feature to deselect input or output fields (by default, all Web 
service input and output fields are selected).

Setting Description

Property Name Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids are written to the 
user application’s log file. Specifying a meaningful Activity Id makes it easier to 
understand the data written to the logs. You can specify letters, numbers, and the 
underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN where the NN 
represents the order in which the activity was added to the workflow.

Name Provides a name for the activity.

Set Workflow Status Specifies the approval status of the provisioning request. Set to True for approved; 
otherwise, set to False. This method of setting workflow status overrides other 
methods (for example, the Set Default Completion Status to Approved parameter 
(see Table 4-3, “Overview Properties,” on page 86) or the Approval Status activity 
(see “Workflow Status” on page 208).
Workflow Activity Reference 229



Data Item Mapping

To bind the data items associated with the Entitlement activity, you define mappings for several 
DirXML® attributes. 

Table 7-34   Entitlement Activity Data Item Mappings

For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on 
page 271.

Email Notification

Not supported with this activity.

Entity Activity
The Entity activity updates an entity in the Identity Vault. You can use this activity to create, modify, or 
delete attributes on an entity. You can also use this activity to create or delete an entity (see “Working 
with Entity Activities” on page 233).

A workflow must have at least one Entitlement or Entity activity. 

 “Properties” on page 231

 “Data Item Mapping” on page 232

Setting Description

Source Expression Specifies a source expression for a DirXML mapping. When you click a cell in 
the Source Expression column, the ECMA Expression Builder displays to help 
you define your expression.

The DirXML mappings for the Entitlement are described below:

 dn is the distinguished name for the recipient of the entitlement.

 DirXML-Entitlement-DN is the distinguished name of the entitlement to 
execute. For example, the entitlement might be identified as follows: 

'CN=Groups,CN=GroupEntitlementLoopback,CN=TestDrivers,O=nove
ll'

You can use the ECMA Expression Builder’s ECMAScript Variable panel 
to see a list of all the entitlements in the driver. To select an entitlement, 
double-click the full distinguished name of the entitlement.

 DirXML-Entitlement-Action indicates whether the entitlement is granted or 
revoked. If the operation grants the entitlement, the value must be 1; if it 
revokes the entitlement, the value must be 0.

 DirXML-Entitlement-Parameter specifies a parameter required by the 
entitlement driver. For example, if the entitlement operation grants access 
to the Sales group, the parameter might specify the group as follows:

'\\MYTREE\\novell\\idmsample-doc\\groups\\Sales'

 DirXML-Entitlement-MultiValueAllowed indicates whether the entitlement 
supports multiple values. If it supports multiple values, the value must be 
True; otherwise, it must be False.
230 Workflow Activity Reference



 “Email Notification” on page 233

 “Working with Entity Activities” on page 233

Properties

The Entity activity has the following properties:

Table 7-35   Entity Activity Properties

Property Name Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids 
are written to the user application’s log file. Specifying a meaningful 
Activity Id makes it easier to understand the data written to the logs. 
You can specify letters, numbers, and the underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN 
where the NN represents the order in which the activity was added 
to the workflow.

Name Provides a name for the activity.

Entity Type Specifies the target entity type: User or Group. 

Operation Indicates what kind of operation will be performed on the target 
entity:

 Create/Modify

 Delete attributes/values

 Delete entity

To create or modify attributes of an entity or to create a new entity, 
select create/modify. To delete attributes of an entity, select 
delete.

To delete an entity, select delete object.

Set Workflow Status Specifies the approval status of the provisioning request. Set to 
True for approved; otherwise, set to False. This method of setting 
workflow status overrides other methods. For example, the Set 
Default Completion Status to Approved parameter (see Table 4-
3, “Overview Properties,” on page 86) or the Approval Status 
activity (see “Workflow Status” on page 208).
Workflow Activity Reference 231



Data Item Mapping

To bind the data items associated with the Entity activity, you define mappings for the attributes 
associated with the target entity type.

Table 7-36   Entity Activity Data Item Mappings

Setting Description

Entity dn Identifies the entity that is the target of the operation. The 
default value is recipient. 

To create a new object, specify a distinguished name that 
does not yet exist.

TIP: The output of the DNMaker control can be used as input 
for the Entity dn value. The DNMaker control constructs the 
DN by allowing the user to enter the naming attribute in a text 
field and presenting an interface for picking a container. After 
this data has been captured in a request form, the output can 
be mapped to a variable in the flowdata object. In the definition 
for the Entity activity, this flowdata variable can be accessed in 
the Entity dn setting with an expression such as 

flowdata.get('groupdn');

For details on using the DNMaker control, see “DNMaker” on 
page 115. 

Modify Type Indicates how the mapping should be performed for an 
attribute. The choices are 

 Append Value

 Replace Value

 Replace All Values

For many attributes, Replace Value is the only option that 
makes sense; therefore, this option is selected automatically 
and cannot be changed.

You must specify the Modify Type setting before specifying 
the Modify Value Expression setting.
232 Workflow Activity Reference



Email Notification

Not supported with this activity.

Working with Entity Activities

You use Entity activities to update entities in the Identity Vault. The procedures for working with Entity 
activities differ slightly from the procedures for working with other activity types so this section 
includes example procedures for: 

 “Adding or Modifying an Entity” on page 233

 “Using an Entity Activity to Delete an Entity” on page 234

 “Using an Entity Activity to Delete an Attribute or Value” on page 234

Adding or Modifying an Entity

1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to 
insert the Entity activity into the workflow.

2 Click the Properties tab.

3 Click in the Value column of the Entity Type field, then select the Entity Type (for example, User, 
Group) that you want to create or modify. If the target object that you specify in Step 6 already 
exists, the target object is modified; if the target object doesn't exist, it is created.

4 Click in the Value column of the Operation field, then select Create/Modify.

Modify Value Expression Specifies a source expression for an attribute. When you click 
a cell in the Modify Value Expression column, the ECMA 
Expression Builder displays to help you define your 
expression. The list of attributes available varies depending on 
which entity type was selected on the Properties tab.

Designer automatically inserts a sample ECMAScript 
expression into this field. The code provided varies depending 
on the Operation property specified in Properties and the 
Modify Type selected in Data Item Mapping. For example, if 
you have specified Create/Modify for Operation, and 
Replace All Values for Modify Type, Designer inserts an 
expression that helps you to create a vector:

function list() { v=new java.util.Vector(); 
v.add('{Enter Item 1}'); v.add('{Enter Item 2}'); 
return v; };  list();

In some cases you might be able to create expressions that 
work as well or better than the sample expression. For 
example, instead of creating a vector for multiple attribute 
values, you can create a flowdata variable (see 
“Understanding Workflow Data” on page 163) to store multiple 
attribute values, and use the getObject function to retrieve the 
values of the flowdata variable (see “ECMAScript Objects” on 
page 273).

NOTE: The cells in the Target Attribute column are not 
editable.

Setting Description
Workflow Activity Reference 233



5 Click the Data Item Mapping tab.

6 Click the button next to the Entity dn field to display the ECMA Expression Builder, then specify 
an expression that identifies the target of the operation (for example, “recipient”).

7 Click OK to return to the Data Item Mapping view.

8 Specify expressions for other attributes as required to create the Entity. 

See “Working with Entities and Attributes” on page 48 for information about adding entities. If 
you are adding an entity, you must enter expressions for all required attributes.

Using an Entity Activity to Delete an Entity

1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to 
insert the Entity Activity into the workflow.

2 Click the Properties tab.

3 Click in the Value column of the Entity Type field, then select the Entity Type (for example, User, 
Group) to which the entity that you want to delete belongs.

4 Click in the Value column of the Operation field, then select Delete entity.

5 Click the Data Item Mapping tab.

6 Click the button next to the Entity dn field to display the ECMA Expression Builder, then specify 
an expression that identifies the Entity that you want to delete.

7 Click OK to return to the Data Item Mapping view.

Using an Entity Activity to Delete an Attribute or Value

1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to 
insert the Entity activity into the workflow.

2 Click the Properties tab.

3 Click in the Value column of the Entity Type field, and select the Entity Type (for example, User, 
Group) of the entity to which the attribute or value that you want to delete belongs.

4 Click in the Value column of the Operation field, and select Delete attribute/value.

5 Click the Data Item Mapping tab.

6 Click the button next to the Entity dn field to display the ECMA Expression Builder, then specify 
an expression that identifies the entity that contains the attribute or value that you want to delete.

7 Click OK to return to the Data Item Mapping view.

8 Click in the Delete Type field for the attribute to which you want the operation to apply, then 
select the operation from the list: 

 Select Delete Attribute for single-value attributes 

 Select either Delete Attribute or Delete Value for multi-value attributes. Selecting Delete 
Value for multi-value attributes also requires that you enter an expression to identify the 
value that you want to delete.

9 To delete a value, click in the Delete Value Expression field for the attribute to which you want 
the operation to apply, then specify an expression that resolves to the value of the attribute that 
you want to delete.
234 Workflow Activity Reference



8 8Working with Integration Activities

This section provides details about working with Integration activities.

About the Integration Activity
The Integration activity is an activity that allows workflows to exchange data with arbitrary Web 
services. Data sent to a Web service can integrate an individual workflow with other systems, inside 
and outside the organization. Data received from a Web service can provide decision support 
information on approval forms.

You create flowdata variables to move data from the workflow to the Web service for processing. The 
Integration activity automatically creates an action model for working with a Web service based on a 
WSDL document that you specify. 

NOTE: The action model is a subset of the features available in the Novell Integration Manager 
product (formerly known as Novell exteNd Composer). 

An action model is a visual representation of a set of instructions for processing XML documents and 
communicating with XML data sources. An action model performs all data mapping, data 
transformation, and data transfer within an Integration activity. You can edit the action model to 
manipulate data before and after the data is submitted to the Web service. You then map the data 
from the Integration activity back to flowdata variables for use in the workflow.

Adding an Integration Activity
1 Create a provisioning request definition (see Chapter 4, “Configuring Provisioning Request 

Definitions,” on page 77).

2 Create a workflow for the provisioning request definition (see Chapter 6, “Creating the Workflow 
for a Provisioning Request Definition,” on page 149).

3 Click the Workflow tab. 

4 Drag an Integration activity from the palette and place it in the desired location in the workflow.

5 Click the Properties tab.

6 Type a name for the activity in the Name field.

7 Click the Value field for the WSDL Resource property, then click the browse button to display a 
dialog box that you use to locate the WSDL file for the Web service that you want to access with 
the Integration activity.

8 Use the dialog box to browse your file system to locate the WSDL file for the Web service that 
you want to use. Click the name of the WSDL file, then click Open.

A dialog box that you use to select a port type and operation for the Web service is displayed.

The Select Port Type list includes a set of port types supported by the Web service. Each port 
type supports operations that include the input and output messages of the operation.
Working with Integration Activities 235



This window allows you to specify the SOAP endpoint, the user ID used to access the SOAP 
endpoint, and the password used to access the SOAP endpoint. These options are all 
ECMAScript expressions and can be GCV values. Use the ECMA Expression Builder to 
configure the expressions you want to use.

NOTE: The Use new WSDL Generation type option enables Designer to build the Integration 
activity using an XML Interchange action instead of a WS Interchange action. It is recommended 
that you leave this option selected, because the WSDL parsing is more robust, and the resulting 
Integration activity does not require the WSDL document be maintained as part of the 
provisioning request definition and is smaller in size.

9 Select a port type from the Select Port Type list.

10 Select an operation from the Select Operation list.

11 If you want to specify a SOAP endpoint, specify a SOAP endpoint URL, either by selecting the 
URL from the Select Soap Service Endpoint Expression list or by clicking the “E” icon and using 
the ECMA Expression Builder to configure an expression that resolves to the SOAP endpoint 
URL.

NOTE: Ensure that you specify the private key in DER format (PKCS8) and without a password. 
You can convert the private key from PKS12 to PKCS8 format by running an OpenSSL 
command. For example, openssl pkcs8 -topk8 -inform PEM -outform DER -in key.pem  
-nocrypt > key

12 If you want to use basic authentication for a SOAP endpoint, complete the following steps:

12a Select SOAP Service requires Basic Authentication.

12b In the User ID Expression field, click the “E” icon and use the ECMA Expression Builder to 
specify an expression that resolves to the user ID used to access the SOAP endpoint.

12c In the Password Expression field, click the “E” icon and use the ECMA Expression Builder 
to specify an expression that resolves to the password used to access the SOAP endpoint.

NOTE: As a best practice, it is recommended that you use password-ref GCV for 
passwords. For information about additional best practices about managing passwords, see 
Managing Passwords in the NetIQ Identity Manager Security Guide. To retrieve a named 
password over LDAP from a workflow, see Allowing a Named Password to be Retrieved 
over LDAP in the NetIQ Identity Manager - Administrator’s Guide to the Identity 
Applications.

13 Click OK.

The Integration activity creates an action model based on the WSDL document.You use the 
action model at design time to test the input to the Web service, test the response from the Web 
service, and map and transform data, if necessary, before returning the data to the workflow.

For many Web services, you don’t need to concern yourself with the action model. You simply 
create data item mappings for the Integration activity. After the action model is created, a new 
tab, Integration, is added to the provisioning request definition editor. You use this tab to access 
the action model.

14 Specify the Timeout, Retry Count, and Final Timeout Action properties (see “Integration 
Activity” on page 227).

15 If you want to view or edit the action model, click the Integration tab.
236 Working with Integration Activities

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/security/security.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/security/security.pdf#brjaxy4
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bu5sikg
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bu5sikg
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bookinfo


Moving Data to and from the Integration Activity
1 Create form fields to allow users to provide input to the Web service accessed by the Integration 

activity (see Chapter 5, “Creating Forms for a Provisioning Request Definition,” on page 95). For 
example, if you are working with a Web service that provides stock quotes, you need a field for 
the user to specify a stock symbol.

2 To move user input from the form to the workflow, create a flowdata variable in an activity that 
precedes the Integration activity in the workflow. 

See “Understanding Workflow Data” on page 163 for information about creating flowdata 
variables.

For example, if you have created a form field called “symbol” to accept a stock symbol for input 
to the Web service, you would go to the post-activity data item mapping for the activity 
associated with the form that contains the symbol field, then you would map the symbol field to 
a flowdata variable (for example, flowdata.symbol). 

3 In the Workflow tab, right-click the icon for the Integration activity, then choose Show Data Item 
Mapping.

The Data Item Mapping tab is displayed.

4 In the Data Item Mapping view, select Pre-Activity.

In the Web Service Input Field grid, you should see fields that match all of the input fields 
associated with the port type and operation specified in Step 9 and Step 10 on page 236.

The integration activity automatically selects all of the input field associated with the port type 
and operation. You can remove the input fields or modify properties of the input fields by 
following this procedure:

4a Click Mapping.

The Sample Document dialog box is displayed.

4b Expand the nodes of the sample document and deselect any input fields that you want to 
remove.

4c If an input field is an unbounded element, right-click and select Occurs. 

4d Type the maximum number in the Enter Repeats dialog, and click OK

4e Click OK to return to the Data Item Mapping view. 

5 For each Web Service Input Field, click in the Source Expression field, then click the ECMA 
Expression Builder button.

The ECMA Expression Builder is displayed.

6 Expand the flowdata node in the ECMAScript Objects pane of the ECMA Expression Builder, 
then double-click the flowdata variable for the user input to the Web service.

7 Click OK to return to the Data Item Mapping view.

8 Select Post Activity.

In the Web Service Output Field grid, you should see fields that match all of the output fields 
associated with the port type and operation specified in Step 9 and Step 10 on page 236.

9 The Integration activity automatically selects all of the output fields associated with the port type 
and operation. If you want to remove some of the output fields, follow these steps:

9a Click Mapping.

The Sample Document dialog box is displayed.
Working with Integration Activities 237



9b Expand the nodes of the sample document and deselect any attributes that you want to 
remove.

9c Click OK to return to the Data Item Mapping view. 

10 Click Map All to automatically create flowdata variables for each Web Service Output Field. 

Alternatively, for each Web Service Output Field, click in the Source Expression field, then click 
the ECMA Expression Builder button.

11 Expand the flowdata node in the ECMAScript Objects pane of the ECMA Expression Builder, 
then double-click the flowdata variable that will receive data from the Web service.

12 If you want to configure the Integration activity to provide more detailed information about any 
potential SOAP faults that might be encountered during the SOAP call of the activity, select Fault 
Maps in the Data Item Mapping view and click Map All. If Identity Manager encounters a SOAP 
fault, the Integration activity executes the fault maps to provide further details.

13 Click OK to close the ECMA Expression Builder.

Now you can work in the Integration view to test and refine the interaction with the Web service.

Using the Integration Activity Editor Interface
The Integration activity editor provides a working environment for the input, output, and actions of the 
Integration activity. The Integration activity editor is composed of three views: Action Model, WSDL 
Editor, and Messages. 
238 Working with Integration Activities



Figure 8-1   Integration Activity Interface

XML Views

The Integration activity provides a number of XML views (for example, Input and Output messages, 
WSDL Editor, Messages) derived from the WSDL document. These views use a common interface. 

 “Tree View” on page 239

 “Source View” on page 243

Tree View

You use the Tree view to work with a hierarchical view of an XML document. You display the Tree 
view by clicking the Tree tab.
Working with Integration Activities 239



Figure 8-2   Tree View

 “Tree View Editing Features” on page 240

 “Tree View Menu” on page 240

 “Tree View Toolbar” on page 241

 “Attaching a Schema or DTD” on page 242

Tree View Editing Features

The Tree view provides the following editing features:

 You can edit attribute values, attribute name, namespace names and values, text, and 
comments.

 You can insert new nodes by using the menu that is displayed when you right-click within the 
Tree view. The menu allows you to insert nodes as children before or after the selected node. If 
the node is an element, you can insert attributes. The submenus for Add Child, Add After, and 
Add Before contain the node that can be legally added. If no schema or DTD is associated with 
the document, the submenus contain New Attribute or New Element.

 You can delete a node by right-clicking a node and selecting Remove.

 You can drag and drop items between Tree views (for example, between views of the Input and 
Output messages) to create Map actions (see “Map” on page 266 for information about Map 
actions).

 You can undo, redo, cut, copy, and paste.

Tree View Menu

When you right-click an item in the Tree view, a menu is displayed that you use to perform operations 
on the XML document. The menu is context-sensitive and only displays the commands that are 
appropriate for the item you clicked.
240 Working with Integration Activities



Table 8-1   Tree View Menu

Tree View Toolbar

Tree view toolbars provide the following features:

Table 8-2   Tree View Toolbar

Item Description

Remove Removes the selected item.

Add DTD Information Displays a dialog box that you use to add DTD information. You can edit the Root 
Element Name, Public ID, and System ID. 

Edit Namespaces Displays a dialog box that you use to add namespace declarations.

Add Attribute Displays a dialog box that you use to define a new attribute.

Add Child

Add Before

Add After

Displays a submenu with the following options:

Comment

Add Processing Instruction

#PCDATA

CDATA Section

New Element

Replace with Replaces the selected item with an item selected from the menu.

Button Description

Expands all nodes in the document.

Collapses all nodes in the document.

Attaches a schema or DTD (see “Attaching a Schema or DTD” on page 242).

Displays online help.
Working with Integration Activities 241



Attaching a Schema or DTD

You can attach a schema or DTD to the current XML document when you are using the Tree view.

1 Click  in the Tree view toolbar. The Attach Schemas or DTD dialog box is displayed. 

2 To choose from a list of entries in the XML catalog, choose an entry from XML Catalog Entry list.

3 To specify an XML schema on disk, click XML Schema.

4 Type a Namespace URI, then use the browse button in the File field to select an XML schema on 
disk.
242 Working with Integration Activities



5 To specify a DTD on disk, click DTD.

6 Type a Public ID and System ID, then use the browse button in the File field to select the DTD 
file on disk.

Source View

You use the Source view to view the XML source of the document. You display the Source view by 
clicking the Source tab.

Figure 8-3   Source View

 “Source View Features” on page 243

 “Source View Menu” on page 244

Source View Features

The source view supports the following features:

 Syntax highlighting.

 Context-sensitive code-completion based on DTD or XML Schema.

 Validation as you type. If the XML is invalid (for example, the closing bracket is omitted from a 
tag), the editor indicates the error.

 General text editing operations such as undo, redo, cut, copy, paste, and select all.
Working with Integration Activities 243



Source View Menu

When you right-click an item in the Source view, a menu is displayed that you use to perform 
operations on the XML document.

Table 8-3   Source View Menu

Action Model

The action model includes the Action Model view and views for displaying message parts. The Action 
Model view displays actions that operate on the contents of the message parts. The message parts 
display the XML for the Web service Input and Output messages. 

About the Action Model Views

The action model views are used at design time to test the interaction with the Web service. You edit 
actions in the Action Model view. You can enter test data to be input to the Web service in the Input 
view, examine the response from the Web service in the Output view, and see any error messages 
returned from the Web service in the _SystemFault view. The Integration activity has the following 
message panes:

 Input view 

 Output view

 _SystemFault view

 Action Model view

About the Input View

The Input view displays the input message derived from the WSDL document for the Web service. 
You can resize the view by dragging the right border.You can resize columns within the view by 
dragging the column border. You can specify a value to use in testing the action model directly in the 
Input part, in which case the value is discarded after executing the action model. You can also specify 
a value using the Messages tab (see “Messages” on page 250), in which case the value persists until 
you delete the value or you regenerate the action model (see “Regenerating Code for the Action 
Model” on page 251).

Item Description

Undo Reverses the last action.

Redo Reverses an undo operation.

Cut Cuts the selected text to the clipboard.

Copy Copies the selected text to the clipboard.

Paste Pastes the clipboard contents at the insertion point.

Delete Deletes the selected text.

Select All Selects all of the text in the document.

Find Displays a dialog box that you use to find and replace text within the document.
244 Working with Integration Activities



Figure 8-4   Input View

About the Output View

The Output view displays the output message derived from the WSDL document for the Web service. 
When you execute the action model, you use the Output view to view the values returned from the 
Web service. 

You can resize the view by dragging the left border.You can resize columns within the view by 
dragging the column border. You can specify a value directly in the Output part for modeling 
purposes, in which case the value is discarded after executing the action model. You can also specify 
a value by using the Messages tab (see “Messages” on page 250), in which case the value persists 
until you delete the value.

Figure 8-5   Output View
Working with Integration Activities 245



About the _SystemFault View

The _SystemFault view displays any error messages produced when you execute the action model. 
The XML information contained in _SystemFault is also written to a global object called ERROR. 

Figure 8-6   _SystemFault View

Beneath the FaultInfo root are the following elements:

 DateTime contains the Date and Time at which the fault occurred.

 ComponentName contains the name of the component that threw the fault.

 MainCode contains the main code number for the error.

 SubCode contains a sub-code number for the error.

 Message contains the error message defined when you set up a Throw Fault action (see “Throw 
Fault” on page 253). If you do not specify an error message in your Throw Fault action, the 
following message is displayed: "A user-defined Fault occurred!". If the error occurred 
within a Try/On Fault action, and you did not specify a Fault, this element is populated with an 
Exception message.

About the Action Model Pane

The Integration activity has a single action model. The action model represents the mappings, 
transformations, and other actions that is performed on the Web service input and output messages. 
The Action Model view is resizable. Most of your activity that takes place in the Action Model view 
involves adding and editing actions.

 “Action Model Context Menu” on page 247

 “Finding and Replacing Text in the Action Model” on page 247
246 Working with Integration Activities



Action Model Context Menu

If you right-click in the action model, a menu is displayed.

Figure 8-7   Action Model Menu

From this menu, you can add or edit actions (see “Actions” on page 251), toggle breakpoints in the 
action model (see “Animation” on page 247) and perform other tasks. 

Finding and Replacing Text in the Action Model

You can replace a word or string by using the Replace command on the action model menu.

1 Right-click in the action model, then select Replace.

2 Specify the search text. 

3 If you want to replace the search text, click Replace with, then type a string to replace the search 
string.

4 If you want to find the search text regardless of the capitalization of the text, click Ignore case.

5 If you want to find the search text in whole words only, click Whole word.

6 Click OK

The Integration activity finds the first occurrence of the search text. If the operation is a find and 
replace operation, the Integration activity asks you to confirm the replacement. You can then 
replace the next or all occurrences of the search text.

Animation 

The action model provides animation tools that you can use to test and troubleshoot actions 
interactively within the Integration activity. You can execute the action model step by step and watch 
the result of each action. Not only do you see any errors as they happen, but you can verify, in real 
time, that connections and data behaved as you planned.

The animation tools allow you to toggle one or more breakpoints. You can use this feature to 
concentrate on a particular section of an action model. When used in conjunction with the run-to-
breakpoint tool, breakpoints allow you to quickly run through action model sections that work properly, 
coming to a stop at a particular action. From there, you can step through each action in sequence. 
You can also step over loops and other code blocks that would otherwise be tedious to execute step-
by-step.
Working with Integration Activities 247



The Basic Animation Tools

The animation tools are available on the Designer toolbar. 

Figure 8-8   Animation Toolbar

Table 8-4   Animation Tools

Animation 
Toolbar Button

Name Description

Execute Executes the action model.

Execute 
Current Action

Executes the currently selected action.

Start Animation Starts the animation process. Enables Step Into, Step Over, and Run 
to Breakpoint/End.

End Animation Stops the animation process.

Step Into Executes the currently selected action and highlights the next 
sequential action. 

For a Repeat Loop action, clicking Step Into executes each action in 
the loop and iterates through each loop.

For a Decision Action, Step Into processes the next action in the True 
or False branch. 

For the Try/On Fault action, Step Into processes the next action inside 
the execute branch, and possibly the On Fault branch. 

Step Over Executes the currently selected action and highlights the next 
sequential action. Unlike the Step Into button, clicking this button does 
not highlight and execute the details of Repeat, Decision, or Try/On 
Fault actions. 

Run To 
Breakpoint/End

Runs the animation to the next breakpoint or to the end of the action 
model if there are no breakpoints. 

Toggle 
Breakpoint

Sets the selected action in the action model as a breakpoint. You may 
set more than one breakpoint. Another way to toggle a breakpoint is to 
right-click the desired action and select Toggle Breakpoint from the 
menu.

Pause 
Animation

Pauses the animation. 
248 Working with Integration Activities



Starting Animation

When you first open an Integration activity, Start Animation and Toggle Breakpoint are the only 
enabled buttons. When you click Start Animation, the rest of the animation buttons are enabled. If 
you want to halt the animation temporarily, you can use the Pause Animation button. If you want to 
abort the animation, you can do so at any time by clicking End Animation.

Although Copy, Paste, and action editing operations (including adding new actions) are all available 
at animation time, we recommend that you do not edit the action model during animation. If you do, 
exceptions or unpredictable behavior can occur. If you need to edit the action model, use End 
Animation to stop the animation first. Then apply your edits and begin the animation again.

1 Open an Integration activity. 

2 Click Start Animation button in the Designer toolbar. All of the animation buttons become active 
except the Start Animation button, which is now dimmed.

3 Follow the instructions in the following sections to perform the desired Animation activity.

Toggling a Breakpoint

You use the Toggle Breakpoint tool to set a breakpoint in the action model where you want the 
animation process to stop. This is helpful if you have a lengthy action model with long sections that 
work properly. You can set the breakpoints for each action that is causing a problem and then step 
through the action to troubleshoot it.

1 In the Action pane, select the action for which you want to set a breakpoint. This is where the 
animation will stop.

2 Click Toggle Breakpoint on the Designer tool bar, or right-click the action and select Toggle 
Breakpoint. A dot appears in the left border of the action model to indicate the breakpoint.

3 If desired, repeat the previous steps to select additional breakpoints.

Stepping Into an Action

Step Into runs the selected action in the action model and then moves to the next action in the 
sequence. You can use the Step Into tool to step through each action in the entire action model, or 
you can use it in conjunction with the Run to Breakpoint tool. Execution stops at the next breakpoint 
or when the action model ends, whichever comes first.

A possible scenario for using a breakpoint would be if you have ten actions that you know work 
properly but have doubts about the eleventh. You could set the eleventh action as a breakpoint, 
execute the Run to Breakpoint tool, and then step through the eleventh (and subsequent) actions by 
executing the Step Into tool.

1 Start the animation (see “Starting Animation” on page 249).

2 Click Step Into. The first action in the action model is selected.

3 Click Step Into again. The selected action executes and the next action is selected.

4 Continue to work through the action model by clicking Step Into after each action executes and 
the subsequent action is selected.
Working with Integration Activities 249



Stepping Over an Action

You use Step Over when you don’t want to step into the details of the Repeat, Decision, or Try/On 
Fault actions. You can execute an entire block of code without stepping individually through each 
action.

You can use Step Over in conjunction with Run to Breakpoint. For example, you can toggle a 
Breakpoint, execute Run to Breakpoint, and then use Step Over to execute the action designated as 
the breakpoint. Step Over can save a great deal of time when testing lengthy action models, because 
you can avoid tediously stepping through individual actions.

1 Start the animation (see “Starting Animation” on page 249).

2 Step through the action model with Step Into until you reach a loop or other line of code that 
precedes an indented code block. 

3 Click Step Over. The first action after the block of indented code is selected. All of the indented 
code executes normally and you are taken straight to the next block of actions, without stepping 
through the indented actions.

4 Continue to work through the action model by clicking Step Over as needed.

5 Continue to click Step Into and StepOver to execute all of the actions in the action model. 

Pausing Animation

You use Pause Animation to pause the execution of an action in the action model. This is especially 
helpful in cases in which the action model contains lengthy loops.

1 During the execution of an action, click Pause Animation.

2 To resume the animation process, click Step Into, Step Over, or Run to Breakpoint (if a 
breakpoint has been set).

Aborting Animation

You use Stop Animation to stop the animation process. After you stop the animation, you cannot 
restart from the place where you left off. You must restart from the beginning of the action model.

WSDL Editor

The WSDL Editor displays the WSDL document for the Web service. You can edit the WSDL by using 
the Tree view and Source view editing features (see “Tree View” on page 239and “Source View” on 
page 243).

Messages

The Messages view displays the messages derived from the WSDL document for the Web service. 
You can edit the messages using the Tree view and Source view editing features (see “Tree View” on 
page 239 and “Source View” on page 243). You can use this feature for entering test data that is used 
when you execute the action model at design time. Data that you enter in the Messages view persists 
across executions of the action model.
250 Working with Integration Activities



Regenerating Code for the Action Model

When working in the WSDL Editor view, you can regenerate all code for the action model and 
regenerate messages by clicking the Regenerate button. When working in the Messages view, you 
can regenerate all actions in the action model. The Regenerate button is located in the Designer 
toolbar:

Figure 8-9   Regenerate Button

Adding Actions to the Action Model

Actions are the processing steps that take place within the Integration activity. A collection of actions 
is referred to as an action model. An action in the action model is displayed as a line and contains an 
icon for the action type along with an abbreviated definition of the action. Some actions are 
subordinate to other actions. For example, you can create a Repeat action that controls loop 
processing, then add actions inside the loop. The actions inside the loop are subordinate to the 
Repeat action and appear indented beneath the Repeat action. Subordinate actions process as long 
as the Repeat action is True.

To add an action to the action model, click the line in the action model that is one line above the 
position in which you want to insert an action. Add an action by using any of following methods. The 
new action is inserted below the line you selected. 

 Drag and drop. You can add Map actions by dragging and dropping elements from the Input 
view to the Output view. 

 Copy and Paste. You can copy an action in the Action Model view and paste it somewhere else 
in the view.

 Right-click the line in the action model that is one line above the position in which you want to 
add the action, then select the desired action from the menu.

NOTE: You can reorder actions in the action model by dragging actions to a new position within the 
action model.

After you have created the action model, you should test the action model. Perform testing by using 
the Animation tools. With the Animation tools, you can set breakpoints, start an animation, step into 
and over actions, and pause the animation. See “Animation” on page 247.

Actions
This section describes the actions that are available for use within an action model. An action is 
similar to a programming statement in that it takes input in the form of parameters and performs 
specific tasks. An action model is a set of instructions for processing XML documents and 
Working with Integration Activities 251



communicating with XML data sources. An action model performs all data mapping, data 
transformation, and data transfer within an Integration activity. All actions within an action model work 
together. 

At runtime, every action is converted to an executable form of ECMAScript and processed. At design 
time, many actions accept ECMAScript expressions as parameters, adding great flexibility and 
control to the action model. The Function action provides you with the most flexibility and control by 
giving you access to the full functionality of the ECMAScript language.

Advanced

This section includes descriptions of the following actions:

 “Apply Namespaces” on page 252

 “Throw Fault” on page 253

 “Try/On Fault” on page 255

Apply Namespaces

About the Apply Namespaces Action

Ideally, an Integration activity always receives valid XML documents (that is, the documents validate 
against their schema, map and transform data appropriately, and send valid XML documents). 
However, this might not always the case. In other cases you might want to ignore namespaces 
altogether. It is important to have some means of validating XML documents. These and many other 
XML processing cases require a method of modifying or overriding the prefix and namespace 
handling provided by the Integration activity.

