
NetIQ® Identity Manager
Administrator’s Guide to the Identity

Applications
June 2023

Legal Notice
For information about NetIQ legal notices, disclaimers, warranties, export and other use restrictions, U.S. Government
restricted rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/ (https://
www.microfocus.com/en-us/legal).

Copyright (C) 2023 NetIQ Corporation. All rights reserved.
2

https://www.microfocus.com/en-us/legal

Contents
About this Book and the Library 19
About NetIQ Corporation 21

Part I Overview 23

1 Introduction to the Individual Identity Applications Components 25
Identity Manager Dashboard . 25
Identity Applications Administration. 26

Understanding Roles . 26
Understanding Resources . 27
Understanding Separation of Duties . 27
Understanding Email-based Approval . 27
Understanding Controlled Permission Reconciliation Services . 28

Understanding Entities . 28
Identity Manager Client Settings . 28
Identity Manager Workflows . 29
Identity Reporting . 29
Identity Applications Security and Password Management . 29
Identity Applications. 29

2 Types of User Categories in Identity Applications 31
Administrative Users. 31

Identity Vault Administrator . 31
Identity Applications Administrator . 32

Administrator and Manager Categories . 32
Understanding Domain Administrators and Managers . 33

Designers . 35
Business Users. 35

3 Understanding the Functionality of the Identity Applications 37
Enabling Self-Service Activities for Users . 37
Providing Permissions to Users . 38

Understanding Workflow-Based Provisioning . 39
Understanding a Client Helpdesk . 39

Ensuring Permission Assignments Comply with Your Standards. 40
Design and Configuration Tools . 40

4 Understanding the Back-end Functions for the Identity Applications 43
User Interfaces . 44
Directory Abstraction Layer . 45
Workflow Engine. 45
SOAP Endpoints. 45
Contents 3

4 Con
Application Server. 46
Database . 47
User Application Driver . 47
Role and Resource Service Driver . 48
Multi-Threaded Role and Resource Service Driver. 49
Designer for Identity Manager. 51
iManager . 51
Identity Manager Engine . 51
Identity Vault . 51

Part II Preparing the Identity Applications for Use 53

5 Understanding the Design Needs 55
Design Constraints . 55
High Availability Design . 56

6 Configuring Security in the Identity Applications 57
Understanding Security in the Identity Applications Environment. 57
Using Secure Sockets for Identity Applications Connections to the Identity Vault . 59

Disabling Secure Communications Using the Configuration Update Utility . 59
Disabling Secure Communications Using iManager . 60

Enabling SSL for User Access . 60
Enabling SOAP Security. 60
Enabling Authentication . 61

Enabling Mutual Authentication . 61
Enabling Third-Party Authentication and Single Sign-On . 61

Encrypting Sensitive Identity Applications Data . 61
Preventing XSS Attacks . 62
Modifying Trustee Rights . 63

Modifying the Trustee Rights for User Preferences . 63
Modifying the Trustee Rights for a Provisioning Request Definition . 63
Restricting a User from Viewing Provisioning Request Definitions and Roles in Identity
Applications . 64

Updating a Password for a Database User on Tomcat . 64

7 Assigning the Identity Applications Administrators 67
Understanding the Administrators of the Identity Applications . 67
Changing the Default Administrator Assignments after Installation . 68

Granting or Removing Assignments in the Identity Applications . 69
Changing the Assignments in Configupdate Utility. 69
Changing the Default Administrator Assignments without an Administrator Account 70

8 Setting Up Logging in the Identity Applications 71
How Logging Services Help . 71
What Can Be Logged. 79
How Logging Works . 80

Terminology . 80
tents

Components for Logging . 81
How Logging Works . 81

Types of Log Files . 82
Difference Among Catalina, Application, and Localhost Log Files . 83
Additional Log Files . 84

Understanding the Log Format . 85
Message Fields. 85
Message Severity . 86

Configuring Logging . 87
Understanding Logging Configuration . 88
Understanding the Log Level Settings . 88
Specifying the Severity Level for Commons Logging API Loggers . 89
Configuring Logging Settings in Identity Manager Dashboard. 89
Editing the log4j Files. 90
Managing Log File Size . 91

Configuring Logging in a Cluster . 91
Tomcat Logging . 92
Identity Applications Logging . 92

Enabling Sentinel Logging. 92
Using Log Files for Troubleshooting. 93
Log Events . 93

9 Tuning the Performance of the Applications 97
Increasing the Heap Size. 99
Increasing the Stack Size for Recursive Workflows . 99
Ensuring Concurrent Access from Multiple Clients .100

Decreasing the Session Time-out .100
Increasing the Number of Maximum Open Files .101
Increasing the Number of User Processes .102
Adjusting the Threadpool Size .102
Increasing the Database Connection Pool .103

View Request Status Search Limit .103
Decreasing the LDAP Socket Cleanup Interval .104
Optimizing LDAP Connection with Identity Vault .104
Indexing Attributes in the Identity Vault .105
Enabling Compound Index on Identity Vault Attributes .106

Comparison with Other Indexes. .108
Sample Error Message. .108

Managing the eDirectory Database Cache Objects Retrieved from the Identity Vault Server109
Disabling the Nested Group Search. .111

10 Customizing the Identity Applications for Your Enterprise 113
Linking the Dashboard to External Applications. .114

Managing Featured Items .114
Customizing the Look of the User Interfaces .114

Applying Your Organization’s Brand to the Dashboard. .114
Adding Product title in your language to the Dashboard .115
Applying a Cascading Style Sheet to the Dashboard. .115

Localizing the Text in the Interfaces .116
Localizing the Labels in the Dashboard .116
Modifying the Text of the Application Tab. .117
Contents 5

6 Con
Localizing Text Stored in the JAR Files .118
Adding a Language to the Identity Applications. .121

Adding the New Language to the Identity Applications .122
Preparing Files for Translation .123
Changing the Default Language .126
Add the Translated Files to the Proper Locations .126
Updating an Email Notification Template .127
Verifying the New Translations .127

Configuring User Names. .128
Configuring the Format of Displayed User Names .128
Enabling Localized User Names in Typeahead Fields .129
Configuring the Attribute for Sorting Users in Dashboard .129

Configuring Email Notification Templates for the Dashboard .130
Configuring Forgot Password? Functionality .131
Ensuring that Characters Display Properly in Role Report PDF Files. .132

Editing the Configuration XML Data in iManager .132
Ensuring that Dates Display Correctly in Norwegian .133
Configuring Client Settings Mode .133
Copying the Client Settings .134
Copying the Workflow Migration .136
Changing Identity Applications Client Settings .139

Changing General Client Settings .140
Managing User Access. .140
Customizing the Views .141
Changing the Client Branding Attributes .148
Configuring a Client Helpdesk. .148
Managing Dashboard Widgets .150
Customizing the Organization Chart View .151
Deleting the Client Settings from Identity Applications .152

Hiding the Navigation Items from User Interface. .152
Configuring Separation of Duties Properties .153

11 Setting Up the Dashboard for Identity Applications 155
Checklist for Setting Up the Dashboard for Identity Applications. .155

12 Configuring a Multi-Threaded Role and Resource Service Driver 157
How the Driver Works .157
Prerequisites .159
Defining a Unique Data Set .159
Modifying the Default Mapping Table Object. .160
Configuring the Driver .160
Deploying the Driver. .161
Guidelines for Creating Custom Policy .161

Assigning Weight to the Policy .162
Limitations .162
Troubleshooting .162

13 Configuring Identity Applications Clustering and Permission Clustering 163
Configuring Identity Applications Clustering to Use TCP or UDP .163
tents

Configuring Permission Clustering to Use TCP or UDP. .164

Part III Identity Applications Administration 167

14 Creating and Managing Roles 169
Listing Roles .169
Creating a New Role .170
Editing Roles .171

Changing Approval and Revocation Process .172
Mapping Resources to Roles. .173
Assigning Roles to Users .174
Mapping Roles to Roles. .174

Creating a Workflow For a Role .175
Managing the Role and Resource Service Driver .176

Configuring the Role and Resource Service Driver Settings .176
Indexing for the Role and Resource Service Driver .178

List of Stop Words Ignored In Search Query .178

15 Creating and Managing Resources 181
Listing Resources. .181
Creating a New Resource .182
Editing Resources .183

Setting Expiration Period for the Resource .184
Assigning Weightage to the Resource .185
Changing the Approval or Revocation Process .186
Assigning Resource to Users .186
Updating the Resource Request Form .186

Creating a Workflow for a Resource .188
Enabling Drivers for Resource Mappings .188
Creating a List to Improve Resource Request Forms .189

16 Adding Workflow to Roles and Resources 191
Adding a Workflow .191
System Templates and Template Forms .194
Custom Templates. .195

Adding Workflow Using Custom Template .196
Creating a Custom Template in Designer. .196

Recommendations .197

17 Monitoring Workflows 199
Search for Workflows .199
Sort Workflows .200
Customize Columns. .200
View Workflow Status. .200
View Approval Status .201
Actions You Can Perform On This Page .201

Terminate a Workflow Process .202
Reassign a Workflow Process .202
Contents 7

8 Con
View Comments to Know More About Workflows .202

18 Creating and Managing Delegations 203

19 Separation of Duties Constraints 205
Role Assignments .205
Resource Assignments .206

Resource Request Process Flow .207

20 Using Controlled Permission Reconciliation Services 209
How CPRS Helps .209
Prerequisites .210
Considerations for Supported Drivers .210

MDAD Driver .210
Loopback Driver .211
REST Driver .211
Delimited Text Driver. .211

Understanding the Components of CPRS .211
Managing Permission Reconciliation Settings .213

Editing Permission Reconciliation Settings .214
Permission Reconciliation. .215
Migrating to CPRS .217

Prerequisites .217
Managing Existing Permissions for AD and LDAP Drivers. .218
Managing Permissions for a MDAD Driver .218
Post Migration Activities .219

21 Configuring Email-Based Approval 221

22 Configuring Identity Applications Default Settings 223
Configuring Roles and Resources Settings .223

Configuring Default Roles Settings .223
Configuring Default Resource Settings. .224
Configuring Entitlement Query Settings .225
Configuring Separation of Duties Settings .225

Configuring Delegation and Proxy Settings. .226
Configuring Delegation Settings .226
Configuring Proxy Settings .226
Configuring Synchronization and Cleanup Service .227

Configuring Permission Reconciliation Settings .227
Configuring Logging Settings .228

Configuring Auditing Service Settings .228
Configuring the Identity Manager Packages and their Log Levels .229

Configuring Caching and Cluster Settings .229
Flushing Caches .230
Configuring Cache Settings .230
Managing Cluster Cache Settings .235

Assigning Administrators in Identity Applications .235
Listing the Administrator Assignments .236
tents

Creating a New Administrator Assignment .236
Assigning Permissions to a Delegated Administrator .237
Deleting an Administrator Assignment .240

Configuring Workflow Engines and Cluster Settings .240
Configure the Workflow Engine Settings .241
Configure Workflow Cluster Settings .242

Viewing User Application Driver Status. .243
Configuring the Default Provisioning Display Settings .243

Managing General Display Settings .243
Managing the Appearance of Tasks Page .244
Managing the Appearance of Request History Page. .245

Configuring the Identity Governance Settings .245

23 Configuring and Managing Objects for Entities 247
Listing the Objects. .247
Creating an Object .247
Editing an Object. .248
Deleting an Object .248
Exporting to CSV .248
Viewing the Organization Chart of an Object .248

Part IV Configuring and Managing Provisioning Workflows 251

24 Configuring the User Application Driver to Start Workflows 253
About the User Application Driver .253
Setting Up Workflows to Start Automatically .254

About Policies .254
Using the Policy Builder. .254

25 Managing Provisioning Request Definitions 259
About the Provisioning Request Configuration Plug-in .259
Working with the Installed Templates. .260
Configuring a Provisioning Request Definition .263

Selecting the Driver .263
Deleting a Provisioning Request .263
Filtering the List of Requests. .264
Changing the Status of an Existing Provisioning Request .265
Defining Rights on an Existing Provisioning Request .265

26 Managing Provisioning Workflows 267
About the Workflow Administration Plug-in. .267
Managing Workflows .267

Connecting to a Workflow Server. .268
Restricting Access to Workflows. .269
Finding Workflows that Match Search Criteria .269
Controlling the Active Workflows Display .270
Terminating a Workflow Instance. .272
Viewing Details about a Workflow Instance .272
Contents 9

10 Con
Reassigning a Workflow Instance .273
Managing Workflow Processes in a Cluster. .273

Configuring the Email Server .275
Working with Email Templates. .276

Default Content and Format .277
Editing Email Templates .288
Modifying Default Values for the Template .289
Adding Localized Email Templates .289

Allowing a Named Password to be Retrieved over LDAP. .290

Part V Web Service Reference 293

27 Provisioning Web Service 295
About the Provisioning Web Service .295

Provisioning Web Service Overview. .295
Removing Administrator Credential Restrictions .296
Provisioning Web Service Method Categories .296

Developing Clients for the Provisioning Web Service .297
Web Access to the Provisioning Web Service .297
A Java Client for the Provisioning Web Service .299
Developing a Mono Client. .304
Sample Ant File .305
Sample Log4J File. .307

Provisioning Web Service API. .307
Processes .307
Provisioning .318
Work Entries. .331
Comments .349
Configuration .356
Miscellaneous .360
Cluster. .363

28 Metrics Web Service 367
About the Metrics Web Service .367

Web Service Semantics .368
Accessing the Test Page. .368
Web Service Methods Grouped by Security Permissions. .368
Specifying Filters .371
Generating the Stub Classes .373
Obtaining the Remote Interface .374
Metrics Configuration Settings .375

Metrics Web Service API .377
Team Manager Methods .377
Provisioning Application Administrator Methods .379
Utility Methods .381

Metrics Web Service Examples .382
General Examples .382
Other Examples .384
tents

29 Notification Web Service 387
About the Notification Web Service .387

Accessing the Test Page. .387
Accessing the WSDL. .387
Generating the Stub Classes .388

Notification Web Service API .388
iRemoteNotification .388
BuiltInTokens .388
Entry .390
EntryArray .391
NotificationMap. .392
NotificationService .393
StringArray .393
VersionVO. .394

Notification Example. .394

30 Directory Abstraction Layer (VDX) Web Service 397
About the Directory Abstraction Layer (VDX) Web Service .397

Accessing the Test Page. .397
Accessing the WSDL. .397
Generating the Stub Classes .398
Removing Administrator Credential Restrictions .398

VDX Web Service API .399
IRemoteVdx .399
Attribute .401
AttributeArray .403
AttributeType .404
BooleanArray .404
ByteArrayArray. .405
DateArray .405
EntryAttributeMap .406
Entry .406
EntryArray .407
IntegerArray .408
StringArray .409
StringEntry .409
StringEntryArray. .410
StringMap. .411
VdxService .411
VersionVO. .411

VDX Example .412

31 Role Web Service 423
About the Role Web Service .423

Accessing the Test Page. .423
Accessing the WSDL. .426
Generating the Stub Classes .426
Removing Administrator Credential Restrictions .426

Role API .427
IRemoteRole. .427
Approver. .443
Contents 11

12 Con
ApproverArray .444
Category .444
CategoryArray .445
CategoryKey .446
CategoryKeyArray .446
Configuration .447
Container .450
DNString .451
DNStringArray .452
Entitlement. .453
EntitlementArray .454
Group .454
IdentityType .456
IdentityTypeDnMap. .458
IdentityTypeDnMapArray .459
LocalizedValue .459
LongArray .460
NrfServiceException .460
RequestCategoryType .461
RequestStatus .463
ResourceAssociation .465
Role .467
RoleAssignment .472
RoleAssignmentArray .474
RoleAssignmentActionType .475
RoleAssignmentRequest .476
RoleAssignmentRequestStatus .479
RoleAssignmentType .483
RoleAssignmentTypeInfo. .484
RoleInfo .487
RoleInfoArray .488
RoleLevel .489
RoleLevelArray .490
RoleRequest .491
RoleServiceDelegate .494
RoleServiceSkeletonImpl. .499
Sod .503
SodArray .506
SodApprovalType .507
SodJustification .508
SodJustificationArray .509
User. .510
VersionVO. .514

Role Web Service Examples .515
Retrieving Roles for a Group .515
Retrieving Role Assignment Request Status .517
Retrieving Type Information for a Role Assignment .518
Retrieving Role Categories .519
Retrieving Role Levels .520
Verifying Whether a User Is In a Role. .520

32 Resource Web Service 523
About the Resource Web Service .523

Accessing the Test Page. .523
tents

Accessing the WSDL. .524
Generating the Stub Classes .525
Removing Administrator Credential Restrictions .525

Resource Web Service Interface .526
IRemoteResource. .526
CodeMapRefreshStatus. .540
CodeMapValueStatus .541
EntitlementRefreshInfo .542
ProvisioningCodeMap .544
Resource .546
ResourceAssignment .550
ResourceRequestParam .552
ResourceAssignmentRequestStatus .553

Resource Web Service Examples .556
Code Map Synchronization Code Samples .556

33 Forgot Password Web Service 559
About the Forgot Password Web Service .559

Accessing the Service .559
Accessing the WSDL. .559
Generating the Stub Classes .560

Password Management Web Service Interface .560
processForgotConf. .560
processUser .561
processChaRes .561
processChgPwd .562

ForgotPasswordWSBean. .563

Part VI Configuring Single Sign-on Access in Identity Manager 565

34 Preparing for Single Sign-on Access 567

35 Using Self-Service Password Management in Identity Manager 569
Understanding the Default Self-Service Process .569
Understanding Authentication with One SSO Provider .570
How OSP Works with Identity Manager .570

OSP Concepts .571
Understanding How OSP Works with Identity Manager. .574
Guidelines for Enabling OSP Logging .576

36 Using One SSO Provider for Single Sign-on Access in Identity Manager 579
Preparing eDirectory for Single Sign-on Access .579
Modifying the Basic Settings for Single Sign-on Access .579
Configuring Self Service Password Reset to Trust OSP. .580

37 Using NetIQ Access Manager for Single Sign-On 581
Understanding Third-Party Authentication and Single Sign-On .581
Using SAML Authentication for Single Sign-on .582
Contents 13

14 Con
Establishing Trust between Identity Manager and Access Manager .582
Updating the Login Pages for Access Manager .584

Reverse Proxy Based Single Sign-On .585
Creating and Configuring the Proxy Service .588
Creating Protected Resources. .590
Creating and Assigning a Form Fill Policy to a Protected Resource .592
Configuring a Rewriter Profile .594
Configuring Identity Providers .595
Configuring Additional Redirect URLs in OSP Configuration File .596
Testing the Single Sign-On. .597

38 Configuring Single Sign-On to Work With Active Directory Federation Service 599
Requirements for Configuring OSP to Work with AD FS .599
Configuring OSP to Provide SAML Authentications to AD FS .599

39 Using Kerberos for Single Sign-On 603
Configuring the Kerberos User Account in Active Directory .603
Configuring the Identity Applications Server .604
Configure the End-User Browsers to Use Integrated Windows Authentication .606
Logging In Using the Name Password Form .607

40 Integrating Single Sign-on Access with Identity Governance 609
Ensuring Rapid Response to Authentication Requests .609
Configuring Identity Governance for Integration .610

Adding a Link for Identity Manager Home in the Identity Governance Menu610
Using the Same Authentication Server as Identity Manager .610
Registering Identity Applications Server .612

Configuring Identity Manager for Integration .613

41 Verifying Single Sign-on Access for the Identity Applications 619

42 Using SSL for Secure Communication 621
Checklist for Ensuring SSL Connections. .621
Creating a Keystore and Certificate Signing Request .622
Enabling SSL with a External CA Signed Certificate .623
Enabling SSL with a Self-signed Certificate .625

Exporting the Certificate Authority .625
Generating the Self-signed Certificate .626

Enabling SSL Between Sentinel and Identity Manager Components .628
Enabling SSL between Sentinel and Identity Manager Engine/Remote Loader628
Enabling SSL between Sentinel and Identity Applications .629

Updating the SSL Settings for the Application Server .631
Updating the SSL Settings in the Configuration Utility .632
Updating the SSL Settings for Self Service Password Reset .633

