
www.novell.com/documentation
Implementation Guide
Identity Manager Driver for Scripting
4.0.2

April 29, 2013

Legal Notices

Novell, Inc. and Omnibond make no representations or warranties with respect to the contents or use of this documentation,
and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. and Omnibond reserve the right to revise this publication and to make changes to its content, at any time, without
obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. and Omnibond make no representations or warranties with respect to any software, and specifically
disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. and
Omnibond reserve the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade
laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or
classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S.
export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use
deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the Novell International Trade
Services Web page (http://www.novell.com/info/exports/) for more information on exporting Novell software. Novell assumes
no responsibility for your failure to obtain any necessary export approvals.

Copyright © 2007-2014 Omnibond Systems, LLC. All rights reserved. Licensed to Novell, Inc. Portions Copyright 2007-2014
Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed on
the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or more additional patents or
pending patent applications in the U.S. and in other countries.

Novell, Inc.
1800 South Novell Place
Provo, UT 84606
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see the
Novell Documentation Web page (http://www.novell.com/documentation).

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/trademarks/
tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/info/exports/
http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation
http://www.novell.com/documentation
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents
About This Guide 7

1 Overview 9

1.1 Driver Architecture . 10
1.1.1 Publisher Channel . 10
1.1.2 Subscriber Channel . 11
1.1.3 Scriptable Framework . 11
1.1.4 Schema File. 11
1.1.5 Include/Exclude File. 11
1.1.6 Loopback State Files . 12

1.2 Configuration Overview . 12
1.2.1 Data Flow. 12
1.2.2 Policies . 12

2 Planning for the Scripting Driver 15

2.1 Prerequisites for Linux and UNIX Scripting . 15
2.1.1 Identity Vault Server Requirements . 15
2.1.2 Supported Operating Systems. 16
2.1.3 Other Software. 16

2.2 Prerequisites for Windows Scripting . 16
2.2.1 Identity Vault Server . 16
2.2.2 Microsoft Windows. 16
2.2.3 Windows PowerShell . 17
2.2.4 Microsoft .NET Framework . 17
2.2.5 Other Software. 18

2.3 Establishing a Security-Equivalent User . 18

3 Installing the Scripting Driver 21

3.1 Installing the Linux and UNIX Scripting Driver . 21
3.1.1 Installing the Linux and UNIX Scripting Driver Shim . 21
3.1.2 Creating the Driver in Novell eDirectory using iManager . 22
3.1.3 Running the Driver . 22

3.2 Installing the Windows Scripting Driver . 22
3.2.1 Installing the Driver Shim . 22
3.2.2 Creating the Driver in Novell eDirectory . 23
3.2.3 Running the Driver . 23
3.2.4 Running the Script Service for PowerShell (optional) . 24
3.2.5 Running Multiple Instances of the Driver (optional) . 25

4 Configuring the Scripting Driver 27

4.1 Driver Parameters and Global Configuration Values . 27
4.1.1 Properties That Can Be Set Only During Driver Import . 27
4.1.2 Driver Configuration Page . 29
4.1.3 Global Configuration Values Page. 31

4.2 The Driver Shim Configuration File . 34
Contents 3

4 Iden
5 Customizing the Scripting Driver 37

5.1 Scripting Driver Data Definition . 37
5.1.1 Defining Data Classes and Attributes . 38
5.1.2 Associating Identity Vault and Application Classes and Attributes 39
5.1.3 Defining an Association Rule. 39
5.1.4 Defining Excluded Identities . 39
5.1.5 Defining Relevant Events . 39

5.2 The Connected System Schema File. 40
5.2.1 Schema File Syntax. 40

5.3 The Connected System Include/Exclude File . 42
5.3.1 Include/Exclude Processing. 42
5.3.2 Include/Exclude File Syntax. 42
5.3.3 Example Include/Exclude Files . 45

5.4 Managing Additional Attributes . 46
5.4.1 Modifying the Filter . 46
5.4.2 Modifying the Scripts for New Attributes . 47

5.5 UNIX Shell Developer Guide . 47
5.5.1 Application Tools Evaluation . 47
5.5.2 Policy and Script Development . 48
5.5.3 Deployment . 59

5.6 Perl Developer Guide. 60
5.6.1 Application Tools Evaluation . 60
5.6.2 Policy and Script Development . 61
5.6.3 Deployment . 72

5.7 Python Developer Guide . 73
5.7.1 Application Tools Evaluation . 73
5.7.2 Policy and Script Development . 74
5.7.3 Deployment . 85

5.8 Microsoft VBScript Developer Guide . 86
5.8.1 Application Tools Evaluation . 86
5.8.2 Policy and Script Development . 88
5.8.3 Deployment . 98

5.9 Windows PowerShell Developer Guide . 99
5.9.1 Application Tools Evaluation . 100
5.9.2 Policy and Script Development . 101
5.9.3 Deployment . 112

5.10 Using an Alternate Scripting Language . 113

6 Using the Scripting Driver 115

6.1 Starting and Stopping the Driver . 115
6.2 Starting and Stopping the Driver Shim. 115
6.3 Displaying Driver Shim Status . 116
6.4 Monitoring Driver Messages . 117

7 Securing the Scripting Driver 119

7.1 Using SSL . 119
7.2 Physical Security . 119
7.3 Network Security . 119
7.4 Auditing . 120
7.5 Driver Security Certificates. 120
7.6 Driver Shell Scripts. 120
7.7 The Change Log . 120
7.8 Driver Passwords . 120
7.9 Driver Code . 121
tity Manager 4.0.2 Driver for Scripting Implementation Guide

7.10 Administrative Users . 121
7.11 Connected Systems . 121

A Troubleshooting 123

A.1 Driver Status and Diagnostic Files . 123
A.1.1 The System Log (Linux/UNIX only) . 123
A.1.2 The Trace File . 124
A.1.3 The Script Output File . 125
A.1.4 DSTRACE . 125
A.1.5 The Status Log . 125

A.2 Troubleshooting Common Problems . 125
A.2.1 Driver Shim Installation Failure . 126
A.2.2 Driver Rules Installation Failure. 126
A.2.3 Driver Certificate Setup Failure . 126
A.2.4 Driver Start Failure. 126
A.2.5 Driver Shim Startup or Communication Failure . 127
A.2.6 Users or Groups Are Not Provisioned to the Connected System 127
A.2.7 Users or Groups Are Not Provisioned to the Identity Vault . 127
A.2.8 Identity Vault User Passwords Are Not Provisioned to the Connected System. 128
A.2.9 Connected System User Passwords Are Not Provisioned to the Identity Vault. 128
A.2.10 Metadirectory Objects Are Not Modified, Deleted, Renamed, or Moved 128

A.3 Shared Memory Errors (Linux/UNIX only) . 129

B System and Error Messages 131

B.1 CFG Messages . 131
B.2 CHGLOG Messages . 132
B.3 DOM Messages . 132
B.4 DRVCOM Messages . 133
B.5 HES Messages . 133
B.6 LWS Messages . 134
B.7 NET Messages. 135
B.8 NIX Messages (Linux/UNIX only). 135
B.9 OAP Messages . 137
B.10 RDXML Messages . 138

C IDMLib Reference 141

C.1 UNIX Shell (idmlib.sh) Reference . 141
C.1.1 General Functions . 141
C.1.2 Subscriber Functions . 143
C.1.3 Publisher Functions . 143
C.1.4 Query Functions . 143
C.1.5 Heartbeat Functions . 143

C.2 Perl (IDMLib.pm) Reference . 144
C.2.1 General Functions . 144
C.2.2 Subscriber Functions . 146
C.2.3 Publisher Functions . 146
C.2.4 Query Functions . 146
C.2.5 Heartbeat Functions . 146

C.3 Python (idmlib.py) Reference. 147
C.3.1 General Functions . 147
C.3.2 Subscriber Functions . 148
C.3.3 Publisher Functions . 149
C.3.4 Query Functions . 149
C.3.5 Heartbeat Functions . 149
Contents 5

6 Iden
C.4 Microsoft VBScript (IDMLib.vbs) Reference. 150
C.4.1 General Functions . 150
C.4.2 Subscriber Functions . 152
C.4.3 Publisher Functions . 153
C.4.4 Query Functions . 153
C.4.5 Heartbeat Functions . 155

C.5 Windows PowerShell (IDMLib.ps1) Reference . 156
C.5.1 General Functions . 156
C.5.2 Subscriber Functions . 157
C.5.3 Publisher Functions . 158
C.5.4 Query Functions . 159
C.5.5 Heartbeat Functions . 161

D Technical Details 163

D.1 Using the usdrv-config Command (Linux/UNIX only). 163
D.1.1 Setting the Remote Loader and Driver Object Passwords . 163
D.1.2 Configuring the Driver for SSL . 164

D.2 Driver Shim Command Line Options . 164
D.2.1 Options Used to Set Up Driver Shim SSL Certificates . 164
D.2.2 Other Options . 165

D.3 Publisher Change Log Tool . 165
D.4 Files and Directories Modified by Installing the Driver Shim . 168

D.4.1 Driver Shim Directory. 168
D.4.2 /usr/sbin Files (Linux/UNIX only) . 168
D.4.3 init.d Files (Linux/UNIX only) . 169
D.4.4 Man Pages (Linux/UNIX only) . 169
D.4.5 Driver Shim Configuration File. 169
D.4.6 Windows Support Files (Windows only) . 169

E Documentation Updates 171

E.1 April 29, 2014 . 171
tity Manager 4.0.2 Driver for Scripting Implementation Guide

About This Guide

This guide describes implementation of the Novell® Identity Manager 4.0.2 driver for Scripting.

The driver synchronizes data from a connected system through a scriptable interface with Identity
Manager 4.0, the comprehensive identity management suite that allows organizations to manage the
full user life cycle, from initial hire, through ongoing changes, to ultimate retirement of the user
relationship.

This guide includes the following sections:

 Chapter 1, “Overview,” on page 9
 Chapter 2, “Planning for the Scripting Driver,” on page 15
 Chapter 3, “Installing the Scripting Driver,” on page 21
 Chapter 4, “Configuring the Scripting Driver,” on page 27
 Chapter 5, “Customizing the Scripting Driver,” on page 37
 Chapter 6, “Using the Scripting Driver,” on page 115
 Chapter 7, “Securing the Scripting Driver,” on page 119
 Appendix A, “Troubleshooting,” on page 123
 Appendix B, “System and Error Messages,” on page 131
 Appendix C, “IDMLib Reference,” on page 141
 Appendix D, “Technical Details,” on page 163

Audience

This guide is for system administrators and others who plan, install, configure, and use the Scripting
driver for Identity Manager. It assumes that you are familiar with Identity Manager, Novell
eDirectory™, and the administration of systems and platforms you connect to Identity Manager.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to the Novell Documentation Feedback site (http://www.novell.com/
documentation/feedback.html) and enter your comments there.

Documentation Updates

For the most recent version of this guide, visit the Identity Manager 4.0.2 Drivers Documentation
Web site (http://www.novell.com/documentation/idm402drivers).

Additional Documentation

For additional documentation about Identity Manager drivers, see the Identity Manager 4.0.2 Drivers
Documentation Web site (http://www.novell.com/documentation/idm402drivers).
About This Guide 7

http://www.novell.com/documentation/feedback.html
http://www.novell.com/documentation/idm402drivers
http://www.novell.com/documentation/idm402drivers
http://www.novell.com/documentation/idm402drivers
http://www.novell.com/documentation/idm402drivers

For additional documentation about Identity Manager, see the Identity Manager 4.0.2
Documentation Web site (http://www.novell.com/documentation/idm402).

For documentation about other related Novell products, such as eDirectory and iManager, see the
Novell Documentation Web site’s product index (http://www.novell.com/documentation).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX*, should use forward slashes as required by your software.
8 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

http://www.novell.com/documentation
http://www.novell.com/documentation
http://www.novell.com/documentation/idm402
http://www.novell.com/documentation/idm402

1 1Overview

The Identity Manager 4.0.2 driver for Scripting synchronizes data between the Identity Vault and a
connected system using a scripting environment suitable for the target application. Languages such
as Shell, Perl* and Microsoft* VBScript* can be used to extend the base set of sample scripts to update
and retrieve information from the target application. Traditional driver development is accomplished
with Java* and the Policy Builder. With the Scripting environment, driver development can be done
in alternate languages, which provide a large set of packages and complex language syntax. In
addition, your target application might already provide management tools, commands, or APIs
written or easily accessible in Perl, Shell Script or VBScript.

The Scripting driver runs on a large number of Linux and UNIX platforms, including Linux, Solaris*,
AIX* and HP-UX*. In addition, a Microsoft Windows* service is available for applications that run on
the Windows platform. The driver also uses embedded Remote Loader technology to communicate
with the Identity Vault, bidirectionally synchronizing changes between the Identity Vault and the
connected system. The embedded Remote Loader component, also called the driver shim, runs as a
native process on the connected Linux or UNIX system or a Windows service on a Windows system.
There is no requirement to install Java on the connected system. The simplicity of installation,
configuration and security provides an excellent environment for the development of new drivers.

Changes and enhancements in the 4.0.2b release include:

 Upgraded OpenSSL.
 FIPS 140-2 Compliance for 64-bit Linux.
 Changelog encryption upgraded to AES256 for FIPS compliance.
 Query back operations work properly for Poll and Heartbeat Unix scripts.
 Fixed bug in publishing from multiple instances of the Unix Scripting Driver
 Added support for querying GCV’s from the Scripts.
 Added support for Windows PowerShell 4.0.
 Fixed memory overload on Windows.
 Various minor bug fixes.

Major topics in this section include

 Section 1.1, “Driver Architecture,” on page 10
 Section 1.2, “Configuration Overview,” on page 12
Overview 9

1.1 Driver Architecture
The Scripting driver synchronizes information between the Identity Vault and an external account
management system (the connected system).

The Identity Manager detects relevant changes to identities in the Identity Vault and notifies the
Subscriber component of the driver. After customizable policy processing, events are sent to the
Subscriber shim of the embedded Remote Loader process on the connected system. The Subscriber
shim securely passes the information to customizable scripts that perform the required actions.

A process on the connected system polls the account management system for changes at a
configurable interval. If the poll returns identity changes, they are written to the change log.

The Publisher shim of the embedded Remote Loader process submits the changes from the change
log to the Metadirectory engine as events. The Metadirectory engine processes these events using
customizable policies and posts relevant changes to the Identity Vault.

Topics in this section include

 Section 1.1.1, “Publisher Channel,” on page 10
 Section 1.1.2, “Subscriber Channel,” on page 11
 Section 1.1.3, “Scriptable Framework,” on page 11
 Section 1.1.4, “Schema File,” on page 11
 Section 1.1.5, “Include/Exclude File,” on page 11
 Section 1.1.6, “Loopback State Files,” on page 12

1.1.1 Publisher Channel

The Publisher shim provides identity change information to the Metadirectory engine as XDS event
documents. The Metadirectory engine applies policies, takes the appropriate actions, and posts the
events to the Identity Vault.

Change Log

The change log stores identity changes in encrypted form. The polling script uses the change log
update command to record identity changes it detects. Events are removed from the change log by
the Publisher shim at configurable intervals and submitted to the Metadirectory engine for
processing. If communication with the Metadirectory engine is temporarily lost, events remain in the
change log until communication becomes available again.

Change Log Update Command

The change log update command encrypts and writes events to the change log. Any process with
rights to update the change log can use the change log update command. The change log update
command takes command line arguments and standard input, and stores events in encrypted form in
the change log for subsequent publishing. The polling script calls the change log update command to
record identity changes. For information about using the change log update command, see the
developer guides in Chapter 5, “Customizing the Scripting Driver,” on page 37.
10 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Polling Script

The polling script periodically scans the local account management system for modifications that
have occurred since the last polling interval. If necessary, the polling script updates the change log by
calling the change log update command. You can specify the polling interval during installation and
by subsequent configuration of the Driver object.

Publisher Shim

The Publisher shim periodically scans the change log for events. Before scanning the change log, the
driver calls the polling script to check the local system for changes that might have been made since
the previous poll.

When the Publisher shim finds events in the change log, it decrypts, processes, and sends them to the
Metadirectory engine in XDS format over a Secure Sockets Layer (SSL) network link.

1.1.2 Subscriber Channel

The Subscriber channel receives XDS command documents from the Metadirectory engine and calls
the appropriate script or scripts to handle the command.

The provided scripts must be customized to handle connected system events. For more information
see Chapter 5, “Customizing the Scripting Driver,” on page 37.

1.1.3 Scriptable Framework

The interface between the connected system and the driver shim uses customizable scripts. You must
extend the scripts that are provided with the driver to support your connected system. Several utility
scripts and helper commands are provided with the driver to facilitate communication with the
driver shim and the change log. An extensible connected system schema file allows you to add your
own objects and attributes to those already supported by the driver.

For more information about the scriptable framework, see Chapter 5, “Customizing the Scripting
Driver,” on page 37.

1.1.4 Schema File

The configuration of class and attribute definitions for the connected system is specified using the
schema file. You can modify and extend this file to include new objects and attributes. For details
about configuring the schema file, see Section 5.2, “The Connected System Schema File,” on page 40.

1.1.5 Include/Exclude File

The include/exclude file allows local system policy to enforce which objects are included or excluded
from provisioning, on both the Publisher channel and the Subscriber channel, independently. For
details about using the include/exclude file, see Section 5.3, “The Connected System Include/Exclude
File,” on page 42.
Overview 11

1.1.6 Loopback State Files

The loopback state files are used to provide automatic loopback detection for external applications
that do not have mechanisms to perform loopback detection. This loopback detection prevents
subscribed events from being published back to the Identity Vault.

1.2 Configuration Overview
This section discusses driver configuration details specific to the Scripting driver. For basic
configuration information, see “Managing Identity Manager Drivers” in the Identity Manager
Administration Guide. For detailed information about configuring the Scripting driver, see Chapter 4,
“Configuring the Scripting Driver,” on page 27.

Topics in this section include

 Section 1.2.1, “Data Flow,” on page 12
 Section 1.2.2, “Policies,” on page 12

1.2.1 Data Flow

Filters and policies control the data flow of identities to and from the connected system and the
Identity Vault. The Data Flow option, specified during driver import, determines how these filters
and policies behave.

 Bidirectional: Sets classes and attributes to be synchronized on both the Subscriber and
Publisher channels.

 Application to Identity Vault: Sets classes and attributes to be synchronized on the Publisher
channel only.

 Identity Vault to Application: Sets classes and attributes to be synchronized on the Subscriber
channel only.

1.2.2 Policies

The Metadirectory engine uses policies to control the flow of information into and out of the Identity
Vault. Policies can be customized to support desired operations. The following table describes the
policy functions for the Scripting driver in the default configuration:

Table 1-1 Default Linux and UNIX Driver Policy Functions

Policy Description

Mapping Maps the Identity Vault objects and selected attributes
to connected system objects and attributes.

Publisher Event Processes Publisher-side operations.

Publisher Matching Restricts privileged accounts and defines matching
criteria for placement in the Identity Vault.

Publisher Create Defines creation rules for provisioning into the Identity
Vault.
12 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Publisher Placement Defines where new objects are placed in the Identity
Vault.

Publisher Command Defines password publishing policies.

Subscriber Matching Defines rules for matching identities in the connected
system.

Subscriber Create Defines required creation criteria.

Subscriber Command Transforms attributes and defines password
subscribing policies.

Subscriber Output Sends e-mail notifications for password failures and
converts information formats from the Identity Vault to
the connected system.

Subscriber Event Restricts events to a specified container.

Policy Description
Overview 13

14 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

2 2Planning for the Scripting Driver

The planning process for the Novell® Identity Manager Driver for Scripting begins by determining
whether you develop your own scripts and policies for use with your external account management
system or you obtain them from a third party.

If you are customizing the scripts, the process continues by installing the Scripting driver to a
development system. The first decision to make is whether you run the driver shim on Windows or a
Linux/UNIX system. (The driver engine component hosted by Novell Identity Manager can run on
any operating system that supports Identity Manager.) The driver shim should be installed on a
system that hosts, or is remotely connected to, the external account management system. The
operating system of this system is the operating system of the driver shim.

Your operating system choice determines what scripting language to use. On Linux and UNIX, pre-
written libraries are included for Bourne shell, Perl and Python*. On Windows, libraries are included
for Microsoft VBScript and PowerShell*. Also, with additional development work, you can port these
libraries to another scripting language.

Continue the development process by reading Chapter 5, “Customizing the Scripting Driver,” on
page 37 and following its instructions.

If you have obtained custom scripts from a third party, you should follow their instructions for
installing the Scripting driver and their custom components.You should install and test the driver on
a test system first and then on production systems.

This section reviews some of the issues to consider before you install the Scripting driver. Major
topics include

 Section 2.1, “Prerequisites for Linux and UNIX Scripting,” on page 15
 Section 2.2, “Prerequisites for Windows Scripting,” on page 16
 Section 2.3, “Establishing a Security-Equivalent User,” on page 18

For general information about planning for identity management, see the Identity Manager 3.6.1
Installation Guide.

2.1 Prerequisites for Linux and UNIX Scripting
Topics in this section include

 Section 2.1.1, “Identity Vault Server Requirements,” on page 15
 Section 2.1.2, “Supported Operating Systems,” on page 16
 Section 2.1.3, “Other Software,” on page 16

2.1.1 Identity Vault Server Requirements

 Novell Identity Manager 3.5.1.
Planning for the Scripting Driver 15

2.1.2 Supported Operating Systems

 AIX versions 5.1, 5.2, 5.3, 6.1
 HP-UX versions 11.11, 11.23 (RISC and IA64_32), 11.31 (IA64_32 and IA64_64)
 Mac OS X version 10.5 (Darwin x86)
 Solaris Sparc* versions 8, 9, 10
 Solaris x86 version 10
 SUSE® Linux Enterprise Server version 11
 SUSE Linux versions 9, 10 (32-bit, 64-bit), 11 (32-bit, 64-bit)
 SUSE Linux s390x version 10.1 (64-bit)
 Red Hat* Linux versions 4, 5 (32-bit, 64-bit), 6(32-bit, 64-bit)
 Debian* Linux version 3.1
 FreeBSD* version 5.5
 Tru64* version 5.1
 CentOS version 5 (32-bit, 64-bit)

2.1.3 Other Software

 Novell iManager 2.7
 Novell Designer 3 (optional; for development)

2.2 Prerequisites for Windows Scripting
 Section 2.2.1, “Identity Vault Server,” on page 16
 Section 2.2.2, “Microsoft Windows,” on page 16
 Section 2.2.3, “Windows PowerShell,” on page 17
 Section 2.2.4, “Microsoft .NET Framework,” on page 17
 Section 2.2.5, “Other Software,” on page 18

2.2.1 Identity Vault Server

The following software is required on the Identity Vault Server:

 Novell Identity Manager 3.5.1 or higher
 Novell eDirectory (level supported by Identity Manager and higher)

2.2.2 Microsoft Windows

On the system where you install the Driver Shim, the following Microsoft operating systems are
supported:

 Windows Server 2003 (all editions)
 Windows Server 2003 R2 (all editions)
 Windows Server 2008 (all editions)
16 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

 Windows Server 2008 R2 (all editions; Server Core installation not supported)
 Windows Server 2012 (all editions; Core installation not supported)
 Windows Server 2012 R2 (all editions; Core installation not supported)
 Windows XP SP2/SP3
 Windows Vista
 Windows 7
 Windows 8
 Windows 8.1

If you intend to use the 64-bit Scripting Driver, you must install an x64 (not ia64) version of Windows.

2.2.3 Windows PowerShell

Windows PowerShell is installed by default for Windows Server 2008 R2 and later for servers and
Windows 7 and later for workstations. If you are using an older version of Windows, see Microsoft’s
website (http://www.microsoft.com) for information on installing PowerShell.

Also be aware of the following:

 All PowerShell versions up to 4.0 are supported; the latest version of PowerShell supported by
your Windows version is recommended.

 You must use the x86 or x64 version of PowerShell that corresponds with the version of the
Scripting Driver you intend to use.

 Before using the Scripting Driver, you must change PowerShell’s default script execution policy
as follows:

1. Open Windows PowerShell from the Windows Start menu. It is typically located under All
Programs > Accessories > Windows PowerShell.

NOTE: If you are running the 32-bit (x86) Scripting Driver on an x64 version of Windows
open Windows PowerShell (x86).

2. Enter the following command:

Set-ExecutionPolicy Unrestricted

The setting is saved automatically.
3. Close PowerShell.

2.2.4 Microsoft .NET Framework

 If you are running the Script Service for Windows PowerShell (Section 3.2.4, “Running the Script
Service for PowerShell (optional),” on page 24), the Microsoft .NET Framework is required.

 By default, the Microsoft .NET Framework 4.0 or higher (version 4.5.1 or higher recommended)
is required to use the Script Service. The Microsoft .NET Framework can be installed using
Windows Update, or it can be downloaded from Microsoft.
Planning for the Scripting Driver 17

http://www.microsoft.com
http://www.microsoft.com

Alternatively, if you wish to use a version of Microsoft .NET Framework prior to 4.0 (minimum
2.0), you may use the legacy Script Service by following these instructions:
 1. Stop the Script Service if it is running.
 2. Backup the following files in the WSDriver\bin directory:

 ScriptService.exe
 ScriptClient.exe
 SSLogger.dll
 SSConfFile.dll

 3. From the source media, extract the contents of the
Win\win_all_scriptservice_ps20.zip file to the WSDriver\bin directory. This will
overwrite the files above.

 4. Start the Script Service.
 NOTE: the highest version of PowerShell that the legacy Script Service will run is version 2.0,

even if later versions are installed on the system.

2.2.5 Other Software

 The lastest version of Novell iManager can be installed on the Identity Vault Server or a separate
system

 Novell Designer 3 or 4 (optional; for development).

2.3 Establishing a Security-Equivalent User
The driver must run with security equivalent to a user with sufficient rights. You can set the driver
equivalent to ADMIN or a similar user. For stronger security, you can define a user with only the
minimal rights necessary for the operations you want the driver to perform.

The driver user must be a trustee of the containers where synchronized identities reside, with the
rights shown in Table 2-1. Inheritance must be set for [Entry Rights] and [All Attribute Rights].

Table 2-1 Base Container Rights Required by the Driver Security-Equivalent User

Operation [Entry Rights] [All Attribute Rights]

Subscriber notification of account
changes (recommended minimum)

Browse Compare and Read

Creating objects in the Identity Vault
without group synchronization

Browse and Create Compare and Read

Creating objects in the Identity Vault
with group synchronization

Browse and Create Compare, Read, and Write

Modifying objects in the Identity
Vault

Browse Compare, Read, and Write

Renaming objects in the Identity
Vault

Browse and Rename Compare and Read
18 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

If you do not set Supervisor for [Entry Rights], the driver cannot set passwords. If you do not want to
set passwords, set the Subscribe setting for the User class nspmDistributionPassword attribute to
Ignore in the filter to avoid superfluous error messages. For details about accessing and editing the
filter, see the documentation about policies on the Identity Manager 4.0.2 Documentation Web site
(http://www.novell.com/documentation/idm402). For complete information about rights, see the
Novell eDirectory Administration Guide.

Deleting objects from the Identity
Vault

Browse and Erase Compare, Read, and Write

Retrieving passwords from the
Identity Vault

Browse and Supervisor Compare and Read

Updating passwords in the Identity
Vault

Browse and Supervisor Compare, Read, and Write

Operation [Entry Rights] [All Attribute Rights]
Planning for the Scripting Driver 19

http://www.novell.com/documentation/idm402

20 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

3 3Installing the Scripting Driver

This section provides the information you need to install the Identity Manager 4.0.2 driver for
Scripting.

Major topics include

 Section 3.1, “Installing the Linux and UNIX Scripting Driver,” on page 21
 Section 3.2, “Installing the Windows Scripting Driver,” on page 22

3.1 Installing the Linux and UNIX Scripting Driver
Topics in this section include

 Section 3.1.1, “Installing the Linux and UNIX Scripting Driver Shim,” on page 21
 Section 3.1.2, “Creating the Driver in Novell eDirectory using iManager,” on page 22
 Section 3.1.3, “Running the Driver,” on page 22

3.1.1 Installing the Linux and UNIX Scripting Driver Shim

1 Log in to the target application server as root.
2 Obtain the <os>_scriptdriver_install.bin file from your installation media and execute this

self-extracting file on your Linux or UNIX system.
3 Specify a language choice.
4 Read and accept the license agreement.
5 After the package is installed onto your system, you are prompted to enter Driver and Remote

Loader passwords. These passwords are used to verify that an authorized driver shim is
communicating with the Identity Manager engine. Follow the prompts:
5a Enter and confirm the Remote Loader password.
5b Enter and confirm the driver password.

6 Next, you are prompted to retrieve an SSL certificate. Novell® eDirectory™ must be running to
retrieve the certificate. The certificate allows SSL encryption between the Identity Manager
engine and the driver shim. Enabling SSL is optional but is recommended for better security. To
retrieve the certificate, follow the prompts:
6a Specify the DNS name or IP address of your eDirectory server.
6b Specify the LDAP secure port, default 636.
6c Enter Y to accept the certificate.

7 You are prompted for a Scripting language to be used on this system. Enter Perl for the sample
Perl scripts to be installed or enter Shell for the sample Bourne Shell scripts to be installed.
Installing the Scripting Driver 21

8 If you select Perl, you are optionally asked to install the Perl IDMLib perl module into the Perl
system path to be accessible by the sample Perl scripts. Enter Yes or No to install this library.

9 The installation of the driver shim is finished, with the option of starting the Driver Shim
Service. Proceed to the next section to complete the installation of the driver.

3.1.2 Creating the Driver in Novell eDirectory using iManager

1 In iManager, click the Import Drivers task under Identity Manager Utilities.
2 All drivers are contained in a Driver Set. You can create a new Driver Set or install the driver into

an existing one. See “Creating and Configuring a Driver” in the Identity Manager Administration
Guide for more details. Click Next to proceed.

3 Select the Scripting driver from the list of drivers and click Next to proceed.
4 Enter information in the requested configuration fields, then click Next to continue.

When entering the Remote Loader and Driver object passwords, be sure to enter the same values
that you entered when installing the Drivershim. For more information on these fields, see
Section 4.1, “Driver Parameters and Global Configuration Values,” on page 27.

5 Click Define Security Equivalences, and select your administrative user to make the driver
security-equivalent to that user (see also Section 2.3, “Establishing a Security-Equivalent User,”
on page 18).

6 Click Exclude Administrative Roles, and select your administrative user and other high-privilege
users that should not be monitored for events.

7 Click Next to proceed, then click Finish to complete the installation.

3.1.3 Running the Driver

Start the driver engine component in Novell iManager.

The driver shim is a UNIX daemon process. Use the UNIX startup script usdrvd to start and stop the
Novell Identity Manager Linux and UNIX Script Driver (see Chapter 6, “Using the Scripting Driver,”
on page 115.)

3.2 Installing the Windows Scripting Driver
Topics in this section include

 Section 3.2.1, “Installing the Driver Shim,” on page 22
 Section 3.2.2, “Creating the Driver in Novell eDirectory,” on page 23
 Section 3.2.3, “Running the Driver,” on page 23
 Section 3.2.4, “Running the Script Service for PowerShell (optional),” on page 24
 Section 3.2.5, “Running Multiple Instances of the Driver (optional),” on page 25

3.2.1 Installing the Driver Shim

1 Obtain one of the following files from your installation media:
 win_x86_64_scriptdriver_install.exe (64-bit)
 win_x86_scriptdriver_install.exe (32-bit)

Run this file on your Windows system.
22 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

2 Click Next to continue the installation.
3 Accept the default installation folder or specify your own. Click Next to continue.
4 Review your settings and click Next to continue.
5 After the driver files are copied, you are prompted to retrieve an SSL certificate. Novell

eDirectory must be running to retrieve the certificate. The certificate allows SSL encryption
between the Identity Manager engine and the driver shim. Enabling SSL is optional but is
recommended for better security. To retrieve the certificate, click Yes and follow the prompts in
the console window:
5a Specify the DNS name or IP address of your eDirectory server.
5b Specify the LDAP secure port, default 636.
5c Enter Y to accept the certificate.

6 You are prompted to enter Driver and Remote Loader passwords. These passwords are used to
verify that an authorized driver shim is communicating with the Identity Manager engine.
Although you don’t need to enter the passwords immediately, they must be set at some point
before running the driver. Click Yes to the prompt and follow the prompts in the console
window:
6a Enter and confirm the Remote Loader password.
6b Enter and confirm the Driver password.

7 The installation of the driver shim is finished, with the option of starting the Driver Shim
Service. Proceed to the next section to complete the installation of the driver.

3.2.2 Creating the Driver in Novell eDirectory

1 In iManager, click the Import Drivers task under Identity Manager Utilities.
2 All drivers are contained in a driver set. You can create a new driver set or install the driver into

an existing one. See “Creating and Configuring a Driver” in the Identity Manager 3.6.1
Administration Guide for more details. Click Next to proceed.

3 Select the Scripting driver from the list of drivers, then click Next to proceed.
4 Fill in the requested configuration fields, then click Next to continue.

When entering the Remote Loader and Driver Object passwords, be sure to enter the same
values that you entered when installing the driver shim. For more information on these fields,
see Section 4.1, “Driver Parameters and Global Configuration Values,” on page 27.

5 Click Define Security Equivalences, and select your administrative user to make the driver
security-equivalent to that user (see also Section 2.3, “Establishing a Security-Equivalent User,”
on page 18).

6 Click Exclude Administrative Roles, and select your administrative user and other high-privilege
users that should not be included monitored for events.

7 Click Next to proceed, then click Finish to complete the installation.

3.2.3 Running the Driver

Start the driver engine component in Novell iManager.

The driver shim is a Windows service. Use the Windows Services application to start and stop the
Novell Identity Manager Windows Script Driver service (see Chapter 6, “Using the Scripting Driver,”
on page 115).
Installing the Scripting Driver 23

3.2.4 Running the Script Service for PowerShell (optional)

The Script Service preloads Windows PowerShell and keeps it in memory to provide faster
performance. You may benefit from the Script Service if you have a high volume of events for
PowerShell processing. Requests to the Script Service are securely submitted by a small program
called the Script Client.

Using the Script Service

To install and use the Script Service:

1 For versions of Windows prior to Windows 8 or Windows Server 2012, run Win\Microsoft WSE
3.0 Runtime.msi from the installation media.

2 Open the Driver Configuration in iManager. In Driver Parameters, change Script Command to
bin\scriptclient.exe.

3 Open TCP port 8081 in your firewall if necessary. The port can be customized in
scriptservice.conf, as explained in the next section.

4 Set Novell IDM Windows Script Driver - Script Service to start automatically.
5 Restart the driver and start the Script Service.
6 Verify that your scripts still work, then customize them as desired.

Configuring the Script Service

To configure the Script Service

1 Create a file named scriptservice.conf in the WSDriver\conf directory.
2 Open the file and add the desired configuration lines, using the following keywords:

Using PowerShell Directly

If you no longer wish to use the Script Service, follow these steps:

1 Open the Driver Configuration in iManager. In the Driver Parameters, change Script Command
to powershell.

2 Either stop or disable the Script Service.
3 Restart the driver.

Keyword Description Syntax

-address Change the default address and
port for Script Service.

Default: localhost:8081

-address <DNS name or IP address>[:port]

-nosecurity Do not enforce security. This
command is required if the Use
Windows EFS driver parameter
is disabled.

-nosecurity

-command Execute a script command on
startup. May be specified
multiple times.

-command <command>
24 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

3.2.5 Running Multiple Instances of the Driver (optional)

Running multiple instances of the Windows Scripting Driver on the same system may benefit
performance. The instructions in this section assume that you have already installed the Windows
Scripting Driver to the system.