The Apply Namespaces action provides a mechanism for managing namespaces and namespace 
prefixes in effect for input and output messages within an action model. The action allows you to 
consolidate namespace and prefix declarations for a Web service in one place, to override those 
declared in the input and output messages, or to ignore namespaces altogether.

The Apply Namespaces action can be applied to input and output messages. You can also have 
multiple Apply Namespaces actions for an individual message part, effectively changing namespaces 
based on conditions specified in the action model. The namespaces declared are in effect until the 
end of the action model is reached or another Apply Namespaces action is executed. In other words, 
only the most recent Apply Namespaces action is in effect.

When creating a new Integration activity, an Apply Namespaces action is created automatically for 
the Output message if the WSDL declares any namespaces. After component creation, you can 
manually create additional Apply Namespaces actions. 

Creating an Apply Namespaces Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Apply Namespaces action (the new action is inserted below the line that you selected). 

2 Select New Action > Advanced > Apply Namespaces.

3 Select the message (Input, Output, _SystemFault, or Project) to which you want to apply the 
namespace from the Apply the following namespaces for Part list.
252 Working with Integration Activities



4 Click the plus (+) icon to add a new row, then click the Namespace column and type a 
namespace URI.

The table displays all the Namespace declarations for the selected message part. After creating 
a new Apply Namespaces action, the table might or might not contain a list of declarations for a 
selected part. The list of declarations is initially constructed from the declarations defined in the 
WSDL. 

Within the declaration list for a message part, prefixes must be unique. However, you can have 
duplicate namespace URIs if the URIs have unique prefixes. This allows you to declare multiple 
prefixes that are associated with the same namespace URI.

5 If desired, click Ignore Namespaces when document is used in an XPath expression.

Use this option when you want Map action source XPaths to find elements by their XML local 
name only.

This provides for a less restrictive method of specifying Map actions (see “Map” on page 266) 
and is useful when Map actions contain the wrong prefix or no prefix in their Source 
specifications. This allows you to place the Apply Namespaces action inside a Decision action 
(see “Decision” on page 264) that tests whether the Input message contains prefixes or not, yet 
still have one set of Map actions to map the input to another part. In other words, the Integration 
activity normally expects the input to contain prefixes, so you design all your Map actions with 
prefix names. For the occasional input that has no prefixes, the Decision action activates the 
Apply Namespaces action defined to ignore namespaces for input, allowing the Map actions to 
work in either case.

6 When you want to declare a set of namespaces in the root element of an output message built 
by your action model, click Declare these namespaces in the part. 

This option is almost always checked for output to ensure that prefixed elements created in the 
output, as a result of Map actions, resolves to the proper namespaces.

This allows a recipient of the output to validate the document properly. The Apply Namespaces 
action with this option checked could also be used to add new declarations to an existing 
document that already contains declarations.

The Target document Root Element Name is used to specify the name of the root element to 
contain the Namespace declaration attributes. The Integration Activity automatically fills in this 
value based on the information in the WSDL document and the message part specified in the 
Apply the following namespaces for Part list.

7 Click OK. The new action is added to the action model.

Throw Fault

About the Throw Fault Action

You use the Throw Fault action to do the following:

 Write information to an XML message on failure of an action

 Perform any number of actions before throwing the fault

 Halt execution of a component

Throw Fault is only executed when a condition that you specify is true. The message part that is 
written when a Throw Fault action is executed is called a Fault document, and the XML within this 
message is contained in a global object called ERROR. 
Working with Integration Activities 253



Throw Fault actions can be used in a number of ways:

 Using a Throw Fault Action by itself. You can specify a Fault Condition and an error message 
within the Throw Fault Action dialog. When the action is executed, the Fault Condition is 
evaluated. If the condition evaluates as True, the following occurs:

 Any Before Throw actions that you specify are executed. This can be very useful as a way 
to leave your application in a particular state before halting execution. For example, you can 
send a mail message stating that the execution did not complete.

 The contents of the error message are written to the Fault document in a node that you 
specify, as well as to the global object ERROR. 

 The action model execution is halted.

 Using a Throw Fault Action within a decision expression in the Decision action. You can specify 
a fault condition by entering it in the decision expression of a Decision action. Then put a Throw 
Fault statement in the True branch of the Decision action. Here you can either specify additional 
conditions in the Throw Fault fault condition or leave it blank and simply specify the fault 
document to which the fault information should be written. When the action is executed and all 
your conditions are True, the Throw Fault action is executed. If the fault condition in the Decision 
action or Throw Fault action is False, the next action in the action model is executed.

 Using a Throw Fault inside a Try /On Fault action (see “Try/On Fault” on page 255. By putting 
either of the above methods inside the execute branch of a Try /On Fault action, you prevent the 
Integration activity from halting execution and have an opportunity to respond or recover from 
the fault. You create your fault condition by using one of the previous two methods inside the 
execute branch of a Try/On Fault action after other actions the output of which you want to test 
have worked correctly. You can specify any number of unique faults so that the Integration 
activity can branch into several different directions, depending on which fault occurs. When the 
Throw Fault action for the given fault is triggered, instead of halting execution of the component, 
control passes into the appropriate branch of the Try/On Fault action. Here you can specify other 
actions to remedy or respond to the error.

Adding a Throw Fault Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Throw Fault action (the new action is inserted below the line that you selected).

2 Select New Action > Advanced > Throw Fault. 

3 In the Fault Condition field, type a valid ECMAScript expression that, when True, causes the 
action to throw a fault. 

You can also click the ECMA Expression Builder button and build an expression (see Chapter 9, 
“Working with ECMA Expressions,” on page 271). 

4 Select Throw {System}{Fault} to write your error message to the _SystemFault document. 

By default, the message that you type in the Error Message field is placed in the Fault/FaultInfo/
Message node of that document. Specify a different node if desired. You can also click the 
ECMA Expression Builder button and build an expression.

5 Select Throw Defined Fault to select a fault document that is one of the message parts 
associated with the Integration activity.

6 Click OK. 

The new action is added to the action model. Place any actions that you wish to execute before 
the application stops in the Before Throw Actions branch.
254 Working with Integration Activities



Try/On Fault

About the Try/On Fault Action

The Try/On Fault action executes a set of actions when a fault occurs within the Execute branch of 
the Try/On Fault action. Any number of defined faults can be specified within the Execute branch. You 
can use the Try/On Fault action to trap anticipated errors and run other actions to remedy or report on 
the fault. For instance, you can use Try/On Fault to respond to an XML Interchange action that fails to 
find a file. 

When you add a Try/On Fault action, several lines are added to the action model: 

 The beginning of the Try action

 The Execute branch

 A branch for each Fault that you specified

 An All other Faults branch

When you are aware of potential faults an action can produce, you put those actions in the Execute 
branch. You then put error handling actions under each On Fault branch to handle unique situations. 
If a fault does occur, the actions in the On Fault branch execute.

Using the example given previously, if you anticipate a fault with the XML Interchange action, you put 
the action under the Execute branch. In one On Fault branch, you might add another XML 
Interchange action that attempts to read the file from an alternate location. In another On Fault 
branch, you might add another XML Interchange action that looks for a file with a different extension.

Adding a Try/On Fault Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Try/On Fault action (the new action is inserted below the line that you selected). 

2 Select New Action > Advanced > Try/On Fault.

Use the + icon to add a new fault part to the Fault Part Name list. Use the red - icon to remove 
fault parts from the list. Use the up-arrow and down-arrow icons to change the order of the faults.

If you don’t specify a fault part, corrective actions can be placed in the default All Other Faults 
branch of the Try/On Fault action.

3 Click OK. 

The following appears in the Action Model Viewer: the Try On Fault action icon, with an Execute, 
one or more On Fault branches, and an All Other Faults branch.

4 Add any actions that might cause errors to the Execute branch.

5 In the On Fault branch, add actions that resolve the errors specified in the Execute branch.
Working with Integration Activities 255



The following illustration shows a complete Try/On Fault action in the action model.

Data Exchange

This section includes descriptions of the following actions:

 “WS Interchange” on page 256

 “XML Interchange” on page 257

WS Interchange

About the WS Interchange Action

The WS (Web Service) Interchange action is the most important action in the Integration activity and 
allows the Integration activity to invoke a Web service according to calling conventions specified in a 
WSDL file. The Integration activity automatically creates a WS Interchange action when it creates the 
action model. 

In most cases there is no need to add another WS Interchange action to the action model. However, 
there might be situations in which you need to do so. The following procedure describes how to add a 
WS Interchange action.

Adding a WS Interchange Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the WS Interchange action (the new action is inserted below the line that you selected).

2 Select New Action > Data Exchange > WS Interchange. 

The WSDL Resource, Service Name, Port, and Operation fields are filled in automatically based 
on the information in the WSDL specified for the Integration activity. 

3 If desired, modify the information in the Endpoint Location field (usually a URL pointing at a 
servlet) for the Web service that you wish to use, wrapped in quotation marks. Alternatively, 
enter an ECMAScript expression that will evaluate to an Endpoint Location at runtime.

4 Click the Messages tab.

The Message, Part, and Type/Element fields are filled in automatically based on the information 
in the WSDL specified for the Integration activity. 

5 If desired, click the Expression column for a message, then use the ECMA Expression Builder to 
create an ECMAScript expression that describes the source and target for the message. Usually, 
this is an expression that specifies an XPath location in an Input part or Output part. 
256 Working with Integration Activities



6 Click the Connection tab. 

You use this tab to specify connection parameters for HTTP servers that require authentication.

7 Type a user ID to use for the connection in the User ID field, and a password for the user in the 
Password field. 

The user ID and password are not actually submitted during the establishment of a connection. 
They are simply defined here. The password is encrypted. You will have access to UserID and 
Password variables in ECMAScript, allowing you to map the user ID and password as values 
into the screen. This way, no one ever sees the passwords.

8 If the connection requires a client certificate, choose a client certificate by clicking the browse 
button in the Client Certificate field and selecting the certificate file you want to use for this 
connection.

9 If the connection requires a client private key, choose a client private key by clicking the browse 
button in the Client Private Key field and selecting the client private key file. 

10 Type the password for the client private key in the Private Key Password field. 

11 Specify a connection timeout value, in seconds, in the Connection Timeout field.

12 Click Apply to test the WS Interchange action in real time, or click OK to close.

XML Interchange

About the XML Interchange Action

The XML Interchange action reads external XML documents into a DOM and writes data from the 
DOM as XML files. There are four types of XML Interchange actions:

 GET 

 PUT

 POST

 POST with Response

When using the GET interchange, fill in the Interchange URL Expression field with a URL that points 
to the XML document that you want to bring into the Integration activity. In the Response Part field, 
you select the DOM (Input, Output, _SystemFault, or Project) that is to receive the XML. 

When using the PUT interchange, enter a URL that points to the location to which you want to write 
the XML document in the Interchange URL Expression. In the Request Part field, you select the 
name of the DOM from which you want to send data as XML. 

When using the POST interchange, enter a URL that points to the location to which you want to write 
the XML document in the Interchange URL Expression field. In the Request Part field, you select the 
name of the DOM from which you want to send data as XML.

When using the POST with Response interchange, you supply the same parameters as for Post, with 
one additional parameter. You must also specify a Response Part DOM to receive the Response XML 
document from the Post with Response interchange. The difference between the two interchanges is 
that Post with Response expects a response XML object back from the origin server.
Working with Integration Activities 257



Adding an XML Interchange Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the XML Interchange action (the new action is inserted below the line that you selected). 

2 Select New Action > Data Exchange > XML Interchange. 

3 Select an Interchange Type (Get, Put, Post, or Post with Response).

4 In the Interchange URL Expression field, type an expression that defines a fully qualified URL 
for an XML document, using any of the following supported protocols: 

 file

 FTP

 HTTP

 HTTPS

Depending on the Interchange Type selected, this URL is the source or the destination of the 
XML file for the XML Interchange action. For example: 

file:///g:/xmldata/invoicebatch1.xml 
ftp://accounting:password@123.456.789.987:21/invoices/inv1.xml 

Because this is an ECMAScript expression, the URL string must be enclosed in quotation marks. 

5 If you need to specify HTTP header parameters, click HTTP Header Parameters.

6 Click the plus (+) icon to add new header parameters, then type a Parameter name and a 
corresponding Value. Common HTTP header parameters include “Content-Type,” “Content-
Length,” and “Keep-Alive.” You can add any number of Parameter-Value pairs.

7 Click OK to return to the XML Interchange dialog box.

8 In the Request Part field (which is enabled if the Interchange Type is Put, Post, or Post with 
Response), select the name of the DOM from which you want to send data as XML. 

9 In the Response Part field (which is enabled if the Interchange Type is Get or Post with 
Response), select the name of the DOM tree that will receive the XML. 

10 If you want to filter the incoming XML document to improve performance, select the check box 
next to the Filter Document button, then select the Filter Document button. 

The document displayed is the document selected in the Response Part in the XML Interchange 
dialog box. 

You use this dialog box to specify the individual nodes to retain (rather than discard) from the 
incoming XML document in real time to improve performance and reduce RAM overhead. 

11 Select the nodes that you want to keep in the document. 

Nodes that are not selected are discarded before parsing the DOM.

12 When you have selected nodes that you want to keep, click OK to return to the XML Interchange 
dialog box.

13 Click OK. 

Alternatively, you can click Apply to see the affect of the XML Interchange action without closing 
the dialog box. This allows you to make repetitive edits to an XML Interchange action and quickly 
see the results.
258 Working with Integration Activities



Repeat

This section includes descriptions of the following actions:

 “Break” on page 259

 “Continue” on page 259

 “Declare Group” on page 260

 “Repeat for Element” on page 261

 “Repeat for Group” on page 262

 “Repeat While” on page 263

Break

About the Break Action

The Break Action stops the execution of a Repeat for Element, Repeat for Group, or Repeat While 
loop. The action model continues execution with the next action outside the loop. 

The use of Break is appropriate when, for example, you are using a loop to search a node list for one 
particular item. When the target item is found, there is no need to continue iterating. A Break can be 
used to terminate the loop immediately.

NOTE: A Break action is usually used in one branch of a Decision action (within a loop). You place 
the Break action in either the True or False branch of the Decision action.

Adding a Break Action

1 Within a Repeat action that you want to modify to include a Break action, select a position inside 
the loop where you want to place the Break action. 

Generally, this is in one leg or the other of a Decision action.

2 Select New Action > Repeat > Break. 

The Break action is inserted into the action model. 

Continue

About the Continue Action

The Continue action causes execution of the current iteration of a Repeat for Element, Repeat for 
Group, or Repeat While loop to stop and execution to begin at the top of the loop, with the next 
iteration. The Continue action provides a way to pass over downstream actions inside the loop while 
allowing the loop to continue on to the next iteration.

A Continue action is appropriate in a situation where, for example, one item in a list should be skipped 
for some reason, yet execution of the loop must continue.

NOTE: A Continue action usually occurs in one branch of a Decision action within a loop. You place 
the Continue action in either the True or False branch of the Decision action, as appropriate.
Working with Integration Activities 259



Adding a Continue Action

1 Within a Repeat action that you want to modify to include a Continue action, select a position 
inside the Loop actions where you want to place the Continue action. 

This is usually inside one fork or the other of a Decision action.

2 From the Action menu, select New Action > Repeat > Continue. 

A Continue action appears in the action model.

Declare Group

About the Declare Group Action

You use the Declare Group action to create two special lists, each in reference to a DOM. These 
group lists can then be used as the basis for a loop in the Repeat for Group action. To create the lists, 
you supply a Group Name and specify an XPath. The Integration activity then creates the lists as 
follows: 

 A Group list is created that contains one entry for each unique value found in all the elements 
that match the XPath. The Group list is referred to by the Group Name that you supply. 

 A Detail list is created for each unique entry in the Group list that contains as many entries as 
there are members in the Group. The Detail list is referred to by the group name that you supply, 
post-fixed with the label (Detail).

Using Groups allows you to select a repeating element in your Input DOM and create fewer elements 
based on the unique values across all siblings of that repeating element. Instead of having multiple 
elements, you have one element for each unique element value in your Output DOM.

Adding a Declare Group Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Declare Group action (the new action is inserted below the line that you selected). 

2 Select New Action > Repeat > Declare Group.

3 Type a name for the group in the Group Name field.

4 If you want to create multiple group levels, select a group from the Parent Group list, which lists 
groups that you have previously defined. 

5 Click Add. The Add Element dialog box is displayed.

6 Select a part name and an element.

7 Click OK.

8 Repeat Step 5 through Step 7 to add more elements to the group.

9 When you have all the elements that you want in the group, click OK.
260 Working with Integration Activities



Repeat for Element

About the Repeat for Element Action

The Repeat action creates looping structures within an action model. Loops give you the ability to 
repeat a set of one or more actions. There are three types of loops: Repeat for Element, Repeat for 
Group, and Repeat While.

XML allows multiple instances of an element in a document (analogous to multiple records in a 
database table). The number of instances can vary from document to document and is defined in the 
document schema (DTD or XML Schema). For example, you might receive an XML document 
containing line items for an invoice on a daily basis. Each day the XML document has a different 
number of line items. Not knowing how many instances of “line item” are in the XML document poses 
a problem if you want to transfer these item numbers from the input XML document to an output XML 
document programatically. The Repeat for Element action solves this problem.

The Repeat for Element action allows you to mark an element that occurs multiple times. The action 
then sets up a processing loop that executes one or more actions for each instance of the marked 
element until no more instances exist. In the previous example, the processing loop would contain a 
single Map action to transfer the line item number and this action would be repeated until all line items 
had been mapped.

The Repeat for Element action also uses the concept of an alias. An alias performs two functions. It is 
an alternate name or shorthand for the marked repeating element, which saves you the work of re-
specifying long XPath expressions. In some cases, the repeating element might be several levels 
down in the document hierarchy. When you create Map actions in the Repeat loop that transfers child 
elements of the marked element, using the alias is quicker than re-typing a long XPath expression. 
An alias is also an indicator to Map actions within the Repeat loop to use the next instance of the 
repeating element each time the loop processes. A Map action within a Repeat for Element loop that 
does not use the alias always refers to the first instance of the element in the source message.

The Repeat for Element action allows you to process more than one action within the loop. In the 
simplest case, the repeat loop might only contain one Map action that transfers the value of the 
current element instance from the input Part to the output Part. You can also define multiple actions in 
the processing loop. For example, a Map action to transfer the current value, and a Log action that 
writes to a file, creating an audit of each transfer.

Adding a Repeat for Element Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Repeat for Element action (the new action is inserted below the line that you selected). 

2 Select New Action > Repeat > Repeat for Element. 

3 Specify the Source information.

3a Type an alias name in the Source Alias field. 

A good naming convention for an alias is to use the element name with a prefix indicating 
source or target and the type of repeat action, such as “S1Lineitem.”

3b Type an XPath expression, or click the ECMA Expression Builder button and build an XPath 
expression for the repeating element. 
Working with Integration Activities 261



4 Specify the Target information.

4a Type an alias name in the Target Alias field.

4b Select Always create new output elements if you have repeating actions that should add 
new elements rather than updating existing elements.

4c Specify an XPath expression, or click the ECMA Expression Builder button and build an 
XPath expression for the repeating element. 

5 Click OK. The Repeat for Element loop is added to the action model.

6 Click Loop Actions in the action model to begin adding actions to be performed within the loop.

Repeat for Group

About the Repeat for Group Action

The format of an XML document that you receive is not always the format that meets the 
requirements of your business process. A Repeat for Group action allows you to restructure data and 
establish a framework to calculate aggregates on your data. Grouping allows you to select a 
repeating element in your input part and create fewer elements based on the unique values across all 
siblings of that repeating element. 

The Repeat for Group action sets up a processing loop based on one of two lists created by the 
Declare Group action. The loop executes as many times as there are entries in the list you use (either 
the Group list or Detail list). By combining a Repeat for Group with Map commands, you can create a 
new XML document that has a different structure and data from the original.

Similar to the Repeat for Element action, a Repeat for Group action also uses the concept of an alias. 
The values for the source group used in the Repeat for Group dialog boxes are the list names created 
by the Declare Group action. The list names perform two functions. They are an alternate name or 
shorthand for the XPath source of any Map actions within the loop. This saves you the work of re-
specifying long XPath expressions. The group list name, when used in place of a DOM name in a 
Map action source, is also an indicator to the Map action within the Repeat loop to use the next 
instance in the group list each time the loop processes. A Map action within a Repeat for Group loop 
that does not use the group name always refers to the first instance of the element in the source part. 

The target aliases created in the Repeat for Group action also serve two functions. They are an 
alternate name or shorthand for the XPath target of any Map actions within the loop. This saves you 
the work of re-specifying long XPath expressions. The target alias, when used in place of a part 
name, is also an indicator to Map actions within the Repeat loop to create a new instance of the 
Source in the target message part. A Map action within a Repeat for Group loop that does not use a 
target alias always overwrites the first instance created in the target message part with subsequent 
instances from the source group list.

Creating a Repeat for Group action consists of three tasks:

 Create a Declare Group action to create the group lists.

 Create a Repeat for Group action specifying which group list to use.

 Create Map actions inside the loop.

Adding a Repeat for Group Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Repeat for Group action (the new action is inserted below the line that you selected).

2 Select Action > New Action > Repeat > Repeat for Group. 
262 Working with Integration Activities



3 In the Source section, select a Group name from the Where list on which to base the Repeat for 
Group action loop.

4 Optionally, type a Where clause in the Where field to filter the group list, or click the ECMA 
Expression Builder icon and create a Where expression.

5 If you know the alias for the Target element, type the name in the Alias field.

6 If you do not know the alias, select either the XPath button and select an element from the list, or 
select the Expression button and type an expression (or click the ECMA Expression Builder 
button and build an expression).

7 Click OK.

Repeat While

About the Repeat While Action

The Repeat While action repeats one or more actions as long as a condition that you specify remains 
True. The target alias that you create in the Repeat While action serves two functions. It is an 
alternate name or shorthand for the XPath target of any Map actions within the loop. This saves you 
the work of respecifying long XPath expressions. The target alias, when used in place of a DOM 
name in a Map action, is also an indicator to Map actions within the Repeat loop to create a new 
instance of the source in the target DOM. A Map action within a Repeat for Group loop that does not 
use a target alias always overwrites the first instance created in the target DOM with subsequent 
instances from the source.

NOTE: Unlike the Repeat for Element and Repeat for Group, Repeat While does not need to be 
based on data in a DOM tree. The loop can operate independently of data in the DOM tree.

Adding a Repeat While Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Repeat While action (the new action is inserted below the line that you selected).

2 Select New Action > Repeat > Repeat While. 

3 In the While field, type an expression that tests the While loop, or click the ECMA Expression 
Builder button and build an expression.

4 In the Index Variable field, type a name for a variable to keep track of the condition of the loop.

5 If you know the alias for the Target element, type the name in the Alias field.

6 If you do not know the alias, select either the XPath button and select an element from the list, or 
select the Expression button and type an expression (or click the ECMA Expression Builder 
button and build an expression).

7 Click OK.

Comment

About the Comment Action

You can use the Comment action to document the action model and clarify the processing that takes 
place. You can add comments anywhere within an action model. Comments perform no processing of 
their own.
Working with Integration Activities 263



Adding a Comment Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the comment (the new action is inserted below the line that you selected). 

2 Select New Action > Comment.

3 Type your comment.

4 Click OK.

Decision

About the Decision Action

The Decision action creates an if. . . then construct between actions or a group of actions. You use a 
Decision action to select a branch, based on a condition that you supply. The condition must use an 
ECMAScript comparison operator, such as = =, <, >, !, >=, <=, (&), OR (||), or <>. The expression 
must resolve to a Boolean True or False statement. 

Adding a Decision Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Decision action (the new action is inserted below the line that you selected). 

2 Select New Action > Decision. 

3 Type an ECMAScript expression, or click the ECMA Expression Builder button and create a 
Decision script that will evaluate to true or false at runtime.

4 Click OK. 

A Decision action similar to the following is displayed.

5 In the action model pane, select the TRUE branch.

6 Add one or more actions that will execute if the expression is True. 

7 Select the FALSE branch.

8 Add one or more actions to execute if the expression is False.

You can nest other Decision actions inside the TRUE or FALSE branches of the Decision action. 

Function

 “About the Function Action” on page 265

 “Adding a Function Action” on page 265
264 Working with Integration Activities



About the Function Action

The Function action executes an ECMAScript function. To manipulate a DOM element, the script that 
you call in the Function action must reference a fully qualified DOM element name in the current 
Integration activity.

Custom Script functions that you create and add to an action model can act upon any XML tree 
element. For example, you can create a function that changes the format of a date element. You can 
create a function that performs a math function on the contents of an element. You can also perform 
file system, database, or URL functions that have no interaction with a message part.

Adding a Function Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Function action (the new action is inserted below the line that you selected).

2 Select New Action > Function.

3 Type the function in the Function Expression field or click the ECMA Expression Builder button 
to build an ECMAScript expression. 

4 Click OK.

Log

 “About the Log Action” on page 265

 “Adding a Log Action” on page 265

About the Log Action

Log actions provide customizable reporting capabilities (design-time as well as runtime) for 
Integration activities. You can specify log level settings to control the degree of reporting.

Some Log usage examples include the following:

 Writing certain error information to the operator console when a Try On Fault condition is 
reached.

 Using ECMAScript expressions to aid in debugging by logging information about variables or 
DOM contents, the values of which are known only at runtime.

 Capturing specific information from each cycle of a Repeat for Element loop.

Adding a Log Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Log action (the new action is inserted below the line that you selected).

2 Select New Action > Log. 
Working with Integration Activities 265



3 Select the type of log that you want to produce from the Log to group.

The Log action writes information to locations specified in the action. There are three locations 
for log output: System Output, System Log, and User Log.

4 Use Log Level to select a priority level (1 to 10) for this Log action. 

The default priority level is 5. You should assign a number from 5 to 10 to messages that you 
want to appear in the log file. The priority you assign here is compared to the threshold number 
(which is set to 5 internally and cannot be changed). If the priority is equal to or greater than the 
threshold, the message is logged; otherwise it is not.

5 Check Clear the Log File if you want the data in the log file to be cleared each time the 
component is executed.

6 If User Log is selected in the Log to group, type the path to the log file in the User Log File field, 
or use Browse to specify a log file. 

If you specify a file that doesn’t exist, the file is created. On Windows* systems, if you type the 
path, you must add an extra backslash character wherever a backslash character occurs in a 
path (for example, C:\Windows becomes C:\\Windows).

7 Create the message that you want to record to the log in the Log Expression field. 

You can type a message in the field or use the ECMA Expression Builder to build an expression.

Map

About the Map Action

The Map action performs DOM-node input and output mapping. It can transfer and transform data 
from one document context to another document context. A context has two parts. The first part 
usually identifies a DOM and the second part identifies a location within the DOM. The basic 
document context in an Integration activity is expressed as a DOM name combined with an element 

Log Location Description

System Output Select System Output to write messages that you 
specify in the Log Expression field to the operating 
system console at design time, or the application 
server console at runtime.

NOTE: To view messages on the operating system 
console, start Designer using the Eclipse -debug 
and -consoleLog startup parameters.

System Log Select System Log to write messages that you 
specify in the Log Expression field to the 
application server log file.

User Log Select User Log to write messages that you specify 
in the Log Expression field to a file that you specify 
in the User Log File field.
266 Working with Integration Activities



location identified through an XPath expression. The DOM name is usually Input, Output, _System 
Fault, or Project. The XPath expression identifying a location in a DOM has the path elements 
delimited by “/”.

NOTE: A context in an Integration activity can also be a Group name that itself is simply an alias or 
shorthand for an XPath expression.

 “Default Mapping Behavior” on page 267

 “Leaf Elements That Contain Markup” on page 267

Default Mapping Behavior

When you use the Map action to map elements and attributes within XML documents, certain default 
behaviors occur. The following table lists those default behaviors.

Table 8-5   Default Mapping Behavior

Many of these behaviors can be altered, on an action-by-action basis, through the use of the 
Advanced mapping dialog box (see “Advanced Mapping Options” on page 268). 

Leaf Elements That Contain Markup

A problem can occur when an element is populated at runtime by a Java or ECMAScript operation. 
The element might receive data that contains markup (strings with illegal characters, such as < and 
>). If the Integration activity were to map the contents of such an element to a node in the Output 
DOM, the output document would be malformed. The Integration activity resolves this issue by 
mapping any data that contains markup to a new CDATA section in the target document.

NOTE: When markup is entered at design time, the behavior is different. If you type markup into a 
node, and you examine the raw XML in the Source view, you’ll see that markup characters typed into 
a node are converted to entities. For example, a “<” character is converted to &lt;. 

Map Type Default Behavior

Leaf Element to Leaf Element Transfers only the element data.

Leaf Element to Branch Element Transfers only the element data.

Branch Element to Leaf Element Transfers the entire branch, including all child elements and 
attribute data under the branch.

Branch Element to Branch Element Transfers the entire branch, including all child elements and 
attribute data under the branch after removing the target’s 
current branch.

A particular Leaf Element in a list of Leaf 
Elements, to Element

Transfers the element data from the selected leaf (or element 
instance) to the target element.

Attribute to Attribute Transfers only the attribute data.

Element to Attribute Transfers element data to attribute data.

Attribute to Element Transfers only the attribute data.
Working with Integration Activities 267



Adding a Map Action

1 Right-click the line in the action model that is one line above the position in which you want to 
place the Map action (the new action is inserted below the line that you selected).

2 Select New Action > Map.

3 In the Source section, select XPath. 

4 Select a part (Input, Output, _SystemFault, or Project) from the list, then type the appropriate 
XPath expression, or use the ECMA Expression Builder to locate the element that you want.

Together, the part name and XPath specify the Source context for the Map action.

5 Repeat Step 3 and Step 4 for the Target section.

6 If you want more control over mapping, select the Advanced (see “Advanced Mapping Options” 
on page 268) or Content Editor (see “Transforming Elements with the Content Editor” on 
page 270) options.

You can click Apply to see the effect of the Map action without closing the dialog box. This allows 
you to make repetitive edits to a Map action and quickly see the results.

7 Click OK. 

Advanced Mapping Options

When you select the Advanced option in the Map dialog box, the Advanced dialog box is displayed. 
Options that you set in the Advanced dialog box only affect the current Map action.

The options in this dialog box give you fine control over how input part nodes are mapped to the 
output part.

Copy Attributes

You use Copy Attributes to specify how attributes are mapped. Copy Attributes has the following 
options:

Table 8-6   Copy Attributes Options

Deep Copy

The default Integration activity behavior is to map whole branches at a time (the target node plus all of 
its children). This is referred to as a deep copy. In some cases, you might want to turn off this 
behavior so that you can copy just the parent element without its children. Deselect Map the 
Dependents if you want to disable deep copy.

Option Description

For Non-leaf Root Nodes and 
Dependents

Specifies that when a non-terminal (non-leaf) element is mapped to output, 
the element (minus its attributes) and its children are mapped to output. 
Attribute data for the children is included, but not for the original (parent) 
element.

Never Specifies that no attribute data (whether for parent or leaf nodes) is carried 
over during mapping.

Always Specifies that all attribute data, for all nodes, is mapped to output.
268 Working with Integration Activities



Create Target

You use Create Target to create the destination node that you specified in the Target group in the 
Map action (see “Adding a Map Action” on page 268), based on whether or not the source node is 
present in the source DOM. By default the Integration activity always creates the target, whether or 
not the runtime source DOM contains the nodes specified in the Source XPath for mapping. 

For example, in the Map action, you might have specified a Source XPath that looks like

$Input/Root/MySourceElement

In the Target XPath, you might have specified

$Output/Root/MyParentNode/SomeOtherElement

If the incoming Input document does not have a node corresponding to Root/MySourceElement, the 
Integration activity by default creates an empty Root/MyParentNode/SomeOtherElement node in the 
output DOM. In some cases, this might not be what you want. Using Create Target mapping, you can 
change the default behavior.

Table 8-7   Create Target

Create Target as CDATA Section

You use Create Target as CDATA to control the way element data gets mapped into CDATA sections. 

Table 8-8   Create Target as CDATA Section

Option Description

Only if Source exists Specifies that the Map Action is skipped (no target nodes are created in the 
output DOM) if the node specified in the Source XPath doesn’t exist in the input 
message.

Raise Error Specifies that if the input document doesn’t contain the node specified in the 
Source XPath, it is considered an error at runtime. You should plan accordingly 
by wrapping your Map action in a Try/OnError block so that you can handle the 
error.

Always Specifies that the target node should always be created (the default behavior). 
When Always is selected, you can use the Default Value field to specify a 
default data value for the target element.

Option Description

Only if source contains 
markup

Specifies that if the source data contains XML, HTML, or other types of markup 
in which illegal (in this context) characters are used, the data is placed, 
unmodified, in a CDATA section in the target DOM. This is the default behavior.

Never Specifies that source data will not be wrapped in a CDATA section for output. 
Illegal characters that occur in the source data are converted to escaped 
entities, such as &gt; for >, on the output side.

