Technical Reference

NetlQ Directory and Resource
Administrator - PowerShell Usage
and Examples Reference

August 2020

This paper highlights how to use PowerShell to write DRA Triggers, DRA Custom Policies, standalone scripts
that use the DRA ADSI Provider, and scripts that issue requests directly to DRA servers. Detailed information
regarding the use of PowerShell can be found at the Microsoft Developer Network web site. This paper does
not discuss the REST features allowing access to DRA servers.

+ “Binding to an Object Using the DRA ADSI Provider in a PowerShell Script” on page 1

+ “Checking for Errors in a PowerShell Script” on page 2

+ “Creating an Object” on page 2

+ “Deleting an Object” on page 3

+ “Determining the Properties of an Object” on page 3

+ “Enumerating Objects” on page 3

+ “Getting Object Properties with the GetInfoEx Method” on page 3

+ “Setting Object Properties” on page 3

+ “Working with Resource Objects” on page 3

+ “Writing DRA Triggers and Custom Policies as PowerShell Scripts” on page 4

+ “Issuing Request through PowerShell Using DRA COM Objects” on page 8

+ “Legal Notice” on page 9

Binding to an Object Using the DRA ADSI Provider in a
PowerShell Script

When you run a DRA server on a 64-bit Windows platform, you must use the version of PowerShell located in
the \Windows\SysWOW&64\ folder.

To bind to the Users generic container object in the NQTraining domain, use the following PowerShell
statement.

$obj Cont ai ner = [ADSI] " OnePoi nt://netigw n2k8r 20/ CN=User s, DC=nqt r ai ni ng, DC=I ab"

2

NOTE: Specifying net i gwi n2k8r 20 identifies net i gwi n2k8r 20 as the DRA server to which the request will
be directed. If a DRA server is omitted along with the training “/”, the ADSI provider will choose a DRA server
from among the available DRA servers.

Checking for Errors in a PowerShell Script

By using the trap construct, you can implement behavior in DRA Triggers and Custom Policies corresponding to
the “On Error Resume Next” mechanism offered by the VBScript engine. Specifically, by including the following
at the beginning of your PowerShell scripts, terminating and non-terminating errors can be ignored but logged.

$Error Acti onPreference = "Sil entlyConti nue"
$Error. dear ()

trap { continue }

NOTE: Depending on the status of the PowerShell environment on a particular DRA server, you may not need
to assign a value to SActionPreference.

Error is a PowerShell object you do not need to declare. It functions to record errors that occur as a PowerShell
Trigger or Custom Policy executes. Error can be accessed in much the same way as an array. For example,
$Error[0].

NOTE: The trap construct may not be able to recognize all errors. In particular, executing a statement such as
$v = 1/ 0 will result in an unrecoverable error.

Creating an Object

The following fragment shows how a new user object can be created using the DRA ADSI Provider:

netiqgwi n2k8r20 below identifies a DRA server. |If a server nane is onitted, the
provider will choose # a DRA server fromanong the servers in the nmulti-naster set
supporting the domain

$obj Contai ner = [ADSI]" OnePoint://netigw n2k8r20/ cn=Users, DC=nqt r ai ni ng, DC=I ab"

$obj User = $obj Cont ai ner. Create("user”, "cn=Jack Jones")
$obj User . Put ("user Pri nci pal Nane", "jjones@entral.cont)
$obj User. Put ("sAMAccount Nane", "jjones")

Additional attributes and their val ues can al so be specified using the Put
met hod.

Note that when specifying values for passwords, you nust use the PutEncrypted
met hod.

$password = ' P@sword'
$obj User. Put Encrypt ed(" user Password", "P@swird") # currently not functioning
obj User. Set | nf o()

NetlQ Directory and Resource Administrator - PowerShell Usage and Examples Reference

Deleting an Object

The statements below fail, even though the three statements succeed if OnePoint is changed to LDAP, after
removing the DRA server name.

$obj Cont ai ner = [ADSI] "OnePoi nt://netiqw n2k8r 20/ cn=User s, DC=nqt r ai ni ng, DC=Il ab"

$obj Cont ai ner. Del ete("user", "cn=user1x") # currently not functioning-functions
w/ LDAP provi der

$obj Cont ai ner. Del ete("contact", "cn=cntctl") # currently not functioning-
functions w LDAP provider

Determining the Properties of an Object

The statements below retrieve and display the sAMAccountName and userPrincipalName for a user account.