Adding an Instance

To add an instance:

1 Copy existing files:
After stopping your original driver, create a new directory, and copy all original driver files to
the new directory, using the same directory structure.
For example, copy files and directories from C:\Program Files\Novell\WSDriver to
C:\Program Files\Novell\WSDriver2.

2 Edit wsdrv.conf:
2a Open the file conf\wsdrv.conf in your new directory structure. Replace all file paths with

the path to the new instance directory.
For example, paths may appear for the -path, -tracefile and -connection options.

2b Change the port numbers (connection and HTTP) to be different from the original driver's
port numbers.
For example, if the original driver uses default ports 8090 and 8091, the new instance could
use 9090 and 9091. Note that these ports need to be opened in a firewall.

3 Create a new service:
Using the Command Prompt, run wsdriver.exe from the new instance directory with the
following options:

 wsdriver -installService -instance {number} -path {path}

The instance number could be 2 for the second instance, 3 for a third, and so on. The path should
be the path to the new instance directory, using quote marks. Here's an example:

 wsdriver -installService -instance 2 -path "C:\Program
 Files\Novell\WSDriver2"

This command will create a service named Novell IDM Windows Script Driver - 2.

NOTE: If you would like to run a driver instance directly (not as a service), use the -instance
option:

 wsdriver -instance 2

This option is not needed for the original instance.

4 Create a new driver object:
4a Using iManager, create a new IDM Driver to connect to the new instance. Alternatively,

export the original driver's configuration and import it as a new driver.
4b After creating the Driver, open its configuration. Change the port number in Remote

Loader Connection Parameters to the new instance's connection port.
5 Start the services and drivers:

Start the server for the original and new instances, and start the Drivers in iManager. The
instances will run independently.
Installing the Scripting Driver 25

Removing an Instance

To remove an instance:

1 Stop the Service.
2 Uninstall the Service.

From the Command Prompt, run:

 wsdriver -removeService -instance {number}

For example:

 wsdriver -removeService -instance 2

3 Delete the files.
Delete the new directory, and all sub-directories, created for the instance.

NOTE: To remove the original instance, use the uninstall feature.
26 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

4 4Configuring the Scripting Driver

After you have installed the Identity Manager 4.0.2 driver for Scripting, use the information in this
section for configuration. Major topics include

 Section 4.1, “Driver Parameters and Global Configuration Values,” on page 27
 Section 4.2, “The Driver Shim Configuration File,” on page 34

4.1 Driver Parameters and Global Configuration Values
You can control the operation of the Scripting driver by modifying the properties described in the
following sections. Topics in this section include

 Section 4.1.1, “Properties That Can Be Set Only During Driver Import,” on page 27
 Section 4.1.2, “Driver Configuration Page,” on page 29
 Section 4.1.3, “Global Configuration Values Page,” on page 31

IMPORTANT: Changing these values requires a restart of the driver.

To edit the properties shown on the Driver Configuration page and the Global Configuration Values
page:

1 In iManager, select Identity Manager Overview from the Identity Manager task list on the left side
of the window.

2 Navigate to your driver set by searching the tree or by entering its name.
3 Click the driver to open its overview.
4 Click the driver icon.
5 Select Driver Configuration or Global Config Values as appropriate.
6 Edit the property values as desired, then click OK.

4.1.1 Properties That Can Be Set Only During Driver Import

Properties that you can set only during driver import are used to generate policies and other
configuration details.

To change import-only properties, you must re-import the Scripting.xml driver configuration file
over the existing driver.
Configuring the Scripting Driver 27

Table 4-1 Driver Import-Only Parameters

Data Flow

 Bidirectional: Identities are synchronized from both the Identity Vault and the connected
system (application). After all pending events are processed, the Identity Vault and connected
system mirror each other.

 Application to Identity Vault: Identities are synchronized from the connected system
(application) to the Identity Vault, but not vice versa. For example, an identity created in the
Identity Vault is not created on the connected system unless explicitly migrated.

 Identity Vault to Application: Identities are synchronized from the Identity Vault to the
connected system (application), but not vice versa. For example, changes made to a connected
system’s identity are not synchronized to the Identity Vault.

Enable Entitlements

Specifies whether the driver uses either Approval Flow or Role-Based Entitlements with the
Entitlements Service driver.

Enable entitlements for the driver only if you plan to use the User Application or Role-Based
Entitlements with the driver.

You can use Role-Based Entitlements to integrate the Scripting driver with the Identity Manager User
Application.

Use SSL

Specifies whether the driver uses Secure Sockets Layer (SSL) to encrypt the connection between the
Identity Vault and the application.

We strongly recommend that you use SSL. If you do not use SSL, identity data (including passwords)
is sent across the network in clear text.

Property Name Values or Format

Data Flow Bidirectional

Application to Identity Vault

Identity Vault to Application

Enable Entitlements Yes

No

Use SSL No
28 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

4.1.2 Driver Configuration Page

Table 4-2 Driver Configuration Page

Driver Object Password

The Driver object password is used by the driver shim (embedded Remote Loader) to authenticate
itself to the Metadirectory engine. This must be the same password that is specified as the Driver
object password on the connected system driver shim.

Property Name Values or Format

Driver Module Connect to Remote Loader must be
selected.

Driver Object Password Text Value

Authentication ID Not used by the Scripting driver.

Authentication Context Not used by the Scripting driver.

Remote Loader Connection Parameters Host name or IP address and
port number of the driver shim on the
connected system, and the RDN of the
object with server certificate.

Driver Cache Limit The recommended value is 0 (zero).

Application Password Not used by the Scripting driver.

Remote Loader Password Text Value

Startup Option Auto start

Manual

Automatic Loopback Detection Yes

No

Script Command Text Value

Script Trace File Filename

Subscriber Script Filename

Polling Script Filename

Heartbeat Script Filename

Polling Interval Number of seconds

Heartbeat Interval Number of seconds
Configuring the Scripting Driver 29

Remote Loader Connection Parameters

Table 4-3 Remote Loader Connection Parameters

The following is an example Remote Loader connection parameter string:

hostname=192.168.17.41 port=8090 kmo="SSL CertificateIP"

Remote Loader Password

The Remote Loader password is used to control access to the driver shim (embedded Remote
Loader). This must be the same password that is specified as the Remote Loader password on the
connected system driver shim.

Automatic Loopback Detection

Specifies whether the driver shim discards events that would cause loopback conditions. This
function supplements the loopback detection provided by the Metadirectory engine.

Script Command

Specifies the command line the driver uses when executing scripts. The driver provides default
values for Shell scripts, Perl, Python, VBScript and PowerShell. Normally this value does not need to
be changed.

Script Trace File

Specifies a file to which script trace output will be written. The path is relative to the Scripting driver
installation directory.

Subscriber Script

Specifies the script file that the driver runs for Subscriber events. The driver provides default values
for Shell scripts, Python, Perl, VBScript and PowerShell, so this value does not normally need to be
changed.

Polling Script

Specifies the script file that the Publisher shim runs to poll for external events. The driver provides
default values for Shell scripts, Perl, Python, VBScript and PowerShell, so this value does not
normally need to be changed.

Parameter Description

host=hostName Connected system host name or IP address.

port=portNumber Connected system TCP port number. The default is
8090.

kmo=objectRDN The RDN of the object with the server certificate
signed by the tree’s certificate authority. Enclose the
RDN in double quotes (") if the name contains spaces.
30 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Heartbeat Script

Specifies the script file that the Publisher shim runs to check the external account management
system’s status. The driver provides default values for Shell scripts, Perl, Python, VBScript and
PowerShell, so this value does not normally need to be changed.

Polling Interval

Specifies the number of seconds that the Publisher shim waits after running the polling script and
sending events from the change log to the Metadirectory engine. The default interval is 60 seconds,
and the minimum interval is 1 second.

Heartbeat Interval

Specifies how often, in seconds, the driver shim contacts the Metadirectory engine to verify
connectivity. Specify 0 to disable the heartbeat.

4.1.3 Global Configuration Values Page

Table 4-4 Global Configuration Values

Property Name Values or Format

Connected System or Driver Name Text Value

Auto Associate Objects Yes

No

Application Supports Query Yes

No

Auto Resolve Association Reference Yes

No

Auto Associate Subscriber Value Text Value

Auto Associated Publisher Value Text Value

Strip Old Values Text Value

The Scripting Connected System Accepts Passwords from the
Identity Vault

True

False

The Identity Vault Accepts Passwords from the Scripting
Connected System

True

False

The Identity Vault Accepts Administrative Password Resets from
the Scripting Connected System

True

False

Publish Passwords to NDS Password True

False
Configuring the Scripting Driver 31

To view and edit Password Management GCVs, select Show for Show Password Management Policy.

To view and edit User and Group Placement GCVs, select Show for Show User and Group Placements.

Connected System or Driver Name

Specifies the name of the driver. This value is used by the e-mail notification templates.

Auto Associate Objects

Automatically assign associations to objects. Use this option to automatically generate associations
on both the Subscriber and Publisher channels.

Application Supports Query

Does your application support the ability to query information? If the driver cannot query data from
your target application, objects cannot be matched and information cannot be merged. If you are only
interested in event notification to your target scripts and not data synchronization, you may select
No.

Auto Resolve Association References

Automatically resolve association references from one object to another.

Auto Associate Subscriber Value

When generating associations, select which value should be used for the object’s association. If you
choose SourceName, the object's naming attribute will be used as the association. This value may be
easier to read and use by a script. If you choose GUID, the object's Global Unique Identifier will be
used. This value is guaranteed to be unique, even when it's renamed or moved.

Publish Passwords to Distribution Password True

False

Require Password Policy Validation before Publishing Passwords True

False

Reset User’s External System Password to the Identity Manager
Password on Failure

True

False

Notify the User of Password Synchronization Failure via E-Mail True

False

 User Base Container Identity Vault
Container object

Group Base Container Identity Vault
Container object

Property Name Values or Format
32 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Auto Associate Publisher Value

When generating associations, select which value should be used for the object’s association. If you
choose SourceName, the object’s naming attribute will be used as the association. This value may be
easier to read and use by a script. If you choose GUID, the object's Global Unique Identifier will be
used. This value is guaranteed to be unique, even when it is renamed or moved.

Strip Old Values

By default, the engine will remove attribute values whose timestamps are older than that of their
current state. Choose Strip to keep the default and strip these values when events are processed on
the subscriber channel. Choose Keep to allow the attribute values to be processed by the subscriber
channel. This is useful if your application requires that an action be taken on every event.

The Scripting Connected System Accepts Passwords from the Identity Vault

Specifies whether the driver allows passwords to flow from the Identity Vault to the connected
system.

The Identity Vault Accepts Passwords from the Scripting Connected System

Specifies whether the driver allows passwords to flow from the connected system to the Identity
Vault.

The Identity Vault Accepts Administrative Password Resets from the Scripting
Connected System

Specifies whether the driver allows passwords to be reset from the connected system in the Identity
Vault.

Publish Passwords to NDS Password

Specifies whether the driver uses passwords from the connected system to set nonreversible NDS®
passwords in the Identity Vault.

Publish Passwords to Distribution Password

Specifies whether the driver uses passwords from the connected system to set NMAS™ Distribution
passwords, which are used for Identity Manager password synchronization.

Require Password Policy Validation before Publishing Passwords

Specifies whether the driver applies NMAS password policies to published passwords. If so, a
password is not written to the Identity Vault if it does not conform.

Reset User’s External System Password to the Identity Manager Password on
Failure

Specifies whether, on a publish Distribution Password failure, the driver attempts to reset the
password on the connected system using the Distribution Password from the Identity Vault.
Configuring the Scripting Driver 33

Notify the User of Password Synchronization Failure via E-Mail

Specifies whether the driver sends an e-mail to a user if the password cannot be synchronized.

User Base Container

Specifies the base container object in the Identity Vault for user synchronization. This container is
used in the Subscriber channel Event Transformation policy to limit the Identity Vault objects being
synchronized. This container is used in the Publisher channel Placement policy as the destination for
adding objects to the Identity Vault. Use a value similar to the following:

users.myorg

Group Base Container

Specifies the base container object in the Identity Vault for group synchronization. This container is
used in the Subscriber channel Event Transformation policy to limit the Identity Vault objects being
synchronized. This container is used in the Publisher channel Placement policy as the destination
when adding objects to the Identity Vault. Use a value similar to the following:

groups.myorg

4.2 The Driver Shim Configuration File
The driver shim configuration file controls operation of the driver shim. The location and name of the
file is dependent on the operating system:

 Windows: wsdrv.conf in the conf directory in your installation directory.
 Linux or UNIX: /etc/usdrv.conf

A default configuration file is created at installation time.

You can specify the configuration options listed in Table 4-5, one per line. You can also specify these
options on the driver shim command line. For details about driver shim command line options, see
Section D.2, “Driver Shim Command Line Options,” on page 164.

Table 4-5 Driver Shim Configuration File Statements

Option (Short and Long Forms) Description

-conn connString

-connection connString

A string with connection options. Enclose the string in
double quotes ("). If you specify more than one option,
separate the options with spaces.

port=driverShimPort

ca=Certificate Authority Key File

-hp httpPort

-httpport httpPort

Specifies the HTTP services port number. The default
HTTP services port number is 8091.

You can connect to this port to view log files. For
details, see Section A.1, “Driver Status and Diagnostic
Files,” on page 123.
34 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Example Configuration File

-tracefile /opt/novell/usdrv/logs/trace.log
-trace 0
-connection "ca=/opt/novell/usdrv/keys/ca.pem port=8090"
-httpport 8091
-path /opt/novell/usdrv/

-path driverPath Specifies the path for driver files. The default path is /
usr/local/nxdrv.

-t traceLevel

-trace traceLevel

Sets the level of debug tracing. 0 is no tracing, and 10
is all tracing. For details, see Section A.1, “Driver
Status and Diagnostic Files,” on page 123.

The output file location is specified by the tracefile
option.

-tf fileName

-tracefile fileName

Sets the trace file location.

Windows default file:
C:\Progra~1\Novell\WSDriver\logs\trace.l
og

Linux/UNIX default file: /opt/novell/usdrv/
logs/trace.log.

Option (Short and Long Forms) Description
Configuring the Scripting Driver 35

36 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

5 5Customizing the Scripting Driver

This section describes how the scripts can be written to access and manage your target system.
Scripting sets for both Linux and UNIX and for Windows provide libraries, accessible by the scripts,
to retrieve event and driver data from the driver shim and to return information to the engine for
processing.

The Identity Manager engine has some simple requirements to successfully process events. The
provided library supplements your scripts to provide the tools necessary for this successful
interaction.

Major topics in this section include

 Section 5.1, “Scripting Driver Data Definition,” on page 37
 Section 5.2, “The Connected System Schema File,” on page 40
 Section 5.3, “The Connected System Include/Exclude File,” on page 42
 Section 5.4, “Managing Additional Attributes,” on page 46
 Section 5.5, “UNIX Shell Developer Guide,” on page 47
 Section 5.6, “Perl Developer Guide,” on page 60
 Section 5.7, “Python Developer Guide,” on page 73
 Section 5.8, “Microsoft VBScript Developer Guide,” on page 86
 Section 5.9, “Windows PowerShell Developer Guide,” on page 99
 Section 5.10, “Using an Alternate Scripting Language,” on page 113

5.1 Scripting Driver Data Definition
Topics in this section include

 Section 5.1.1, “Defining Data Classes and Attributes,” on page 38
 Section 5.1.2, “Associating Identity Vault and Application Classes and Attributes,” on page 39
 Section 5.1.3, “Defining an Association Rule,” on page 39
 Section 5.1.4, “Defining Excluded Identities,” on page 39
 Section 5.1.5, “Defining Relevant Events,” on page 39
Customizing the Scripting Driver 37

5.1.1 Defining Data Classes and Attributes

The first task is to examine your external application’s identity data and to determine what data is
relevant and how it should be managed. Below is a series of questions to ask in this process. The list
is not all-inclusive; there might be other questions you need to consider.

 Are identities stored in a hierarchical or flat format? In a hierarchical system, objects known as
containers can contain identities and perhaps other containers, resulting in a tree-like structure.
A flat system contains all identities at a single level.

 What types of identities exist in the external application? For example, Novell® eDirectory™
contains Users, Groups and Dynamic Groups, to name a few. Identity types, like Groups, are
often aggregates of other identity types.

 What uniquely distinguishes (or names) each type of identity? The name is usually an attribute,
known as the naming attribute. Systems often use a human-readable name and a unique serial
number. You should determine which is suitable for your needs.

 What relationships exist among the identity types? Suppose Groups can contain Users. Can
Groups contain other Groups? Are these relationships one-to-one or one-to-many?

 Is there a way for an identity to link to or represent another identity? For example, eDirectory
provides Alias objects, which link to other objects. Your driver might need to handle these types
of objects.

 What attributes describe each relevant type of object? Which of these attributes is relevant? What
is the data type (string, number, etc.) for each attribute? Can the attribute contain multiple
values? Are there restrictions on the attribute’s values, such as being read-only, or are they
restricted to a certain range of values?

 How will this data be synchronized between the Identity Vault and the application? Some
attributes will be synchronized one-way (eDirectory-to-application or vice versa), and others
will be synchronized bi-directionally.

 Does your application need password synchronization? Will password synchronization be one-
way or bi-directional? Restrictions might also apply to other sensitive data. You need to study
the APIs for your application to determine how this should be done.

 Are there identity types or specific identities that should be excluded from synchronization?
Administrative users are often excluded from synchronization to avoid security issues.

 Does data need to be transformed when it is synchronized? For example, eDirectory stores a
person’s first name and last name as separate attribute, but an external application might store a
name as one attribute. Such transformations can be done in policies or in the scripts.

Through this process, you should make a list of the application’s identity types (also known as
classes), their attributes, and each attribute’s data type and special properties. This list can then be
specified in the driver’s schema.def file:

SCHEMA
 CLASS User
 ATTRIBUTE loginName NAMING REQUIRED
 ATTRIBUTE firstName
 ATTRIBUTE lastName
 (etc.)

The format of this schema.def file is the same regardless of operating system and scripting
language. See Section 5.2, “The Connected System Schema File,” on page 40 for more information.
38 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

5.1.2 Associating Identity Vault and Application Classes and Attributes

The next step is to examine the Identity Vault’s classes and attributes and determine which best
correspond to the external application’s identities. If the Identity Vault does not provide a suitable
class or attribute, you can define your own by modifying the Identity Vault’s schema. For more
information, see the Novell eDirectory Administration Guide.

The driver’s driver filter allows the Metadirectory engine to determine which attributes and classes
are relevant to the driver. For the Subscriber channel, the engine notifies the driver of changes for
only those classes and attributes that are set to Synchronize in the filter. When the driver receives
application identity changes on the Publisher channel, Synchronize must be set on classes and
attributes for those items to be changed in eDirectory. The easiest way to define a driver filter is to
create a new driver with the default XML configuration file provided with the Scripting driver
(Scripting.xml). In Novell iManager, edit the Driver Filter to include relevant classes and attributes.
Then, export the driver’s configuration to an XML file for later use. See Section 5.4, “Managing
Additional Attributes,” on page 46 for more information.

5.1.3 Defining an Association Rule

Each identity needs an association that uniquely identifies that identity for both eDirectory and the
external application. The association must be based on information shared between both the Identity
Vault and the application. The association is usually based on one or more attribute values. Below are
some ideas for forming an association:

 If a naming attribute is unique across all classes, you could use that attribute value.
 If a naming attribute is unique for a specific class, concatenate the attribute and class name to

form the association. For example, an identity named “Bob” with the class “User” could have
association “BobUser”.

 In a hierarchical system (like eDirectory), you could use a name with its complete hierarchical
path, assuming that it is unique. For example, an identity with a hierarchical path
“Bob.Users.ACME” could use that path as its association.

 A system can provide a serial number for each identity. This unique number can be used for an
association.

5.1.4 Defining Excluded Identities

You might have a list of identities that you want to exclude from synchronization. Also, if an identity
is synchronized with sensitive information, you might want to reject that identity. The include-
exclude.conf file allows such specifications:

EXCLUDE
 adminUser
 CLASS secureUser

The format of this file is the same regardless of operating system and scripting language. See
Section 5.3, “The Connected System Include/Exclude File,” on page 42 for more information.

5.1.5 Defining Relevant Events

When data changes in an identity management system, an event is said to have occurred. In
preparation for the next step, evaluate which event types are relevant for your application:

 Add: An identity is created. All required attributes must be created. Security parameters, such as
a password, should be defined for the identity to ensure that security isn’t compromised.
Customizing the Scripting Driver 39

 Modify: One or more attributes of an existing identity are changed. This might affect identities
that have a relationship to the changed identity.

 Modify-password: An identity’s password has changed. This event type can be considered a
subtype of Modify, but because it often requires special handling, it is treated as a separate event
type.

 Delete: An identity is destroyed. This might mean permanent deletion, or a change of status of
the identity so that it can be undeleted if necessary. This might affect other identities. For
example, deleting a User that is a member of a Group might cause a Modify event for that
Group.

 Rename: An identity’s naming attribute has changed.
 Move: An identity’s logical location has changed. This usually applies to identities in a

hierarchical system.

An event of a certain type in one system can result in an event of a different type in the synchronized
system. For example, when a Modify event occurs for an identity that does not yet exist in the
external system, an Add event is submitted.

There is one more type of event that does not represent a change but is a request for information: the
Query event. Novell eDirectory issues queries to your application on the Subscriber channel. You can
also query eDirectory from scripts on either Subscriber or Publisher channels.

Novell eDirectory supports all of the events above. You should make a list of what the result of a
particular event in eDirectory will be in your external application. Conversely, you should list what
event types can occur in your external application, which event types are relevant and what the result
of relevant events should be in the Identity Vault.

5.2 The Connected System Schema File
The schema.def file on the connected system is stored in the schema directory under the driver
installation directory. It is used to specify the classes and attributes that are available on the system.

The schema file is read by the driver shim when the Metadirectory engine requests it. This typically
happens at driver startup. The schema file is also used by the Policy Editor to map the schema of the
Identity Vault to the schema of the external application.

If you change the schema file, you must restart the driver shim and the driver.

The scripts written for the driver depend on the classes and attributes in the schema file.

5.2.1 Schema File Syntax

Each line in the schema file represents an element and must begin with the element name: SCHEMA,
CLASS, or ATTRIBUTE.

The first element of the schema file is the schema definition. The schema definition is followed by
class definitions. Each class definition can contain attribute definitions.

Except for the values of class and attribute names, the contents of the schema file are case insensitive.

Comments

Lines that begin with an octothorpe (#) are comments.

This is a comment.
40 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Schema Definition

The first line in the schema file that is not a comment must be the schema definition.

SCHEMA [HIERARCHICAL]

HIERARCHICAL specifies that the target application is not a flat set of users and groups, but is
organized by hierarchical components, such as a directory-based container object.

Class Definition

CLASS className [CONTAINER]

You must specify a class name. Enclose the class name in double quotes (").

Add the CONTAINER keyword if objects of this class can contain other objects.

The class definition is ended by another class definition or by the end of the file.

Attribute Definition

Any number of attribute definitions can follow a class definition. Attribute definitions define
attributes for the class whose definition they follow.

ATTRIBUTE attributeName [TypeAndProperties]

An attribute name is required. Enclose the attribute name in double quotes (").

If no attribute type is specified, the attribute has the string type. The allowable types are:

 STRING
 INTEGER
 STATE
 DN

The allowable attribute properties are:

 REQUIRED
 NAMING
 MULTIVALUED
 CASESENSITIVE
 READONLY

Example Schema File

SCHEMA HIERARCHICAL
 CLASS "User"
 ATTRIBUTE "cn" NAMING REQUIRED
 ATTRIBUTE "Group Membership" MULTIVALUED DN
 CLASS "Group"
 ATTRIBUTE "cn" NAMING REQUIRED
 ATTRIBUTE "Group Members" MULTIVALUED DN
Customizing the Scripting Driver 41

5.3 The Connected System Include/Exclude File
You can use an optional include/exclude file on the connected system to control which identities are
or are not synchronized between the Identity Vault and the connected system. Create a text file
named include-exclude.conf and save it in the conf directory under your driver installation
directory.

The file is read when the driver shim starts. If you make changes to it, you must restart the driver
shim.

The include/exclude file can contain include rules and exclude rules. To ensure optimal performance,
each include/exclude file should contain no more than 50 entries total.

You can use the include/exclude file to phase in your deployment of the Scripting driver, excluding
most users and groups at first, and then adding more as you gain confidence and experience.

Topics in this section include

 Section 5.3.1, “Include/Exclude Processing,” on page 42
 Section 5.3.2, “Include/Exclude File Syntax,” on page 42
 Section 5.3.3, “Example Include/Exclude Files,” on page 45

5.3.1 Include/Exclude Processing

Identity Vault events for identities that match an exclude rule are discarded by the Subscriber shim.
Connected system events for identities that match an exclude rule are not sent to the Metadirectory
engine by the Publisher shim.

Included identities are treated normally by the Subscriber and Publisher shims.

Identities that do not match an include rule or an exclude rule in the file are included.

Identities are matched in the following priority:

1. Channel-specific (Publisher or Subscriber) exclude rules
2. Channel-specific include rules
3. General exclude rules
4. General include rules

Within each level of this matching priority, identities are matched against rules in the order that the
rules appear in the file. The first rule that matches determines whether the identity is included or
excluded.

5.3.2 Include/Exclude File Syntax

Except for class names, attribute names, and the values to match, the contents of the include/exclude
file are case insensitive.

The include/exclude file can contain any number of include sections, exclude sections, and single-line
rules.

Include sections and exclude sections can contain class matching rules, and class matching rules can
contain attribute matching rules. Include sections and exclude sections can also contain association
matching rules.
42 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Include and exclude sections can be contained in subscriber and publisher sections to limit their
scope to the specified channel.

Class and attribute names used in the include/exclude file must correspond to the names specified in
the schema file. For details about the schema file, see Section 5.2, “The Connected System Schema
File,” on page 40.

Comments

Lines that begin with an octothorpe (#) are comments.

This is a comment.

Subscriber and Publisher Sections

Subscriber and publisher sections limit the include and exclude sections they contain to the specified
channel.

A subscriber section begins with a subscriber line and ends with an endsubscriber line.

SUBSCRIBER
.
.
.
ENDSUBSCRIBER

A publisher section begins with a publisher line and ends with an endpublisher line.

PUBLISHER
.
.
.
ENDPUBLISHER

Each subscriber and publisher section can contain include and exclude sections.

Include and Exclude Sections

Include and exclude sections provide rules to specify which objects are to be included or excluded
from synchronization.

An include section begins with an include line and ends with an endinclude line.

INCLUDE
.
.
.
ENDINCLUDE

An exclude section begins with an exclude line and ends with an endexclude line.

EXCLUDE
.
.
.
ENDEXCLUDE

You can use class matching rules and association matching rules within an include section and an
exclude section.
Customizing the Scripting Driver 43

Class Matching Rules

Use a class matching rule within an include section or an exclude section to specify the name of a
class of objects to include or exclude.

A class matching rule is defined by a class line that specifies the name of the class and ends with an
endclass line.

CLASS className
.
.
.
ENDCLASS

You can use attribute matching rules within a class matching rule.

Attribute Matching Rules

You can use attribute matching rules within a class matching rule to limit the objects that are
included or excluded. If no attribute matching rules are specified for a class, all objects of the
specified class are included or excluded.

An attribute matching rule comprises an attribute name, an equals sign (=), and an expression. The
expression can be an exact value, or it can use limited regular expressions. For details about limited
regular expressions, see “Limited Regular Expressions” on page 45.

attributeName=expression

Multiple attribute matching rules can be specified for a given class.

Attribute matching rules within a class matching rule are logically ANDed together. To logically OR
attribute matching rules for a class, specify multiple class matching rules. For example, the following
include/exclude file excludes both user01 and user02:

Exclude the User object if its loginName is user01 or user02.
EXCLUDE
CLASS User
 loginName=user01
ENDCLASS
CLASS User
 loginName=user02
ENDCLASS
ENDEXCLUDE

Association Matching Rules

You can specify association matching rules in an include or exclude section. Association matching
rule expressions can specify an exact association or a limited regular expression. For details about
limited regular expressions, see “Limited Regular Expressions” on page 45.

The way associations are formed can be customized for an implementation. (See Section 5.1,
“Scripting Driver Data Definition,” on page 37 for more information.)

This example works for associations that are a concatenation of the object name and class name. To
exclude the root user, specify the following:

EXCLUDE
 rootUser
ENDEXCLUDE
44 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Single-Line Rules

[SUBSCRIBER|PUBLISHER] INCLUDE|EXCLUDE [className] objectSelection

Where objectSelection can be

{associationMatch | attributeName=expression}

Single-line rules can specify the Subscriber or Publisher channel at the start of the rule. If a channel is
specified, the rule applies only to that channel. Otherwise it applies to both channels.

You must specify whether the rule is to include or exclude the objects it matches.

You can specify a class name to limit matches to only objects of that class.

You must specify either an association or an attribute matching expression. The syntax of the
association and attribute matching expression is the same as that of association matching rules and
attribute matching rules previously described. For details, see “Association Matching Rules” on
page 44 and “Attribute Matching Rules” on page 44.

For example, to ignore events from the ADMIN user in the Identity Vault, code:

Do not subscribe to events for the ADMIN user.
SUBSCRIBER EXCLUDE adminUser

Limited Regular Expressions

A limited regular expression is a pattern used to match a string of characters.

Character matching is case sensitive.

Any literal character matches that character.

A period (.) matches any single character.

A bracket expression is a set of characters enclosed by left ([) and right (]) brackets that matches any
listed character. Within a bracket expression, a range expression is a pair of characters separated by a
hyphen, and is equivalent to listing all of the characters that sort between the given characters,
inclusive. For example, [0-9] matches any single digit.

An asterisk (*) indicates that the preceding item is matched zero or more times.

A plus sign (+) indicates that the preceding item is matched one or more times.

A question mark (?) indicates that the preceding item is matched zero or one times.

You can use parentheses to group multiple expressions into a single item. For example, (abc)+
matches abc, abcabc, abcabcabc, etc. Nesting of parentheses is not supported.

5.3.3 Example Include/Exclude Files

 “Example 1” on page 46
 “Example 2” on page 46
 “Example 3” on page 46
Customizing the Scripting Driver 45

Example 1

Exclude users whose names start with temp
EXCLUDE
 CLASS User
 loginName=temp.*
 ENDCLASS
ENDEXCLUDE

Example 2

Exclude usera and userb
Because attribute rules are ANDed, these must be in separate
CLASS sections.
EXCLUDE
 CLASS User
 loginName=usera
 ENDCLASS
 CLASS User
 loginName=userb
 ENDCLASS
ENDEXCLUDE

Example 3

Exclude all users except those whose names start with idm
This works because channel-specific matching takes precedence
over general matching.
EXCLUDE
 CLASS User
 ENDCLASS
ENDEXCLUDE

SUBSCRIBER INCLUDE User loginName=idm.*
PUBLISHER INCLUDE User loginName=idm.*

5.4 Managing Additional Attributes
You can add additional attributes to the driver for both the Publisher and Subscriber channels. These
attributes can be accessed by the scripts for all event types.

To publish or subscribe to additional attributes, you must add them to the filter and add support for
them into the scripts. Topics in this section include

 Section 5.4.1, “Modifying the Filter,” on page 46
 Section 5.4.2, “Modifying the Scripts for New Attributes,” on page 47

5.4.1 Modifying the Filter

1 On the iManager Driver Overview page for the driver, click the Filter icon on either the
Publisher or Subscriber channel. It is the same object.

2 In the Filter Edit dialog box, click the class containing the attribute to be added.
3 Click Add Attribute, then select the attribute from the list.
4 Select the flow of this attribute for the Publisher and Subscriber channels.

 Synchronize: Changes to this object are reported and automatically synchronized.
 Ignore: Changes to this object are not reported and not automatically synchronized.
46 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

 Notify: Changes to this object are reported, but not automatically synchronized.
 Reset: Resets the object value to the value specified by the opposite channel. (You can set

this value on either the Publisher or Subscriber channel, but not both.)
5 Click Apply.
6 If you want to map this attribute to an existing attribute in the connected system’s schema,

modify the Schema Mapping policy for the driver.

For complete details about managing filters and Schema Mapping policies, see Policies in the
iManager for Identity Manager Guide.

5.4.2 Modifying the Scripts for New Attributes

In the Subscriber channel, scripts are called to take the appropriate action for each type of event. You
will need to modify the appropriate scripts to read the values from the new attributes.

Publishing additional attributes requires that you act on changes made in the connected system
application. In addition, the schema.def file should be updated with the additional attributes (see
Section 5.2, “The Connected System Schema File,” on page 40).

5.5 UNIX Shell Developer Guide
The Scripting driver provides a complete Shell script API for interacting with identity management
systems whose tools (including APIs) are available on Linux and UNIX. The Identity Vault and
Identity Manager can run on any supported operating system. Identity Manager communicates with
the driver on a different system over an encrypted network connection.

Before beginning script development, review the preceding topics in this section for information on
defining what data will be synchronized between identity management systems.

With additional development work, the driver can also be customized to support any scripting
language that supports command-line operation.

Developing a custom driver with Shell scripts is discussed in the following topics:

 Section 5.5.1, “Application Tools Evaluation,” on page 47
 Section 5.5.2, “Policy and Script Development,” on page 48
 Section 5.5.3, “Deployment,” on page 59

5.5.1 Application Tools Evaluation

To change the data in your external application, you need to know how to use the application’s tools
or API (Application Programming Interface). These tools must provide automated operation and not
require user input.

Application Command Line Tools

An application often provides command line tools. These tools are manually executed from a shell,
and they can be executed from scripts. Suppose the application provides a tool to add identities with
a program called appadd.

appadd -n "Bob Smith" -t "818-555-2100"
Customizing the Scripting Driver 47

This command adds an identity named “Bob Smith” with the specified phone number. The strings
following the program name are called parameters or arguments. The Linux and UNIX Scripting
driver provides a function called EXEC to execute external programs, log the command to the system
log and produce a status document indicating the level of success.

 CommandLine="appadd -n $UserName -t $PhoneNumber"
 EXEC $CommandLine

For command line tools, you can construct the command line’s parameters using the values passed to
the script, then execute the program.

Application Event Monitoring

You also need to determine what tools are available for monitoring event changes in the application.
The Scripting driver works on a polling system. It periodically calls a polling script to determine
what has changed in the external application. You can use the following ideas for monitoring
changes:

 The first time the polling script is run, a list of identities and relevant attributes is read from the
application using an application-provided tool. This list is stored as a file. On subsequent polls, a
new list is generated and compared to the old list. Any differences are submitted as events to the
driver.

 The application provides a tool that allows you to request all identities that have changed after a
certain point in time. The polling script requests events that have occurred since the previous
poll.

 The application allows a script to be run when an event occurs. You can write a script that stores
the event data into a file. When the Script driver polling script runs, it consumes this file and
submits the data as an event to the driver using the change log tool, usclh. For detailed
information on usclh, see Section D.3, “Publisher Change Log Tool,” on page 165

Monitoring the application’s changes might be the most difficult aspect of developing your driver.
You must study your application’s tools to determine the best way to achieve synchronization.

5.5.2 Policy and Script Development

At this point you should have a list of what data will be synchronized, how events will be handled
and what application tools are available. It is time to develop the heart of your driver in policies and
scripts.

Many types of tasks can be handled in driver policies. You can import the driver configuration
provided with the Scripting driver, and then edit policies in Novell iManager. You can also edit
policies and simulate their operation in Novell Designer. The extensive functionality of policies is
outside the scope of this document, so you should refer to the appropriate publications at the Identity
Manager 4.0.2 Documentation Web site (http://www.novell.com/documentation/idm402).