Always Specifies that whatever form the source data takes, it will get wrapped in a 
CDATA section on output.
Working with Integration Activities 269



Transforming Elements with the Content Editor

You use the Content editor to change the format and content of the input element to match that 
required by the output element. Using the Content Editor, you can slice the input data into small parts, 
move the parts to different locations relative to one another, add new parts, omit some parts, and 
apply functions to individual parts.

1 In the Action model, select two elements from different parts (for example, from the Input and 
Output parts) to map.

2 Select New Action > Map. 

3 In the Map action dialog box (see “Adding a Map Action” on page 268), select the Content Editor 
check box, then select the Content Editor button.

4 If desired, click New Sample and type a sample string. 

5 Click OK to return to the Content Editor dialog box.

6 In the Sample section, move the slider that is above the sample to the position where you want 
the first cut to take place, then move the slider that is below the sample to the position where you 
want the end cut to take place. 

The sliders determine how to take a substring from the input data.

7 Click Apply. 

The substring is copied to the Result field as a separate object. 

8 Repeat Step 6 and Step 7 for each part of the sample in the order that you want. 

Using this method, you can build a new string out of substrings of the original input.

9 To change the format of an object in the Result field:

9a Select an object.

9b Click Modify. 

The Start Cut at Characters field displays the character in the string where the first cut will 
take place. The first Occurrence field displays when the cut will take place. In the previous 
illustration, the first cut will take place at the first occurrence of the letter l. The End Cut at 
Characters field displays that character in the string where the last cut will take place. The 
second Occurrence field displays when the cut will take place. The Offset field displays the 
number of characters from the beginning of the original string where the object will start. 
The Length field displays the length of the object.

9c If desired, you can write an ECMAScript expression in the Script Expression field to modify 
the content region.

The %r shown in the Script Expression field is a local variable representing the content 
region to which you want to apply a function. For example, to apply the .toUpperCase() 
function to the content region, you would write the Script Expression: var test='%r'; 
test.toUpperCase().

9d To assign a constant to an object, select Constant, then type a constant string.

9e When you are finished mapping string formats with the Content Editor, click OK to save the 
changes and close the Content Editor.

10 Click OK to return to the action model.
270 Working with Integration Activities



9 9Working with ECMA Expressions

This section provides details on using the ECMA Expression Builder.

About the ECMA Expression Builder
Designer incorporates an ECMAScript interpreter and expression editor, which allows you create 
script expressions that refer to and modify workflow data. For example, you can use scripting to:

 Create new data items needed in a workflow under the flowdata element.

 Perform basic string, date, math, relational, concatenation, and logical operations on data.

 Call standard or custom Java classes for more sophisticated data operations.

 Use expressions for runtime control to:

 Modify or override form field labels.

 Initialize form field data.

 Customize email addresses and content.

 Set entitlement grant/revoke rights and parameters. 

 Evaluate any past activity data to conditionally follow a workflow path by using the Condition 
activity.

 Write different log messages that are conditionally triggered by using a single Log activity.

This section describes some of the techniques and capabilities applicable to the use of scripting.

NOTE: To define expressions for a workflow, you need to understand how workflow activities are 
configured. In addition, you need to understand the various types of data that are available within a 
workflow. For details on configuring workflow activities, see Chapter 7, “Workflow Activity Reference,” 
on page 187. For descriptions of the system variables available in a workflow, see “Understanding 
Workflow Data” on page 163.

About ECMAScript

ECMAScript is an object-oriented scripting language for manipulating objects in a host environment 
(in this case, Designer). ECMAScript (ECMA-262 and ISO/IEC 16262) is the standards-based 
scripting language underpinning both JavaScript (Netscape) and JScript (Microsoft). It is designed to 
complement and extend existing functionality in a host environment such as Designer’s graphical 
user interface. As a host environment, Designer provides ECMAScript access to various objects for 
processing. ECMAScript in turn provides a Java-like language that can operate on those objects.

The extensibility of ECMAScript, and its powerful string-handling tools (including regular 
expressions), make it an ideal language to extend the functionality of Designer. 

NOTE: You can find detailed information about ECMAScript at the European Computer 
Manufacturers Association (ECMA) Web site (http://www.ecma-international.org).
Working with ECMA Expressions 271

http://www.ecma-international.org
http://www.ecma-international.org


ECMAScript Capabilities

In addition to enabling you to incorporate finely tuned custom logic into your workflow, scripting gives 
you a great deal of flexibility in manipulating data because of the various DOM-related and XPath-
related objects and methods available in the ECMAScript extensions incorporated into the 
Expression Builder. 

The usefulness of ECMAScript is especially apparent when dealing with in-memory DOMs. The 
ECMA Expression Builder constructs XML documents as in-memory objects according to the W3C 
DOM Level 2 specification. The DOM-2 specification, in turn, defines an ECMAScript binding (see the 
W3C Recommendation ECMAScript Language Binding (http://www.w3.org/TR/DOM-Level-2-Core/
ecma-script-binding.html), with numerous methods and properties that provide ready access to DOM-
tree contents. The flowdata DOM is recognized by the ECMA Expression Builder, and any of the 
W3C-defined ECMAScript extensions that apply to DOMs can be used.

ECMAScript also provides bridges to other expression languages such as XPath. This allows you to 
use XPath syntax on a DOM to address various elements within its document structure.

Using the ECMA Expression Builder

Designer provides access to ECMAScript in various places in the User Application design tools. The 
most common form of access is through the Expression Builder, which can be displayed whenever 
you see this button:

The button is found in Designer displays, such as the Properties for a Condition activity or the Data 
Item Mapping view for an Entitlement Provisioning activity. Click the button to display the ECMA 
Expression Builder.

The ECMA Expression Builder provides pick lists of available objects, methods, and properties in the 
top panes (all of which are resizable), with rollover tooltips to help you build ECMAScript statements. 
Double-clicking any item in any pick list causes a corresponding ECMAScript statement to appear in 
the edit pane in the lower portion of the window. In the figure, the process pick list has been selected 
in the ECMAScript Objects pane, and the name variable has been double-clicked. The ECMAScript 
expression that can access the contents of this workflow variable is inserted automatically in the edit 
pane.

Checking Syntax

The ECMA Expression Builder includes a Check Syntax button. Clicking the button causes the 
ECMAScript interpreter to check the syntax of the expression. If there are problems involving 
ECMAScript syntax, an error message is displayed. You can then edit the expression and validate 
again as needed. Validation is optional.

NOTE: The syntax checking process does not execute your expression. It just checks syntax. 
Because ECMAScript is an interpreted language, syntax checking doesn’t check any runtime-
dependent expressions, other than to see if they conform to valid ECMAScript syntax.
272 Working with ECMA Expressions

http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html


Selecting a DN

The ECMA Expression Builder also includes an Identity Vault button that is displayed when you are 
working with activities that might require selecting a DN from the Identity Vault (for example, Start, 
Approval, and Entitlement activities).

Figure 9-1   Identity Vault Button

The Identity Vault button displays a dialog box that you use to navigate the Identity Vault to select a 
DN. The Identity Vault button is dimmed (to indicate that it is unavailable) if you are not connected to 
the Identity Vault.

ECMAScript Objects

This pane displays the names of objects that are relevant in the current context. For example, if you 
are working in the provisioning request definition editor, you see system variables for the current 
workflow process, system variables for the current activity, and flowdata variables created in the 
current workflow. Double-click the name of a variable to insert that variable into your script. For 
descriptions of the system variables available in a workflow, see “Understanding Workflow Data” on 
page 163.

The ECMA Expression Builder provides two methods for reading flowdata variables.

Table 9-1   Methods for Reading Flowdata Variables

Vault Expressions

This pane allows you to insert Entity definitions (see “Working with Entities and Attributes” on 
page 48) that are defined in the Identity Vault into your scripts. Both system and user-defined entities 
are available. The format of an expression to retrieve data from the Identity Vault is

IDVault.get(dn, object-type, attribute)

For example if you want the recipient's manager for a data item, you would open the User node in the 
Vault Expressions Pane and double-click the Manager item, which inserts IDVault.get({ enter dn 
expression here }, 'user', 'manager'). This expression evaluates to the string for the 
manager’s DN (LDAP distinguished name).

Method Description

flowdata.get(variable-name) Returns a string as the node value for a variable 
(representing an XPath expression) in the workflow 
document. 

flowdata.getObject(variable-name) Returns an object as a node value for a variable 
(representing an XPath expression) in the workflow 
document. Use this method to retrieve the values of 
multivalued controls.
Working with ECMA Expressions 273



Using Special Characters

You can use special characters in literal strings in the ECMA Expression Builder by using escape 
sequences. Escape sequences begin with a backslash character ( \ ). The following table contains 
some commonly used escape sequences:

Table 9-2   Escape Sequences

You also can specify any Unicode character by using \u followed immediately by four hexadecimal 
digits. Here are some examples:

Table 9-3   Escape Sequence Examples for Unicode Characters

About Java Integration

Java is integrated into the workflow process through the ECMA Expression Builder, which provides a 
bridge to external Java objects. To access a Java class through the ECMA Expression Builder, the 
class must be in the classpath of the workflow engine. To accomplish this, you must add the Java 
class to the WEB-INF\lib directory in the User Application WAR file (IDM.war). 

NOTE: Unlike ECMAScript that is available in other parts of the provisioning request definition editor, 
form action scripts are executed on the browser, not the server. All directory access from within a 
form action script is handled by AJAX calls from the browser to the server. See “Form Action Script 
Methods” on page 280.

 “Adding the Java Class to the User Application WAR” on page 275

 “Accessing Java from ECMAScript” on page 275

Escape Sequence Character

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\” Double quote

\\ Backslash (\)

\’ Apostrophe

Escape Sequence Character

\u00A3 Pound symbol (£)

\u20AC Euro symbol (€)
274 Working with ECMA Expressions



Adding the Java Class to the User Application WAR

1 Use a WAR file utility to open the IDM.war file. The IDM.war file is located in the application 
server \server\IDM\ directory.

2 Copy the Java class into the WEB-INF\lib directory.

Accessing Java from ECMAScript

To access a Java class, create a function inline in the ECMA Expression Builder. Instantiate the 
function, then within the function, use ECMAScript syntax to call your Java methods. The following 
example creates a vector:

function list() { v=new java.util.Vector(); v.add('{Enter Item 1}'); v.add('{Enter 
Item 2}'); return v; };  list();

To access a custom Java class, you must preface the class name with “Packages”. For example:

v = new Packages.com.novell.myClass("value");

The ECMA Expression Builder is built on Mozilla Rhino. Rhino is an open source implementation of 
JavaScript written entirely in Java. For more information about accessing Java from ECMAScript, see 
Scripting Java (http://www.mozilla.org/rhino/ScriptingJava.html).

About XPath Integration

XPath in Workflows

A provisioning request definition workflow supports a special object called flowdata (see 
“Understanding Workflow Data” on page 163). The flowdata object is a DOM (an XML document 
constructed as an object in memory). You can use XPath syntax to navigate the structure of the 
flowdata DOM, and add, modify, or delete elements and contents.

To add an object to flowdata:

To get an object from flowdata:

For information about the flowdata.get() and flowdata.getObject() methods, see Table 9-1 on 
page 273.

Syntax Examples

flowdata.parent/child[1]

flowdata.reason

Syntax Examples

flowdata.getObject('parent/child[1]')

flowdata.get('reason')
Working with ECMA Expressions 275

http://www.mozilla.org/rhino/ScriptingJava.html


XPath in Integration Activities

When you are working with an Integration activity, the ECMAScript interpreter recognizes a custom 
method called XPath(). This method allows expressions such as:

Input.XPath("GetBNQuoteSoapIn/GetBNQuote/sISBN")

When you use the ECMA Expression Builder, this type of expression is built for you automatically 
when you select nodes in ECMA Expression Builder pick lists.

The Integration activity uses the XPath addressing syntax adopted by W3C. The XPath syntax is 
similar to URL address syntax but includes many subtle and powerful features for addressing and 
manipulating XML. Some of the more common syntax rules are listed in the following table.

Table 9-4   XPath Syntax

You can find the complete list of operators in the W3 Recommendation XML Path Language (XPath) 
(http://www.w3.org/TR/xpath.html).

XPath Syntax Description

/ The single forward slash represents an absolute path to an element. For example, 
/ABC selects the root element ABC.

// Double slashes represent all elements in a path. //ABC selects all occurrences of 
ABC. For example, //ABC//DEF selects all DEF elements that are children of 
ABC.

* The asterisk selects all elements located by the preceding path. For example, 
*ABC/DEF selects all elements enclosed by elements ABC/DEF. //* selects all 
elements.

[ ] Square brackets specify a particular element. For example /ABC[3] selects the 
third element in ABC. This can also be used as a filter (similar to a Where clause 
in SQL). //ABC["Table"] selects all elements that have the content “Table.”

@ The At sign selects elements with a specified attribute. For example, /ABC@name 
selects all elements in ABC that have an attribute called name.

| The vertical bar allows you to specify multiple paths. For example, //ACB|//DEF 
selects all elements in ACB and in DEF.

$ The dollar sign allows you to reference other documents in addition to the current 
one: INVOICEBATCH/INVOICE[SELLER/NAME= $PROJECT/USERCONFIG/
COMPANYNAME]

function() XPath has numerous functions that you can add to your XPath addresses. For 
example, //*[count(*)=2] selects all elements that have two children.

math operator() XPath has numerous math operators that you can add to your XPath addresses. 
For example, /ABC|position() mod 2 = 0] selects all even elements in ABC.
276 Working with ECMA Expressions

http://www.w3.org/TR/xpath.html


About Global Configuration Values Integration 

Global configuration values (GCVs) are settings that are similar to driver parameters. Global 
configuration values can be specified for a driver set, as well as for an individual driver. If a driver 
does not have a GCV, the driver inherits the value for that GCV from the driver set.

GCVs are integrated with the workflow process through the ECMA Expression Builder, which 
provides a bridge to the GCVs from the driver and the GCV resource objects. To access a GCV 
through the ECMA Expression Builder, go to the variables pane and select any GCV from the GCV 
list. For GCV resource objects to be available on the variable pane, ensure that they are linked to the 
User Application driver. These GCVs are available to you in all activities on the workflow and not on 
the forms.

NOTE

 When you create a GCV of the type password-ref (Named Password), ensure that you create the 
GCV on the specific driver itself and not on the driver set.

 If you include a password-ref GCV in a workflow, you must also create and include a separate 
Boolean GCV named allow-fetch-named-passwords and set the value of that GCV to true If 
you do not include the second Boolean GCV, the workflow fails with a scripting error.

About Global ECMAScripts Integration 

ECMAScripts that are globally available on the User Application drivers or within the Identity Vault 
libraries can be accessed through the Expression Builder. Ensure that ECMA Scripts are imported 
into the provisioning request definition from the Overview page. For more information about creating 
provisioning request definitions, see Chapter 4, “Configuring Provisioning Request Definitions,” on 
page 77. 

The global ECMAScripts are available throughout all your activities and on the forms. For making 
them available, you should include them as necessary on workflow activities, start activity, and forms. 

Performance Considerations

ECMAScript is an interpreted language, which means that every line of script in an expression must 
be parsed and translated to the Java equivalent before it can be executed. This adds considerable 
overhead to the code and results in overall slower execution of scripts than pure Java. Before using 
ECMAScript, you should think about the possible performance consequences. 

The following guidelines help you to achieve optimal performance in your components and services:

 Consider whether a task can be accomplished by using a custom Java class (that you can call 
from ECMAScript). 

 When you need the fine control offered by scripting, use ECMAScript.

Bear in mind that the key to good performance is always a good implementation (for example, 
choosing the correct algorithm and attention to reuse of variables). Good code written in a slow 
language often outperforms bad code written in a fast language. Writing something in Java does not 
guarantee that it will be faster than the equivalent logic written in ECMAScript because Java has its 
own overhead constraints, such as constructor call-chains (when you call a constructor for a Java 
object that inherits from other objects, the constructors for all ancestral objects are also called).
Working with ECMA Expressions 277



ECMAScript’s core objects (String, Array, Date, etc.) have many built-in convenience methods for 
data manipulation, formatting, parsing, sorting, and conversion of strings and arrays. These methods 
are implemented in highly optimized Java code inside the interpreter. It is to your advantage to use 
these methods whenever possible, rather than creating customized data-parsing or formatting 
functions. For example, suppose you want to break a long string into substrings, based on the 
occurrence of a delimiter. You could create a loop that uses the String methods indexOf() and 
substring() to parse out the substrings and assign them to slots in an array. But this would be a very 
inefficient technique when you could simply do the following:

var myArrayOfSubstrings = bigString.split( delimiter );

The ECMAScript String method split() breaks a string into an array of substrings based on whatever 
delimiter value you supply. It executes in native Java and requires the interpreter to interpret only one 
line of script. Trying to do the same thing with a loop that iteratively calls indexOf() and substring() 
would involve a great deal of needless interpreter and function-call overhead, with the accompanying 
performance hit.

Skillful use of built-in ECMAScript methods pays worthwhile performance dividends. If you use scripts 
extensively, take time to learn about the fine points of the ECMAScript language because this can 
help you eliminate performance bottlenecks.

ECMAScript Examples
This section provides examples of common operations that you can perform using ECMAScript.

General Examples

To create a function in the ECMA Expression Builder, create the function inline:

function abc() { var v1 = "" ; for ( i = 0; i < 9 ; i++) v1 += "$"; return v1; } ; 
abc();

Flowdata Examples

This section presents scripting examples that show the use of the flowdata object. 

Getting the Value of a Flowdata Variable

Suppose you entered information about an approval status into the flowdata by creating an XML 
element named start_reason with a child element named approval_reason and an attribute 
named ApprovalStatus. Use the following expression in a pre-activity map to retrieve the value of 
the ApprovalStatus attribute:

flowdata.get('start_reason/approval_reason/@ApprovalStatus')

You can enter this expression by expanding the flowdata nodes in the ECMAScript Objects pane of 
the ECMA Expression Builder and double-clicking the ApprovalStatus attribute.

Creating an XML Element with Child Element and Adding it to the 
Flowdata

You can add information to the flowdata so that it can be used by a downstream activity. Use the 
following expression in a post-activity map:
278 Working with ECMA Expressions



flowdata.start_reason/approval_reason/@ApprovalStatus

Form Control Examples

This section presents several examples of scripting with form controls. 

Retrieving the Value of a Form Field

Suppose you have a form field named FirstName, which you have mapped in the Post Activity of the 
Start (Request) to flowdata.FirstName. To get the value of this field in another activity, you would 
use the following expression:

flowdata.get('FirstName')

You can use the Expression Builder to create this expression. In the ECMAScript Objects pane, click 
the arrow next to flowdata and select FirstName.

Getting an Individual Value from a Multivalued Control

To get an individual value from a multivalued control (for example, a check box named colors), you 
first need to get the control into the flowdata. In the post-activity mapping for an upstream activity, use 
the following:

flowdata.colors

To get a value from colors (for example, the first value), use the following expression on a 
downstream activity:

flowdata.getObject('colors[1]')

Populating a List or Check Box Item

To populate list controls (for example, PickList or MVEditor) or the MVCheckbox control by using 
script, use an expression like this in the pre-activity mapping: 

function list() {var l=new java.util.Vector();l.add('Blue');l.add('Red'); 
l.add('Green'); return l;} list();

Comparing DNs

To compare DNs to find out if they are equal, use an expression like this:

if ( IDVault.dnCompare(flowdata.get('Activity3/CardRequest/Candidate'),recipient 
)) true; else false ;

This comparison is case-insensitive. For example, the following DNs, when compared with 
dnCompare, returns True:

CN=jdoe,ou=users,ou=idmsample,o=acme
cn=JDOE,ou=users,ou=idmsample,o=acme
Working with ECMA Expressions 279



WARNING: Prior to Identity Manager 3.7, the name of the function used to compare DNs was 
“DNcompare.” With the 3.7 release, however, the name was changed to “dnCompare.” Please note 
that if you create one or more workflows that use “DNcompare” in a pre-3.7 Identity Manager 
environment and then migrate to version 3.7 or later, you must change all instances of “DNcompare” 
to “dnCompare” for your workflows to function properly.

Error Handling

The approach to handling errors differs between pre-activity and post-activity maps. For post-activity 
maps, you can use an error flow path from an Approval or Condition activity to catch errors that occur 
during post-activity mapping. This approach doesn’t work for pre-activity maps because any errors 
that occur in the process of getting data happen before the form is displayed to the user. When this 
occurs, an error message similar to the following appears in place of form controls in the bottom 
portion of forms displayed to the user:

XXXX FAILED to generate form due to: No data items are available!

In this scenario, you can use a try-catch statement in a source expression for a field in a pre-activity 
map:

function getTheData() 
{
   var theData;
   try {
      theData = IDVault.get( 'cn=jsmith,ou=users,ou=idmsample1,o=acme' , 'user', 
'FirstName') + ' ' + IDVault.get ( 'cn=jsmith,ou=users,ou=idmsample1,o=acme'  , 
'user', 'LastName'); 
    }
   catch (error) { theData = 'Error retrieving data.'; }
   return theData;
};
getTheData();

User Application API
This section describes the User Application API.

Form Action Script Methods

Unlike the ECMAScript that runs in other components of the workflow, form script executes on the 
Web browser, not the server. All directory access from within form script is handled by AJAX calls 
from the browser to the server. 

This section lists all form action methods and properties supported by the ECMA Expression Builder. 

Form

Lets you work with Form methods. 

focus(fieldname)

form.focus(fieldname)
280 Working with ECMA Expressions



Sets the focus to the specified field. For list-based or choice-based controls, sets the focus to either 
the selected choice or when no selection is made, it sets the focus to the first choice. If a fieldname 
parameter is passed and that field is list or choice based, it sets the focus on the choices 
corresponding to the values parameter. If the value is an array, only the first value is used to 
determine on which check box or radio button to set focus. If the specified field is invisible or disabled, 
this method has no effect. 

select(fieldname)

form.select(fieldname)

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, this method sets the focus to the selected choice or if no selection 
was made, to the first choice. If a values parameter is passed and the field is list-based or choice-
based it sets the focus on the choices corresponding to the fieldname parameter. This method has no 
effect on disabled or invisible fields. 

activate(fieldname)

form.activate(fieldname)

A combination of setFocus() and select().

setRequired(fieldname, is-required)

form.setRequired("fieldname", is-required)

Sets the field to required if is-required is True; otherwise, the field is optional. A field that is required 
blocks the form submission if the field is empty.

InterceptAction(actionname, order, function)

form.interceptAction("actionname", "order", "function")

Allows you to intercept the script attached to an action button. The function passed in is executed 
based on the order parameter. 

Valid actionname values are SubmitAction and CancelAction.

The choices for actionname for an approval form are: ApprovalAction, RefusalAction, DenyAction, 
UpdateAction, CancelAction and CommentAction.Valid values for the advice parameter are:Before: 
The function is called before the script attached to the button executes.after: The function is called 
after the script attached to the button executes.around: The function is passed a parameter that 
allows you to decide whether to execute the script attached to the button The following example 
shows the submit action intercepted. The form is only submitted if the user replies Yes. 

window.inv=function (invocation) { if (confirm( "Are you sure you want to 
submit?")) { var result = invocation.proceed(); return result; }; };

form.interceptAction("SubmitAction", "around", window.inv);

getLocale()

form.getLocale()

Returns the current locale. Can be used as input for all methods that support a locale parameter.
Working with ECMA Expressions 281



getRBMessage()

form.getRBMessage(key)

form.getRBMessage(key, value[s])

form.getRBMessage(key, value[s], bundle)

This method tries to find an entry with key in the resource bundle with ID bId. The resourcebundle 
Java class should extend the java.util.ListResourceBundle.Parameter. The parameter can be used to 
pass in replacements for parameters ({0}, {1}, etc) in message "msg"; for example: 

var msg = frm.getRBMessage ("mykey", ["value0", "value1"], "mybundle");

stringToDate()

form.stringToDate(date)

form.stringToDate(date, include-time)

Converts a date string to a Date. The format must correspond to the dateform for the current locale, 
as used in the DatePicker. The value of a DatePicker control can be converted with this method. 
Example: 

form.showMsg("Date="+form.stringToDate(d,true));

dateToString()

form.dateToString(date)

form.dateToString(date, include-time)

Converts a date to a string that can be stored in the DatePicker, for example: 

var d = form.dateToString(new Date(), true); 

form.setValues("hireDate", d);

NOTE: dateToString() is not available in environments running Identity Manager Home and 
Provisioning Dashboard.

isValidDate(date)

form.isValidDate(date)

Use this to validate the correct format for a date string.

isValidDate(date,include-time)

form.isValidDate(date, include-time)

Use this to validate the correct format for a date string.

alert(string)

form.alert("msg")

Displays a message in an alert box.
282 Working with ECMA Expressions



showMsg(string)

form.showMsg(msg, param, bId)

Adds a message to the status portion of the form. The msg string parameter can either contain the 
text of the message itself or it can contain a key pointing to an entry in the resource bundle bId. This 
method always tries to find an entry with the key msg in the resource bundle with the id bId. The 
param parameter can be used to pass in replacements for stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Example:

form.showMsg("my message" {0},{1}", ["value0","value1"]);

showWarning(string)

form.showWarning(msg, param, bId)

Adds a warning to the status portion of the form. 

The msg string parameter can either contain the text of the warning itself or it can contain a key 
pointing to an entry in the resource bundle bId. This method always tries to find an entry with the key 
msg in the resource bundle with the id bId. The param parameter can be used to pass in 
replacements for stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Example:

form.showWarning("my warning" {0},{1}", ["value0","value1"]);

showError(string)

showError(msg, param, bId);

Adds an error message to the status portion of the form. 

The msg string parameter can either contain the text of the error itself or it can contain a key pointing 
to an entry in the resource bundle bId. This method always tries to find an entry with the key msg in 
the resource bundle with the id bId. The param parameter can be used to pass in replacements for 
stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Both normal and fatal errors block form submission. The distinction between a normal error and a 
fatal error is that normal errors get reset just before form validation occurs (because of a form 
submission). Fatal errors are remembered and therefore block the form submission unless you 
restart. A normal error only blocks submission if it is generated during the validation phase. If you add 
normal errors during onload or custom events, they are lost when the form is submitted.
Working with ECMA Expressions 283



NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Example:

form.showError("my error" {0},{1}", ["value0","value1"]);

showFatal(string)

form.showFatal("my fatal" {0},{1}", ["value0","value1"]);

Adds a fatal error message to the status portion of the form. 

The msg string parameter can either contain the text of the fatal error itself or it can contain a key 
pointing to an entry in the resource bundle bId. This method always tries to find an entry with the key 
msg in the resource bundle with the id bId. The param parameter can be used to pass in 
replacements for stakeholders ({0}, {1}, etc) in msg.

Both normal and fatal errors block form submission. The distinction between a normal error and a 
fatal error is that normal errors get reset just before form validation occurs (because of a form 
submission). Fatal errors are remembered and therefore block the form submission unless you 
restart. A normal error only blocks submission if it is generated during the validation phase. If you add 
normal errors during onload or custom events, they are lost when the form is submitted.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Example:

form.showFatal("my fatal" {0},{1}", ["value0","value1"]);

enable(fieldname)

form.enable("fieldname")

Enables a field on a form.

disable(fieldname)

form.disable("fieldname")

Disables a field on a form.

NOTE: A disabled field still sends data back to the workflow engine. The content of a disabled field is 
validated when submitting the form or when calling the field.validate() method.

getValue(fieldname)

form.getValue("fieldname")

Returns the first value for the field. The type returned is always string, independent of the data type of 
the field. If the field does not have a value, the method returns an empty string if text can be entered 
into the field (like Text, TextArea, DatePicker, DNLookup) or it returns “undefined” if the control is 
choice-based (for example, StaticList, radio buttons, check boxes). For DN type controls, this method 
always returns the DN and never the display expression.
284 Working with ECMA Expressions



getValues(fieldname)

form.getValues("fieldname")

Returns a string array containing the values. If no values are found, the array is empty (size = 0). For 
DN type controls, this method always returns the DN and never the display expression.

setValues(fieldname)

form.setValues("fieldname", data-values, display values, KeepOldValues)

Sets a value. Supports multiple values. This method allows changing the available entries for list-
based controls (for example, StaticList, MVCheckbox, PickList). By default, existing values are 
deleted unless the KeepOldValues parameter equals True. For non-list-based controls, the display 
values parameter is ignored. 

Field

Lets you work with Field methods. 

activate()

field.activate(value[s])

This method is a combination of field.focus() and field.select().

disable()

field.disable()

Disable the field.

NOTE: A disabled field still sends data back to the workflow engine. The content of a disabled field is 
validated when submitting the form or when calling the field.

enable()

field.enable()

Enable the field.

fireEvent()

field.fireEvent("eventname")

Fires a custom event. Passes the name of the custom event that is fired. To get the values of the 
event that is fired, use form.getValues(event.getOrigin()).

focus()

field.focus(value[s])

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, this method sets the focus to the selected choice if no selection was 
done to the first choice. If a values parameter is passed and if the field is list-based or choice-based, 
Working with ECMA Expressions 285



this method sets the focus on the choices corresponding to the values parameter. If the values 
parameter is an array, only the first value is used to determine the check box or radio button to set 
focus. This method has no effect on disabled or invisible fields.

getLabel()

field.getLabel()

Gets the label associated with the field. If no label is found, this method returns the name of the field.

getName()

field.getName()

Gets the name of the field. 

getValue()

field.getValue()

Returns the first value for the field. The type returned is always a string, independent of the data type 
of the field. If the field does not have a value, the method returns an empty string if text can be 
entered into the field (like Text, TextArea, DatePicker, DNLookup) or it returns “undefined” if the 
control is choice-based (for example, StaticList, radio buttons, check boxes). For DN type controls, 
this method always returns the DN and never the display expression.

hide()

field.hide()

Hides this field.

getValues()

form.getValues()

Returns a string array containing the requested values. If no values are found, the array is empty 
(size = 0). For DN type controls, this method always returns the DN and never the display expression.

show()

field.show()

Shows this field.

select()

field.select(value[s])

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, it sets the focus to either the selected choice or if no selection was 
made, it sets the focus to the first choice. If a values parameter is passed and if the field is list-based 
or choice-based, it sets the focus on the choices corresponding to the values parameter. If the value 
parameter is an array, only the first value is used to determine which check box or radio button to set 
focus on. This method has no effect on disabled or invisible fields.
286 Working with ECMA Expressions



setRequired()

field.setRequired(is-required)

Sets the field to required if isRequired is True or optional otherwise. A field that is required 
blocks the form submission if it is empty.

setValues(fieldname)

field.setValues(data-values, display-values, KeepOldValues)

Sets a value. Supports multiple values. This method allows changing the available entries for list-
based controls (for example, StaticList, MVCheckbox, PickList). By default, existing values are 
deleted unless the KeepOldValues parameter equals True. For non-list-based controls, the display 
values parameter is ignored. 

If you want to set or change the initial value of a field, you should do so in an onload event.

NOTE: This method triggers the onchange event for the field.

Examples:

field.setValues("cn=jdoe,ou=users,ou=mysample,o=novell"); // for a DNLookup
field.setValues(["jdoe@novell.com", "test@novell.com"]) // for an MVEditor
field.setValues(["W","B"],["White","Black"],true); // for a StaticList

validate()

field.validate()

Triggers browser validation for the field. To validate the data entered in this field as soon as the user 
navigates to another field, call this method in the onchange event. Returns True if validation errors 
were detected; otherwise, returns False.

Event

Lets you work with events.

getEventName()

event.getEventName()

Returns the name of the event. 

getOrigin()

event.getOrigin()

Returns the name of the field from which the event was triggered.

getValue()

event.getValue()

Returns a string that contains the first value in the event. 
Working with ECMA Expressions 287



You should not use the value that is returned by this method, because it is possible that a user might 
have modified the data in the field after the event was triggered. Instead, you should use the value 
returned by the form.getValue method. For example, form.getValue(event.GetOrigin()). This 
ensures that you get the current value of the field. If you select event.getValue() from the pick list in 
the ECMA Expression Builder, form.getValue(event.GetOrigin()) is inserted.

getValues()

event.getValues()

Returns an array of strings that contains all values in the event. 

You should not use the value that is returned by this method, because it is possible that a user might 
have modified the data in the field since the event was triggered. Instead, you should use the value 
returned by the form.getValues method. For example, form.getValue(event.GetOrigin()). This ensures 
that you get the current value of the field. If you select event.getValues() from the pick list in the 
ECMA Expression Builder, form.getValues(event.GetOrigin()) is inserted.

IDVault Functions

This section lists functions that are used with IDVault data.

dnCompare

dnCompare(String dn1, String dn2)

Performs a case-insensitive comparison of DNs from the Identity Vault. Returns True if the DNs are 
the same. 

A DN encapsulates a distinguished name (an LDAP name with context). The syntax of the DNs must 
conform to that specified in RFC 2253, which describes the String representation of DNs. The 
following DNs are all valid for use with dnCompare (and would return True if compared):

cn=jdoe,ou=users,ou=idmsample,o=acme
CN=jdoe,ou=users,ou=idmsample,o=acme
cn=JDOE,ou=users,ou=idmsample,o=acme

For more information about RFC 2253, see RFC 2353 (http://www.ietf.org/rfc/rfc2253.txt).