$obj Ulx = [ADSI]" OnePoi nt://netiqwi n2k8r 20/
cn=user 1x, CN=User s, DC=nqt r ai ni ng, DC=I ab"

$sam = $obj Ulx. Get (' sAMAccount Nane')
$sam

$up = $obj Ulx. Get (' user Princi pal Nane')
Sup

Enumerating Objects

Object enumeration involving ADSI filters seems not to function correctly. Please see the DRA SDK for
examples.

Getting Object Properties with the GetinfoEx Method

Please see the DRA SDK for examples that can be rewritten as PowerShell scripts.

Setting Object Properties

The following is an example of a fragment that modifies the value of the initials attribute of a user account.

$obj Ulx = [ADSI]" OnePoint://netiqw n2k8r 2/ cn=Bob
Sl ydel | , CN=User s, DC=nqt r ai ni ng, DC=Il ab"

$initials = $obj Ulx. Get('initials')
$initials = $initials. ToUpper();
$obj Ulx. Put ('initials', $initials)
$obj Ulx. Set | nf o()

Working with Resource Objects

Please see the DRA SDK for examples that can be rewritten as PowerShell scripts.

NetlQ Directory and Resource Administrator - PowerShell Usage and Examples Reference 3

4

Writing DRA Triggers and Custom Policies as PowerShell
Scripts

DRA 8.7 supports Triggers and Custom Policies as PowerShell scripts. These scripts execute on DRA servers
using the PowerShell engine installed on those servers. PowerShell Triggers and Custom Policies succeed or fail
depending on a Boolean value that is returned. For example:

return $true # returns control to the DRA server signaling success
return $false # returns control to the DRA server signaling failure

To prevent the execution of malicious scripts, PowerShell enforces an execution policy. By default, the
execution policy is set to Restricted, which means that PowerShell scripts will not run. You can determine the
current execution policy by using the following cmdlet:

Get - Execut i onPol i cy
The execution policies you can use are:
Restricted: Scripts will not run.

RemoteSigned: Scripts created locally will run, but those downloaded from the Internet will not run unless
they are digitally signed by a trusted publisher.

AllSigned: Scripts will only run if they have been signed by a trusted publisher.

Unrestricted: Scripts will run regardless of their origin and whether they are signed.

NOTE: You can set PowerShell’s execution policy by using the following cmdlet:

Set - Execut i onPol i cy <policy nane>

The examples and fragments described in this paper were executed on a DRA server after the following
PowerShell cmdlet had been executed at a PowerShell command prompt as an administrator of the DRA
server:

Set - ExecutionPolicy Unrestricted

When PowerShell DRA Triggers and Custom Policies execute, InVarSet requires no declaration and is initialized
to the contents of the VarSet object.

Varset exposes following methods:

Object, | nVar Set . Get (<stri ng key>): Retrieves a val ue from InVarSet. Null is returned if the key does
not exist in the varset.

Void | nVar Set . Put (string key, val ue):Adds or updates aval ue in inVarSet. If key already exists in
InVarSet, its value will be updated, if not it will be added.

Void | nVar Set . Put (string key, string[] val ue):Addsorupdatesastring[] inInVarSet. If the key
already;, its value will be updated, if not it will be added.

Void | nVar Set . Put (string key, object[] val ue):Adds or updates an obj ect[] in InVarSet. If key
already exists, its value will be updated, if not it will be added.

Void | nVar Set . Put Encrypt ed(string key, object val ue):Adds or updates an encrypted value in
the VarSet. If key already exists, its value will be updated, if not it will be added.

NetlQ Directory and Resource Administrator - PowerShell Usage and Examples Reference

Void | nVar Set . Renmove(string key) :::Removes akey and all subkeys from InVarSet.

Void | nVar Set . C ear () : Removes all keys and values from InVarSet. In practice, this method will rarely be
used in a Trigger or Custom Policy.

Void | nVar Set . DunpToFi | e(string fil enane): Writes InVarSet data to a human-readable log file.

The statements below could be collected into a file having a . ps1 extension and installed as a DRA Pre-Task
Trigger for the operation UserCreate. This text is just intended to illustrate some of the features of PowerShell
Triggers and Custom Policies and does not represent any sort of recommendation.

Error recovery in PowerShell Triggers and Custom Policies can be handl ed using

the Power Shell "try/catch/finally" mechanism |In addition, using the next three
l'ines can

of fer behavior simlar to the error recovery mechanismcurrently supporting
VBScri pt triggers.