43 REST Services 635
Use Cases for Identity Applications REST API .635
tents

Before You Begin .635
Use Cases .635

44 Troubleshooting 647
Using Log Files for Troubleshooting. .647

Customizing Logging Settings .647
Virtual Data Access Logging .648
When a Code Map Refresh Is Triggered .651
When Multiple Users Try to Authenticate From Different Interfaces .652
When an E-Mail Approval Notification is Not Delivered .653
When a Role Is Requested .653
When a Role Is Listed in Role Catalog .656
Schema Fails to Update When Updated Using a User Account That Was Not Used to Create
the Schema .658
Checking the Status of Database Schema Validation .660
Determining if Liquibase Changeset Has Executed .660
When Assigning a Resource to a User That Does Not Exist .662
When Checking the Workflow Engine Heartbeat .662
catalina.out File Does Not Rotate the Log on Linux .663

Troubleshooting E-Mail Based Approval Issues .664
Empty E-Mail Based Approval Token in the Provisioning Request Mail .664
User Application is Not Acting on E-Mails .664
Approve or Deny Link in E-Mail is Not Working .664
Approve/Deny links Missing from E-Mail after configuring E-Mail Based Approval 664
Verifying if E-Mail Based Approval Starts Properly .664
When is Server Restart Needed .665
E-Mail Based Approval Token is Empty in the Provisioning Request E-Mail665

Troubleshooting Self Service Password Reset Issues .665
No Redirection to Challenge-Response Page When SSPR is Installed in a Distributed
Environment That Supports http and https Communication .665
Unable to Unlock Account through SSPR. .665
SSPR Reports Error 5027 When Attempting to Access Configuration Manager through
Internet Explorer .665
SSPR Reports Out of Order Page Request Error .666
Pressing Enter Button in SSPR’s People Search Displays Locale Screen on Internet Explorer666

Troubleshooting Authentication Issues. .666
OSP Login Request Example by Using REST Endpoints .666
Managing the Size of oidPInstancedata Attribute .668
OSP Fails to Update the oidpInstanceData Attribute .669
Managing Expired Server Certificates .669
Redirecting Non-Administrator User from the idmadmin Page to the Dashboard Landing
Page After Logout .669
Identity Applications Does Not Terminate the Dashboard Session Even After the Session
Expires When Configured With a Third-Party Authentication Service .670

Troubleshooting General Issues .671
Mismatch of Certificates Used by Identity Manager Engine and User Application Causes
Code
(-9205) Error in vnd.nds.stream .671
User Application Driver Fails to Communicate with the User Application Server on a Secured
Connection .672
Entitlement Configuration Error During Codemap Refresh .673
Error After Logging Out of the Dashboard on Linux .673
Bulk Import of Roles and Resources May Not Update the Permission Index673
Contents 15

16 Con
Absence of Notification Templates Causes Workflow Error .673
Error Occurs When You Add a New Application With a Logo .674
User Application Driver Fails to Process Delete Events .674
Identity Applications Login Failure While Attempting to Contact the Authentication Service675
Searching an Entity With a Combination of String and Integer Value Is Not Supported675
Searching an Entity with Substring Value for DN Attribute Is Not Supported.675
Unable to Change the Availability Status in the Availability Settings Page .676
Workflow Forms for Three Steps Parallel Approval Process is Not Loading in the Workflow
Wizard. .676
New Request Page Not Listing Users in the Recipients Field .677
Advanced Search for User Entities Displaying an Error When the Search Attribute Contains a
Hyphen .677
Unable to Search for Users While Requesting For Permissions on Behalf of Others677
Entities Display Extended Characters Incorrectly in Dashboard .678
Workflow Legacy Forms Displaying Errors After Upgrading to Identity Manager 4.8.5 Version . . .678
Identity Applications Reports ExceptionInInitializerError When Clustering is Enabled in the
Cluster Cache Configuration .679
Dashboard Does Not Display Objects With Certain Special Characters in their Names, IDs, or
Descriptions .680
Workflow Forms Hang While Loading .680
Configuring Full Name Attribute for the Default Full Name Pattern Does Not Work in
Dashboard .681

Troubleshooting Multi-Threaded Role and Resource Service driver Issues .682
Troubleshooting Resource Weightage Related Errors .684
Troubleshooting Workflow Related Issues .686

Resolving StackOverflow Error on Recursive Workflows .686

Part VII Appendix 687

A Configuring the Identity Manager Approvals App 689
Product Requirements .689
Setting Up the Approvals App .690

Understanding Approvals App Settings .691
Customizing and Using the Default Approvals App Provisioning Request Definition.693
Creating and Deploying a Custom Configuration Link .698
Creating and Deploying a Custom Configuration QR Code .698

Optimizing Designer Forms for the Approvals App .699
Understanding Language Support in the Approvals App. .699

B Working with Language-Specific Email Templates 701
Specifying the Default Locale .702
Creating a Custom Roles-Based Provisioning Request Definition .702
Defining the E-Mail Notification Settings .703
Creating a New Role With a Custom Roles-Based PRD .703

C Schema Extensions for the Identity Applications 705
Attribute Schema Extensions .705
Objectclass Schema Extensions .708
Resource Definition Object (nrfResource) .710
Resource Request Object (nrfResourceRequest) .710
tents

Resource Request Status Codes (nrfStatus). .711
Role Definition Object (nrfRole). .712

Role Status Codes (nrfStatus) .713
Request Object (nrfRequest) .713

Request Status Codes (nrfStatus) .714
Role-Resource Configuration (nrfConfiguration) .715
Resource Binding to Users (nrfIdentity) .716
Resource Containers .716

D JavaScript Search API 717
Launching a Basic Search using the SearchListPortlet .717

Passing Request Parameters .717
Using a JSON-formatted String to Represent a Query .718

Creating a New Query using the JavaScript API .720
JavaScript API .722

Performing an Advanced Search Using a JSON-formatted Query .724
Retrieving all Saved Queries for the Current User .724
Running an Existing Saved Query .724
Performing a Search on All Searchable Attributes .725

E Trouble Shooting 727
Permgen Space Error .727
Email Notification Templates .727
Org Chart and Guest Access .727
Provisioning Notification .728
javax.naming.SizeLimitExceededException. .728
Linux Open Files Error. .729

F Workflow Service 731
How is the Separate Workflow Engine Installed?. .731
Features .731
Interaction with Identity Vault .732
OAuth-Based Authentication .732
Location of Workflow Definitions .733
Email Based Approval .733
Email Mail Integration .734
Workflow States .734
Support for Existing Forms and Forms Created in the Workflow Form Builder .734
Creating a Provisioning Request Definition to Use a Form Created in the Form Builder 734
Support for Migrating Legacy Workflow Forms to the Forms Created in the Workflow Form Builder . . .736
Guidelines for Enabling Workflow Logging .738
Initiating a Workflow Process. .740
Contents 17

18

About this Book and the Library

The Administrator’s Guide describes how to administer the NetIQ Identity Manager using Identity
Applications.

Intended Audience
This book provides information for identity architects and identity administrators responsible for
installing the components necessary for building an identity management solution for their
organization.

Other Information in the Library
For more information about the library for Identity Manager, see the Identity Manager
documentation website.
About this Book and the Library 19

https://www.netiq.com/documentation/identity-manager-47/
https://www.netiq.com/documentation/identity-manager-47/

20 About this Book and the Library

About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in
your environment: Change, complexity and risk—and how we can help you control them.

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster
We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios
in which IT organizations like yours operate—day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion
We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and
you need someone that is truly easy to work with—for a change. Ultimately, when you succeed,
we all succeed.

Our Solutions
 Identity & Access Governance
 Access Management
 Security Management
 Systems & Application Management
 Workload Management
 Service Management
About NetIQ Corporation 21

Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. The documentation for this product is
available on the NetIQ Web site in HTML and PDF formats on a page that does not require you to log
on. If you have suggestions for documentation improvements, click comment on this topic at the
bottom of any page in the HTML version of the documentation posted at www.netiq.com/
documentation. You can also email Documentation-Feedback@netiq.com. We value your input and
look forward to hearing from you.

Contacting the Online User Community
NetIQ Communities, the NetIQ online community, is a collaborative network connecting you to your
peers and NetIQ experts. By providing more immediate information, useful links to helpful
resources, and access to NetIQ experts, NetIQ Communities helps ensure you are mastering the
knowledge you need to realize the full potential of IT investments upon which you rely. For more
information, visit https://www.netiq.com/communities/.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
22 About NetIQ Corporation

https://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
https://www.netiq.com/
https://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
https://www.netiq.com/support
https://www.netiq.com/documentation
https://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
https://www.netiq.com/communities/

I IOverview

Identity applications help you manage different functions of your organization using Identity
Manager.

 Chapter 1, “Introduction to the Individual Identity Applications Components,” on page 25
 Chapter 2, “Types of User Categories in Identity Applications,” on page 31
 Chapter 3, “Understanding the Functionality of the Identity Applications,” on page 37
 Chapter 4, “Understanding the Back-end Functions for the Identity Applications,” on page 43
Overview 23

24 Overview

1 1Introduction to the Individual Identity
Applications Components

Identity applications enable your organization to manage the user accounts and permissions
associated with the wide variety of roles and resources available to users. You can configure the
identity applications to provide self-service support for your users, such as requesting roles or
changing their passwords.

The following components comprise identity applications:

 “Identity Manager Dashboard” on page 25
 “Identity Applications Administration” on page 26
 “Understanding Entities” on page 28
 “Identity Manager Client Settings” on page 28
 “Identity Manager Workflows” on page 29
 “Identity Reporting” on page 29
 “Identity Applications Security and Password Management” on page 29
 “Identity Applications” on page 29

Identity Manager Dashboard
Identity Manager Dashboard serves as the primary entry portal to the identity applications.
Dashboard can have one or many widgets that helps you with the quick information on particular
activity. From your Dashboard, you can perform the following activities:

 Manage your profile settings and password.
 View your organization chart details.
 Review and complete your tasks, such as approving user requests for access.
 Request permissions for roles, resources, or processes.
 Review the status and history of the requests for permissions.
 Find other users in your organization.
 Personalize your dashboard, you can add widgets and reposition them based on your interests.
 Set any user as your proxy from the system.
 Delegate your tasks to other users from the system.

You can perform the following tasks with the appropriate Permissions:

 Create and modify user profiles.
 View the organization chart details of other users.
Introduction to the Individual Identity Applications Components 25

 Create and modify teams that represent set of users and groups that can perform provisioning
requests and approval tasks associated with the teams.

 Request permissions or revoke permissions on behalf of other users in the organization.

Identity Applications Administration
You can manage the following tasks with an appropriate Administrator role:

 Create and manage roles, resources and their assignments.
 Set the Separation of Duties (SoD) constraints to avoid conflicts between two different roles in

the system.
 Configure the ability for users to approve permission requests through email.
 Configure the default settings of your identity applications components such as roles, resources,

and delegation.

For more information on each identity applications administration options, see:

 “Understanding Roles” on page 26
 “Understanding Resources” on page 27
 “Understanding Separation of Duties” on page 27
 “Understanding Email-based Approval” on page 27
 “Understanding Controlled Permission Reconciliation Services” on page 28

Understanding Roles
A role represents a set of permissions that allows you to perform defined activities using identity
applications. A role can be mapped to one or more roles, resources, and entitlements from different
connected systems. You can assign any role to any user in your organization.

Identity Manager Dashboard allows you to create and manage role in your organization.

Administration > Roles

You can map role assignments to resources within a company, such as user accounts, computers, and
databases. For more information, see Chapter 15, “Creating and Managing Resources,” on page 181.

You can modify the default settings for the roles and their operations in the system that can help you
to control creating and managing roles.

Administration > Configuration > Roles and Resources

For more information, see “Configuring Default Roles Settings” on page 223.
26 Introduction to the Individual Identity Applications Components

Understanding Resources
A resource is any digital entity such as a user account, computer, or database that a business user
needs to be able to access.

Each entitlement is mapped to a resource. A resource definition can have no more than one
entitlement bound to it. A resource definition can be bound to the same entitlement more than
once, with different entitlement parameters for each resource.

Identity Manager Dashboard allows you to create and manage resources in your organization.

Administration > Resources

For more information, see Chapter 14, “Creating and Managing Roles,” on page 169.

You can view the default settings for the resources and their operations in the system that controls
creating and managing resources.

Administration > Configuration > Roles and Resources

For more information, see “Configuring Default Resource Settings” on page 224.

Understanding Separation of Duties
Separation of duties (SoD) policies help you manage potential conflicts between role assignments.
For example, your organization might have two or more roles that could create security problems
when assigned to the same individual. When a user requests one of these roles while already having
a conflicting role or requests two or more conflicting roles, the identity applications respond
according to the SoD policies. For more information, see Chapter 19, “Separation of Duties
Constraints,” on page 205.

Understanding Email-based Approval
Identity applications allow to send an email notifying users that they need to review a permission
request. The notification can include action links that correspond to Approve and Reject so users can
respond to the request. Email-based approvals also supports digital signatures to ensure
authentication of the message content.

You enable email-based approvals and configure your Provisioning Request Definitions to support
the feature.

Administration > Email Based Approval

For more information, see the following sources:

 click in Identity Manager Dashboard.
 “Email Based Approval” in the NetIQ Identity Manager - Administrator’s Guide to Designing the

Identity Applications
Introduction to the Individual Identity Applications Components 27

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#approveordenytasksonemail
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Understanding Controlled Permission Reconciliation Services
Identity applications enable a resource administrator to publish all connected system permission
assignments to Identity Manager Resource Catalog through Controlled Permission Collection and
Reconciliation Service (CPRS). CPRS helps to keep Resource Catalog up-to-date with connected
system permissions at any point of time. For ease of use, CPRS is integrated with the identity
applications user interface.

Administration > Permission Reconciliation

For more information, see Chapter 20, “Using Controlled Permission Reconciliation Services,” on
page 209.

Understanding Entities
You can customize the Identity Applications by adding objects and their attributes based on the
content in the Identity Vault. You can do this by adding new entities and attributes to the directory
abstraction layer and deploying them to the User Application driver. For more information, see
About Entities and Attributes in NetIQ Identity Manager - Administrator’s Guide to Designing the
Identity Applications.

Identity Manager Client Settings
Identity Manager allows you to manage one or more clients and helps you to define their attributes.
If you have an access to the Your ID > Settings page, you can perform the following activities for your
clients:

 You can add and manage clients and define the client name and their LDAP properties.
 Set user and configuration accesses.
 Customize the general and user view for your clients and provision your client users with other

attributes. You can also enable edit option for more attributes to your client users.
 Define the brand color for your clients which will be displayed for respective client users.
 Set Helpdesk to help your client users troubleshoot any issues while performing their tasks in

Identity Manager. For more information, see “Understanding a Client Helpdesk” on page 39
 Provision your client users with Dashboard Widgets and allow them to personalize their

dashboard with provisioned widgets.

For more information about the modes of saving these changes, see “Configuring Client Settings
Mode” on page 133.

For more information about changing the client settings, see “Changing Identity Applications Client
Settings” on page 139.
28 Introduction to the Individual Identity Applications Components

https://www.netiq.com/documentation/identity-manager-47/identity_apps_design/data/adding-entities-and-attributes-to-dal.html#dalentityoverview
https://www.netiq.com/documentation/identity-manager-47/identity_apps_design/data/netiq-identity-apps-design-guide.html
https://www.netiq.com/documentation/identity-manager-47/identity_apps_design/data/netiq-identity-apps-design-guide.html
https://www.netiq.com/documentation/identity-manager-47/identity_apps_design/data/netiq-identity-apps-design-guide.html

Identity Manager Workflows
You can also set up workflows to improve the efficiency in managing and assigning roles and
resources. You can perform following tasks with appropriate permissions:

 Create workflows to reduce the administrative burden of entering, updating, and deleting user
information across all systems in the enterprise. These workflows provide a Web-based
interface for users to manipulate distributed identity data that triggers workflows as necessary.
For more information, see Part IV, “Configuring and Managing Provisioning Workflows,” on
page 251.

 Support complex workflows and manage manual and automated provisioning of identities,
services, resources, and assets.
You can establish a manual provisioning process by creating workflows that route provisioning
requests to one or more authorities. For automated provisioning, you can configure the Identity
Applications to start workflows automatically in response to events occurring in the Identity
Vault. The Dashboard can trigger a workflow when users request permission. For more
information, see Part IV, “Configuring and Managing Provisioning Workflows,” on page 251.

Identity Reporting
As a complement to the identity applications, Identity Manager includes Identity Reporting. If you
install Identity Reporting with the identity applications give you a complete view of your users’
entitlements, providing the knowledge you need to see the past and present state of authorizations
and permissions granted to identities in your organization.

For more information about reporting, see the Administrator Guide to NetIQ Identity Reporting.

Identity Applications Security and Password Management
 Configure password management settings so users can reset their own passwords. For more

information, see Password Management Configuration.
 Ensure that your organization has a method for verifying that personnel are fully aware of

organizational policies and are taking steps to comply with these policies.
 Ensure that access to corporate resources complies with organizational policies and that

provisioning occurs within the context of the corporate security policy. You can grant users
access to identity data within the guidelines of corporate security policies. For more
information, see Chapter 6, “Configuring Security in the Identity Applications,” on page 57.

Identity Applications
The identity applications continues to provide the following functions:

 Ensure that your organization has a method for verifying that personnel are fully aware of
organizational policies and are taking steps to comply with these policies.
Introduction to the Individual Identity Applications Components 29

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/report_setup/report_setup.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-47/identity_apps_admin/data/b6mixux.html

 Ensure that access to corporate resources complies with organizational policies and that
provisioning occurs within the context of the corporate security policy. You can grant users
access to identity data within the guidelines of corporate security policies. For more
information, see Chapter 6, “Configuring Security in the Identity Applications,” on page 57.

 Create workflows to reduce the administrative burden of entering, updating, and deleting user
information across all systems in the enterprise. These workflows provide a Web-based
interface for users to manipulate distributed identity data that triggers workflows as necessary.
For more information, For more information, see Part IV, “Configuring and Managing
Provisioning Workflows,” on page 251.

 Support complex workflows and manage manual and automated provisioning of identities,
services, resources, and assets.
You can establish a manual provisioning process by creating workflows that route provisioning
requests to one or more authorities. For automated provisioning, you can configure the identity
applications to start workflows automatically in response to events occurring in the Identity
Vault. The Dashboard can trigger a workflow when users request permission. For more
information, see Part IV, “Configuring and Managing Provisioning Workflows,” on page 251.
30 Introduction to the Individual Identity Applications Components

2 2Types of User Categories in Identity
Applications

Users of the identity applications generally belong to any of the following categories:

 “Administrative Users” on page 31
 “Administrator and Manager Categories” on page 32
 “Designers” on page 35
 “Business Users” on page 35

Administrative Users
The identity applications have several administrative users. During installation, you establish the
following administrators:

Identity Vault Administrator
A user who has rights to configure the Identity Vault. This is a logical role that can be shared with
other administrative user types.

The Identity Vault Administrator needs the following rights:

 Supervisor rights to the User Application driver and all the objects it contains. You can
accomplish this by setting the rights at the driver container level and making them inheritable.

 Supervisor Entry rights to any of the users that are defined through the directory abstraction
layer user entity definition. This should include Write attribute rights to objectClass and any of
the attributes associated with the DirXML-EntitlementRecipient, srvprvEntityAux
and srvprvUserAux auxiliary classes.

 Supervisor rights to the container object cn=DefaultNotificationCollection,
cn=Security. This object persists email server settings used for automated provisioning
emails. It can contain SecretStore credentials for authenticating to the email server itself.

 Supervisor rights to the container object cn=Authorized Login Methods, cn=Security.
During the Identity Applications installation the SAML Assertion object is created in this
container.

 Ensure that you have supervisor rights to the cn=Security container before you install
identity applications. During the Identity Applications installation, the container
cn=RBPMTrustedRootContainer is created under the cn=Security container.
Alternatively, manually create the cn=RBPMTrustedRootContainer,cn=Security
container (create an object called Trusted Root Container with object class
NDSPKI:Trusted Root inside the Security container), and then assign supervisor rights to
the container.
Types of User Categories in Identity Applications 31

Identity Applications Administrator
A user who has the rights to perform administrative tasks for the identity applications. This user has
the following attributes:

 Can manage Identity Manager, identity applications administration, and client settings.
 Can use iManager to administer workflow tasks, such as enabling, disabling, or terminating in-

process workflows.
 Does not have any special privileges within the identity applications.
 Does not need any special directory rights because it controls application-level access to the

identity applications from the Dashboard. Although a identity applications Administrator has
the ability to customize the look and feel of the applications, the identity applications use the
LDAP administrator credentials to modify the selections in the Identity Vault.