Example:

if ( IDVault.dnCompare(flowdata.get('Activity3/CardRequest/Candidate'),recipient 
)) true; else false ;

get()

get()

get(fieldname)

get(fieldname,dn)

get(fieldname,dn,entity-type)

get(fieldname,dn,entity-type,attribute)
288 Working with ECMA Expressions

http://www.ietf.org/rfc/rfc2253.txt


This corresponds to the IDVault.get() function of the workflow script engine. Retrieves the values of 
the attribute for the given entity. The result is an array of values. If the field parameter is specified the 
result of the query result is used to refresh the content of the field. If not, the result is up to the form 
developer to use the result of the query. Example:

IDVault.get("assetProp",dn,"user","LastName");

getUserName(dn,locale)

Retrieves the user distinguished name formatted for the specified locale. The FullName DAL entity 
definition is used to retrieve the user name. The name is resolved based on the attribute key that 
matches the best fit for the locale argument. If you do not specify a locale, the attribute key default 
will be used.

getUserName(dn)

Retrieves the user distinguished name. The FullName DAL entity definition is used to retrieve the 
user name. The name is resolved based on the entity definition attribute key named default.

getObjectName(dn,locale)

Retrieves the resolved name of a user, role, resource, group, or container formatted for the specified 
locale. User names are resolved based on the attribute key that matches the best fit for the locale 
argument.

getObjectType(dn)

Retrieves the distinguished name of a user, role, resource, group, or container.

execService()

IDVault.execService(service)

IDVault.execService(service, param)

IDVault.execService(service, param, locale)

Executes an AJAX service and the result is used to refresh the content of the field. The service must 
be registered in the UI control registry. The first column of the result list result is used for the display 
value, the second one for the data value. Example :

var r=IDVault.execService("dnlookup2",params);
var res=r?r["_data"]["raw"][dn]["value"]:"error encountered";

field.setValues("IDVault.execService(\"dnlookup2\") :"+res);

Form Action Script Methods

Unlike the ECMAScript that runs in other components of the workflow, form script executes on the 
Web browser, not the server. All directory access from within form script is handled by AJAX calls 
from the browser to the server. 

This section lists all form action methods and properties supported by the ECMA Expression Builder. 

Form

Lets you work with Form methods. 
Working with ECMA Expressions 289



focus(fieldname)

form.focus(fieldname)

Sets the focus to the specified field. For list-based or choice-based controls, sets the focus to either 
the selected choice or when no selection is made, it sets the focus to the first choice. If a fieldname 
parameter is passed and that field is list or choice based, it sets the focus on the choices 
corresponding to the values parameter. If the value is an array, only the first value is used to 
determine on which check box or radio button to set focus. If the specified field is invisible or disabled, 
this method has no effect. 

select(fieldname)

form.select(fieldname)

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, this method sets the focus to the selected choice or if no selection 
was made, to the first choice. If a values parameter is passed and the field is list-based or choice-
based it sets the focus on the choices corresponding to the fieldname parameter. This method has no 
effect on disabled or invisible fields. 

activate(fieldname)

form.activate(fieldname)

A combination of setFocus() and select().

setRequired(fieldname, is-required)

form.setRequired("fieldname", is-required)

Sets the field to required if is-required is True; otherwise, the field is optional. A field that is required 
blocks the form submission if the field is empty.

InterceptAction(actionname, order, function)

form.interceptAction("actionname", "order", "function")

Allows you to intercept the script attached to an action button. The function passed in is executed 
based on the order parameter. 

Valid actionname values are SubmitAction and CancelAction.

The choices for actionname for an approval form are: ApprovalAction, RefusalAction, DenyAction, 
UpdateAction, CancelAction and CommentAction.Valid values for the advice parameter are:Before: 
The function is called before the script attached to the button executes.after: The function is called 
after the script attached to the button executes.around: The function is passed a parameter that 
allows you to decide whether to execute the script attached to the button The following example 
shows the submit action intercepted. The form is only submitted if the user replies Yes. 

window.inv=function (invocation) { if (confirm( "Are you sure you want to 
submit?")) { var result = invocation.proceed(); return result; }; };

form.interceptAction("SubmitAction", "around", window.inv);

getLocale()

form.getLocale()

Returns the current locale. Can be used as input for all methods that support a locale parameter.
290 Working with ECMA Expressions



getRBMessage()

form.getRBMessage(key)

form.getRBMessage(key, value[s])

form.getRBMessage(key, value[s], bundle)

This method tries to find an entry with key in the resource bundle with ID bId. The resourcebundle 
Java class should extend the java.util.ListResourceBundle.Parameter. The parameter can be used to 
pass in replacements for parameters ({0}, {1}, etc) in message "msg"; for example: 

var msg = frm.getRBMessage ("mykey", ["value0", "value1"], "mybundle");

stringToDate()

form.stringToDate(date)

form.stringToDate(date, include-time)

Converts a date string to a Date. The format must correspond to the dateform for the current locale, 
as used in the DatePicker. The value of a DatePicker control can be converted with this method. 
Example: 

form.showMsg("Date="+form.stringToDate(d,true));

dateToString()

form.dateToString(date)

form.dateToString(date, include-time)

Converts a date to a string that can be stored in the DatePicker, for example: 

var d = form.dateToString(new Date(), true); 

form.setValues("hireDate", d);

NOTE: dateToString() is not available in environments running Identity Manager Home and 
Provisioning Dashboard.

isValidDate(date)

form.isValidDate(date)

Use this to validate the correct format for a date string.

isValidDate(date,include-time)

form.isValidDate(date, include-time)

Use this to validate the correct format for a date string.

alert(string)

form.alert("msg")

Displays a message in an alert box.

showMsg(string)

form.showMsg(msg, param, bId)
Working with ECMA Expressions 291



Adds a message to the status portion of the form. The msg string parameter can either contain the 
text of the message itself or it can contain a key pointing to an entry in the resource bundle bId. This 
method always tries to find an entry with the key msg in the resource bundle with the id bId. The 
param parameter can be used to pass in replacements for stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Example:

form.showMsg("my message" {0},{1}", ["value0","value1"]);

showWarning(string)

form.showWarning(msg, param, bId)

Adds a warning to the status portion of the form. 

The msg string parameter can either contain the text of the warning itself or it can contain a key 
pointing to an entry in the resource bundle bId. This method always tries to find an entry with the key 
msg in the resource bundle with the id bId. The param parameter can be used to pass in 
replacements for stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Example:

form.showWarning("my warning" {0},{1}", ["value0","value1"]);

showError(string)

showError(msg, param, bId);

Adds an error message to the status portion of the form. 

The msg string parameter can either contain the text of the error itself or it can contain a key pointing 
to an entry in the resource bundle bId. This method always tries to find an entry with the key msg in 
the resource bundle with the id bId. The param parameter can be used to pass in replacements for 
stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Both normal and fatal errors block form submission. The distinction between a normal error and a 
fatal error is that normal errors get reset just before form validation occurs (because of a form 
submission). Fatal errors are remembered and therefore block the form submission unless you 
restart. A normal error only blocks submission if it is generated during the validation phase. If you add 
normal errors during onload or custom events, they are lost when the form is submitted.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Example:

form.showError("my error" {0},{1}", ["value0","value1"]);
292 Working with ECMA Expressions



showFatal(string)

form.showFatal("my fatal" {0},{1}", ["value0","value1"]);

Adds a fatal error message to the status portion of the form. 

The msg string parameter can either contain the text of the fatal error itself or it can contain a key 
pointing to an entry in the resource bundle bId. This method always tries to find an entry with the key 
msg in the resource bundle with the id bId. The param parameter can be used to pass in 
replacements for stakeholders ({0}, {1}, etc) in msg.

Both normal and fatal errors block form submission. The distinction between a normal error and a 
fatal error is that normal errors get reset just before form validation occurs (because of a form 
submission). Fatal errors are remembered and therefore block the form submission unless you 
restart. A normal error only blocks submission if it is generated during the validation phase. If you add 
normal errors during onload or custom events, they are lost when the form is submitted.

NOTE: If you want to add debugging messages to your script, it is better practice to use 
form.showDebugMsg().

Example:

form.showFatal("my fatal" {0},{1}", ["value0","value1"]);

enable(fieldname)

form.enable("fieldname")

Enables a field on a form.

disable(fieldname)

form.disable("fieldname")

Disables a field on a form.

NOTE: A disabled field still sends data back to the workflow engine. The content of a disabled field is 
validated when submitting the form or when calling the field.validate() method.

getValue(fieldname)

form.getValue("fieldname")

Returns the first value for the field. The type returned is always string, independent of the data type of 
the field. If the field does not have a value, the method returns an empty string if text can be entered 
into the field (like Text, TextArea, DatePicker, DNLookup) or it returns “undefined” if the control is 
choice-based (for example, StaticList, radio buttons, check boxes). For DN type controls, this method 
always returns the DN and never the display expression.

getValues(fieldname)

form.getValues("fieldname")

Returns a string array containing the values. If no values are found, the array is empty (size = 0). For 
DN type controls, this method always returns the DN and never the display expression.

setValues(fieldname)

form.setValues("fieldname", data-values, display values, KeepOldValues)
Working with ECMA Expressions 293



Sets a value. Supports multiple values. This method allows changing the available entries for list-
based controls (for example, StaticList, MVCheckbox, PickList). By default, existing values are 
deleted unless the KeepOldValues parameter equals True. For non-list-based controls, the display 
values parameter is ignored. 

Field

Lets you work with Field methods. 

activate()

field.activate(value[s])

This method is a combination of field.focus() and field.select().

disable()

field.disable()

Disable the field.

NOTE: A disabled field still sends data back to the workflow engine. The content of a disabled field is 
validated when submitting the form or when calling the field.

enable()

field.enable()

Enable the field.

fireEvent()

field.fireEvent("eventname")

Fires a custom event. Passes the name of the custom event that is fired. To get the values of the 
event that is fired, use form.getValues(event.getOrigin()).

focus()

field.focus(value[s])

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, this method sets the focus to the selected choice if no selection was 
done to the first choice. If a values parameter is passed and if the field is list-based or choice-based, 
this method sets the focus on the choices corresponding to the values parameter. If the values 
parameter is an array, only the first value is used to determine the check box or radio button to set 
focus. This method has no effect on disabled or invisible fields.

getLabel()

field.getLabel()

Gets the label associated with the field. If no label is found, this method returns the name of the field.

getName()

field.getName()

Gets the name of the field. 
294 Working with ECMA Expressions



getValue()

field.getValue()

Returns the first value for the field. The type returned is always a string, independent of the data type 
of the field. If the field does not have a value, the method returns an empty string if text can be 
entered into the field (like Text, TextArea, DatePicker, DNLookup) or it returns “undefined” if the 
control is choice-based (for example, StaticList, radio buttons, check boxes). For DN type controls, 
this method always returns the DN and never the display expression.

hide()

field.hide()

Hides this field.

getValues()

form.getValues()

Returns a string array containing the requested values. If no values are found, the array is empty 
(size = 0). For DN type controls, this method always returns the DN and never the display expression.

show()

field.show()

Shows this field.

select()

field.select(value[s])

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, it sets the focus to either the selected choice or if no selection was 
made, it sets the focus to the first choice. If a values parameter is passed and if the field is list-based 
or choice-based, it sets the focus on the choices corresponding to the values parameter. If the value 
parameter is an array, only the first value is used to determine which check box or radio button to set 
focus on. This method has no effect on disabled or invisible fields.

setRequired()

field.setRequired(is-required)

Sets the field to required if isRequired is True or optional otherwise. A field that is required 
blocks the form submission if it is empty.

setValues(fieldname)

field.setValues(data-values, display-values, KeepOldValues)

Sets a value. Supports multiple values. This method allows changing the available entries for list-
based controls (for example, StaticList, MVCheckbox, PickList). By default, existing values are 
deleted unless the KeepOldValues parameter equals True. For non-list-based controls, the display 
values parameter is ignored. 

If you want to set or change the initial value of a field, you should do so in an onload event.

NOTE: This method triggers the onchange event for the field.

Examples:
Working with ECMA Expressions 295



field.setValues("cn=jdoe,ou=users,ou=mysample,o=novell"); // for a DNLookup
field.setValues(["jdoe@novell.com", "test@novell.com"]) // for an MVEditor
field.setValues(["W","B"],["White","Black"],true); // for a StaticList

validate()

field.validate()

Triggers browser validation for the field. To validate the data entered in this field as soon as the user 
navigates to another field, call this method in the onchange event. Returns True if validation errors 
were detected; otherwise, returns False.

Event

Lets you work with events.

getEventName()

event.getEventName()

Returns the name of the event. 

getOrigin()

event.getOrigin()

Returns the name of the field from which the event was triggered.

getValue()

event.getValue()

Returns a string that contains the first value in the event. 

You should not use the value that is returned by this method, because it is possible that a user might 
have modified the data in the field after the event was triggered. Instead, you should use the value 
returned by the form.getValue method. For example, form.getValue(event.GetOrigin()). This 
ensures that you get the current value of the field. If you select event.getValue() from the pick list in 
the ECMA Expression Builder, form.getValue(event.GetOrigin()) is inserted.

getValues()

event.getValues()

Returns an array of strings that contains all values in the event. 

You should not use the value that is returned by this method, because it is possible that a user might 
have modified the data in the field since the event was triggered. Instead, you should use the value 
returned by the form.getValues method. For example, form.getValue(event.GetOrigin()). This ensures 
that you get the current value of the field. If you select event.getValues() from the pick list in the 
ECMA Expression Builder, form.getValues(event.GetOrigin()) is inserted.

globalList(fieldname, key, locale)

IDVault.globalList("fieldname", "key", "locale")

Retrieves a global list from the directory abstraction layer, identified by the key of the global list. If the 
field name is specified, the result of the query is used to refresh the content of the field. To retrieve a 
list without storing the result in a field, use a null value for the fieldname parameter.The locale is 
optional. If locale is not specified, the locale in the HTTP request is used.
296 Working with ECMA Expressions



You can call this function only in the client. 

Example:

IDVault.globalList("dallist", "departments", "en");

NOTE: Designer’s ECMAScript Expression Builder does not support this function for workflow script 
engine expressions.

globalQuery(fieldname, key, param)

globalQuery(fieldname, key, param)

Executes the predefined directory abstraction layer query key (see “Queries General Properties” on 
page 72). If the field name is specified, the result of the query is used to refresh the content of the 
field. To retrieve a list without storing the result in a field, use a null value for the fieldname 
parameter.The param parameter is used as input to the query. The parameter has the form 
{parname1:value,parname2:value}, in which the value can be an individual value or an array. The 
first column of the result list (always a DN) is used for the data value, and the second column is used 
for the display label.

You can call this function in the client or in the workflow script engine. Ensure that the first parameter 
(fieldname) is omitted if the function is used in the Identity Manager engine scripts. This function has 
the following syntax in workflows: IDVault.globalQuery(key, param) 

Example (client):

IDVault.globalQuery("canchangepwd", "getsites");  // query without a parameter

IDVault.globalQuery("building", "getbuildings", {site:form.getValue("site")}); // 
query with one parameter

IDVault.globalQuery("room", "getrooms", {site:form.getValue("site"), 
building:form.getValue("building")}); // query with two parameters

Example (workflow):

IDVault.globalQuery("getbuildings", {}); // query without a parameter

IDVault.globalQuery("getbuildings", {site: "mysite"}); // query with one parameter

NOTE: Designer’s ECMAScript Expression Builder does not support this function for workflow script 
engine expressions.

containers(fieldname, rootdn, Search scope, Show DN)

IDVault.containers("test", rootdn, SearchScope, ShowDN)

Gets a list of containers, with the scope equal to “subtree” or the same level. The method returns an 
array with two entries, the first an array with the resulting DNs; the second entry an array with the 
display labels.
Working with ECMA Expressions 297



Table 9-5   Container Parameters

You can call this function in the client or in the workflow script engine. Ensure that the first parameter 
(fieldname) is omitted if the function is used in the Identity Manager engine scripts. This function has 
the following syntax in workflows: IDVault.containers(rootdn, SearchScope, ShowDN) 

Example (client):

IDVault.containers("assetProp2", null, "o", true);  // set the entries in a 
StaticList to all containers directly under the root DN of the default entity

Example (workflow):

IDVault.containers("o=system", "o", true); // get containers under the specified 
root DN

NOTE: Designer’s ECMAScript Expression Builder does not support this function for workflow script 
engine expressions.

nrfRequest Properties and Methods

This section lists functions used with the nrfRequest object in Roles Based provisioning request 
definitions. 

Role Request Properties

Table 9-6   Role Request Properties

Parameter Description

fieldname If the field name is specified, the result of the query is used to refresh the content of the 
field. To retrieve a list without storing the result in a field, use a null value for the 
fieldname parameter.

rootdn If the rootdn parameter is empty, the root container for the default entity is used.

scope If the scope parameter is empty, one-level is used. Valid choices for scope are “o” 
(onelevel) and “s” (subtree).

showdn If the parameter showDN is true, the full DN is used for the display label. Otherwise the 
naming part (for example, ou, dc) is displayed.

Property Code Description

NEW_REQUEST 0 Set by the User Application on a newly created 
nrfRequest object.

SOD_APPROVAL_START_PENDING 2 The Role Service driver attempts to start the SoD 
workflow again. This is used for requests in the 
SOD_APPROVAL_START_SUSPENDED mode.

SOD_APPROVAL_START_SUSPENDED 3 Occurs when the Role Service driver is not able to 
start an SoD workflow. A driver task then resets these 
requests to SOD_WORKFLOW_START_PENDING to 
retry the starting of the workflow.
298 Working with ECMA Expressions



Role Request Is Methods

 “isAddOperation” on page 300

 “isRemoveOperation” on page 300

 “isTargetDNaUserDN” on page 300

 “isTargetDNaRoleDN” on page 300

 “isTargetDNaContainerDN” on page 300

 “isTargetDNaGroupDN” on page 300

SOD_EXCEPTION_APPROVAL_PENDING 5 Set by the Role Service driver after successfully 
initiating an SoD exception workflow.

SOD_EXCEPTION_APPROVED 10 Set by the SoD exception workflow when the 
exception is approved.

APPROVAL_START_PENDING 12 The Role Service driver attempts to start the workflow. 
The request must be in 
APPROVAL_START_SUSPENDED mode.

APPROVAL_START_SUSPENDED 13 Occurs when the Role Service driver is not able to 
start the approval workflow. A driver task then resets 
these requests to APPROVAL_START_PENDING to 
try to start the workflow again. 

APPROVAL_PENDING 15 Set by the Role Service driver after successful role 
assignment workflow.

APPROVED 20 Set by the role assignment workflow when the 
exception is approved.

ACTIVATION_TIME_PENDING 25 Set by the Role Service driver after obtaining all 
necessary approvals and the activation time has not 
yet been reached. 

PROVISION 30 Set by the Role Service driver after all the necessary 
approvals have been approved and the role activation 
time has been reached.

PROVISIONED 50 Set by the Role Service driver after a role has been 
provisioned.

PROVISIONING_ERROR 80 Set by the Role Service driver when an error occurred 
during provisioning/deprovisioning.

SOD_EXCEPTION_DENIED 90 Set by the SoD exception workflow when the 
exception is denied.

DENIED 95 Set by the role assignment workflow when the 
exception is approved.

CLEANUP 100 Set when nrfRequest workflow should be cleaned up 
(deleted). This is intended to be triggered by a batch 
process some configurable amount of time after the 
request has either been fulfilled or denied.

Property Code Description
Working with ECMA Expressions 299



isAddOperation

Returns True if this is an add operation. Occurs when the AddedDN attribute is not null.

public boolean isAddOperation() throws ActivityException

isRemoveOperation

Returns True if this is a remove operation. Occurs when the RemovedDN attribute is not null.

public boolean isRemoveOperation() throws ActivityException

isTargetDNaUserDN

Returns True if the target DN is a user DN.

public boolean isTargetDNaUserDN() throws ActivityException

isTargetDNaRoleDN

Returns True if the target DN is a role DN

public boolean isTargetDNaRoleDN() throws ActivityException

isTargetDNaContainerDN

Returns True if the target DN is a container DN

public boolean isTargetDNaContainerDN() throws ActivityException

isTargetDNaGroupDN

Returns True if this is target DN is a group DN.

public boolean isTargetDNaGroupDN() throws ActivityException

Role Request Get Methods

getCN

Returns the CN.

public String getCn() throws ActivityException

getCategoryLocaleString

Returns the category type localized string.

public String getCategoryLocaleString() throws ActivityException

getCompletedWFEmailAddress

Gets the completed work flow email address. This is a convenience method for the NrfRequest 
ECMA script object.

public String getCompletedWFEmailAddress() 
300 Working with ECMA Expressions



getCorrelationId

Returns the Correlation ID.

public String getCorrelationId() throws ActivityException

getDecisionDate

Returns the decision date.

public Date getDecisionDate() throws ActivityException

getDescription

Returns the description.

public String getDescription() throws ActivityException

getEndDate

Returns the end date.

public Date getEndDate() throws ActivityException

getEntityKey

Returns the entity key.

public String getEntityKey()

getLocale

Returns the preferred locale.

public Locale getLocale()

getOperation

Returns either the Add operation or the Remove operation.

 public String getOperation() throws ActivityException

getRequestDate

Returns the request date.

public Date getRequestDate() throws ActivityException

getRequester

Returns the requester.

public String getRequester() throws ActivityException

getStatusLocaleString

Returns the status localized string.

public String getStatusLocaleString() throws ActivityException
Working with ECMA Expressions 301



getStartDate

Returns the start date.

public Date getStartDate() throws ActivityException

getStatusValue

Returns the status int value.

public int getStatusValue() throws ActivityException

getSourceDN

Returns the source DN.

public String getSourceDN() throws ActivityException

getSourceDNDisplayName

Returns the source DN display name. This is a Role DN.

public String getSourceDNDisplayName() throws ActivityException 

getTargetDN

Returns the target DN affected by this operation.

public String getTargetDN() throws ActivityException

getTargetDNDisplayName

Returns the Target DN display name. If it is: 

 If it is a user, it returns first name + last name.

 If it is a group, it returns the description.

 If it is a role, it returns the description.

 If it is a container, it returns the target DN. 

 public String getTargetDNDisplayName() 

getCategoryValue

Returns the category type int value.

public int getCategoryValue() throws ActivityException

Role Vault API
This section describes the Role Vault API. 
302 Working with ECMA Expressions



About the Role Vault API

The Role Vault API allows you to programmatically access role assignments. It includes a set of 
methods for reporting on role assignments by container, user, group, or role, and for determining 
whether a user is in a particular role. You might use this API in conjunction with the Role Request 
activity to write your own workflow that can:

 Display the current role assignments for a particular user on a form.

 Allow the user to request a new role assignment.

 Verify whether the requested roles have any Separation of Duty (SoD) constraints then perform 
custom branching based on the existing SoD constraints. If the conflicts are allowed, you could 
invoke the Role Request activity to complete the assignment. Or, you can build in logic before 
allowing the user to make a role assignment request.

Accessing the API

The Role Vault API is available from both forms and provisioning requests. The method signatures 
and return values are the same regardless of where they are used.You access the API by using the 
Expression Builder. 

 In a workflow, you can access the Role Vault API from an activity (such as the Role Request 
Activity) through the Vault Expressions panel of the Expression Builder.

 From a form, you access the Role Script API by creating an event on the form and launching the 
Expression Builder from the event’s action expression property. The supported script 
expressions are available under the Vaults Node in the ECMAScript Objects pane.

Locale Handling

Some methods take a locale as a parameter. If you do not specify a locale, the User Application uses 
one of the following: 

 The authenticated user’s preferred locale when run from a form.

 The User Application’s default locale when run in a workflow.

Security Context

The Role Vault methods run in the following security context:

 On a form, the security context is that of the currently logged in user. 

 On a workflow, the security context is the LDAP administrator’s security context. Because this 
might return more data than an end user typically has access to, be careful how you display it.

Working with the Role Script API

The Role Script API methods typically return one of four Role Vault Beans objects (IdentityBeans, 
RoleAssignmentBeans, RoleBeans, and SodBeans), or one of four Role Vault Bean objects 
(IdentityBean, RoleAssignmentBean, RoleBean, and SodBean). A Bean object is a specific entry in 
the Role Subsystem; for example, IdentityBean can represent a specific user in the Identity Vault. A 
Beans object is a collection or array of Bean objects; for example, IdentityBeans might contain one or 
more user objects represented as individual Bean objects. You iterate through the Beans, extracting 
each Bean and working with it as a specific object. The Beans classes implement the Java Iterable 
interface, so they allow you to obtain member values directly out of the list of Bean objects as arrays. 
Working with ECMA Expressions 303



Getting the Role

This example shows how to use the Beans methods to return a list of member values for the Bean. 
The expression is used to address the Approval activity to all the user DNs that are assigned to the 
role. The components of this workflow and their responsibilities are summarized in Table 9-7, 
“Sample Workflow for Roles,” on page 304.

Figure 9-2   Sample Workflow for Roles

Table 9-7   Sample Workflow for Roles

Activity Activity Type Description

Start Start Logical starting point for all workflows.

Map Role Approver 
DN

Mapping The data item mapping source expression

'cn=Doctor-
east,cn=Level30,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,' + 
PROVISIONING_DRIVER

is mapped to the target:

flowdata.roledn
304 Working with ECMA Expressions



Retrieving SoD Violations

This example shows the methods to use to either array-like methods or a list iterator to walk through 
the individual RoleAssignmentBean objects contained in the RoleAssignmentBeans object. These 
methods are common to all of the Beans classes.

Figure 9-3   Sample Workflow for Retrieving SoDs

Doctor Approval Approval This is where the Role Script API is used to define the addressee for 
the approval activity. The Addressee property uses this expression:

java.util.Arrays.asList(RoleVault.getUsersToRoleAssignment
s(flowdata.get('roledn'), true).getTargetDn())

 The expression 

RoleVault.getUsersToRoleAssignments(flowdata.get('rol
edn'),true)

returns the RoleAssignmentBeans.

 The method call

getTargetDn()

is the RoleAssignmentBeans method that used to return an array 
of user DN strings.

 To convert the array to a list so it can be used by the workflow, 
use the 

java.util.Arrays.asList(...)

Log Denial/Log 
Denial

Log Used to write messages to the log to indicate the result of the request 
(approved or denied).

Finish Finish Logical end point of all workflows.

Activity Activity Type Description
Working with ECMA Expressions 305



Table 9-8   Sample Workflow for Retrieving SoDs

Role Script API Reference

The Role Script API includes the methods available in the ECMA Expression Builder. These are the 
methods available for forms and workflows. 

Container and Group Methods

 “getContainersToRoleAssignments” on page 306

 “getGroupsToRoleAssignments” on page 307

getContainersToRoleAssignments

RoleVault.getContainersToRoleAssignments(roleDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. The 
RoleAssignmentBean objects include the container DN(s) assigned to the specified roleDN. 

Activity Name Activity 
Type

Description

Start Start Logical starting point for all workflows.

Map SoD Dns Mapping

Log getSodViolations -

Use List

Logging Illustrates how to use an iterator to walk through the list of identityBean 
objects contained in the IdentityBeans returned by the RoleVault method 
getSodViolations(). 

The size() method is used to determine if any violations were returned. 

identitybeans.size()==0 

To return an iterator to walk the list, use this method:

iterator=identityBeans.iterator()

Log getSodViolations - 
use index

Logging Illustrates how to use the index to access the array IdentityBean 
members returned from IdentityBeans using the Role Vault method 
getSodViolations(). This is similar to the list processing above, except 
that it uses the a For loop and a reference by index. 

To loop through all the members in the array: 

 for (i = 0; i < identityBeans.size(); 
i++ )

To get the bean at position i in the array:

identityBean = identityBeans.get(i); 

All beans support a getBean method that takes a dn string as the input 
paramter and returns the bean if there is one contained in the array for 
that dn.

All Beans classes support a getBean() that takes a DN string as the 
input parameter. It returns the bean if the array contains one for that DN.

Finish Finish Logical end point for all workflows.
306 Working with ECMA Expressions



getGroupsToRoleAssignments

RoleVault.getGroupsToRoleAssignments(roleDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. The 
RoleAssignmentBean objects include the Group DNs assigned to the specified roleDN. 

Role Methods

getRoleAssignmentCause

RoleVault.getRoleAssignmentCause(identityDn, roleDn)

Returns an IdentityBeans object that contains a list of IdentityBean objects. The IdentityBeans object 
shows the cause hierarchy for the role assignment for the specified identityDn and roleDn. For 
explicit assignments, it includes the DN of the user who made the request. 

getRoleInfo

RoleVault.getRoleInfo(roleDN, locale)

A role lookup method that returns a RoleBean.

getRolesToContainerAssignments

RoleVault.getRolesToContainerAssignments(containerDN)

Returns a RoleAssignmentBeans object that contains a list RoleAssignmentBean. The 
RoleAssignmentBean objects contain the role DNs assigned to the specified containerDN.

getRolesToGroupAssignments

RoleVault.getRolesToGroupAssignments(groupDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. They 
include the role DNs for the specified groupDN. 

getRolesToRoleAssignments

RoleVault.getRolesToRoleAssignments(roleDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. The 
RoleAssignmentBean objects include the child role DNs assigned to the specified roleDN. 

getRolesToUserAssignments

RoleVault.getRolesToUserAssignments(userDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. These 
beans include the role DN(s) assigned to the specified userDN. 

getRolesUserIn

RoleVault.getRolesUserIn(userDN)

Return a list of role DNs where the specified userDN is a member. 
Working with ECMA Expressions 307



getRoleOwners

RoleVault.getRoleOwners(roleDN)

Returns the IdentityBeans object that contains a list of IdentityBean objects. The IdentityBeans object 
shows the owners of the specified role DN.

getRoleApprovers

RoleVault.getRoleApprovers(roleDN) 

Returns the IdentityBeans object that contains a list of IdentityBean objects. The IdentityBeans object 
shows the approvers of the specified role DN. 

SoD Methods

 “getSodInfo” on page 308

 “getSodViolations” on page 308

getSodInfo

RoleVault.getSodInfo(sodDN, locale)

Returns a SodBean.

getSodViolations

RoleVault.getSodViolations(sodDn)

Returns an IdentityBeans object that contains a list of IdentityBean objects. They represent the users, 
groups, containers, and roles in violation of the specified sodDN.

User Methods

getUsersInRole

RoleVault.getUsersInRole(roleDN)

Returns a list of user DNs who are members of the specified roleDn.

getUsersToRoleAssignments

RoleVault.getUsersToRoleAssignments(roleDN, direct)

Returns RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. The beans 
include the user DNs assigned to the specified roleDN. Specifying the direct argument means that 
only explicitly assigned to roles should be returned. 

isUserAppAdmin

RoleVault.isUserAppAdmin(userDN)

Returns True if the current user is a Global Administrator.
308 Working with ECMA Expressions



isUserAttestationManager

RoleVault.isUserAttestationManager(userDN)

Returns True if the current user is an Attestation Officer.

isUserComplianceAdmin

RoleVault.isUserComplianceAdmin(userDN)

Returns True if the current user a Compliance Administrator.

isUserInRole

RoleVault.isUserInRole(roleDN, userDN)

Returns True if role is currently assigned to the specified user. The role can be assigned either 
explicitly or implicitly.

isUserProvAdmin

RoleVault.isUserProvAdmin(userDN)

Returns True if the current user is a Provisioning Administrator.

isUserRoleAdmin

RoleVault.isUserRoleAdmin(userDN)

Returns True if the current user is a Role Administrator.

Hidden Methods

The following methods are part of the Role Vault API, but helper methods are not provided in the 
Expression Builder in Designer. You must manually type the method. The Expression Builder 
supports the following methods: 

findRoles

RoleVault.findRoles(String attributeKey, String relationalOp, String filterValue, 
int roleLevel, String locale)
Working with ECMA Expressions 309



Returns a RoleBeans object. You can use then access a list of roleBeans based on the attributeKey 
and its relation to the filterValue. Use the relationalOp such as STARTWITH or CONTAINS. When 
roleLevel is specified, additional scoping is performed based on the roleLevel. 

findSods

RoleVault.findSods(String attributeKey, String relationalOp, String filterValue, 
String locale)

Returns a SodBeans object that contains a list of sodBeans based on the attributeKey relation to the 
filterValue based on the relationalOp.

Table 9-9   Enter Table Title Here

Parameter Description

attributeKey

relationalOp Valid values are: less, not-less, less-or-equal, 

not-less-or-equal, greater, not-greater, greater-or-
equal, not-greater-or-equal, not-equals, equals, 
contains, not-contains, ends-with, not-ends-with, 
starts-with, not-starts-with

filterValue

roleLevel optional.

locale optional.