It’s often difficult to write complex tasks inside policies, such as executing external commands,
processing input and output, and file I/O. Tasks requiring such operations are better suited in scripts,
where an entire language environment and tools are available. You can also accomplish many of the
operations performed in policies, so if you are more familiar with your scripting language than
policies, you can develop your driver more quickly by using scripts. Scripting languages such as Perl
and Shell scripts offer an environment that is often well suited for your target application’s APIs or
developer kits. For example, your target application might already contain Perl library routines for
manipulating the application’s identities.
48 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

http://www.novell.com/documentation/idm402
http://www.novell.com/documentation/idm402

Event Data Format

Event data is submitted to the scripts in name/value pair format. This format consists of lines
containing a name, an equal sign (=) and a value. Therefore each line is a name/value pair. Each
name/value pair is unique, but there can be multiple name/value pairs with identical names but
different values.

 ASSOCIATION=BobUser
 ADD_TELEPHONE=818-555-2100
 ADD_TELEPHONE=818-555-9842

You typically don’t need to worry about the format. The script library provides functions for
retrieving event data.

Subscriber Script Development

After all Policy processing is complete, Identity Manager submits the event in XML format to the
driver shim. The driver shim submits the event data to the scripts.

In the default Scripting driver, the subscriber.sh script in the scripts folder is called. This script
does some preliminary processing, and then calls a routine from an included script. The included
scripts correspond to the Subscriber event types: add.sh, modify.sh, modify-password.sh,
delete.sh, rename.sh, move.sh, and query.sh.

For each event type, you should retrieve the information you need from the event data, submit
changes to the external application using application-provided tools, and return a status (such as
success or failure) to Identity Manager.

Event data is retrieved primarily using the IDMGETVAR function. For detailed information on how
to use IDMGETVAR, see Section C.1, “UNIX Shell (idmlib.sh) Reference,” on page 141.This function
returns an array of values corresponding to the name specified as the function’s parameter. The
following table shows many item names.

Table 5-1 Items

Name Description

COMMAND The command for the event, usually indicating the event type. Possible
values are: add, modify, delete, rename, modify-password,
check-object-password.

ASSOCIATION The identifier that distinguishes an identity on both identity management
systems.

CLASS_NAME An identity’s class, such as User or Group.

SRC_DN An identity’s distinguished name (DN) in the namespace of the source
(sender), in slash format.

EVENT_ID An identifier for the event, for internal use.

SRC_ENTRY_ID An identifier for the identity that generated the event, in the namespace
of the source (sender).

DEST_DN An identity’s distinguished name (DN) in the namespace of the
destination (receiver), in slash format.

DEST_ENTRY_ID An identifier for an entry in the namespace of the destination (receiver).

ADD_attr_name A value to be added to an identity, for attribute attr_name.
Customizing the Scripting Driver 49

Examples Of Obtaining Event Data

Example 1:

command='IDMGETVAR "COMMAND"'
check for an add event
if ["$command" = "add"]; then
 # call the add script
 add.sh
fi

Example 2:

obtain the event's association and CN attribute
ASSOCIATION=‘IDMGETVAR "ASSOCIATION"‘
CN='IDMGETVAR "ADD_CN"'
if ["$CN" = "bob"]; then
 # for "bob", check to see if he's been enabled
 ENABLE=‘IDMGETVAR "REMOVE_Login Disabled"‘
 if ["$ENABLE" = "true"]; then
 # bob is enabled again
 cmd="appenable -association $ASSOCIATION"
 EXEC "$cmd"
 fi
fi

Handling Associations

The association value indicates which identity has been changed. If the identity has no association, an
association must be generated for it using an implementation-specific rule that you have adopted.
When Identity Manager processes an event for an identity with no association, it executes the driver’s
Matching policy. This policy attempts to match the event’s identity to an identity on the external
application’s system. Usually doing this involves executing a query. The default Matching policy
included with the Scripting driver queries for matching Users and Groups based on the CN attribute.
If the event’s identity matches an identity on the external application, both identities must be
assigned the new association. Assigning this association can be done as part of the query-handling

REMOVE_attr_name A value to be removed from an identity, for attribute attr_name.

ADD_REF_attr_name A value to be added to attribute attr_name, where the value is an
association referring to another identity.

REMOVE_REF_attr_name A value to be removed from attribute attr_name, where the value is an
association referring to another identity.

OLD_PASSWORD The previous password for an identity that has changed its password.
Used in Modify Password events.

PASSWORD The new password for an identity. Used in Add and Modify Password
events.

OLD_SRC_DN The distinguished name of an identity before a Move or Rename event.

REMOVE_OLD_NAME Specifies whether an old relative distinguished name should be deleted
or retained. Used in Rename events.

STATUS_LEVEL The status of an event: success, warning, retry, error or fatal.

STATUS_MESSAGE A message to report with a status.

STATUS_TYPE A type of status, such as heartbeat.

Name Description
50 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

script. (Handling queries is discussed in more detail in “Handling Query Events” on page 53.) If no
identity matches, an Add event is issued, and the new association can be assigned as part of the Add
event-handling script:

Adding an association
IDMSETVAR "COMMAND" "ADD_ASSOCIATION"
IDMSETVAR "ASSOCIATION" "$MyAssociation"
IDMSETVAR "EVENT_ID" "$EVENT_ID"
IDMSETVAR "DEST_DN" "$SRC_DN"
IDMSETVAR "DEST_ENTRY_ID" "$SRC_ENTRY_ID"

The above example demonstrates each name/value pair that must be set for an association to be
assigned by the Identity Manager engine. The values of EVENT_ID, SRC_DN and SRC_ENTRY_ID are
always sent by the engine during an add event, and therefore, are available for your add script to
obtain using IDMGETVAR. The example above also illustrates the IDMSETVAR function. For
detailed information on how to use IDMSETVAR, see Section C.1, “UNIX Shell (idmlib.sh)
Reference,” on page 141. This function sets a name and value which indicates what action Identity
Manager should perform. For example, the pair COMMAND and ADD_ASSOCIATION instructs the shim to
create an add-association document to assign an association to an identity, as discussed above. The
pair EVENT_ID and $EVENT_ID instruct the shim to assign add-association document an event-id
described by the variable $EVENT_ID. This is important for the engine to match documents sent and
returned on the subscriber channel.

The Subscriber can also issue MODIFY_ASSOCIATION and REMOVE_ASSOCIATION commands:

Removing an association
IDMSETVAR "COMMAND" "REMOVE_ASSOCIATION"
IDMSETVAR "ASSOCIATION" "$MyAssociation"
IDMSETVAR "EVENT_ID" "$EVENT_ID"
IDMSETVAR "DEST_DN" "$SRC_DN"
IDMSETVAR "DEST_ENTRY_ID" "$SRC_ENTRY_ID"

Modifying an association
IDMSETVAR "COMMAND" "MODIFY_ASSOCIATION"
IDMSETVAR "ASSOCIATION" "$OldAssociation"
IDMSETVAR "ASSOCIATION" "$NewAssociation"
IDMSETVAR "EVENT_ID" "$EVENT_ID"
IDMSETVAR "DEST_DN" "$SRC_DN"
IDMSETVAR "DEST_ENTRY_ID" "$SRC_ENTRY_ID"

Returning an Event Status

On the Subscriber channel, you often do not need Identity Manager to perform an action, but simply
need to report a status. The STATUS_ subroutines noted below can be used to indicate a status to
Identity Manager. They take a message to be logged as their parameter.
Customizing the Scripting Driver 51

Table 5-2 Status Subroutines

Examples Using the STATUS Functions

Example 1:

EXEC "$cmd"
if [$? -eq 0]; then
 STATUS_SUCCESS "Command was successful"
fi

Example 2:

EXEC "$cmd"
if [$? -eq 0]; then
 if [-z "$password"]; then
 # created, but no password
 STATUS_WARNING "User added without password"
 fi
fi

Example 3:

EXEC "$cmd"
if [$? -ne 0]; then
 STATUS_ERROR "Command failed"
fi

Writing Values

IDMSETVAR is used to set values to return to Identity Manager. For detailed information on how tus
IDMSETVAR, see Section C.1, “UNIX Shell (idmlib.sh) Reference,” on page 141. It is passed a name
and value. In the previous ADD_ASSOCIATION example, IDMSETVAR is used to set the
ASSOCIATION value. You can specify values for items listed in the table above. Generally, the only
time IDMSETVAR is used is to add, modify and delete associations or return information for a query
operation. Other information returned to the shim by the scripts is done through other command
functions, such as STATUS_SUCCESS, which use IDMSETVAR indirectly.

Subroutine Identity Manager Action

STATUS_SUCCESS Identity Manager marks the event as a success and submits the next event
in the event queue, if any. You should issue this status even if your script
does nothing.

STATUS_WARNING The event can be processed, but it might require attention. Identity Manager
issues your warning message in its log, and then submits the next event.

STATUS_RETRY The event cannot be processed, but Identity Manager should resubmit the
event because it should be able to be processed soon. This status can be
issued if your external application appears to be temporarily unavailable.
However, this status should be used cautiously because a backlog results if
Identity Manager continually retries one event.

STATUS_ERROR The event cannot be processed and it should not be resubmitted. Identity
Manager issues the error message and submits the next event. You should
make a detailed error message so the problem can be corrected.

STATUS_FATAL For some reason, the driver must be stopped. Identity Manager issues your
message and stops the driver. This could be used if the external application
appears to be permanently offline. The event remains in the queue and is
resubmitted when the driver is restarted.
52 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Handling Query Events

For Query events, Identity Manager submits values that define the parameters of a search of the
external application’s identity management system. Queries are usually issued from the Policies you
have defined for your system. The table below specifies values that can be specified in queries. Not
all values are relevant to your external application.

Table 5-3 Values for Queries

Execute the query against the external application using application-provided tools. Then return
each identity by setting an INSTANCE command, followed by relevant values from the list below.

Value Name Description

SCOPE Specifies what identities will be searched. A base object is specified with
the ASSOCIATION or DEST_DN values (see below). The value “entry”
means that only the base object is searched. The value “subordinates”
means that the immediate subordinates of the base object are
searched. The value “subtree” (the default) indicates that the base
object and all subordinates are searched. The last two values are only
relevant in a hierarchical system.

ASSOCIATION The base object for the search. If both ASSOCIATION and DEST_DN
have values, ASSOCIATION is used. If neither is specified, the base
object is the root of the identity management system.

DEST_DN The base object for the search (see also ASSOCIATION above).

CLASS_NAME The base class of the base object.

EVENT_ID An identifier for the event.

SEARCH_CLASSES A list of classes for which to search. Only identities of these classes are
returned. If not specified, all identities in the scope matching
SEARCH_ATTR_ values are returned (see below).

SEARCH_ATTRS A list of the attribute names specified in SEARCH_ATTR_ values (see
below).

SEARCH_ATTR_attr_name A value that the specified attribute must match. Replace attr_name
with the desired attribute name. Only identities matching all
SEARCH_ATTR_ filters are returned.

READ_ATTRS A list of the attribute names whose values are returned for each
matching identity.

ALL_READ_ATTRS The presence of this value indicates that all attribute values should be
returned for matching identities.

NO_READ_ATTRS The presence of this value indicates that no attribute values should be
returned for matching identities.

READ_PARENT The presence of this value indicates that the parent object of each
matching identity should be returned. Only relevant in hierarchical
systems.
Customizing the Scripting Driver 53

Table 5-4 Query Instance Values

After returning all identities, call STATUS_SUCCESS to indicate a successful query.

Subscriber Summary and Examples

Below is a more detailed summary of the actions to take for a non-Query event.

1 Gather information about the event using IDMGETVAR. Return a warning or error if there is a
problem.

2 Submit the event data to the external application using application-provided tools.
3 Set return values with IDMSETVAR.
4 If you have not already done so, set a status with a STATUS_ subroutine.

Below is an example add.sh, which forms an association from an identity’s CN and class name, and
uses a hypothetical tool called appadd.

#!/bin/sh
ClassName=`IDMGETVAR "CLASS_NAME"` CN=`IDMGETVAR "CN"`
EVENT_ID=`IDMGETVAR "EVENT_ID"`
SRC_DN=`IDMGETVAR "SRC_DN"`
SRC_ENTRY_ID=`IDMGETVAR "SRC_ENTRY_ID"`
PhoneNumber=`IDMGETVAR "Telephone"`

if [-z "$ClassName" -o -z "$CN"]; then
 STATUS_ERROR "Add event: missing CLASS_NAME and/or CN"
else
 Command="appadd -n $CN -t $PhoneNumber"
 EXEC $Command
 if [$? -eq 0]; then
 IDMSETVAR "COMMAND" "ADD_ASSOCIATION"
 IDMSETVAR "ASSOCIATION" $CN $ClassName
 IDMSETVAR "EVENT_ID" "$EVENT_ID"
 IDMSETVAR "DEST_DN" "$SRC_DN"
 IDMSETVAR "DEST_ENTRY_ID" "$SRC_ENTRY_ID"

 STATUS_SUCCESS "Add event succeeded"
 else
 STATUS_ERROR "Add event failed with error code $RC"
 fi
fi

Handling a query is a similar process, except that you return INSTANCE items rather than using
other commands. Below is an example query.sh that searches an external application for a telephone
number. It uses a hypothetical tool called appsearch.

Value Name Description

CLASS_NAME The class of the identity. Required.

SRC_DN A distinguished name representing the logical location of the identity in
the system (optional).

ASSOCIATION The association of the identity, if available (optional).

PARENT The association of the parent object of the identity (optional). Only
relevant in hierarchical systems.

ATTR_attr_name A list of values for the attribute specified by attr_name. Return
attribute values specified by the READ_ATTRS value.
54 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

#!/bin/sh
SearchName=`IDMGETVAR "SEARCH_ATTR_CN"`
EVENT_ID=`IDMGETVAR "EVENT_ID"`
ASSOCIATION=`IDMGETVAR "ASSOCIATION"`
CLASS_NAME=`IDMGETVAR "CLASS_NAME"`

if [-z "$SearchName"]; then
 STATUS_ERROR "Query: no search value"
else
 Command="appsearch -n $SearchName"
 Results=`$Command`
 if [-n "$Results"]; then
 Phone=`echo $Results | awk ’{print $1}'`
 IDMSETVAR "COMMAND" "INSTANCE"
 IDMSETVAR "EVENT_ID" "$EVENT_ID"
 IDMSETVAR "CLASS_NAME" "$CLASS_NAME"
 IDMSETVAR "ASSOCIATION" "$ASSOCIATION"
 IDMSETVAR "ATTR_Telephone" "$Phone"

 STATUS_SUCCESS "Query succeeded"
 else
 # Return success with no results
 STATUS_SUCCESS "Query succeeded (no matches)"
 fi
fi

Publisher Script Development

Events that occur on the external application are submitted to Identity Manager on the Publisher
channel. The Scripting driver periodically polls the external application for events. How this poll
detects events is implementation-specific and must be defined by you.

Polling for Application Events

The Driver calls poll.sh to detect application events. Implement poll.sh as follows:

1 Use application-provided tools to detect events in your application, as discussed in Step 2.
2 For each event, call the changelog tool usclh to submit the event to be published. The changelog

tool allows for additional information to be supplied through standard input. This is an
appropriate mechanism for passing data that might be too large for command line or too
sensitive to appear in a shell’s history or environment. For detailed information on usclh, see
Section D.3, “Publisher Change Log Tool,” on page 165.

The following is an example of a poll.sh that checks for a password change. It uses a hypothetical
application tool called appchg.

#!/bin/sh
look for password changes
Results=`appchg --passwd-changes`
for Result in $Results; do
 # Entries are in the format "association:password"
 Association=`echo $Result | awk -F: '{print $1}'`
 Password=`echo $Result | awk -F: '{print $2}'`

 # submit a password change event
 usclh -t modify-password -a $Association <<EOF
$Password
EOF
done

look for attribute values being added to each user
Results=`appchg --add-attr-changes`
for Result in $Results; do
 # Entries are in the format "association:attribute:value"
Customizing the Scripting Driver 55

 Association=`echo $Result | awk -F: '{print $1}'`
 Attribute=`echo $Result | awk -F: '{print $2}'`
 Value=`echo $Result | awk -F: '{print $3}'`

 # submit the added attribute value
 usclh -t modify -c User -a $Association <<EOF
ADD_$Attribute=$Value
EOF
done

look for attribute values being removed from each user
Results=`appchg --remove-attr-changes`
for Result in $Results; do
 # Entries are in the format "association:attribute:value"
 Association=`echo $Result | awk -F: '{print $1}'`
 Attribute=`echo $Result | awk -F: '{print $2}'`
 Value=`echo $Result | awk -F: '{print $3}'`

 # submit the removed attribute value
 usclh -t modify -c User -a $Association <<EOF
REMOVE_$Attribute=$Value
EOF
done

In the above example, three separate events are submitted to the publisher change log using the
change log tool, usclh. The first invocation submits a modify-password event to be published. The
second event submits a modify event to be published for an attribute add. The third invocation
submits another modify event to be published for an attribute removal. The second and third
invocations can be combined into a single modify event, if desired.

Events submitted using usclh are processed through your driver’s Publisher channel policies. See
your Identity Manager 4.0.2 Policy guides (http://www.novell.com/documentation/idm402) for more
information.

Using the Heartbeat Script

Another script executed in the Publisher Channel is heartbeat.sh. This script is executed when the
Publisher Channel is idle for the interval specified in the Driver parameters. (You can set the interval
to 0 so no heartbeat is issued.) You can use the heartbeat to check the availability of the external
system or do “idle state” tasks. The HEARTBEAT_SUCCESS, HEARTBEAT_WARNING, and
HEARTBEAT_ERROR subroutines can be used to indicate the result of the heartbeat. Below is an
example based on a hypothetical tool called apphealth.

 apphealth
 RC=$?
 if [$RC -eq 0]; then
 HEARTBEAT_SUCCESS "Heartbeat succeeded"
 else
 HEARTBEAT_ERROR "Heartbeat failed with error code $RC"
 fi

The response to the heartbeat is implementation-dependent, and can be defined in Policies or in the
script itself. You could send a message to auditing using Novell Audit. You could store a value in a
file, and have Subscriber scripts read the file and call STATUS_RETRY if they find that value in the
file.

Other Scripting Topics

 “Driver Parameters” on page 57
 “Querying the Identity Vault” on page 57
 “Tracing and Debugging” on page 58
56 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

http://www.novell.com/documentation/idm402

Driver Parameters

A driver has values known as driver parameters. The driver parameters are divided into driver
settings applicable to the whole driver, and Subscriber and Publisher settings for their respective
channels. The IDMGETDRVVAR, IDMGETSUBVAR, and IDMGETPUBVAR functions can be used to
retrieve these values. The table below shows parameters in the default Scripting driver. Other
parameters can be added to the driver’s XML configuration file see “Managing Identity Manager
Drivers” in the Identity Manager Administration Guide).

Table 5-5 Scripting Driver Parameters

In the following example, a script retrieves the Publisher polling interval.

 PollingInterval=`IDMGETPUBVAR "pub-polling-interval"`

Querying the Identity Vault

Scripts might need to retrieve information from the Identity Vault. They can do this by issuing a
query.

1 Execute the query by calling IDMQUERY with the appropriate parameters:
 The first parameter is the class-name
 The second parameter is the association of the object to query
 The third parameter are the attributes to read, comma-separated

2 Read the result (instance) using IDMGETQVAR.

Query support is currently limited. It only returns one instance based on the specified association or
DN. (If both association and DN are specified, association is used.) The functions below allow you to
retrieve information from the instance.

The following is an example of a query of the Identity Vault that retrieves the address and ZIP code
for user Bob.

Parameter Name Driver/Channel Description Values

INSTALL_PATH Driver The installation path of the
Driver

string value

auto-loopback-detection Driver Whether to enable
automatic loopback
detection

true/false

subscriber-script Subscriber The root script file for
Subscriber events,
relative to the Driver
installation path

string value

pub-polling-interval Publisher The interval in seconds
between Publisher polls
for application events

 number

pub-heartbeat-interval Publisher The amount of idle time in
seconds before a
heartbeat event is issued

number

pub-disabled Publisher Whether the Publisher
Channel (i.e., polling) is
disabled

true/false
Customizing the Scripting Driver 57

 IDMQUERY "User" "Bob" "SA,Postal Code"

 Address=`IDMGETQVAR "SA"`
 ZIPCode=`IDMGETQVAR "Postal Code"`
 # ... etc. ...

Tracing and Debugging

The IDMTRACE function allows you to write a message to the Trace Log. Tracing is useful for script
debugging and auditing.

 IDMTRACE "Trace message"

When developing scripts, you might need to do some debugging to track down problems. The
following list indicates some facilities for debugging.

 The Driver traces activity to its Trace file (logs/trace.log by default). The trace level setting in
conf/usdrv.conf controls how much debugging is written to the log.

The trace level is set using the -trace option in usdrv.conf, for example -trace 9.

You can view the trace file through a Web browser:
1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the

DNS name or IP address of your driver for driver-address.
2. Authenticate by using any username and the password that you specified as the Remote

Loader password.
3. Click Trace.

 The IDMTrace function described above writes output to the trace file specified in the Driver
Parameters (logs/script-trace.log by default).

 The eDirectory tool DSTrace can be used to monitor Identity Manager activity. Set the tracing
level for the driver in iManager. DSTrace shows the XML documents being submitted to the
driver for events, and how Policies are evaluated. It also shows the status and message for each
event.

 The Status Log is written to logs/dirxml.log. It shows a summary of the events that have been
recorded on the Subscriber and Publisher channels.
You can view the Status Log through a Web browser:

1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

Trace Level Description

0 No debugging.

1-3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous level plus Remote Loader, driver, driver shim, and Driver connection messages.

5-7 Previous level plus Change Log and loopback messages. Higher trace levels provide more
detail.

8 Previous level plus Driver status log, Driver parameters, Driver command line, Driver
security, Driver Web server, Driver schema, Driver encryption, Driver SOAP API, and
Driver include/exclude file messages.

9 Previous level plus low-level networking and operating system messages.

10 Previous level plus maximum low-level program details.
58 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

2. Authenticate by using any username and the password that you specified as the Remote
Loader password.

3. Click Status.

Although it is best to start the driver in production environments from the startup script, you can run
usdrv manually. When you do so, any text written to standard output from scripts is displayed in the
interactive shell.

5.5.3 Deployment

The Scripting driver is installed by using a setup program. See Section 3.1, “Installing the Linux and
UNIX Scripting Driver,” on page 21 for more information on installing the default driver.

Deploying a Custom Driver

To deploy your custom driver, the end user should first run the Scripting driver installation program
provided by the installation media (Section 3.1, “Installing the Linux and UNIX Scripting Driver,” on
page 21). This program installs core files needed by the driver. Then, your custom driver files can be
deployed in any convenient way, whether through an installation program or even simply an archive
file. The table below shows the directory structure below the installation directory and what files are
installed.

Table 5-6 Installation Directories and Files

On Linux and UNIX, the Scripting driver is installed to /opt/novell/usdrv.

The formats of usdrv.conf and schema.def can be viewed in Section 4.2, “The Driver Shim
Configuration File,” on page 34 and Section 5.2, “The Connected System Schema File,” on page 40.

Directory Description Required Files

bin/ Location of executable programs usdrv

ussmh

usclh

changelog/ Used for Publisher event
processing

None

conf/ Location of the driver shim
configuration file

usdrv.conf (customized)

keys/ Location of security key files None

logs/ Location of log files None

loopback/ Used for automatic loopback
detection

None

rules/ Location of Driver configuration file Scripting.xml (customized)

schema/ Location of schema files schema.def (customized)

scripts/ Location of script files
Customizing the Scripting Driver 59

If SSL encryption is desired for communication between the driver shim and Identity Manager
engine, a certificate must be retrieved from the Identity Vault. Run usdrv -s and follow the prompts
to retrieve the certificate, which will be stored in the keys/ directory. You must have LDAP with SSL
available for the Metadirectory. When making an installation program for deployment, you might
want to run usdrv -s as part of the installation.

To ensure that only authorized systems access the Metadirectory, a Driver Object Password and
Remote Loader Password are used. Run usdrv -sp and enter the passwords at the prompts. This
action can be incorporated into an installation program.

You should distribute the XML configuration file that contains parameters and policies your Driver
needs. The user can then select it when installing your Driver.

5.6 Perl Developer Guide
The Scripting driver provides a complete Perl API for interacting with identity management systems
whose tools (including APIs) are available on Linux and UNIX. The Identity Vault and Identity
Manager can run on any supported operating system. Identity Manager can communicate with any
supported system on which the driver is installed via an encrypted network connection.

Before beginning script development, review the preceding topics in this section for information on
defining what data is synchronized between identity management systems.

With additional development work, the driver can also be customized to support any scripting
language that supports command-line operation.

Developing a custom driver with Perl scripts is discussed in this section. Topics include

 Section 5.6.1, “Application Tools Evaluation,” on page 60
 Section 5.6.2, “Policy and Script Development,” on page 61
 Section 5.6.3, “Deployment,” on page 72

5.6.1 Application Tools Evaluation

To change the data in your external application, you need to know how to use the application’s tools
or API (Application Programming Interface). These tools must provide automated operation and not
require user input.

Application Command Line Tools

An application often provides command line tools. These tools are manually executed from the
command line, and they can be executed from scripts. For example, suppose the application provides
a tool to add identities with a program called appadd.

appadd -n "Bob Smith" -t "818-555-2100"

This command adds an identity named “Bob Smith” with the specified phone number. The strings
following the program name are called parameters or arguments. The Linux and UNIX Scripting
driver provides a function called exec to execute external programs, log the command to the system
log, and produce a status document indicating the level of success.

$CommandLine="appadd -n $; UserName -t $PhoneNumber";
$idmlib = new IDMLib();
$idmlib->exec($CommandLine);
60 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

For command line tools, you can construct the command line’s parameters using the values passed to
the script, then execute the program.

Application Event Monitoring

You also need to determine what tools are available for monitoring event changes in the application.
The Scripting driver works on a polling system. It periodically calls a polling script to determine
what has changed in the external application. You can use the following ideas for monitoring
changes:

 The first time the polling script is run, a list of identities and relevant attributes is read from the
application using an application-provided tool. This list is stored as a file. On subsequent polls, a
new list is generated and compared to the old list. Any differences are submitted as events to the
driver.

 The application provides a tool that allows you to request all identities that have changed after a
certain point in time. The polling script requests events that have occurred since the previous
poll.

 The application allows a script to be run when an event occurs. You can write a script that stores
the event data into a file. When the Script driver polling script runs, it consumes this file and
submits the data as an event to the driver using the usclh change log tool. For detailed
information on usclh, see Section D.3, “Publisher Change Log Tool,” on page 165.

Monitoring the application’s changes might be the most difficult aspect of developing your driver.
You must study your application’s tools to determine the best way to achieve synchronization.

5.6.2 Policy and Script Development

At this point you should have a list of what data will be synchronized, how events will be handled,
and what application tools are available. It is time to develop the heart of your driver in policies and
scripts.

Many types of tasks can be handled in driver policies. You can import the driver configuration
provided with the Scripting driver, and then edit policies in Novell iManager. You can also edit
policies and simulate their operation in Novell Designer. The extensive functionality of policies is
outside the scope of this document, and so you should refer to the appropriate policy guides on the
Identity Manager 4.0.2 Documentation Web site (http://www.novell.com/documentation/idm402) for
help.

It’s often difficult to write complex tasks inside policies, such as executing external commands,
processing input and output, and file I/O. Tasks requiring such operations are better suited in scripts,
where an entire language environment and tools are available. You can also accomplish many of the
operations performed in policies, so if you are more familiar with your scripting language than
policies, you can develop your driver more quickly by using scripts. Scripting languages such as Perl
and Shell scripts offer an environment that is often well suited for your target application’s APIs or
developer kits. For example, your target application might already contain Perl library routines for
manipulating the application’s identities.

Event Data Format

Event data is submitted to the scripts in name/value pair format. This format consists of lines
containing a name, an equal sign (=) and a value. Therefore, each line is a name/value pair. Each
name/value pair is unique, but there can be multiple name/value pairs with identical names but
different values.
Customizing the Scripting Driver 61

http://www.novell.com/documentation/idm402

 ASSOCIATION=BobUser
 ADD_TELEPHONE=818-555-2100
 ADD_TELEPHONE=818-555-9842

You typically don’t need to worry about the format. The script library provides functions for
retrieving event data.

Subscriber Script Development

After all Policy processing is complete, Identity Manager submits the event in XML format to the
driver shim. The driver shim submits the event data to the scripts.

In the default Scripting driver, the subscriber.pl script in the scripts folder is called. This script
does some preliminary processing, and then calls a routine from an included script. The included
scripts correspond to the Subscriber event types: add.pl, modify.pl, modify-password.pl,
delete.pl, rename.pl, move.pl, and query.pl.

For each event type, you should retrieve the information you need from the event data, submit
changes to the external application using application-provided tools and return a status (such as
success or failure) to Identity Manager.

Event data is retrieved primarily by using the $idmlib->idmgetvar() function. This function returns
an array of values corresponding to the name specified as the function’s parameter. The following
table shows many item names.

Table 5-7 Item Names

Name Description

COMMAND The command for the event, usually indicating the event type.
Possible values are: add, modify, delete, rename, modify-
password, check-object-password.

ASSOCIATION The identifier that distinguishes an identity on both identity
management systems.

CLASS_NAME An identity’s class, such as User or Group.

SRC_DN An identity’s distinguished name (DN) in the namespace of the
source (sender), in slash format.

EVENT_ID An identifier for the event, for internal use.

SRC_ENTRY_ID An identifier for the identity that generated the event, in the
namespace of the source (sender).

DEST_DN An identity’s distinguished name (DN) in the namespace of the
destination (receiver), in slash format.

DEST_ENTRY_ID An identifier for an entry in the namespace of the destination
(receiver).

ADD_{attr_name} A value to be added to an identity, for attribute {attr_name}.

REMOVE_{attr_name} A value to be removed from an identity, for attribute {attr_name}.

ADD_REF_{attr_name} A value to be added to attribute {attr_name}, where the value is an
association referring to another identity.

REMOVE_REF_{attr_name} A value to be removed from attribute {attr_name}, where the value
is an association referring to another identity.
62 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Examples Of Obtaining Event Data

Example 1:

my $idmlib = new IDMLib();
my $command = $idmlib->idmgetvar("COMMAND");
check for an add event
if ($command eq "add") {
 # call the add script
 do add.pl;
}

Example 2:

my $idmlib = new IDMLib();
obtain the event's association and CN attribute
my $association = $idmlib->idmgetvar("ASSOCIATION");
my $CN = $idmlib->idmgetvar("CN");
if ($CN eq "bob") {
 # for "bob", check to see if he's been enabled
 my $ENABLE = $idmlib->idmgetvar("REMOVE_Login Disabled");
 if ($ENABLE eq "true") {
 # bob is enabled again
 cmd="appenable -association ". $ASSOCIATION
 $idmlib->exec($cmd);
 }
}

Handling Associations

The association value indicates which identity has been changed. If the identity has no association, an
association must be generated for it using an implementation-specific rule that you have adopted.
When Identity Manager processes an event for an identity with no association, it executes the driver’s
Matching policy. This policy attempts to match the event’s identity to an identity on the external
application’s system. Doing this usually involves executing a query. The default Matching policy
included with the Scripting driver queries for matching Users and Groups based on the CN attribute.
If the event’s identity matches an identity on the external application, both identities must be
assigned the new association. Assigning this association can be done as part of the query-handling
script. (Handling queries is discussed in “Handling Query Events” on page 65.) If no identity
matches, an Add event is issued, and the new association can be assigned as part of the Add event-
handling script:

OLD_PASSWORD The previous password for an identity that has changed its
password. Used in Modify Password events.

PASSWORD The new password for an identity. Used in Add and Modify
Password events.

OLD_SRC_DN The distinguished name of an identity before a Move or Rename
event.

REMOVE_OLD_NAME Specifies whether an old relative distinguished name should be
deleted or retained. Used in Rename events.

STATUS_LEVEL The status of an event: success, warning, retry, error or fatal.

STATUS_MESSAGE A message to report with a status.

STATUS_TYPE A type of status, such as heartbeat.

Name Description
Customizing the Scripting Driver 63

Adding an association
my $idmlib = new IDMLib();
$idmlib->idmsetvar("COMMAND", "ADD_ASSOCIATION");
$idmlib->idmsetvar("ASSOCIATION", $MyAssociation);
$idmlib->idmsetvar("EVENT_ID", $EVENT_ID);
$idmlib->idmsetvar("DEST_DN", $SRC_DN);
$idmlib->idmsetvar("DEST_ENTRY_ID", $SRC_ENTRY_ID);

The above example demonstrates each name/value pair that must be set for an association to be
assigned by the Identity Manager engine. The values of EVENT_ID, SRC_DN and SRC_ENTRY_ID are
always sent by the engine during an add event, and therefore, are available for your add script to
obtain using $idmlib->idmgetvar(). The example above also illustrates the $idmlib->idmsetvar()
function. For detailed information on how to use $idmlib->idmsetvar(), see Section C.2, “Perl
(IDMLib.pm) Reference,” on page 144. This function sets a name and value which indicates what
action Identity Manager should perform. For example, the pair COMMAND and ADD_ASSOCIATION
instructs the shim to create an add-association document to assign an association to an identity, as
discussed above. The pair EVENT_ID and $EVENT_ID instruct the shim to assign add-association
document an event-id described by the variable $EVENT_ID. This is important for the engine to match
documents sent and returned on the subscriber channel.

The Subscriber can also issue MODIFY_ASSOCIATION and REMOVE_ASSOCIATION commands:

Removing an association
my $idmlib = new IDMLib();
$idmlib->idmsetvar("COMMAND", "REMOVE_ASSOCIATION");
$idmlib->idmsetvar("ASSOCIATION", $MyAssociation);
$idmlib->idmsetvar("EVENT_ID", $EVENT_ID);
$idmlib->idmsetvar("DEST_DN", $SRC_DN);
$idmlib->idmsetvar("DEST_ENTRY_ID", $SRC_ENTRY_ID);

Modifying an association
my $idmlib = new IDMLib();
$idmlib->idmsetvar("COMMAND", "MODIFY_ASSOCIATION");
$idmlib->idmsetvar("ASSOCIATION", $OldAssociation);
$idmlib->idmsetvar("ASSOCIATION", $NewAssociation);
$idmlib->idmsetvar("EVENT_ID", $EVENT_ID);
$idmlib->idmsetvar("DEST_DN", $SRC_DN);
$idmlib->idmsetvar("DEST_ENTRY_ID", $SRC_ENTRY_ID);

Returning an Event Status

On the Subscriber channel, you often do not need Identity Manager to perform an action, but simply
need to report a status. The STATUS_ subroutines noted below can be used to indicate a status to
Identity Manager. They take a message to be logged as the parameter.
64 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Table 5-8 STATUS Subroutines

Examples Using the Status() Functions

$idmlib->exec($cmd);
if ($? == 0) {
 $idmlib->status_success("Command was successful");
}
$idmlib->exec($cmd);
if ($? == 0) {
 if ($password eq '') {
 # created, but no password
 $idmlib->status_warning("User added without password");
 }
}
$idmlib->exec($cmd);
if ($? != 0) {
 $idmlib->status_error("Command failed");
}

Writing Values

$idmlib->idmsetvar() is used to set values to return to Identity Manager. It is passed a name and
value. For detailed information on how to use $idmlib->idmsetvar(), see Section C.2, “Perl
(IDMLib.pm) Reference,” on page 144. In the previous ADD_ASSOCIATION example, $idmlib-
>idmsetvar() is used to set the ASSOCIATION value. You can specify values for items listed in the
table above. Generally, $idmlib->idmsetvar() is used is to add, modify and delete associations or
return information for a query operation. Other information is returned to the shim through other
command functions, such as status_success(), which use IDMSETVAR indirectly.

Handling Query Events

For Query events, Identity Manager submits values that define the parameters of a search of the
external application’s identity management system. Queries are usually issued from the Policies you
have defined for your system. The table below specifies values that can be specified in queries. Not
all values are relevant to your external application.