$ErrorActionPreference = "SilentlyContinue"
$Error.dear()
trap { continue }

Creating a File where text can be directed. (Al though you can use this approach
to coll ect debugging # data, conflicts can arise if multiple instances of a trigger
execute at the sane tine.)

Set - Cont ent -Val ue "DRAPretask"” -Path C:\DRAPretask.txt

Creating an event source for a Wndows log. (Directing debugging text to a
W ndows | og, avoids

potential conflicts since the operating system manages | og output even if
mul tiple instances

of a trigger execute at the sane tine.)
New Event Log - LogNane Application -Source DRATriggers

Wite-EventLog -LogNane Application -Source DRATriggers -Eventld 1001 - Message
"From Pret askA"

$zero = 0

$v = 1/ $zero

#3$Er r or . Count

#$Error [0]

Add- Content -Val ue $Error. Count -Path C: \DRAPret ask.txt

Add- Content -Value $Error[0] -Path C \DRAPretask.txt

$gsScri pt Name = "PreTaskA. psl";

$gsErrorMsgFirstLine = "Autonation trigger script: " + $gsScript Nang;

NetlQ Directory and Resource Administrator - PowerShell Usage and Examples Reference 5

6

$FirstArg = ""

$Sinitials
$lnVarset. Put ("CQut.ErrorMsg. Script", $gsErrorMsgFirstLine + " exiting at the
begi nning!!'!");

return $fal se

#For retrieving the commandl i ne agrunents

$OndLi neArgs = $I nVar Set . Get (" CdLi ne")

Add- Content -Val ue $CndLi neArgs -Path C.\ DRAPret ask. t xt

#To retrieve the nunber of arguments in the argument string

$nunber = $I nVar Set . Get (" CndLi ne. numAr gs")

#Adding the content into file

Add- Content -Val ue $nunber -Path C:\DRAPretask.t xt

$l nVar Set . DunpToFi | e(" C:\ vsdunp. txt")

return $True

i f($nunber -ne 0) {

#To retrieve an individual argunent and also if required to retrieve nmultiple
argunent s

$FirstArg = $lnVar Set. Get (" CndLi ne. arg0")

$initials = $l nVarSet. Get (" CndLi ne. argl")

Add- Content -Value $FirstArg -Path C \DRAPretask.txt
$Message = "From PretaskA: FirstArg: " + $FirstArg

Wite-EventLog - LogName Application -Source DRATriggers -Eventld 1001 - Message
$Message

}

$lnVarset.Put ("Qut.ErrorMsg. Script", $gsErrorMsgFirstLine + " before return
fal se!");

return $Fal se
if($FirstArg -ne "Argox") {

$lnvarset. Put ("Qut.ErrorMsg. Script", $gsErrorMsgFirstLine + " before ArgOx
check!");

return $FALSE

$sOperationName = $l nVarset. Get ("I n. Operati onNane");
i f($sOperationNare. | ength -eq 0) {

NetlQ Directory and Resource Administrator - PowerShell Usage and Examples Reference

$sErrorMsgText = " OperationName not retrieved from $l nVarset."
$l nVarset. Put ("Qut. ErrorMsg. Script", $gsErrorMsgFirstLine + $sErrorMgText);

return $Fal se

Updating the description property value based on argunents
$l nVarset. put ("I n. Properties.description", $FirstArg)

Add- Content -Value " Here 1" -Path C: \DRAPretask.txt
#Updating the initials property val ue
$lnVarset.put("In.Properties.initials", $initials)

Add- Content -Value " Here 2" -Path C \DRAPretask.txt

$l nVar set. Put (" Qut . War ni ngMsg. Script", $gsErrorMsgFirstLine + " \Warni ng nessage
text here!!!");

$Message = "From PretaskA: Warning: " + $gsError MsgFirstLine + " Warni ng nessage
text herel!!™

Wite-EventLog -LogName Application -Source DRATriggers -Eventld 1001 - Message
$Message

return $True

$sNewNanme = "";

if($lnvarset.Get("In.Properties.sn"))

{
if($lnVarset. Get("In.Properties.givenNane")) {

$sNewNanme = $InVarset. Get("In.Properties.sn").Trim) + ", " +
$lnVarset. Get ("In.Properties.givenNane"). Trin()
$lnvarset. put("In.Properties.cn", $sNewNane)

el se

$sNewNane = $lnVarset. CGet("In.Properties.sn"). Trin();

}

$l nVar set . Put (" Qut. War ni ngMsg. Script", $gsErrorMsgFirstLine + " WArning
nmessage text!!!");

Add- Content -Value " Before dunp" -Path C \DRAPretask.txt
$I nVar Set . DunpToFi | e("C:\ vsdunp. t xt")

return $True;

}

el se

NetlQ Directory and Resource Administrator - PowerShell Usage and Examples Reference 7

8

{

return $True;

}
Issuing Request through PowerShell Using DRA COM Objects

The example script below instantiates several DRA COM objects installed on DRA servers and DRA client
computers and uses them to retrieve several attributes of a user object.