Parameter Description

attributeKey

relationalOp Valid values are

less

not-less

less-or-equal

greater

not-greater

greater-or-equal

not-equals

equals

contains

not-contains

ends-with

not-ends-with

starts-with

not-starts-with

filterValue

locale Optional.
310 Working with ECMA Expressions



findSodsByRoles

findSodsByRoles(String roleDNs, String locale)

Returns a SodBeans object containing SodBean objects for the specified role DNs. Locale is an 
optional parameter. 

findSodsByRoles

findSodsByRoles(/*arraylist*/roledns, String locale)

Returns a SodBeans object containing a list of SodBean objects that include any of the specified 
roledns. Locale is optional. 

findSodsByRoles

findSodsByRoles(String role1, String role2, String locale)

Returns a SodBeans object containing a list of SodBean objects that have a conflict between the two 
roles specified. Locale is optional. 

getContainerSodViolations

getContainerSodViolations(String containerdn)

Returns a SodBeans object containing a list of SodBean objects where the specified container has 
roles assigned in violation of existing SoD contraints.

getGroupSodViolations

getGroupSodViolations(String groupdn )

Returns a SodBeans object that contains a list of sodBeans where the specified group has roles 
assigned in violation of existing SoD contraints.

getRoleSodViolations

getRoleSodViolations(String roledn )

Returns a SodBeans object that contains a list of SodBean objects where the specified roleDN has 
roles assigned in violation of existing SoD contraints.

Example:
Working with ECMA Expressions 311



Role Vault Bean API Reference

There are four Bean classes that represent the data returned by the Role Vault API. They are 
IdentityBean, RoleAssignmentBean, RoleBean, and SodBean. In many cases, multiple instances of 
these beans are returned. If a list is used to return multiple beans, you need to iterate through the list 
to retrieve the required data. Methods that are invoked from the form script that return multiple beans 
return a list of bean objects. To make it easier to manipulate data from a script, four other Beans 
classes are provided. They are IdentityBeans, RoleAssignmentBeans, RoleBeans, and SodBeans. 
These classes make it easier to retrieve data from individual bean classes without iterating through a 
list.

IdentityBean

The IdentityBean class includes methods for retrieving a DN and an identity type. It includes the 
following methods:

 “getDn” on page 312

 “getType” on page 312

getDn

public java.lang.String getDn()

Returns the DN of the identity.

getType

public java.lang.String getType()

Returns the type of the identity. Valid types are:

 C: Container

 G: Group

 R: Role

 U: User
312 Working with ECMA Expressions



IdentityBeans

The IdentityBeans class includes methods for manipulating one or more IdentityBeans objects or a 
list of IdentityBeans objects. 

getDns

public String[] getDns()

Returns a String Array of DNs.

getType

public String[]getType()

Returns a String Array of identity types. Values are:

 U: Indicates User

 G: Indicates Group

 C: Indicates Container

 R: Indicates Role

getIdentityBean

public IdentityBean getIdentityBean(Stringdn);

Returns the Identity Bean with the specified DN.

size()

public int size()

Returns the number of Identity Beans.

getBean()

public IdentityBean getBean(int n) 

n is the index of the required bean.

Returns the IdentityBean at the specified index.

RoleAssignmentBean

The RoleAssignmentBean class includes methods for manipulating a single RoleAssignmentBean. 
The methods include:

getEffectiveTime

public long getEffectiveTime()

Returns the role’s effective time. (java.util.Date.getTime()).

getExpirationTime

public long getExpirationTime()
Working with ECMA Expressions 313



Returns the role’s expiration time.

getTargetDn 

public java.lang.String getTargetDn()

Returns the DN. The type of DN is based on the context of the method returning the bean. It can be a 
DN for a user, group, container, or role. 

getType

public java.lang.String getType()

Returns the role’s assignment type. Values can be: 

 G: Assignment was made through membership in a group.

 C: The assignment was made through membership in a container. 

 E: The assignment was explicit.

 R: The assignment was inherited through the role hierarchy.

RoleAssignmentBeans

The RoleAssignmentBeans class includes methods for manipulating one or more 
RoleAssignmentBeans objects as well as a list of RoleAssignmentBeans.

getEffectiveTimes

public Long[] getEffectiveTimes()

Returns the role’s effective time. 

getExpirationTimes

public long[] getExpirationTimes()

Returns the role’s expiration times. 

getTargetDn

public String[] getTargetDn()

Returns target DNs. This could be a user, group, container, or role DNs based on the context of the 
method that returns the bean.

getType()

public String[] getType()

Returns the assignment types. Values are: 

 G: Assignment was derived from group membership.

 C: Assignment was derived from Container.

 E: Assignment was explicit.

 R: Assignment was through role hierarchy.
314 Working with ECMA Expressions



getRoleAssignmentBean

public RoleAssignmentBean getRoleAssignmentBean(String targetDN)

Returns the role assignment bean with the corresponding DN. 

size

public int size()

Returns the number of role assignment beans.

getBean

public RoleAssignmentBean getBean(int n)

Returns the Role assignment bean at the specified index. 

RoleBean

The RoleBean class includes methods for manipulating a single RoleBean.

getDescription 

public java.lang.String getDescription()

Returns the localized role description. 

getName

public java.lang.String getName()

Returns the localized role name. 

getRoleDn

public java.lang.String getRoleDn(String roleDN)

Returns the role’s DN. 

getRoleLevel

public long getRoleLevel()

Returns the role level.

getRoleOwner

public java.lang.String getRoleOwner(String roleDN)

Returns the role’s owner.

getRoleApprover

public java.lang.String getRoleApprover(String roleDN)

Returns the role’s approver.
Working with ECMA Expressions 315



RoleBeans

The RoleBeans class includes methods for manipulating one or more RoleBeans as well as a list of 
RoleBeans. 

getDescription

public String[]getDescriptions()

Returns the localized role description.

getNames

public String[] getNames()

Returns the localized role names.

getRoleDns

public String[] getRoleDns()

Returns the role DNs. 

getRoleLevels

public long[] getRoleLevels()

Returns the role levels

getRoleBean

public RoleBean getRoleBean(String roleDN)

Returns the RoleBean with the specified role DN.

size

public int size()

Returns the number of RoleBeans in the list.

getBean

public RoleBean getBean(int n)

Returns the RoleBean at the specified index (n).

findRoles

Returns the roles based on filter values. It has four methods. These methods must be mentioned 
separately because different parameters are passed in each of these methods. 

 findRoles

public RoleBeans findRoles(String attributeKey, String relationalOp, String 
value, String locale, int roleLevel)

Returns the roles based on filter values. 

 findRoles
316 Working with ECMA Expressions



public RoleBeans findRoles(String attributeKey, String relationalOp, String 
value, int roleLevel)

Returns the roles based on filter values.

 findRoles

public RoleBeans findRoles(String attributeKey, String relationalOp, String 
value, String locale)

Returns the roles based on filter values.

 findRoles

public RoleBeans findRoles(String attributeKey, String relationalOp, String 
value)

Returns the roles based on filter values.

SodBean

The SodBean class includes methods for manipulating a single SodBean. 

getDescription 

public java.lang.String getDescription()

Returns the SoD’s localized description. 

getName

public java.lang.String getName()

Returns the SoD’s localized name.

getRole1Dn

public java.lang.String getRole1Dn()

Returns a role included in the SoD conflict. No special considerations are made between Role1Dn 
and Role2Dn. 

getRole2Dn

public java.lang.String getRole2Dn()

Returns a role included in the SoD conflict. No special consideration is made between Role1Dn and 
Role2Dn. 

getSodDn

public java.lang.String getSodDn()

Returns the SoD DN.

SodBeans

The SodBeans class includes methods for manipulating one or more SoDBeans objects along with a 
list of SodBeans. 
Working with ECMA Expressions 317



getDescriptions

public String [] getDescriptions()

Returns the localized description of the SoD. 

getNames

public String [] getNames()

Returns the localized names of the SoD. 

getRole1Dns

public String[] getRole1Dns()

Returns the first role in the SoD conflict. No special consideration is made for Role1Dn and Role2Dn.

getRole2Dns

public String[] getRole2Dns()

Returns the second role in the SoD conflict.

getSodDns

public String[] getSodDns()

Returns SoD DNs. 

getSodBean

public SodBean getSodBean(String sodDn)

Returns the SodBean with the specified SodDn.

size

public int size()

Returns the number of SodBeans. 

getBean

public SodBean getBean(int n)

Returns the SodBean at the specified index (n)

findSodsByRoles

findSodsByRoles has six methods. These methods must be mentioned separately because different 
parameters are passed in each of these methods. 

 findSodsByRoles

public SodBeans findSodsByRoles(List<String> roleDns, String locale)

Returns the SoDs based on a list of role DNs.

 findSodsByRoles
318 Working with ECMA Expressions



public  SodBeans findSodsByRoles(List<String> roleDns)

Returns the SoDs based on a list of role DNs by using the default application locale. 

 findSodsByRoles

public SodBeans findSodsByRoles(String targetRoleDn, String sourceRoleDn, 
String locale)

Returns the SoDs based on source and target DNs. 

 findSodsByRoles

public SodBeans findSodsByRoles(String targetRoleDn, String sourceRoleDn)

Returns the SoDs based on source and target DNs. 

 findSodsByRoles

public SodBeans findSodsByRoles(String[] roleDns)

Returns the SoDs based on an array of role DNs. 

 findSodsByRoles

public SodBeans findSodsByRoles(String[] roleDns, String locale)

Returns the SoDs based on an array of role DNs. 

findSods

findSods has two methods. These methods must be mentioned separately because different 
parameters are passed in each of these methods.

 findSods

public SodBeans findSods(String attributeKey, String relationalOp, String 
value, String locale)

Returns the SoDs based on the DAL attribute filter.

 findSods

public SodBeans findSods(String attributeKey, String relationalOp, String 
value)

Returns the SoDs based on the DAL attribute filter.

getGroupSodViolations

SodBeans getGroupSodViolations(String groupDn)

Returns the SoD violations for a specified group.

getRoleSodViolations

SodBeans getRoleSodViolations(String roleDn) 

Returns the SoD violations for a specified role.

getContainerSodViolations

SodBeans getContainerSodViolations(String containerDn
Working with ECMA Expressions 319



Returns the SoD violations for a specified container.
320 Working with ECMA Expressions



10 10Configuring Provisioning Teams

The Requests & Approvals tab in the Identity Manager User Application includes a group of actions 
called My Team’s Work. The My Team’s Work actions allow you to work with team member tasks and 
requests in a workflow. This section describes how to create a team and define its characteristics 
(such as members, manager, and request rights). 

About Teams
A team identifies a group of users and determines who can manage provisioning requests and 
approval tasks associated with this team. The team definition consists of a list of team managers, 
team members, and team options, as described below:

 The team managers are those users who can administer requests and tasks for the team. Team 
managers can also be given permission to set proxies and delegates for team members. Team 
managers can be users or groups.

 The team members are those users who are allowed to participate on the team. Team members 
can be users, groups, or containers within the directory. Alternatively, they can be derived 
through directory relationships. For example, the list of members could be derived by the 
manager-employee relationship within the organization. In this case, the team members would 
be all users that report to the team manager. 

NOTE: The Provisioning Application Administrator can configure the directory abstraction layer 
to support cascading relationships so that multiple levels within an organization can be included 
within a team. The number of levels to include is configurable by the administrator.

 The team options determine the provisioning request scope, which specifies whether the team 
managers can act on an individual provisioning request, one or more categories of requests, or 
all requests. The team options also determine whether team managers can set proxies for team 
members or set the availability of team members for the purpose of delegation. 

NOTE: The User Application supports only a single level for proxy assignments. Proxy 
assignments are not propagated to multiple levels.

The Provisioning Application Administrator can perform all team management functions. 

The teams you define are stored locally in the Designer project’s 
Provisioning\AppConfig\TeamDefs directory. The filenames are derived from the object key with 
the .team or .rbpmTeam (for RBPM 3.7 or higher) extension. 

Although a team can sometimes refer to a group in the Identity Vault, a team is not the same thing as 
a group. When you define a group in the Identity Vault, you identify a set of users that have something 
in common. However, the group does not automatically have the capabilities of a team within the 
User Application. To take advantage of the team capabilities within the User Application, you must 
define a team that points to the group.
Configuring Provisioning Teams 321



About Team Requests

A team request object specifies the requests that a team can work on. The request rights specify the 
actions that team managers can perform on the provisioning requests and tasks. 

The team definition has a one-to-many relationship with team request objects. This means that each 
team must have at least one team request object defined for it, but it can have more. Each team 
request object is associated with only one team definition.When you configure the team request 
object, you configure the task scope and permissions for the team manager. 

The task scope options define the manager’s ability to act on tasks: 

 Where a team member is an addressee 

 Where a team member is a recipient

WARNING: For security reasons, the recipient task scope option is disabled by default. Giving a 
team manager the ability to act on tasks where the recipient of the request is a team member 
can raise several security issues. First, the manager is then able to view data included on any of 
the forms that are displayed during the course of workflow execution, regardless of his or her 
trustee rights. Second, depending on the permission options (see below), a team manager could 
circumvent the approval process by claiming or approving the task, or by reassigning it to 
someone else. 

The permissions options define the team manager’s ability to: 

 Initiate a provisioning request on behalf of a team member.

 Retract a provisioning request on behalf of a team member.

 Make a team member a delegate for other team members’ provisioning requests.

 Claim a task for a team member who is a recipient or addressee (based on the task scope).

 Reassign a task for a team member who is a recipient or addressee (based on the task scope).

If both of the task scope options are disabled, the team manager cannot view or act on any active 
requests. Therefore, you must enable at least one of the Permissions options for the team manager.

NOTE: The User Application supports only a single level for delegate assignments. Delegate 
assignments are not propagated to multiple levels.

The trustee rights defined for a provisioning request apply to team managers who want to initiate a 
request on behalf of their team members. If the team manager does not have the trustee rights to a 
provisioning request definition, the team manager cannot make the request because the User 
Application does not display the provisioning request.
322 Configuring Provisioning Teams



Using a Team to Manage Direct Reports 

You can define a team that allows managers throughout an organization to control the provisioning 
environment for their direct reports. If defined properly, a single team definition can be used to allow 
all managers to control the activities of their direct reports. This means that you do not need to define 
a separate team for each reporting relationship. 

A team that supports direct reports within an organization has the following basic requirements:

 The members of the team are defined by the Manager-Employee relationship. 

 The managers of the team are defined by a dynamic group that searches subcontainers, using a 
a search filter that retrieves only the managers.

After the team has been defined, the User Application allows all managers to use the team 
management actions within the navigation menu. This gives the managers the ability to control the 
provisioning activities that their direct reports can perform. 

For details on how to define a team to manage direct reports, see “Creating a Team to Manage Direct 
Reports” on page 324.

Managing Teams

Creating a Team

To create a new provisioning team:

1 Launch the New Team Wizard in any of these ways: 

From Designer’s menus: 

 Select File > New > Provisioning Team, then click Next.

From the Provisioning view:

Right-click Provisioning Teams, then select New. 

The New Provisioning Teams dialog box displays. When the dialog box is launched from the File 
menu, it contains fields that are not displayed when it is launched from the Provisioning view.

2 Fill in the fields as follows:

Field Description

Identity Manager Project and Provisioning 
Application

Select the correct Identity Manager project and 
Provisioning Application.

NOTE: This field displays when you create queries 
from the File menu.

Identifier Type a common name (CN) for the team.

Display Label Type the name of the provisioning team. This is the 
name displayed in Designer and also in the User 
Application runtime. The label is localizable in the 
Team editor.

Description Provide a description of the provisioning team.

Domain Provide the domain for the team. It could be Roles, 
Resources, or Provisioning.
Configuring Provisioning Teams 323



3 Click Finish. The Team panel of the Provisioning Team editor displays. 

4 Type a description.

5 To define the team’s members, do one of the following: 

 Click DAL Relationship, then select the relationship that represents the team’s 
membership.

 Click All Users to select all users as members of this team.

 Click Identity Vault Objects. Click , then select the members from the Identity Vault. 
Members can be users, groups, containers, organizational units (OU), or organizations (O). 
Specifying an O or OU can impact the User Application’s runtime performance. The 
manager needs to search for the member using a select-pick list to reduce the performance 
impact. 

6 Click Permissions. The Team Permissions Configuration page displays. 

7 Click Save. 

The Team Permissions Configuration page is read-only. The object information is populated from 
the User Application. 

You must save the Provisioning Team for it to be available to the User Application. See “Deploying 
Provisioning Objects” on page 31. A provisioning team creates one object (srvprvRbpmTeam) in the 
User Application driver Appconfig Teams node. The srvprvRbpmTeam contains the provisioning 
teams object.

IMPORTANT: The team and the team request objects represented a team in the User Application 
versions prior to 3.7. The team request object contained the request that could be accessed by the 
team. User Application 3.7, 4.0 and later teams store the permissions on individual requests or 
request containers eliminating the need for two objects. For more information on team authorization, 
refer to “Team Configuration” in the NetIQ Identity Manager - Administrator’s Guide to the Identity 
Applications.

Deleting a Provisioning Team

You delete the Provisioning Team object from the Provisioning view by right-clicking the team, then 
selecting Delete. The Delete confirmation dialog box lets you specify whether to delete the object 
locally only, or from the Identity Vault during the next deploy of the parent object. 

Creating a Team to Manage Direct Reports

For information on creating the team, refer to “Team Configuration” in the NetIQ Identity Manager - 
Administrator’s Guide to the Identity Applications.

For more information on saving and deploying the team, see “Deploying Provisioning Objects” on 
page 31.

Selection Description

Object Type Specifies the type of authorized object.

Authorized Objects Specifies the name of the authorized object. 

Permission Specifies the permissions that the team has on that object. 
324 Configuring Provisioning Teams

https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bl8ujof
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bl8ujof
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-46/pdfdoc/identity_apps_admin/identity_apps_admin.pdf#bookinfo


11 11Configuring Roles

This section describes how to use the Roles Based tools to configure the contents of the Roles tab of 
the User Application. 

About the Roles Based Provisioning Module
The Identity Manager User Application’s Roles Based provides an easy way to assign people to 
privileges in target systems through their role membership. The module allows you to easily ensure 
that employees have access to the resources they need. 

A role defines a set of privileges related to one or more target systems or applications. When you 
assign a user to a role, the user is granted all the entitlements associated with the role (with any 
parameter values as specified in the Role editor). When a user is removed from a role, all 
entitlements granted when the user was assigned to the role are revoked. Only the entitlements 
granted through the role are revoked; entitlements the user has been granted through other means 
are not revoked.

About the Role Catalog
The Role Catalog uses the Identity Vault to store role definitions that the User Application uses to 
determine:

 The set of roles that it can display or modify.

 The separation of duties (SoD) constraints between roles. 

 The provisioning request definition to execute for role membership requests.

 The provisioning request definition to execute for SoD constraint exceptions. 

The User Application ships with:

 Two roles based provisioning request definitions.

 A Roles Category list.

 Default role levels. 

 Default mid-level system roles.

You use the Roles Based Provisioning tools to create new Role Catalog objects and customize 
existing ones for your own business needs. The Role Catalog node of the Provisioning view provides 
access to the Identity Manager Roles Based design and configuration tools. 

You can use the Role Catalog node to import, export, deploy, validate, compare, and localize the 
roles definitions, separation of duties constraints, and the Roles Configuration object as a group or 
individually. It also provides access to each of the Roles Based tools.
Configuring Roles 325



When you use any of the editors available through the Role Catalog, you modify a set of local XML 
files. The local files are created when you add a Role Service driver to the Identity Manager project. 
The files are created in the workspace in the project’s Provisioning\AppConfig\RoleConfig folder.

Table 11-1   Local Roles Directories

The Roles Configuration object definition file resides at the root of the RoleConfig folder. There can 
be only one such file, and its name is configuration.roleconfig.

The Role Catalog is deployed in the User Application driver’s AppConfig.RoleConfig file.

About the Role Editor
The Role editor allows you to create and configure the roles you want to assign and manipulate in the 
Roles tab of the User Application. You use the editor to define the role details. 

Understanding Role Hierarchy

The Roles Based uses a role hierarchy to simplify the model for assigning users to roles (and thus 
permissions to users). The role hierarchy allows you to assign roles in a more efficient way. For 
example, rather than assigning a user to twenty roles, you can do it by assigning role levels.

About Role Levels

Role levels define role hierarchy. Roles defined at the highest level (called Business Roles) define 
operations that have business meaning within the organization. Mid-level roles (called IT Roles) 
supports technology functions. Roles defined at the lowest level of the hierarchy (called Permission 
Roles) define lower-level privileges.

A higher-level role automatically includes privileges from the lower-level roles that it contains. For 
example, a Business Role automatically includes privileges from the IT Roles that it contains. 
Similarly, an IT Role automatically includes privileges from the Permission Roles that it contains. 

Role relationships are not permitted between peer roles within the hierarchy. In addition, lower-level 
roles cannot contain higher-level roles.

You can modify the label used for each role level in the User Application by defining localized strings 
for the level’s Name and Description in the role configuration editor. 

Directory Name Description

RoleDefs Contains a folder for each role level. These folders can contain additional 
hierarchy levels, depending on how you set up your roles. If you add categories 
or additional levels, they are reflected in the folder structure. The folders 
contain the definitions for the roles within that level, and the file extensions 
correspond to the level. For example, the files in the level10 folder have 
.level10 as the extension.

SoDDefs Contains the files that define the separation of duties constraints. Files have the 
.sod extension.
326 Configuring Roles



About Role Containers

A role container is an organizational unit within the User Application driver. The User Application 
allows you to assign a role to a container. When you to assign a role to a container, the users in the 
container are assigned to the role. This type of role assignment is called an indirect assignment. 
Roles explicitly assigned to a user from within the User Application are called direct assignments. 

Role containers reside under role levels. The User Application shows only the role containers that 
reside under the role level that you choose. You can create a role either directly in a role level, or in a 
container within the role level. Specifying the role container is optional. 

NOTE: Designer does not allow you to create roles with the same name under different containers, 
although the role container that you specify while creating roles might be different for different roles.

To create a role container, right-click the role level in which you want to create the container, select 
New Role Sub-Container, specify an identifier for the new container, and click OK.

Using the Role Editor 

Creating New Roles

1 Open the Create a Role Wizard in one of these ways: 

 From the Provisioning view, open Role Catalog, right-click Roles, then select New. 

 Right-click a role container, then select New.

 Select File > New > Provisioning > Role.

2 Fill in the fields as follows (* indicates a required field):

Field Description

Identity Manager Project and 
Provisioning Application*

The name of the Identity Manager project and the provisioning 
application where you want to create the role. 

NOTE: These two fields display when you launch the wizard 
from the File menu.

Identifier (CN)* The unique identifier for the role.

Display Name* The text displayed as the Role Name field in the User 
Application. You can translate this text into any of the 
languages supported by the User Application. For more 
information, see “Localizing Provisioning Objects” on page 39.

Description The text displayed as the Role Description field in the User 
Application. You can translate this text into any of the 
languages supported by the User Applications. For more 
information, see “Localizing Provisioning Objects” on page 39.

Role Container The root location of the roles objects within the User 
Application driver. It defaults to Business Role.

To specify a Role Container: 

1. Click Search to open the container selection dialog box. 

2. Select a container or subcontainer from the list. 

3. Click OK. 
Configuring Roles 327



3 Click Finish. Designer creates the role locally and opens the Role editor.

4 Fill in the remaining fields in the Overview tab as described in Table 11-4, “Role Overview 
Properties,” on page 333. 

5 Click Approval. 

For more information on completing the Contained Roles section, see “Specifying a Role 
Hierarchy” on page 329. For more information on how to use the Entitlements section, see 
“Specifying Entitlements” on page 330.

6 In the Approval section, choose Approval Details.

You are prompted for different values, depending your selection. See Table 11-3, “Role Approval 
Properties,” on page 332 for information about each type.

7 Save the role. 

For information on deploying a role, see “Deploying Provisioning Objects” on page 31.

Category* Allows you to categorize roles. Categories are used for filtering 
role lists in the User Application. The category names are 
defined in the directory abstraction layer Role Category list.

Trustee Rights Specifies the users, groups, or containers that can read, 
compare, and browse the roles. (Read, compare, and browse 
are the default privileges.)

Field Description
328 Configuring Roles



Specifying a Role Hierarchy

You specify a role hierarchy by defining the roles that contain other roles (called Role Relationships in 
the User Application). 

To define a role hierarchy for a new or existing role:

1 Navigate to the Associations tab of the Role editor. 

2 In the Contained Roles section, click + to add a lower-level role to the current role. 

The current role must be a mid-level (IT Role) or top-level role (Business Role), because the 
lowest level role (Permission Role) cannot contain other roles. The Role Search dialog box 
displays:

3 To use the Role Search dialog box: 

3a Specify the CN, Display Name, Description, Category, and Role Level on which you want to 
search. 

For CN, Display Name, and Description, you can enter a wildcard (such as S*, *S), or 
regular expressions (such as [A-Z][a-z]*).

You can enter a value for all of the fields or none of the fields. If you do not supply a value in 
a particular field, the search returns all of the possible values for that field. If you enter 
values in one or more of the fields, the values are ANDed together to create the search 
filter. The search occurs on the roles defined locally, not the roles deployed to the driver.

Role Level values are All Lower Levels, Level 10, and Level 20 depending on the level of 
the currently selected role.

3b Click Search. Roles matching the search criteria are displayed in the Matching Roles 
section within the Available roles list. 

3c Double-click the role or select the role and click . 
Configuring Roles 329



3d Click OK when you are done adding roles. 

Designer closes the search dialog box and displays the roles you selected in the Contained 
Roles section.

NOTE: The ability to add entitlements to a role will be deprecated in future. You should add 
entitlements to a resource by using the User Application Web client. 

Specifying Entitlements

1 In the Entitlements section, click + to add an entitlement for this role. The Entitlement Search 
dialog box displays: 

2 To complete the Entitlement search: 

2a Choose the driver that contains the entitlement you want. 

2b Specify the CN, Display Name, and Description on which you want to search. 

You can enter a wildcard (such as S*, *S) or a regular expression (such as [A-Z][a-z]*), then 
click Search.

You can enter a value for all of the fields or none of the fields. If you do not supply a value in 
a particular field, the search returns all of the possible values for that field. If you enter 
values in one or more of the fields, the values are ANDed together to create the search 
filter. The search occurs locally. Entitlements contained by the selected driver that match the 
search criteria are displayed in the Entitlements Selection section.

The search is complete when the Entitlement field displays <Select an Entitlement>.

3 To complete the Entitlement selection:

3a Choose the entitlement from the Entitlement drop-down list.

The Description, Type, and Multi-Value fields are read-only. These values are obtained 
from the Entitlement definition. 
330 Configuring Roles



3b Choose the parameter value.

3c Click OK to save the definition. Designer displays the definition in the Entitlements table. 
Query parameter values are translated to the query’s full CN when displayed in the table.

The entitlements defined for the role are triggered when the role is granted. However, if the 
entitlement is invalid, the role assignment still succeeds, but a message about the entitlement failure 
is written to the role service Audit log.

Specifying Resource Associations

The Resource Associations table is read-only. It is populated through the User Application Web client.

Table 11-2   Specifying Resource Associations

The information present in the Role editor is updated for all the roles when the Role Catalog is 
imported from eDirectory. You can only detect new resource associations but not the resource 
associations that have been removed in the User Application. 

Type Parameter Value Options

None No parameter value needed.

User-defined Specify your own value.

Admin-defined Select from the available parameter values provided in the drop-down list. 
These values are retrieved from the local Entitlement definition.

Query Select from the available parameter values provided in the drop-down list. 
Designer connects to your Identity Vault to retrieve a cached list of available 
parameter values. These values were obtained by a prior run of the query 
defined in the Entitlement section. 

If Designer is unsuccessful in retrieving these values, it displays a dialog box 
reporting the problem. You can either resolve these issues before attempting to 
create this entitlement reference again or simply enter your own value in the 
Parameter Value field.There are two buttons to help you retrieve your query 
parameter values:

: Refresh cached query result. Click this button if you want Designer to 
attempt to connect to the Identity Vault and retrieve the query parameter values. 
This is most useful if Designer was not able to connect to the Identity Vault on 
the first attempt. 

: Run query in Identity Vault. Click this button if you want Designer to run 
the query in the Identity Vault and return the refreshed results. 

Field Description

Resource Name Name of the resource associated with the role.

Association Description Description of the reason for associating the resource with the role.

Association Values Values applied to the resource when the role is assigned.
Configuring Roles 331



Ensure that the deleted resource associations are removed from the Resources list. 

1 Before performing a Live Import from the Role Catalog, go to the Navigator View and navigate to 
the \MyProject\Model\Provisioning\AppConfig\RoleConfig\ResourceAssociations 
folder.

2 Remove all the files in the folder except the ResourceAssociations.digest file.

3 From the Provisioning View, select the Role Catalog object and run the Live Import to import all 
the resource associations again and to provide you the updated correct information.

Specifying Role Approvals

Navigate to the Approval tab from the Role editor.

Select the type of approval required when assigning a role.

Table 11-3   Role Approval Properties

Field Description

No Approval Select this option if the role does not require approval when requested.
332 Configuring Roles



Role Properties Reference

Table 11-4   Role Overview Properties

Standard 
Approval

Select this option if the role requires approval when requested, and you want the approval 
to execute the standard provisioning request definition that ships with the Roles Based . 
You must select the type of approval (serial or quorum) and the valid approvers.

Serial: Select this option if you want the role to be approved by the approvers the 
Approvers list. The approvers are processed sequentially in the order they appear in the 
list.

Quorum: Select this option if you want the role to be approved in parallel and to be 
complete when the percentage of approvers specified is reached.

For example, if you wanted to require that 25 percent of approvers in the list approve the 
condition, you would specify Quorum and specify a number; the value is assumed to be a 
percentage.

Approvers An approver can be a user, group, or role. To add approvers:

1. Click +. 

If you are connected to the Identity Vault, the Browse Identity Vault dialog box 
automatically displays.

2. Navigate the Identity Vault to locate your approvers.

To locate roles, navigate to the User Application driver’s 
AppConfig.RoleConfig.RoleDefs container.

3. Select the approver, then click OK.

If Designer is not able to connect to the Identity Vault, you can add the approver manually 
by clicking in the row and typing the approver’s distinguished name, for example, 
admin.novell. Only deployed roles can be specified.

Custom Approval Approval process definition: Select a provisioning request definition to execute when 
the role is requested. The approvals displayed in this list have Process type of Role 
Approval.

Section Field Description

Role Identifier The unique identifier for the role.

Display Name The text displayed in the Roles tab of the User Application as the 
Role Name. You can translate this text into any of the languages 
supported by the User Application. For more information, see 
“Localizing Provisioning Objects” on page 39.

Description The text displayed in the Roles tab of the User Application as the 
Role Description. You can translate this text into any of the languages 
supported by the User Application. For more information, see 
“Localizing Provisioning Objects” on page 39.

Role Level Defines the role’s level in the role hierarchy. Level 30 roles are top-
level roles. Level 20 roles are mid-level roles. Level 10 roles are the 
lowest-level roles. Higher-level roles include privileges from lower-
level roles.

Field Description
Configuring Roles 333



Table 11-5   Role Approval Properties

Table 11-6   Role Association Properties

Categories Available Categories Lists the categories that are available for the new role to be 
associated with. The items in this list are populated from the Role 
Category list in the directory abstraction layer. 

Selected Categories Lists the categories that the new role is associated with. Use the Add 
Category and Remove Category buttons to associate the current 
role with one or more categories.

Role Trustees Trustees Specifies the users, groups, or containers that can read, compare, 
and browse the roles. (Read, compare, and browse are the default 
privileges.)

Role Owners Owners A user who is designated as the owner of the role definition. When 
you generate reports against the Role Catalog, you can filter these 
reports based on the role owner. The role owner does not 
automatically have the authorization to administer changes to a role 
definition. In some cases, the owner must ask a role administrator to 
perform any administration actions on the role.

Section Field Description

Contained Roles Contained Roles One or more roles of a lower level than the one being defined. 

Entitlements Entitlements One or more Identity Vault objects that represent a resource in a 
connected system.

Approval Options No Approval Select this option if the role does not require approval when 
requested.

Standard Approval Select this option if the role requires approval when requested, and 
you want the approval to execute the standard provisioning request 
definition that ships with the Roles Based . You must select the type 
of approval (serial or quorum) and the valid approvers.

Approvers An approver can be a user, group, or role. 

Custom Approval Approval process definition: Select a provisioning request 
definition to execute when the role is requested. The approvals 
displayed in this list have Process type of Role Approval.

Section Field Description

Resources Resource Name Name of the resource associated with the role.

Association 
Description

Description of the reason for associating the resource with the 
role.

Association Values Values applied to the resource when the role is assigned.

Section Field Description
334 Configuring Roles



About the Separation of Duties Editor
The Separation of Duties (SoD) editor allows you to:

 Define a separation of duties constraint (or rule).

 Define how to process requests for exceptions to the constraint.