Subroutine Identity Manager Action

status_success() Identity Manager marks the event as a success and submits the next event
in the event queue, if any. You should issue this status even if your script
does nothing.

status_warning() The event can be processed, but it might require attention. Identity
Manager issues your warning message in its log, and then submits the next
event.

status_retry() The event cannot be processed, but Identity Manager should resubmit the
event because it should be able to be processed soon. This status can be
issued if your external application appears to be temporarily unavailable.
However, this status should be used cautiously because a backlog results if
Identity Manager continually retries one event.

status_error() The event cannot be processed and it should not be resubmitted. Identity
Manager issues the error message and submits the next event. You should
make a detailed error message so the problem can be corrected.

status_fatal() For some reason, the driver must be stopped. Identity Manager issues your
message and stops the driver. This could be used if the external application
appears to be permanently offline. The event remains in the queue and is
resubmitted when the driver is restarted.
Customizing the Scripting Driver 65

Table 5-9 Query Values

Execute the query against the external application using application-provided tools. Then return
each identity by setting an INSTANCE command, followed by relevant values from the list below.

Value Name Description

SCOPE Specifies what identities are searched. A base object is specified with the
ASSOCIATION or DEST_DN values (see below). The value entry means
that only the base object is searched. The value subordinates means that
the immediate subordinates of the base object are searched. The value
subtree (the default) indicates that the base object and all subordinates
are searched. The last two values are only relevant in a hierarchical system.

ASSOCIATION The base object for the search. If both ASSOCIATION and DEST_DN have
values, ASSOCIATION is used. If neither is specified, the base object is the
root of the identity management system.

DEST_DN The base object for the search (see also ASSOCIATION above).

CLASS_NAME The base class of the base object.

EVENT_ID An identifier for the event.

SEARCH_CLASSES A list of classes for which to search. Only identities of these classes are
returned. If not specified, all identities in the scope matching
SEARCH_ATTR_ values are returned (see below)

SEARCH_ATTRS A list of the attribute names specified in SEARCH_ATTR_ values (see below).

SEARCH_ATTR_attr_name A value that the specified attribute must match. Replace attr_name with
the desired attribute name. Only identities matching all SEARCH_ATTR_
filters are returned.

READ_ATTRS A list of the attribute names whose values are returned for each matching
identity.

ALL_READ_ATTRS The presence of this value indicates that all attribute values should be
returned for matching identities.

NO_READ_ATTRS The presence of this value indicates that no attribute values should be
returned for matching identities.

READ_PARENT The presence of this value indicates that the parent object of each matching
identity should be returned. Only relevant in hierarchical systems.
66 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Table 5-10 Query Values

After returning all identities, call $idmlib->status_success() to indicate a successful query.

Subscriber Summary and Examples

Below is a more detailed summary of the actions to take for a non-Query event.

1 Gather information about the event using $idmlib->idmgetvar(). Return a warning or error if
there is a problem.

2 Submit the event data to the external application using application-provided tools.
3 Set event values with $idmlib->idmsetvar().
4 If you have not already done so, set a status with a $idmlib->status() subroutine.

Below is an example add.pl, which forms an association from an identity’s CN and class name, and
uses a hypothetical tool called appadd.

#!/usr/bin/perl

use IDMLib;
my $idmlib = new IDMLib();
my $ClassName = $idmlib->idmgetvar("CLASS_NAME");
my $CN = $idmlib->idmgetvar("CN");
my $PhoneNumber = $idmlib->idmgetvar("Telephone");
my $EVENT_ID = $idmlib->idmgetvar("EVENT_ID");

if (($ClassName eq '') || ($CN eq '')) {
 $idmlib->status_error("Add event: missing CLASS_NAME and/or CN");
} else {
 my $Command = "appadd -n $CN -t $PhoneNumber";
 my $rc = $idmlib->exec($Command);
 if ($rc == 0) {
 $idmlib->idmsetvar("COMMAND", "ADD_ASSOCIATION");
 $idmlib->idmsetvar("ASSOCIATION", $CN . $ClassName);
 $idmlib->idmsetvar("EVENT_ID", $EVENT_ID);
 $idmlib->idmsetvar("DEST_DN", $SRC_DN);
 $idmlib->idmsetvar("DEST_ENTRY_ID", $SRC_ENTRY_ID);

 $idmlib->status_success("Add event succeeded");
 } else {
 $idmlib->status_error("Add event failed with error code" . $rc);
 }
}

Handling a query is a similar process, except that you return INSTANCE items rather than using
other commands. Below is an example query.pl that searches an external application for a telephone
number. It uses a hypothetical tool called appsearch.

Value Name Description

CLASS_NAME The class of the identity. Required.

SRC_DN A distinguished name representing the logical location of the identity in the
system (optional).

ASSOCIATION The association of the identity, if available (optional).

PARENT The association of the parent object of the identity (optional). Only relevant
in hierarchical systems.

ATTR_attr_name A list of values for the attribute specified by attr_name. Return attribute
values specified by the READ_ATTRS value.
Customizing the Scripting Driver 67

#!/usr/bin/perl

use IDMLib;
my $idmlib = new IDMLib();
my $SearchName = $idmlib->idmgetvar("SEARCH_ATTR_CN");
my $EVENT_ID = $idmlib->idmgetvar("EVENT_ID");
my $ASSOCIATION = $idmlib->idmgetvar("ASSOCIATION");
my $CLASS_NAME = $idmlib->idmgetvar("CLASS_NAME");

if ($SearchName eq "") {
 $idmlib->status_error("Query: no search value");
} else {
 my $Command = "appsearch -n ". $SearchName;
 $Results = `$Command`;
 if ($Results ne "") {
 my @phoneinfo = split(" ", $Results);
 my $Phone = $phoneinfo[0];

 $idmlib->idmsetvar("COMMAND", "INSTANCE");
 $idmlib->idmsetvar("CLASS_NAME", $CLASS_NAME);
 $idmlib->idmsetvar("EVENT_ID", $EVENT_ID);
 $idmlib->idmsetvar("ASSOCIATION", $ASSOCIATION);
 $idmlib->idmsetvar("ATTR_Telephone", $Phone);

 $idmlib->status_success("Query succeeded");
 } else {
 # Return success with no results
 $idmlib->status_success("Query succeeded (no matches)");
 }
}

Publisher Script Development

Events that occur on the external application are submitted to Identity Manager on the Publisher
channel. The Scripting driver polls the external application for events periodically. How this poll
detects events is implementation-specific and must be defined the user.

Polling for Application Events

The Driver calls poll.pl to detect application events. poll.pl should be implemented as follows:

1 Use application-provided tools to detect events in your application. (See the discussion in Step
Two.)

2 For each event, call the usclh changelog tool to submit the event to be published. The changelog
tool allows for additional information to be supplied through standard input. This is an
appropriate mechanism for passing data that might be too large for command line or too
sensitive to appear in a shell’s history or environment. For more information on usclh, see
Section D.3, “Publisher Change Log Tool,” on page 165

Below is an example of a poll.pl that checks for a password change. It uses a hypothetical
application tool called appchg.
68 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

 #!/usr/bin/perl

 use IDMLib;
 $my idmlib = new IDMLib();
 my $Results = `appchg --passwd-changes`;
 foreach $Result (split("\n", $Results)) {
 # Entries are in the format "association:password"
 ($Association, $Password) = split(":", $Result);
 `usclh -t modify-password -a $Association <<EOF
$Password
EOF`;
 }

 # look for attribute values being added to each user
 $Results = `appchg --add-attr-changes`;
 foreach $Result (split("\n", $Results)) {
 # Entries are in the format "association:attribute:value"
 ($Association, $Attribute, $Value) = split(":", $Result);
 `usclh -t modify -c User -a $Association <<EOF
ADD_$Attribute=$Value
EOF`;
 }

 # look for attribute values being removed from each user
 $Results = `appchg --remove-attr-changes`;
 foreach $Result (split("\n", $Results)) {
 # Entries are in the format "association:attribute:value"
 ($Association, $Attribute, $Value) = split(":", $Result);
 `usclh -t modify -c User -a $Association <<EOF
REMOVE_$Attribute=$Value
EOF`;
 }

In the above example, three separate events are submitted to the publisher change log, using the
change log tool, usclh. The first invocation submits a modify-password event to be published. The
second event submits a modify event to be published for an attribute add. The third invocation
submits another modify event to be published for an attribute removal. The second and third
invocations can be combined into a single modify event, if desired.

Events submitted using usclh are processed through your driver’s Publisher Channel’s policies. See
the Identity Manager policy guides on the Identity Manager 4.0.2 Documentation Web site (http://
www.novell.com/documentation/idm402) for more information.

Using the Heartbeat Script

Another script executed in the Publisher Channel is heartbeat.pl. This script is executed when the
Publisher Channel is idle for the interval specified in the Driver parameters. (You can set the interval
to 0 so no heartbeat is issued.) You can use the heartbeat to check the availability of the external
system or do “idle state” tasks. The $idmlib->heartbeat_success(), $idmlib->heartbeat_warning(), and
$idmlib->heartbeat_error() subroutines can be used to indicate the result of the heartbeat. Below is an
example based on a hypothetical tool called apphealth.

my $idmlib = new IDMLib();
my $rc = `apphealth`;
if ($rc == 0) {
 $idmlib->heartbeat_success("Heartbeat succeeded");
} else {
 $idmlib->heartbeat_error("Heartbeat failed with error code " . $rc);
}

The response to the heartbeat is implementation-dependent, and can be defined in policies or in the
script itself. You could send a message to auditing using Novell Audit. You could store a value in a
file and have Subscriber scripts read the file and call $idmlib->heartbeat_retry() if they find that value
in the file.
Customizing the Scripting Driver 69

http://www.novell.com/documentation/idm402

Other Scripting Topics

 “Driver Parameters” on page 70
 “Querying the Identity Vault” on page 70
 “Tracing and Debugging” on page 71

Driver Parameters

A driver has values known as driver parameters. The driver parameters are divided into driver
settings applicable to the whole driver, and Subscriber and Publisher Settings for their respective
channels. The $idmlib->idmgetdrvvar(), $idmlib->idmgetsubvar()and $idmlib->idmgetpubvar()
functions can be used to retrieve these values. The table below shows parameters in the default
Scripting driver. Other parameters can be added to the driver’s XML Configuration file (see the Novell
Identity Manager Administration Guide).

Table 5-11 Scripting Driver Parameters

In the following example, a script retrieves the Publisher polling interval.

 my $PollingInterval = $idmlib->idmgetpubvar("pub-polling-interval");

Querying the Identity Vault

Scripts might need to retrieve information from the Identity Vault. They can do this by issuing a
query.

1 Execute the query by calling $idmlib->idmquery($class, $association, $readattrs) with
the appropriate parameters:
 The first parameter is the class-name

Parameter Name Driver/Channel Description Values

INSTALL_PATH Driver The installation path of the
Driver

string value

auto-loopback-detection Driver Whether to enable
automatic loopback
detection

true/false

subscriber-script Subscriber The root script file for
Subscriber events,
relative to the driver
installation path

string value

pub-polling-interval Publisher The interval in seconds
between Publisher polls
for application events

number

pub-heartbeat-interval Publisher The amount of idle time in
seconds before a
heartbeat event is issued

 number

pub-disabled Publisher Whether the Publisher
Channel (such as for
polling) is disabled

 true/false
70 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

 The second parameter is the association of the object to query
 The third parameter are the attributes to read, comma-separated

2 Read the result (instance) using $idmlib->idmgetqvar().

Query support is currently limited. It returns only one instance based on the specified association or
DN. If both association and DN are specified, association is used. The functions below allow you to
retrieve information from the instance.

The following is an example of a query of the Identity Vault that retrieves the address and ZIP code
for user Bob.

my $idmlib = new IDMLib();
$idmlib->idmquery("User", "Bob", "SA,Postal Code");

my $Address = $idmlib->idmgetqvar("SA");
my $ZIPCode = $idmlib->idmgetqvar("Postal Code");
... etc. ...

Tracing and Debugging

The function IDMTRACE allows you to write a message to the Trace Log. Tracing is useful for script
debugging and auditing.

 $idmlib->trace("Trace Message");

When you develop scripts, you might need to do some debugging to track down problems. The
following list indicates some facilities for debugging.

 The Driver traces activity to its Trace file (logs/trace.log by default). The trace level setting in
conf/usdrv.conf controls how much debugging is written to the log.

The trace level is set using the -trace option in usdrv.conf, for example -trace 9.

You can view the trace file through a Web browser:
1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the

DNS name or IP address of your driver for driver-address.
2. Authenticate by using any username and the password that you specified as the Remote

Loader password.
3. Click Trace.

Trace Level Description

0 No debugging.

1-3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous level plus Remote Loader, driver, driver shim, and Driver connection
messages.

 5-7 Previous level plus Change Log and loopback messages. Higher trace levels
provide more detail.

8 Previous level plus Driver status log, Driver parameters, Driver command line, Driver
security, Driver Web server, Driver schema, Driver encryption, Driver SOAP API,
and Driver include/exclude file messages.

9 Previous level plus low-level networking and operating system messages.

10 Previous level plus maximum low-level program details.
Customizing the Scripting Driver 71

 The eDirectory tool DSTrace can be used to monitor Identity Manager activity. Set the tracing
level for the Driver in iManager. DSTrace shows the XML documents being submitted to the
driver for events and how policies are evaluated. It also shows the status and message for each
event.

 The Status Log is written to logs/dirxml.log. It shows a summary of the events that have been
recorded on the Subscriber and Publisher channels.
You can view the Status Log through a Web browser:

1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

2. Authenticate by using any username and the password that you specified as the Remote
Loader password.

3. Click Status.

Although it is best to start the driver in production environments from the startup script, you can run
usdrv manually. When you do so, any text written to standard output from scripts is displayed in the
interactive shell.

5.6.3 Deployment

The Scripting driver is installed by using a setup program. See Section 3.1, “Installing the Linux and
UNIX Scripting Driver,” on page 21, for more information on installing the default driver.

Deploying a Custom Driver

To deploy your custom driver, the end user should first run the Scripting driver installation program
provided by the installation media (seeSection 3.1, “Installing the Linux and UNIX Scripting Driver,”
on page 21). This program installs core files needed by the driver. Then, your custom driver files can
be deployed in any convenient way, whether through an installation program or even simply an
archive file. The table below shows the directory structure below the installation directory and what
files are installed.

Table 5-12 Directory Structure and Files

Directory Description Required Files

bin/ Location of executable programs usdrv

ussmh

usclh

changelog/ Used for Publisher event
processing

None

conf/ Location of the driver shim
configuration file

usdrv.conf (customized)

keys/ Location of security key files None

logs/ Location of log files None

loopback/ Used for automatic loopback
detection

None

rules/ Location of Driver configuration file Scripting.xml (customized)
72 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

On Linux and UNIX, the Scripting driver is installed to /opt/novell/usdrv.

The formats of usdrv.conf and schema.def can be viewed in Section 4.2, “The Driver Shim
Configuration File,” on page 34 and Section 5.2, “The Connected System Schema File,” on page 40.

If SSL encryption is desired for communication between the driver shim and Identity Manager
engine, a certificate must be retrieved from the Identity Vault. Run usdrv -s and follow the prompts
to retrieve the certificate, which will be stored in the keys/ directory. You must have LDAP with SSL
available for the Metadirectory. When making an installation program for deployment, you might
want to run usdrv -s as part of the installation.

To ensure that only authorized systems access the Metadirectory, a Driver object password and
Remote Loader password are used. Run usdrv -sp and enter the passwords at the prompts. This
action can be incorporated into an installation program.

You should distribute the XML configuration file that contains parameters and policies your Driver
needs. The user can then select it when installing your Driver.

5.7 Python Developer Guide
The Scripting driver provides a complete Python API for interacting with identity management
systems whose tools (including APIs) are available on Linux and UNIX. The Identity Vault and
Identity Manager can run on any supported operating system. Identity Manager can communicate
with any supported system on which the driver is installed via an encrypted network connection.

Before beginning script development, review the preceding topics in this section for information on
defining what data is synchronized between identity management systems.

With additional development work, the driver can also be customized to support any scripting
language that supports command-line operation.

Developing a custom driver with Python scripts is discussed in this section. Topics include

 Section 5.7.1, “Application Tools Evaluation,” on page 73
 Section 5.7.2, “Policy and Script Development,” on page 74
 Section 5.7.3, “Deployment,” on page 85

5.7.1 Application Tools Evaluation

To change the data in your external application, you need to know how to use the application’s tools
or API (Application Programming Interface). These tools must provide automated operation and not
require user interaction.

Application Command Line Tools

An application often provides command line tools. These tools are manually executed from the
command line, and they can be executed from scripts. For example, suppose the application provides
a tool to add identities with a program called appadd.

schema/ Location of schema files schema.def (customized)

scripts/ Location of script files Those required by your Driver
(customized)

Directory Description Required Files
Customizing the Scripting Driver 73

appadd -n "Bob Smith" -t "818-555-2100"

This command adds an identity named “Bob Smith” with the specified phone number. The strings
following the program name are called parameters or arguments. The Linux and UNIX Scripting
driver provides a function called exec to execute external programs, log the command to the system
log, and produce a status document indicating the level of success.

from idmlib import *
CommandLine = "appadd -n $UserName -t $PhoneNumber"
exec(CommandLine($CommandLine)

For command line tools, you can construct the command line’s parameters using the values passed to
the script, then execute the program.

Application Event Monitoring

You also need to determine what tools are available for monitoring event changes in the application.
The Scripting driver works on a polling system. It periodically calls a polling script to determine
what has changed in the external application. You can use the following ideas for monitoring
changes:

 The first time the polling script is run, a list of identities and relevant attributes is read from the
application using an application-provided tool. This list is stored as a file. On subsequent polls, a
new list is generated and compared to the old list. Any differences are submitted as events to the
driver.

 The application provides a tool that allows you to request all identities that have changed after a
certain point in time. The polling script requests events that have occurred since the previous
poll.

 The application allows a script to be run when an event occurs. You can write a script that stores
the event data into a file. When the Script driver polling script runs, it consumes this file and
submits the data as an event to the driver using the usclh change log tool. For detailed
information on usclh, see Section D.3, “Publisher Change Log Tool,” on page 165.

Monitoring the application’s changes might be the most difficult aspect of developing your driver.
You must study your application’s tools to determine the best way to achieve synchronization.

5.7.2 Policy and Script Development

At this point you should have a list of what data will be synchronized, how events will be handled,
and what application tools are available. It is time to develop the heart of your driver in policies and
scripts.

Many types of tasks can be handled in driver policies. You can import the driver configuration
provided with the Scripting driver, and then edit policies in Novell iManager. You can also edit
policies and simulate their operation in Novell Designer. The extensive functionality of policies is
outside the scope of this document, and so you should refer to your Identity Manager policy guides
on the Identity Manager 4.0.2 Documentation Web site (http://www.novell.com/documentation/
idm402) for help.

It’s often difficult to write complex tasks inside policies, such as executing external commands,
processing input and output, and file I/O. Tasks requiring such operations are better suited in scripts,
where an entire language environment and tools are available. You can also accomplish many of the
operations performed in policies, so if you are more familiar with your scripting language than
policies, you can develop your driver more quickly by using scripts. Scripting languages such as Perl,
74 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

http://www.novell.com/documentation/idm402

Python and Shell scripts offer an environment that is often well suited for your target application’s
APIs or developer kits. For example, your target application might already contain Perl of Python
library routines for manipulating the application’s identities.

Event Data Format

Event data is submitted to the scripts in name/value pair format. This format consists of lines
containing a name, an equal sign (=) and a value. Therefore, each line is a name/value pair. Each
name/value pair is unique, but there can be multiple name/value pairs with identical names but
different values.

 ASSOCIATION=BobUser
 ADD_TELEPHONE=818-555-2100
 ADD_TELEPHONE=818-555-9842

You typically don’t need to worry about the format. The script library provides functions for
retrieving event data independent of its format.

Subscriber Script Development

After all Policy processing is complete, Identity Manager submits the event in XML format to the
driver shim. The driver shim submits the event data to the scripts.

In the default Scripting driver, the subscriber.py script in the scripts folder is called. This script
does some preliminary processing, and then calls a routine from an included script. The included
scripts correspond to the Subscriber event types: add.py, modify.py, modify-password.py,
delete.py, rename.py, move.py, and query.py.

For each event type, you should retrieve the information you need from the event data, submit
changes to the external application using application-provided tools and return a status (such as
success or failure) to Identity Manager.

Event data is retrieved primarily by using the idmgetvar() function. This function returns an array of
values corresponding to the name specified as the function’s parameter. The following table shows
many item names.

Table 5-13 Item Names

Name Description

COMMAND The command for the event, usually indicating the event type.
Possible values are: add, modify, delete, rename, modify-
password, check-object-password.

ASSOCIATION The identifier that distinguishes an identity on both identity
management systems.

CLASS_NAME An identity’s class, such as User or Group.

SRC_DN An identity’s distinguished name (DN) in the namespace of the
source (sender), in slash format.

EVENT_ID An identifier for the event, for internal use.

SRC_ENTRY_ID An identifier for the identity that generated the event, in the
namespace of the source (sender).

DEST_DN An identity’s distinguished name (DN) in the namespace of the
destination (receiver), in slash format.
Customizing the Scripting Driver 75

Examples Of Obtaining Event Data

Example 1:

from idmlib import *

command = idmgetvar("COMMAND")
check for an add event
if command = "add":
 # call the add script
 os.system("add.py")

Example 2:

from idmlib import *

obtain the event's association and CN attribute
association = idmgetvar("ASSOCIATION")
CN = idmgetvar("CN")
if CN = "bob":
 # for "bob", check to see if he's been enabled
 ENABLE = idmgetvar("REMOVE_Login Disabled")
 if ENABLE = "true":
 # bob is enabled again
 cmd = "appenable -association " + ASSOCIATION
 exec(cmd)

Handling Associations

The association value indicates which identity has been changed. If the identity has no association, an
association must be generated for it using an implementation-specific rule that you have adopted.
When Identity Manager processes an event for an identity with no association, it executes the driver’s

DEST_ENTRY_ID An identifier for an entry in the namespace of the destination
(receiver).

ADD_attr_name A value to be added to an identity, for attribute attr_name.

REMOVE_attr_name A value to be removed from an identity, for attribute attr_name.

ADD_REF_attr_name A value to be added to attribute attr_name, where the value is an
association referring to another identity.

REMOVE_REF_attr_name A value to be removed from attribute attr_name, where the value is
an association referring to another identity.

OLD_PASSWORD The previous password for an identity that has changed its
password. Used in Modify Password events.

PASSWORD The new password for an identity. Used in Add and Modify
Password events.

OLD_SRC_DN The distinguished name of an identity before a Move or Rename
event.

REMOVE_OLD_NAME Specifies whether an old relative distinguished name should be
deleted or retained. Used in Rename events.

STATUS_LEVEL The status of an event: success, warning, retry, error or fatal.

STATUS_MESSAGE A message to report with a status.

STATUS_TYPE A type of status, such as heartbeat.

Name Description
76 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Matching policy. This policy attempts to match the event’s identity to an identity on the external
application’s system. Doing this usually involves executing a query. The default Matching policy
included with the Scripting driver queries for matching Users and Groups based on the CN attribute.
If the event’s identity matches an identity on the external application, both identities must be
assigned the new association. Assigning this association can be done as part of the query-handling
script. (Handling queries is discussed in “Handling Query Events” on page 65.) If no identity
matches, an Add event is issued, and the new association can be assigned as part of the Add event-
handling script:

Adding an association
from idmlib import *

idmsetvar("COMMAND", "ADD_ASSOCIATION")
idmsetvar("ASSOCIATION", MyAssociation)
idmsetvar("EVENT_ID", EVENT_ID)
idmsetvar("DEST_DN", SRC_DN)
idmsetvar("DEST_ENTRY_ID", SRC_ENTRY_ID)

The above example demonstrates each name/value pair that must be set for an association to be
assigned by the Identity Manager engine. The values of EVENT_ID, SRC_DN and SRC_ENTRY_ID are
always sent by the engine during an add event, and therefore, are available for your add script to
obtain using idmgetvar(). The example above also illustrates the idmsetvar() function. For detailed
information on how to use idmsetvar(), see Section C.3, “Python (idmlib.py) Reference,” on page 147.
This function sets a name and value which indicates what action Identity Manager should perform.
For example, the pair “COMMAND" and “ADD_ASSOCIATION" instructs the shim to create an add-
association document to assign an association to an identity, as discussed above. The pair
"EVENT_ID” and EVENT_ID instruct the shim to assign add-association document an event-id
described by the variable EVENT_ID. This is important for the engine to match documents sent and
returned on the subscriber channel.

The Subscriber can also issue MODIFY_ASSOCIATION and REMOVE_ASSOCIATION commands:

Removing an association
from idmlib import *

idmsetvar("COMMAND", "REMOVE_ASSOCIATION")
idmsetvar("ASSOCIATION", MyAssociation)
idmsetvar("EVENT_ID", EVENT_ID)
idmsetvar("DEST_DN", SRC_DN)
idmsetvar("DEST_ENTRY_ID", SRC_ENTRY_ID)

Modifying an association
my idmlib import *

idmsetvar("COMMAND", "MODIFY_ASSOCIATION")
idmsetvar("ASSOCIATION", OldAssociation)
idmsetvar("ASSOCIATION", NewAssociation)
idmsetvar("EVENT_ID", EVENT_ID)
idmsetvar("DEST_DN", SRC_DN)
idmsetvar("DEST_ENTRY_ID", SRC_ENTRY_ID)

Returning an Event Status

On the Subscriber channel, you often do not need Identity Manager to perform an action, but simply
need to report a status. The status_ subroutines noted below can be used to indicate a status to
Identity Manager. They take a message to be logged as the parameter.
Customizing the Scripting Driver 77

Table 5-14 STATUS Subroutines

Examples Using the Status() Functions

rc = exec(cmd)
if (rc = 0):
 status_success("Command was successful")
rc = exec(cmd)
if (rc == 0):
 if (password eq "")
 # created, but no password
 status_warning("User added without password")

rc = exec(cmd)
if (rc != 0):
 status_error("Command failed")

Writing Values

The idmsetvar() function is used to set values to return to Identity Manager. It is passed a name and
value. For detailed information on how to use idmsetvar(), see Section C.3, “Python (idmlib.py)
Reference,” on page 147. In the previous ADD_ASSOCIATION example, idmsetvar() is used to set
the ASSOCIATION value. You can specify values for items listed in the table above. Generally,
idmsetvar() is used is to add, modify and delete associations or return information for a query
operation. Other information is returned to the shim through other command functions, such as
status_success(), which use idmsetvar() indirectly.

Handling Query Events

For Query events, Identity Manager submits values that define the parameters of a search of the
external application’s identity management system. Queries are usually issued from the Policies you
have defined for your system. The table below specifies values that can be specified in queries. Not
all values are relevant to your external application.

Subroutine Identity Manager Action

status_success() Identity Manager marks the event as a success and submits the next event
in the event queue, if any. You should issue this status even if your script
does nothing.

status_warning() The event can be processed, but it might require attention. Identity
Manager issues your warning message in its log, and then submits the next
event.

status_retry() The event cannot be processed, but Identity Manager should resubmit the
event because it should be able to be processed soon. This status can be
issued if your external application appears to be temporarily unavailable.
However, this status should be used cautiously because a backlog results if
Identity Manager continually retries one event.

status_error() The event cannot be processed and it should not be resubmitted. Identity
Manager issues the error message and submits the next event. You should
make a detailed error message so the problem can be corrected.

status_fatal() For some reason, the driver must be stopped. Identity Manager issues your
message and stops the driver. This could be used if the external application
appears to be permanently offline. The event remains in the queue and is
resubmitted when the driver is restarted.
78 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Table 5-15 Query Values

When a query invokes your query script, use the parameter information to query your external
application using application-provided tools. Then return each identity by setting an INSTANCE
command, followed by relevant values from the list below.

Value Name Description

SCOPE Specifies what identities are searched. A base object is specified with the
ASSOCIATION or DEST_DN values (see below). The value entry means
that only the base object is searched. The value subordinates means that
the immediate subordinates of the base object are searched. The value
subtree (the default) indicates that the base object and all subordinates
are searched. The last two values are only relevant in a hierarchical system.

ASSOCIATION The base object for the search. If both ASSOCIATION and DEST_DN have
values, ASSOCIATION is used. If neither is specified, the base object is the
root of the identity management system.

DEST_DN The base object for the search (see also ASSOCIATION above).

CLASS_NAME The base class of the base object.

EVENT_ID An identifier for the event.

SEARCH_CLASSES A list of classes for which to search. Only identities of these classes are
returned. If not specified, all identities in the scope matching
SEARCH_ATTR_ values are returned (see below)

SEARCH_ATTRS A list of the attribute names specified in SEARCH_ATTR_ values (see below).

SEARCH_ATTR_attr_name A value that the specified attribute must match. Replace attr_name with
the desired attribute name. Only identities matching all SEARCH_ATTR_
filters are returned.

READ_ATTRS A list of the attribute names whose values are returned for each matching
identity.

ALL_READ_ATTRS The presence of this value indicates that all attribute values should be
returned for matching identities.

NO_READ_ATTRS The presence of this value indicates that no attribute values should be
returned for matching identities.

READ_PARENT The presence of this value indicates that the parent object of each matching
identity should be returned. Only relevant in hierarchical systems.
Customizing the Scripting Driver 79

Table 5-16 Query Values

After returning all identities, call status_success() to indicate a successful query.

Subscriber Summary and Examples

Below is a more detailed summary of the actions to take for a non-Query event.

1 Gather information about the event using idmgetvar(). Return a warning or error if there is a
problem.

2 Submit the event data to the external application using application-provided tools.
3 Set event values with idmsetvar().
4 If you have not already done so, set a status with a status() subroutine.

Below is an example add.py, which forms an association from an identity’s CN and class name, and
uses a hypothetical tool called appadd.

#!/usr/bin/python

from idmlib import *

ClassName = idmgetvar("CLASS_NAME")
CN = idmgetvar("CN")
PhoneNumber = idmgetvar("Telephone")
EventId = idmgetvar("EVENT_ID")
SrcDn = idmgetvar("SRC_DN")
SrcEntryId = idmgetvar("SRC_ENTRY_ID")
if ClassName = "" || CN = "":
 status_error("Add event: missing CLASS_NAME and/or CN")
else:
 Command = "appadd -n " + CN + -t " + PhoneNumber
 rc = exec(Command)
 if rc = 0:
 idmsetvar("COMMAND", "ADD_ASSOCIATION")
 idmsetvar("ASSOCIATION", CN + ClassName)
 idmsetvar("EVENT_ID", EventId)
 idmsetvar("DEST_DN", SrcDn)
 idmsetvar("DEST_ENTRY_ID", SrcEntryId)
 status_success("Add event succeeded")
 else:
 status_error("Add event failed with error code" + rc)

Handling a query is a similar process, except that you return INSTANCE items rather than using
other commands. Below is an example query.py that searches an external application for a telephone
number. It uses a hypothetical tool called appsearch.

Value Name Description

CLASS_NAME The class of the identity. Required.

SRC_DN A distinguished name representing the logical location of the identity in the
system (optional).

ASSOCIATION The association of the identity, if available (optional).

PARENT The association of the parent object of the identity (optional). Only relevant
in hierarchical systems.

ATTR_attr_name A list of values for the attribute specified by attr_name. Return attribute
values specified by the READ_ATTRS value.
80 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

#!/usr/bin/python

import os
from idmlib import *

SearchName = idmgetvar("SEARCH_ATTR_CN")
EventId = idmgetvar("EVENT_ID")
Association = idmgetvar("ASSOCIATION")
ClassName = idmgetvar("CLASS_NAME")
if SearchName = "":
 status_error("Query: no search value")
else:
 Command = "appsearch -n " + SearchName
 Results = os.popen(Command, ‘r’).readlines()
 if Results != "":
 phoneinfo = split(" ", Results)
 Phone = phoneinfo[0]
 idmsetvar("COMMAND", "INSTANCE")
 idmsetvar("CLASS_NAME", ClassName)
 idmsetvar("EVENT_ID", EventId)
 idmsetvar("ASSOCIATION", Association)
 idmsetvar("ATTR_Telephone", Phone)
 status_success("Query succeeded")
 else:
 # Return success with no results
 status_success("Query succeeded (no matches)")

Publisher Script Development

Events that occur on the external application are submitted to Identity Manager on the Publisher
channel. The Scripting driver polls the external application for events periodically. How this poll
detects events is implementation-specific and must be defined by the user.

Polling for Application Events

The Driver calls poll.py to detect application events. poll.py should be implemented as follows:

1 Use application-provided tools to detect events in your application (see discussion in Step 2).
2 For each event, call the usclh changelog tool to submit the event to be published. The changelog

tool allows for additional information to be supplied through standard input. This is an
appropriate mechanism for passing data that might be too large for command line or too
sensitive to appear in a shell’s history or environment. For more information on usclh, see
Section D.3, “Publisher Change Log Tool,” on page 165

Below is an example of a poll.py that checks for a password change. It uses a hypothetical
application tool called appchg.

#!/usr/bin/python

import os
from idmlib import *

look for password changes with our ficticious app, appchg
results = os.popen("appchg --passwd-changes", 'r').readlines()
for result in results:
 fields = result.split(":")
 Association = fields[0]
 Password = fields[1]
 # submit event to the publisher changelog
 usclh = os.popen(usclh -t modify-password -a " + Association, 'w')
 usclh.write(Password)
 usclh.close()

look for attribute values being added to each user
Customizing the Scripting Driver 81

results = os.popen("appchg --add-attr-changes")
for result in results:
 # Entries are in the format "association:attribute:value"
 fields = result.split(":")
 Association = fields[0]
 Attribute = fields[1]
 Value = fields[2]
 # submit event to the publisher changelog
 local_usclh = os.environ.get('INSTALL_PATH') + "bin/usclh"
 usclh = os.popen(local_usclh + " -t modify -c User -a " + Association, ’w’)
 usclh.write("ADD_" + Attribute + "=" + Value)
 usclh.close()

look for attribute values being removed from each user
results = os.popen("appchg --add-attr-changes")
for result in results:
 # Entries are in the format "association:attribute:value"
 fields = result.split(":")
 Association = fields[0]
 Attribute = fields[1]
 Value = fields[2]
 # submit event to the publisher changelog
 local_usclh = os.environ.get('INSTALL_PATH') + "bin/usclh"
 usclh = os.popen(local_usclh + " -t modify -c User -a " + Association, ’w’)
 usclh.write("REMOVE_" + Attribute + "=" + Value)
 usclh.close()

In the above example, three separate events are submitted to the publisher change log, using the
changelog tool, usclh. The first invocation submits a modify-password event to be published. The
second event submits a modify event to be published for an attribute add. The third invocation
submits another modify event to be published for an attribute removal. The second and third
invocations can be combined into a single modify event, if desired.

Events submitted using usclh are processed through your driver’s Publisher Channel’s policies. See
the Identity Manager policy guides on the Identity Manager 4.0.2 Documentation Web site (http://
www.novell.com/documentation/idm402) for more information.

Using the Heartbeat Script

Another script executed in the Publisher Channel is heartbeat.py. This script is executed when the
Publisher Channel is idle for the interval specified in the Driver parameters. (You can set the interval
to 0 so no heartbeat is issued.) You can use the heartbeat to check the availability of the external
system or do “idle state” tasks. The heartbeat_success(), heartbeat_warning(), and heartbeat_error()
subroutines can be used to indicate the result of the heartbeat. Below is an example based on a
hypothetical tool called apphealth.

from idmlib import *

rc = os.sytem("apphealth")
if (rc = 0):
 heartbeat_success("Heartbeat succeeded")
else:
 heartbeat_error("Heartbeat failed with error code " + rc)

Other Scripting Topics

 “Driver Parameters” on page 83
 “Querying the Identity Vault” on page 83
 “Tracing and Debugging” on page 84
82 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

http://www.novell.com/documentation/idm402

Driver Parameters

A driver has values known as driver parameters. The driver parameters are divided into driver
settings applicable to the whole driver, and Subscriber and Publisher Settings for their respective
channels. The idmgetdrvvar(), idmgetsubvar()and idmgetpubvar() functions can be used to retrieve
these values. The table below shows parameters in the default Scripting driver. Other parameters can
be added to the driver’s XML Configuration file (see the Novell Identity Manager 3.6.1 Administration
Guide).