 Can manage the password for this account.
A feature of password self-service is password synchronization status. To enable the identity
applications Administrator to view the password synchronization status for other users (for
troubleshooting or other reasons), you should create a PasswordManagement group and assign
one or more users to this group. The members of this group are allowed to view the password
synchronization status of other users. If you choose to create this group, it must:
 Be named PasswordManagement.
 Be given the privileges to the Identity Vault. The group must have rights to read the user’s

eDirectory object attribute for users whose password synchronization status they need to
view.

IMPORTANT: NetIQ Self Service Password Reset (SSPR) is the default password management
program for Identity Manager. For more information, see “Managing Your Password” in the
NetIQ Identity Manager - User’s Guide to the Identity Applications.

Administrator and Manager Categories
Following are the general categories of administrators and managers used in identity applications:

Domain Administrator
An administrator who has the full range of capabilities within a particular domain, and is able to
perform all operations on all objects within the domain for all users.

Domain Manager
A delegated administrator who has the ability to perform selected operations for a subset of
authorized objects within the domain for all users.

Team Manager
A business line manager who can perform selected operations for a subset of authorized
objects within the domain, but only for a designated set of users (team members).

The following diagram illustrates the scope of identity applications administrators and managers:
32 Types of User Categories in Identity Applications

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#passwordmanagementidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

In this example, a Domain Administrator can perform all operations (create, modify, search, or
delete) on all the authorized objects for all identities. A Domain Manager can perform the selected
operations (create or search) on the selected authorized objects for all identities. A Team Manager
can perform the selected operations (edit or search) on the selected objects for the set of identities
that forms the team.

The identity applications do not restrict a Team Manager and a Domain Manager from accessing the
same operations or authorized objects in the domain. In this example, the Team Manager and the
Domain Manager have an access to search operations and some authorized objects.

Understanding Domain Administrators and Managers
The installation process initializes the Domain Administrators and Domain Managers system roles for
the identity applications. However, during installation, you can specify only identity applications
Administrator and allow all other assignments to default to this user. After installation, you can
assign accounts to the roles.

All identity applications domains have respective administrator and manager to perform the
operations on all objects within the domain. You must assign a user account to each administrators.

Following are the different administrators and managers used in identity applications:

Provisioning Administrator
Required
A Domain Administrator who can perform all possible actions for all objects within the
Provisioning domain.

Provisioning Manager
A Domain Manager who can perform only allowed actions for a subset of objects within the
Provisioning domain.
Types of User Categories in Identity Applications 33

Resource Administrator
Required
A Domain Administrator who can perform all possible actions for all objects within the Resource
domain.

Resource Manager
A Domain Manager who can perform only allowed actions for a subset of objects within the
Resource domain.

Role Administrator
Required
A Domain Administrator who can perform all possible actions for all objects (except for the
System Roles) within the Role domain.

Role Manager
A Domain Manager who can perform only allowed actions for a subset of objects within the
Role domain.

Security Administrator
Required
A Domain Administrator who can perform all possible actions for all objects within the Security
domain. The Security domain allows the Security Administrator to configure access permissions
for all objects in all domains within the Roles Based Provisioning Module.
The Security Administrator can configure s, and also assign domain administrators, delegated
administrators, and other Security Administrators.

NOTE: For testing purposes, NetIQ does not lock down the security model in Standard Edition.
Therefore, the Security Administrator is able to assign all domain administrators, delegated
administrators, and also other Security Administrators. However, the use of these advanced
features is not supported in production. In production environments, all administrator
assignments are restricted by licensing. NetIQ collects monitoring data in the audit database to
ensure that production environments comply. Furthermore, NetIQ recommends that only one
user be given the permissions of the Security Administrator.

Team Manager
A user designated for a team who can perform provisioning requests and approval tasks
associated with the team. Team manager is allowed to request or revoke permissions of team
members. An administrator can configure a Team Manager capabilities to delegate tasks for
team members.
Although a team might match a group that exists in the user directory, teams are not the same
thing as groups. A group or a member of a group cannot perform team capabilities except when
assigned to a team. For more information, see Managing Users in NetIQ Identity Manager -
User’s Guide to the Identity Applications.
34 Types of User Categories in Identity Applications

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#manageusersidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

For more information about:

 Assigning administrators, see Chapter 7, “Assigning the Identity Applications Administrators,”
on page 67.

 Managing teams and team managers, see Managing Teams in NetIQ Identity Manager - User’s
Guide to the Identity Applications.

Designers
Designers use the Designer for Identity Manager to customize the identity applications for an
enterprise. Designer is a tool aimed at information technology professionals such as enterprise IT
developers, consultants, sales engineers, architects or system designers, and system administrators
who have a strong understanding of directories, databases, and their information environment and
who act in the role of a designer or architect of identity-based solutions.

To create or edit workflow objects in Designer, the user needs the following rights on the
RequestDefs.AppConfig container for the specific User Application driver.

 [Entry Rights] Supervisor or Create
 [All Attribute Rights] Supervisor or Write

To initiate a workflow, the user must have Browse [Entry Rights] on the RequestDefs.AppConfig
container for the specific User Application driver or individually per request definition object if you
are using a delegated model.

Business Users
A business user is an authenticated user, such as an employee, a manager, a Helpdesk user or a
delegate or proxy for an employee or manager. Identity applications administrator has permissions
to enable capabilities for a user to perform on identity applications. For more information about
user capabilities and functions, see Accessing the Identity Applications in NetIQ Identity Manager -
User’s Guide to the Identity Applications.

Following are the users who has a special capabilities apart from their general capabilities:

Delegate user
A user to whom one or more specific tasks are delegated appropriate to the user’s rights. For
example, a team manager can delegate certain tasks to a team member who has required
permissions to do the delegated tasks. A Delegate user can view delegation assignments and act
on those assignments.

Proxy user
A user who acts in the role of another user for a specific period assuming assignee’s identity. All
of the rights of the original user apply to the proxy. The tasks owned by assignee does not carry
to the proxy user. For example, a team manager assigns someone from the team as a proxy, the
proxy user can assume the team manager’s role and act on the team manager’s tasks. A proxy
user can view proxy assignments and act on those assignments.
Types of User Categories in Identity Applications 35

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#manageteamsidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#howtoaccessidentitymanagerapplications
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

Helpdesk user
A user is a part of helpdesk for a particular client. This user can assist the client users on their
helpdesk tickets and resolve those tickets. A Helpdesk user can perform the following tasks with
appropriate Permissions:
 Reassign an approval request that is unattended for a long time
 Browse all tasks or filter tasks for a selected user
 Request permissions on behalf of other users
36 Types of User Categories in Identity Applications

3 3Understanding the Functionality of the
Identity Applications

Identity is the foundation of the identity applications. The applications use identity as the basis for
authorizing users’ access to systems, applications, and databases. Each user’s unique identifier—and
each user’s roles—have specific access rights to identity data. For example, users who are identified
as managers can access salary information about their direct reports, but not about other
employees in their organization.

 “Enabling Self-Service Activities for Users” on page 37
 “Providing Permissions to Users” on page 38
 “Ensuring Permission Assignments Comply with Your Standards” on page 40
 “Design and Configuration Tools” on page 40

NOTE: The identity applications comprise an application and not a framework. The Identity Manager
documentation provide instructions for modifying the applications. Modifications to areas not
outlined within the product documentation are not supported.

To know more on the capabilities of Identity Manager Dashboard, watch the following videos:

Part-1

http://www.youtube.com/watch?v=PrKa_gv5-0A

Part-2

http://www.youtube.com/watch?v=Cwjxg5ysT0M

Enabling Self-Service Activities for Users
The identity applications provide your users a convenient way to view and work with their identity
information. The activities that does not need any approval or accesses to create, modify, or delete
their information in identity applications are known as self-service activities. For example, changing
password which does not need any approval from the user’s manager.

Identity Manager Dashboard allows your users to control their self-service activities. Following are
the pages that help your users to perform their self-service activities:

Application
Lists all the applications with which user is associated.

Tasks
Shows all the user tasks that are pending for an action.
Understanding the Functionality of the Identity Applications 37

http://www.youtube.com/watch?v=PrKa_gv5-0A
http://www.youtube.com/watch?v=Cwjxg5ysT0M

Access
Allows user to view permissions or request for permissions. User can also view Request History
to find the status of requested permissions.

People
Allows user to view other users or groups in the system and other user’s Organization Chart.
This helps them to visualize how those users and groups are related.

Providing Permissions to Users
Permissions represent the accounts, roles, and resources that apply to users. Your organization
might automatically assign permissions or users might need to request them. For example, a user
might receive a computer as part of the job, but then need to request access to a specific software
application. Users request permissions through the Dashboard. Some requests require approval
from a single individual; others require approval from several individuals. In some instances, a
request can be fulfilled without any approvals.

Following are the different ways of providing permissions to your users with an appropriate
Administrator rights:

 Assigning permissions directly to users: You can assign a resource or a role to any user in the
system.

To assign roles, go to Administration > Roles and select the role that you want to assign. For
more information, see “Assigning Roles to Users” on page 174.

To assign resources, go to Administration > Resources and select the resource that you want to
assign. For more information, see “Assigning Resource to Users” on page 186.

 Approving user requests: When a user requests for any permission, based on the approval/
revocation process defined for the requested permission, a corresponding task appears in the
tasks list of approvers. If you are one of those approvers, you can approve the request that
allows the user to use the requested permission.
For more information about approval or revocation process, see “Changing the Approval or
Revocation Process” on page 186.
If user requests for a role that conflicts with the current role, SoD policy applied to the
conflicting role must be resolved. This invokes the SoD approval flow, if any. Based on the SoD
approval flow, SoD approvers see the corresponding task in their tasks list. On approving this
task they can allow user to use the requested permission. For more information, see
Chapter 19, “Separation of Duties Constraints,” on page 205.

 Provisioning based on workflow: A process that coordinates the approval or revocation of a
request for permissions is called as workflow. Each workflow can have automatic or manual
triggers and can include email notifications.
Workflows take into account the methods required for approving and revoking a role or
resource. For example, the SAP software application might require two levels of approval: first
from the user’s manager and second from the resource manager for the application.
For more information, see “Understanding Workflow-Based Provisioning” on page 39.
38 Understanding the Functionality of the Identity Applications

Understanding Workflow-Based Provisioning
Workflow-based provisioning allows you to initiate workflow processes to manage the approval and
revocation of user access to your organization’s secure systems.

Identity Manager Dashboard allows users to make provisioning requests (Access > Request). When a
provisioning request requires approval from one or more individuals in an organization, the request
starts one or more workflows. The workflows coordinate the approvals needed to fulfill the request.
Some provisioning requests require approval from a single individual; others require approval from
several individuals. In some instances, a request can be fulfilled without any approvals.

By default, the New Requests page does not display any provisioning requests. To configure a
provisioning request, a designer familiar with your business needs creates a provisioning request
definition, which binds the resource to a workflow.

The designer can configure workflows that proceed in one of the following ways:

 Sequential fashion, with each approval step being performed in order
 Parallel fashion, which allows more than one user to act on a workflow task concurrently

Identity Manager provides a set of Eclipse-based tools for designing the data and the flow of control
within the workflows. In addition, Identity Manager provides a set of Web-based tools that allow
users to view existing provisioning requests and manage workflows that are in process. For more
information, see “Design Constraints” on page 55

The Provisioning Administrator is responsible for managing the workflow-based provisioning
features of identity applications. For more information, see Chapter 2, “Types of User Categories in
Identity Applications,” on page 31.

Understanding a Client Helpdesk
The Dashboard includes Helpdesk to help users troubleshoot any issues while performing their tasks
in Identity Manager.

Some of the tasks that Helpdesk can perform are:

 Reassign an approval request that is unattended for a long time
 Browse all tasks or filter tasks for a selected user
 Request permissions on behalf of other users

Users can contact Helpdesk by using the Helpdesk email ID, contact number, or raise a Helpdesk
ticket. When a client user raises a ticket, the Helpdesk user receives a notification on the Dashboard.
By default, Helpdesk is not configured. Administrators need to configure Helpdesk for the clients
configured in the system.

After setting up a Helpdesk, the administrator can customize the Helpdesk information for the
clients from the Dashboard client settings. To set up a Helpdesk and configure the Helpdesk
information, see “Configuring a Client Helpdesk” on page 148.
Understanding the Functionality of the Identity Applications 39

Ensuring Permission Assignments Comply with Your
Standards

Compliance is the process of ensuring that an organization conforms to relevant business laws and
regulations. One of the key elements of compliance is attestation, which provides a method for
organizations to verify that personnel are fully aware of organizational policies and are taking steps
to comply with these policies. By requesting that employees or administrators regularly attest to the
accuracy of data, management ensures that personnel information such as user profiles, role
assignments, and approved SoD exceptions are up-to-date and in compliance.

NOTE: For compliance and attestation processes, we recommend using NetIQ Identity Governance
(formerly Access Review) instead of the identity applications. Identity Governance enables
administrators and managers to easily collect all user and access information in one central location
and certify that each user has only the level of access that they need to do their job. Following the
principle of least privilege, Access Review helps you ensure that your users have focused access to
those applications and resources that they use and cannot access resources that they do not need to
access. You can review all permissions assigned to your employees, either individually or as a group,
and decide whether those permission assignments are appropriate. For more information, see the
NetIQ Identity Access Governance documentation.

Design and Configuration Tools
The various administrators can use the following tools to design and configure the Identity
Applications.

Table 3-1 Tools for Designing and Configuring the identity applications

Tool Purpose

Designer for Identity Manager A powerful, graphical toolset for configuring and deploying
Identity Manager. The following plug-ins are designed to help
you configure the identity applications:

 Directory Abstraction Layer editor: Lets you define the
Identity Vault objects for your identity applications.

 Provisioning Request Definition editor: Lets you create
workflows for provisioning request definitions. Also allows
you to customize the forms by which users make and
approve requests and email templates.

 User Application driverProvisioning view: Lets you import,
export, deploy, and migrate directory abstraction layer
and provisioning requests to the .

 Role editor: Lets you create and configure roles for use
within the identity applications.

 Resource editor: Lets you create and configure resources
for use within the identity applications.

For more information, see the NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity Applications.
40 Understanding the Functionality of the Identity Applications

https://www.microfocus.com/LAGBroker?agAppNa=netiqwww&c=netiq/name/password/uri&%22https://www.netiq.com/documentation/access-review-25/%22
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

iManager A Web-based administration console. The following plug-ins are
designed to help you configure and administer the identity
applications:

 Provisioning Request Configuration plug-in: Provides a
read-only view of provisioning request definitions d
through Designer and allows you to mark them active or
inactive.

 Workflow Administration plug-in: Provides a browser-
based interface that lets you view the status of workflow
processes, reassign activities within a workflow, or
terminate a workflow in the event that it is stopped and
cannot be restarted.

 Provisioning Team plug-in: Not supported with this release
of the Roles Based Provisioning Module. The Team
Configuration user interface on the Administration tab of
the identity applications replaces this iManager tool.

 Provisioning Team Request plug-in: Not supported with
this release of the Roles Based Provisioning Module. The
Team Configuration user interface on the Administration
tab of the identity applications replaces this iManager
tool.

For more information, see Part IV, “Configuring and Managing
Provisioning Workflows,” on page 251

Identity Manager Dashboard A Web-based administration console that allows you to
configure, manage, and customize the identity applications.

 Administration: Allows you to create roles, resources,
SoD, Permission Reconciliation settings. For more
information, see Part III, “Identity Applications
Administration,” on page 167.

 Settings: Customize and configure client and helpdesk
settings. Also, enable dashboard widgets to your users.
For more information, see “Configuring Client Settings
Mode” on page 133.

Tool Purpose
Understanding the Functionality of the Identity Applications 41

42 Understanding the Functionality of the Identity Applications

4 4Understanding the Back-end Functions for
the Identity Applications

The identity applications rely on a number of components acting together:

 “User Interfaces” on page 44
 “Directory Abstraction Layer” on page 45
 “Workflow Engine” on page 45
 “SOAP Endpoints” on page 45
 “Application Server” on page 46
 “Database” on page 47
 “User Application Driver” on page 47
 “Role and Resource Service Driver” on page 48
 “Multi-Threaded Role and Resource Service Driver” on page 49
 “Designer for Identity Manager” on page 51
 “iManager” on page 51
 “Identity Manager Engine” on page 51
 “Identity Vault” on page 51

The following figure shows how these components fit into the overall architecture of the identity
applications.
Understanding the Back-end Functions for the Identity Applications 43

User Interfaces
Users interact with the identity applications through a Web browser, based on Java applications and
a Tomcat application server. Identity Manager Dashboard serves as a primary portal to the identity
applications. The application server on which the applications run provides various services to the
application as a whole, such as scalability through clustering, database access via JDBC, and support
for certificate-based security.
44 Understanding the Back-end Functions for the Identity Applications

Directory Abstraction Layer
The directory abstraction layer provides a logical view of the Identity Vault data. You define a set of
entities and their related attributes based on the Identity Vault objects that you want users to view,
modify, or delete in the identity applications. The Directory Abstraction layer:

 Performs all of the LDAP queries against the Identity Vault. This isolates presentation-layer logic
from the Identity Vault, so that all requests for identity data go through the directory
abstraction layer.

 Checks constraints and access control on data requests made with the identity applications.
 Caches runtime configuration and entity-definition data obtained from the Identity Vault. See

“Configuring Caching and Cluster Settings” on page 229.

You use the directory abstraction layer editor plug-in (available in Designer for Identity Manager) to
define the structure of the directory abstraction layer data definitions. To learn more, see the
section on the directory abstraction layer editor in the Configuring the Directory Abstraction Layer in
the NetIQ Identity Manager - Administrator’s Guide to Designing the Identity Applications.

Workflow Engine
The Workflow Engine is a set of Java executables responsible for managing and executing steps in an
administrator-defined workflow and keeping track of state information (which is persisted in a
database). When the necessary approvals have been given, the Provisioning System provisions the
resource as requested.

During the course of workflow execution, the Workflow Engine can send one or more email
messages to notify users of changes in the state of the workflow. In addition, it can send email
messages to notify users when updates have been made to proxy, delegate, and availability settings.

You can edit an email template in Designer for Identity Manager or in iManager and then use this
template for email notifications. At runtime, the Workflow Engine retrieves the template from the
directory and replaces tags with dynamic text suitable for the notification. Additional details about
the Workflow Engine, including how to configure and manage provisioning workflows, are in Part IV,
“Configuring and Managing Provisioning Workflows,” on page 251.

NOTE: Identity Manager 4.8 ships Workflow Engine as a separate service. The Workflow Engine
persists the workflow state information in a new database named igaworkflowdb. Identity
Applications obtain Provisioning Request history and approval task information from
igaworkflowdb. All features supported by the existing Workflow Engine such as EMail Based
Approval and EMail Notification continue to work in a similar way with the new Workflow Engine
service. By default, the Workflow Engine service is installed as part of the Identity Applications
installation. For detailed information, see Workflow Service.

SOAP Endpoints
The identity applications provide the following SOAP endpoints to allow third-party software
applications to take advantage of identity applications services:
Understanding the Back-end Functions for the Identity Applications 45

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#configuringdirectoryaccesslayer
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Application Server
The application server provides the runtime framework in which the identity applications, directory
abstraction layer, and Workflow Engine execute. The identity applications are packaged as a Java
Web Application Archives, or WAR files.The installation process enables you deploy the WAR files to
the application server.

The following WAR files apply to the URL for a component of the identity applications:

 IDMProv for the User Application
 idmdash for the Dashboard
 idmadmin for Identity Applications Administration

When a user interacts with the idmdash or idmadmin applications, it queries the underlying
IDMProv.war file and fetches the information for the user. IDMProv.war contains the REST and SOAP
APIs where idmdash and idmadmin contains the information that provides the user interface.