Each SoD constraint represents a rule that makes two roles mutually exclusive. If a user is in one 
role, he or she cannot be in the second role, unless there is an exception allowed for that constraint. 
You can define whether exceptions to the constraint are always allowed or are only allowed through 
an approval flow. 

Using the Separation of Duties Editor

To create a new separation of duties constraint:

1 Open the Separation of Duties Wizard in one of these ways: 

 From the Provisioning view, open Role Catalog, right-click Separation of Duties, then 
select New. 

 Select File > New > Provisioning > Separation of Duties.

The SoD Wizard displays:
Configuring Roles 335



2 Fill in the fields as follows:

* Indicates the field is required.

3 Click Finish. 

Designer creates the SoD constraint and launches the SoD editor.

4 Fill in the fields as described in Table 11-8, “Roles Configuration Properties,” on page 340.

5 Save and deploy the constraint definition.

Field Description

Identity Manager Project and 
Provisioning Application*

The name of the Identity Manager project and the provisioning 
application where you want to create the SoD. 

NOTE: These two fields display only when you launch the wizard 
from the File menu.

Identifier (CN)* The unique identifier for the SoD. 

Display Name* The text used when the SoD name displays in the User Application. 
You can translate this text into any of the languages supported by 
the User Application. For more information, see “Localizing 
Provisioning Objects” on page 39.

Description The text displayed as the SoD Description in the User Application. 
You can translate this text into any of the languages supported by 
the User Application. For more information, see “Localizing 
Provisioning Objects” on page 39
336 Configuring Roles



Separation of Duties Constraints Properties

Table 11-7 describes the fields on the SoD property page. 

Using the Separation of Duties Properties

Table 11-7   Separation of Duties Properties

Section Field Description

Separation of 
Duties 
Constraints

 Identifier (CN) Read-only. Unique ID for the SoD.

Display Label The text displayed as the SoD Constraint Name in the User 
Application. You can translate this text into any of the languages 
supported by the User Application. For more information, see 
“Localizing Provisioning Objects” on page 39.

Description The text displayed as the SoD Constraint Description field in the User 
Application. You can translate this text into any of the languages 
supported by the User Application. For more information, see 
“Localizing Provisioning Objects” on page 39.

Roles Conflicting Role The name of the role for which you want to define a constraint. 

Click Browse to locate a specific role from the available roles. See 
“Using the Role Search Dialog Box” on page 338.

A role defines a set of privileges related to one or more target systems 
or applications. 

Conflicting Role The name of the role in conflict. Click Browse to locate an existing role 
from the available roles. This search excludes the role already 
selected. 
Configuring Roles 337



Using the Role Search Dialog Box

The Role Search dialog box displays when you click Browse in the Roles section of the SoD editor. 
The dialog box helps you locate the existing roles for which you can create SoD constraints. 

1 In the dialog box, specify the CN, Display Name, Description, Role Category, and Role Level on 
which you want to search. 

For CN, Display Name, and Description, you can enter a wildcard (such as S*, *S) or regular 
expressions (such as [A-Z][a-z]*).

Sod Approval 
Definition

Approval Required Select Yes if you want to launch a workflow when a user requests an 
exception to the SoD constraint.

Select No if the user can request an exception to the SoD constraint 
and no approval is required. In this case, the exception is never denied. 

SoD Approval 
Definition

Displays the read-only name of the provisioning request definition that 
executes when a user requests an SoD constraint exception. The value 
is derived from the Roles Configuration object. It is only executed when 
the Approval Type is SoD allowed with workflow.

Approval Type A read-only field that displays the processing type for the provisioning 
request definition displayed above. This value is derived from the Roles 
Configuration object.

Use Default 
Approvers

Select Yes to use the default approvers defined in the Roles 
Configuration object. Does not enable the Approvers selection list in 
this property page.

IMPORTANT: When you choose this option, you must define the 
approvers in the role configuration editor. If you do not specify 
approvers, you are able to deploy the SoD, but users encounter a 
runtime error because there are no approvers defined.

Select No to enable the Approvers selection list in this property page.

If you change the selection from Yes to No and then perform a 
Compare, the objects are considered equal. After you specify 
Approvers, the comparison is no longer equal. 

Approvers or 

Default 
Approvers

Approvers An approver can be a user, group, or role. To add approvers:

1. Click +.

If you are connected to the Identity Vault, the Browse Identity 
Vault dialog box automatically displays. 

2. Navigate the Identity Vault to locate your approvers. 

To locate roles, navigate to the User Application driver’s 
AppConfig.RoleConfig.RoleDefs container.

3. Select the approver, then click OK.

If Designer is not able to connect to the Identity Vault, you can add the 
approver manually by clicking in the row and typing the approver’s 
distinguished name, for example, admin.novell. Only deployed roles 
can be specified.

Section Field Description
338 Configuring Roles



You can enter a value for all of the fields or none of the fields. If you do not supply a value in a 
particular field, the search returns all of the possible values for that field. If you enter a value in 
one or more of the fields, the values are ANDed together to create the search filter. The search 
occurs on the roles defined locally. Roles matching the search criteria are displayed in the 
Matching Roles selection list.

2 Select a role from the Roles selection list, then click OK to return to the SoD property page. 

3 Click OK. 

Clicking OK closes the Search for Role dialog box and populates the role in the SoD properties 
page. When no roles are available for the specified search criteria, the OK button is disabled.

About the Role Configuration Editor
The role configuration editor is a graphical tool for defining administrative settings for the Roles 
Configuration object. The Roles Configuration object resides in the Role Catalog 
(nrfConfigurationobject), and it contains basic settings for an instance of the Role subsystem. 
There is only one configuration object per Role Catalog, and it resides at the root of the RoleConfig 
folder. The Roles Configuration object is a protected object, so the menu items Cut and Delete are 
disabled. You can copy and paste this object from another project; a paste operation overwrites the 
existing object. To start the role configuration editor: 

1 Expand the Provisioning view, then navigate to and open the Role Catalog. 

2 Double-click the Role Configuration node. 

Designer displays the role configuration editor.
Configuring Roles 339



3 Fill in the fields as described in Table 11-8.

Role Configuration Editor Properties

The properties you set in the role configuration editor are described in Table 11-8.

Table 11-8   Roles Configuration Properties

Category Field Description

General Grace Period for Role 
Assignment Removal 
(seconds)

Specifies the amount of time, in seconds, before a role 
assignment is removed from the Role Catalog.

The value is 0 by default. A grace period of zero means 
that when someone is removed from a role assignment, 
the removal happens immediately and the subsequent 
revocation of entitlements is initiated immediately. 

You might use the grace period to delay the removal from 
a role of an account that would subsequently be re-
added (for example if a person was being moved 
between containers). An entitlement can disable an 
account (this is the default) rather than removing it.
340 Configuring Roles



Role Levels Role Levels Read-only level that defines the role hierarchy. The 
hierarchy rules are: 

 Level 30 roles are higher-level roles in the 
hierarchy. 

 Level 20 and Level 10 roles are lower-level roles. 

 Level 30 roles include permissions from lower-level 
roles.

 Lower-level roles have permissions that are 
included in higher-level roles. 

Display Name Specifies the text to display in the User Application Roles 
tab for each role level. By default, they are Permission 
Role (Level 10), IT Role (Level 20), and Business Role 
(Level 30). You can translate this text into any of the 
languages supported by the User Application. For more 
information, see “Localizing Provisioning Objects” on 
page 39.

The User Application caches this value in the 
RoleSystem cache holder. For your changes to Role 
Level Display Name to be visible in the User Application, 
you must flush the RoleSystem cache after you deploy 
the Role Configuration object.

Description Specifies the text to display in the User Application Roles 
tab for each Role Level Description. You can translate 
this text into any of the languages supported by the User 
Application. For more information, see “Localizing 
Provisioning Objects” on page 39.

The User Application caches this value in the 
RoleSystem cache holder. For your changes to Role 
Level Description to be visible in the User Application, 
you must flush the RoleSystem cache after you deploy 
the Role Configuration object.

Category Field Description
Configuring Roles 341



Separation of 
Duties (SoD) 
Settings

Approval Type Select Serial if you want the SoD to be approved 
sequentially by the approvers in the order they appear in 
the approvers list. 

Select Quorum if you want the SoD to be approved in 
parallel and to be complete when the percentage of users 
specified is reached. 

For example, if you wanted to require that 25 percent of 
approvers in the list approve the condition, you would 
specify Quorum and specify a number; the value is 
assumed to be a percentage.

Approvers The actual list of individuals, users, groups, or roles that 
can approve or deny an SoD exception/override. This list 
can be overridden in the definition of an SoD constraint in 
the SoD editor. You can use the following buttons to 
manage the Approvers list:

  Click to add an approver. Adds the name to the 
bottom of the list. 

  Click to delete the selected approver. 

  Click to access the Identity Vault to search for 
an approver to add. 

  Click to move an approver lower on the list. 

  Click to move an approver higher on the list. 

Standard 
Approvals

Role Approval Definition Read-only name of the provisioning request definition 
that runs for a role approval request for this driver.

SoD Approval Definition Read-only name of the provisioning request definition 
that runs for a SoD exception approval for this driver. 

Resource Grant Approval 
Definition

Read-only name of the provisioning request definition 
that runs for a resource grant approval request for this 
driver.

Resource Revoke Approval 
Definition

Read-only name of the provisioning request definition 
that runs for a resource revoke approval request for this 
driver.

Entitlement Query 
Settings

Default Query Timeout 
(minutes)

The Roles Based periodically queries the external 
entitlement system to refresh the details of the 
entitlements that are displayed in the Resource Catalog. 

You can limit the time that the system waits for the query 
result by using the Default Query Timeout option.

Default Refresh Rate 
(minutes)

For the entitlement queries, you can set the time that the 
system waits for the query result by using the Default 
Refresh Rate option.

Category Field Description
342 Configuring Roles



Importing Roles Defined in CSV Files
The Role Catalog provides a wizard for importing roles defined in a comma-separated values (CSV) 
file. For example, if you define the set of roles you want to implement by using a spreadsheet, you 
can export the definitions of those roles to a CSV file format, then use the Import Roles Wizard to add 
the roles to the Role Catalog. 

Setting Up the File to Import

When you create a file to use as input to the Import Roles wizard, you must follow the column layout 
defined in Table 11-9. In addition, you must also follow the CSV file format described in “Required 
CSV File Format” on page 346.

Table 11-9   Import Record Format

Column 
Number

Field Name Description

1 role level Required field. Valid role levels are: 10, 20, and 30.

 10: Permission Role

 20: IT Role

 30: Business Role

If an invalid role level is specified, the wizard writes the role 
record to the error file. It does not create the role. 

For example: 

30

2 sub-container Optional field. The name of the subcontainer relative to the 
role level. The wizard creates any subcontainers that do not 
exist. There is no limit on the number of subcontainers, but 
five levels is the recommended maximum depth. 

For example:

"System\OTB"

3 id Required field. The role’s identifier (CN). This name must be 
unique within the role level. If the CSV file contains multiple 
rows with the same ID, the wizard imports and creates a 
record for the first one it encounters. It then writes any 
subsequent records with the same ID to the error file. 

For example:

"Doctor"
Configuring Roles 343



4 localized display names Optional field. The the translated string used to display the 
role name. Accepts zero or more values. The value must be 
in this format:

"java-locale-code~string" 

The ~ delimits the locale and its localized string. The | symbol 
delimits each set of locale data. 

For example:

"en~Doctor|it~Dottore|fr~Docteur"

If you do not want to localize display names, you can supply 
a single string. The wizard uses this string as the value for 
the default Designer locale upon import. If no value is present 
when you attempt to deploy the associated role, Designer 
generates a validation error. 

5 localized descriptions Optional field. The translated string used to display the role 
description. Accepts a list of zero or more values. The value 
must be in this format:

"java-locale-code~string" 

The ~ delimits the locale and its localized string. The | symbol 
delimits each set of locale data.

For example:

"en~Doctor|it~Dottore|fr~Docteur"

If you do not want to localize descriptions, you can supply a 
single string. The wizard uses this string as the value for the 
default Designer locale upon import. If no value is present 
when you attempt to deploy the associated role, Designer 
generates a validation error. 

6 categories Required field. This value should map to a valid category key 
based on the Role Category list defined in the directory 
abstraction layer. Accepts a list of zero or more values. 

If you do not specify a value, the wizard inserts the role 
category key default.

If the value is invalid (it does not exist in the directory 
abstraction layer), the wizard still includes it in the newly 
created role; however, Designer’s validation requires that this 
be fixed before the role can be deployed. 

For example:

"system|doctor|nurse"

7 owners Optional field. Represents the distinguished name of the 
owner of the role. Accepts a list of zero or more values.

For example: 

"admin.novell|ablake.users.medical-
idmsample.novell"

Column 
Number

Field Name Description
344 Configuring Roles



8 trustees Optional field. Represents the distinguished name of the 
trustees of the role. Accepts a list of zero or more values.

For example: 

"admin.novell|ablake.users.medical-
idmsample.novell"

9 contained roles Optional field. The role level and common name (CN) of the 
child or contained roles. Accepts zero or more values.

For example: 

"10~Administer Drugs|10~Fill Prescriptions"

10 entitlements Optional field. DN and parameter values of the role’s 
entitlements. Accepts zero or more values. 

For example:

"Groups.GroupEntitlementLoopback.TestDrivers.novel
l~Medical 
Operations|Groups.GroupEntitlementLoopback.TestDri
vers.novell~Pharmacy"

11 approval workflow Optional field. Specifies the name of the provisioning request 
common name and its quorum value. Valid values include:

 None: Provide the empty string ““.

 Standard: Supply key word Standard followed by the 
quorum value. For example: 

"Standard~50"

 Custom: Enter the provisioning request definition CN. 
For example: 

"MyCustomPrdCN"

Specify Quorum values as follows:

 Serial: Specify a quorum value of 0.

 Quorum percentage: Specify a value between 1-100.

12 approvers Optional field. Represents the distinguished name (DN) of the 
approvers when the approval workflow value is Standard. 
The order of the approvers in this field is important if the 
quorum value is serial. Accepts zero or more values. 

For example:

"admin.novell|ablake.users.medical-
idmsample.novell"

If the approval workflow is not Standard and you specify a list 
of approvers, the wizard writes the record to the error file 
because approvers are not valid.

Column 
Number

Field Name Description
Configuring Roles 345



General Field Formatting Rules

 Multi-value properties: Use the | symbol as the delimiter between values. 

 DN properties: Specify in dot notation. Designer validates these properties on deploy to ensure 
that the values correspond to existing Identity Vault objects.

 Character set encoding must be UTF-8

Required CSV File Format

When you create your spreadsheet to use as input to the Import Roles Wizard, keep in mind that the 
wizard expects a specific format. It expects a twelve-column document with the columns defined in 
the order described in Table 11-9 on page 343. The wizard also expects the input file to follow the 
CSV format rules defined in RFC4180. This format is briefly summarized below:

 Each role record is on a separate line. 

 Each field in a role record is separated by a comma and is quoted.

 Each line is delimited by a line break (CRLF) 

 The first line of the file can be a header line, but this is optional. The wizard allows you to identify 
whether the file contains a header line.

 If your file contains a header line, it must contain the role record’s field names. The header line 
field count must correspond to the field count of each line in the file. 

 Quotes on numbers are not required. 

 A role record example:

20," 
","Doctor","en~Doctor|it~Dottore|fr~Docteur","en~Doctor|it~Dottore|fr~Docteur"
,"doctor",,"admin.novell|ablake.users.medical-
idmsample.novell",,"Groups.GroupEntitlementLoopback.TestDrivers.novell~Medical 
Operations|Groups.GroupEntitlementLoopback.TestDrivers.novell~Pharmacy",,

 Quotes and nested quotes: You can use single quotes within a text field (such as Display name). 
Use double quotes to enclose a column.

NOTE: For optional fields, the line must include an empty string "" as a placeholder.

Using the Wizard to Import Roles

1 Open the Provisioning view of the Designer project where you want to import the roles.

2 Right-click a Role Catalog, the Roles node, or a role level (such as Business Role), then select 
Import from CSV.

Designer launches the wizard.

If you select a role level, the wizard imports only the roles for that level and ignores the other 
roles in the file. 
346 Configuring Roles



3 Fill in the fields as follows:

4 Click Finish.

The wizard reads the CSV file and adds all of the roles that meet the criteria for import. If the 
wizard encounters an error (see Error Handling for a list of possible errors), the wizard writes the 
role record to an error file.The wizard creates the error file in the same location as the Role CSV 
file to import, and it names the file the same name as the Role CSV file with the _errors 
appended to the name. 

Only the errors identified in Error Handling are severe enough to prevent the wizard from 
creating the role. If the wizard encounters other types of errors, it adds the role, but you must 
make corrections before the role can be deployed. For example, if the category specified in the 
role is not yet added to the directory abstraction layer role category list, the role can be added, 
but Designer displays the role with an informational message as shown in Figure 11-1.

Figure 11-1   Role Imported with Invalid Category Specified

Field Name Description

Role CSV File Specify the name and location of the CSV file you want to 
import. 

Ignore header row If the file you specify contains a header row, then select Ignore 
header row in CSV file.
Configuring Roles 347



Roles that are created with errors like this cannot be deployed until the errors are corrected. The 
Project Checker notifies you of the errors if you attempt to deploy the roles or if you validate the 
roles objects. 

TIP: If the role has no category, the wizard adds the Default category. If the category supplied 
does not exist, then it causes the error shown in Figure 11-1 on page 347.

Error Handling

Table 11-10 on page 348 describes the cases where a role cannot be imported. When the wizard 
encounters these errors, it generates an error file and writes the complete role record to the file. It 
maintains the role’s original column order except that it inserts a new column as the first column in the 
record. This column includes the error code. You can modify the associated role to fix the error 
directly within the error file, delete the error code column, then specify this error file as input to the 
wizard. 

Table 11-10   CSV Import Wizard Error Codes

Error Code Description

INVALID_LEVEL The row contains a container level that is not valid. This can occur 
if the level is missing or is not one of these values: 10, 20, or 30. 

To fix this problem, change the level to 10, 20, or 30.

ROLE_ID_NOT_UNIQUE A role with the specified ID in that level already exists. To fix this 
problem change the ID or the role level.

INVALID_SUBCONTAINER_NAME The subcontainer name can contain only: alphanumeric 
characters, digits, underscore, and spaces. To fix this problem, 
update the subcontainer name to follow these rules.

INVALID_ID_NAME The role ID contains invalid characters. To fix this problem, edit the 
name to follow the rules for valid characters: alphabetic 
characters, digits, underscores, and spaces.

INVALID_ROLE_CN
348 Configuring Roles



12 12Configuring Resources

This section describes how to use the Resource editor to configure resources and entitlements.

About Resources
A resource is any digital entity such as a user account, computer, or database that a business user 
needs to be able to access. The User Application provides a convenient way for end users to request 
the resources they need. In addition, it provides tools that administrators can use to define resources. 
Each resource is mapped to an entitlement. A resource definition can have no more than one 
entitlement bound to it. A resource definition can be bound to the same entitlement more than once, 
with different entitlement parameters for each resource.

About the Resource Editor
 “About Resource Containers” on page 349

 “Using the Resource Editor” on page 349

 “Resource Property Reference” on page 352

About Resource Containers

A resource container is an organizational unit within the User Application driver. The User Application 
allows you to assign a resource to a container. When you to assign a resource to a container, the 
users in the container are assigned that resource. This type of resource assignment is called an 
indirect assignment. Resources explicitly assigned to a user from within the User Application are 
called direct assignments. 

Resource containers reside under the main Resources container in the Role Catalog. You can create 
a role either directly in Resources, or in a container within Resources. Specifying the resource 
container is optional.

To create a resource container, right-click Resources, select New Resource Sub-Container, specify 
an identifier for the new container, and click OK.

Using the Resource Editor

Creating Resources

1 Open the Create Resource Wizard in one of these ways: 

 From the Provisioning view, open Role Catalog, right-click Resources, then select New. 

 Select File > New > Provisioning > Resource.

The Create Resource Wizard displays:
Configuring Resources 349



2 Fill in the fields as follows (*indicates a required field).

3 Click Finish. Designer creates the resource locally and opens the Resource editor.

Use the General tab to modify the values you entered in the wizard, and to specify a Resource 
Owner. For more information on the General properties, see Table 12-2 on page 352.

Specifying Entitlements

Navigate to the Entitlement tab. The Entitlement page is in read-only mode. It shows entitlements 
associated with a resource. 

Field Description

Identity Manager Project and 
Provisioning Application * 

The name of the Designer project and the provisioning application 
where you want to create the resources. 

NOTE: These two fields display when you launch the wizard from 
the File menu. 

Identifier (CN)* The unique identifier for the resource.

Display Name* The text displayed as the Resource Name field in the User 
Application. You can translate this text into any of the languages 
supported by the User Application. For more information, see 
“Localizing Provisioning Objects” on page 39

Description The text displayed as the Resource Description in the User 
Application. You can translate this text into any of the languages 
supported by the User Application. For more information, see 
“Localizing Provisioning Objects” on page 39.

Category* Allows you to categorize resources. Used for filtering resource lists 
in the User Application. The category names are defined in the 
directory abstraction layer Resource Category list.

Trustee Rights Specifies the users, groups, or containers that can read, compare, 
and browse the resources. (Read, compare, and browse are the 
default privileges.)

Field Description

Entitlement Name The description of the entitlement if the entitlement has been imported 
and is known to the Designer Identity Vault. Otherwise, it is simply the 
entitlement DN.

Entitlement Description Information about the entitlement description. It could also be the 
entitlement DN.

Entitlement Value The entitlement value can be static or dynamic. 

 If it is static, the value displayed is the one chosen by the resource 
administrator when the resource was created.

 If it is dynamic, the Entitlement Value is set at the request time 
under the specified Request Form field.
350 Configuring Resources



Specifying Request Form

Navigate to the Request Form tab. The Request Form page is in read-only mode. The information is 
displayed in the Request Form fields when a Resource is requested.

Table 12-1   Form Field Properties

Specifying Approvals

1 Navigate to the Approvals tab. 

2 Select Allow role approval to override resource approval when you want the requesting system 
(such as role provisioning) to override approvals of the resource provisioning.

3 Click the Grant or Revoke tab, then select the type of grant or revoke for the resource. 

 None: Select this option when no approval is required for a resource grant or revoke 
request. Continue with Step 5.

 Standard: Select this option if the resource requires approval for a grant or revoke request, 
and you want the approval to execute the standard provisioning request definition that ships 
with the Roles Based . Continue with Step 4.

 Custom: Select this option when you want to specify a custom provisioning request 
definition for granting or revoking resources. You are prompted to select a provisioning 
request definition from the dropdown list. The list is populated with approvals whose 
Process Type is Resource. Continue with Step 5.

Field Description

ID The system-generated ID for the field.

Label The display label to be used on the field.

Binding  Static, if the value is assigned at design time.

 Dynamic, if the value is assigned at request time.

Data Type Can be a String, Integer, Boolean, List, or EntitlementRef type.

Data Value The binding value can be static or dynamic.

 If it is static, it uses the value specified by the Resource Administrator.

 If it is dynamic, the value is specified at request time.

List ID If the Data Type is List, then a List ID is specified.

Entitlement DN If the Data Type is EntitlementRef, then an Entitlement DN is specified.

Is Multi-Value Boolean. True, if users can specify more than one value for this field, else 
False.

Is Hide Boolean. True, if the value is hidden during the request time.
Configuring Resources 351



4 For Standard Approval types, fill in the fields as follows: 

5 Save the Resource definition. 

Resource Property Reference

Table 12-2   Resource Overview Properties

Field Description

Approval Type Serial: Select this option if you want the resource grant or revoke request to be 
approved by the approvers listed in the Approvers list. The approvers are 
processed sequentially in the order they appear in the list. 

Quorum: Select this option if you want the resource grant or revoke request to 
be approved in parallel and to be complete when the percentage of approvers 
specified is reached. For example, if you wanted to require that 25 percent of 
approvers in the list approve the condition, you would specify Quorum and 
specify a number; the value is assumed to be a percentage.

Approvers An approver can be a user, group, or role. To add approvers:

1. Click +.

If you are connected to the Identity Vault, the Browse Identity Vault dialog 
box automatically displays. 

2. Navigate the Identity Vault to choose your approvers. 

To locate roles, navigate to the User Application driver’s 
AppConfig.RoleConfig.ResourceDefs container.

3. Select the approver, then click OK.

If Designer is not able to connect to the Identity Vault, you can add the approver 
manually by clicking in the row and typing the approver’s distinguished name, for 
example, admin.novell. Only deployed roles can be specified.

Property Description

Identifier (CN) The unique identifier for the resource.

Display Name The text displayed as the Resource Name field in the User Application. You 
can translate this text into any of the languages supported by the User 
Application. For more information, see “Localizing Provisioning Objects” on 
page 39

Description The text displayed as the Resource Description in the User Application. You 
can translate this text into any of the languages supported by the User 
Application. For more information, see “Localizing Provisioning Objects” on 
page 39.

Categories Allows you to categorize resources. Used for filtering resource lists in the User 
Application. The category names are defined in the directory abstraction layer 
Resource Category list.

Trustees Specifies the users, groups, or containers that can read, compare, and browse 
the resources. (Read, compare, and browse are the default privileges.)
352 Configuring Resources



Importing Resources Defined in CSV Files
The Resource Catalog provides a wizard for importing resources defined in a comma-separated 
values (CSV) file. For example, if you define the set of resources you want to implement by using a 
spreadsheet, you can export the definitions of those resources to a CSV file format, then use the 
Import Resources wizard to add the resources to the Resource Catalog. 

Setting Up the File to Import

When you create a file to use as input to the Import Resources Wizard, you must follow the column 
layout defined in Table 12-3. In addition, you must also follow the CSV file format described in 
“Required CSV File Format” on page 356.

Table 12-3   Import Record Format

Owners A user who is designated as the owner of the resource definition. The resource 
owner does not automatically have the authorization to administer changes to 
a resource definition. 

Property Description

Column 
Number

Field Name Description

1 Container Optional field. If specified, the wizard creates the resource under this container. 
Otherwise, the driver creates the resource under the default resource container 
called Resources. 

For example:

"Clinic",Doctor8,en~Doctor8,en~Doctor|it~Dottore|fr~Docteur,,admi
n.novell|ablake.users.medical-
idmsample.novell,admin.novell|ablake.users.medical-
idmsample.novell,admin.novell|ablake.users.medical-
idmsample.novell,Standard~50,admin.novell|ablake.users.medical-
idmsample.novell,MyCustomPrdCN,true

where clinic is the name of the container. The wizard will create the resource 
under clinic. 

If you do not want to specify the container, you can supply an empty string. The 
wizard uses this string as the value for the container name. If no value is present, 
Designer does not create a resource and generates a validation error. 

2 id Required field. The resource’s identifier (CN). This name must be unique. If the 
CSV file contains multiple rows with the same ID, the wizard imports and creates 
a record for the first one it encounters. It then writes any subsequent records with 
the same ID to the error file. For example:

"Doctor"
Configuring Resources 353



3 localized 
display names

Optional field. The translated string used to display the resource name. Accepts 
zero or more values. The value must be in this format:

"java-locale-code~string" 

The ~ delimits the locale and its localized string. The | symbol delimits each set 
of locale data. 

For example:

"en~Doctor|it~Dottore|fr~Docteur"

If you do not want to localize display names, you can supply a single string. The 
wizard uses this string as the value for the default Designer locale upon import. If 
no value is present when you attempt to deploy the associated resource, 
Designer generates a validation error. 

4 localized 
descriptions

Optional field. The translated string used to display the resource description. 
Accepts a list of zero or more values. The value must be in this format:

"java-locale-code~string" 

The ~ delimits the locale and its localized string. The | symbol delimits each set 
of locale data.

For example:

"en~Doctor|it~Dottore|fr~Docteur"

If you do not want to localize descriptions, you can supply a single string. The 
wizard uses this string as the value for the default Designer locale upon import. If 
no value is present when you attempt to deploy the associated resource, 
Designer generates a validation error. 

5 categories Required field. This value should map to a valid category key based on the 
resource Category list defined in the directory abstraction layer. Accepts a list of 
zero or more values. 

If you do not specify a value, the wizard inserts the resource category key 
default. 

If the value is invalid (it does not exist in the directory abstraction layer), the 
wizard still includes it in the newly created resource; however, Designer’s 
validation requires that this be fixed before the resource can be deployed. 

6 owners Optional field. Represents the distinguished name of the owner of the resource. 
Accepts a list of zero or more values. 

For example: 

"admin.novell|ablake.users.medical-idmsample.novell"

7 trustees Optional field. Represents the distinguished name of the trustees of the 
resource. Accepts a list of zero or more values. 

For example: 

"admin.novell|ablake.users.medical-idmsample.novell"

Column 
Number

Field Name Description
354 Configuring Resources



8 Grant 
Approvers 

Optional field. Represents the distinguished name (DN) of the approvers when 
the approval workflow value is Standard. The order of the approvers in this field 
is important if the quorum value is serial. Accepts zero or more values. 

For example:

"admin.novell|ablake.users.medical-idmsample.novell"

If the approval workflow is not Standard and you specify a list of approvers, the 
wizard writes the record to the error file because approvers are not valid.

9 Grant 
Approvers 
Workflow

Optional field. Specifies the name of the provisioning request common name and 
its quorum value. Valid values include:

 None: Provide the empty string "".

 Standard: Supply key word Standard followed by the quorum value. For 
example: 

"Standard~50"

 Custom: Enter the provisioning request definition CN. For example: 

"MyCustomPrdCN"

Specify Quorum values as follows:

 Serial: Specify a quorum value of 0.

 Quorum percentage: Specify a value between 1-100.

10 Revoke 
Approvers

Optional field. Represents the distinguished name (DN) of the approvers when 
the approval workflow value is Standard. The order of the approvers in this field 
is important if the quorum value is serial. Accepts zero or more values. 

For example:

"admin.novell|ablake.users.medical-idmsample.novell"

If the approval workflow is not Standard and you specify a list of approvers, the 
wizard writes the record to the error file because approvers are not valid.

11 Revoke 
Approvers 
Workflow

Optional field. Specifies the name of the provisioning request common name and 
its quorum value. Valid values include:

 None: Provide the empty string " ".

 Standard: Supply the keyword Standard followed by the quorum value. For 
example: 

"Standard~50"

 Custom: Enter the provisioning request definition CN. For example: 

"MyCustomPrdCN"

Specify Quorum values as follows:

 Serial: Specify a quorum value of 0.

 Quorum percentage: Specify a value between 1-100.

Column 
Number

Field Name Description
Configuring Resources 355



General Field Formatting Rules

 Multi-value properties: Use the | symbol as the delimiter between values. 

 DN properties: Specify in dot notation. Designer validates these properties on deploy to ensure 
that the values correspond to existing Identity Vault objects.

 Character set encoding must be UTF-8.

Required CSV File Format

When you create your spreadsheet to use as input to the Import Resources Wizard, keep in mind that 
the wizard expects a specific format. It expects a twelve-column document with the columns defined 
in the order described in Table 12-3. The wizard also expects the input file to follow the CSV format 
rules defined in RFC4180. This format is briefly summarized below:

 Each Resource record is on a separate line.

 Each field in a Resource record is separated by a comma and is quoted.

 Each line is delimited by a line break (CRLF).

 The first line of the file can specify the name of the container under which the wizard will create a 
resource. This field is optional. If your file does not contain this field, ensure that you supply an 
empty string for the wizard to successfully create a resource from the CSV file. 

 The second line is a header line and a required field. The wizard allows you to identify whether 
the file contains a header line. If your file contains a header line, then it must contain the 
Resource record’s field names. The header line field count must correspond to the field count of 
each line in the file.

 Quotes on numbers are not required. 

 A resource record example:

"Clinic",Doctor8,en~Doctor8,en~Doctor|it~Dottore|fr~Docteur,,admin.novell|abla
ke.users.medical-idmsample.novell,admin.novell|ablake.users.medical-
idmsample.novell,admin.novell|ablake.users.medical-
idmsample.novell,Standard~50,admin.novell|ablake.users.medical-
idmsample.novell,MyCustomPrdCN,true

 Quotes and nested quotes: You can use single quotes within a text field (such as Display name). 
Use double quotes to enclose a column.

NOTE: For optional fields, the line must include an empty string " " as a placeholder.

Using the Wizard to Import Roles from a CSV File

1 Open the Provisioning view of the Designer project where you want to import the roles.

Select the Resources node, right-click then select Import from CSV.Designer launches the 
wizard.

12 Role Approval 
overrides 
Resource 
Approval

Boolean field for Role Approval to override Resource Approval. It takes True or 
False.

Column 
Number

Field Name Description
356 Configuring Resources



2 Fill in the fields as follows:

3 Click Finish.

The wizard reads the CSV file and adds all the resources that meet the criteria for import. If the 
wizard encounters an error (see Error Handling for a list of possible errors), the wizard writes the role 
record to an error file.The wizard creates the error file in the same location as the Role CSV file to 
import, and it names the file the same name as the Resource CSV file with the _errors appended to 
the name.