Table 5-17 Scripting Driver Parameters

In the following example, a script retrieves the Publisher polling interval:

 PollingInterval = idmgetpubvar("pub-polling-interval")

Querying the Identity Vault

Scripts might need to retrieve information from the Identity Vault. They can do this by issuing a
query.

1 Execute the query by calling idmquery(class, association, readattrs) with the
appropriate parameters:
 The first parameter is the class-name
 The second parameter is the association of the object to query
 The third parameter are the attributes to read, comma-separated

2 Read the result (instance) using idmgetqvar().

Query support is currently limited. It returns only one instance based on the specified association or
DN. If both association and DN are specified, association is used. The functions below allow you to
retrieve information from the instance.

Parameter Name Driver/Channel Description Values

INSTALL_PATH Driver The installation path of the
Driver

string value

auto-loopback-detection Driver Whether to enable
automatic loopback
detection

true/false

subscriber-script Subscriber The root script file for
Subscriber events,
relative to the driver
installation path

string value

pub-polling-interval Publisher The interval in seconds
between Publisher polls
for application events

number

pub-heartbeat-interval Publisher The amount of idle time in
seconds before a
heartbeat event is issued

 number

pub-disabled Publisher Whether the Publisher
Channel (such as for
polling) is disabled

 true/false
Customizing the Scripting Driver 83

The following is an example of a query of the Identity Vault that retrieves the address and ZIP code
for user Bob.

from idmlib import *

idmquery("User", "Bob", "SA,Postal Code")
Address = idmgetqvar("SA")
ZIPCode = idmgetqvar("Postal Code")
... etc. ...

Tracing and Debugging

The function trace() allows you to write a message to the Trace Log. Tracing is useful for script
debugging and auditing.

from idmlib import *

trace("Trace Message")

When you develop scripts, you might need to do some debugging to track down problems. The
following list indicates some facilities for debugging.

 The Driver traces activity to its Trace file (logs/trace.log by default). The trace level setting in
conf/usdrv.conf controls how much debugging is written to the log.

The trace level is set using the -trace option in usdrv.conf, for example -trace 9.

You can view the trace file through a Web browser:
1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the

DNS name or IP address of your driver for driver-address.
2. Authenticate by using any username and the password that you specified as the Remote

Loader password.
3. Click Trace.

 The eDirectory tool DSTrace can be used to monitor Identity Manager activity. Set the tracing
level for the Driver in iManager. DSTrace shows the XML documents being submitted to the
driver for events and how policies are evaluated. It also shows the status and message for each
event.

 The Status Log is written to logs/dirxml.log. It shows a summary of the events that have been
recorded on the Subscriber and Publisher channels.

Trace Level Description

0 No debugging.

1-3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous level plus Remote Loader, driver, driver shim, and Driver connection
messages.

 5-7 Previous level plus Change Log and loopback messages. Higher trace levels
provide more detail.

8 Previous level plus Driver status log, Driver parameters, Driver command line, Driver
security, Driver Web server, Driver schema, Driver encryption, Driver SOAP API,
and Driver include/exclude file messages.

9 Previous level plus low-level networking and operating system messages.

10 Previous level plus maximum low-level program details.
84 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

You can view the Status Log through a Web browser:
1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the

DNS name or IP address of your driver for driver-address.
2. Authenticate by using any username and the password that you specified as the Remote

Loader password.
3. Click Status.

Although it is best to start the driver in production environments from the startup script, you can run
usdrv manually. When you do so, any text written to standard output from scripts is displayed in the
interactive shell.

5.7.3 Deployment

The Scripting driver is installed by using a setup program. See Section 3.1, “Installing the Linux and
UNIX Scripting Driver,” on page 21, for more information on installing the default driver.

Deploying a Custom Driver

To deploy your custom driver, the end user should first run the Scripting driver installation program
provided by the installation media (seeSection 3.1, “Installing the Linux and UNIX Scripting Driver,”
on page 21). This program installs core files needed by the driver. Then, your custom driver files can
be deployed in any convenient way, whether through an installation program or even simply an
archive file. The table below shows the directory structure below the installation directory and what
files are installed.

Table 5-18 Directory Structure and Files

On Linux and UNIX, the Scripting driver is installed to /opt/novell/usdrv.

Directory Description Required Files

bin/ Location of executable programs usdrv

ussmh

usclh

changelog/ Used for Publisher event
processing

None

conf/ Location of the driver shim
configuration file

usdrv.conf (customized)

keys/ Location of security key files None

logs/ Location of log files None

loopback/ Used for automatic loopback
detection

None

rules/ Location of Driver configuration file Scripting.xml (customized)

schema/ Location of schema files schema.def (customized)

scripts/ Location of script files Those required by your Driver
(customized)
Customizing the Scripting Driver 85

The formats of usdrv.conf and schema.def can be viewed in Section 4.2, “The Driver Shim
Configuration File,” on page 34 and Section 5.2, “The Connected System Schema File,” on page 40.

If SSL encryption is desired for communication between the driver shim and Identity Manager
engine, a certificate must be retrieved from the Identity Vault. Run usdrv -s and follow the prompts
to retrieve the certificate, which will be stored in the keys/ directory. You must have LDAP with SSL
available for the Metadirectory. When making an installation program for deployment, you might
want to run usdrv -s as part of the installation.

To ensure that only authorized systems access the Metadirectory, a Driver object password and
Remote Loader password are used. Run usdrv -sp and enter the passwords at the prompts. This
action can be incorporated into an installation program.

You should distribute the XML configuration file that contains parameters and policies your Driver
needs. The user can then select it when installing your Driver.

5.8 Microsoft VBScript Developer Guide
The Scripting driver provides a complete Microsoft VBScript API for interacting with identity
management systems whose tools (including APIs) are available on Windows. The Identity Vault and
Identity Manager can run on any supported operating system. Identity Manager can communicate
with any supported system on which the driver is installed via an encrypted network connection.

Before beginning script development, review the preceding topics in this section for information on
defining what data is synchronized between identity management systems.

With additional development work, the driver can also be adapted to support any scripting language
that supports command line operation.

Developing a custom driver with VBScript is discussed in this section. Topics include

 Section 5.8.1, “Application Tools Evaluation,” on page 86
 Section 5.8.2, “Policy and Script Development,” on page 88
 Section 5.8.3, “Deployment,” on page 98

5.8.1 Application Tools Evaluation

To change the data in your external application, you need to know how to use the application’s tools
or API (Application Programming Interface). These tools must provide automated operation and not
require user input.

Application Command Line Tools

An application often provides command line tools. These tools are manually executed from the
Windows command prompt, and they can be executed from scripts. For example, suppose the
application provides a tool to add identities with a program called appadd.exe.

appadd -n "Bob Smith" -t "818-555-2100"

This command adds an identity named “Bob Smith” with the specified phone number. The strings
following the program name are called parameters or arguments. The Scripting driver provides a
function called IDMExecute to execute external programs.

 CommandLine = "appadd -n " & UserName & " -t " & PhoneNumber
 ExitCode = IDMExecute(CommandLine)
86 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

There is also a function called IDMExecuteIO that allows you to pass information on the program’s
standard input, and receive output from the program’s standard output and standard error.

 Dim Input(1)

 Input(0) = "USERNAME=bobsmith"
 Input(1) = "TELEPHONE=818-555-2100"

 Output = IDMExecuteIO("appadd", Input)

 ExitCode = Output(0)

IDMExecuteIO’s first parameter is the command line, and its second parameter is an array of strings
(or Empty) that is submitted as lines to the command program. It returns an array, the first element of
which is the program’s exit code, and then strings that represent lines returned on the program’s
standard output and standard error.

For command line tools, you can construct the command line’s parameters using the values passed to
the script, then execute the program.

Application Objects

Another way to modify application data is through Windows COM (Common Object Model) objects.
Consult your application’s documentation to see whether it exposes any COM objects. These COM
objects can be loaded directly in VBScript:

 Set AppObject = WScript.CreateObject("MyApplication.MyObject")
 AppObject.AddIdentity("Bob Smith", "818-555-2100")

There are no guarantees regarding what types of tools are available, or even whether any tools are
available. You must determine if sufficient tools are provided by the application. If they are not, you
can contact the application’s developers and request that such tools be made available.

You should make a list of what tools can be used for each event type. The application might provide
one program that can be used for any event type, or it might provide multiple tools.

Application Event Monitoring

You also need to determine what tools are available for monitoring event changes in the application.
The Scripting driver works on a polling system. It periodically calls a polling script to determine
what has changed in the external application. You can use the following ideas for monitoring
changes:

 The first time the polling script is run, a list of identities and relevant attributes is read from the
application using an application-provided tool. This list is stored as a file. On subsequent polls, a
new list is generated and compared to the old list. Any differences are submitted as events to the
driver.

 The application provides a tool that allows you to request all identities that have changed after a
certain point in time. The polling script requests events that have occurred since the previous
poll.

 The application allows a script to be run when an event occurs. You write a script that stores the
event data into a file. When the Scripting driver polling script runs, it consumes this file and
submits the data as an event to the driver.

Monitoring the application’s changes might be the most difficult aspect of developing your driver.
You must study your application’s tools to determine the best way to achieve synchronization.
Customizing the Scripting Driver 87

5.8.2 Policy and Script Development

At this point you should have a list of what data will be synchronized, how events will be handled,
and what application tools are available. It is time to develop the heart of your driver in policies and
scripts.

Many types of tasks can be handled in driver policies. You can import the driver configuration
provided with the Scripting driver, and then edit policies in Novell iManager. You can also edit
policies and simulate their operation in Novell Designer. The extensive functionality of policies is
outside the scope of this document, so you should refer to your Identity Manager policy guides on
the Identity Manager 4.0.2 Documentation Web site (http://www.novell.com/documentation/idm402)
for help.

Tasks that don’t interact with the external application might be more suited to policies. On the other
hand, if you are more familiar with your scripting language than policies, you can develop your
driver more quickly by using scripts.

Event Data Format

Event data is submitted to the scripts in name/value pair format. This format consists of lines
containing a name, an equal sign (=) and a value. Therefore, each line is a name/value pair. Each
name/value pair is unique, but there can be multiple name/value pairs with identical names but
different values.

 ASSOCIATION=BobUser
 ADD_TELEPHONE=818-555-2100
 ADD_TELEPHONE=818-555-9842

You typically don’t have to worry about the format. The script library provides functions for
retrieving event data.

Subscriber Script Development

After all policy processing is complete, Identity Manager submits the event in XML format to the
driver shim. The driver shim submits the event data to the scripts.

In the default Scripting driver, the Subscriber.wsf script in the scripts folder is called. This
script does some preliminary processing, and then calls a routine from an included script. The
included scripts correspond to the Subscriber event types: Add.vbs, Modify.vbs,
ModifyPassword.vbs, Delete.vbs, Rename.vbs, Move.vbs, and Query.vbs.

For each event type, you should retrieve the information you need from the event data, submit
changes to the external application using application-provided tools and return a status (such as
success or failure) to Identity Manager.

Event data is retrieved primarily using the IDMGetEventValues function. This function returns an
array of values corresponding to the name specified as the function’s parameter. (IDMGetEventValue
is available for single-valued items.) The following table shows many item names.

Table 5-19 Item Names

Value Description

COMMAND The command for the event, usually indicating the event type.

ASSOCIATION The identifier that distinguishes an identity on both identity
management systems.
88 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

http://www.novell.com/documentation/idm402

Handling Associations

The association value indicates which identity has been changed. If the identity has no association, an
association must be generated for it using an implementation-specific rule that you have adopted.
When Identity Manager processes an event for an identity with no association, it executes the driver’s
Matching policy. This policy attempts to match the event’s identity to an identity on the external
application’s system. Doing this usually involves executing a query. The default Matching policy
included with the Scripting driver queries for matching Users and Groups based on the CN attribute.
If the event’s identity matches an identity on the external application, both identities must be
assigned the new association. Assigning this association can be done as part of the query-handling
script. (Handling queries is discussed in “Handling Query Events” on page 90.) If no identity
matches, an Add event is issued, and the new association can be assigned as part of the Add event-
handling script:

 IDMSetCommand "ADD_ASSOCIATION"
 IDMWriteValue "ASSOCIATION", MyAssociation
 (etc.)

CLASS_NAME An identity’s class, such as User or Group.

SRC_DN An identity’s distinguished name (DN) in the namespace of the source
(sender), in slash format.

EVENT_ID An identifier for the event, for internal use.

SRC_ENTRY_ID An identifier for the identity that generated the event, in the namespace
of the source (sender).

DEST_DN An identity’s distinguished name (DN) in the namespace of the
destination (receiver), in slash format.

DEST_ENTRY_ID An identifier for an entry in the namespace of the destination (receiver).

ADD_attr_name A value to be added to an identity, for attribute attr_name.

REMOVE_attr_name A value to be removed from an identity, for attribute attr_name.

ADD_REF_attr_name A value to be added to attribute attr_name, where the value is an
association referring to another identity.

REMOVE_REF_attr_name A value to be removed from attribute attr_name, where the value is
an association referring to another identity.

OLD_PASSWORD The previous password for an identity that has changed its password.
Used in Modify Password events.

PASSWORD The new password for an identity. Used in Add and Modify Password
events.

OLD_SRC_DN The distinguished name of an identity before a Move or Rename event.

REMOVE_OLD_NAME Specifies whether an old relative distinguished name should be deleted
or retained. Used in Rename events.

STATUS_LEVEL The status of an event: success, warning, retry, error or fatal.

STATUS_MESSAGE A message to report with a status.

STATUS_TYPE A type of status, such as heartbeat.

Value Description
Customizing the Scripting Driver 89

The example above also illustrates the IDMSetCommand function. This function sets a command
value which indicates what action Identity Manager should perform. The ADD_ASSOCIATION
command assigns an association to an identity, as discussed above. The Subscriber can also issue
MODIFY_ASSOCIATION and REMOVE_ASSOCIATION commands.

Returning an Event Status

On the Subscriber channel, you often do not need Identity Manager to perform an action, but simply
need to report a status. The IDMStatus subroutines noted below can be used to indicate a status to
Identity Manager. They take a message to be logged as the parameter.

Table 5-20 Subroutines

Writing Values

IDMSetCommand and/or a status subroutine must be called before specifying values with
IDMWriteValues. IDMWriteValues (or its single-valued version IDMWriteValue) is used to set values
to return to Identity Manager. It is passed a value name and an array of values. In the
ADD_ASSOCIATION example above, IDMWriteValue is used to set the ASSOCIATION value. You can
specify values for items listed in the table above.

Handling Query Events

For Query events, Identity Manager submits values that define the parameters of a search of the
external application’s identity management system. Queries are usually issued from the policies you
have defined for your system. The table below specifies values that can be specified in queries. Not
all values are relevant to your external application.

Subroutine Identity Manager Action

IDMStatusSuccess Identity Manager marks the event as a success and submits the next event
in the event queue, if any. You should issue this status even if your script
does nothing.

IDMStatusWarning The event can be processed, but it might require attention. Identity Manager
issues your warning message in its log, and then submits the next event.

IDMStatusRetry The event cannot be processed, but Identity Manager should resubmit the
event because it should be able to be processed soon. This status can be
issued if your external application appears to be temporarily unavailable.
However, this status should be used cautiously because a backlog results if
Identity Manager continually retries one event.

IDMStatusError The event cannot be processed and it should not be resubmitted. Identity
Manager issues the error message and submits the next event. You should
make a detailed error message so the problem can be corrected.

IDMStatusFatal For some reason, the driver must be stopped. Identity Manager issues your
message and stops the driver. This could be used if the external application
appears to be permanently offline. The event remains in the queue and is
resubmitted when the driver is restarted.
90 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Table 5-21 Query Values

Execute the query against the external application using application-provided tools. Then return
each identity by setting an INSTANCE command, followed by relevant values from the list below.

Table 5-22 Query Values

Value Name Description

SCOPE Specifies what identities will be searched. A base object is specified with the
ASSOCIATION or DEST_DN values (see below). The value “entry” means
that only the base object is searched. The value “subordinates” means that
the immediate subordinates of the base object are searched. The value
“subtree” (the default) indicates that the base object and all subordinates
are searched. The last two values are only relevant in a hierarchical system.

ASSOCIATION The base object for the search. If both ASSOCIATION and DEST_DN have
values, ASSOCIATION is used. If neither is specified, the base object is the
root of the identity management system.

DEST_DN The base object for the search (see also ASSOCIATION above).

CLASS_NAME The base class of the base object.

EVENT_ID An identifier for the event.

SEARCH_CLASSES A list of classes for which to search. Only identities of these classes are
returned. If not specified, all identities in the scope matching
SEARCH_ATTR_ values are returned (see below).

SEARCH_ATTRS List of attribute names used in SEARCH_ATTR_ values (see below).

SEARCH_ATTR_attr_name A value that the specified attribute must match. Replace attr_name with
the desired attribute name. Only identities matching all SEARCH_ATTR_
filters are returned.

READ_ATTRS List of attribute names whose values returned for each identiy match.

ALL_READ_ATTRS The presence of this value indicates that all attribute values should be
returned for matching identities.

NO_READ_ATTRS The presence of this value indicates that no attribute values should be
returned for matching identities.

READ_PARENT The presence of this value indicates that the parent object of each matching
identity should be returned. Only relevant in hierarchical systems.

Value Name Description

CLASS_NAME The class of the identity. Required.

SRC_DN A distinguished name representing the logical location of the identity in the
system (optional).

ASSOCIATION The association of the identity, if available (optional).

PARENT The association of the parent object of the identity (optional). Only relevant
in hierarchical systems.

ATTR_attr_name A list of values for the attribute specified by attr_name. Return attribute
values specified by the READ_ATTRS value.
Customizing the Scripting Driver 91

After returning all identities, call IDMStatusSuccess to indicate a successful query.

Subscriber Summary and Examples

Below is a more detailed summary of the actions to take for a non-Query event.

1 Gather information about the event using IDMGetEventValues. Return a warning or error if
there is a problem.

2 Submit the event data to the external application using application-provided tools.
3 Set a command using IDMSetCommand and/or a status with the IDMStatus subroutines, based

on the result of the event.
4 Set event values with IDMWriteValues.
5 If you have not already done so, set a status with an IDMStatus subroutine.

Below is an example of the Add.vbs script, which forms an association from an identity’s CN and
class name, and uses a hypothetical tool called appadd.

Sub ADD
 ClassName = IDMGetEventValue("CLASS_NAME")
 CN = IDMGetEventValue("CN")
 PhoneNumber = IDMGetEventValue("Telephone")
 If IsEmpty(ClassName) Or IsEmpty(CN) Then
 IDMStatusError "Add event: missing CLASS_NAME and/or CN"
 Else
 Command = "appadd -n """ & CN & """ -t """ & PhoneNumber & """"
 ExitCode = IDMExecute(Command)
 If ExitCode = 0 Then
 IDMSetCommand "ADD_ASSOCIATION"
 IDMWriteValue "ASSOCIATION", CN & ClassName
 IDMWriteValue "DEST_DN", IDMGetEventValue("SRC_DN")
 IDMStatusSuccess "Add event succeeded"
 Else
 IDMStatusError "Add event failed with error code " & ExitCode
 End If
 End If
End Sub

Handling a query is similar, except you return INSTANCE items rather than use other commands.
Below is an example Query.vbs that searches an external application for a telephone number. It uses
a hypothetical tool called appsearch.

Sub QUERY
 SearchName = IDMGetEventValue("SEARCH_ATTR_CN")
 If IsEmpty(SearchName) Then
 IDMStatusError "Query: no search value"
 Else
 Command = "appsearch -n " & SearchName
 Results = IDMExecuteIO(Command, Empty)
 If Results(0) = 0 Then
 Phone = Results(1)
 IDMSetCommand "INSTANCE"
 IDMWriteValue "CLASS_NAME", IDMGetEventValue("CLASS_NAME")
 IDMWriteValue "ASSOCIATION", IDMGetEventValue("ASSOCIATION")
 IDMWriteValue "ATTR_Telephone", Phone
 IDMStatusSuccess "Query succeeded"
 Else
 ' Return success with no results
 IDMStatusSuccess "Query succeeded (no matches)"
 End If
 End If
End Sub
92 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Publisher Script Development

Events that occur on the external application are submitted to Identity Manager on the Publisher
channel. The Scripting driver periodically polls the external application for events. How this poll
detects events is implementation-specific and must be defined by you.

Polling for Application Events

The Driver calls Poll.wsf to detect application events. Poll.wsf should be implemented as follows:

1 Use application-provided tools to detect events in your application. (See Step 2.)
2 For each event:

2a Call the IDMPublishInit function to set the appropriate command.
2b Call IDMPublishValues to set event values.
2c Call IDMPublish to submit the event to Identity Manager.

3 If there were events, call an IDMStatus function to report the status.

IDMPublishInit takes a command name as its single parameter. Below is a list of valid command
names for IDMPublishInit.

Table 5-23 Command Names

Below is an example of a Poll.wsf that checks for a password change. It uses a hypothetical
application tool called apppwd.

 Results = IDMExecuteIO("apppwd --changes", Empty)
 For I = 1 To UBound(Results)
 ' Entries are in the format "association=password"
 Association = Left(Results(I), InStr(Results(I), "=")-1)
 Password = Mid(Results(I), InStr(Results(I), "=")+1)
 IDMPublishInit "MODIFY_PASSWORD"
 IDMPublishValue "ASSOCIATION", Association
 IDMPublishValue "PASSWORD", Password

 IDMPublish
 Next

 IDMStatusSuccess "Poll succeeded"

Command Name Description

ADD Create an identity.

ADD_ASSOCIATION Create an association for an identity.

DELETE Remove an identity permanently.

MODIFY Change an identity’s attributes.

MODIFY_ASSOCIATION Change an identity’s association.

MODIFY_PASSWORD Change an identity’s password.

REMOVE_ASSOCIATION Delete an identity’s association.

RENAME Change an identity’s naming attribute.
Customizing the Scripting Driver 93

Events submitted using IDMPublish are processed through your driver’s Publisher channel policies.
See the Identity Manager policy guides on the Identity Manager 4.0.2 Documentation Web site (http:/
/www.novell.com/documentation/idm402) for more information.

Using the Heartbeat Script

Another script executed in the Publisher Channel is Heartbeat.wsf. This script is executed when
the Publisher channel is idle for the interval specified in the driver parameters. (You can set the
interval to 0 so no heartbeat is issued.) You can use the heartbeat to check the availability of the
external system or do “idle state” tasks. The IDMHeartbeatSuccess, IDMHeartbeatWarning, and
IDMHeartbeatError subroutines can be used to indicate the result of the heartbeat. Below is an
example based on a hypothetical tool called apphealth.

 ExitCode = IDMExecute("apphealth")
 If ExitCode = 0 Then
 IDMHeartbeatSuccess "Heartbeat succeeded"
 Else
 IDMHeartbeatError "Heartbeat failed with error code " & ExitCode
 End If

The response to the heartbeat is implementation-dependent, and can be defined in policies or in the
script itself. You could send a message to auditing using Novell Audit. You could store a value in a
file, and have Subscriber scripts read the file and call IDMStatusRetry if they find that value in the
file.

Other Scripting Topics

 “Driver Parameters” on page 94
 “Querying the Identity Vault” on page 95
 “Tracing and Debugging” on page 96

Driver Parameters

A driver has values known as driver parameters. The driver parameters are divided into driver
settings applicable to the whole driver, and Subscriber and Publisher Settings for their respective
channels. The IDMGetDriverParam, IDMGetSubscriberParam, and IDMGetPublisherParam
functions can be used to retrieve these values. The table below shows parameters in the default
Scripting driver. Other parameters can be added to the driver’s XML Configuration file (see
“Managing Identity Manager Drivers” in the Novell Identity Manager Administration Guide).

Table 5-24 Driver Parameters

Parameter Name Driver/Channel Description Values

INSTALL_PATH Driver The installation path of the
driver

string value

auto-loopback-detection Driver Whether to enable
automatic loopback
detection

true/false

script-command Driver The command to use to
execute scripts

string value
94 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

http://www.novell.com/documentation/idm402

In the following example, a script retrieves the Publisher polling interval.

 PollingInterval = IDMGetPublisherParam("pub-polling-interval")

Querying the Identity Vault

Scripts might need to retrieve information from the Identity Vault. On the Subscriber channel only,
they can do this by issuing a query.

1 Initialize the query with IDMQueryInit.
2 Set query search parameters using functions listed below.

3 Execute the query with IDMQuery.

script-trace-file Driver The file, relative to the
driver installation path, to
which to write trace
messages

string value

subscriber-script Subscriber The script file for
Subscriber events,
relative to the driver
installation path

string value

polling-script Publisher The script file that runs
when the Publisher polls
for application events

string value

heartbeat-script Publisher The script file that runs
when the Publisher
checks application status

string value

pub-polling-interval Publisher The interval in seconds
between Publisher polls
for application events

number

pub-heartbeat-interval Publisher The amount of idle time in
seconds before a
heartbeat event is issued

number

Function Description

IDMQuerySetAssociation(Association) Sets the association of the object to query.

IDMQuerySetSearchRoot(SearchRoot) Sets the DN (in slash format) of the object to
query.

IDMQueryAddSearchAttr(Name, Value) Specifies a search condition of the form
Name=Value. The query will only return an
instance if the named attribute has a value
matching Value.

IDMQueryAddReadAttr(Name) Specifies an attribute whose values will be
returned with the instance.

IDMQuerySetReadParent(ReadParent) Specifies whether the association and DN of the
parent of the queried object should be returned
(False by default).

Parameter Name Driver/Channel Description Values
Customizing the Scripting Driver 95

4 Read the result (instance) using functions listed below.
Currently query support is limited. It will only return one instance based on the specified
association or DN. (If both association and DN are specified, association is used.) The functions
below allow you to retrieve information from the instance.

The following is an example of a query that retrieves an object’s address and postal code.

 IDMQueryInit
 IDMQuerySetAssociation IDMGetEventValue("ASSOCIATION")
 IDMQueryAddReadAttr "SA" ' Street Address
 IDMQueryAddReadAttr "Postal Code"

 If IDMQuery Then
 Address = IDMQueryGetInstanceAttrValue("SA")
 ZIPCode = IDMQueryGetInstanceAttrValue("Postal Code")
 ' ... etc. ...
 End If

Tracing and Debugging

The IDMTrace function allows you to write a message to the Script Trace File specified in the Driver
Parameters. Tracing is useful for script debugging and auditing.

 IDMTrace "Trace message"

When developing scripts, you might need to do some debugging to track down problems. The
following list indicates some facilities for debugging.

 The Driver traces activity to its Trace file (logs\trace.log by default). The trace level setting in
conf\wsdrv.conf controls how much debugging is written to the log.

Function Description

IDMGetQueryInstanceAssociation Returns the association of the instance.

IDMGetQueryInstanceDN Returns the DN of the instance (in slash format).

IDMGetQueryInstanceClass Returns the class name of the instance.

IDMGetQueryInstanceParentAssociation Returns the association of the parent of the
instance (if requested).

IDMGetQueryInstanceParentDN Returns the DN of the parent of the instance (if
requested).

IDMGetQueryInstanceAttrNames Returns an array containing the names of the
attributes retrieved for the instance. Returns
Empty if no attributes were retrieved.

IDMGetQueryInstanceAttrCount Returns the number of attributes retrieved for the
instance.

IDMGetQueryInstanceAttrValues(AttrName) Returns an array of values for the attribute
AttrName. Returns Empty if no values are
available.

IDMGetQueryInstanceAttrValue(AttrName) Returns a string value for the attribute AttrName.
If multiple values are available, the first one is
returned. Returns Empty if no values are
available.
96 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

The trace level is set using the -trace option in wsdrv.conf, for example. -trace 9.

 You can view the trace file through a Web browser:
1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the

DNS name or IP address of your driver for driver-address.
2. Authenticate by using any username and the password that you specified as the Remote

Loader password.
3. Click Trace.

 The IDMTrace function described above writes output to the trace file specified in the Driver
Parameters (logs\script-trace.log by default).

 The eDirectory tool DSTrace can be used to monitor Identity Manager activity. Set the tracing
level for the Driver in iManager. DSTrace shows the XML documents being submitted to the
Driver for events, and how Policies are evaluated. It also shows the status and message for each
event.

 The Status Log is written to logs\dirxml.log. It shows a summary of the events that have been
recorded on the Subscriber and Publisher channels.
You can view the Status Log through a Web browser:

1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

2. Authenticate by using any username and the password that you specified as the Remote
Loader password.

3. Click Status.

Although it is best to run the driver as a service in production environments, you can run
wsdriver.exe as a standard program. When you do so, a console window displays trace messages
(see above) for the driver. Also, text written to standard output from scripts (such as using
WScript.Echo in VBScript) is displayed in this window.

VBScript programs can be debugged using programs such as Microsoft Visual Studio and Microsoft
Script Debugger. Change the Script Command driver parameter to use the //x option: cscript //nologo
//x. When the driver shim executes a script, you are prompted to debug the script execution.

Trace Level Description

 0 No debugging.

 1-3 Identity Manager messages. Higher trace levels provide more detail.

 4 Previous level plus Remote Loader, driver, driver shim, and Driver connection
messages.

 5-7 Previous level plus Change Log and loopback messages. Higher trace levels
provide more detail.

 8 Previous level plus Driver status log, Driver parameters, Driver command line,
Driver security, Driver Web server, Driver schema, Driver encryption, Driver
SOAP API, and Driver include/exclude file messages.

 9 Previous level plus low-level networking and operating system messages.

 10 Previous level plus maximum low-level program details.
Customizing the Scripting Driver 97

5.8.3 Deployment

The Scripting driver is installed by using a setup program. See Section 3.2, “Installing the Windows
Scripting Driver,” on page 22 for information on installing the default driver.

Deploying a Custom Driver

To deploy your custom driver, the end user should first run the Windows Scripting driver installation
program provided by the installation media (see Section 3.2, “Installing the Windows Scripting
Driver,” on page 22 for more information.) This program installs core files needed by the driver.
Then, your custom driver files can be deployed in any convenient way, whether through an
installation program or even simply an archive file. The table below shows the directory structure
below the installation directory and what files are installed.

Table 5-25 Directory Structure and Files

If you are using an installation program, you can obtain the driver’s installation path from the
following registry value:

 HKEY_LOCAL_MACHINE\SOFTWARE\Novell\Windows Script Driver\Path

Or for the x86 driver running an x64 version of Windows, use the path from the following registry
value:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Novell
 \Windows Script Driver\Path

The formats of wsdrv.conf and schema.def can be viewed in Section 4.2, “The Driver Shim
Configuration File,” on page 34 and Section 5.2, “The Connected System Schema File,” on page 40.

Directory Description Required Files

bin\ Location of executable programs EventReader.exe

idmevent.exe

wsdriver.exe

changelog\ Used for Publisher event
processing

None

conf\ Location of the driver shim
configuration file

wsdrv.conf (customized)

keys\ Location of security key files None

logs\ Location of log files None

loopback\ Used for automatic loopback
detection

None

rules\ Location of Driver configuration file Scripting.xml (customized)

schema\ Location of schema files schema.def (customized)

scripts\ Location of script files Those required by your Driver
(customized)
98 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

If SSL encryption is desired for communication between the driver shim and Identity Manager
engine, a certificate must be retrieved from the Identity Vault. Run the following command and
follow the prompts to retrieve the certificate:

wsdriver.exe -s

The certificate will be stored in the keys\ directory. You must have LDAP with SSL available for the
Metadirectory. When making an installation program for deployment, you might want to include
this command as part of the installation:

To ensure that only authorized systems access the Metadirectory, a Driver Object password and
Remote Loader password are used. Run the following command and enter the passwords at the
prompts:

wsdriver.exe -sp

This action also can be incorporated into an installation program.

You should run a Scripting driver as a service. To the install the service, run the following command
or include it as part of an installation program:

wsdriver.exe -installService

The service, which can then be run from the Services applet, can be removed as follows:

wsdriver.exe -removeService

You should distribute the XML configuration file that contains parameters and policies your driver
needs. The user can then select it when installing your driver.

5.9 Windows PowerShell Developer Guide
Windows PowerShell is a new command-line shell and scripting environment intended for system
administrators. Part of Microsoft .NET technology, PowerShell allows you to manage and configure
any aspect of Windows.

The Scripting driver provides a complete Windows PowerShell API for interacting with identity
management systems whose tools (including APIs) are available on Windows. The Identity Vault and
Identity Manager can run on any supported operating system. Identity Manager can communicate
with any supported system on which the driver is installed via an encrypted network connection.

Before beginning script development, review the preceding topics in this section for information on
defining what data is synchronized between identity management systems.

With additional development work, the driver can also be adapted to support any scripting language
that supports command line operation.

Developing a custom driver with PowerShell is discussed in this section. Topics include

 Section 5.9.1, “Application Tools Evaluation,” on page 100
 Section 5.9.2, “Policy and Script Development,” on page 101
 Section 5.9.3, “Deployment,” on page 112
Customizing the Scripting Driver 99

5.9.1 Application Tools Evaluation

To change the data in your external application, you need to know how to use the application’s tools
or API (Application Programming Interface). These tools must provide automated operation and not
require user input.

Application Command Line Tools

Applications often include command-line tools. These tools are manually executed from the Windows
command prompt, and they can be executed from scripts. For example, suppose an application
provides a tool to add identities with a program called appadd.exe.

appadd -n "Bob Smith" -t "818-555-2100"

This command adds an identity named “Bob Smith” with the specified phone number. The strings
following the program name are called parameters or arguments. Because PowerShell is a command
shell, commands can be executed by the script code:

 $name = "Bob Smith
 $phone = "818-555-2100"
 appadd -n $name -t $phone
 $exitcode = $LASTEXITCODE

You can use the pipeline to send data to a program’s standard input and to receive output from the
program’s standard output and standard error.

 # Create an array with two lines
 $inlines = "USERNAME=Bob Smith", "TELEPHONE=818-555-2100"
 $inlines | appadd | Set-Variable outlines

PowerShell will output the contents of the inlines array to appadd’s standard input, one item per line.
The (standard) output will be stored in outlines, as a single string variable for one line or an array for
more than one line. (You don't use the $ character with the Set-Variable cmdlet.)

Thus, with command-line tools, you can construct the command line’s parameters using the values
passed to the script, then execute the program.

Application Objects

Another way to modify application data is through Windows COM (Common Object Model) or .NET
objects. Consult your application’s documentation to see whether it exposes any COM or .NET
objects. These objects can be loaded directly in PowerShell:

 $appobject = New-Object -comobject MyApplication.MyObject
 $appobject.AddIdentity("Bob Smith", "818-555-2100")

Note that there are no guarantees regarding types and availability of tools. You must determine if
sufficient tools are provided by the application. If they are not, you can contact the application’s
developers and request them.

Make a list of the tools that can be used for each event type. The application might provide multiple
tools or a single program that can be used for any event type.
100 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Application Event Monitoring

You also need to determine what tools are available for monitoring event changes in the application.
The Scripting driver works on a polling system. It periodically calls a polling script to determine
what has changed in the external application. Here are some ideas for monitoring changes:

 The first time the polling script is run, a list of identities and relevant attributes is read from the
application using an application-provided tool. This list is stored as a file. On subsequent polls, a
new list is generated and compared to the old list. Any differences are submitted as events to the
driver.