The identity applications run on an Apache Tomcat application server, included in the installation kit.
You can also use your own installation of Tomcat. For more information about the application server
requirements, see Considerations for Installing Identity Manager Components in the NetIQ Identity

SOAP Endpoint Description

Provisioning Web Service To support third-party access, the provisioning Workflow Engine
includes a Web service endpoint. The endpoint offers all provisioning
functionality (for example, allowing SOAP clients to start a new
approval flow, or list currently executing flows).

Metrics Web Service The workflow engine also includes a Web Service for gathering
workflow metrics. The addition of the Metrics Web Service to the
Workflow Engine lets you monitor an approval flow process. In
addition, it provides indicators the business manager can use to
modify the process for optimal performance.

Notification Web Service The Provisioning System includes an email notification facility that
lets you send email messages to notify users of changes in the state
of the provisioning system, as well as tasks that they need to perform.
To support third-party access, the notification facility includes a Web
service endpoint that lets you send an email message to one or more
users.

Directory Abstraction Layer (VDX)
Web Service

The directory abstraction layer provides a logical view of the Identity
Vault data. To support access by third-party software applications,
the directory abstraction layer includes a Web service endpoint called
the VDX Web Service. This endpoint lets you access the attributes
associated with entities defined in the directory abstraction layer. It
also lets you perform ad hoc searches for entities and execute
predefined searches called global queries.

Role Web Service To support access by third-party software applications, the Role
subsystem includes a Web service endpoint called the Role Web
Service. It supports a wide range of role management and SoD
management functions.
46 Understanding the Back-end Functions for the Identity Applications

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#considerationsforinstallingidmcomponents
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front

Manager Setup Guide for Linux or Understanding the Installation and Configuration Process for
Identity Manager Server, Identity Applications, and Identity Reporting Components in the NetIQ
Identity Manager Setup Guide for Windows.

Database
Most user information is stored in the Identity Vault. However, the identity applications rely on a
separate database to store the following information:

 Configuration data for the identity applications, such as Web page definitions and preference
values

 State of a workflow

NOTE: The actual workflow definitions are stored in the Identity Applications driver in the
Identity Vault.

For more information about installing and configuring database, see Installing and Configuring
Identity Manager Components in the NetIQ Identity Manager Setup Guide for Linux or
Understanding the Installation and Configuration Process for Identity Manager Server, Identity
Applications, and Identity Reporting Components in the NetIQ Identity Manager Setup Guide for
Windows.

User Application Driver
The User Application driver is responsible for:

 Storing application-specific environment configuration data.
 Notifying the directory abstraction layer when important data values change in the Identity

Vault. This causes the directory abstraction layer to update its cache.

You can configure the User Application driver to:

 Allow events in the Identity Vault to trigger workflows.
 Communicate the success or failure of a workflow's provisioning activity back to the identity

applications database, which allows users to view the final status of their requests.
 Start workflows automatically in response to changes of attribute values in the Identity Vault.

The User Application driver is both a runtime component and a storage wrapper for directory
objects (comprising the runtime artifacts of the identity applications).

Artifacts Description

Driver Set Object Every Identity Manager installation requires that drivers be grouped into
driver sets. Only one driver set can be active at a time (on a given directory
server). The drivers within that set can be toggled on or off individually
without affecting the driver set as a whole. The User Application driver like
any other Identity Manager driver, must exist inside a driver set. The driver
set is not automatically created by the identity applications; you must create
one, then create the User Application driver within it.
Understanding the Back-end Functions for the Identity Applications 47

/documentation/identity-manager-48/setup_windows/data/understanding-the-install-and-configure-process.html
/documentation/identity-manager-48/setup_windows/data/understanding-the-install-and-configure-process.html
/documentation/identity-manager-48/setup_windows/data/understanding-the-install-and-configure-process.html
/documentation/identity-manager-48/setup_windows/data/understanding-the-install-and-configure-process.html
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#installingandconfiguringidmcomponents
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#installingandconfiguringidmcomponents
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

Role and Resource Service Driver
The identity applications use the Role and Resource Service Driver to manage back-end processing of
resources:

 Starts an SoD workflow and waits for approvals in situations where a role request requires an
SoD workflow.

 Starts a role assignment workflow and waits for approvals in situations where a role request
requires a workflow.

 Adds users to and remove users from roles. To do this, the Role and Resource Service driver:
 Waits for a start date before making assignments
 Terminates a role assignment when the end date is reached

 Adds and removes higher-level and lower-level role relationships.
 Adds and removes role assignments for groups.
 Adds and removes role assignments for containers.
 Maintains all role membership information for indirect role assignments, including:

 Role assignments acquired through role relationships

Identity The User Application driver object is the container for a variety of artifacts.
The User Application driver implements Publisher and Subscriber channel
objects and policies. The Publisher channel is not used by the identity
applications but is available for custom use cases.

App Config Object The AppConfig object is a container for the following identity applications
configuration objects.

 RequestDefs: Container for Provisioning Request Definitions. The
definitions stored here (as XML) represent the classes of requests that
end users with appropriate rights can instantiate through the identity
applications.

 WorkflowDefs: Container for Workflow objects, including design-time
descriptions plus any template or unused flows.

 ResourceDefs: Container for Provisioned Resource definitions,
including design-time descriptions plus any templates or unused
targets.

 ServiceDefs: Container for Service Definition objects, which wrap Web
Services called by workflows.

 DirectoryModel: Directory abstraction layer objects that represent
different types of content of the Identity Vault that can be exposed in
the identity applications.

 AppDefs: Container for configuration objects that initialize the runtime
environment, such as cache configuration information and email
notification properties.

 ProxyDefs: Container for proxy definitions.
 DelegateeDefs: Container for delegate definitions.

Artifacts Description
48 Understanding the Back-end Functions for the Identity Applications

 Role assignments that result from membership in groups
 Role assignments that result from membership in containers

 Grants and revokes entitlements to and from users according to their role memberships.
 Maintains additional reporting information that is associated with each role assignment.
 Maintains additional reporting information on objects in eDirectory, such as:

 Approval information
 Where indirect assignments come from
 Where entitlements come from

 Logs events to an auditing service.
 Cleans up processed requests after a user-specified amount of time.
 Recalculates role assignments based on dynamic and nested groups on a polled basis.

Multi-Threaded Role and Resource Service Driver
A traditional Role and Resource Service driver contains a single thread of control for managing all
driver events, such as role and resource requests. A multi-threaded driver works on multiple unique
data sets so that requests for different unique data sets can be simultaneously processed. To
accomplish this, the driver uses worker threads. The main thread listens to the incoming requests
and is responsible for passing on the requests to the appropriate worker threads. Each worker thread
can execute independently on a unique identity data set.
Understanding the Back-end Functions for the Identity Applications 49

A unique identity data set comprises of data, such as users, groups, and containers, that is different
based on certain attributes. When different unique identity data sets are configured in your
environment, the driver uses worker threads to accomplish the tasks belonging to different disjoint
sets at the same time. In addition, it remains responsive while doing lengthy or memory intensive
operations. For example, while recalculating resources for a particular user, a multi-threaded driver
can perform role or resource assignments on other users belonging to a different data set.

IMPORTANT: When the driver receives role and resource associations and role processing events,
such as creation or deletion of roles, it starts processing these events only after completing the
processing of all the events that are already submitted to the worker threads. This prevents any
adverse impact on other operations. Similarly, it does not take up any new events until it finishes
processing the current event and starts working in a single-thread mode.

Identity Vault

Clean-up and
dynamic group

handling processes

Is this a role
operation or a resource

to role association
operation?

Yes

No

Role and
Resource Driver

Role and
Resource Driver

Set 1 Set 2 Set n

Divide operations based
on unique data sets
50 Understanding the Back-end Functions for the Identity Applications

By default, the driver is enabled for multi-threaded service. To configure the driver, see Chapter 12,
“Configuring a Multi-Threaded Role and Resource Service Driver,” on page 157.

Designer for Identity Manager
Designer for Identity Manager provides a set of plug-ins that you can use to define the directory
abstraction layer objects and provisioning requests and their associated workflows. For more
information, see “Design and Configuration Tools” on page 40.

iManager
iManager provides a set of plug-ins you can use to view provisioning requests and manage their
associated workflows. For more information, see “Design and Configuration Tools” on page 40.

Identity Manager Engine
The Identity Manager engine provides the runtime framework that monitors events in the Identity
Vault and connected systems. It enforces policies and routes data to and from the Identity Vault. The
identity applications is a connected system. Communication between the Identity Vault, the
directory abstraction layer, and the Workflow Engine occurs through the User Application driver.

Identity Vault
The Identity Vault is the repository for:

 User data
 Other identity data
 Identity Manager driver set
 User Application driver

The identity applications relies on various Identity Vault objects, so it is necessary to extend the
eDirectory schema to accommodate the custom LDAP objects and attributes required by the identity
applications.

The identity applications schema extension occurs automatically as part of the install. The custom
objects and attributes are populated with default values after the User Application driver is installed
and activated.
Understanding the Back-end Functions for the Identity Applications 51

52 Understanding the Back-end Functions for the Identity Applications

II IIPreparing the Identity Applications for
Use

This section helps you set up your production environment for the identity applications.

 Chapter 5, “Understanding the Design Needs,” on page 55
 Chapter 6, “Configuring Security in the Identity Applications,” on page 57
 Chapter 7, “Assigning the Identity Applications Administrators,” on page 67
 Chapter 8, “Setting Up Logging in the Identity Applications,” on page 71
 Chapter 9, “Tuning the Performance of the Applications,” on page 97
 Chapter 10, “Customizing the Identity Applications for Your Enterprise,” on page 113
 Chapter 11, “Setting Up the Dashboard for Identity Applications,” on page 155
 Chapter 12, “Configuring a Multi-Threaded Role and Resource Service Driver,” on page 157
 Chapter 13, “Configuring Identity Applications Clustering and Permission Clustering,” on

page 163

For more information about installing the identity applications, see Considerations for Installing
Identity Manager Components in the NetIQ Identity Manager Setup Guide for Linux or
Understanding the Installation and Configuration Process for Identity Manager Server, Identity
Applications, and Identity Reporting Components in the NetIQ Identity Manager Setup Guide for
Windows.
Preparing the Identity Applications for Use 53

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#considerationsforinstallingidmcomponents
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#considerationsforinstallingidmcomponents
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/setup_windows/data/understanding-the-install-and-configure-process.html
https://www.netiq.com/documentation/identity-manager-48/setup_windows/data/understanding-the-install-and-configure-process.html

54 Preparing the Identity Applications for Use

5 5Understanding the Design Needs

Each major subsystem can have many instances and many ways of connecting. Not every possible
layout is supported. This section provides information about design constraints and using a high-
availability environment.

 “Design Constraints” on page 55
 “High Availability Design” on page 56

Design Constraints
In general, you install the Identity Manager components on specific servers, as described in the
NetIQ Identity Manager Setup Guide for Linux or NetIQ Identity Manager Setup Guide for Windows.
When configuring the identity applications, you also need to consider the following architectural
constraints:

One user container per identity applications instance
No instance of the identity applications can service, such as search, query, or add users to, more
than one user container. Also, a user container association with the applications is meant to be
permanent.

One User Application driver per identity applications instance
No User Application driver can be associated with more than one instance of the identity
applications, except when the applications are installed on sister nodes of the same cluster. In
other words, Identity Manager does not support a one-to-many mapping of drivers to identity
applications instances.

The first constraint enforces a high degree of encapsulation in identity applications design. Suppose
you have the following organizational structure:

Figure 5-1 Sample Organizational Structure

During installation of the identity applications, you are asked to specify the top-level user container
that your installation looks for in the Identity Vault. In this case, you could specify
ou=Marketing,o=ACME or (alternatively) ou=Finance,o=ACME identity applications. You cannot
specify both. All searches and queries (and administrator logins) for the are connected to whichever
container you specify.
Understanding the Design Needs 55

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

NOTE: In theory, you could specify a scope of o=ACME in order to encompass Marketing and Finance.
But in a large organization, with potentially many ou containers (rather than just two relating to
Marketing and Finance), this is not likely to be practical.

It is possible to create two independent installations of the identity applications that share no
resources in common: one for Marketing and another for Finance. Each installation would have its
own database and its own appropriately configured User Application driver. Also, each would be
administered separately, possibly having unique User Application drivers.

If you truly need to place Marketing and Finance within the same scope for one installation, you can
consider one of the following tactics:

 Insert a new container object (for example, ou=MarketingAndFinance) in the hierarchy,
above the two sibling nodes; then point to the new container as the scope root.

 Create a filtered replica (a special type of eDirectory) that combines the needed parts of the
original ACME, and point the identity applications at the replica’s root container. For more
information about filtered replicas, see the eDirectory Administration Guide (https://
www.netiq.com/documentation/edirectory-92/edir_admin/data/a5lhibw.html).

If you have questions about a particular system layout, contact your NetIQ representative for
assistance or advice.

High Availability Design
You can provide high availability of the identity applications by installing in a cluster. Set up a cluster
so that each node runs one instance of the identity applications. The instances are all coequals
(peers). The support automatic failover, where an interrupted workflow can resume after the loss of
a cluster node.

For more information about using a clustered environment, see the following sections:

 “Planning Your Installation ” in the NetIQ Identity Manager Setup Guide for Linux.
 “Planning Your Installation ” in the NetIQ Identity Manager Setup Guide for Windows.
 “High Availability Design” on page 56
 “Configuring Caching and Cluster Settings” on page 229
56 Understanding the Design Needs

https://www.netiq.com/documentation/edirectory-92/edir_admin/data/a5lhibw.html
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#planninganidentitymanagerinstallation
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#planninganidentitymanagerinstallation
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

6 6Configuring Security in the Identity
Applications

Moving from pre-production to production usually involves hardening the security aspects of the
system. In sandbox testing, you might use regular HTTP to connect the User Application driver to the
application server, or you might use a self-signed certificate (as a temporary measure) for driver/
app-server communication. In production, on the other hand, you probably use secure connections,
with server authentication based on your company’s Verisign* (or other trusted provider) certificate.

 “Understanding Security in the Identity Applications Environment” on page 57
 “Using Secure Sockets for Identity Applications Connections to the Identity Vault” on page 59
 “Enabling SSL for User Access” on page 60
 “Enabling SOAP Security” on page 60
 “Enabling Authentication” on page 61
 “Encrypting Sensitive Identity Applications Data” on page 61
 “Preventing XSS Attacks” on page 62
 “Modifying Trustee Rights” on page 63
 “Updating a Password for a Database User on Tomcat” on page 64

Understanding Security in the Identity Applications
Environment

It is typical for X.509 certificates to be used in a variety of places in the identity applications
environment, as shown in the following diagram.
Configuring Security in the Identity Applications 57

All communication between the identity applications and the Identity Vault is secure, using
Transport Layer Security, by default. The installation of the Identity Vault (eDirectory) certificate into
the Tomcat application server keystore is done automatically during installation time. Unless you
specify otherwise, the installer places a copy of the eDirectory certificate in the JRE’s default cacerts
store. For more information, see the NetIQ Identity Manager Setup Guide for Linux or NetIQ Identity
Manager Setup Guide for Windows.

The server certificate needs to be in several places, if communications are to be secure, as shown in
the diagram. Different setup steps might be needed depending on whether you intend to use a self-
signed certificate in the various places in the diagram shown with a Application Server cert box, or
you intend to use a certificate issued by a trusted certificate authority (CA) such as Verisign.
58 Configuring Security in the Identity Applications

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

Using Secure Sockets for Identity Applications Connections
to the Identity Vault

By default, secure sockets are used for communication between the identity applications server and
the Identity Vault. However, in some environments, not all communication needs to be secured. For
example, if the identity applications and Identity Vault servers are on an isolated network, and the
only ports available to the outside are the HTTP ports, it might be acceptable for some
communication between the two servers to be accomplished using non-secure sockets. Some
aspects of the application will always use a secure connection (for example, a user changing a
password) even though the setting might indicate that secure connections are not required. Turning
off secure connections, especially for user connections, can greatly increase performance and
scalability. If, in a particular environment, there are many concurrent logins, and communication
between the identity applications server and the Identity Vault server have been secured using the
network setup, then turning off the secure connection for user connections greatly increase the
number of concurrent logins that can be processed. We recommend that this option be used only
when there is actual evidence of scaling or performance problems in the environment, and adding
additional eDirectory servers is not an option.

Additionally, secure connections can be turned off for administrative connections. These
connections are used for general queries on the Identity Vault server that do not require user
credentials. These connections are pooled and used round-robin. The bind over a secure connection
is only done once at application startup (or possibly again later on if the connection becomes
unresponsive) and so does not represent the scalability issues that can arise with the user
connections. However, the time it takes to encrypt and decrypt the data at both ends does add
overhead. We recommend that the default setting be used, unless there is a need to gain extra
performance.

Secure communications for administrative and user connections must be disabled in both the
identity applications and in iManager.

Disabling Secure Communications Using the Configuration
Update Utility
To disable the secure administrative and user connections in the identity applications:

1 Run the configuration update utility:
 Linux: configupdate.sh
 Windows: configupdate.bat

Launches Configuration Update utility.
2 Deselect Secure Admin Connection and Secure User Connection.
3 Click OK.
Configuring Security in the Identity Applications 59

Disabling Secure Communications Using iManager
To disable the requirement for secure LDAP (LDAPS) connections for administrative and user
connections to eDirectory using iManager:

1 Log into your eDirectory .
2 Navigate to the LDAP group object and display its properties.
3 Click General.
4 Deselect Require TLS for Simple Binds with Password.

NOTE: In a multi-server eDirectory , disabling TLS on the LDAP group removes the TLS requirement
from all servers. If you want mixed TLS requirements for each individual server in your , you must
enable the TLS requirement on each server.

Enabling SSL for User Access
The identity applications use HTML forms for authentication. As a result, user credentials are
exposed during log in. We strongly recommend that you enable SSL to protect sensitive information.
For more information, see “Checklist for Ensuring SSL Connections” on page 621.

Enabling SOAP Security
1 In IDMProv.war, find the web.xml file and open it in a text editor.
2 At the bottom of the file, uncomment the following section:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>IDMProv</web-resource-name>
 <description>IDM Provisioning Edition</description>
 <url-pattern>/*</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

3 Save the file and archive, then restart Tomcat.
60 Configuring Security in the Identity Applications

Enabling Authentication
Enabling Mutual Authentication
The Identity Applications does not support client certificate-based authentication out-of-the-box.
That functionality can be obtained, however, by using NetIQ Access Manager. See your NetIQ
representative for more information. See also “Enabling Third-Party Authentication and Single Sign-
On” on page 61.

Enabling Third-Party Authentication and Single Sign-On
You can configure Identity Manager to work with NetIQ Access Manager using SAML 2.0
authentication. This capability enables using a non-password-based technology to log in to the
identity applications through Access Manager. For example, users can log in through a user (client)
certificate, such as from a smart card.

Access Manager interacts with One SSO Provider (OSP) in Identity Manager to map the user to a DN
in the Identity Vault. When a user logs in to the identity applications through Access Manager,
Access Manager can inject a SAML assertion (with the user’s DN as the identifier) into an HTTP
header and forwards the request to the identity applications. The identity applications use Proxied
Control Authorization to establish the LDAP connection with the Identity Vault, see NetIQ eDirectory
Administration Guide (https://www.netiq.com/documentation/edirectory-92/edir_admin/data/
b1irejkq.html). For information on configuring Access Manager to support this capability, refer to the
Access Manager documentation.

Accessory portlets that allow single sign-on authentication based on passwords do not support
single sign-on when SAML assertions are used for identity application authentication.

For more information about configuring Identity Manager to work with Access Manager, see “Using
SAML Authentication for Single Sign-on” on page 582.

Encrypting Sensitive Identity Applications Data
Any sensitive information associated with the identity applications that is stored persistently is
encrypted by using the symmetric algorithm AES-128. The master key itself is protected by
password-based cryptography using PBEWithSHA1AndDESede. The password is never persisted or
stored out of memory.