Only the errors identified in Error Handling are severe enough to prevent the wizard from creating the 
resource. If the wizard encounters other types of errors, it adds the resource, but you must make 
corrections before the resource can be deployed. For example, if the category specified in the role is 
not yet added to the directory abstraction layer role category list, the resource can be added, but 
Designer displays the resource with an informational message.

Resource that are created with errors like this cannot be deployed until the errors are corrected. The 
Project Checker notifies you of the errors if you attempt to deploy the resource or if you validate the 
resource objects.

Error Handling

Table 12-4 describes the cases where a resource cannot be imported. When the wizard encounters 
these errors, it generates an error file and writes the complete resource record to the file. It maintains 
the resource original column order except that it inserts a new column as the first column in the 
record. This column includes the error code. You can modify the associated resource to fix the error 
directly within the error file, delete the error code column, then specify this error file as input to the 
wizard.

Table 12-4   CSV Import Wizard Error Codes

Field Name Description

Role CSV File Specify the name and location of the CSV file you want to 
import.

Ignore header row If the file you specify contains a header row, select Ignore 
header row in CSV file.

Error Code Description

RESOURCE_ID_NOT_UNIQUE A resource with the specified ID already exists.

INVALID_ID_NAME The resource ID contains invalid characters. To fix this problem, edit 
the name to follow the rules for valid characters: alphabetic characters, 
digits, underscores, and spaces. 

INVALID_RESOURCE_CN The role ID contains invalid characters. 
Configuring Resources 357



358 Configuring Resources



A AECMAScript Core Reference

This section provides details on using the ECMA Expression Builder.

ECMAScript Operators
The following tables provide descriptions of the operators supported by the ECMA Expression 
Builder.

 Table A-1, “Math,” on page 359

 Table A-2, “Assignment,” on page 359

 Table A-3, “Other,” on page 360

 Table A-4, “Relational,” on page 361

 Table A-5, “Logical,” on page 361

 Table A-6, “String,” on page 361

Table A-1   Math 

Table A-2   Assignment 

Operator Description

+ Add Returns the sum of two numerical values (either literals or 
variables).

- Subtract Subtracts one number from another.

* Multiply Returns the product of two numerical values (either literals or 
variables).

/ Divide Divides one number by another.

Operator Description

= Assignment Assigns the value of the right operand to the left operand.

+= Add to this Adds the left and right operands and assigns the result to the 
left operand. For example, a += b is the same as a = a + b.

-= Subtract from this Subtracts the right operand from the left operand and assigns 
the result to the left operand. For example, a -= b is the same as 
a = a - b.

*= Multiply to this Multiplies the two operands and assigns the result to the left 
operand. For example, a *= b is the same as a = a * b.

/= Divide this to Divides the left operand by the right operand and assigns the 
result to the left operand. For example, a /= b is the same as a = 
a / b.
ECMAScript Core Reference 359



Table A-3   Other

%= Modulus Divides the left operand by the right operand and assigns the 
remainder to the left operand. For example, a %= b is the same 
as a = a % b.

&= Apply bitwise AND to this Performs bitwise AND on operands and assigns the result to the 
left operand. For example, a &= b is the same as a = a & b.

|= Apply bitwise OR to this Performs bitwise OR on operands and assigns the result to the 
left operand. For example, a |= b is the same as a = a | b.

<<= Apply bitwise left shift to this Performs bitwise left shift on operands and assigns the result to 
the left operand. For example, a <<= b is the same as a = a << 
b. 

>>= Apply bitwise signed right shift to 
this

Performs bitwise right shift on operands and assigns the result 
to the left operand. For example, a >>= b is the same as a = a 
>> b. 

>>>= Apply bitwise unsigned right shift 
to this

Performs bitwise unsigned right shift on operands and assigns 
the result to the left operand. For example, a >>>= b is the same 
as a = a> >> b. 

Operator Description

% Modulus Divides the left operand by the right operand and returns the 
integer remainder. 

++ Autoincrement Increments the operand by one (can be used before or after the 
operand).

-- Autodecrement Decrements the operand by one (can be used before or after 
the operand).

~ Bitwise NOT Inverts the bits of its operand.

& Bitwise AND Returns a 1 in each bit position for which the corresponding bits 
of both operands are ones.

| Bitwise OR Returns a 1 in each bit position for which the corresponding bits 
of either or both operands are ones.

^ Bitwise XOR Returns a 1 in each bit position for which the corresponding bits 
of either but not both operands are ones.

<< Bitwise left shift Shifts the digits of the binary representation of the first operand 
to the left by the number of places specified by the second 
operand. The spaces created to the right are filled in by zeros, 
and any digits shifted to the left are discarded. 

>> Signed bitwise right shift Shifts the digits of the binary representation of the first operand 
to the right by the number of places specified by the second 
operand, discarding any digits shifted to the right. The copies of 
the leftmost bit are added on from the left, preserving the sign of 
the number.

Operator Description
360 ECMAScript Core Reference



Table A-4   Relational

Table A-5   Logical 

Table A-6   String

Functions/Methods
For a description of the functions and methods available in the ECMA Expression Builder, see “User 
Application API” on page 280.

>>> Unsigned bitwise right shift Shifts the binary representation of the first operand to the right 
by the number of places specified by the second operand. Bits 
shifted to the right are discarded and zeroes are added to the 
left. 

Operator Description 

== Equal Assigns the value of the right operand to the left operand.

!= Not Equal Returns a Boolean True if the operands are not equal.

< Less than Returns True if the left operand is less than the right operand.

> Greater than Returns True if the left operand is greater than the right 
operand.

<= Less than or equal Returns True if the left operand is less than or equal to the right 
operand.

>= Greater than or equal Returns True if the left operand is greater than or equal to the 
right operand.

Operator Description

&& AND Returns a Boolean true if both operands are true; otherwise, 
returns False.

|| OR Returns True if either operand is true. Returns false when both 
operands are False.

! NOT Returns False if its single operand can be converted to true (or 
if it is a non-Boolean value). Returns True if its operand can be 
converted to False. 

Operator Description

+ Concatenate Concatenates two string operands, returning a string that is the 
union of the two operand strings.

Operator Description
ECMAScript Core Reference 361



DOM Methods
This section lists all DOM-related methods and properties supported by the ECMA Expression 
Builder, including not only DOM-1 and DOM-2 extensions (defined by the relevant W3C standards), 
but also Designer’s own ECMAScript extensions. Extension methods are specifically noted as such in 
the text. DOM methods are displayed in the ECMA Expression Builder when you are working with 
expressions in the Integration activity.

Node

Lets you work with nodes. 

attributes

W3C DOM Level 1 Node property. This property returns a NamedNodeMap object of the attributes for 
the Node.

childNodes

W3C DOM Level 1 Node property. This property returns a NodeList object consisting of the 
immediate children of the Node.

firstChild

W3C DOM Level 1 Node property. This property returns the first child node of a Node object.

lastChild

W3C DOM Level 1 Node property. This property returns the last child node of a Node object.

nextSibling

W3C DOM Level 1 Node property. This property returns the next sibling node for a Node object.

nodeName

W3C DOM Level 1 Node property. This property returns the node name as a String object.

nodeType

W3C DOM Level 1 Node property. This property returns the node type as a short in with one of the 
following values:

1 = Element

2 = Attribute

3 = Text

4 = CDATASection 

5 = EntityReference

6 = Entity

7 = ProcessingInstruction
362 ECMAScript Core Reference



8 = Comment

9 = Document

10 = DocumentType

11 = DocumentFragment

12 = Notation

nodeValue

W3C DOM Level 1 Node property. This property returns the node text data as a String.

ownerDocument

W3C DOM Level 1 Node property. This property returns a Document object.

parentNode

W3C DOM Level 1 Node property. This property returns the parent node object for a Node object.

previousSibling

W3C DOM Level 1 Node property. This property returns the previous sibling node for a Node object.

XML

Designer extension property. This property returns a string representing the DOM. Useful in Log 
actions for debugging components (for example, Input.XML).

appendChild(newChild)

Node appendChild(newChild)

W3C DOM Level 1 Node method. Appends a node as the last child for a Node. The newChild 
parameter is of type Node.

cloneNode(deep)

Node cloneNode(deep)

W3C DOM Level 1 Node method. Creates an unattached Node object. The deep parameter is of type 
Boolean.

createXPath(XPathType asPattern)

Object createXPath(XPathType asPattern)

ECMAScript extension method. Creates the XPath pattern. The XPath Type asPattern parameter 
supports only abbreviated XPath notation and explicit ordinals. XPath functions are not supported.
ECMAScript Core Reference 363



hasChildNodes()

boolean hasChildNodes()

W3C DOM Level 1 Node method. Returns a Boolean indicating whether the node has children.

insertBefore(newChild, refChild)

Node insertBefore(newChild, refChild)

W3C DOM Level 1 Node method. Inserts a node object into the parent node before the refChild 
node. The newChild parameter is of type Node. The refChild parameter is of type Node.

removeChild(oldChild)

Node removeChild(oldChild)

W3C DOM Level 1 Node method. Removes a node from a parent and returns an unattached node. 
The oldChild parameter is of type Node.

replaceChild(newChild, oldChild)

Node replaceChild(newChild, oldChild)

W3C DOM Level 1 Node method. Replaces one node with another node. The newChild parameter is 
of type Node. The oldChild parameter is of type Node.

getXML()

String getXML()

ECMAScript extension method. This property returns a string representing the DOM. Useful in Log 
actions for debugging components. Example:

Input.XPath("root/child").getXML()

ownerDocument

W3C DOM Level 2 modified Node property. Returns the Document object associated with this node. 
This is also the Document object used to create new nodes. Example: 

someNodeObject.ownerDocument

namespaceURI

W3C DOM Level 2 Node property. Returns the namespace URI of this node, or null if the namespace 
URI is not specified. Example: 

someNodeObject.namespaceURI

prefix

W3C DOM Level 2 Node property. Returns the namespace prefix of this node, or null if the 
namespace prefix is not specified. Example: 
364 ECMAScript Core Reference



someNodeObject.prefix

localName

W3C DOM Level 2 Node property. Returns the local part of the qualified name of this node. Example: 

someNodeObject.localName

normalize()

void normalize()

W3C DOM Level 2 modified Node method. Puts all Text nodes in the full depth of the subtree 
underneath this Node, including attribute nodes, into a “normal” form in which only structure 
separates Text nodes, (for example, elements, comments, processing instructions, CDATA sections, 
and entity references). In other words, there are neither adjacent Text nodes nor empty Text nodes.

hasAttributes()

boolean hasAttributes()

W3C DOM Level 2 Node method. Returns True if the node has any attributes; otherwise, returns 
False. Example: 

Temp.XPath("A/B/C").item(0).hasAttributes()

isSupported(feature, version)

boolean isSupported(feature, version)

W3C DOM Level 2 Node method. Returns True if the specified feature is supported on this node; 
otherwise, returns False.
ECMAScript Core Reference 365



Table A-7   Parameters of the IsSupported Method

Example:

 aNodeObject.isSupported("Core","2.0")

Document

Lets you work with documents.

doctype

W3C DOM Level 1 Document property. This property returns a DocumentType object reflecting the 
DTD for the document. A Document also has all the properties and methods of Node.

documentElement

W3C DOM Level 1 Document property. This property returns an Element object (the root element). A 
Document also has all the properties and methods of Node.

implementation

W3C DOM Level 1 Document property. This property returns a DOMImplementation object. A 
Document also has all the properties and methods of Node.

text

Designer extension property. This property returns a concatenated string of all the text nodes 
(content) under it.

Parameter Features

feature Core

XML

HTML

Views

Stylesheets

CSS

CSS2

Events

UIEvents

MouseEvents

MutationEvents

HTMLEvents

Range

Transversal

version Specifies the version number of the feature to test. In Level 2, version 1, this is 
the string “2.0”. If the version is not specified, supporting any version of the 
feature causes the method to return True.
366 ECMAScript Core Reference



createAttribute(name)

Attr createAttribute(name)

W3C DOM Level 1 Document method. Returns an unattached Attr object. The name parameter is of 
type String. A Document also has all the properties and methods of Node.

createCDATASection(data)

CDATASection createCDATASection(data)

W3C DOM Level 1 Document method. Returns an unattached CDATASection object. The data 
parameter is of type String. A Document also has all the properties and methods of Node.

createComment(data)

Comment createComment(data)

W3C DOM Level 1 Document method. Returns an unattached Comment object. The data parameter 
is of type String. A Document also has all the properties and methods of Node.

createDocumentFragment()

DocumentFragment createDocumentFragment()

W3C DOM Level 1 Document method. Returns an unattached DocumentFragment. A Document also 
has all the properties and methods of Node.

createElement(tagName)

Element createElement(tagName)

W3C DOM Level 1 Document method. Creates an unattached Element. The tagName parameter is of 
type String. A Document also has all the properties and methods of Node.

createEntityReference(name)

EntityReference createEntityReference(name)

W3C DOM Level 1 Document method. Creates an unattached EntityReference. The name 
parameter is of type String. A Document also has all the properties and methods of Node.

createProcessingInstruction(target,data)

ProcessingInstruction createProcessingInstruction(target,data)

W3C DOM Level 1 Document method. Returns an unattached ProcessingInstruction object. The 
target and data parameters are of type String. A Document also has all the properties and methods of 
Node.

createTextNode(data)

Text createTextNode(data)
ECMAScript Core Reference 367



W3C DOM Level 1 Document method. Creates an unattached Text object. The data parameter is of 
type String. A Document also has all the properties and methods of Node.

getElementsByTagName(tagName)

NodeList getElementsByTagName(tagName)

W3C DOM Level 1 Document method. Returns a NodeList object consisting of the tagname element 
nodes. The tagName parameter is of type String. A Document also has all the properties and methods 
of Node.

reset()

void reset()

W3C DOM Level 1 Document method. Clears the document.

setDTD(Node RootElementName, Object PublicName, Object URL)

setDTD(Node RootElementName, Object PublicName, Object URL)

ECMAScript extension method. Sets the DTD file for the document.

setValue(Object aValue)

setValue(Object aValue)

ECMAScript extension method. Sets the Value of a document from the passed objects. If the passed 
object is another document, then it copies child nodes (elements and attributes). If the passed object 
is text, the text is parsed to create a DOM.

toString()

String toString()

ECMAScript extension method. Converts a DOM document to an XML formatted string.

Example: 

Input.XPath("root/child").item(0).toString()

XPath(String asPattern)

NodeList XPath(XPathType asPattern)

ECMAScript extension method. XPathTypes can be of type NodeList, String, Number, or Boolean. 
Usually used to return a NodeList matching the XPath pattern. Use brackets to select a particular 
node from the list. For example, Input.XPath("INVOICE/LINEITEM[1]") or 
Input.XPath("INVOICE/LINEITEM[last()]"). Use the @ symbol to select a node by attribute. For 
example, Input.XPath("INVOICE/LINEITEM[@myattr]") To select by attribute value: 
Input.XPath("INVOICE/LINEITEM[@myattr='abc']").
368 ECMAScript Core Reference



importNode(sourceNode, deep)

Node importNode(sourceNode, deep)

W3C DOM Level 2 Document method. Imports a node from a document to the current document. 
Creates a new copy of the sourceNode. The sourceNode is not altered. A Document also has all the 
properties and methods of Node.

Table A-8   Parameters for the ImportNode Method

Example:

Temp.importNode(Input.XPath("A/B[2]"), false)

createElementNS(namespaceURI, qualifiedName)

Element createElementNS(namespaceURI, qualifiedName)

W3C DOM Level 2 Document method. Creates an Element of the given qualifiedName and 
namespaceURI. A Document also has all the properties and methods of Node. 

Table A-9   Parameters for the createElementNS Method

Example:

Temp.createElementNS("someURI","nsprefix:PRICE")

createAttributeNS(namespaceURI, qualifiedName)

Attr createAttributeNS(namespaceURI, qualifiedName)

W3C DOM Level 2 Document method. Creates an Attribute of the given qualifiedName and 
namespaceURI. A Document also has all the properties and methods of Node.

Parameter Description

sourceNode The node to import.

deep A Boolean. If True, recursively import the subtree under the specified node. If False, 
import only the node itself.

Parameter Description

namespaceURI A string representing the namespace URI that you want to create for the element.

qualifiedName A string representing the name to create for the element. qualifiedName = 
namespaceprefix + : + localName
ECMAScript Core Reference 369



Table A-10   Parameters for the createAttributeNS Method

Example:

Temp.createAttributeNS("someURI","nsprefix:PRICE")

getElementsByTagNameNS(namespaceURI, localName)

NodeList getElementsByTagNameNS(namespaceURI, localName)

W3C DOM Level 2 Document method. Returns a NodeList of all the Elements with a given 
localName and namespaceURI, in the order in which they are encountered in a preorder traversal of 
the Document tree. A Document also has all the properties and methods of Node.

Table A-11   Parameters for the getElementsByTagnameNS Method

Example:

Temp.getElementsByTagNameNS("someURI", "someName")

getElementById(elementId)

Element getElementById(elementId)

W3C DOM Level 2 Document method. Returns the Element for which the ID is given by elementId. 
If no such element exists, returns null. Behavior is not defined if more than one element has this ID. 
A Document also has all the properties and methods of Node.

Example;

Temp.getElementById("someId")

setSkipNameSpaces(abFlag)

void setSkipNameSpaces(boolean flag)

Can be used to turn off usage of namespaces and match nodes without any prefixes, behaving like a 
wildcard match.

Parameter Description

namespaceURI A string representing the namespace URI that you want to create for the attribute.

qualifiedName A string representing the name to create for the attribute. qualifiedName = 
namespaceprefix + : + localName

Parameter Description

namespaceURI A string of the elements on which to match. The special value “*” matches all 
namespaces.

qualifiedName A string of the elements on which to match. The special value “*” matches all local 
names. 
370 ECMAScript Core Reference



setEncoding(encoding)

void setEncoding(String encoding)

Sets the character set encoding for the document.

Element

Lets you work with elements. 

tagName

W3C DOM Level 1 Element property. This property returns a String object containing the element 
name. An Element also has all the properties and methods of Node.

text

Designer extension property. This property returns the concatenated text of all the text nodes under it.

booleanValue()

boolean booleanValue()

ECMAScript extension method. Returns the Boolean value (True or False) of this object, if possible.

countOfElement(String propertyName)

Number countOfElement(String propertyName)

ECMAScript extension method. Returns a count of the named child.

doubleValue()

double doubleValue()

ECMAScript extension method. Returns a double value for this object if possible.

exists(String propertyName)

Boolean exists(String propertyName)

ECMAScript extension method. Checks for the existence of the named child.

getAttribute(name)

String getAttribute(name)

W3C DOM Level 1 Element method. Returns a String consisting of the attribute value. The name 
parameter is of type String. An Element also has all the properties and methods of Node.
ECMAScript Core Reference 371



getAttributeNode(name)

Attr getAttributeNode(name)

W3C DOM Level 1 Element method. Returns an Attr. The name parameter is of type String. An 
Element also has all the properties and methods of Node.

getElementsByTagName(name)

NodeList getElementsByTagName(name)

W3C DOM Level 1 Element method. Returns a NodeList of all elements with a specified name. The 
name parameter is of type String. An Element also has all the properties and methods of Node.

getIndex()

int getIndex()

ECMAScript extension method. Returns the current index.

getParent()

Node getParent()

ECMAScript extension method. Returns the parent element.

normalize()

void normalize()

W3C DOM Level 1 Element method. Returns a void. An Element also has all the properties and 
methods of Node.

removeAttribute(name)

void removeAttribute(name)

W3C DOM Level 1 Element method. Removes an attribute from an element. The name parameter is 
of type String. An Element also has all the properties and methods of Node.

removeAttributeNode(oldAttr)

Attr removeAttributeNode(oldAttr)

W3C DOM Level 1 Element method. Removes an attribute from an element and returns an 
unattached Attr. The oldAttr parameter is of type Attr. An Element also has all the properties and 
methods of Node.

setAttribute(name,value)

void setAttribute(name, value)
372 ECMAScript Core Reference



W3C DOM Level 1 Element method. Sets the value of an attribute node for an element. The name 
parameter is of type String. The value parameter is of type String. An Element also has all the 
properties and methods of Node.

setAttributeNode(newAttr)

Attr setAttributeNode(newAttr)

W3C DOM Level 1 Element method. Attaches an attribute node to an element. The newAttr 
parameter is of type Attr. An Element also has all the properties and methods of Node.

setIndex(int aiIndex)

setIndex(int aiIndex)

ECMAScript extension method. Sets the iterator index value for this element.

setText(String asText)

setText(String asText)

ECMAScript extension method. Sets the text node associated with this element.

setValue(Object aValue)

setValue(Object aValue)

ECMAScript extension method. Sets the value of an element from the passed object. If the passed 
object is another element, then it also copies child nodes (elements and attributes).

toNumber()

Number toNumber()

ECMAScript extension method. Gets the text node and converts it to a number.

toString()

String toString()

ECMAScript extension method. Gets the text node associated with this element.

XPath(XPathType asPattern)

NodeList XPath(XPathType asPattern)

ECMAScript extension method. The XPathType parameter can be of type NodeList, String, Number, 
or Boolean. Usually used to return a Nodelist matching the XPath pattern. Use brackets to select a 
particular node from the list. For example, Input.XPath("INVOICE/LINEITEM[1]") or 
Input.XPath("INVOICE/LINEITEM[last()]"). Use the @ symbol to select a node by attribute. For 
example, Input.XPath("INVOICE/LINEITEM[@myattr]"). To select by attribute value: 
Input.XPath("INVOICE/LINEITEM[@myattr='abc']").
ECMAScript Core Reference 373



getAttributeNS(namespaceURI, localName)

string getAttributeNS(namespaceURI, localName)

W3C DOM Level 2 Element method. Returns the Attr value as a string. An Element also has all the 
properties and methods of Node.

Table A-12   Parameters for the getAttributeNS Method

Example:

Temp.XPath("A/B[0]").getAttributeNS("someURI", "someAttr")

setAttributeNS(namespaceURI, qualifiedName, value)

void setAttributeNS(namespaceURI, qualifiedName, value)

W3C DOM Level 2 Element method. Adds a new attribute. If an attribute with the same 
namespaceURI and localName is already present in the element, its prefix is changed to be the prefix 
part of the qualifiedName parameter, and its value is changed to be the value parameter. An Element 
also has all the properties and methods of Node.

Table A-13   Parameters for the setAttributeNS Method

Example:

Temp.XPath("A/B[0]").setAttributeNS("someURI", "someAttrName", "someAttrvalue")

removeAttributeNS(namespaceURI, localName)

void removeAttributeNS(namespaceURI,localName)

W3C DOM Level 2 Element method. Removes an attribute by local name and namespace URI. If the 
removed attribute has a default value, it is immediately replaced. The replacing attribute has the 
same namespace URI and local name, as well as the original prefix. An Element also has all the 
properties and methods of Node.

Parameter Description

namespaceURI Specifies a string representing the namespace URI of the target Attr.

localName Specifies a string of the localName of the target Attr.

Parameter Description

namespaceURI The namespace URI of the attribute to create or alter.

qualifiedName Specifies the qualified name of the attribute to create or alter. 

TIP: qualifiedName = namespaceprefix + : + localName

value Specifies the value to set in string form.
374 ECMAScript Core Reference



Table A-14   Parameters for the removeAttributeNS Method

Example:

Temp.XPath("A/B[0]").removeAttributeNS("someURI", "someAttrName") 

getAttributeNodeNS(namespaceURI, localName)

Attr getAttributeNodeNS(namespaceURI, localName)

W3C DOM Level 2 Element method. Retrieves an attribute node by local name and namespace URI. 
An Element also has all the properties and methods of Node.

Table A-15   Parameters for the getAttributeNodeNS Method

Example:

Temp.XPath("A/B[0]").getAttributeNodeNS("someURI", "someAttr"

setAttributeNodeNS(newAttr)

Attr setAttributeNodeNS(newAttr)

W3C DOM Level 2 Element method. Adds a new attribute. If an attribute with the same local name 
and namespace URI is already present in the element, it is replaced by the new attribute. If the 
newAttr attribute replaces an existing attribute with the same local name and namespace URI, the 
replaced Attr node is returned, otherwise null is returned. The newAttr parameter is a new attribute 
object. An Element also has all the properties and methods of Node.

Example:

Temp.XPath("A/B[0]").setAttributeNodeNS(newAttr)

getElementsByTagNameNS(namespaceURI, localName)

NodeList getElementsByTagNameNS(namespaceURI, localName)

W3C DOM Level 2 Element method. Returns a NodeList of all the descendant Elements with a given 
local name and namespace URI in the order in which they are encountered in a preorder traversal of 
this Element tree. An Element also has all the properties and methods of Node.

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute to remove.

localName Specifies the name of the attribute to remove.

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute to retrieve.

localName Specifies the name of the attribute to retrieve.
ECMAScript Core Reference 375



Table A-16   Parameters for the getElementsByTagNameNS Method

Example:

Temp.XPath("A/B[0]").getElementsByTagNameNS("someURI", "someName")

hasAttribute(name)

boolean hasAttribute()

W3C DOM Level 2 Element method. Returns True when an attribute with a given name is specified 
for this element or has a default value. Otherwise, returns False. The parameter name is a string that 
specifies the attribute name for which to look. An Element also has all the properties and methods of 
Node.

Example:

Temp.XPath("A/B[0]").hasAttribute("someName")

hasAttributeNS(namespaceURI, localName)

boolean hasAttributeNS(namespaceURI, localName)

W3C DOM Level 2 Element method. Returns True when an attribute with a given local name and 
namespace URI is specified on this element or has a default value. Otherwise, returns False. An 
Element also has all the properties and methods of Node.

Table A-17   Parameters for the hasAttributeNS Method

Example:

Temp.XPath("A/B[0]").hasAttributeNS("someURI", "someName")

Attribute

Lets you work with attributes. 

name

W3C DOM Level 1 attribute property. This property returns a String object indicating the tag name of 
the attribute. An attribute also has all the properties and methods of Node.

Parameter Description

namespaceURI Specifies the namespaceURI of the elements on which to match. The 
special value “*” matches all namespaces.

localName Specifies the localName of the elements on which to match. The special 
value “*” matches all local names.

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute for which to look.

localName Specifies the localName of the attribute for which to look.
376 ECMAScript Core Reference



specified

W3C DOM Level 1 Attr property. This property returns a Boolean. An attribute also has all the 
properties and methods of Node.

text

Designer extension property. This property returns the text value of the attribute.

value

W3C DOM Level 1 Attr property. This property returns a String object representing the text value of 
the attribute. An attribute also has all the properties and methods of Node.

setValue(Object aValue)

setValue(Object aValue)

Designer extension method. Sets the value of an attribute from the passed object.

toString()

String toString()

ECMAScript extension method. Gets the text node associated with the attribute.

ownerElement

W3C DOM Level 2 Attr property. Returns the Element node to which this attribute is attached. 
Returns null if this attribute is not in use. An Attr also has all the properties and methods of Node.

Example:

attributeObject.ownerElement

CharacterData

Lets you work with character data.

data

W3C DOM Level 1 CharacterData property. This property is of type String and represents the 
contents of the CharacterData object. CharacterData also has all the properties and methods of 
Node.

length

W3C DOM Level 1 CharacterData property. This property represents the length of the CharacterData 
object. CharacterData also has all the properties and methods of Node.
ECMAScript Core Reference 377



appendData(arg)

void appendData(arg)

W3C DOM Level 1 CharacterData method. Appends text to the CharacterData object. The arg 
parameter is of type String. CharacterData also has all the properties and methods of Node.

insertData(offset, arg)

void insertData(offset, arg)

W3C DOM Level 1 CharacterData method. Inserts text in the CharacterData object. The offset 
parameter is of type unsigned long. The arg parameter is of type String. CharacterData also has all 
the properties and methods of Node.

deleteData(offset, count)

void deleteData(offset, count)

W3C DOM Level 1 CharacterData method. Deletes text in the CharacterData object. The offset and 
count parameters are of type unsigned long. CharacterData also has all the properties and methods 
of Node.

replaceData(offset, count, arg)

void replaceData(offset, count, arg)

W3C DOM Level 1 CharacterData method. Replaces text in the CharacterData object. The offset and 
count parameters are of type unsigned long. The arg parameter is of type String. CharacterData also 
has all the properties and methods of Node.

substringData(offset, count)

String substringData(offset, count)

W3C DOM Level 1 CharacterData method. Returns a substring of the CharacterData object. The 
offset and count parameters are of type unsigned long. CharacterData also has all the properties and 
methods of Node.

NodeList

Lets you work with node lists. 

length

W3C DOM Level 1 NodeList property. This property returns the number of nodes in a NodeList 
object.

avg('[NodeList]')

Number avg('[NodeList]')
378 ECMAScript Core Reference



ECMAScript aggregate extension method. Returns a number equal to the average value in the 
NodeList. The NodeList parameter is of type XPath. If no parameter is supplied, then the current 
NodeList/GroupName is used. The function argument should be in single quotes, and must be 
escaped for nested calls.

Example:

Input.XPath("rootElem/childElem").avg() 

count('[NodeList]')

Number count('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to a count of the nodes in the 
NodeList that have data. Nodes without data, or nodes with only child elements are not counted. To 
count all nodes, use the .length property on a nodeList object. The optional NodeList parameter is of 
type XPath. If no parameter is supplied (the usual case), then the current NodeList/GroupName is 
used. The function argument should be in single quotes, and must be escaped for nested calls.

Example:

Input.XPath("rootElem/childElem").count()

item(index)

Node item(index)

W3C DOM Level 1 NodeList method. Returns the indicated Node from the NodeList. The index 
parameter is of type unsigned long. The Index is 0-based.

min('[NodeList]')

Number min('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to the lowest value in the 
NodeList. The NodeList parameter is of type XPath. If no parameter is supplied, then the current 
NodeList/GroupName is used. The function argument should be in single quotes, and must be 
escaped for nested calls.

Example:

Input.XPath("rootElem/childElem").min() 

max(['NodeList]')

Number max('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to the highest value in the 
NodeList. The NodeList parameter of type XPath. If no parameter is supplied, then the current 
NodeList/GroupName is used. The function argument should be in single quotes, and must be 
escaped for nested calls.

Example:

Input.XPath("rootElem/childElem").max()
ECMAScript Core Reference 379



sum('[NodeList]')

Number sum('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to the sum of the values in 
NodeList. The NodeList parameter is of type XPath. If no parameter is supplied, then the current 
NodeList/GroupName is used. The function argument should be in single quotes, and must be 
escaped for nested calls.

Example:

Input.XPath("rootElem/childElem").sum() 

where(XPathType asPattern)

NodeList where(String asPattern)

ECMAScript extension method. Gets a NodeList of nodes matching the XPath pattern.

toNumber()

toNumber()

Converts the data of the first instance in the NodeList to an ECMAScript Number object. Any 
alphabetic characters or embedded spaces in data return NaN. Leading and trailing spaces are 
permitted. 

Example:

var myNum = Input.XPath("Invoice/Amount").toNumber()

NamedNodeMap

Lets you work with named node maps. 

length

length W3C DOM Level 1 NamedNodeMap property. This property returns the number of nodes in a 
NamedNodeMap.

getNamedItem(name)

Node getNamedItem(name)

W3C DOM Level 1 NamedNodeMap method. Returns all selected Nodes of the indicated name. The 
name parameter is of type String.

getNamedItemNS(namespaceURI, localName)

Node getNamedItemNS(namespaceURI, localName)

W3C DOM Level 2 NamedNodeMap method. Returns a node specified by local name and 
namespace URI. 
380 ECMAScript Core Reference



Table A-18   Parameters for the NamedNodeMap Method

Example:

Temp.XPath("A/B").item(0).getAttributes() .getNamedItemNS("someURI", "anAttrName")

item(index)

Node item(index)

W3C DOM Level 1 NamedNodeMap method. Returns the indicated Node from the NamedNodeMap. 
The index parameter is of type unsigned long. The index is 0-based.

removeNamedItem(name)

Node removeNamedItem(name)

W3C DOM Level 1 NamedNodeMap method. Removes the indicated node from the NamedNodeMap 
and returns an unattached node. The name parameter is of type String.

removeNamedItemNS(namespaceURI, localName)

Node removeNamedItemNS(namespaceURI, localName)

W3C DOM Level 2 NamedNodeMap method. Removes and returns the node specified by 
namespace URI and local name. 

Table A-19   Parameters for the removeNamedItemNS Method

Example:

Temp.XPath("A/B").item(0).getAttributes() .removeNamedItemNS("someURI", 
"anAttrName")

setNamedItem(arg)

Node setNamedItem(arg)

W3C DOM Level 1 NamedNodeMap method. Returns a Node. The arg parameter is of type Node.

setNamedItemNS(Node arg)

Node setNamedItemNS(arg)

Parameter Description

namespaceURI Specifies the namespaceURI of the node to retrieve.

localName Specifies the localName of the node to retrieve.