 The application provides a tool that allows you to request all identities that have changed after a
certain point in time. The polling script requests events that have occurred since the previous
poll.

 The application allows a script to be run when an event occurs. You write a script that stores the
event data into a file. When the (Scripting driver) polling script runs, it consumes this file and
submits the data as an event to the driver.

Monitoring the application’s changes might be the most difficult aspect of developing your driver.
You must study your application’s tools to determine the best way to achieve synchronization.

5.9.2 Policy and Script Development

At this point you should have a list of what data will be synchronized, how events will be handled,
and what application tools are available. It is time to develop the heart of your driver in policies and
scripts.

Many types of tasks can be handled in driver policies. You can import the driver configuration
provided with the Scripting driver, and then edit policies in Novell iManager. You can also edit
policies and simulate their operation in Novell Designer. The extensive functionality of policies is
outside the scope of this document, so you should refer to your Identity Manager policy guides on
the Identity Manager 4.0.2 Documentation Web site (http://www.novell.com/documentation/idm402)
for help.

Tasks that don’t interact with the external application might be more suited to policies. On the other
hand, if you are more familiar with your scripting language than policies, you can develop your
driver more quickly by using scripts.

Event Data Format

Event data is submitted to the scripts in name/value pair format. This format consists of lines
containing a name, an equal sign (=) and a value. Therefore, each line is a name/value pair. Each
name/value pair is unique, but there can be multiple name/value pairs with identical names but
different values.

 ASSOCIATION=BobUser
 ADD_TELEPHONE=818-555-2100
 ADD_TELEPHONE=818-555-9842

You typically don’t have to worry about the format. The script library provides functions for
retrieving event data.
Customizing the Scripting Driver 101

http://www.novell.com/documentation/idm402

Subscriber Script Development

After all policy processing is complete, Identity Manager submits the event in XML format to the
driver shim. The driver shim submits the event data to the scripts.

In the default Scripting driver, the script Subscriber.ps1 in the scripts folder is called. This script
does some preliminary processing, and then calls a routine from an included script. The included
scripts correspond to the Subscriber event types: Add.ps1, Modify.ps1, ModifyPassword.ps1,
Delete.ps1, Rename.ps1, Move.ps1, and Query.ps1.

For each event type, you should retrieve the information you need from the event data, submit
changes to the external application using application-provided tools and return a status (such as
success or failure) to Identity Manager.

Event data is retrieved primarily using the idm_geteventvalues function. This function returns an
array of values corresponding to the name specified as the function’s parameter. (idm_geteventvalue
is available for single-valued items.) The following table shows many item names.

Table 5-26 Item Names

Value Description

COMMAND The command for the event, usually indicating the event type.

ASSOCIATION The identifier that distinguishes an identity on both identity
management systems.

CLASS_NAME An identity’s class, such as User or Group.

SRC_DN An identity’s distinguished name (DN) in the namespace of the source
(sender), in slash format.

EVENT_ID An identifier for the event, for internal use.

SRC_ENTRY_ID An identifier for the identity that generated the event, in the namespace
of the source (sender).

DEST_DN An identity’s distinguished name (DN) in the namespace of the
destination (receiver), in slash format.

DEST_ENTRY_ID An identifier for an entry in the namespace of the destination (receiver).

ADD_attr_name A value to be added to an identity, for attribute attr_name.

REMOVE_attr_name A value to be removed from an identity, for attribute attr_name.

ADD_REF_attr_name A value to be added to attribute attr_name, where the value is an
association referring to another identity.

REMOVE_REF_attr_name A value to be removed from attribute attr_name, where the value is
an association referring to another identity.

OLD_PASSWORD The previous password for an identity that has changed its password.
Used in Modify Password events.

PASSWORD The new password for an identity. Used in Add and Modify Password
events.

OLD_SRC_DN The distinguished name of an identity before a Move or Rename event.

REMOVE_OLD_NAME Specifies whether an old relative distinguished name should be deleted
or retained. Used in Rename events.
102 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Handling Associations

The association value indicates which identity has been changed. If the identity has no association, an
association must be generated for it using an implementation-specific rule that you have adopted.
When Identity Manager processes an event for an identity with no association, it executes the driver’s
Matching policy. This policy attempts to match the event’s identity to an identity on the external
application’s system. Doing this usually involves executing a query. The default Matching policy
included with the Scripting driver queries for matching Users and Groups based on the CN attribute.
If the event’s identity matches an identity on the external application, both identities must be
assigned the new association. Assigning this association can be included as part of the query-
handling script. (Handling queries is discussed in “Handling Query Events” on page 104.) If no
identity matches, an Add event is issued, and the new association can be assigned as part of the Add
event-handling script:

 idm_setcommand "ADD_ASSOCIATION"
 idm_writevalue "ASSOCIATION" $my_association
 (etc.)

The example above also illustrates the idm_setcommand function. This function sets a command
value that indicates what action Identity Manager should perform. The ADD_ASSOCIATION command
assigns an association to an identity, as discussed above. The Subscriber can also issue
MODIFY_ASSOCIATION and REMOVE_ASSOCIATION commands.

Returning an Event Status

On the Subscriber channel, you often do not need Identity Manager to perform an action, but simply
need to report a status. The IDMStatus subroutines noted below can be used to indicate a status to
Identity Manager. They take a message to be logged as the parameter.

STATUS_LEVEL The status of an event: success, warning, retry, error or fatal.

STATUS_MESSAGE A message to report with a status.

STATUS_TYPE A type of status, such as heartbeat.

Value Description
Customizing the Scripting Driver 103

Table 5-27 Subroutines

Writing Values

idm_setcommand and the status functions must be issued before specifying values with
idm_writevalues. idm_writevalues (or its single-valued version idm_writevalue) is used to set values
to return to Identity Manager. It is passed a value name and an array of values. In the
ADD_ASSOCIATION example above, idm_writevalue is used to set the ASSOCIATION value. You can
specify values for items listed in the table above.

Handling Query Events

For Query events, Identity Manager submits values that define the parameters of a search of the
external application’s identity management system. Queries are usually issued from the policies you
have defined for your system. The table below specifies values that can be specified in queries. Not
all values are relevant to your external application.

Table 5-28 Query Values

Subroutine Identity Manager Action

idm_statussuccess Identity Manager marks the event as a success and submits the next event
in the event queue, if any. You should issue this status even if your script
does nothing.

idm_statuswarning The event can be processed, but it might require attention. Identity Manager
issues your warning message in its log, and then submits the next event.

idm_statusretry The event cannot be processed, but Identity Manager should resubmit the
event because it should be able to be processed soon. This status can be
issued if your external application appears to be temporarily unavailable.
However, this status should be used cautiously because a backlog results if
Identity Manager continually retries one event.

idm_statuserror The event cannot be processed and it should not be resubmitted. Identity
Manager issues the error message and submits the next event. You should
make a detailed error message so the problem can be corrected.

idm_statusfatal For some reason, the driver must be stopped. Identity Manager issues your
message and stops the driver. This could be used if the external application
appears to be permanently offline. The event remains in the queue and is
resubmitted when the driver is restarted.

Value Name Description

SCOPE Specifies what identities will be searched. A base object is specified with the
ASSOCIATION or DEST_DN values (see below). The value “entry” means
that only the base object is searched. The value “subordinates” means that
the immediate subordinates of the base object are searched. The value
“subtree” (the default) indicates that the base object and all subordinates
are searched. The last two values are only relevant in a hierarchical system.

ASSOCIATION The base object for the search. If both ASSOCIATION and DEST_DN have
values, ASSOCIATION is used. If neither is specified, the base object is the
root of the identity management system.

DEST_DN The base object for the search (see also ASSOCIATION above).

CLASS_NAME The class of the base object.
104 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Execute the query against the external application using application-provided tools. Then return
each identity by setting an INSTANCE command, followed by relevant values from the list below.

Table 5-29 Query Values

After returning all identities, call idm_statussuccess to indicate a successful query.

Subscriber Summary and Examples

Below is a more detailed summary of the actions to take for a non-Query event.

1 Gather information about the event using idm_geteventvalues. Return a warning or error if
there is a problem.

2 Submit the event data to the external application using application-provided tools.
3 Set a command using idm_setcommand and/or a status with the idm_status subroutines, based

on the result of the event.

EVENT_ID An identifier for the event.

SEARCH_CLASSES A list of classes for which to search. Only identities of these classes are
returned. If not specified, all identities in the scope matching
SEARCH_ATTR_ values are returned (see below).

SEARCH_ATTRS A list of attribute names used in SEARCH_ATTR_ values (see below).

SEARCH_ATTR_attr_name A value that the specified attribute must match. Replace attr_name with
the desired attribute name. Only identities matching all SEARCH_ATTR_
filters are returned.

READ_ATTRS A list of attribute names whose values are returned for each matching
identity.

ALL_READ_ATTRS The presence of this value indicates that all attribute values should be
returned for matching identities.

NO_READ_ATTRS The presence of this value indicates that no attribute values should be
returned for matching identities, only associations.

READ_PARENT The presence of this value indicates that the parent object of each matching
identity should be returned. Only relevant in hierarchical systems.

Value Name Description

CLASS_NAME The class of the identity. Required.

SRC_DN A distinguished name representing the logical location of the identity in the
system (optional).

ASSOCIATION The association of the identity, if available (optional).

PARENT The association of the parent object of the identity (optional). Only relevant
in hierarchical systems.

ATTR_attr_name A list of values for the attribute specified by attr_name. Return attribute
values specified by the READ_ATTRS value.

Value Name Description
Customizing the Scripting Driver 105

4 Set event values with idm_writevalues.
5 If you have not already done so, set a status with an idm_status subroutine.

Below is an example of the Add.ps1 script, which forms an association from an identity’s CN and
class name, and uses a hypothetical tool called appadd.

function idm_add
{
 $classname = idm_geteventvalue "CLASS_NAME"
 $cn = idm_geteventvalue "CN"
 $phone = idm_geteventvalue "Telephone"
 if ($classname -eq "" -or $cn -eq "") {
 idm_statuserror "Add event: missing CLASS_NAME and/or CN"
 }
 else {
 appadd -n "$cn" -t "$phone"
 if ($LASTEXITCODE -eq 0) {
 idm_setcommand "ADD_ASSOCIATION"
 idm_writevalue "ASSOCIATION" "cnclassname"
 idm_writevalue "DEST_DN" (idm_geteventvalue "SRC_DN")
 idm_statussuccess "Add event succeeded"
 }
 else {
 idm_statuserror "Add event failed with error code $LASTEXITCODE"
 }
 }
}

Handling a query is similar, except you return INSTANCE items rather than use other commands.
Below is an example Query.ps1 that searches an external application for a telephone number. It uses
a hypothetical tool called appsearch.

function idm_query
{
 $searchname = idm_geteventvalue "SEARCH_ATTR_CN"
 if ($searchname -eq "") {
 idm_statuserror "Query: no search value"
 }
 else {
 # the telephone number is output from the application
 appsearch -n "$searchname" | Set-Variable phone
 if ($phone -ne $null) {
 idm_setcommand "INSTANCE"
 idm_writevalue "CLASS_NAME" (idm_geteventvalue "CLASS_NAME")
 idm_writevalue "ASSOCIATION" (idm_geteventvalue "ASSOCIATION")
 idm_writevalue "ATTR_Telephone" $phone
 idm_statussuccess "Query succeeded"
 }
 else {
 # Return success with no results
 idm_statussuccess "Query succeeded (no matches)"
 }
 }
}

Publisher Script Development

Events that occur on the external application are submitted to Identity Manager on the Publisher
channel. The Scripting driver periodically polls the external application for events. How this poll
detects events is implementation-specific and must be defined by the user.
106 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Polling for Application Events

The driver calls Poll.ps1 to detect application events. Poll.ps1 should be implemented as follows:

1 Use application-provided tools to detect events in your application.
2 For each event:

2a Call the idm_publishinit function to set the appropriate command.
2b Call idm_publishvalues to set event values.
2c Call idm_publish to submit the event to Identity Manager.

3 If there were events, call an idm_status function to report the status.

idm_publishinit takes a command name as its single parameter. Below is a list of valid command
names for idm_publishinit.

Table 5-30 Command Names

Below is an example of a Poll.ps1 that checks for a password change. It uses a hypothetical
application tool called apppwd.

 apppwd --changes | Set-Variable results
 foreach ($result in $results) {
 # Entries are in the format "association=password"
 $tokens = $result.split("=")
 $association = $tokens[0]
 $password = $tokens[1]
 idm_publishinit "MODIFY_PASSWORD"
 idm_publishvalue "ASSOCIATION" $association
 idm_publishvalue "PASSWORD" $password

 idm_publish
 next

 idm_statussuccess "Poll succeeded"

Events submitted using idm_publish are processed through your driver’s Publisher channel policies.
See the Identity Manager policy guides on the Identity Manager 4.0.2 Documentation Web site (http:/
/www.novell.com/documentation/idm402) for more information.

Command Name Description

ADD Create an identity.

ADD_ASSOCIATION Create an association for an identity.

DELETE Remove an identity permanently.

MODIFY Change an identity’s attributes.

MODIFY_ASSOCIATION Change an identity’s association.

MODIFY_PASSWORD Change an identity’s password.

REMOVE_ASSOCIATION Delete an identity’s association.

RENAME Change an identity’s naming attribute.
Customizing the Scripting Driver 107

http://www.novell.com/documentation/idm402

Using the Heartbeat Script

Another script executed in the Publisher Channel is Heartbeat.ps1. This script is executed when
the Publisher channel is idle for the interval specified in the driver parameters. (You may also set the
interval to 0 so no heartbeat is issued.) You can use the heartbeat to check the availability of the
external system or do “idle state” tasks. The idm_heartbeatsuccess, idm_heartbeatwarning, and
idm_heartbeaterror subroutines can be used to indicate the result of the heartbeat. Below is an
example based on a hypothetical tool called apphealth.

 apphealth
 if ($LASTEXITCODE -eq 0) {
 idm_heartbeatsuccess "Heartbeat succeeded"
 }
 else {
 idm_heartbeaterror "Heartbeat failed with error code $LASTEXITCODE"
 }

The response to the heartbeat is implementation-dependent, and can be defined in policies or in the
script itself. You could send a message to auditing using Novell Audit. You could store a value in a
file and have Subscriber scripts read the file and call idm_statusretry if they find that value in the file.

Other Scripting Topics

 “Driver Parameters” on page 108
 “Querying the Identity Vault” on page 109
 “Tracing and Debugging” on page 110

Driver Parameters

A driver has values known as driver parameters. The driver parameters are divided into driver
settings applicable to the whole driver, and Subscriber and Publisher settings for their respective
channels. The idm_getdriverparam, idm_getsubscriberparam, and idm_getpublisherparam
functions can be used to retrieve these values. The table below shows parameters in the default
Scripting driver. Other parameters can be added to the driver’s XML Configuration file (see
“Managing Identity Manager Drivers” in the Novell Identity Manager Administration Guide).

Table 5-31 Driver Parameters

Parameter Name Driver/Channel Description Values

INSTALL_PATH Driver The installation path of the
driver

string value

auto-loopback-detection Driver Whether to enable
automatic loopback
detection

true/false

script-command Driver The command to use to
execute scripts

string value

script-trace-file Driver The file, relative to the
driver installation path, to
which to write trace
messages

string value
108 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

In the following example, a script retrieves the Publisher polling interval.

 $pollinginterval = idm_getpublisherparam("pub-polling-interval")

Querying the Identity Vault

Scripts might need to retrieve information from the Identity Vault. They can do this by issuing a
query.

1 Initialize the query with idm_queryinit.
2 Set query search parameters using functions listed below.
3 Execute the query with idm_doquery.
4 Read the result (instance) using functions listed below.

This table lists functions for setting query search parameters.

subscriber-script Subscriber The script file for
Subscriber events,
relative to the driver
installation path

string value

polling-script Publisher The script file that runs
when the Publisher polls
for application events

string value

heartbeat-script Publisher The script file that runs
when the Publisher
checks application status

string value

pub-polling-interval Publisher The interval in seconds
between Publisher polls
for application events

number

pub-heartbeat-interval Publisher The amount of idle time in
seconds before a
heartbeat event is issued

number

Function Description

idm_querysetassociation($association) Sets the association of the object to query.

idm_querysetsearchroot($searchroot) Sets the DN (in slash format) of the object to
query.

idm_queryaddsearchattr($name, $value) Specifies a search condition of the form
$name=$value. The query will only return an
instance if the named attribute has a value
matching $value.

idm_queryaddreadattr($name) Specifies an attribute whose values will be
returned with the instance.

idm_querysetreadparent($readparent) Specifies whether the association and DN of the
parent of the queried object should be returned
($False by default).

Parameter Name Driver/Channel Description Values
Customizing the Scripting Driver 109

Currently query support is limited. It will only return one instance based on the specified association
or DN. (If both association and DN are specified, association is used.) The functions below allow you
to retrieve information from the instance.

Following is an example of a query of the Identity Vault that retrieves an object’s address and postal
code.

 idm_queryinit
 idm_querysetassociation (idm_geteventvalue "ASSOCIATION")
 idm_queryaddreadattr "SA" # Street Address
 idm_queryaddreadattr "Postal Code"

 $result = idm_doquery
 if ($result) {
 $address = idm_querygetinstanceattrvalue "SA"
 $zipcode = idm_querygetinstanceattrvalue "Postal Code"
 # ... etc. ...
 }

Tracing and Debugging

The function idm_trace allows you to write a message to the Script Trace File specified in the Driver
Parameters. Tracing is useful for script debugging and auditing.

 idm_trace "Trace message"

If the driver shim is being run as a Windows Service, all output from scripts will also be recorded in
the Script Trace File.

Function Description

idm_getqueryinstanceassociation Returns the association of the instance.

idm_getqueryinstancedn Returns the DN of the instance (in slash format).

idm_getqueryinstanceclass Returns the class name of the instance.

idm_getqueryinstanceparentassociation Returns the association of the parent of the
instance (if requested).

idm_getqueryinstanceparentdn Returns the DN of the parent of the instance (if
requested).

idm_getqueryinstanceattrnames Returns an array containing the names of the
attributes retrieved for the instance. Returns
Empty if no attributes were retrieved.

idm_getqueryinstanceattrcount Returns the number of attributes retrieved for the
instance.

idm_getqueryinstanceattrvalues($attrname) Returns an array of values for the attribute
$attrname. Returns Empty if no values are
available.

idm_getqueryinstanceattrvalue($attrname) Returns a string value for the attribute
$attrname. If multiple values are available, the
first one is returned. Returns Empty if no values
are available.
110 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

When developing scripts, you may need to do some debugging to track down problems. The
following list indicates some facilities for debugging.

 The driver traces activity to its Trace file (logs\trace.log by default). The trace level setting in
conf\wsdrv.conf controls how much debugging is written to the log.

The trace level is set using the -trace option in wsdrv.conf, for example, -trace 9.

You can view the trace file through a Web browser:
1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute

the DNS name or IP address of your driver for driver-address.
2. Authenticate by using any user name and the password that you specified as the Remote

Loader password.
3. Click Trace.

 The idm_trace function described above writes output to the trace file specified in the driver
parameters (logs\script-trace.log by default).

 The eDirectory tool DSTrace can be used to monitor Identity Manager activity. Set the tracing
level for the driver in iManager. DSTrace shows the XML documents being submitted to the
driver for events, and how Policies are evaluated. It also shows the status and message for each
event.

 The Status Log is written to logs\dirxml.log. It shows a summary of the events that have been
recorded on the Subscriber and Publisher channels.
You can view the Status Log through a Web browser:

1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute
the DNS name or IP address of your driver for driver-address.

2. Authenticate by using any user name and the password that you specified as the Remote
Loader password.

3. Click Status.

While it is best to run the driver as a service in production environments, you can run wsdriver.exe
as a standard program. When you do so, a console window displays trace messages (see above) for
the driver. Also, text written to standard output from scripts is displayed in this window.

Trace Level Description

 0 No debugging.

 1-3 Identity Manager messages. Higher trace levels provide more detail.

 4 Previous level plus Remote Loader, driver, driver shim, and driver connection
messages.

 5-7 Previous level plus Change Log and loopback messages. Higher trace levels
provide more detail.

 8 Previous level plus driver status log, driver parameters, driver command line,
driver security, driver Web server, driver schema, driver encryption, driver SOAP
API, and driver include/exclude file messages.

 9 Previous level plus low-level networking and operating system messages.

 10 Previous level plus maximum low-level program details.
Customizing the Scripting Driver 111

5.9.3 Deployment

The Scripting driver is installed by using a setup program. See Section 3.2, “Installing the Windows
Scripting Driver,” on page 22 for information on installing the default driver.

Deploying a Custom Driver

To deploy your custom driver, the end user should first run the Windows Scripting driver installation
program provided by the installation media (see Section 3.2, “Installing the Windows Scripting
Driver,” on page 22). This program installs core files needed by the driver. Then your custom driver
files can be deployed easily, whether through an installation program or an archive file. The table
below shows the directory structure below the installation directory and what files are installed.

Table 5-32 Directory Structure and Files

If you are using an installation program, you can obtain the driver’s installation path from the
following registry value:

 HKEY_LOCAL_MACHINE\SOFTWARE\Novell\Windows Script Driver\Path

Or for the x86 driver running an x64 version of Windows, use the path from the following registry
value:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Novell
 \Windows Script Driver\Path

The formats of wsdrv.conf and schema.def can be viewed in Section 4.2, “The Driver Shim
Configuration File,” on page 34 and Section 5.2, “The Connected System Schema File,” on page 40.

If SSL encryption is desired for communication between the driver shim and Identity Manager
engine, a certificate must be retrieved from the Identity Vault. Run the following command and
follow the prompts to retrieve the certificate:

Directory Description Required Files

bin\ Location of executable programs EventReader.exe

idmevent.exe

wsdriver.exe

changelog\ Used for Publisher event
processing

None

conf\ Location of the driver shim
configuration file

wsdrv.conf (customized)

keys\ Location of security key files None

logs\ Location of log files None

loopback\ Used for automatic loopback
detection

None

rules\ Location of driver configuration file Scripting.xml (customized)

schema\ Location of schema files schema.def (customized)

scripts\powershell\ Location of script files Those required by your Driver
(customized)
112 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

wsdriver.exe -s

The certificate will be stored in the keys\ directory. You must have LDAP with SSL available for the
Metadirectory. When making an installation program for deployment, you might want to include
this command as part of the installation:

To ensure that only authorized systems access the Metadirectory, a Driver Object password and
Remote Loader password are used. Run the following command and enter the passwords at the
prompts:

wsdriver.exe -sp

This action also can be incorporated into an installation program.

You should run a Scripting driver as a service. To the install the service, run the following command
or include it as part of an installation program:

wsdriver.exe -installService

The service, which can then be run from the Services applet, can be removed as follows:

wsdriver.exe -removeService

You should distribute the XML configuration file that contains parameters and policies your driver
needs. The user can then select it when installing your driver.

5.10 Using an Alternate Scripting Language
An alternative scripting language can be used by porting the globals, IDMLib, and other scripts to the
alternative language. Porting requires a solid understanding of one of the provided languages
(Bourne Shell, Perl and Microsoft VBScript and PowerShell) and the target language. The language
should have facilities for executing programs and reading/writing to their standard input and
output. The script language program must be able to be run from the command prompt.

To change the program the driver executes when running a script, modify the Script Command
driver parameter. After the name of the program, you can include any needed command line
parameters. To this string, the driver appends a space and the name of the Subscriber, Polling or
Heartbeat script. For the Subscriber script, the full path to the event file and the full path to the Driver
Parameter file are the next two parameters. For the Polling and Heartbeat scripts, the Driver
Parameter file is the next parameter.

The event file contains the event document in XML format. On Windows, you must use the
EventReader.exe program included with the Scripting driver to process this file. Running
EventReader with the nvpairs option retrieves the event document as name/value pairs (the default).
Using the xds option retrieves the event in its original XDS/XML format. On Linux and UNIX, events
are submitted to scripts using shared memory. You must use the Shared Memory Helper, ussmh, to
process these events. Running ussmh with the -xml option retrieves the XML document in its original
XDS/XML format.

The Driver Parameter file contains name/value pairs for the driver parameters. See Section 5.5,
“UNIX Shell Developer Guide,” on page 47, Section 5.6, “Perl Developer Guide,” on page 60, and
Section 5.8, “Microsoft VBScript Developer Guide,” on page 86 for more information.

On the Publisher channel, you must use the Change Log tool (idmevent.exe on Windows and usclh
on Linux/UNIX), to submit events to the driver.

The names of the Subscriber, Polling and Heartbeat scripts can be altered in the driver parameters.
Customizing the Scripting Driver 113

114 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

6 6Using the Scripting Driver

This section provides information about operational tasks commonly used with the Identity Manager
driver for Scripting.

Topics include

 Section 6.1, “Starting and Stopping the Driver,” on page 115
 Section 6.2, “Starting and Stopping the Driver Shim,” on page 115
 Section 6.3, “Displaying Driver Shim Status,” on page 116
 Section 6.4, “Monitoring Driver Messages,” on page 117

6.1 Starting and Stopping the Driver
To start the driver:

1 In Novell® iManager, navigate to the Driver Overview for the driver.
2 Click the upper right corner of the driver icon.
3 Click Start driver.

To stop the driver:

1 In iManager, navigate to the Driver Overview for the driver.
2 Click the upper right corner of the driver icon.
3 Click Stop driver.

6.2 Starting and Stopping the Driver Shim
To start the driver shim, perform the task appropriate for your operating system as shown in the
following table:

Table 6-1 Starting the Driver Shim

Operating System Command/Task

AIX /etc/rc.d/init.d/usdrvd start

FreeBSD /usr/local/etc/rc.d/usdrvd start

HP-UX /sbin/init.d/usdrvd start

Linux /etc/init.d/usdrvd start

OSX /opt/novell/usdrv/startup/usdrvd start
Using the Scripting Driver 115

To stop the driver shim, perform the task appropriate for your operating system as shown in the
following table:

Table 6-2 Stopping the Driver Shim

You can also run the driver shim on Windows from the command line by executing wsdriver.exe in
the bin directory under the driver installation directory. Output is written to the console. Stop the
driver shim by pressing Ctrl+Break. Running the driver shim this way is recommended only for
development and testing.

6.3 Displaying Driver Shim Status
To see status and version information for the driver shim, use the appropriate command for your
operating system as shown in the following table:

Table 6-3 Displaying the Status of the Driver Shim

Solaris /etc/init.d/usdrvd start

Tru64 /sbin/init.d/usdrvd start

Windows Use the Windows Services application to start the Novell Identity Manager
Windows Script Driver service.

Operating System Command/Task

AIX /etc/rc.d/init.d/usdrvd stop

FreeBSD /usr/local/etc/rc.d/usdrvd stop

HP-UX /sbin/init.d/usdrvd stop

Linux /etc/init.d/usdrvd stop

OSX /opt/novell/usdrv/startup/usdrvd stop

Solaris /etc/init.d/usdrvd stop

Tru64 /etc/init.d/usdrvd stop

Windows Use the Windows Services application to stop the Novell Identity Manager
Windows Script Driver service.

Operating System Command/Task

Operating System Command

AIX /etc/rc.d/init.d/usdrvd status

FreeBSD /usr/local/etc/rc.d/usdrvd status

HP-UX /sbin/init.d/usdrvd status

Linux /etc/init.d/usdrvd status

OSX /opt/novell/usdrv/startup/usdrvd status
116 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

6.4 Monitoring Driver Messages
The Scripting driver writes messages to the system log on Linux and UNIX, and the trace file on
Windows (trace.log in the logs directory by default). For details about the messages written by the
driver, see Appendix B, “System and Error Messages,” on page 131.

Solaris /etc/init.d/usdrvd status

Tru64 /etc/init.d/usdrvd status

Windows Use the Windows Services application.

Operating System Command
Using the Scripting Driver 117

118 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

7 7Securing the Scripting Driver

The section describes best practices for securing the Identity Manager driver for Scripting. Topics
include

 Section 7.1, “Using SSL,” on page 119
 Section 7.2, “Physical Security,” on page 119
 Section 7.3, “Network Security,” on page 119
 Section 7.4, “Auditing,” on page 120
 Section 7.5, “Driver Security Certificates,” on page 120
 Section 7.6, “Driver Shell Scripts,” on page 120
 Section 7.7, “The Change Log,” on page 120
 Section 7.8, “Driver Passwords,” on page 120
 Section 7.9, “Driver Code,” on page 121
 Section 7.10, “Administrative Users,” on page 121
 Section 7.11, “Connected Systems,” on page 121

For additional information about Identity Manager security, see the Novell® Identity Manager 3.6.1
Administration Guide on the Identity Manager 4.0.2 Documentation Web site (http://
www.novell.com/documentation/idm402).

7.1 Using SSL
Enable SSL for communication between the Metadirectory engine and the driver shim on the
connected system. For more information, see “Use SSL” on page 28. If you don’t enable SSL, you are
sending information, including passwords, in the clear.

7.2 Physical Security
Keep your servers in a physically secure location with access by authorized personnel only.

7.3 Network Security
Require users outside of the corporate firewall to use a VPN to access corporate data.
Securing the Scripting Driver 119

http://www.novell.com/documentation/idm402

7.4 Auditing
Track changes to sensitive information. Examine audit logs periodically. For details about using
Novell Audit to monitor driver operation, see the Novell Audit Documentation Web site (http://
www.novell.com/documentation/novellaudit20/index.html).

7.5 Driver Security Certificates
SSL uses security certificates to control, encrypt, and authenticate communications.

Ensure that the security certificate directory /opt/novell/usdrv/keys is appropriately protected on
Linux or UNIX platforms and C:\Novell\wsdrv\keys is protected on Windows platforms. The
installation program sets secure file permissions for these directories.

The Driver Shim and the Identity Manager engine communicate through SSL using a certificate
created in the Identity Vault and retrieved by the Driver Shim during the installation process. For
more information on this certificate and how to renew or install third-party certificates, refer to the
Identity Manager Administration Guide.

The Embedded Remote Loader web interface uses a dynamically generated, self-signed certificate for
SSL communication. The details of this certificate are as follows:

Subject: SSL Server

Issuer: SSL Server

Validity: 1 year

Serial Number: 0

Key: 1024-bit RSA

Renewal of this certificate automatically occurs when the Driver Shim is restarted on the connected
platform.

7.6 Driver Shell Scripts
The driver uses scripts to perform updates on the connected system, and to collect changes made
there. Ensure that the script directory is appropriately protected. The installation program sets secure
file permissions for this directory where applicable.

7.7 The Change Log
The change log file contains information about events on the connected system, including passwords.
It is encrypted, but it should be protected against access by unauthorized users. Ensure that the
change log directory is appropriately protected. The installation program sets secure file permissions
for this directory where applicable.

7.8 Driver Passwords
Use strong passwords for the Driver object and Remote Loader passwords, and restrict knowledge of
them to authorized personnel. These passwords are stored in encrypted form in the security
certificate directory keys. The installation program sets secure file permissions for this directory.
120 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

7.9 Driver Code
Ensure that the driver executable directory bin and the driver files in /usr/sbin (Linux/UNIX only)
are appropriately protected. The installation program sets secure file permissions for these items
where applicable.

7.10 Administrative Users
Ensure that accounts with elevated rights on the Metadirectory system, Identity Vault systems, and
the connected systems are appropriately secure. Protect administrative user IDs with strong
passwords.

7.11 Connected Systems
Ensure that connected systems can be trusted with account information, including passwords, for the
portions of the tree that are configured as their base containers.
Securing the Scripting Driver 121

122 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

A ATroubleshooting

This section provides information about troubleshooting the Identity Manager 4.0.2 driver for
Scripting. Major topics include

 Section A.1, “Driver Status and Diagnostic Files,” on page 123
 Section A.2, “Troubleshooting Common Problems,” on page 125
 Section A.3, “Shared Memory Errors (Linux/UNIX only),” on page 129

A.1 Driver Status and Diagnostic Files
There are several log files that you can view to examine driver operation.

 Section A.1.1, “The System Log (Linux/UNIX only),” on page 123
 Section A.1.2, “The Trace File,” on page 124
 Section A.1.3, “The Script Output File,” on page 125
 Section A.1.4, “DSTRACE,” on page 125
 Section A.1.5, “The Status Log,” on page 125

A.1.1 The System Log (Linux/UNIX only)

The system log is used by the Scripting driver shim to record urgent, informational, and debug
messages. Examining these should be foremost in your troubleshooting efforts. For detailed message
documentation, see Appendix B, “System and Error Messages,” on page 131.

The location for the system log varies from system to system and is generally configured through /
etc/syslog.conf. The amount of information that is logged by the driver can also be configured
through this system log configuration file. The following is a sample fragment from /etc/
syslog.conf:

sample /etc/syslog.conf
#
*.err;kern.notice;auth.notice /dev/sysmsg
*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages

*.alert;kern.err;daemon.err operator
*.alert root

The options in the first column determine which messages are logged. The options in the second
column specify the destination file or user to send the log output to. For example, specifying *.err
logs all messages with a priority of err or above. For more information about syslog priorities, view
your system documentation using the man syslog command. Messages from the driver shim and
messages from the scripts are logged with various priorities as shown in Table A-1. The information
that is recorded depends on your syslog configuration.
Troubleshooting 123

Table A-1 Message Priorities

A.1.2 The Trace File

The default trace file exists on the connected system as trace.log in the logs directory under the
installation folder. A large amount of debug information can be written to this file. Use the trace level
setting in your driver shim configuration file to control what is written to the file. For details about
the driver shim configuration file, see Section 4.2, “The Driver Shim Configuration File,” on page 34.

Table A-2 Driver Shim Trace Levels

The following is an example configuration line to set the trace level:

-trace 9

To view the trace file:

1 Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the DNS
name or IP address of your driver for driver-address.

2 Authenticate by using any username and the password that you specified as the Remote Loader
password.

3 Click Trace.

Message Topic Priority

Script being called DEBUG

Successful Linux or UNIX command execution INFO

Publication events INFO

Failures ERR

Trace Level Description

0 No debugging

1–3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous level plus Remote Loader, driver, driver shim, and driver connection
messages.

5–7 Previous level plus change log and loopback messages. Higher trace levels provide
more detail.

8 Previous level plus driver status log, driver parameters, driver command line, driver
security, driver Web server, driver schema, driver encryption, driver PAM, driver SOAP
API, and driver include/exclude file messages.

9 Previous level plus low-level networking and operating system messages.

10 Previous level plus maximum low-level program details (all options).
124 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

A.1.3 The Script Output File

By default, script output is written to script-trace.log in the logs directory under the driver
installation directory on the connected system. This file captures the output from all scripts executed
by the driver shim. The location of the script output file is set in the driver parameters.

A.1.4 DSTRACE

You can view Identity Manager information using the DSTRACE facility on the Metadirectory server.
Use iManager to set the tracing level. For example, trace level 2 shows Identity Vault events in XML
documents, and trace level 5 shows the results of policy execution. Because a high volume of trace
output is produced, we recommend that you capture the trace output to a file. For details about using
DSTRACE, see the Identity Manager Administration Guide on the Identity Manager 4.0.2
Documentation Web site (http://www.novell.com/documentation/idm402).

A.1.5 The Status Log

The status log is a condensed summary of the events that have been recorded on the Subscriber and
Publisher channels. This file exists on the connected system as dirxml.log in the logs directory
under the driver installation directory. You can also view the status log in iManager on the Driver
Overview page. You can change the log level to specify what types of events to log. For details about
using the status log, see the Identity Manager Administration Guide on the Identity Manager 4.0.2
Documentation Web site (http://www.novell.com/documentation/idm402).

To view the status log:

1 Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the DNS
name or IP address of your driver for driver-address.