Get an instance of a DRA Connector

$sServer = "netiqwi n2k8r 20"

$gWebDcom = New Obj ect - Conthj ect " McsWebDcom Connector . 1"

Get an instance of an EAServe object. $sServer in the next

statenment identifies a conputer running the Netl Q Adm nistration Service
$gEaSer ver Obj ect = $gWebDcom Get EaSer ver ($sSer ver)

Create an instance of the VarSet object to be used to contain inputs to a DRA
request

$Var Setln = New Obj ect -Conbj ect "Net| QDRAVar Set . Var Set . 1"

Issue the Put method on VarSetin. This nethod accepts two paraneters.
The first is a string that specifies the name for the item called a
key. The second specifies its val ue.

$Var SetIn. put ("Cient.Version.Build", [long]0)

$Var SetIn.put ("Cient.Version.Major", [long]8)

$Var SetIn. put ("Cient.Version. Mnor", [Ilong]70)

$Var Set | n. put ("C i ent. Version. Rel ease”, [l ong] 696)

$Var Set | n. put (" Local el D', [l ong] 1033)

$Var Set | n. put (" Oper ati onNane", "UserGetlnfo")

$Var Set I n. put (" Properties. $MsFri endl yNane", "")

$Var Set | n. put (" Properties. $McsFriendl yPath", "")

$Var Set | n. put (" Properties. $McsLocal Account”, "")

$Var Set I n. put (" Properties. Account Di sabl ed", "")

$Var Set I n. put (" Properties. Account Expi rati onDate", "")

$Var Set | n. put (" Properties.|sAccount Locked", "")

$Var Set | n. put (" Properties. di spl ayNane", "")

$Var Set I n. put (" Properties. nanager", "")

$Var Set I n. put (" Properties. sAMAccount Nane", "")

$Var Set I n. put (" Properties. userPrincipal Nane", "")

NetlQ Directory and Resource Administrator - PowerShell Usage and Examples Reference

$Var Set I n. put ("User", "OnePoint://CN=Bob Slydell, CN=Users, DC=nqtrai ni ng, DC=I ab")
$Var Set | n. put (" Vi si bl eProperties", $true)

#Submit the varset

$vsQut = $gEaServer Chj ect. Scri pt Submi t ($Var Set | n)

if ($vsQut.get("Errors.nunErrors") -gt 0) {

write-host $vsQut.get("Errors.nunkErrors”) " errors occurred!"”

return
}
$vsQut . get ("Properties. sAMAccount Nane")
$vsQut . get ("Properties. userPrincipal Nane")
$vsQut . get (" Properties. di spl aynane")
$vsQut . get ("Properties. | sAccount Locked")

As with earlier DRA releases, the Cr eat eScri pt sExt . dl | extension can be copied to the \NetIQ\DRA folder
and registered by an Administrator account on 64-bit platforms. You can select Varset text lines and use the
extension appearing in the Tools menu to create VBScript text. That text can be transformed to PowerShell by
using the conventions shown in the example above.

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions,
U.S. Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

© Copyright 2007 — 2020 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are
set forth in the express warranty statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial
errors or omissions contained herein. The information contained herein is subject to change without notice.

NetlQ Directory and Resource Administrator - PowerShell Usage and Examples Reference 9

https://www.microfocus.com/about/legal/

10

	NetIQ Directory and Resource Administrator - PowerShell Usage and Examples Reference
	Binding to an Object Using the DRA ADSI Provider in a PowerShell Script
	Checking for Errors in a PowerShell Script
	Creating an Object
	Deleting an Object
	Determining the Properties of an Object
	Enumerating Objects
	Getting Object Properties with the GetInfoEx Method
	Setting Object Properties
	Working with Resource Objects
	Writing DRA Triggers and Custom Policies as PowerShell Scripts
	Issuing Request through PowerShell Using DRA COM Objects
	Legal Notice