Information that is encrypted includes (but is not limited to):

 LDAP administrator user password
 LDAP guest user password
 DSS trusted CA keystore password
 DSS signature key keystore password
 DSS signature key entry password
Configuring Security in the Identity Applications 61

https://www.netiq.com/documentation/edirectory-92/edir_admin/data/b1irejkq.html
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/b1irejkq.html
https://www.netiq.com/documentation/access-manager-42/

However, in a cluster environment, if session failover is enabled, some sensitive data (for example, a
login-password for single sign-on) in the user session can be transferred on the network during
session replication. This can expose sensitive data to network sniffers. To protect this sensitive data,
do one of the following:

 Enable encryption for JGroups. For information about enabling JGroups encryption, see JGroups
Encrypt (https://wiki.jboss.org/wiki/Wiki.jsp).

 Make sure that the cluster is behind a firewall.

Preventing XSS Attacks
The identity applications supports the concept of XSS (Cross-Site Scripting) blacklists to allow you to
prevent scripting attacks. The XSS blacklists prevent XSS injection in the free text input fields within
the Detail portlet, approval flow, and role assignments pages within the application.

The identity applications provides default values for two blacklists, one for the Detail Portlet, and
one for the workflow system (which handles the approval flow and role assignments pages).
However, you can customize the blacklists to suit the requirements of your environment.

To customize the either of the blacklists, you need to enter the words or characters you want to
block in the sys-configuration-xmldata.xml file. In Tomcat, you can find this file in the
<tomcat_home>/conf folder. Open the file with a UTF-8 friendly editor.

To modify the blacklist for the Detail portlet, open <tomcat_home>/conf/ism-
configuration.properties in a UTF-8 editor, and find the
com.netiq.xss.blacklist.detailportlet property:

<property>
 <key>com.netiq.xss.blacklist.detailportlet</key>
 <value>...</value>
</property>
The text node of <value> is the blacklist for Detail portlet. The blocked words are separated by
comma (for example, blocked_word1,blocked_word2,...). The default setting is:

",<
This means that double quote and < are disallowed.

To modify the blacklist for the approval flow and role assignments pages, locate the
com.netiq.xss.blacklist.workflow property.

<property>
 <key>com.netiq.xss.blacklist.workflow</key>
 <value>...</value>
</property>
The syntax is the same. The default value is:

<
which means that < is disallowed.

If you decide to customize the blacklists, be careful not to remove the default values. If you remove
these values, you will make the lists less restricted, and therefore increase the risk of XSS attacks.
62 Configuring Security in the Identity Applications

https://wiki.jboss.org/wiki/Wiki.jsp
https://wiki.jboss.org/wiki/Wiki.jsp

Modifying Trustee Rights
To perform tasks within the identity applications, users must have specific trustee rights.

Modifying the Trustee Rights for User Preferences
To allow user preferences to be saved, the administrator must ensure that the permissions on the
srvprvUserPrefsPlus and srvprvQueryList attributes are set so that the user is able to write to these
attributes. The necessary rights should be set for [This] at the root level, since [This] is a special alias
to the object itself, causing only the user to have rights to modify its own preferences. To set the
proper permissions, the administrator needs to modify the trustees for these attributes in iManager,
as shown below:

The srvprvUserPrefsPlus property has no space limitations, so it can save a large amount of user
preference information. If you have used the srvprfUserPrefs property in a previous release, this
property will be migrated to srvprvUserPrefsPlus the first time a user saves new preferences in the
identity applications.

Modifying the Trustee Rights for a Provisioning Request
Definition
To view the details and comments associated with a task in the Task Notifications section of the Work
Dashboard tab, the Domain Administrator or Delegated Administrator must have the proper rights
to the provisioning request definition. In particular, the user must have the
nrfAccessMgrTaskAddressee right to the provisioning request definition, with write access enabled.
To set the proper permissions, the administrator needs to modify the trustees for the provisioning
request definition, as described below:

1 Log into iManager as an administrator.
2 Select Modify Trustee from the Rights left-navigation menu.
3 Browse to the provisioning request definition.
4 If necessary, click Add Trustee to add the user.
5 Click on the Assign rights link.
Configuring Security in the Identity Applications 63

Notice that nrfAccessMgrTaskAddressee is not listed with the write permission checked, which
means that the user does not have the proper rights for the provisioning request definitiion.

6 Click the Add Property button.
7 Check the check box for Show all properties in schema.
8 Select nrfAccessMgrTaskAddresss.
9 Check the write checkbox for Assigned Rights.

10 Click Done.
11 Click OK.

Restricting a User from Viewing Provisioning Request Definitions
and Roles in Identity Applications
Using Designer or iManager, you can restrict users from viewing roles or provisioning request
definitions (PRDs) in Identity Applications for which they are not assigned as trustees. Trustee
assignments can be configured for users, groups, and containers.

 To restrict a user from viewing roles, control the users’ permission to the RoleDefs container by
setting the user as a trustee of individual roles in the Identity Vault.

 To restrict a user from viewing PRDs for which the user is not assigned as a trustee, modify the
trustee assignments for the RequestDefs container.

Perform the following steps to modify the trustee assignments for the RoleDefs container in
iManager:

1 In Roles and Tasks, select Rights > Modify Trustees.
2 Browse to the container whose trustee list you want to modify, and then click OK.

This opens a list of the object’s currently assigned trustees. For example,
RoleDefs.AppConfig.UserApplication Driver.driverset1.system.

3 Add a trustee to the container by clicking Add Trustee, and then select [Public].
4 Click Assigned Rights to assign the trustee's rights.
5 Deselect all options under Assigned Rights for the [All Attributes Rights] property.
6 Select Browse for the [Entry Rights] property. Ensure that all assigned rights are deselected and

only Inherit is selected.
7 Click Done.

To restrict a user from viewing PRDs, repeat Steps 1-7 for the RequestDefs container.

Updating a Password for a Database User on Tomcat
Perform the following actions to update the database user's password in the database server.

1 Stop Tomcat.
2 Update the password in the database server.
3 With Java in your path, enter the following command:
64 Configuring Security in the Identity Applications

java -jar idm/apps/tomcat/lib/idm-datasource-factory-1.2.0-uber.jar
%newpassword%

4 Copy the encrypted output of the password to the server.xml file.
5 Save and close the file.
6 Start Tomcat.
Configuring Security in the Identity Applications 65

66 Configuring Security in the Identity Applications

7 7Assigning the Identity Applications
Administrators

The identity applications support several types of users. To make administrative-type changes to the
applications, you must be assigned to at least one of the administrator or manager roles.

 “Understanding the Administrators of the Identity Applications” on page 67
 “Changing the Default Administrator Assignments after Installation” on page 68

To assign administrators using Identity Manager Dashboard, see “Assigning Administrators in Identity
Applications” on page 235.

Understanding the Administrators of the Identity
Applications

The installation process initializes the Domain Administrators and Domain Managers system roles for
the identity applications. However, during installation, you can specify only the identity applications
administrator and allow all other assignments to default to this user. After installation, you can
assign accounts to the roles.

You must assign an account to the roles that have an Administrator title.

Provisioning Administrator
Required
A Domain Administrator who can perform all possible actions for all objects within the
Provisioning domain.

Provisioning Manager
A Domain Manager who can perform only allowed actions for a subset of objects within the
Provisioning domain.

Resource Administrator
Required
A Domain Administrator who can perform all possible actions for all objects within the Resource
domain.

Resource Manager
A Domain Manager who can perform only allowed actions for a subset of objects within the
Resource domain.

Role Administrator
Required
A Domain Administrator who can perform all possible actions for all objects (except for the
System Roles) within the Role domain.
Assigning the Identity Applications Administrators 67

Role Manager
A Domain Manager who can perform only allowed actions for a subset of objects within the
Role domain.

Security Administrator
Required
A Domain Administrator who can perform all possible actions for all objects within the Security
domain. The Security domain allows the Security Administrator to configure access permissions
for all objects in all domains within the Roles Based Provisioning Module.
The Security Administrator can configure s, and also assign domain administrators, delegated
administrators, and other Security Administrators.

NOTE: For testing purposes, NetIQ does not lock down the security model in Standard Edition.
Therefore, the Security Administrator is able to assign all domain administrators, delegated
administrators, and also other Security Administrators. However, the use of these advanced
features is not supported in production. In production environments, all administrator
assignments are restricted by licensing. NetIQ collects monitoring data in the audit database to
ensure that production environments comply. Furthermore, NetIQ recommends that only one
user be given the permissions of the Security Administrator.

The identity applications administrator is not a system role. For more information, see “Identity
Applications Administrator” on page 32.

Changing the Default Administrator Assignments after
Installation

The following administrative accounts are assigned during the initialization of the identity
applications:

 Compliance Administrator
 Provisioning Administrator
 RBPM Configuration Administrator
 Resource Administrator
 Roles Administrator
 Security Administrator

Modifying the mappings for these administrative accounts in the configupdate utility after the
installation and initialization process will not work in this release. The check for assigning the
administrative roles happens only once. At this time, a property is set that keeps track of when these
roles were assigned.

NOTE: To modify the default administrator assignments for the identity applications, you must first
edit the configupdate.sh or configupdate.bat file and change the -edit_admin property to
true. You can then use configupdate to modify the default assignments.
68 Assigning the Identity Applications Administrators

If you want to modify the default assignments for the administrative roles without deleting the
Driver (which would cause all role assignments to be removed), you need to perform one of the
following actions:

 “Granting or Removing Assignments in the Identity Applications” on page 69
 “Changing the Assignments in Configupdate Utility” on page 69
 “Changing the Default Administrator Assignments without an Administrator Account” on

page 70

Granting or Removing Assignments in the Identity Applications
To grant or remove the role assignment through the identity applications:

1 Log in to the identity applications as the Security Administrator.
2 Go to the Roles Catalog on the Roles and Resources tab.
3 Select the administrative role you want to change (for example, the Provisioning Administrator).
4 Select Edit.
5 Select the Assignments tab.
6 If you want to remove the current assigned user, then select the user and press the Remove link.
7 To add a user, press the assign button where you will need to provide a description and the user

to assign the role to and the press the Assign button.

Changing the Assignments in Configupdate Utility
To change any or all of the administrative assignments using Configupdate utility:

1 Stop the Application Server that the User Application WAR is deployed on.
2 Stop the User Application driver.
3 Stop the Role and Resource Service Driver.
4 Launch the configuration update utility.
5 Change the mappings for the administrative roles outlined above as required.
6 Click Show Advanced Options.
7 In Miscellaneous, check Reinitialize RBPM Security and click OK.
Assigning the Identity Applications Administrators 69

8 (Conditional) To remove the existing (default) users that have been granted the role assignment.
Log in to iManager and remove the user from the role, then the role from the user.

9 Restart Tomcat.
10 Restart the User Application driver.
11 Restart the Role and Resource Service Driver.
12 Access the identity applications and in the logs you will see the administrative roles will be

issued.

Changing the Default Administrator Assignments without an
Administrator Account
The default administrator assignment settings are established at the time you initialize the User
Application driver. After the driver has been initialized, you can change the default settings on the
Administrator Assignments page, as long as your “admin” user account still exists. If the account has
been deleted, deactivated, or moved to a different location, you will not be able to log in to make
the new assignments. In this case, you need to reset the values in the configupdate utility or delete
the initialization property in the User Application driver.

To change the administrator assignment values in the configupdate utility. See, “Changing the
Assignments in Configupdate Utility” on page 69.

Alternatively, you can delete the initialization parameter in the User Application driver using
iManager:

1 Log in to iManager.
2 In Objects tab, browse to Driver Set > User Application Driver > AppConfig > AppDefs and select

Configuration.
3 In General tab, open XMLData.
4 Find and remove the </property> tag that contains the following </key> tag.

<key>com.novell.idm.security.domain-admin.initialized</key>
For example:

<property>
 <key>com.novell.idm.security.domain-admin.initialized</key>
 <value>20090831124642Z</value>
</property>

5 Click OK.
6 Restart the User Application driver and the Role and Resource Service driver.
7 Restart Tomcat.
70 Assigning the Identity Applications Administrators

8 8Setting Up Logging in the Identity
Applications

Logging is the main tool you use for debugging the identity applications configuration. The logging
service provides facilities for writing, viewing, filtering, and listening for log messages. The Tomcat
application server instances and subsystems, and applications that run on Tomcat or in client JVMs
generate these log messages.

This sections discusses the following topics:

 “How Logging Services Help” on page 71
 “What Can Be Logged” on page 79
 “How Logging Works” on page 80
 “Types of Log Files” on page 82
 “Understanding the Log Format” on page 85
 “Configuring Logging” on page 87
 “Configuring Logging in a Cluster” on page 91
 “Enabling Sentinel Logging” on page 92
 “Using Log Files for Troubleshooting” on page 93
 “Log Events” on page 93

How Logging Services Help
A Tomcat server instance uses logging services to communicate its status and respond to specific
events, including server startup and shutdown information, failures of one or more subsystems,
errors, warning messages, access information on HTTP requests, and additional information. For
example, you can use Tomcat’s logging services to report error conditions or listen for log messages
from a specific subsystem.

All administrative and end-user actions and events are logged to the server console and to Tomcat
server’s log file. This allows easy access to this information for security and operational purposes.
Additionally, the audit log system provides the ability to monitor ongoing activities such as
authentication activity, up time of the system, and so on. File logging is enabled by default.

The identity applications features are implemented in a layered architecture. Each feature uses one
or more packages. Each package handles a specific area of a feature and has its own independent log
level that obtains event messages from different parts of the application. The logs contain
information about processing and interactions among identity applications components that occur
while satisfying users and administrative requests and during general system processing. By enabling
the correct log levels for various packages, an administrator can monitor how identity applications
processes users and administrative requests. The package names are based on log4j conventions.
The event messages include these package names indicating the context of the message output. The
Setting Up Logging in the Identity Applications 71

logs include tags and values that allow the administrator to identify and correlate which package log
entries pertain to a given transaction and user. Table 8-1 describes some of the features and the
packages they use.

Table 8-1 Identity Applications Packages

Feature Description Packages Notes

Roles Roles are permanently stored in
the Identity Vault. For fast
access to roles information,
Identity Manager stores roles in
a local cache called permission
index. When a role is requested,
the identity applications queries
the permission index for that
role. When a role is modified
through the User Application
driver, the change is reflected in
the permission index. For more
information about roles, see
“Understanding Roles” on
page 26.

 com.novell.idm.nrf.service
 com.novell.idm.nrf.persist
 com.novell.srvprv.impl.vdata.m

odel
 com.netiq.idm.rest.catalog

For troubleshooting
any issues when a
role is assigned,
revoked, or expired,
monitor the Roles
and Resource driver
log.

com.novell.srv
prv.impl.vdata
.model is a verbose
package when set to
Debug log level. It
generates messages
for each object class
and attributes
present in Virtual
Data Access (DAL).
For example, it
shows all DAL
lookups. This can
result in a large
amount of logs. To
limit the number of
messages, you can
set the log level to
Warn. For more
information about
the messages
generated by
com.novell.srv
prv.impl.vdata
.model, see
“Virtual Data Access
Logging” on
page 648.

For troubleshooting
issues related to
managing roles, see
“When a Role Is
Requested” on
page 653.
72 Setting Up Logging in the Identity Applications

Resources Resources are permanently
stored in the Identity Vault. For
fast access to resources
information, Identity Manager
stores resources in a local cache
called permission index. When a
resource is requested, the
identity applications queries the
permission index for that
resource. When a resource is
modified, the change is reflected
in the permission index is
updated. For more information
about resources, see
“Understanding Resources” on
page 27.

 com.novell.idm.nrf.service
 com.novell.idm.nrf.persist
 com.novell.srvprv.impl.vdata.m

odel

For troubleshooting
any issues when a
resource is assigned
or revoked, monitor
the Roles and
Resource driver log.

Code Map
Refresh

Code map is a local cache used
by the identity applications to
store entitlements values for all
connected systems from the
Identity Vault. The identity
applications queries the Identity
Vault for the drivers that are in
running state and have
entitlements. The identity
applications updates the
identity applications database at
configurable intervals with
entitlement changes. For more
information about code map
refresh, see “Configuring Default
Resource Settings” on page 224.

 com.novell.idm.nrf.service
 com.novell.idm.nrf.persist
 com.novell.srvprv.impl.vdata.m

odel

For troubleshooting
any connected
system issue, enable
DSTrace on the
driver.

For viewing sample
log messages related
to code map refresh,
see “When a Code
Map Refresh Is
Triggered” on
page 651.

Proxy Enables you to manage proxy
configuration. Identity Manager
stores proxy definition in the
ProxyDefs container in the User
Application driver. For more
information about configuring
proxy, see Acting on Behalf of
Someone Else in NetIQ Identity
Manager - User’s Guide to the
Identity Applications.

 com.novell.srvprv.impl.security
.service

 com.netiq.idm.rest.access
 com.novell.soa.af.impl.persist
 com.novell.srvprv.apwa.actions

When a user is
designated as a
proxy, check the
audit events for any
suspicious activity.

Feature Description Packages Notes
Setting Up Logging in the Identity Applications 73

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#defineproxyidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#defineproxyidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

Delegation Enables you to manage
delegation configuration based
on a user`s availability. A
delegate is another user that
you can temporarily grant
permission to view and resolve
your workflow work items. A
delegate can view his delegator
tasks in the task page and act on
them. Identity Manager stores
delegate definitions in the
DelegateeDefs container in the
User Application driver. For
more information about
configuring delegation, see
Chapter 18, “Creating and
Managing Delegations,” on
page 203.

 com.novell.srvprv.impl.security
.service

 com.novell.srvprv.apwa.actions

When a user is made
a delegate for
another user, check
the audit events for
any suspicious
activity that can
occur through
delegation.

Email-based
Approvals

E-mail notifications inform
Identity Manager users of tasks
and events in the system. For
example, Identity Manager can
send an e-mail to approvers
when an event or task requires
an approval. For more
information, see “Understanding
Email-based Approval” on
page 27.

com.novell.soa.notification.impl For troubleshooting
e-mail approval
issues, see
“Troubleshooting E-
Mail Based Approval
Issues” on page 664.

For viewing sample
log messages related
to E-Mail
notifications, see
“Virtual Data Access
Logging” on
page 648.

Feature Description Packages Notes
74 Setting Up Logging in the Identity Applications

Database
connectivity/
updates

Any schema changes made in
the identity applications are
updated in the database when
the identity applications server
is started and
com.netiq.idm.create-
db-on-startup flag is set to
true in the ism-
configuration.propertie
s file.

When this flag is set, the
database compares the existing
schema with target schema and
then updates the database
schema.

To update the database with any
application configuration
changes, you must set
com.netiq.idm.rbpm.upda
teConfig-On-StartUp flag
to true in the ism-
configuration.propertie
s file.

com.novell.soa.persist

Manage
Featured Items
(Landing page)

Allows you to manage
application items on the landing
page. You can quickly navigate to
internal and external pages of
the application. For more
information, see Exploring the
Dashboard in the NetIQ Identity
Manager - User’s Guide to the
Identity Applications.

com.netiq.idm.icfg

Client Settings Allows you to manage client
settings to control the behavior
of the application. You can also
modify the access rights and
branding of the application for
different set of users. For more
information, see “Changing
Identity Applications Client
Settings” on page 139.

 com.netiq.idm.rest.access
 com.netiq.idm.settings

Feature Description Packages Notes
Setting Up Logging in the Identity Applications 75

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#detailedidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#detailedidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

Workflow Tasks A task can be controlled by a
workflow process. A workflow
process can include one or more
steps that must be performed
before Identity Manager can
complete a task that is under
workflow control. A job is a
runtime instance of a workflow
process.