2 Authenticate by using any username and the password that you specified as the Remote Loader
password.

3 Click Status.

A.2 Troubleshooting Common Problems
 Section A.2.1, “Driver Shim Installation Failure,” on page 126
 Section A.2.2, “Driver Rules Installation Failure,” on page 126
 Section A.2.3, “Driver Certificate Setup Failure,” on page 126
 Section A.2.4, “Driver Start Failure,” on page 126
 Section A.2.5, “Driver Shim Startup or Communication Failure,” on page 127
 Section A.2.6, “Users or Groups Are Not Provisioned to the Connected System,” on page 127
 Section A.2.7, “Users or Groups Are Not Provisioned to the Identity Vault,” on page 127
 Section A.2.8, “Identity Vault User Passwords Are Not Provisioned to the Connected System,”

on page 128
 Section A.2.9, “Connected System User Passwords Are Not Provisioned to the Identity Vault,”

on page 128
 Section A.2.10, “Metadirectory Objects Are Not Modified, Deleted, Renamed, or Moved,” on

page 128
Troubleshooting 125

http://www.novell.com/documentation/idm402
http://www.novell.com/documentation/idm402
http://www.novell.com/documentation/idm402
http://www.novell.com/documentation/idm402

A.2.1 Driver Shim Installation Failure

 Ensure that you use the correct installation program for your operating system and that you are
running on a supported operating system. For details, see Chapter 2, “Planning for the Scripting
Driver,” on page 15.

 Ensure that you run the installation as root (Linux/UNIX) or Administrator (Windows) or
equivalent.

 (Linux/UNIX only) Ensure that your package management software, such as RPM, is installed
and up-to-date.

A.2.2 Driver Rules Installation Failure

Ensure that you use a version of iManager that supports your version of Identity Manager.

A.2.3 Driver Certificate Setup Failure

To set up certificates, the driver shim communicates with the Metadirectory server using the LDAP
secure port (636).

 Ensure that eDirectory™ is running LDAP with SSL enabled. For details about configuring
eDirectory, see the Novell eDirectory Administration Guide.

 Ensure that the connected system has network connectivity to the Metadirectory server.

You can use the command /opt/novell/usdrv/bin/usdrv -s (Linux/UNIX) or wsdriver -s
(Windows) to configure the certificate at any time.

If you cannot configure SSL using LDAP, you can install the certificate manually:

1 In iManager, browse the Security container to locate your tree’s Certificate Authority (typically
named treeName CA).

2 Click the Certificate Authority object.
3 Click Modify Object.
4 Select the Certificates tab.
5 Click Public Key Certificate.
6 Click Export.
7 Select No to export the certificate without the private key, then click Next.
8 Select Base64 format, then click Next.
9 Click Save to save the exported certificate to a file, then specify a location to save the file.

10 Use FTP or another method to store the file on the connected system as ca.pem in the keys
directory under the driver installation directory.

A.2.4 Driver Start Failure

 Examine the status log and DSTRACE output.
 The driver must be specified as a Remote Loader driver, even if the Identity Vault and connected

system are the same computer. You can set this option in the iManager Driver Edit Properties
window.
126 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

 You must activate both Identity Manager and the driver within 90 days. The Driver Set
Overview page in iManager shows when Identity Manager requires activation. The Driver
Overview page shows when the driver requires activation.
For details about activating Novell Identity Manager Products, see the Identity Manager
Installation Guide on the Identity Manager 4.0.2 Documentation Web site (http://
www.novell.com/documentation/idm402).

For more information about troubleshooting Identity Manager engine errors, see the Identity
Manager 4.0.2 Documentation Web site (http://www.novell.com/documentation/idm402).

A.2.5 Driver Shim Startup or Communication Failure

 Examine the trace file.
 Ensure that the connected system’s operating system version is supported. For a list of

supported operating systems, see Chapter 2, “Planning for the Scripting Driver,” on page 15.
 Apply all patches for your operating system.
 Ensure that the Remote Loader and Driver object passwords that you specified while setting up

the driver on the Metadirectory server match the passwords stored with the driver shim.
To update these passwords on the connected system, use the /opt/novell/usdrv/bin/usdrv -
sp (Linux/UNIX) or use the wsdriver -sp (Windows) command. The passwords are stored
under keys in the driver installation directory in encrypted files dpwdlf40 (Driver object
password) and lpwdlf40 (Remote Loader password).
To update these passwords on the Metadirectory server, use iManager to update the driver
configuration. For details, see Section 4.1.2, “Driver Configuration Page,” on page 29.

 Ensure that the correct host name and port number of the connected system are specified in the
Driver Configuration Remote Loader connection parameters. You can change the port number
(default 8090) in usdrv.conf (Linux/UNIX) or wsdrv.conf (Windows).

A.2.6 Users or Groups Are Not Provisioned to the Connected System

 Examine the status log, DSTRACE output, trace file, and script output file.
 To be provisioned, users and groups must be in the appropriate base container. You can view

and change the base containers in iManager on the Global Configuration Values page of the
Driver Edit Properties window.

 To provision identities from the Identity Vault to the connected system, the driver Data Flow
property must be set to Bidirectional or Identity Vault to Application. To change this value,
reimport the driver rules file over your existing driver.

 The user that the driver is security equivalent to must have rights to read information from the
base container. For details about the rights required, see Table 2-1 on page 18.

A.2.7 Users or Groups Are Not Provisioned to the Identity Vault

 Examine the status log, DSTRACE output, and trace file.
 Examine the User Base Container and Group Base Container GCV values. For more details,

Section 4.1.3, “Global Configuration Values Page,” on page 31.
Troubleshooting 127

http://www.novell.com/documentation/idm402
http://www.novell.com/documentation/idm402
http://www.novell.com/documentation/idm402

 To provision identities from the connected system to the Identity Vault, the driver Data Flow
property must be set to Bidirectional or Application to Identity Vault. To change this value,
reimport the driver rules file over your existing driver.

 The user that the driver is security equivalent to must have rights to update the base container.
For details about the rights required, see Table 2-1 on page 18.

A.2.8 Identity Vault User Passwords Are Not Provisioned to the Connected
System

 Examine the status log, DSTRACE output, and script output file.
 There are several password management properties available in iManager on the Global

Configuration Values page of the Driver Edit Properties window. Ensure that the connected
system accepts passwords from the Identity Vault. To determine the right settings for your
environment, view the help for the options, or see the Identity Manager Administration Guide on
the Identity Manager 4.0.2 Documentation Web site (http://www.novell.com/documentation/
idm402).

 Ensure that the user’s container has an assigned Universal Password policy and that the
Synchronize Distribution Password When Setting Universal Password GCV is set for this policy.

A.2.9 Connected System User Passwords Are Not Provisioned to the Identity
Vault

 Examine the status log, DSTRACE output, and the trace file.
 There are several password management properties available in iManager on the Global

Configuration Values page of the Driver Edit Properties window. Ensure that at least one of the
following options is set:
 The Identity Vault Accepts Passwords from the Connected System
 The Identity Vault Accepts Administrative Password Resets from the Connected System
 To determine the right settings for your environment, view the help for the options, or see

the Identity Manager Administration Guide on the Identity Manager 4.0.2 Documentation Web
(sitehttp://www.novell.com/documentation/idm402).

 If the Require Password Policy Validation before Publishing Passwords GCV is set, the
user’s password must satisfy the password rules in the password policy assigned to the
user container.

A.2.10 Metadirectory Objects Are Not Modified, Deleted, Renamed, or Moved

 Examine the status log, DSTRACE output, trace file, and script output file.
 Examine the driver Data Flow setting to verify the authoritative source for identities.
 Identity Vault and connected system identities must be associated before events are

synchronized. To view an identity’s associations, use Modify User/Group in iManager and click
the Identity Manager tab.

 Identity Vault move events can remove the identity from the base container monitored by the
driver to a container that is not monitored by the driver. This makes the move appear to be a
delete.
128 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

http://www.novell.com/documentation/idm402
sitehttp://www.novell.com/documentation/idm402

A.3 Shared Memory Errors (Linux/UNIX only)
Shared memory is used by the driver shim to safely and securely communicate with the scripts on
Linux and UNIX. If the system shared memory segments become unusable, you must shut down the
process and fix the shared memory segments.

Shared memory segments can become unusable on some UNIX systems if the driver shim is
improperly terminated without detaching from the segments. For information about how to properly
stop the driver shim, see Section 6.2, “Starting and Stopping the Driver Shim,” on page 115. You can
use the ipcs system tool to locate these segments and the ipcrm tool to manually clear them as shown
in the following example:

> ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x2a065bbd 1802241 root 600 16384 1
> ipcrm -m 1802241

The driver shim generates default segments of 16384 bytes with permissions at 600.
Troubleshooting 129

130 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

B BSystem and Error Messages

Components of the Identity Manager 4.0.2 driver for Scripting write messages to the system log to
report operational status and problems. For more information about the system log, see Section A.1.1,
“The System Log (Linux/UNIX only),” on page 123 For detailed troubleshooting information, see
Appendix A, “Troubleshooting,” on page 123.

Each message begins with a code of 3-6 characters associated with the driver component that
generated the message. Use this code to find message information quickly as follows:

 Section B.1, “CFG Messages,” on page 131
 Section B.2, “CHGLOG Messages,” on page 132
 Section B.3, “DOM Messages,” on page 132
 Section B.4, “DRVCOM Messages,” on page 133
 Section B.5, “HES Messages,” on page 133
 Section B.6, “LWS Messages,” on page 134
 Section B.7, “NET Messages,” on page 135
 Section B.8, “NIX Messages (Linux/UNIX only),” on page 135
 Section B.9, “OAP Messages,” on page 137
 Section B.10, “RDXML Messages,” on page 138

B.1 CFG Messages
Messages beginning with CFG are issued by configuration file processing.

CFG001E Could not open configuration file filename.

Explanation: Could not open the configuration file.

Possible Cause: The file does not exist.

Possible Cause: You don’t have permission to read the file.

Action: Ensure that the configuration file exists at the correct location and that you have
file system rights to read it.

CFG002E Error parsing configuration file line:

Explanation: The line is not formatted as a valid configuration statement and cannot be
parsed.

Possible Cause: The configuration file contains invalid or incorrect statements.

Action: Correct the line in the configuration file.
System and Error Messages 131

CFG003W Configuration file line was ignored. No matching statement name
found: <configline>.

Explanation: This line is formatted as a valid configuration file statement, but the statement is
not recognized. The line is ignored.

Possible Cause: The statement is incorrectly typed or the statement name is used only in a newer
version of the software.

Action: Correct the statement.

CFG004E Error parsing configuration file line. No statement name was found:
<configLine>.

Explanation: Could not find a statement name on the configuration line.

Action: Correct the line in the configuration file to supply the required statement.

CFG005E A required statement statement_id is missing from the configuration
file.

Explanation: The statement_id statement was not specified in the configuration file, but is
required for the application to start.

Possible Cause: The configuration file is missing required statements.

Action: Add the required statement to the configuration file.

B.2 CHGLOG Messages
Messages beginning with CHGLOG are issued by change log processing.

CHGLOG000I nameversion Copyright 2005 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.

Action: No action is required.

B.3 DOM Messages
Messages beginning with DOM are issued by driver components as they communicate among
themselves.

DOM0001W XML parser error encountered: errorString.

Explanation: An error was detected while parsing an XML document.

Possible Cause: The XML document was incomplete, or it was not a properly constructed XML
document.
132 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Action: See the error string for additional details about the error. Some errors, such as no
element found, can occur during normal operation and indicate that an empty
XML document was received.

B.4 DRVCOM Messages
Messages beginning with DRVCOM are issued by the include/exclude system.

DRVCOM000I nameversion Copyright 2005 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.

Action: No action is required.

DRVCOM001W Invalid include/exclude CLASS statement.

Explanation: The include/exclude configuration file contains an invalid CLASS statement.

Action: Correct the include/exclude configuration file with proper syntax.

DRVCOM002D An include/exclude Rule was added for class: class.

Explanation: The include/exclude configuration supplied a rule for the specified class.

Action: None.

DRVCOM003D An include/exclude Association Rule was added for association
association.

Explanation: The include/exclude configuration supplied an association rule for the specified
association.

Action: None.

B.5 HES Messages
Messages beginning with HES are issued by driver components as they use HTTP to communicate.

HES001E Unable to initialize the HTTP client.

Explanation: Communications in the client could not be initialized.

Possible Cause: Memory is exhausted.

Action: Increase the amount of memory available to the process.

HES002I Connecting to host host_name on port port_number.

Explanation: The client is connecting to the specified server.

Action: None.
System and Error Messages 133

HES003W SSL communications have an incorrect certificate. rc = rc.

Explanation: The security certificate for SSL services could not be verified.

Possible Cause: The certificate files might be missing or invalid.

Action: Obtain a new certificate.

B.6 LWS Messages
Messages beginning with LWS are issued by the integrated HTTP server.

LWS0001I Server has been initialized.

Explanation: The server has successfully completed its initialization phase.

Action: None. Informational only.

LWS0002I All services are now active.

Explanation: All of the services offered by the server are now active and ready for work.

Action: None. Informational only.

LWS0003I Server shut down successfully.

Explanation: The server processing completed normally. The server ends with a return code of
0.

Action: No action is required.

LWS0004W Server shut down with warnings.

Explanation: The server processing completed normally with at least one warning. The server
ends with a return code of 4.

Action: See the log for additional messages that describe the warning conditions.

LWS0005E Server shut down with errors.

Explanation: The server processing ended with one or more errors. The server ends with a
return code of 8.

Action: See the log for additional messages that describe the error conditions.

LWS0006I Starting service.

Explanation: The server is starting the specified service.

Action: None. Informational only.

LWS0007E Failed to start service.

Explanation: The server attempted to start the specified service, but the service could not start.
The server terminates processing.
134 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Action: See the log for additional messages that describe the error condition.

LWS0008I Stopping all services.

Explanation: The server was requested to stop. All services are notified and will subsequently
end processing.

Action: None. Informational only.

B.7 NET Messages
Messages beginning with NET are issued by driver components during verification of SSL
certificates.

NET001W Certificate verification failed. Result is result.

Explanation: A valid security certificate could not be obtained from the connection client.
Diagnostic information is given by result.

Possible Cause: A security certificate has not been obtained for the component.

Possible Cause: The security certificate has expired.

Possible Cause: The component certificate directory has been corrupted.

Action: Respond as indicated by result. Obtain a new certificate if appropriate.

B.8 NIX Messages (Linux/UNIX only)
Messages beginning with NIX are issued by the driver shim.

NIX000I nameversion Copyright 2005 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.

Action: No action is required.

NIX001S An error occurred attempting to attach the shared memory segment to
an address space (errno=errno).

Explanation: The driver uses shared memory as the mechanism for providing information to
the scripts. An error occurred attempting to attach the shared memory to a
physical address for access.

Possible Cause: The calling process has no access permissions for the requested attach type.

Possible Cause: An invalid or non-page-aligned address was provided to the system routine.

Possible Cause: Memory could not be allocated for the descriptor or for the page tables.

Action: Restart the driver process and ensure that there are adequate memory resources.
Verify that the driver process is run as root and has permissions to read its
configuration files. Contact Novell® Support for additional instructions if
necessary.
System and Error Messages 135

NIX002S An error occurred while attempting to allocate a shared memory
segment (errno = errno).

Explanation: The driver uses shared memory as the mechanism for providing information to
the scripts. An error occurred attempting to allocate a shared memory segment.

Possible Cause: The memory size was too small or too large.

Possible Cause: The system shared memory settings might not have adequate values

Possible Cause: The memory segment could not be created because it already exists. This could
be caused by an abnormal termination of a previous driver process.

Possible Cause: All possible shared memory IDs have been taken.

Possible Cause: Allocating a segment of the requested size would cause the system to exceed the
system-wide limit on shared memory.

Possible Cause: No shared memory segment exists for the given key.

Possible Cause: The user or process does not have permission to access the shared memory
segment.

Possible Cause: No memory could be allocated for segment overhead..

Action: Restart the driver process and ensure that there is sufficient memory.

Action: Verify that the driver process is run as root and has permissions to read its
configuration files.

Action: Verify that the driver process is run as root and has permissions to read its
configuration files

Action: If there are other applications on the server that use shared memory, ensure that
they are running, healthy, and do not conflict with the requirements for the
driver.

Action: Contact Novell Support for additional instructions if necessary.

NIX003S An error occurred attempting to create a System V IPC key. The project
identifier pathname = pathname.

Explanation: The driver uses shared memory as the mechanism for providing information to
the scripts. An error occurred attempting to create the key used to specify the
shared memory segment.

Possible Cause: The project pathname is invalid or does not exist.

Action: Restart the driver process.

Action: Ensure that the file pathname is correct and that the process has adequate
permissions to read the path.

NIX004S An error occurred while writing data to shared memory (bytes = bytes,
allocationSize = allocationSize).

Explanation: The driver uses shared memory as the mechanism for providing information to
the shell scripts. An error occurred while writing data from the driver process
into the shared memory segment.

Possible Cause: Invalid memory resources or internal error.
136 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Action: Contact Novell Support.

NIX005S An error occurred attempting to set an environment variable.

Explanation: The driver uses environment variables for some of the communication between
the driver and other processes called from the scripts. An error occurred setting
an environment variable.

Possible Cause: There was not enough space to allocate the new environment.

Action: Restart the driver and ensure that there are adequate memory resources for the
driver process.

NIX006S An error occurred attempting to execute the script [script].

Explanation: The driver uses scripts to update the system for events from the Identity Vault.
An error occurred while attempting to execute one of these scripts.

Possible Cause: The script does not exist on the local system.

Possible Cause: A memory or environment allocation failure occurred.

Action: Restart the driver and ensure that the script exists on the local system.

NIX007S An error occurred attempting to terminate the script [script].

Explanation: The driver uses scripts to update the system for events from the Identity Vault.
An error occurred while attempting to terminate the script.

Possible Cause: The script does not exist on the local system.

Possible Cause: A memory or environment allocation failure occurred.

Action: Restart the driver and ensure that the script exists on the local system.

NIX008S The shared memory tool was unable to retrieve a key from the
environment.

Explanation: The shared memory tool uses an environment variable to retrieve the key used
to unlock the shared memory region and access driver shim data. The tool could
not obtain the key from the environment.

Possible Cause: The driver shim cannot set environment variables, or the environment has
become corrupt during event processing.

Action: Restart the driver shim process and clear any residual shared memory
segments.Action:

B.9 OAP Messages
Messages beginning with OAP are issued by driver components while communicating among
themselves.

OAP001E Error in SSL configuration. Verify system entropy.

Explanation: Entropy could not be obtained for SSL.
System and Error Messages 137

Possible Cause: A source of entropy is not configured for the system.

Action: Obtain and configure a source of entropy for the system.

OAP002E Error in SSL connect. Network address does not match certificate.

Explanation: The SSL client could not trust the SSL server it connected to, because the address
of the server did not match the DNS name or IP address that was found in the
certificate for the server

Possible Cause: The appropriate credentials are missing from the configuration.

Action: If you cannot resolve the error, collect diagnostic information and call Novell
Support.

OAP003E Error in SSL connect. Verify address and port.

Explanation: A TCP/IP connection could not be made.

Possible Cause: The server is not running.

Possible Cause: The configuration information does not specify the correct network address or
port number.

Action: Verify that the server is running properly.

OAP004E HTTP Error: cause.

Explanation: The username or password provided failed basic authentication.

Possible Cause: The username or password is incorrect.

Action: Verify that username is in full context (cn=user,ou=ctx,o=org or user.ctx.org) and
that the password was correctly typed.

OAP005E HTTP Error: Internal Server Error.

Explanation: The server experienced an internal error that prevents the request from being
processed.

Possible Cause: A secure LDAP server is not available.

Action: Ensure that the LDAP server is available.

Action: Ensure that the LDAP host and port are configured correctly.

B.10 RDXML Messages
Messages beginning with RDXML are issued by the embedded Remote Loader.

RDXML000I nameversion Copyright 2005 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.

Action: No action is required.
138 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

RDXML001I Client connection established.

Explanation: A client has connected to the driver. This can be the Metadirectory engine
connecting to process events to and from the driver, or a Web-based request to
view information or publish changes through the SOAP mechanism.

Action: No action required.

RDXML002I Request issued to start Driver Shim.

Explanation: The driver received a command to start the driver shim and begin processing
events.

Action: No action required.

RDXML003E An unrecognized command was issued. The driver shim is shutting
down.

Explanation: The driver received an unrecognized command from the Metadirectory engine.
The driver shim is shutting down to avoid further errors.

Possible Cause: Network error.

Possible Cause: Invalid data sent to the driver.

Possible Cause: The Metadirectory engine version might have been updated with new
commands that are unrecognized by this version of the driver.

Possible Cause: This message is logged when the driver shim process is shut down from the
connected system rather than from a Driver object request. The local system can
queue an invalid command to the driver shim to simulate a shutdown request
and terminate the running process.

Action: Ensure that the network connection is secured and working properly.

Action: Apply updates for the engine or driver if necessary.

Action: If the driver shim process was shut down from the local system, no action is
required.

RDXML004I Client Disconnected.

Explanation: A client has disconnected from the driver. This might be the Metadirectory
engine disconnecting after a driver shutdown request or a Web-based request
that has ended.

Action: No action required.

RDXML005W Unable to establish client connection.

Explanation: A client attempted to connect to the driver, but was disconnected prematurely.

Possible Cause: The client is not running in SSL mode.

Possible Cause: Mismatched SSL versions or mismatched certificate authorities.

Possible Cause: Problems initializing SSL libraries because of improperly configured system
entropy settings.
System and Error Messages 139

Action: Ensure that both the Metadirectory engine and the driver are running in the
same mode: either clear text mode or SSL mode.

Action: If you are using SSL, ensure that the driver and Metadirectory engine have
properly configured certificates, and that the driver system is configured
properly for entropy.

RDXML006E Error in Remote Loader Handshake.

Explanation: The Metadirectory engine attempted to connect to the driver, but the
authorization process failed. Authorization requires that both supply mutually
acceptable passwords. Passwords are configured at installation.

Possible Cause: The Remote Loader or Driver object passwords do not match.

Action: Set the Remote Loader and Driver object passwords to the same value for both
the driver and the driver shim. Use iManager to modify the driver properties.
Re-configure the driver shim on the connected system.

RDXML007I Driver Shim has successfully started and is ready to process events.

Explanation: The Metadirectory engine has requested the driver to start the shim for event
processing, and the driver shim has successfully started.

Action: No action required.

RDXML008W Unable to establish client connection from remoteName.

Explanation: A client attempted to connect to the driver, but was disconnected prematurely.

Possible Cause: The client is not running in SSL mode.

Possible Cause: Mismatched SSL versions or mismatched certificate authorities.

Possible Cause: Problems initializing SSL libraries because of improperly configured system
entropy settings.

Action: Ensure that both the Metadirectory engine and the driver are running in the
same mode: either clear text mode or SSL mode.

Action: If you are using SSL, ensure that the driver and Metadirectory engine have
properly configured certificates, and that the driver system is configured
properly for entropy.

RDXML009I Client connection established from remoteName.

Explanation: A client has connected to the driver. This can be the Metadirectory engine
connecting to process events to and from the driver, or a Web-based request to
view information or publish changes through the SOAP mechanism.

Action: No action required.
140 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

C CIDMLib Reference

The Identity Manager 4.0.2 driver for Scripting provides an API library for accessing and updating
data to and from the driver shim during event subscription and publication.

Major topics in this section include

 Section C.1, “UNIX Shell (idmlib.sh) Reference,” on page 141
 Section C.2, “Perl (IDMLib.pm) Reference,” on page 144
 Section C.3, “Python (idmlib.py) Reference,” on page 147
 Section C.4, “Microsoft VBScript (IDMLib.vbs) Reference,” on page 150
 Section C.5, “Windows PowerShell (IDMLib.ps1) Reference,” on page 156

C.1 UNIX Shell (idmlib.sh) Reference
The scripts are written for the Linux and UNIX Bourne Shell. They are located in the scripts folder
below the folder where the driver was installed (/opt/novell/usdrv/ by default).

Subscriber events are submitted to subscriber.sh, which then calls the script for the event. Modify the
shell script file corresponding to the event type: add.sh, modify.sh, modify-password.sh,
delete.sh, move.sh, rename.sh. Queries of the external system should be handled in query.sh.

The Publisher calls poll.sh periodically. The frequency of the poll is determined by the Polling
Interval driver parameter (60 seconds by default). Edit poll.sh to allow the driver to respond to
events in the external account management system.

The Publisher calls heartbeat.sh periodically to determine whether the external account
management system is responding correctly.

The built-in functions below are defined in idmlib.sh.

C.1.1 General Functions

 “IDMGETDRVVAR ParamName” on page 142
 “IDMTRACE Message” on page 142
 “EXEC Command” on page 142
 “STATUS Level Message” on page 142
 “STATUS_SUCCESS Message” on page 142
 “STATUS_WARNING Message” on page 142
 “STATUS_RETRY Message” on page 142
 “STATUS_ERROR Message” on page 142
 “STATUS_FATAL Message” on page 142
IDMLib Reference 141

IDMGETDRVVAR ParamName

Returns the string value for the Driver parameter specified by the string ParamName.

IDMTRACE Message

Appends the specified message to the user-defined trace file.

EXEC Command

Executes an external program using the specified command line, and returns its numerical exit code
on completion.

STATUS Level Message

Sends a status document with given level and message to return to the Identity Manager engine
when the script completes.

The status document as seen by the engine looks like the following:

 <status level="success">This is a message</status>

STATUS_SUCCESS Message

Sends a status document with a success level and message to return to the Identity Manager engine
when the script completes.

STATUS_WARNING Message

Sends a status document with a warning level and message to return to the Identity Manager engine
when the script completes.

STATUS_RETRY Message

Sends a status document with a retry level and message to return to the Identity Manager engine
when the script completes.

STATUS_ERROR Message

Sends a status document with a error level and message to return to the Identity Manager engine
when the script completes.

STATUS_FATAL Message

Sends a status document with a fatal level and message to return to the Identity Manager engine
when the script completes.
142 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

C.1.2 Subscriber Functions

 “IDMGETSUBVAR ParamName” on page 143
 “IDMGETVAR Name” on page 143
 “IDMSETVAR Name Value” on page 143

IDMGETSUBVAR ParamName

Returns the string value for the Subscriber parameter specified by the string ParamName.

IDMGETVAR Name

Returns a string value for the item specified by Name through standard output. If no values exist,
Empty is returned. If the value is multi-valued, each value will be separated by a newline character.

IDMSETVAR Name Value

Sets a single string value for the item specified by Name to be returned to the driver engine.

C.1.3 Publisher Functions

Only one function exists in this category.

IDMGETPUBVAR ParamName

Returns the string value for the Publisher parameter specified by the string ParamName.

C.1.4 Query Functions

 “IDMQUERY ClassName Association ReadAttrs” on page 143
 “IDMGETQVAR ParamName” on page 143

IDMQUERY ClassName Association ReadAttrs

Performs a query to the engine with the given ClassName, Association and ReadAttrs

IDMGETQVAR ParamName

Retrieves a string value for the query result item, specified by ParamName, through standard output.
If no values exist, Empty is returned. If the value is multi-valued, each value is separated by a
newline character.

C.1.5 Heartbeat Functions

 “HEARTBEAT_SUCCESS Message” on page 144
 “HEARTBEAT_ERROR Message” on page 144
 “HEARTBEAT_WARNING Message” on page 144
IDMLib Reference 143

HEARTBEAT_SUCCESS Message

Use these functions in the heartbeat.sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>

HEARTBEAT_ERROR Message

Use these functions in the heartbeat.sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>

HEARTBEAT_WARNING Message

Use these functions in the heartbeat.sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>

C.2 Perl (IDMLib.pm) Reference
These scripts are written for the Linux and UNIX Perl interpreter. They are located in the scripts
folder below the folder where the driver was installed (/opt/novell/usdrv/ by default).

Subscriber events are submitted to subscriber.pl, which then calls the script for the event. Modify
the Perl script file corresponding to the event type: add.pl, modify.pl, modify-password.pl,
delete.pl, move.pl, rename.pl. Queries of the external system should be handled in query.pl.

The Publisher calls poll.pl periodically. The frequency of the poll is determined by the Polling
Interval driver parameter (60 seconds by default). Edit poll.pl to allow the driver to respond to
events in the external account management system.

The Publisher calls heartbeat.pl periodically to determine whether the external account
management system is responding correctly.

The built-in functions below are defined in IDMLib.pm.

C.2.1 General Functions

 “idmgetvar($ParamName)” on page 145
 “idmtrace($Message)” on page 145
 “exec($Command)” on page 145
 “status($Level, $Message)” on page 145
 “status_success($Message)” on page 145
 “status_warning($Message)” on page 145
 “status_retry($Message)” on page 145
 “status_error($Message)” on page 145
 “status_fatal($Message)” on page 145
144 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

idmgetvar($ParamName)

Returns the string value for the Driver parameter specified by the string ParamName.

idmtrace($Message)

Appends the specified message to the user-defined trace file.

exec($Command)

Executes an external program using the specified command line, and returns its numerical exit code
on completion.

status($Level, $Message)

Sends a status document with given level and message to return to the Identity Manager engine
when the script completes.

The status document as seen by the engine looks like the following:

 <status level="success">This is a message</status>

status_success($Message)

Sends a status document with a success level and message to return to the Identity Manager engine
when the script completes.

status_warning($Message)

Sends a status document with a warning level and message to return to the Identity Manager engine
when the script completes.

status_retry($Message)

Sends a status document with a retry level and message to return to the Identity Manager engine
when the script completes.

status_error($Message)

Sends a status document with a error level and message to return to the Identity Manager engine
when the script completes.

status_fatal($Message)

Sends a status document with a fatal level and message to return to the Identity Manager engine
when the script completes.
IDMLib Reference 145

C.2.2 Subscriber Functions

 “idmgetsubvar($ParamName)” on page 146
 “idmgetvar($Name)” on page 146
 “idmsetvar($Name, $Value)” on page 146

idmgetsubvar($ParamName)

Returns the string value for the Subscriber parameter specified by the string ParamName.

idmgetvar($Name)

Returns a string value for the item specified by Name through standard output. If no values exist,
Empty is returned. If the value is multi-valued, each value is separated by a newline character.

idmsetvar($Name, $Value)

Sets a single string value for the item specified by Name to be returned to the driver engine.

C.2.3 Publisher Functions

 “idmgetpubvar($ParamName)” on page 146

idmgetpubvar($ParamName)

Returns the string value for the Publisher parameter specified by the string ParamName.

C.2.4 Query Functions

 “idmquery($ClassName, $Association, $ReadAttrs)” on page 146
 “idmgetqva($ParamName)” on page 146

idmquery($ClassName, $Association, $ReadAttrs)

Performs a query to the engine with the given ClassName, Association and ReadAttrs.

idmgetqva($ParamName)

Retrieves a string value for the query result item, specified by ParamName, through standard output.
If no values exist, Empty is returned. If the value is multi-valued, each value is separated by a
newline character.

C.2.5 Heartbeat Functions

 “heartbeat_success($Message)” on page 147
 “heartbeat_error($Message)” on page 147
 “heartbeat_warning($Message)” on page 147
146 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

heartbeat_success($Message)

Use these functions in the heartbeat.sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>

heartbeat_error($Message)

Use these functions in the heartbeat.sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>

heartbeat_warning($Message)

Use these functions in the heartbeat.sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>

C.3 Python (idmlib.py) Reference
These scripts are written for the Linux and UNIX Perl interpreter. They are located in the scripts
folder below the folder where the driver was installed (/opt/novell/usdrv/ by default).

Subscriber events are submitted to subscriber.py, which then calls the script for the event. Modify
the Perl script file corresponding to the event type: add.py, modify.py, modify-password.py,
delete.py, move.py, rename.py. Queries of the external system should be handled in query.py.

The Publisher calls poll.py periodically. The frequency of the poll is determined by the Polling
Interval driver parameter (60 seconds by default). Edit poll.py to allow the driver to respond to
events in the external account management system.

The Publisher calls heartbeat.py periodically to determine whether the external account
management system is responding correctly.

The built-in functions below are defined in idmLib.py.

C.3.1 General Functions

 “idmgetvar(VariableName)” on page 148
 “idmtrace(Message)” on page 148
 “exec(Command)” on page 148
 “status(Level, Message)” on page 148
 “status_success(Message)” on page 148
 “status_warning(Message)” on page 148
 “status_retry(Message)” on page 148
 “status_error(Message)” on page 148
 “status_fatal(Message)” on page 148
IDMLib Reference 147

idmgetvar(VariableName)

Returns the string value for the Driver parameter specified by the string ParamName.

idmtrace(Message)

Appends the specified message to the user-defined trace file.

exec(Command)

Executes an external program using the specified command line, and returns its numerical exit code
on completion.

status(Level, Message)

Sends a status document with given level and message to return to the Identity Manager engine
when the script completes.

status_success(Message)

Sends a status document with a success level and message to return to the Identity Manager engine
when the script completes.

status_warning(Message)

Sends a status document with a warning level and message to return to the Identity Manager engine
when the script completes.

status_retry(Message)

Sends a status document with a retry level and message to return to the Identity Manager engine
when the script completes.

status_error(Message)

Sends a status document with a error level and message to return to the Identity Manager engine
when the script completes.

status_fatal(Message)

Sends a status document with a fatal level and message to return to the Identity Manager engine
when the script completes.

C.3.2 Subscriber Functions

 “idmgetsubvar(VariableName)” on page 149
 “idmgetvar(Name)” on page 149
 “idmsetvar(Name, Value)” on page 149
148 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

idmgetsubvar(VariableName)

Returns the string value for the Subscriber parameter specified by the string VariableName.

idmgetvar(Name)

Returns a string value for the item specified by Name through standard output. If no values exist,
Empty is returned. If the value is multi-valued, each value is separated by a newline character.

idmsetvar(Name, Value)

Sets a single string value for the item specified by Name to be returned to the driver engine.

C.3.3 Publisher Functions

 “idmgetpubvar(VariableName)” on page 149

idmgetpubvar(VariableName)

Returns the string value for the Publisher parameter specified by the string VariableName.

C.3.4 Query Functions

 “idmquery(ClassName, Association, ReadAttrs)” on page 149
 “idmgetqva(ParamName)” on page 149

idmquery(ClassName, Association, ReadAttrs)

Performs a query to the engine with the given ClassName, Association and ReadAttrs.

idmgetqva(ParamName)

Retrieves a string value for the query result item, specified by ParamName, through standard output.
If no values exist, Empty is returned. If the value is multi-valued, each value is separated by a
newline character.

C.3.5 Heartbeat Functions

 “heartbeat_success(Message)” on page 149
 “heartbeat_error(Message)” on page 150
 “heartbeat_warning($Message)” on page 150

heartbeat_success(Message)

Use these functions in the heartbeat.py script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>
IDMLib Reference 149

heartbeat_error(Message)

Use these functions in the heartbeat.py script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>

heartbeat_warning($Message)

Use these functions in the heartbeat.py script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

 <status level="success" type="heartbeat">This is a heartbeat message</status>

C.4 Microsoft VBScript (IDMLib.vbs) Reference
The scripts are written using Microsoft VBScript. They are located in the scripts folder below the
folder where the driver was installed (C:\Program Files\Novell\WSDriver by default).

Subscriber events are submitted to Subscriber.wsf, which then calls the script for the event. Modify
the VBS file corresponding to the event type: Add.vbs, Modify.vbs, ModifyPassword.vbs,
Delete.vbs, Move.vbs, Rename.vbs. Queries of the external system should be handled in
Query.vbs.

The Publisher calls Poll.wsf periodically. The frequency of the poll is determined by the Polling
Interval driver parameter (60 seconds by default). Edit Poll.wsf to allow the driver to respond to
events in the external account management system.

The Publisher calls Heartbeat.wsf periodically to determine whether the external account
management system is responding correctly.