Parameter Description

namespaceURI Specifies the namespaceURI of the node to remove.

localName Specifies the localName of the node to remove.
ECMAScript Core Reference 381



W3C DOM Level 2 NamedNodeMap method. If the new Node replaces an existing node, the 
replaced Node is returned, otherwise null is returned. 

Example:

var item = Temp.XPath("A/B").item(0);

item.getAttributes().setNamedItemNS(aNodeObject)

Text

Lets you work with text.

splitText(offset)

Text splitText(offset)

W3C DOM Level 1 Element method. Removes the text up to the offset and creates an unattached 
text node with the removed text. The offset parameter is of type unsigned long. A Text also has all the 
properties and methods of CharacterData.

DocumentType

Lets you work with document types. 

name

W3C DOM Level 1 DocumentType property. This property returns a String representing the document 
type name. 

entities

W3C DOM Level 1 DocumentType property. This property returns a NamedNodeMap of the entities 
defined in the document. 

internalSubset

W3C DOM Level 2 DocumentType property. This property returns a String representing the internal 
subset as a string.

notations

W3C DOM Level 1 DocumentType property. This property returns a NamedNodeMap of the notations 
defined in the document.

publicId

W3C DOM Level 2 DocumentType property. This property returns a String representing the public 
identifier of the external subset. 
382 ECMAScript Core Reference



systemId

W3C DOM Level 2 DocumentType property. This property returns a String representing the system 
identifier of the external subset. 

DOMImplementation

Lets you work with DOM implementations. 

createDocument(namespaceURI, qualifiedName, doctype)

Document createDocument(namespaceURI, qualifiedName, doctype)

W3C DOM Level 2 DOMImplementation method. Creates an XML Document object of the specified 
type with its document element.

Table A-20   Parameters for the DOMImplementation Method

createDocumentType(qualifiedName, publicID, systemID)

DocumentType createDocumentType(qualifiedName, publicID, systemID)

W3C DOM Level 2 DOMImplementation method. Creates an empty DocumentType node. 
Parameters: qualifiedName is a string of the name of the document type to create. publicID is the 
external subset public identifier. systemID is the external subset system identifier. Note: 
qualifiedName = namespaceprefix + : + localName

Table A-21   Parameters for the createDocumentType Method

hasFeature(feature, version)

boolean hasFeature(feature, version)

W3C DOM Level 1 DOMImplementation method. Returns a Boolean. The feature parameter is of 
type String. The version parameter is of type String.

Parameter Description

namespaceURI Specifies the namespaceURI of the document element to create.

qualifiedName Specifies the qualified name of the document element to create. 
qualifiedName = namespaceprefix + : + localName

doctypei Specifies the type of document to create, or null.

Parameter Description

qualifiedName Specifies the qualified name of the document element to create. 
qualifiedName = namespaceprefix + : + localName

publicID Specifies the external subset public identifier.

systemID Specifies the external subset system identifier.
ECMAScript Core Reference 383



Notation

Lets you work with notation. 

publicId

W3C DOM Level 2 This property returns a String representing the public identifier of the external 
subset. 

systemId

W3C DOM Level 2 property. This property returns a String representing the system identifier of the 
external subset. 

Entity

Lets you work with entities. 

publicId

W3C DOM Level 2 property. This property returns a String representing the public identifier of the 
external subset. 

systemId

W3C DOM Level 2 property. This property returns a String representing the system identifier of the 
external subset. 

notationName

W3C DOM Level 1 Entity property. This property is of type String. An Entity also has all the properties 
and methods of Node.

ProcessingInstruction

Lets you work with processing instructions. 

target

W3C DOM Level 1 ProcessingInstruction property. This property is a String representation of the 
target part of a Processing Instruction. 

data

W3C DOM Level 1 ProcessingInstruction property. This property is a String representation of the data 
part of a Processing Instruction. 
384 ECMAScript Core Reference



ECMAScript Core
This section lists all ECMAScript core methods and properties supported by the ECMA Expression 
Builder. 

Array Object

Lets you work with arrays. 

Array(item0, item1, . . .)

Array()

Constructor

join(separator)

Array join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, 
separated by occurrences of the separator. If no separator is provided, a single comma is used as the 
separator.

length

Array length. The length property of this Array object

reverse()

reverse()

The elements of the array are rearranged so as to reverse their order. The operation is done in-place, 
meaning that the original array is modified.

sort(comparefn)

Array sort()

The elements of this array are sorted. The sort is not necessarily stable. If comparefn is supplied, it 
should be a function that accepts two arguments x and y and returns a negative value if x < y, zero if 
x = y, or a positive value if x > y.

toString()

Array toString()

The elements of this object are converted to strings, and these strings are then concatenated, 
separated by comma characters. The result is the same as if the built-in join method were invoked for 
this object with no argument.
ECMAScript Core Reference 385



Boolean Object

There is seldom a need to use the object version of Boolean in place of True/False literal values. This 
object is provided for completeness. It is specified in ECMA-262.

Boolean()

Boolean( [true/false] )

Constructor. Optionally takes either True or False as an argument.

toString()

Boolean toString()

If this Boolean value is True, then the string “true” is returned. Otherwise, this Boolean value must be 
false, and the string “false” is returned.

valueOf()

Boolean valueOf()

Returns this Boolean value.

Date Object

Lets you work with dates and times.

Date()

Date()

The constructor of the Date can have various signatures. The date constructor format can accept up 
to seven parameters, in the following format: new Date(year,month,date,hrs,mins,secs,ms). This date 
must be a java.util.Date object and not an ECMAScript Date object if you intend to use it with the 
Identity Manager User Application workflow system.

getDate()

getDate()

Returns DateFromTime(LocalTime(t)).

getDay()

getDay()

Returns WeekDay(LocalTime(t)). The days of week are numbered from 0-6. The number 0 
represents Sunday and 6 represents Saturday.

getFullYear()

getFullYear()
386 ECMAScript Core Reference



Returns YearFromTime(LocalTime(t)).

getHours()

getHours()

Returns HourFromTime(LocalTime(t)).

getMilliseconds()

getMilliseconds()

Returns msFromTime(LocalTime(t)).

getMinutes()

getMinutes()

Returns MinFromTime(LocalTime(t)).

getMonth()

getMonth()

Returns MonthFromTime(LocalTime(t)). The months are returned as an integer value from 0-11. The 
number 0 represents January and 11 represents December.

getSeconds()

getSeconds()

Returns SecFromTime(LocalTime(t)).

getTime()

getTime()

Returns a number, which is this time value. The number value is a millisecond representation of the 
specified Date object.

getTimezoneOffset()

getTimezoneOffset()

Returns (t * LocalTime(t)) / msPerMinute. The difference is in minutes between (GMT) and local time.

getUTCDate()

getUTCDate()

Returns DateFromTime(t).
ECMAScript Core Reference 387



getUTCDay()

getUTCDay()

Returns WeekDay(t). The days of week are numbered from 0-6. The number 0 represents Sunday 
and 6 represents Saturday.

getUTCFullYear()

getUTCFullYear()

Returns YearFromTime(t). There is no getYearUTC method, so it must be used to obtain a year from 
a UTC Date object.

getUTCHours()

getUTCHours()

Returns HourFromTime(t).

getUTCMilliseconds()

getUTCMilliseconds()

Returns msFromTime(t).

getUTCMinutes()

getUTCMinutes()

Returns MinFromTime(t).

getUTCSeconds()

getUTCSeconds()

Returns SecFromTime(t).

getYear()

getYear()

Returns YearFromTime(LocalTime(t))—1900. The function getFullYear() is preferred for nearly all 
purposes because it avoids the year 2000 problem.

parse(string)

parse(string)

Applies the ToString operator to its argument and interprets the resulting string as a date; it returns a 
number, the number which is a UTC time value corresponding to the date. The string is interpreted as 
a local time, a UTC time, or a time in some other time zone, depending on the contents of the string.
388 ECMAScript Core Reference



setDate(date)

setDate(date)

Sets the day of the month, using an integer from 1 to 31, for the supplied date according to local time. 

setFullYear(year[,mon[,date]])

setFullYear(year[,mon[,date]])

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value] 
property of this value.

setHours(hour[,min[,sec[,ms]]])

setHours(hour[,min[,sec[,ms]]])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this 
value. When entering a value for hours, an hour value greater than 23 is added to the existing hour 
value, not set.

setMilliseconds(ms)

setMilliseconds(ms)

Computes UTC from argument and sets the [Value] property of this value to 
TimeClip(calculatedUTCtime). Returns the value of the [Value] property of this value.

setMinutes(min[,sec[,ms]])

setMinutes(min[,sec[,ms]])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this 
value.

setMonth(mon[,date])

setMonth(mon[,date])

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value] 
property of this value. If the [Value] property of this exceeds 11, the [Value] property for this is added 
to the existing month, not set.

setSeconds(sec [, ms ] )

setSeconds(sec [, ms ] )

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this 
value.

setTime(time)

setTime(time)
ECMAScript Core Reference 389



Sets the [Value] property of this value to TimeClip(time). Returns the value of the [Value] property of 
this value. The [Value] property of this is a millisecond value that is converted by the TimeClip(time) 
method.

setUTCDate(date)

setUTCDate(date)

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] property 
of this value. If the [Value] property of this exceeds 30 or 31, the [Value] of this is added to the existing 
date value, not set.

setUTCFullYear(year[,mon[,date]])

setUTCFullYear(year[,mon[,date]])

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] property 
of this value.

setUTCHours(min[,sec[,ms]])

setUTCHours(min[,sec[,ms]])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this value. 
When entering a value for hours, an hour value greater than 23 is added to the existing hour value, 
not set.

setUTCMilliseconds(ms)

setUTCMilliseconds(ms)

Sets the [Value] property of this value to time and returns the value of the [Value] property of this 
value.

setUTCMinutes(min[,sec[,ms]])

setUTCMinutes(min[,sec[,ms]])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this value.

setUTCMonth(mon[,date])

setUTCMonth(mon[,date])

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] property 
of this value. If the [Value] property of this exceeds 11, the [Value] property for this is added to the 
existing month, not set.

setUTCSeconds(sec [, ms ] )

setUTCSeconds(sec [, ms ] )

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this value.
390 ECMAScript Core Reference



setYear(year)

setYear(year)

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value] 
property of this value. 

toLocaleString()

toLocaleString()

Returns a string value. The contents of the string are implementation-dependent, but are intended to 
represent the Date in a convenient, human-readable form appropriate to the geographic or cultural 
locale.

toString()

toString()

Returns this string value. The contents of the string are implementation-dependent, but are intended 
to represent the Date in a convenient, human-readable form in the current time zone.

toUTCString()

toUTCString()

Returns a string value. The contents of the string are implementation-dependent, but are intended to 
represent the Date in a convenient, human-readable form in UTC.

UTC()

UTC()

Can accept a number of different arguments. The UTC function differs from the Date constructor in 
two ways: it returns a time value as a number, rather than creating a Date object, and it interprets the 
arguments in UTC rather than as local time.

valueOf()

valueOf()

Returns a number, which is this time value. The valueOf() function is not generic, so it generates a 
runtime error if the object is not a Date object.

Function Object

Used to work with the Function Object. 

Function(p1, p2, . . . , pn, body)

Function Constructor. The last argument specifies the body (executable code) of a function; any 
preceding arguments specify formal parameters.
ECMAScript Core Reference 391



length

The value of the length property is usually an integer that indicates the “typical” number of arguments 
expected by the function. However, the language permits the function to be invoked with some other 
number of arguments. The behavior of a function when invoked on a number of arguments other than 
the number specified by its length property depends on the function.

toString()

String toString()

An implementation-dependent representation of the function is returned. This representation has the 
syntax of a FunctionDeclaration. The use and placement of whitespace, line terminators, and 
semicolons within the representation string is implementation-dependent.

Global

ECMAScript provides certain “top-level” methods and properties, so-called because they are 
available from any context: They are not parented by any particular object. 

escape(string)

String escape()

The escape function computes a new, URL-legal version of a string in which certain URL-illegal 
characters have been replaced by hexadecimal escape sequences.

eval(x)

eval()

When the eval function is called with one argument x, the following steps are taken:

1. If x is not a string value, return x. 

2. Parse x as an ECMAScript Program. If the parse fails, generate a runtime error.

3. Evaluate the program from Step 2.

4. If Result(3) is “normal” completion after value “V”, return the value V. 

5. Return undefined.

Infinity

A special primitive value representing positive infinity.

isFinite(number)

isFinite()

Applies Number( ) to its argument, then returns false if the result is NaN (Not a Number), +*, or **; 
otherwise, returns True.
392 ECMAScript Core Reference



isNaN( value )

isNan()

Returns True if the argument evaluates to NaN (Not a Number); otherwise, returns False

NOTE: Any form of logical comparison of NaN against anything else, including itself, returns false. 
Use isNaN() to determine whether a variable (or a return value, etc.) is equal to NaN.

NaN

The primitive value NaN represents the set of IEEE standard Not-a-Number values.

parseFloat(string)

number parseFloat()

Produces a floating-point number by interpretation of the contents of the string argument. If the string 
cannot be converted to a number, the special value NaN (see “NaN” on page 393) is returned.

parseInt(string, radix)

number parseInt()

Produces an integer value dictated by interpretation of the contents of the string argument, according 
to the specified radix. 

unescape(string)

String unescape()

Computes a new version of a string value in which escape sequences that might be introduced by the 
escape function are replaced with the character they represent.

Math Object

All of the Math object’s properties and methods are static, which means you should prepend “Math” to 
the property or method name in your code. For example, use “Math.PI,” not simply “PI.” 

E

The number value for e, the base of the natural logarithms, which is approximately 
2.7182818284590452354.

LN10

The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

LN2

The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.
ECMAScript Core Reference 393



LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is 
approximately 1.4426950408889634. The value of Math.LOG2E is approximately the reciprocal of 
the value of Math.LN2.

LOG10E

The number value for the base-10 logarithm of e, the base of the natural logarithms; this value is 
approximately 0.4342944819032518. The value of Math.LOG10E is approximately the reciprocal of 
the value of Math.LN10.

PI

The number value for *, the ratio of the circumference of a circle to its diameter, which is 
approximately 3.14159265358979323846.

SQRT1.2

The number value for the square root of 1/2, which is approximately 0.7071067811865476. The value 
of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.

SQRT2

The number value for the square root of 2, which is approximately 1.4142135623730951.

abs(x)

Number abs(x)

Returns the absolute value of the argument x; in general, the result has the same magnitude as the 
argument but has a positive sign. The input value x can be any number value. 

Example: 

Math.abs(-123.23940) = 123.23940

acos(x)

Number acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is 
expressed in radians and ranges from +0 to +PI(3.14159...) radians. The input value x must be a 
number between -1.0 and 1.0.

Example: 

PI/4 = 0.785 Math.acos(0.785) = 0.6681001997570769

asin(x)

Number asin(x)
394 ECMAScript Core Reference



Returns an implementation-dependent approximation to the arc sine of the argument. The result is 
expressed in radians and ranges from -PI/2 to +PI/2. The input value x must be a number between -
1.0 and 1.0. 

Example: 

PI/4 = 0.785 Math.asin(0.785) = 0.9026961270378197

atan(x)

Number atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result is 
expressed in radians and ranges from -PI/2 to +PI/2. The input value x can be any number. 

Example: 

3PI/4 = 2.355 Math.atan(2.355) = 1.169240427545485

atan2(x,y)

Number atan2(x,y)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the 
arguments y and x, where the signs of the arguments are used to determine the quadrant of the 
result. It is intentional and traditional for the two-argument arc tangent function that the argument 
named y be first and the argument named x be second. The result is expressed in radians and ranges 
from -PI to +PI. The input value x is the x-coordinate of the point. The input value y is the y-coordinate 
of the point. 

Example: 

PI/2 = 1.57 Math.atan2(1.57,-1.57) = 2.356194490192345

ceil(x)

Number ceil(x)

Returns the smallest (closest to -infinity) number value that is not less than the argument and is equal 
to a mathematical integer. If the argument is already an integer, the result is the argument itself. The 
input value x can be any numeric value or expression. The Math.ceil(x) function property is the same 
as -Math.floor(-x). Example: 

Example: 

Math.ceil(123.78457) = 123

cos(x)

Number cos(x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument 
must be expressed in radians. 

exp(x)

Number exp(x)
ECMAScript Core Reference 395



Returns an implementation-dependent approximation to the exponential function of the argument (e 
raised to the power of the argument, where e is the base of the natural logarithms). The input value x 
can be any numeric value or expression greater than 0. 

Example: 

Math.exp(10) = 22026.465794806718

floor(x)

Number floor(x)

Returns the greatest (closest to +infinity) number value that is not greater than the argument and is 
equal to a mathematical integer. If the argument is already an integer, the result is the argument itself. 
The input value x can be any numeric value or expression.

Example: 

Math.floor(654.895869)=654

log(x)

Number log(x)

Returns an implementation-dependent approximation to the natural logarithm of the argument. The 
input value x can be any numeric value or expression greater than 0. 

Example: 

Math.log(2) = 0.6931471805599453

max(x,y)

Number max(x,y)

Returns the larger of the two arguments. The input values x and y can be any numeric values or 
expressions. 

Example: 

Math.max(12.345,12.3456)= 12.3456

min(x,y)

Number min(x,y)

Returns the smaller of the two arguments. The input values x and y can be any numeric values or 
expressions. 

Example: 

Math.min(-12.457,-12.567)= -12.567

pow(x,y)

Number pow(x,y)
396 ECMAScript Core Reference



Returns an implementation-dependent approximation to the result of raising x to the power of y. The 
input value x must be the number raised to a power. The input value y must be the power to which x 
is raised. 

Example: 

Math.pow(2,4) = 16

random()

Number random()

Takes no arguments and returns a pseudo-random number between 0 and 1. The number value has 
approximately uniform distribution over that range, using an implementation-dependent algorithm or 
strategy. This function takes no arguments. 

Example: 

Math.random()=0.9545176397178535

round(x)

Number round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If 
two integer number values are equally close to the argument, then the result is the number value that 
is closer to +infinity. If the argument is already an integer, the result is the argument itself. The input 
value x can be any number. 

Example: 

Math.round(13.53) = 14

sin(x)

Number sin(x)

Returns an implementation-dependent approximation to the sine of the argument. The argument is 
expressed in radians. The input value x must be an angle measured in radians. 

sqrt(x)

Number sqrt(x)

Returns an implementation-dependent approximation to the square root of the argument. The input 
value x must be any numeric value or expression greater than or equal to 0. If the input value x is less 
than zero, the string “NaN” is returned. (NaN stands for Not a Number.) 

Example: 

Math.sqrt(25) = 5

tan(x)

Number tan(x)
ECMAScript Core Reference 397



Returns an implementation-dependent approximation to the tangent of the argument. The argument 
is expressed in radians. The input value x must be an angle measured in radians. 

Number Object

Lets you work with numeric values. The Number object is an object wrapper for primitive numeric 
values.

MAX_VALUE

The largest positive finite value of the number type (approximately 1.7976931348623157e308).

Example:

Number.MAX_VALUE 

MIN_VALUE

The smallest positive nonzero value of the number type (approximately 5e-324).

Example:

Number.MIN_VALUE 

NaN

The primitive value NaN represents the set of IEEE Standard Not-a-Number values.

Example:

Number.NaN 

NEGATIVE_INFINITY

The value of negative infinity.

Example:

Number.NEGATIVE_INFINITY

Number()

Number()

The constructor of Number has two forms: Number(value) and Number().

POSITIVE_INFINITY

The value of positive infinity.

Example:

Number.POSITIVE_INFINITY 
398 ECMAScript Core Reference



toString(radix)

toString()

If the radix is the number 10 or is not supplied, then this number value is given as an argument to the 
ToString operator; the resulting string value is returned. If the radix is supplied and is an integer from 
2 to 36, but not 10, the result is a string, the choice of which is implementation-dependent. The 
toString function is not generic; it generates a runtime error if this value is not a Number object. 
Therefore, it cannot be transferred to other kinds of objects for use as a method.

valueOf()

valueOf()

Returns this number value. The valueOf function is not generic; it generates a runtime error if its 
value is not a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a 
method.

Object 

Used to work with objects. Object is the primitive JavaScript object type. All ECMAScript objects are 
descended from object. That is, all ECMAScript objects have the methods defined for object.

Object()

Constructor for object. 

toString()

Object toString()

When the toString method is called on an arbitrary object, the following steps are taken: 

1. Get the [[Class]] property of this object.

2. Compute a string value by concatenating the three strings “[object “, Result(1), and “]”.

3. Return Result(2).

valueOf()

Object valueOf()

The valueOf method for an object usually returns the object; however, if the object is a wrapper for a 
host object, as might be created by the Object constructor, the contained host object should be 
returned.

String Object

Used to work with String Objects. 

String(x)

String(x)
ECMAScript Core Reference 399



The constructor of the string.

charAt(pos)

charAt(pos)

Returns a string containing the character at position pos in the string resulting from converting this 
object to a string. If there is no character at that position, the result is the empty string. The result is a 
string value, not a string object.

charCodeAt(pos)

charCodeAt(pos)

Returns a number (a nonnegative integer less than 2^16) representing the Unicode code point 
encoding of the character at position pos in the string resulting from converting this object to a string. 
If there is no character at that position, the result is NaN.

fromCharCode(char0, char1, . . .)

fromCharCode(char0, char1, . . .)

Returns a string value containing as many characters as the number of arguments. Each argument 
specifies one character of the resulting string, with the first argument specifying the first character, 
and so on, from left to right. An argument is converted to a character by applying the operation 
ToUint16 and regarding the resulting 16-bit integer as the Unicode code point encoding of a 
character. If no arguments are supplied, the result is the empty string.

indexOf(searchString, pos)

indexOf(searchString, pos)

If the given searchString appears as a substring of the result of converting this object to a string, at 
one or more positions that are at or to the right of the specified position, then the index of the leftmost 
such position is returned; otherwise, -1 is returned. If position is undefined or not supplied, 0 is 
assumed, in order to search all of the string.

lastIndexOf(searchString, pos)

lastIndexOf(searchString, pos)

If the given searchString appears as a substring of the result of converting this object to a string, at 
one or more positions that are at or to the left of the specified position, then the index of the rightmost 
such position is returned; otherwise, -1 is returned. If position is undefined or not supplied, the length 
of the string value is assumed, in order to search all of the string.

length

Returns the length of the String.

match(RegExp)

String match(RegExp)
400 ECMAScript Core Reference



Takes a regular expression object as argument. It returns an array of matches; otherwise, returns 
null.

replace(RegExp, String)

String replace(RegExp, String)

Takes a regular expression and a replacement string. It returns the original string with replacements 
accomplished.

search(RegExp)

String search(RegExp)

Takes a regular expression as the sole arg and returns the offset of the first substring that matches, or 
-1 on no match.

split(separator)

split(separator)

Returns an Array object, into which substrings of the result of converting this object to a string have 
been stored. The substrings are determined by searching from left to right for occurrences of the 
given separator; these occurrences are not part of any substring in the returned array, but serve to 
divide the string value. The separator may be a string of any length.

substring(start, end)

substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character position 
start and running to the position end of the string. If the second parameter is not present, the end 
position is considered the end of the string. The result is a string value, not a string object.

toLowerCase()

toLowerCase()

Returns a string equal in length to the length of the result of converting this object to a string. The 
result is a string value, not a string object. Every character of the result is equal to the corresponding 
character of the string, unless that character has a Unicode 2.0 lowercase equivalent, in which case 
the lowercase equivalent is used instead. The canonical Unicode 2.0 case mapping must be used, 
which does not depend on implementation or locale.

toString()

toString()

Returns this string value. When concerned with the placement and use of whitespace line terminators 
and semicolons within the representation, the string value is implementation-dependent.

toUpperCase()

toUpperCase()
ECMAScript Core Reference 401



Returns a string equal in length to the length of the result of converting this object to a string. The 
result is a string value, not a string object. Every character of the result is equal to the corresponding 
character of the string, unless that character has a Unicode 2.0 uppercase equivalent, in which case 
the uppercase equivalent is used instead. The canonical Unicode 2.0 case mapping must be used, 
which does not depend on implementation or locale.

valueOf()

valueOf()

Returns this string value. The valueOf() function is not generic, so it generates a runtime error if the 
object is not a String object.
402 ECMAScript Core Reference


	NetIQ Identity Manager - Administrator’s Guide to Designing the Identity Applications
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	1 Introduction to the Identity Applications Design Tools
	About the Provisioning View
	About the Directory Abstraction Layer Editor
	About the Provisioning Request Definition Editor
	About the ECMA Expression Builder
	About the Provisioning Team Editor
	About the Role Catalog
	Documenting a Project
	Provisioning Locales
	Directory Abstraction Layer
	Provisioning Request Definitions
	Provisioning Teams
	Role Catalog


	2 Working with the Provisioning View
	Setting Up a Provisioning Project
	Adding a User Application Driver to the Project
	Adding a Role Service Driver to the Project
	Modifying the Role Service Driver Properties
	About Email Notification Templates
	Email Based Approval

	Accessing the Provisioning View
	Setting Provisioning View Preferences
	Importing Provisioning Objects
	Importing from a Driver Configuration File
	Importing from an Identity Vault

	Exporting Provisioning Objects
	Validating Provisioning Objects
	Directory Abstraction Layer Objects
	Provisioning Request Definitions
	Provisioning Teams
	Role Configuration Objects
	Roles
	Resources
	User Application Driver Locales

	Deploying Provisioning Objects
	Deploying Provisioning Objects
	Testing the Deployed Changes

	Comparing Provisioning Objects
	Specifying Locales and Localization Resource Groups
	Specifying the Default Locale
	Defining the User Application’s Supported Locales
	Creating a Custom Localization Resource Group

	Localizing Provisioning Objects
	Using Designer to Localize
	Supported Languages
	Exporting and Importing Data to Localize


	3 Configuring the Directory Abstraction Layer
	About the Directory Abstraction Layer
	Analyzing the User Application’s Data Needs
	About the Directory Abstraction Layer Editor
	About Directory Abstraction Layer Editor Files

	Working with Entities and Attributes
	About Entities and Attributes
	Adding Entities
	Adding Attributes
	Updating the Schema Elements List

	Working with Lists
	Working with Queries
	Working with Relationships
	Working with Configuration Settings
	Directory Abstraction Layer Property Reference
	Entity Properties
	Attribute Properties
	Queries Properties
	Relationship Properties


	4 Configuring Provisioning Request Definitions
	About Provisioning Request Definitions
	Using the Provisioning Request Definition Editor
	Creating a Provisioning Request Definition
	Starting the Provisioning Request Definition Editor
	Creating a Provisioning Request Definition By Using a Template
	Creating a Custom Provisioning Request Definition
	Creating a Roles Based Provisioning Request Definition
	Modifying Settings of a Provisioning Request Definition

	Provisioning and Workflow Example
	Step 1: Initiating the Request
	Step 2: Approving the Request
	Step 3: Fulfilling the Request
	Step 4: Completing the Workflow


	5 Creating Forms for a Provisioning Request Definition
	About Forms
	About Form Control Data Binding
	About Forms and Events

	About the Forms Tab
	About Form Selection 
	About Form Controls

	Creating Forms
	Creating New Forms
	Adding Form Controls and Actions
	Defining Events
	Using the Scripts Tab

	Action Reference
	Form Control Reference
	Data Type for Roles Based Request Forms
	Data Type for Resource Based Request Forms
	Controls for User-Entered Comments
	General Form Control Properties
	CheckBoxPickList
	DatePicker
	DateTimePicker
	DNContainer
	DNDisplay
	DNLookup
	DNMaker
	DNQuery
	Global List
	Localized Label
	Html
	MVCheckbox
	MVEditor
	Password
	PickList
	RadioButtons
	Static List
	Text
	Text Area
	Title
	TrueFalseCheckBox
	TrueFalseRadioButtons
	TrueFalseSelectBox

	Working with Distinguished Names
	Formatting DNs
	Working with Object Selectors

	Using DAL Queries in Forms
	Printing Forms

	6 Creating the Workflow for a Provisioning Request Definition
	About the Workflow Tab
	Canvas
	Palette
	Views

	Adding Activities to a Workflow
	Setting the General Properties of an Activity
	Defining the Data Item Mappings
	Defining the E-Mail Notification Settings

	Adding Flow Paths
	Configuring Flow Paths
	Guidelines for Creating Workflows
	Rules for Activities
	Rules for Flow Paths
	Understanding Workflow Data

	Guidelines for Creating Roles Based Workflows
	About Role Approval Workflows
	Writing Custom Role Workflows
	About Separation of Duties Approval Workflows
	Customizing the Standard Separation of Duties Workflow

	Guidelines for Creating Resource Based Workflows
	About Resource Approval Workflows
	Writing Custom Resource Workflows

	Debugging a Workflow
	Using the Log Activity
	Using the Workflow Database
	Changing Log Levels

	Provisioning Multiple Individuals with One Workflow Instance 
	Basic Steps for Using the Workflow

	Making Distinguished Name References Portable

	7 Workflow Activity Reference
	Start Activity
	Properties
	Data Item Mapping
	Email Notification

	Approval Activity
	Properties
	Data Item Mapping
	Available ECMAScript Methods
	Email Notification
	Addressing an Approval Activity

	Log Activity
	Properties
	Data Item Mapping
	Email Notification

	Branch Activity
	Properties
	Data Item Mapping
	Email Notification

	Merge Activity
	Properties
	Data Item Mapping
	Email Notification

	Condition Activity
	Properties
	Data Item Mapping
	Email Notification

	Mapping Activity
	Properties
	Data Item Mapping
	Email Notification

	Workflow Status
	Properties
	Data Item Mapping
	Email Notification

	Email Activity
	Properties
	Data Item Mapping
	Email Notification

	Role Request Binding Activity
	Properties
	Data Item Mapping
	Email Notification

	Role Request Activity
	Properties
	Data Item Mapping
	Email Notification

	Resource Request Binding Activity
	Properties
	Data Item Mapping
	Email Notification

	Resource Request Activity
	Properties
	Data Item Mapping
	Email Notification

	Start Workflow Activity
	Properties
	Data Item Mapping
	Email Notification

	Finish Activity
	Properties
	Data Item Mapping
	Email Notification

	Rest Activity
	Properties
	Data Item Mapping
	Email Notification

	Integration Activity
	Properties
	Data Item Mapping
	Email Notification

	Entitlement Activity
	Properties
	Data Item Mapping
	Email Notification

	Entity Activity
	Properties
	Data Item Mapping
	Email Notification
	Working with Entity Activities


	8 Working with Integration Activities
	About the Integration Activity
	Adding an Integration Activity
	Moving Data to and from the Integration Activity
	Using the Integration Activity Editor Interface
	XML Views
	Action Model
	WSDL Editor
	Messages
	Regenerating Code for the Action Model
	Adding Actions to the Action Model

	Actions
	Advanced
	Data Exchange
	Repeat
	Comment
	Decision
	Function
	Log
	Map


	9 Working with ECMA Expressions
	About the ECMA Expression Builder
	About ECMAScript
	ECMAScript Capabilities
	Using the ECMA Expression Builder
	About Java Integration
	About XPath Integration
	About Global Configuration Values Integration 
	About Global ECMAScripts Integration 
	Performance Considerations

	ECMAScript Examples
	General Examples
	Flowdata Examples
	Form Control Examples
	Error Handling

	User Application API
	Form Action Script Methods
	IDVault Functions
	nrfRequest Properties and Methods

	Role Vault API
	About the Role Vault API
	Role Script API Reference
	Role Vault Bean API Reference


	10 Configuring Provisioning Teams
	About Teams
	About Team Requests
	Using a Team to Manage Direct Reports 

	Managing Teams
	Creating a Team
	Deleting a Provisioning Team
	Creating a Team to Manage Direct Reports


	11 Configuring Roles
	About the Roles Based Provisioning Module
	About the Role Catalog
	About the Role Editor
	Understanding Role Hierarchy
	Using the Role Editor 
	Role Properties Reference

	About the Separation of Duties Editor
	Using the Separation of Duties Editor
	Separation of Duties Constraints Properties

	About the Role Configuration Editor
	Role Configuration Editor Properties

	Importing Roles Defined in CSV Files
	Setting Up the File to Import
	Required CSV File Format
	Using the Wizard to Import Roles
	Error Handling


	12 Configuring Resources
	About Resources
	About the Resource Editor
	About Resource Containers
	Using the Resource Editor
	Resource Property Reference

	Importing Resources Defined in CSV Files
	Setting Up the File to Import
	Required CSV File Format
	Using the Wizard to Import Roles from a CSV File
	Error Handling


	A ECMAScript Core Reference
	ECMAScript Operators
	Functions/Methods
	DOM Methods
	Node
	Document
	Element
	Attribute
	CharacterData
	NodeList
	NamedNodeMap
	Text
	DocumentType
	DOMImplementation
	Notation
	Entity
	ProcessingInstruction

	ECMAScript Core
	Array Object
	Boolean Object
	Date Object
	Function Object
	Global
	Math Object
	Number Object
	Object 
	String Object