The Workflow Engine is
responsible for managing and
executing steps in a workflow
and for keeping track of state
information which is persisted in
a database. For more
information, see Part IV,
“Configuring and Managing
Provisioning Workflows,” on
page 251.

 com.novell.soa.af.impl.core
 com.novell.soa.af.impl.activity
 com.netiq.idm.rest.access

Separation of
Duties

Allows you to prevent users
from being assigned to
conflicting roles unless someone
in your organization makes an
exception for the conflict. To
eliminate conflicts in role
assignments, you perform
certain management tasks such
modify role definition and set up
a proper approval process. For
more information, see
Chapter 19, “Separation of
Duties Constraints,” on
page 205.

 com.novell.idm.nrf.service
 com.novell.idm.nrf.persist
 com.novell.srvprv.impl.vdata.m

odel

My Permission A user can view a list of role and
resource permissions assigned
to him or for other users. For
more information, see Viewing
Your Permissions in the NetIQ
Identity Manager - User’s Guide
to the Identity Applications.

 com.netiq.idm.rest.access
 com.netiq.idm.rest.access.util

History A user can review the status and
history of the permission
requests (role, resource, PRD)
for himself or for other users.
For more information, see
Viewing Requests in the NetIQ
Identity Manager - User’s Guide
to the Identity Applications.

 com.netiq.idm.rest.access
 com.novell.idm.nrf.persist
 com.netiq.idm.rest.access.util

Feature Description Packages Notes
76 Setting Up Logging in the Identity Applications

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#trackseerequesthistoryhelpdeskticketidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#seerolesresourcesinidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#seerolesresourcesinidentitymanagerdashboard

Teams You can perform team
management tasks such as
create, modify, and delete a
team based on access privileges.
Identity Manager stores team
configuration in the TeamDefs
container in the User
Application driver. For more
information about configuring
Teams, see Managing Users in
the NetIQ Identity Manager -
User’s Guide to the Identity
Applications.

 com.netiq.idm.rest.access
 com.novell.idm.security.author

ization.ldap
 com.novell.srvprv.spi.vdata.mo

del
 com.netiq.idm.rest.access.util
 com.novell.idm.security.author

ization.service

Group Allows you to manage groups.
For example, you can create,
modify and delete a group based
on access privileges. For more
information, see Managing
Users, Groups, and Teams in the
NetIQ Identity Manager - User’s
Guide to the Identity
Applications.

 com.netiq.idm.rest.catalog
 com.novell.srvprv.spi.vdata.mo

del

Organization
Chart

This only applies
to Identity
Manager 4.8 and
patch releases
before 4.8.1.

The Organization Chart page
shows the hierarchy of users in
your organization. A user can
view the organization chart and
the quick information about the
users based on the access rights
set by the administrator. For
more information, see Viewing
an Organization Chart in the
NetIQ Identity Manager - User’s
Guide to the Identity
Applications.

 com.netiq.idm.rest.access
 com.novell.srvprv.impl.portlet.

orgchart
 com.novell.srvprv.impl.servlet.

service
 com.novell.soa.portlet
 com.netiq.idm.rest.access.util

Organization
Chart

This applies to
Identity Manager
4.8.1 and later.
The Organization
Chart feature in
Identity Manager
Dashboard has
been enhanced
with new options
and settings in
4.8.1 release.

The Organization Chart page
shows the hierarchy of entities
in your organization. The entity
can a user, group, or custom
entity. By default, the
Organization Chart page shows
hierarchy of the user entity. A
user can view the organization
chart and the quick information
about the users based on the
access rights set by the
administrator. For more
information, see Managing the
Organization Chart in the NetIQ
Identity Manager - User’s Guide
to the Identity Applications.

 com.netiq.idm.rest.access
 com.novell.srvprv.impl.vdata.m

odel
 com.netiq.idm.infosrv

Feature Description Packages Notes
Setting Up Logging in the Identity Applications 77

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#manageusersidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#usersgroupsteamsidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#usersgroupsteamsidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#identitymanagerdashboardorgchart48
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#identitymanagerdashboardorgchart48
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#identitymanagerdashboardorgchart481
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#identitymanagerdashboardorgchart481

User Catalog You can create, modify, and
delete users. A new user is
created under the base
container configured for the
user. Based on the access
control list rights, the user
information can be edited.

The user attributes can be
configured to view, edit, and
search by using the client
settings. For more information,
see Managing Users in the NetIQ
Identity Manager - User’s Guide
to the Identity Applications.

 com.netiq.idm.rest.access
 com.netiq.idm.infosrv
 com.novell.srvprv.impl.vdata.m

odel
 com.netiq.idm.settings
 com.novell.idm.nrf.service
 com.novell.idm.security.author

ization.service
 com.novell.idm.nrf.persist
 com.novell.idm.security.author

ization.ldap
 com.netiq.idm.rest.access.util

Make a request A user can request a permission
for himself or for another user.
The Request page directly
fetches the permission from the
Permission index. The requested
permission is directly assigned
or through an approval process.
For more information, see
Requesting Permissions in the
NetIQ Identity Manager - User’s
Guide to the Identity
Applications.

 com.netiq.idm.rest.access
 com.netiq.idm.infosrv
 com.novell.srvprv.spi.vdata.mo

del
 com.novell.idm.nrf.ajaxservice
 com.novell.idm.nrf.service
 com.novell.idm.nrf.persist
 com.novell.idm.security.author

ization
 com.novell.soa.af.impl.core
 com.novell.soa.af
 com.novell.idm.nrf.assignment

Permission Index Roles, resources, and PRDs are
permanently stored in the
Identity Vault. For fast access,
Identity Manager stores this
information on the identity
applications server in a set of
cache files called Permission
Index. When you install the
identity applications, the
process creates a permission
index for the application server
hosting the identity
applications.

When a request is issued, the
identity applications query the
permission index for the
requested information.

 com.netiq.idm.cis
 com.netiq.cis.permindex
 com.netiq.idm.cis.permfilter
 com.sssw.fw.core
 com.netiq.uaconfig

Only applicable to
NetIQ Identity
Manager Dashboard
and the new
Dashboard.

Feature Description Packages Notes
78 Setting Up Logging in the Identity Applications

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#manageusersidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#requestrolesresourcesinidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

The logs generated by the packages are primarily intended for debugging the software, although
they can be used to detect any other software that is not behaving properly. System administrators
and support personnel can identify and isolate problems caused by configuration errors, invalid user
data, or network problems such as broken connections. However, component file logging is typically
the first step in identifying software bugs.

Package logging is more verbose than audit logging. It increases the processing load. On a day-to-day
basis, you are recommended to enable only log levels of error conditions and system warnings. If a
specific problem occurs, logging can be set to Info or Debug to gather extra information needed to
isolate and resolve the detected problem. When the problem is resolved, logging should be
reconfigured to log only error conditions and system warnings.

What Can Be Logged
The identity applications functionality that deals with workflows (PRDs) and actions such as granting
and managing of roles, resources, and entitlements can be logged. The log level for these features is
controlled by configuring logging for the packages used by them. You can change log levels from the
Logging page.

The identity applications functionality that executes on a client and does not directly execute in
context of the identity applications web server cannot be logged in the same way. For example, most
of the form processing that occurs in the client. The action scripts defined on the form control’s

Directory
Abstraction Layer

The directory abstraction layer
provides a virtual access to the
Identity Vault data. You define a
set of entities and their related
attributes (virtual data) based
on the Identity Vault objects
that you want users to view,
modify, or delete in the identity
applications. For more
information, see Using the
Directory Search in the User
Application in NetIQ Identity
Manager - User’s Guide to the
Identity Applications.

 com.novell.srvprv.impl.vdata.m
odel

For viewing sample
log messages related
to Virtual Data
Access, see “Virtual
Data Access
Logging” on
page 648.

Configuration The Configuration tab on the
Identity Manager Dashboard
allows you to change the
Identity Applications settings.
Using this tab you can set the
logging, caching, and clustering
settings. You can also use this
tab to assign administrators in
Identity Applications. For more
information, see Chapter 22,
“Configuring Identity
Applications Default Settings,”
on page 223.

 com.netiq.idm.rest.admin
 com.novell.soa.afcom.novell.so

a.af.impl.corecom.netiq.id
m.settings.displaycom.neti
q.loggingcom.sssw.fw.cach
emgr.api

 com.novell.idm.nrf.api

Feature Description Packages Notes
Setting Up Logging in the Identity Applications 79

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqdirectorysearchuserapplication
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqdirectorysearchuserapplication
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqdirectorysearchuserapplication
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

onLoad, onChange, or custom events execute in the browser of the user’s client computer and not in
the identity applications web server. Therefore, if an error occurs while rendering the form or
processing an action script, it cannot be directly logged. However, Identity Vault queries issued from
a form or Start Activity can be logged for troubleshooting the identity applications features. To view
the identity applications client errors and informational messages, click the Console tab or the
Network tab under Developer Tools section in the client browser. It contains HTTP response codes
for both success and failed requests. The identity applications allow you to record the outcome of a
user’s request and response.

Identity Applications allow you to log what happens with a user’s request and response during
certain times:

 Between the browser and the application server
 Between the application server and the identity applications database
 Between the application server and the Identity Vault

You can configure the log files to include entries for the following events:

 Configuration
 Events processed by the identity applications components, such as authentication, role

assignment, and resource access
 Error conditions

The log files help you determine which of the following reasons is responsible for a request failure:

 The browser did not send the required information
 Directory Access Layer or the Identity Vault did not send the web client browser the required

information

To view Identity Manager processing events in Identity Manager drivers, use Trace. Specify
appropriate trace values to the driver set and the drivers in Designer or iManager. For more
information, see Viewing Identity Manager Processes in the NetIQ Identity Manager Driver
Administration Guide.

How Logging Works
The following sections describe the identity applications logging environment and provide an
overview of the logging process.

Terminology
Log4j has three main components: loggers, appenders, and layouts. These components work
together to accomplish the following tasks:

 Record messages based on message type and level.
 Control how log messages are formatted and where they are reported at runtime.
80 Setting Up Logging in the Identity Applications

Logger: In Log4j terminology, a logger is a named entity. Log4j defines a Logger class. A Logger object
records messages for a specific subsystem or application component. An application can create
multiple loggers, each with a unique name. In a typical usage of Log4j, an application creates a
Logger instance for each application class that will emit log messages. Logger names are case-
sensitive and they follow the Java package dot notation naming convention.

All loggers specific to the identity applications are defined in the idmuserapp_logging.xml file.
You can set the severity level for each logger at any level in the hierarchy from the Logging
Administration page or by editing the log4j file. For more information, see “Specifying the Severity
Level for Commons Logging API Loggers” on page 89.

Appender: In Log4j terminology, an output destination is called an appender. Log4j defines
appenders to represent destinations for logging output. You can define multiple appenders. For
example, an application might define an appender that sends log messages to standard out, and
another appender that writes log messages to a file. Additionally, you can configure individual
loggers to write to zero or more appenders. For example, you can configure the loggers to send all
logging messages (all levels) to a log file, but only Error level messages to standard out. To change
the destination of the log files, stop the identity applications and then change the settings in the
Logging Location and Appender section of the log4j.properties file. Identity Applications
provide a full suite of appenders offered by Log4j. For more information about appenders, see Log4j
documentation.

The Console and File appenders are defined in the tomcat-log4j.xml file.

Layout: Log4j defines layouts to control the format of log messages. Each layout specifies a particular
message format. A specific layout is associated with each appender. This lets you specify a different
log message format for standard out than for file output if required.

Components for Logging
A logging system includes the following basic components:

 A component that produces log messages
 A component that distributes (publish) log messages

The Tomcat subsystems use log4j to produce messages. By default, Tomcat supports Java based
logging to distribute messages. The LoggingHelper class provides access to the
java.util.logging.Logger object used for server logging. The Java Logging APIs can be used to add
custom handlers, filters, and formatters. Alternatively, you can configure Tomcat to use Log4j APIs to
distribute log messages.

How Logging Works
The identity applications support logging by using a custom-developed logging framework that
integrates with log4j, an open-source logging package distributed by The Apache Software
Foundation. In identity applications environment, Tomcat subsystems and identity applications
components send log requests to the Logger objects. The Logger objects then assign LogRecord
objects, which are passed to Appender objects for publication. By default, the logger objects log
messages to the system console and to the Tomcat server’s log file at Info logging level and above.
Events are logged to all activated loggers.
Setting Up Logging in the Identity Applications 81

http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html

 The Tomcat server’s log messages are directed to catalina.out and idapps.out.
 Identity applications’s log messages are directed to idapps.out.
 Identity Reporting’s log messages are directed to catalina.out.
 OSP’s log messages are directed to osp.out.
 SSPR’s log messages are directed to catalina.out.

Custom appenders are created to handle log messages in order to convert the messages to a specific
format and send them to the configured auditing service. To configure event message output to an
auditing service, see “Configuring Identity Applications Default Settings” on page 223.

To configure logging, see “Configuring Logging” on page 87.

Types of Log Files
An identity applications framework uses several components such as OSP, SSPR, Dashboard, User
Application driver, and Role and Resource Service driver. Each component has its own logging
configuration that defines the default log levels and appender configuration for that component.
Logs for all identity applications components including OSP and Identity Reporting are logged to the
catalina.out file while the Localhost log records the interactions between the Tomcat server and
82 Setting Up Logging in the Identity Applications

the client. Some components such as OSP maintain additional log files that help in auditing their
individual interactions. This section discusses different log files that are generated in an identity
applications environment and what each of them contains.

Difference Among Catalina, Application, and Localhost Log Files
Catalina Log: This is the global log. It records information about events such as the startup and
shutdown of the Tomcat application server, the deployment of new applications, or the failure of
one or more subsystems. The messages include information about the time and date of the event
and the ID of the user who initiated the event.

The catalina.log file contains all log messages that are written to Tomcat's system.out and
system.err streams. Tomcat's internal log statements use the java.util.logging package (juli)
to log. The default destination for that log is standard.out.
The catalina.out file can include:

 Uncaught exceptions printed by java.lang.ThreadGroup.uncaughtException(..)
 Thread dumps, if you requested them via a system signal

Each Tomcat server instance prints a subset of its messages to standard.out or idapps.out file.
The idapps.out log file is specific to identity applications. The userapp-log4j.xml file stores
the logging configuration for identity applications, which directs all log messages to idapps.out.

The catalina.out file is located on the computer that hosts the Tomcat server instance. Each
server instance has its own catalina.out file. By default, the catalina.out file is located in the
logs directory under Tomcat’s root directory. For example, /opt/netiq/idm/apps/tomcat/
logs/catalina.out. To view messages in the catalina.out file, log in to the computer hosting
Tomcat and use a standard text editor.

NetIQ recommends that you do not modify the log files by manually editing them. Modifying a file
changes the timestamp and can confuse log file rotation. In addition, editing a file might lock it and
prevent it from recording information from the Tomcat server.

Some operating systems enable you to redirect standard out to some other location. By default, a
server instance prints only messages of Info severity level or higher to standard out. You can modify
the severity threshold as a logging configuration so that the server prints more or fewer messages to
respective log files.

Localhost Log : This is the log for all HTTP transactions between the client and the application server.
The log file is named as, localhost_access_log.<date of log generation>.txt file. The
default location and rotation policy for this log is the same as catalina.out file.

Application Log: Each identity application component is responsible for its own logging. Tomcat
provides no support for application logs. Each component will have its own logging configuration
where default log levels and appender configurations are defined. These logging configuration files
are placed under \conf directory of Tomcat server.
Setting Up Logging in the Identity Applications 83

Additional Log Files
The catalina.out log messages and log files communicate events and conditions that affect
Tomcat server’s operations. Logs for all identity applications components including OSP and Identity
Reporting are also logged to the catalina.out file. This file also records the interactions between
the Tomcat server and the client.

Some subsystems and components also maintain additional log files that help in auditing their
individual interactions. The following list describes some of the additional log files:

 Logging information from the identity applications is also logged into the idapps.out file.
However, this file does not contain Tomcat server specific information.

 OSP logs are additionally stored in a separate file, osp-idm-<date of log
generation>.log file located in /opt/netiq/idm/apps/tomcat/logs/ directory.
Logging is turned off by default and must be enabled in the setenv.sh file in the /
TOMCAT_INSTALLED_HOME/bin/ directory.

 Identity Reporting logs are additionally stored in /var/opt/netiq/idm/log/.
 SSPR logs are stored in /opt/netiq/idm/apps/sspr/sspr_data/logs/SSPR.log.
 The HTTP subsystem keeps a log of all HTTP transactions between the client and the application

server in a text file, localhost_access_log.<date of log generation>.txt file. The
default location and rotation policy for this log is the same as the catalina.out file. You can set
the attributes that define the behavior of HTTP access logs for your server.

 By default, logs for User Application driver and Role and Resource Service driver are added to
DSTrace. The trace is turned off by default and must be enabled in the driver configuration by
using Designer or iManager or console. When enabled, DSTrace displays messages related to
operations that the driver performed or tried to perform, at the level of detail specified by the
driver trace level, as the engine processes the events. The driver trace level affects only the
driver or driver set where it is set. You can also specify to write the trace information for a driver
to a separate file. For more information, see Viewing Identity Manager Processes in the NetIQ
Identity Manager Driver Administration Guide.

 Each server has a transaction log which stores information about committed transactions
coordinated by the server that may not have been completed. Tomcat uses the transaction log
when recovering from a system crash or a network failure. You cannot directly view the
transaction log. The file is in a binary format.

 The auditing service records information from a number of security requests, which are
determined internally by the security framework. The service also records the event data
associated with these security requests and the outcome of the requests. Each server writes
auditing data to its own log file in the server directory.

 The JDBC subsystem records various events related to JDBC connections, including registering
JDBC drivers and SQL exceptions. The events related to JDBC are written to the server log, such
as when connections are created or refreshed or when configuration changes are made to the
JDBC objects.
84 Setting Up Logging in the Identity Applications

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

 The JMS logging is enabled by default when you create a JMS server. The identity applications
use Apache ActiveMQ as a JMS provider. Logs can be found in the ActiveMQ installed path at
data/activemq.log. The identity applications rely on a Java Message Service (JMS) persistent
store to persist e-mail messages. If JMS is not properly configured, any e-mail messages in the
memory queue will be lost if the application server is shut down.

 The Hibernate framework writes log messages in different categories and log levels. For
example, it logs messages for establishing connections with the database, executed SQL
statements, or cache interactions. Hibernate logging is enabled by default at Info level. The
events related to JDBC subsystem are written to the server log. All Hibernate related
information is logged when the data is persisted in the application.

Understanding the Log Format
The identity applications have a specific format for file log entries. To improve log entry readability,
the log entries in the catalina.out files use standard elements. This facilitates the use of non-
interactive stream-oriented editors such as sgrep, sed, awk, and grep. The first part of each message
begins with locale-formatted timestamp followed by a data portion that contains information
specific to the log entry. The data portion is the most flexible part of a log entry.

A log entry has the following fields:

time-date-stamp [Severity] [Subsystem] [Message Text]
The following entry is an example entry that is logged when a user has requested for a role:

2017-03-08 08:43:10,660 INFO
com.novell.idm.nrf.service.RoleManagerService- [RBPM] [Role_Request]
Requested by cn=David.Scully,ou=Active,ou=People,o=acme, Target DN:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source
DN:cn=PennDOT_Vehicle_Certification,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplicatio
n,cn=idm46,ou=services,o=acme, Request DN:cn=20160308084310-
15da49b28ddf4ee1b7d71b4ce220c080-
0,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm46,ou=se
rvices,o=acme, Request Category: 10, Request Status: 0, Original Request
Status: 0, Correlation ID: UserApp#UserStartWorkflow#082080ec-5b10-498f-
b87d-28825ab63278
Most log entries do not use the optional line breaks ([\n]). Notice that the time-date-stamp, the
severity, subsystem, and message text are on the same line so that stream-oriented editors that use
only one line (such as grep) can be used to locate related log entries.

If a message is logged within the context of a transaction, the message text contains the Correlation
ID assigned to the transaction.

The Tomcat server uses the host computer's default character encoding for the messages it writes.

Message Fields
A Tomcat server message contains a consistent set of fields as described in the following table. In
addition, if your applications use Tomcat logging services to generate messages, those messages will
contain these fields.
Setting Up Logging in the Identity Applications 85

Table 8-2 Fields in a Log Entry

Message Severity
The severity attribute of a log message indicates the potential impact of the event or condition that
the message reports. The following table lists the severity levels of log messages from the identity
applications subsystems, starting from the lowest to the highest level of impact.

Field Description

Time-date-stamp Time and date when the message originated in a format that is specific to the locale.
The JVM that runs a Tomcat server instance refers to the host computer operating
system for information about the local time zone and format.

The date and time is specified in the W3C profile format of ISO 8061. It has the
following fields: year-month-day-T-hour-minutes-seconds-time zone. The Z value for
the time zone indicates that the time is specified in UTC.

Severity Indicates the degree of impact of the event reported by the message such as
warning, informational, or debug.

In the example log entry, the level of severity is Info.

Subsystem Indicates Tomcat’s subsystem or the type of the module that was the source of the
message. For example, RBPM or Java Messaging Service (JMS).