Topics discussing the built-in functions in IDMLib.vbs are categorized as follows:

 Section C.4.1, “General Functions,” on page 150
 Section C.4.2, “Subscriber Functions,” on page 152
 Section C.4.3, “Publisher Functions,” on page 153
 Section C.4.4, “Query Functions,” on page 153
 Section C.4.5, “Heartbeat Functions,” on page 155

C.4.1 General Functions

 “Function IDMGetDriverParam(ParamName)” on page 151
 “Sub IDMTrace Message” on page 151
 “Function IDMExecute(Command)” on page 151
 “Function IDMExecuteIO(Command, Input)” on page 151
 “Sub IDMStatus(Level, Message)” on page 151
 “Sub IDMStatusSuccess(Message)” on page 151
 “Sub IDMStatusWarning(Message)” on page 151
 “Sub IDMStatusRetry(Message)” on page 151
150 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

 “Sub IDMStatusError(Message)” on page 151
 “Sub IDMStatusFatal(Message)” on page 151

Function IDMGetDriverParam(ParamName)

Returns the string value for the Driver parameter specified by the string ParamName.

Sub IDMTrace Message

Appends the specified message to the user-defined trace file.

Function IDMExecute(Command)

Executes an external program using the specified command line, and returns its numerical exit code
on completion.

Function IDMExecuteIO(Command, Input)

Executes an external program using the specified command line, submits the strings from array
Input on standard input, and returns output from standard output and standard error as an array.
You may specify Empty for the Input parameter. The function returns when the program completes.
The first element of the returned array is the program exit code. Subsequent elements (if any) are
strings, one for each line that was output to standard output and standard error.

Sub IDMStatus(Level, Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusSuccess(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusWarning(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusRetry(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusError(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusFatal(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.
IDMLib Reference 151

C.4.2 Subscriber Functions

 “Function IDMGetSubscriberParam(ParamName)” on page 152
 “Sub IDMSetCommand(Command)” on page 152
 “Function IDMGetEventValueCount(Name)” on page 152
 “Function IDMGetEventValues(Name)” on page 152
 “Function IDMGetEventValue(Name)” on page 152
 “Sub IDMWriteValue(Name, Value)” on page 152
 “Sub IDMWriteValues(Name, Values)” on page 152
 “Function IDMSubGetNamedPassword(Name)” on page 153

Function IDMGetSubscriberParam(ParamName)

Returns the string value for the Subscriber parameter specified by the string ParamName.

Sub IDMSetCommand(Command)

Sets the command that the Subscriber return to the Identity Manager engine. This function must be
called before using IDMWriteValue functions. If only a status needs to be returned, use one of the
IDMStatus functions (see above).

Function IDMGetEventValueCount(Name)

Returns the number of values for the item specified by Name. (Items include event information and
attribute changes.)

Function IDMGetEventValues(Name)

Returns an array of string values for the item specified by Name. If no values exist, Empty is
returned.

Function IDMGetEventValue(Name)

Returns the string value for the item specified by Name. If multiple values exist for the item, it
returns the first value. If no values exist, Empty is returned.

Sub IDMWriteValue(Name, Value)

Sets a single string value for the item specified by Name to be returned to the driver engine when the
script completes. You must call IDMSetCommand or one of the IDMStatus functions before calling
this function.

Sub IDMWriteValues(Name, Values)

Sets an array of string values for the item specified by Name to be returned to the driver engine when
the script completes. You must call IDMSetCommand or one of the IDMStatus functions before
calling this function.
152 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Function IDMSubGetNamedPassword(Name)

Returns a named password specifed by Name from the Identity Manager engine. The value Empty is
returned if no such password exists.

C.4.3 Publisher Functions

 “Function IDMGetPublisherParam(ParamName)” on page 153
 “Sub IDMPublishInit(Command)” on page 153
 “Sub IDMPublishValue(Name, Value)” on page 153
 “Sub IDMPublishValues(Name, Values)” on page 153
 “Function IDMPublish” on page 153
 “Function IDMPubGetNamedPassword(Name)” on page 153

Function IDMGetPublisherParam(ParamName)

Returns the string value for the Publisher parameter specified by the string ParamName.

Sub IDMPublishInit(Command)

Sets the Publisher command specified by Command to return to the driver engine when IDMPublish
is called.

Sub IDMPublishValue(Name, Value)

Sets a single string value for the item specified by Name to be returned to the driver engine when
IDMPublish is called.

Sub IDMPublishValues(Name, Values)

Sets an array of string values for the item specified by Name to be returned to the driver engine when
IDMPublish is called.

Function IDMPublish

Submit the command and item values specified above to the driver engine for Publication to the
identity vault.

Function IDMPubGetNamedPassword(Name)

Returns a named password specified by Name from the Identity Manager engine. The value Empty is
returned if no such password exists.

C.4.4 Query Functions

 “Sub IDMQueryInit” on page 154
 “Sub IDMQuerySetAssociation(Association)” on page 154
 “Sub IDMQuerySetSearchRoot(SearchRoot)” on page 154
IDMLib Reference 153

 “Sub IDMQueryAddSearchAttr(Name, Value)” on page 154
 “Sub IDMQueryAddReadAttr(Name)” on page 154
 “Sub IDMQuerySetReadParent(ReadParent)” on page 154
 “Function IDMQuery” on page 155
 “Function IDMGetQueryInstanceAssociation” on page 155
 “Function IDMGetQueryInstanceDN” on page 155
 “Function IDMGetQueryInstanceClass” on page 155
 “Function IDMGetQueryInstanceParentAssociation” on page 155
 “Function IDMGetQueryInstanceParentDN” on page 155
 “Function IDMGetQueryInstanceAttrNames” on page 155
 “Function IDMGetQueryInstanceAttrCount” on page 155
 “Function IDMGetQueryInstanceAttrValues(AttrName)” on page 155
 “Function IDMGetQueryInstanceAttrValue(AttrName)” on page 155

Sub IDMQueryInit

Initializes a query to be submitted to the identity vault with the IDMQuery call. NOTE: Currently
only queries that query a single object are supported.

Sub IDMQuerySetAssociation(Association)

Specifies the association of the identity vault object to query.

Sub IDMQuerySetSearchRoot(SearchRoot)

Specifies the DN of the identity vault object to query. Either the object’s association or DN must be
specified. If both are specified, the association value is used by the Identity Manager engine.

Sub IDMQueryAddSearchAttr(Name, Value)

Specifies a search condition to be used for the query, of the form Name=Value. Name specifies an
attribute, and Value specifies a value it must match. The query will return only objects matching all
specified conditions.

Sub IDMQueryAddReadAttr(Name)

Specifies an attribute name whose values should be returned by the query. By default, all attributes
are returned.

Sub IDMQuerySetReadParent(ReadParent)

Specifies whether the association and DN of the parent of the queried object should be returned
(ReadParent is boolean). The default is False.
154 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

Function IDMQuery

Executes the query with the parameters specified by IDMQuerySetXXX calls. The function returns
True if an object (called an instance) is returned.

Function IDMGetQueryInstanceAssociation

Returns the association for the returned instance.

Function IDMGetQueryInstanceDN

Returns the DN for the returned instance. The DN is in slash format, such as \ACME\Users\Bob.

Function IDMGetQueryInstanceClass

Returns the class name for the returned instance.

Function IDMGetQueryInstanceParentAssociation

Returns the association for instance’s parent object, if the ReadParent flag was specified.

Function IDMGetQueryInstanceParentDN

Returns the DN for instance’s parent object, if the ReadParent flag was specified.

Function IDMGetQueryInstanceAttrNames

Returns an array containing the names of the attributes retrieved for the instance. Returns Empty if
no attributes were retrieved.

Function IDMGetQueryInstanceAttrCount

Returns the number of attributes retrieved for the instance.

Function IDMGetQueryInstanceAttrValues(AttrName)

Returns an array of values for the attribute with the specified AttrName. Returns Empty if no values
are available.

Function IDMGetQueryInstanceAttrValue(AttrName)

Returns a string value for the attribute with the specified AttrName. If multiple values are available
for the attribute, the first one is returned. If no values are available, Empty is returned.

C.4.5 Heartbeat Functions

 “Sub IDMHeartbeatSuccess(Message)” on page 156
 “Sub IDMHeartbeatError(Message)” on page 156
 “Sub IDMHeartbeatWarning(Message)” on page 156
IDMLib Reference 155

Sub IDMHeartbeatSuccess(Message)

Use these functions in the heartbeat.wsf script to indicate the status of the external application.

Sub IDMHeartbeatError(Message)

Use these functions in the heartbeat.wsf script to indicate the status of the external application.

Sub IDMHeartbeatWarning(Message)

Use these functions in the heartbeat.wsf script to indicate the status of the external application.

C.5 Windows PowerShell (IDMLib.ps1) Reference
The scripts are written using Windows PowerShell. They are located in the scripts\powershell
folder below the folder where the driver was installed (C:\Program Files\Novell\WSDriver by
default).

Subscriber events are submitted to Subscriber.ps1, which then calls the script for the event. Modify
the ps1 file corresponding to the event type: Add.ps1, Modify.ps1, ModifyPassword.ps1,
Delete.ps1, Move.ps1, Rename.ps1. Queries of the external system should be handled in
Query.ps1.

The Publisher calls Poll.ps1 periodically. The frequency of the poll is determined by the Polling
Interval driver parameter (60 seconds by default). Edit Poll.ps1 to allow the driver to respond to
events in the external account management system.

The Publisher calls Heartbeat.ps1 periodically to determine whether the external account
management system is responding correctly.

Topics discussing the built-in functions in IDMLib.ps1 are categorized as follows:

 Section C.5.1, “General Functions,” on page 156
 Section C.5.2, “Subscriber Functions,” on page 157
 Section C.5.3, “Publisher Functions,” on page 158
 Section C.5.4, “Query Functions,” on page 159
 Section C.5.5, “Heartbeat Functions,” on page 161

C.5.1 General Functions

 “function idm_getdriverparam($paramname)” on page 157
 “function idm_trace($message)” on page 157
 “function idm_status($level, $message)” on page 157
 “function idm_statussuccess($message)” on page 157
 “function idm_statuswarning($message)” on page 157
 “function idm_statusretry($message)” on page 157
 “function idm_statuserror($message)” on page 157
 “function idm_statusfatal($message)” on page 157
156 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

function idm_getdriverparam($paramname)

Returns the string value for the Driver parameter specified by the string $paramname.

function idm_trace($message)

Appends the specified message to the user-defined trace file.

function idm_status($level, $message)

Set the status level and message to return to the Identity Manager engine when the script completes.

function idm_statussuccess($message)

Set the status success message to return to the Identity Manager engine when the script completes.

function idm_statuswarning($message)

Set the status warning message to return to the Identity Manager engine when the script completes.

function idm_statusretry($message)

Set the status retry message to return to the Identity Manager engine when the script completes.

function idm_statuserror($message)

Set the status error message to return to the Identity Manager engine when the script completes.

function idm_statusfatal($message)

Set the status fatal message to return to the Identity Manager engine when the script completes.

C.5.2 Subscriber Functions

 “function idm_getsubscriberparam($paramname)” on page 157
 “function idm_setcommand($command)” on page 158
 “function idm_geteventvalues($name)” on page 158
 “function idm_geteventvalue($name)” on page 158
 “function idm_geteventvaluenames” on page 158
 “function idm_geteventattrnames” on page 158
 “function idm_writevalues($name, $values)” on page 158
 “function idm_writevalue($name, $value)” on page 158
 “function idm_subgetnamedpassword($name)” on page 158

function idm_getsubscriberparam($paramname)

Returns the string value for the Subscriber parameter specified by the string $paramname.
IDMLib Reference 157

function idm_setcommand($command)

Sets the command that the Subscriber returns to the Identity Manager engine. This function must be
called before using idm_writevalue functions. If only a status needs to be returned, use one of the
idm_status functions (see above).

function idm_geteventvalues($name)

Returns an array of string values for the item specified by $name. If no values exist, $null is returned.

function idm_geteventvalue($name)

Returns the string value for the item specified by $name. If no values exist, $null is returned.

function idm_geteventvaluenames

Returns an array containing each value name for the event. This function can be used to iterate over
every value.

function idm_geteventattrnames

Returns an array containing each attribute item for the event. This includes ADD_attrname,
REMOVE_attrname and PASSWORD values.

function idm_writevalues($name, $values)

Sets an array of string values for the item specified by $name to be returned to the driver engine
when the script completes. You must call idm_setcommand or one of the idm_status functions before
calling this function.

function idm_writevalue($name, $value)

Sets a single string value for the item specified by $name to be returned to the driver engine when the
script completes. You must call idm_setcommand or one of the idm_status functions before calling
this function.

function idm_subgetnamedpassword($name)

Returns a named password specifed by $name from the Identity Manager engine. The value $null is
returned if no such password exists.

C.5.3 Publisher Functions

 “function idm_getpublisherparam($paramname)” on page 159
 “function idm_publishinit($command)” on page 159
 “function idmpublishvalues($name, $values)” on page 159
 “function idm_publishvalue($name, $value)” on page 159
 “function idm_publish” on page 159
 “function idm_pubgetnamedpassword($name)” on page 159
158 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

function idm_getpublisherparam($paramname)

Returns the string value for the Publisher parameter specified by the string $paramname.

function idm_publishinit($command)

Sets the Publisher command specified by $command to return to the driver engine when
idm_publish is called.

function idmpublishvalues($name, $values)

Sets an array of string values for the item specified by $name to be returned to the driver engine
when idm_publish is called.

function idm_publishvalue($name, $value)

Sets a single string values for the item specified by $name to be returned to the driver engine when
idm_publish is called.

function idm_publish

Submit the command and item values specified above to the driver engine for Publication to the
identity vault.

function idm_pubgetnamedpassword($name)

Returns a named password specified by $name from the Identity Manager engine. The value $null is
returned if no such password exists.

C.5.4 Query Functions

 “function idm_queryinit” on page 160
 “function idm_querysetassociation($association)” on page 160
 “function idm_querysetsearchroot($searchroot)” on page 160
 “function idm_queryaddsearchattr($name, $value)” on page 160
 “function idm_queryaddreadattr($name)” on page 160
 “function idm_querysetreadparent($readparent)” on page 160
 “function idm_doquery” on page 160
 “function idm_getqueryinstanceassociation” on page 160
 “function idm_getqueryinstancedn” on page 160
 “function idm_getqueryinstanceclass” on page 160
 “function idm_getqueryinstanceparentassociation” on page 161
 “function idm_getqueryinstanceparentDN” on page 161
 “function idm_getqueryinstanceattrnames” on page 161
 “function idm_getqueryinstanceattrcount” on page 161
IDMLib Reference 159

 “function idm_getqueryinstanceattrvalues($attrname)” on page 161
 “function idm_getqueryinstanceattrvalue($attrname)” on page 161

function idm_queryinit

Initializes a query to be submitted to the identity vault with the idm_doquery call. NOTE: Currently
only queries that query a single object are supported.

function idm_querysetassociation($association)

Specifies the association of the identity vault object to query.

function idm_querysetsearchroot($searchroot)

Specifies the DN of the identity vault object to query. Either the object’s association or DN must be
specified. If both are specified, the association value is used by the Identity Manager engine.

function idm_queryaddsearchattr($name, $value)

Specifies a search condition to be used for the query, of the form $name=$value. $name specifies an
attribute, and $value specifies a value it must match. The query will return only objects matching all
specified conditions.

function idm_queryaddreadattr($name)

Specifies an attribute name whose values should be returned by the query. By default, all attributes
are returned.

function idm_querysetreadparent($readparent)

Specifies whether the association and DN of the parent of the queried object should be returned
($readparent is boolean). The default is $False.

function idm_doquery

Executes the query with the parameters specified by idm_querysetXXX calls. The function returns
$True if an object (called an instance) is returned.

function idm_getqueryinstanceassociation

Returns the association for the returned instance.

function idm_getqueryinstancedn

Returns the DN for the returned instance. The DN is in slash format, for example: \ACME\Users\Bob.

function idm_getqueryinstanceclass

Returns the class name for the returned instance.
160 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

function idm_getqueryinstanceparentassociation

Returns the association for instance’s parent object, if the $readparent flag was specified.

function idm_getqueryinstanceparentDN

Returns the DN for instance’s parent object, if the $readparent flag was specified.

function idm_getqueryinstanceattrnames

Returns an array containing the names of the attributes retrieved for the instance. Returns $null if no
attributes were retrieved.

function idm_getqueryinstanceattrcount

Returns the number of attributes retrieved for the instance.

function idm_getqueryinstanceattrvalues($attrname)

Returns an array of values for the attribute with the specified $attrname. Returns $null if no values
are available.

function idm_getqueryinstanceattrvalue($attrname)

Returns a string value for the attribute with the specified $attrname. If multiple values are available
for the attribute, the first one is returned. If no values are available, $null is returned.

C.5.5 Heartbeat Functions

 “function idmheartbeatsuccess($message)” on page 161
 “function idmheartbeaterror($message)” on page 161
 “function idmheartbeatwarning($message)” on page 161

function idmheartbeatsuccess($message)

Use this function in the heartbeat.ps1 script to indicate a success status of the external application.

function idmheartbeaterror($message)

Use this function in the heartbeat.ps1 script to indicate an error status of the external application.

function idmheartbeatwarning($message)

Use this function in the heartbeat.ps1 script to indicate a warning status of the external application.
IDMLib Reference 161

162 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

D DTechnical Details

Topics in this section include

 Section D.1, “Using the usdrv-config Command (Linux/UNIX only),” on page 163
 Section D.2, “Driver Shim Command Line Options,” on page 164
 Section D.3, “Publisher Change Log Tool,” on page 165
 Section D.4, “Files and Directories Modified by Installing the Driver Shim,” on page 168

D.1 Using the usdrv-config Command (Linux/UNIX only)
You can use /usr/sbin/usdrv-config to change the driver shim configuration. When you run this
command, you are prompted for the function to perform.

> usdrv-config
Which configuration do you want to perform?
1) Set the Remote Loader and Driver object passwords
2) Configure the driver for Secure Sockets Layer (SSL)
Select one configuration option [q/?]:

Enter the number of the function you want to configure, then respond to the prompts.

D.1.1 Setting the Remote Loader and Driver Object Passwords

The usdrv-config command prompts you to enter and confirm the Remote Loader password and
the Driver object password.

Enter Remote Loader password:
Confirm Remote Loader password:
Enter Driver object password:
Confirm Driver object password:

The Remote Loader password is used by the Metadirectory engine to authenticate itself to the driver
shim (embedded Remote Loader). The Driver object password is used by the driver shim to
authenticate itself to the Metadirectory engine.

The Remote Loader and Driver object passwords set by usdrv-config are stored on the connected
system. The Remote Loader and Driver object passwords set for the driver using iManager are stored
in the Identity Vault. Each password on the connected system must exactly match its counterpart in
the Identity vault.

To change the passwords after driver installation:

1 In iManager, navigate to the Driver Overview for the driver.
2 Click the driver icon.
3 Specify the Driver object password.
4 Specify the Remote Loader password.
Technical Details 163

The Remote Loader password is below the Authentication heading.
5 Click Apply.
6 Restart the driver.

D.1.2 Configuring the Driver for SSL

The usdrv-config command prompts you to enter the LDAP server host address and port, then
displays the Certificate Authority for that server and asks you if you accept it.

You are about to connect to the eDirectory LDAP server to retrieve
the eDirectory Tree Trusted Root public certificate.

Enter the LDAP Server Host Address [localhost]: sr.digitalairlines.com
Enter the LDAP Server Port [636]:

Certificate Authority:
 Subject: ou=Organizational CA,o=TREENAME
 Not Before: 20070321144845Z
 Not After: 20170321144845Z
Do you accept the Certificate Authority? (Y/N) y

Enter the host name or IP address and TCP port number of an LDAP server for your Identity Vault.
The LDAP server must be configured for SSL, and it must be listening on the SSL port. The default
SSL port is 636.

The driver shim connects to the specified server and displays information about the Certificate
Authority. If you accept the Certificate Authority, the driver shim saves it to the local file system.

If you do not have LDAP configured for SSL, you can use a manual process to configure the driver for
SSL. For details, see Section A.2.3, "Driver Certificate Setup Failure."

D.2 Driver Shim Command Line Options
The following options can be specified on the driver shim (usdrv on Linux and UNIX, wsdriver on
Windows) command line. You can also specify driver shim command line options as driver shim
configuration file statements. For details about the driver shim configuration file, see Section 4.2,
“The Driver Shim Configuration File,” on page 34.

D.2.1 Options Used to Set Up Driver Shim SSL Certificates

The following command line options are used to set up the driver shim SSL certificates:

Table D-1 Driver Shim Command Line Options for Setting Up SSL Certificates

Option (Short and Long Forms) Description

-s

-secure

Secures the driver by creating SSL certificates, then
exits.

-p

-password

Specifies the Remote Loader password
164 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

D.2.2 Other Options

Table D-2 Other Driver Shim Command Line Options

D.3 Publisher Change Log Tool
The publisher channel may submit events to be published, using the change log tool usclh (on UNIX)
or idmevent.exe (on Windows). These tools will create an event, which will be picked up by the
driver shim on a polling interval and published to the Identity Manager engine, where it may be
processed by Policy. The change log tool may be invoked at anytime on the application system. One
commonly-used technique is to call the changelog tool from the polling script, which is executed on
the polling interval as well. In such a scenario, the polling script can determine what changed and
submit the changes to the change log to be processed immediately after the polling script terminates.
However, if you wish to invoke the change log tool from another mechanism, events will be queued
in the changelog and published on intervals when necessary.

The syntax for the change log tool on UNIX, usclh, is as follows:

Option (Short and Long Forms) Description

-c <congFile>

-config <configFile>

Instructs the driver shim to read options
from the specified configuration file.
Options are read from conf/usdrv.conf
(Linux/UNIX) or conf\wsdrv.conf
(Windows) by default.

-sp [remoteLoaderPassword
driverObjectPassword]

-setpassword [remoteLoaderPassword
driverObjectPassword]

Sets the Remote Loader and driver object
passwords to the passwords specified on
the command line, then stops the driver
shim. If the passwords are omitted, the
driver shim prompts for the passwords.

-installService Creates a Windows service for the driver
shim called Novell Identity Manager
Windows Script Driver (Windows only).

-removeService Removes the Windows service Novell
Identity Manager Windows Script Driver
(Windows only).

-?

-help

Displays the command line options, then
exits.

-v

-version

Displays the driver shim version and build
date, then exits.
Technical Details 165

usclh -t <type>
 [-c class]
 [-e event-id]
 [-a association]
 [-s src-dn]
 [-o old-src-dn]
 [-p password]
 [-w old-password]
 [-n new-name]
 [-r]
 [-y old-association]
 [-z new-association]
 [-l status-level]
 [-m status-message]
 [-1 | -2]
 [-?]

Where each option is described in the following table:

Table D-3 Options

Name Description

type The command type, which may be one of the following: add, delete,
modify, modify-password, rename, modify-association,
status, xds. When using the xds type, a raw XML document may be
passed to the tool to be published as is.

event-id The event-id of the document to be published. Typically, this is a
timestamp or a counter. If none is specified, a default timestamp will be
used.

association The association string value for which the event being published
describes.

src-dn The source distinguished name of the object being published, if this
object resides in a hierarchical directory structure.

old-src-dn If the published event is a move or rename, the old-src-dn specifies the
old distinguished name before the move or rename event.

password The new password of the object being published. This is only valid for
add or modify-password events.

old-password The old password of the object being published. This is only valid for
modify-password events.

new-name The new name of an object being published during a rename event.

-r If specified, instructs the event to remove the old name during a rename
event.

old-association Specifies the name of the old association value, during a modify-
association event.

new-association Specifies the name of the new association value, during a modify-
association event.

status-level Specifies the status level for a status message. Valid levels are:
success, error, warning, retry, fatal.

status-message Specifies the text messages that should be included for a status
document.
166 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

When invoked, the changelog utility waits for input on standard input until an EOF (end of file)
character is received. If entered on the command-line, you can terminate it with the Ctl-d meta
character. Additional name/value pairs can then be passed to this tool to supply additional event
information such as attribute values being added or removed.

When invoked from a script, you can use a “here-is” document format to pass standard input to the
changelog tool. When passing input to a command-line utility through standard input, you have the
advantage that the information is protected from the environment, adding security to your publisher.
When using command-line arguments, these options will appear in cleartext to the outside
environment with tools such as “ps”.

Examples from a script:

usclh -t add -c User -a bob <<EOF
ADD_CN=bob
ADD_Login Disabled=true
EOF

usclh -t modify -c User -a bob <<EOF
ADD_CN=bob
ADD_Login Disabled=true
EOF

usclh -t modify-password -c User -a bob <<EOF
OLD_PASSWORD=secret
PASSWORD=newsecret
EOF

usclh -t rename -c User -a bob -n bob2 -r <<EOF

EOF

Examples from a command line:

-1 Specifies that the event should be put on hold (do not publish), until a
release is issued.

-2 Specifies that all events on hold should be released (publishable).

-? This help menu.

Name Description
Technical Details 167

usclh -t add -c User -a bob
ADD_CN=bob
ADD_Login Disabled=true
^d

usclh -t delete -c User -a bob
^d

usclh -t modify-password -c User -a bob -w secret -p newsecret
^d

./usclh -t xds
<nds dtdversion="1.1" ndsversion="8.6">
<input>
<modify class-name="User" event-id="12345">
 <association>bob</association>
 <modify-attr attr-name="MyAttr">
 <remove-all-values/>
 <add-value>
 <value>some new value</value>
 </add-value>
 </modify-attr>
</modify>
</input>
</nds>
^d

D.4 Files and Directories Modified by Installing the Driver Shim
 Section D.4.1, “Driver Shim Directory,” on page 168
 Section D.4.2, “/usr/sbin Files (Linux/UNIX only),” on page 168
 Section D.4.3, “init.d Files (Linux/UNIX only),” on page 169
 Section D.4.4, “Man Pages (Linux/UNIX only),” on page 169
 Section D.4.5, “Driver Shim Configuration File,” on page 169
 Section D.4.6, “Windows Support Files (Windows only),” on page 169

D.4.1 Driver Shim Directory

When you install the driver, the /opt/novell/usdrv or C:\Program Files\Novell\WSDriver
directory is created and populated with driver-related files and subdirectories.

D.4.2 /usr/sbin Files (Linux/UNIX only)

The following commands are added to /usr/sbin:

Table D-4 Driver Commands Placed in /usr/sbin

Command Function

usdrv-uninstall Uninstalls the Scripting driver

usdrv-config Updates the configuration
168 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

D.4.3 init.d Files (Linux/UNIX only)

Commands to start, stop, and display the status of the driver are added to the appropriate file for the
connected system operating system.

Table D-5 Commands for Starting, Stopping, and Displaying the Status of the Driver Shim

D.4.4 Man Pages (Linux/UNIX only)

The installation process adds man pages for the driver shim, change log update command, and
shared memory tool to /usr/man.

D.4.5 Driver Shim Configuration File

The installation program places a default driver shim configuration file at /etc/usdrv.conf on
Linux and UNIX. On Windows, this file is wsdrv.conf in the conf directory in the installation
directory.

D.4.6 Windows Support Files (Windows only)

Support files such as DLLs for the Visual C++ runtime are installed on Windows systems in the
WinSxS directory (usually C:\Windows\WinSxS). If the driver shim is uninstalled, these files are
removed.

Operating System Command

AIX /etc/rc.d/init.d/usdrvd

HP-UX /sbin/init.d/usdrvd

Linux /etc/init.d/usdrvd

Solaris /etc/init.d/usdrvd
Technical Details 169

170 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

E EDocumentation Updates

This section describes updates to this document since its original release date of October 15, 2010.

E.1 April 29, 2014

Location Update

Chapter 1, “Overview,” on
page 9

Listed changes and enhancements to the 4.0.2b release.

“Microsoft Windows” on
page 16

Updated supported versions of Windows.

“Windows PowerShell” on
page 17

Updated information about PowerShell version support.

Section 2.2.4, “Microsoft
.NET Framework,” on
page 17

Added section on planning for Microsoft .NET Framework

Section 2.2.5, “Other
Software,” on page 18

Changed section number from 2.2.4 to 2.2.5

Section 3.2.4, “Running the
Script Service for
PowerShell (optional),” on
page 24

Changed point 1 to reference versions of Windows prior
to Windows 8 or Windows Server 2012

Section 5.9, “Windows
PowerShell Developer
Guide,” on page 99

Changed name from “Microsoft PowerShell Developer
Guide”
Documentation Updates 171

172 Identity Manager 4.0.2 Driver for Scripting Implementation Guide

	Identity Manager 4.0.2 Driver for Scripting Implementation Guide
	About This Guide
	1 Overview
	1.1 Driver Architecture
	1.1.1 Publisher Channel
	1.1.2 Subscriber Channel
	1.1.3 Scriptable Framework
	1.1.4 Schema File
	1.1.5 Include/Exclude File
	1.1.6 Loopback State Files

	1.2 Configuration Overview
	1.2.1 Data Flow
	1.2.2 Policies

	2 Planning for the Scripting Driver
	2.1 Prerequisites for Linux and UNIX Scripting
	2.1.1 Identity Vault Server Requirements
	2.1.2 Supported Operating Systems
	2.1.3 Other Software

	2.2 Prerequisites for Windows Scripting
	2.2.1 Identity Vault Server
	2.2.2 Microsoft Windows
	2.2.3 Windows PowerShell
	2.2.4 Microsoft .NET Framework
	2.2.5 Other Software

	2.3 Establishing a Security-Equivalent User

	3 Installing the Scripting Driver
	3.1 Installing the Linux and UNIX Scripting Driver
	3.1.1 Installing the Linux and UNIX Scripting Driver Shim
	3.1.2 Creating the Driver in Novell eDirectory using iManager
	3.1.3 Running the Driver

	3.2 Installing the Windows Scripting Driver
	3.2.1 Installing the Driver Shim
	3.2.2 Creating the Driver in Novell eDirectory
	3.2.3 Running the Driver
	3.2.4 Running the Script Service for PowerShell (optional)
	3.2.5 Running Multiple Instances of the Driver (optional)

	4 Configuring the Scripting Driver
	4.1 Driver Parameters and Global Configuration Values
	4.1.1 Properties That Can Be Set Only During Driver Import
	4.1.2 Driver Configuration Page
	4.1.3 Global Configuration Values Page

	4.2 The Driver Shim Configuration File

	5 Customizing the Scripting Driver
	5.1 Scripting Driver Data Definition
	5.1.1 Defining Data Classes and Attributes
	5.1.2 Associating Identity Vault and Application Classes and Attributes
	5.1.3 Defining an Association Rule
	5.1.4 Defining Excluded Identities
	5.1.5 Defining Relevant Events

	5.2 The Connected System Schema File
	5.2.1 Schema File Syntax

	5.3 The Connected System Include/Exclude File
	5.3.1 Include/Exclude Processing
	5.3.2 Include/Exclude File Syntax
	5.3.3 Example Include/Exclude Files

	5.4 Managing Additional Attributes
	5.4.1 Modifying the Filter
	5.4.2 Modifying the Scripts for New Attributes

	5.5 UNIX Shell Developer Guide
	5.5.1 Application Tools Evaluation
	5.5.2 Policy and Script Development
	5.5.3 Deployment

	5.6 Perl Developer Guide
	5.6.1 Application Tools Evaluation
	5.6.2 Policy and Script Development
	5.6.3 Deployment

	5.7 Python Developer Guide
	5.7.1 Application Tools Evaluation
	5.7.2 Policy and Script Development
	5.7.3 Deployment

	5.8 Microsoft VBScript Developer Guide
	5.8.1 Application Tools Evaluation
	5.8.2 Policy and Script Development
	5.8.3 Deployment

	5.9 Windows PowerShell Developer Guide
	5.9.1 Application Tools Evaluation
	5.9.2 Policy and Script Development
	5.9.3 Deployment

	5.10 Using an Alternate Scripting Language

	6 Using the Scripting Driver
	6.1 Starting and Stopping the Driver
	6.2 Starting and Stopping the Driver Shim
	6.3 Displaying Driver Shim Status
	6.4 Monitoring Driver Messages

	7 Securing the Scripting Driver
	7.1 Using SSL
	7.2 Physical Security
	7.3 Network Security
	7.4 Auditing
	7.5 Driver Security Certificates
	7.6 Driver Shell Scripts
	7.7 The Change Log
	7.8 Driver Passwords
	7.9 Driver Code
	7.10 Administrative Users
	7.11 Connected Systems

	A Troubleshooting
	A.1 Driver Status and Diagnostic Files
	A.1.1 The System Log (Linux/UNIX only)
	A.1.2 The Trace File
	A.1.3 The Script Output File
	A.1.4 DSTRACE
	A.1.5 The Status Log

	A.2 Troubleshooting Common Problems
	A.2.1 Driver Shim Installation Failure
	A.2.2 Driver Rules Installation Failure
	A.2.3 Driver Certificate Setup Failure
	A.2.4 Driver Start Failure
	A.2.5 Driver Shim Startup or Communication Failure
	A.2.6 Users or Groups Are Not Provisioned to the Connected System
	A.2.7 Users or Groups Are Not Provisioned to the Identity Vault
	A.2.8 Identity Vault User Passwords Are Not Provisioned to the Connected System
	A.2.9 Connected System User Passwords Are Not Provisioned to the Identity Vault
	A.2.10 Metadirectory Objects Are Not Modified, Deleted, Renamed, or Moved

	A.3 Shared Memory Errors (Linux/UNIX only)

	B System and Error Messages
	B.1 CFG Messages
	B.2 CHGLOG Messages
	B.3 DOM Messages
	B.4 DRVCOM Messages
	B.5 HES Messages
	B.6 LWS Messages
	B.7 NET Messages
	B.8 NIX Messages (Linux/UNIX only)
	B.9 OAP Messages
	B.10 RDXML Messages

	C IDMLib Reference
	C.1 UNIX Shell (idmlib.sh) Reference
	C.1.1 General Functions
	C.1.2 Subscriber Functions
	C.1.3 Publisher Functions
	C.1.4 Query Functions
	C.1.5 Heartbeat Functions

	C.2 Perl (IDMLib.pm) Reference
	C.2.1 General Functions
	C.2.2 Subscriber Functions
	C.2.3 Publisher Functions
	C.2.4 Query Functions
	C.2.5 Heartbeat Functions

	C.3 Python (idmlib.py) Reference
	C.3.1 General Functions
	C.3.2 Subscriber Functions
	C.3.3 Publisher Functions
	C.3.4 Query Functions
	C.3.5 Heartbeat Functions

	C.4 Microsoft VBScript (IDMLib.vbs) Reference
	C.4.1 General Functions
	C.4.2 Subscriber Functions
	C.4.3 Publisher Functions
	C.4.4 Query Functions
	C.4.5 Heartbeat Functions

	C.5 Windows PowerShell (IDMLib.ps1) Reference
	C.5.1 General Functions
	C.5.2 Subscriber Functions
	C.5.3 Publisher Functions
	C.5.4 Query Functions
	C.5.5 Heartbeat Functions

	D Technical Details
	D.1 Using the usdrv-config Command (Linux/UNIX only)
	D.1.1 Setting the Remote Loader and Driver Object Passwords
	D.1.2 Configuring the Driver for SSL

	D.2 Driver Shim Command Line Options
	D.2.1 Options Used to Set Up Driver Shim SSL Certificates
	D.2.2 Other Options

	D.3 Publisher Change Log Tool
	D.4 Files and Directories Modified by Installing the Driver Shim
	D.4.1 Driver Shim Directory
	D.4.2 /usr/sbin Files (Linux/UNIX only)
	D.4.3 init.d Files (Linux/UNIX only)
	D.4.4 Man Pages (Linux/UNIX only)
	D.4.5 Driver Shim Configuration File
	D.4.6 Windows Support Files (Windows only)

	E Documentation Updates
	E.1 April 29, 2014