In the example log entry, this field contains the following string:

com.novell.idm.nrf.service.RoleManagerService- [RBPM]
[Role_Request]

Message text A description of the event or condition specific to the log entry. It can be as simple as
an informational string, such as the string in the example log entry:

Requested by cn=David.Scully,ou=Active,ou=People,o=acme, Target
DN: CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source
DN:cn=PennDOT_Vehicle_Certification,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=Use
rApplication,cn=idm46,ou=services,o=acme, Request
DN:cn=20160308084310-15da49b28ddf4ee1b7d71b4ce220c080-
0,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=
idm46,ou=services,o=acme, Request Category: 10, Request Status:
0, Original Request Status: 0,
If a message is logged within the context of a transaction, the message text contains
an identifier assigned to the identity applications transaction. Identity applications
transactions are actions such as authenticating a user, processing a request for a
role, and request for access to a resource.

An identifier is assigned to each identity applications transaction.

If a user requests access to multiple resources, multiple request objects are created
and each request is given a separate Correlation ID. Each request is processed
separately and status of each can be seen in the user request history.

The example log entry contains the following Correlation ID:

UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278
86 Setting Up Logging in the Identity Applications

You can set a log severity level on loggers and appenders. When set on a logger, none of the
appenders receives any events that are rejected by that logger. For example, if you set the log level
to Info on a logger, none of the appenders will receive Warn level events. When you set a log level
on the appender, the restriction only applies to that appender and not to other appenders. For
example, if you turn Error off for the File appender, no Error messages are written to the log file.
However, Error messages are written to the standard.out file.

<logger name="com.sssw" level="INFO" additivity="true">
 <appender-ref ref="CEF"/>
 </logger>
<logger name="com.netiq" level="DEBUG" additivity="true">
 <appender-ref ref="CEF"/>
 </logger>
You set log levels for loggers using the Logging Administration page or the log4j file. For more
information, see “Configuring Logging Settings in Identity Manager Dashboard” on page 89. Loggers
can also be configured through APIs. You can only enable or disable an appender.

The identity applications modules generate many messages of lower severity and fewer messages of
higher severity. For example, under normal circumstances, they generate many Info or Trace
messages. If your application uses Tomcat logging services, it can use an additional severity level of
Debug.

Configuring Logging
You can configure logging to troubleshoot errors or to receive notification for specific events. For
example, configure logging to perform the following activities:

 Stop recording of Debug and Info messages in the log file.
 Allow recording of Info level messages from the HTTP subsystem in the log file.
 Configure an appender to publish messages only whose severity level is Warning or higher.
 Track log information for individual servers in a cluster.

You may need to configure the logging.properties file in some cases.

Level Description

Fatal The least detail. Writes fatal errors to the log.

Error Writes errors (plus all of the above) to the log.

Warn A suspicious operation or configuration has occurred but it might not affect
normal operation. Writes warnings (plus all of the above) to the log.

Info Used for reporting normal operations; a low-level informational message. Writes
informational messages (plus all of the above) to the log.

Debug Writes debugging information (plus all of the above) to the log.

Trace Used for most detailed messages. You can configure this level to report the
request path of a method. Writes tracing information (plus all of the above) to
the log.
Setting Up Logging in the Identity Applications 87

The following sections describe basic configuration tasks:

 “Understanding Logging Configuration” on page 88
 “Understanding the Log Level Settings” on page 88
 “Specifying the Severity Level for Commons Logging API Loggers” on page 89
 “Configuring Logging Settings in Identity Manager Dashboard” on page 89
 “Editing the log4j Files” on page 90
 “Managing Log File Size” on page 91

Understanding Logging Configuration
When you enable logging, a logging request is sent to subscribed appenders. Tomcat provides
appenders for sending log messages to the standard.out file and the server log (catalina.out)
file. You can control logging for each type of handler by filtering log messages based on severity level
and other criteria. For example, the Stdout Handler has a Notice threshold severity level by default.
Therefore, Info and Debug level messages are not sent to the standard.out file.

By default, event messages are logged to the system console and to the Tomcat server’s log file at
Info logging level and above. Events are logged to all activated loggers.

The default behavior of the Tomcat server is to limit the console log4j appender to display log
messages with a verbosity of Info or less. To see log messages for more verbose levels (for example,
Debug), you need to examine the server log file. Notice that the low threshold settings, such as
Debug are extremely verbose and will increase Tomcat's startup time.

The following sections discuss different ways of configuring the logging behavior.

Understanding the Log Level Settings
Console logging involves synchronized writes. Therefore, logging can become a processor usage
issue and concurrency impedance. You can change the priority value default setting to Error, on a
Tomcat server, by modifying the setting in the <installdir>/Tomcat/server/IDMProv/conf/
tomcat-log4j.xml file. Locate the root node that looks similar to this:

 <root>
 <priority value="INFO"/>
 <appender-ref ref="CONSOLE"/>
 <appender-ref ref="FILE"/>
 </root>
Change the priority value to:

<root>
 <priority value="ERROR"/>
 <appender-ref ref="CONSOLE"/>
 <appender-ref ref="FILE"/>
</root>
Assigning a value to the root ensures that any appenders do not have a level assigned inherit the
root's level.
88 Setting Up Logging in the Identity Applications

Specifying the Severity Level for Commons Logging API Loggers
If you are using the Commons Logging API, logger names follow the Java package dot notation
naming convention. For example, a logger name can be com.acme.Barlogger, corresponding to
the name of the classes in which it is used. Each dot-separated identifier appears as a node in the
Logger . In this case, the logger named com.acme is a parent of the logger named
com.acme.Barlogger.

You can configure the severity for a package or for any logger at any level in the . For example, if you
specify the severity level for package com.acme=Warn, then Fatal and Error messages from the
child nodes of this package will be blocked. You can override the severity level of a parent node by
explicitly setting a value for a child node. For example, if you specify the severity level for
com.acme.Barlogger=Debug, all log messages from Barlogger will be allowed, while Fatal
and Error messages will be filtered for other child nodes under com.acme.

You can specify the severity level for a package or a logger in the following ways:

 In Identity Manager Dashboard, go to Configuration > Logging and change the log level settings.
The changes will be immediately applied. When you restart Identity Applications, the changes
are not preserved. To persist the changes for subsequent sessions, select Persist the logging
changes. Alternatively, modify the log4j.properties file.

 Edit the log4j.properties file. Your changes will take effect when you restart Tomcat.
Identity Applications preserves this configuration for subsequent sessions.

If you change, enable, or disable logging, you need not restart the identity applications to apply the
changes.

Configuring Logging Settings in Identity Manager Dashboard
The Logging page shows a list of all currently defined loggers. On this page, you can:

 Add a new logger for a class or package name. For more information, click in Identity
Manager Dashboard.

 Remove a logger for a class or package name. For more information, click in Identity
Manager Dashboard.

 Set the logging level (Fatal, Error, Warn, Info, Debug, Trace) for each class or package name.
 Reset all logging levels.

All logging configuration cannot be changed in the Logging page, such as Tomcat server specific
configuration and appender configuration. For making such changes, stop the identity applications
and then edit the log4j.properties file.

You can change the log level of the packages individually by searching a package name. If you want
to change the log level for all the packages:

1 Select Change log level for the listed packages.
2 Select the log level from the list.
Setting Up Logging in the Identity Applications 89

Table 8-3 Types of Log Levels

NOTE: By default, the log level is set to Info for all the packages.

3 (Conditional) To retain these changes after restarting the application server, select Persist the
logging changes.

4 Click Apply.

Editing the log4j Files
The configuration settings for the identity applications logging are stored in the
idmuserapp_logging.xml in the install directory on the Tomcat server. The log4j configuration
settings are contained in tomcat-log4j.xml in the install directory. To configure the logging levels
and other settings permanently, stop the Tomcat server and change the settings in these files.

NOTE: The Console and File appenders are defined in tomcat-log4j.xml. All loggers specific to
the identity applications are defined in idmuserapp_logging.xml.

To change the log level in the tomcat-log4j.xml file, open the file in a text editor and locate the
following entry at the end of the file:

<root>
<priority value="INFO" />

 <appender-ref ref="CONSOLE" />
 <appender-ref ref="FILE" />
 </root>
Assigning a value to root ensures that any log appenders that do not have a level explicitly assigned
inherit the root level (in this case, Info). For example, the File appender does not have a default
threshold level assigned. It assumes the root’s threshold level.

The possible log levels used by log4j are Debug, Info, Warn, Error, and Fatal, as defined in the
org.apache.log4j.Level class. Inattention to the proper use of these settings can be costly in
terms of performance.

A good rule of thumb is to use Info or Debug only when debugging a particular problem.

Level Description

Fatal The least detail. Writes fatal errors to the log.

Error Writes errors that can cause system processing to not proceed.

Warn Logs potential failures, but the impact on execution is minimal. Warnings
indicate that you should be aware that this event is happening and might want to
make a configuration change to avoid it.

Info Logs informational messages. No execution or data impact occurred.

Debug Includes debugging information.

Trace The most detail. Writes tracing information (plus all of the above) to the log.
90 Setting Up Logging in the Identity Applications

Any appender included in the root that does have a level threshold set, should set that threshold to
Error, Warn, or Fatal unless you are debugging something.

The performance hit with high log levels has less to do with verbosity of messages than with the
simple fact that console and file logging, in log4j, involve synchronous writes. An AsyncAppender
class is available, but its use does not guarantee better performance. These are known issues of
Apache log4j.

The default log level of Info in the log configuration file for the identity applications is suitable for
many environments. However, for a performance intensive environment, you can change the entry
as follows:

<root>
 <priority value="ERROR"/>
 <appender-ref ref="FILE"/>
</root>
For a fully tested and debugged production setup, enabling Info and Console logging are not needed.
For more information about log4j, see Apache Logging Services.

Managing Log File Size
By default, event messages are logged to both of the following:

 The system console of the application server where the identity applications components are
deployed

 A log file on that Tomcat server. For example: /opt/netiq/idm/apps/tomcat/logs/
catalina.out
This is a rolling log file. By default, the server rotates the file based on a time interval of 24
hours. However, you can instruct the server to rotate the file over to another file after it reaches
a certain size by specifying the size in the log4j.appender.R.MaxFileSize property in the
$TOMCAT_HOME/lib/log4j.properties file. It does not rotate the local server log file
when you start the server.

To cause the immediate rotation of the log file, change the appender configuration in the
log4j.properties file.

By default, the rotated files are stored in the same directory where the log file is stored. You can
specify a different directory location for the archived log files in the log4j.properties file.

Configuring Logging in a Cluster
This section includes tips for configuring logging in a Tomcat cluster.

 “Tomcat Logging” on page 92
 “Identity Applications Logging” on page 92
Setting Up Logging in the Identity Applications 91

https://logging.apache.org/log4j/

Tomcat Logging
You can configure Tomcat for logging in a cluster. To enable logging for clusters, you need to edit the
tomcat-log4j.xml configuration file, located in the \conf directory for the Tomcat server
configuration (for example, \server\IDM\conf), and uncomment the following section at the end
of the file:

<!-- Clustering logging
 -->
- <!--
 Uncomment the following to redirect the org.jgroups and
 org.tomcat.ha categories to a cluster.log file.
 <appender name="CLUSTER"
class="org.tomcat.logging.appender.RollingFileAppender">
 <errorHandler class="org.tomcat.logging.util.OnlyOnceErrorHandler"/>
 <param name="File" value="${tomcat.server.home.dir}/log cluster.log"/>
 <param name="Append" value="false"/>
 <param name="MaxFileSize" value="500KB"/>
 <param name="MaxBackupIndex" value="1"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>
 </layout>
 </appender>
 <category name="org.jgroups">
 <priority value="DEBUG" />
 <appender-ref ref="CLUSTER"/>
 </category>
 <category name="org.tomcat.ha">
 <priority value="DEBUG" />
 <appender-ref ref="CLUSTER"/>
 </category>
 -->
You can find the cluster.log file in the log directory for the Tomcat server configuration (for
example, \server\IDM\log).

Identity Applications Logging
The logging configuration is not propagated to all servers in cluster. For example, if you use the
Logging administration page on a server in a cluster to set the logging level for
com.netiq.afw.portal.aggregation to Trace, this setting is not propagated to the other
servers in the cluster. You must individually configure the level of logging messages for each server in
the cluster.

For more information, see “Configuring Logging Settings” on page 228.

Enabling Sentinel Logging
1 Log in to Identity Manager Dashboard as a identity applications administrator.
2 Go to Configuration > Logging.
92 Setting Up Logging in the Identity Applications

3 Select Enable CEF format and specify the sentinel server details.
4 To save the changes for subsequent restart of the Tomcat server, make sure Persist the logging

changes is selected.

Using Log Files for Troubleshooting
The following example has trace messages logged to the catalina.out file when a code map
refresh cycle is triggered.

2017-08-29 16:05:05,500 [INFO] CodeMapEngine [RBPM] Refreshing the
Entitlement CODE MAP tables...
2017-08-29 16:05:05,499 [TRACE] BestLocaleServletFilter [RBPM] Using
Resource-Group[common-resgrp] with bestLocale[en] for /IDMProv/
GwtServiceRouter
2017-08-29 16:05:05,510 [DEBUG] DirXMLDriverDAO [RBPM] Entering
getDriversEnabledForMappings() mappingType=2
2017-08-29 16:05:05,600 [DEBUG] DirXMLDriverDAO [RBPM] Exiting
getDriversEnabledForMappings()
2017-08-29 16:05:05,600 [INFO] CodeMapEngine [RBPM] Done refreshing the
Entitlement CODE MAP tables
The descriptions of the log messages are sequentially listed below:

 The first message indicates that a code map refresh is in process. This is the first entry when a
code map refresh is triggered.

 The second message specifies the entitlement values are persisted to the best suited locale.
 The third message provides information about the drivers enabled with entitlements.
 The fourth message indicates that the process is exiting after obtaining the information about

the drivers enabled with entitlements.
 The fifth message indicates that the code map is updated with the entitlements values from the

drivers and the process is completed.

Log Events
The identity applications log a set of events automatically from workflow, search, detail, and
password requests. By default, the following events are automatically logged to all active logging
channels:

Table 8-4 User Application Events

Event ID Description Trigger

31400 Delete Entity Occurs when an entity is deleted

31401 Update Entity Occurs when an entity is updated

31550 Login Success Occurs when the login succeeds

31551 Login Failure Occurs when the login fails
Setting Up Logging in the Identity Applications 93

31440 Create Entity Occurs when an entity is created

31450 Create Proxy Definition
Success

Occurs when the creation of an entity definition succeeds

31451 Create Proxy Definition
Failure

Occurs when the creation of an proxy definition fails

31452 Update Proxy Definition
Success

Occurs when an update to the proxy definition fails

31453 Update Proxy Definition
Failure

Occurs when an update to the proxy definition fails

31454 Delete Proxy Definition
Success

Occurs when the proxy definition is deleted successfully

31455 Delete Proxy Definition
Failure

Occurs when the proxy definition is not deleted successfully

31456 Create Delegatee
Definition Success

Occurs when the creation of a delegatee definition succeeds

31457 Create Delegatee
Definition Failure

Occurs when the creation of a delegatee definition fails

31458 Update Delegatee
Definition Success

Occurs when an update to the delegatee definition succeeds

31459 Update Delegatee
Definition Failure

Occurs when an update to the delegatee definition fails

003145A Delete Delegatee
Definition Success

Occurs when the delegatee definition is deleted successfully

003145B Delete Delegatee
Definition Failure

Occurs when the deletion of a delegatee definition fails

003145C Create Availability
Success

Occurs when the creation of an availability succeeds

003145D Create Availability Failure Occurs when the creation of an availability fails

3145 Delete Availability
Success

Occurs when the deletion of an availability succeeds

003145F Delete Availability Failure Occurs when the deletion of an availability fails

31520 Workflow Error Occurs when there is a workflow error

31521 Workflow Started Occurs when the workflow starts

31522 Workflow Forwarded Occurs when the workflow is forwarded

31523 Workflow Reassigned Occurs when the workflow is reassigned

31524 Workflow Approved Occurs when the workflow is approved

31525 Workflow Refused Occurs when the workflow is refused

Event ID Description Trigger
94 Setting Up Logging in the Identity Applications

31526 Workflow Ended Occurs when the workflow ends

31527 Workflow Claimed Occurs when the workflow is claimed

31528 Workflow Unclaimed Occurs when the workflow is not claimed

31529 Workflow Denied Occurs when the workflow is denied

003152A Workflow Completed Occurs when the workflow is completed

003152B Workflow Timedout Occurs when the workflow timed out

003152C User Message This is a user adhoc log message

003152D Provision Error Occurs when there is an error in the provisioning step

3152E Provision Submitted Occurs during the provisioning step on submission of entitlements.

003152F Provision Success Occurs during the provisioning step on successful completion of the
step

31530 Provision Failure Occurs during the provisioning step upon failure of the step

31531 Provision Granted Occurs during the provisioning step on granting of an entitlement

31532 Provision Revoked Occurs during the provisioning step on the revoking of an
entitlement

31533 Workflow Retracted Occurs when the workflow is retracted

31534 Workflow Escalated Occurs when the workflow is escalated

31535 Workflow Reminder Sent Occurs when reminders are sent to addressees of a workflow task

31536 Digital Signature Occurs whenever a digital signature is passed to the workflow
engine

31537 Workflow ResetPriority Occurs when the priority of a workflow task is reset.

31538 Role Approved Occurs when a role is approved

31539 Role Denied Occurs when a role is denied

003153A SOD Exception Approved Occurs when an SOD exception is approved

003153B SOD Exception Denied Occurs when an SOD exception is denied

003153C Start Correlated
Workflow

Occurs when a correlated workflow is started

003153D Role Request Submitted Occurs when a role request is submitted

3153 Resource Approved Occurs when a resource is approved

003153F Resource Denied Occurs when a resource is denied

31540 Provision Already Exists

31541 Resource Request
Submitted

Occurs when a request for a resource is submitted

Event ID Description Trigger
Setting Up Logging in the Identity Applications 95

31542 Resource Provisioning
Workflow Submitted

Occurs when a resource provisioning workflow is submitted

31543 Resource Provisioning
Workflow Failed

Occurs when a resource provisioning workflow fails

31600 Role Provisioning Occurs when a role is provisioned

31601 Role Provisioning Failure Occurs when a role provisioning fails

31610 Role Request Occurs when a role is requested

31611 Role Request Failure Occurs when the request for a role fails

31612 Role Request Workflow

31613 SOD Exception Auto
Approval

Occurs when the SOD exception is auto approved

31614 Retract Role Request Occurs when the role request is retracted

31615 Retract Role Request
Failure

Occurs when the retraction of a role request fails

31620 Entitlement Grant Occurs when the entitlement is granted

31621 Entitlement Grant Failure Occurs when the entitlement grant fails

31622 Entitlement Revoke Occurs when the entitlement is revoked

31623 Entitlement Revoke
Failure

Occurs when the entitlement revoke fails

31694 Create Authorization Occurs when the permissions are assigned to the team

31695 Delete Authorization Occurs when the permissions are removed from the team

Event ID Description Trigger
96 Setting Up Logging in the Identity Applications

9 9Tuning the Performance of the
Applications

Identity Applications rely on diverse technologies with many interactions.

This section discusses common aspects that can enable you to optimally tune the performance of
provisioning components and Tomcat application server. You can use this information as a reference
for starting your performance tuning. For a good understanding of potential areas where tuning can
improve performance, monitor your application usage patterns, loads, and hardware specifications,
and then track specific performance issues.

Several tools are available on the Internet to monitor Java applications. Standard Java JDK comes
with two graphical user interface-based monitoring tools: JConsole and VisualVM. These tools are
free and easy to install. VisualVM provides advanced monitoring features than JConsole. VisualVM
enables to analyze the thread execution and profile CPU and memory usage of the JVM requests. For
more information about these tools, see JDK Tools (https://docs.oracle.com/javase/8/docs/
technotes/tools/). The following are a few Linux-based examples of monitoring local applications
that are running on the same system as VisualVM and remote applications that are running on other
systems:

Designer (Design Workflows)

Iden�ty Vault

Workflow Ac�ons

Workflow Database

User Applica�on
Driver

Role and Resource
Service Driver

Configura�on Store

Workflow
Defini�on

Roles Directory
Access Layer

Workflow
state

Workflow Engine

Identity Manager
Dashboard

Identity Manager
Administration

User Interface
Tuning the Performance of the Applications 97

https://docs.oracle.com/javase/8/docs/technotes/tools/

Monitoring a local application
Use the process ID (PID) to monitor applications that are running locally that VisualVM can
connect to.

Monitoring a remote application
You can monitor CPU usage, heap usage, threads, memory, and classes on applications running
on other systems.
Perform the following actions to set up a connection with the remote system:

1. Add the following system properties to the CATALINA_OPTS entry of the setenv.sh file
in the /tomcat/bin/ directory:

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=<Monitoring_Port>
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

2. Launch JVisualVM from <JAVA_HOME>/bin/jvisualvm.
3. Add the remote host by using the port configured and add the JMX connection.

JVisualVM is composed of four tabs: Overview, Monitor, Threads, and Sampler. The below figure
shows the Memory tab that provides information about memory consumption and memory
pools.

NOTE: The focus of the section is tuning and not troubleshooting. Effective troubleshooting involves
identifying the clues and root cause of the problem, and then making corrections. You must first
attempt to troubleshoot the problem before thinking about tuning. For more information about
troubleshooting, Chapter 44, “Troubleshooting,” on page 647.
98 Tuning the Performance of the Applications

Increasing the Heap Size
If your application takes a longer time to respond, you may need to optimize the memory reserved
for the heap. For example, when Identity Applications are deployed in a large environment with
approximately a million permissions, it may take a few minutes (1-2) to load the permission index. If
the delay is not because of the hardware used, you can use the following Java virtual machine
options to tune the heap:

 If you run out of heap memory (not due to a memory leak), increase -Xmx.
 If you run out of native memory, you may need to decrease -Xmx.
 To tune the size of the heap for the young generation for JVM, modify -Xmn. For more

information, see the Oracle Java (https://docs.oracle.com/javase/8/docs/technotes/guides/vm/
gctuning/sizing.html) documentation.

The heap size value is determined by the amount of memory available in the computer. Initial heap
size is 1/64th of the computer’s physical memory or reasonable minimum based on platform
(whichever is larger) by default. The initial heap size can be overridden using -Xms. Maximum heap
size is 1/4th of the computer’s physical memory or 1 GB (whichever is smaller) by default. The
maximum heap size can be overridden using -Xmx.

If you installed Identity Applications on a computer with a minimum 4 GB memory, and you want to
improve the performance of the system under heavy load, set Xmx to 2048m for both minimum and
maximum heap size in the /opt/netiq/idm/apps/tomcat/bin/setenv.sh or
C:\NetIQ\idm\apps\tomcat\bin\setenv.bat file. For example, -Xms2048m -Xmx2048m.
For minimum memory requirements, see the Identity Manager 4.8 System Requirements (https://
www.netiq.com/documentation/identity-manager-48/system-requirements-identity-manager-48x/
data/system-requirements-identity-manager-48x.html) page. For general guidance about how heap
size is calculated, see the Oracle Java (https://docs.oracle.com/javase/10/gctuning/JSGCT.pdf)
documentation.

The amount of heap memory allocated to the Java virtual machine can impact performance. For
example, if the Xmx value is too low (is set lower than the amount of live data in the JVM), it will
force frequent garbage collections in order to free up the space (RAM). You may experience
excessive page file swapping if Xms or Xmx value is more than the physical memory of the computer.

Increasing the Stack Size for Recursive Workflows
If you have workflows that are recursive in nature (that execute loops), you might see a
StackOverflow error at the execution time.

For example, if you have a Provisioning Request Definition with a branch activity, multiple condition
activities, and a merge activity, Identity Applications may become unresponsive due to the following
reasons:

 Exceeded stack size limit

Java does not effectively handle the stack space for recursive type functions. The default value
for the stack size in the JVM is 1024K. Therefore, you must increase the stack size for the JVM to
4M depending on the recursive logic defined in the workflow. To increase the stack size, define
the new value in the -Xss setting in the JAVA_OPTS entry in your Tomcat start script file (/
Tuning the Performance of the Applications 99

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/sizing.html
https://www.netiq.com/documentation/identity-manager-48/system-requirements-identity-manager-48x/data/system-requirements-identity-manager-48x.html
https://docs.oracle.com/javase/10/gctuning/JSGCT.pdf

opt/netiq/idm/apps/tomcat/bin/setenv.sh or
C:\NetIQ\idm\apps\tomcat\bin\setenv.bat). For example, to set the stack size to 4M,
change the setting to -Xss4M.

JAVA_OPTS="-server -Xss4M -Xms512M -Xmx512M"
 Exhausted database connection

An exhausted database connection can lead to a delayed response from the application when
the application is performing database intensive operations such as executing complex
workflows and bulk task approvals. In such cases, you must analyze the thread dump to detect if
the database communication is degrading your JVM performance. If the delay is caused by the
database communication, set the value for the maxTotal property for your database in the
server.xml file located at /opt/netiq/idm/apps/tomcat/conf or
C:\NetIQ\idm\apps\tomcat\conf to 200. For example:

<Resource auth="Container" driverClassName="org.postgresql.Driver"
factory="com.netiq.tomcat.jdbc.pool.CustomBasicDataSourceFactory"
initialSize="10" maxTotal="200" maxIdle="10" minIdle="10"
name="shared/IDMUADataSource" password="<passsword>"
testOnBorrow="true" type="javax.sql.DataSource" url="jdbc:postgresql://
<ip-address>:port/idmuserappdb" username="idmadmin"
validationInterval="120000" validationQuery="SELECT 1"/>

Ensuring Concurrent Access from Multiple Clients
In a medium to large environment, you might have 50 or more clients accessing the server
concurrently. To prevent operational failures, configure the following settings:

 “Decreasing the Session Time-out” on page 100
 “Increasing the Number of Maximum Open Files” on page 101
 “Increasing the Number of User Processes” on page 102
 “Adjusting the Threadpool Size” on page 102
 “Increasing the Database Connection Pool” on page 103

Decreasing the Session Time-out
The session time out represents the amount of time users can leave a page unattended in their web
browser before the server displays a session-time-out warning. You must tune this value to match
the server and usage environment in which the application runs. In general, the session time out
should be as short as practicable. If a 5 minute time out does not impact your business, this time
period would allow the server to release memory twice as early as it would if the time-out value
were 10 minutes. This improves the performance and scalability of the web application.

You can define time out for web application, LDAP, and Tomcat sessions. In Identity Applications,
only LDAP and web application session time outs are used.

 The web application session time out value is represented by the com.netiq.idm.session-
timeout property in the ism-configuration.properties file. The default value is 1200
seconds.
100 Tuning the Performance of the Applications

 The LDAP session time out value is represented by the com.novell.ldap.timeout property
in the ism-configuration.properties file. The default value is 600000 milliseconds.

 The Tomcat session time out represents the amount of time Tomcat retains the information
pertaining to a user's session, when the user does not perform any action on the web page. All
Tomcat servers provide a default web.xml file in the tomcat_home/conf/ directory. To
configure the session time out globally for the entire web server, locate the <session-
config> configuration setting and change the value of the session-timeout tag. The
Tomcat session time out value is overwritten by the web application session time out value for
every user session.

The default time out values for a web application, Tomcat, and LDAP sessions are different. They
need not be same. For example, a user needs more time on the Identity Applications user interface
than a query that is issued to retrieve information from the Identity Vault.

Consider the following points when adjusting the session time out:

 Long session time-outs can cause the Tomcat server to run out of memory if many users log in
for a short period. This is valid for application server that has too many open sessions.

For example, if the session time out value is 10 minutes and approximately 10 users log in per
minute and those users are idle and do not log out during this time, you are likely to have 100
concurrent users at any point in time. If a single user consumes 1 MB of heap, 100 MB of
memory is used by those idle users. When the maximum time out value is reached, the idle
users need to log in again to use the application. If a query is in progress and it hits the
maximum time out value, the query is stopped. You must log in again for the query to continue.

The recommended value is 3 to 5 minutes.
 When a user logs in to Identity Applications, an LDAP connection is created for the user and the

user is bound to the session. Thus, the more sessions that are open, the greater the number of
LDAP connections that are held. The longer the session time out, the longer these connections
are held open. Too many open connections to the LDAP server (even if they are idle) can cause
system performance degradation.
In addition to a short time out interval, increase the number of open files on the Linux server. If
you exceed the open file limit, check your catalina.out logs for errors. For more
information, see “Increasing the Number of Maximum Open Files” on page 101.

 If the server starts experiencing out-of-memory errors, and the JVM heap and garbage
collection tuning parameters have already been optimally tuned for the server and usage
environments, consider lowering the session time out.

You can modify the session time out after installation by changing this value in the web.xml file in
the IDMProv.war archive followed by a configuration update.

Increasing the Number of Maximum Open Files
Lowering the session time out quickly clears the LDAP connection threads, which improves
performance.

If Tomcat reports the Too many open files exception when the number of concurrent logged-in
users is large, consider increasing the limit of open files (ulimit –n) in the server.xml file
depending on the concurrent sessions expected on the server. Ensure that the host operating system
is able to handle the increase in the number of open files. For example, on a server with 100
concurrent connections, increase the number of open files to 10000.
Tuning the Performance of the Applications 101

Increasing the Number of User Processes
Increase the number of user processes (ulimit –u) for the user that runs the Tomcat process on all
Tomcat servers. For example, if you have 30000 concurrent connections, setting the number of user
processes to 128502 works fine.

Adjusting the Threadpool Size
The configured connectors determine how browser and other clients access Identity Applications
deployed on Tomcat. Tomcat 9 provides a default HTTPS connection, which leads to better thread
management with longer running requests. The default maximum thread pool size within Tomcat 9
is 200.

Keep in mind that many active threads at the same time can slow down Identity Applications, and
even the server hosting Identity Applications. Therefore, you must set the maximum number of
threads that can be created to meet your requirements by using the maxThreads property in the
server.xml file. For example, specify maxThreads="1000" for an https connector. On a
computer with four processors, you can set this value between 800 and 1000. For example, set it to
800 if you expect a limited number of users to access the application and 1000 when a large
numbers of users are anticipated to access the application. If the value exceeds the number of
threads required, the thread pool shrinks as the volume decreases.

Connectors are configured by using the minProcessors, maxProcessors, acceptCount, and
enableLookups properties in the server.xml file. Below is an extract of connector configuration
from the server.xml file in which some of these properties are assigned specific values.

<Connector port="8090" maxHttpHeaderSize="8192"
 maxThreads="400" minSpareThreads="150" maxSpareThreads="300"
 connectionTimeout="2"
 acceptCount="50"
 maxKeepAliveRequests="400"
 disableUploadTimeout="true" />
The acceptCount property defines the number of pending requests awaiting processing by the
server. By default, it is 10. You must change it when a high rate of incoming connection requests
result in connection failures. For example, leave it at default if you expect a limited number of
requests and change up to 50 to accommodate a large numbers of requests when several users
access the application at the same time. However, setting it too high can overload Tomcat, which can
cause problems for all requests.

Increase maxKeepAliveRequests if you have sufficient capacity. Using persistent connections
improves performance and prevents wasting CPU resources in reestablishing HTTP connections.

If the system slows down with a high thread count, analyze the performance and thread usage under
the anticipated usage load and then adjust the value. For example, to obtain the number of threads
of a process, run grep Threads /proc/<PROCESS_PID>/status.

If the workload of a single server is high, you can cluster the Tomcat instance to allow the thread
pool to be virtually distributed across the nodes of the cluster. Each server in the cluster will need
less within its thread pool.

For complete documentation of the HTTP Connector configuration, see http://tomcat.apache.org.
102 Tuning the Performance of the Applications

Increasing the Database Connection Pool
Identity Applications communicate with the database through a JDBC connection pool. A connection
pool starts with a small number of connections. As clients demand for more connections increases,
there may not be enough connections in the pool to satisfy the requests. The Tomcat server creates
additional connections and adds them to the pool until the maximum pool size is reached.

For example, when multiple users access the Tasks page at the same time, Identity Applications
connect to the User Application database and query for the task list. Tomcat allocates a resource
from the database connection pool to make the connection with the database. When all
connections are relatively busy and the connection pool is empty, Identity Applications wait until a
connection is released.

To configure a JNDI data source that uses connection pooling in Tomcat, add the following
ResourceLink global element in the conf/context.xml file:

<ResourceLink global="shared/IDMUADataSource" name="jdbc/IDMUADataSource"
type="javax.sql.DataSource" />
In this example, the JNDI context is created with jdbc/IDMUADataSource name, which is a type of
DataSource. The database configurations are defined in Tomcat’s server.xml file in the url,
username, password, and driverClassName attributes. The connection pooling properties are
defined in maxTotal(maxActive before Tomcat 8), maxIdle, and minIdle attributes.

Review the following while configuring the JDBC connection pool:

 The number of concurrent tasks that will execute at the same time.
 The other runtime components. Each runtime component works in conjunction with the other

runtime components. NetIQ recommends setting the size of the initial connection pool to 10.
To change it, modify the following entry in Tomcat’s server.xml file:

<Resource auth="Container" driverClassName="org.postgresql.Driver"
factory="com.netiq.tomcat.jdbc.pool.CustomBasicDataSourceFactory"
initialSize="10" maxActive="50" maxIdle="10" maxWait="30000"
minIdle="10" name="shared/IDMUADataSource"
password="srNOGbFupaKGrFfhULugQw==:KggiF61gvadcEpxqlCt5gQ==:yFZtb+h0bk
5iQ7LUniIsRA==" testOnBorrow="true" type="javax.sql.DataSource"
url="jdbc:postgresql://164.99.91.252:5432/idmuserappdb"
username="idmadmin" validationInterval="120000" validationQuery="SELECT
1" />

 The number of connections in the pool must allow each executing task to retrieve and update
task and event data throughout the lifetime of the task.

 The database uses prepared statements. You must configure the prepared statement cache for
the database that you are using to store the data.

View Request Status Search Limit
By default, the View Request Status action retrieves up to 10,000 request objects. If a user attempts
to retrieve a larger result set, the user will see a message indicating that the limit has been reached.
In this case, the user should narrow the search (by specifying a particular user or status, for example)
to limit the number of objects returned in the result set. Note that when a user applies a filter to a
role name, the filter limits what the user sees and its order, not the number of objects returned.
Tuning the Performance of the Applications 103

To change the maximum number of request objects retrieved:

1 Log in to iManager.
2 Navigate to the User Application driver.
3 Under EntityDefs.DirectoryModel.AppConfig, locate the sys-nrf-request object.
4 Modify the XmlData attribute for the object to the following value:

<search-max>10000</search-max>
5 Save your changes.

Decreasing the LDAP Socket Cleanup Interval
Identity Applications tracks and clears all the LDAP sockets and references at the specified interval.
By default, this interval is set to 60 minutes. A simple user search will not take time. When too many
LDAP requests are handled, CPU utilization and memory usage of the system increases leading to
performance issues. In this case, you might need to decrease the LDAP socket cleanup interval
manually. A small interval cleans the memory regularly and decreases the memory footprint of the
process. Otherwise, the socket objects remain in the memory and cause out of memory issues.

To decrease the LDAP socket cleanup interval:

1 Open the ism-configuration.properties file that is located at:
Linux: /opt/netiq/idm/apps/tomcat/conf/
Windows: C:\NetIQ\idm\apps\tomcat\conf

2 Set the com.novell.idm.ldap.socket.cleanup.interval property to 10 minutes.
For example,

com.novell.idm.ldap.socket.cleanup.interval=10
3 Restart the Identity Applications service.

systemctl restart netiq-tomcat.service

Optimizing LDAP Connection with Identity Vault
Identity Applications use LDAP connections to communicate with the Identity Vault server. The LDAP
time out value represents the maximum time after which an LDAP connection to the Identity Vault is
timed out by the LDAP server. The default value is 600000 milliseconds (10 minutes). The connection
is timed out as soon as the 600'th second is reached regardless of whether it is an idle connection or
it is in the middle of processing a query. If an LDAP query is still running and has not completed when
it reaches the 600'th second, the connection is closed between Identity Vault and Identity
Applications. Therefore, if your LDAP query is expected to take more time, increase the value of the
com.novell.ldap.timeout property in the ism-configuration.properties file.

You must change the LDAP connection time out value to match the Identity Vault usage in your
environment depending on how much time out period can you afford. For example, if your query is
not performing as expected or the data size that you are expect the query to return is large, increase
the time out value. Decreased time out value allows the server to release unused resources
relatively quickly, which improves the performance and scalability of Identity Applications.
104 Tuning the Performance of the Applications

By default, Identity Applications uses the Java LDAP property
com.sun.jndi.ldap.read.timeout for the LDAP connection time out value. In Identity
Manager 4.8.1 and later, the new property: com.netiq.ldap.useLdapReadTimeOut can be used
to set the LDAP connection timeout value using that the socket time out mechanism. To use the
socket time out mechanism, add the com.netiq.ldap.useLdapReadTimeOut property in the
ism-configuration.properties file and set the value to false.

Indexing Attributes in the Identity Vault
LDAP queries can be a bottleneck in a heavily utilized directory-server environment. To maintain a
high level of performance with large numbers of objects, create indexes for the attributes that are
frequently used in Identity Vault searches. An index is a set of keys arranged in a way that
significantly speeds up the task of finding any particular key within the index. This allows to
efficiently retrieve the objects whose attributes are indexed during searches without having to
search the entire database every time a search is issued. When a complex query is run against
objects with indexed attributes, the query returns relatively faster.

The Identity Vault ships with a set of indexes that provide basic query functionality. These default
indexes are for the following attributes:

Aliased Object Name
cn
dc
Equivalent to Me
extensionInfo
Given Name
GUID
ldapAttributeList
ldapClassList
Member
NLS: Common Certificate
Obituary
Reference
Revision
Surname
uniqueID
uniqueID_SS
When you install Identity Manager, the default directory schema is extended with new object class
types and new attributes pertaining to Identity Applications. The Identity Applications specific
attributes are not indexed by default. For better performance, you might find it useful to index some
of those attributes (and perhaps a few traditional LDAP attributes as well), particularly if your user
container contains over 5,000 objects.

In case your setup has large number of objects, the Role and Administrator Assignments tabs take
longer response time to load. To avoid such issues, you can add the following attributes for indexing
for both the tabs:

 Role Access - Index the nrfAssignedResources attribute
 Administrator Assignment - Index nrfAssignedRoles and nrfAssociatedRoles attributes.
Tuning the Performance of the Applications 105

The general idea is to index only those attributes that you know are regularly queried, which could
be different attributes in different production environments. If you already know which attributes
you are likely to use in your searches, you must index those attributes. For example, if you know that
users of your org chart are likely to perform searches based on the isManager attribute, you can
try indexing that attribute to see if the performance is enhanced.

NOTE: As a best practice, it is recommended that you index, at a minimum, the manager and
isManager attributes.

Indexes can be of type presence, value, and substring indexes.

 Value matches the entire value or the first part of the value of an attribute. For example, value
matching could be used to find entries with a LastName that is equal to “Jensen” and entries
with a LastName that begins with “Jen.”

 Presence requires only the presence of an attribute rather than specific attribute values. A
query to find all entries with a Login Script attribute would use a presence index.

 Substring matches a subset of the attribute value string. For example, a query to find a
LastName with “der” would return matches for Derington, Anderson, and Lauder. A substring
index is the most resource-intensive index to create and maintain.

A compound index is a new type of index. You can think of it as a value index on more than one
attributes. It stores the values of the attributes as part of the key for the index. For more
information, see “Enabling Compound Index on Identity Vault Attributes” on page 106.

The type of index you create, depends upon if the search is looking for any value (*), or a specific
value such as person or admin. For example, use a presence index when a * is used in the query. Use
a value index when a specific value is used in the query. Although indexes improve search
performance, additional indexes also add to directory update time. As a general rule, create new
indexes only if you suspect performance issues are related to a particular directory lookup.

You can create, manage, and delete indexes in iManager (eDirectory Maintenance > Indexes). For
more information, see Index Manager (https://www.netiq.com/documentation/edirectory-92/
edir_admin/data/a5tuuu5.html) in the eDirectory Administration Guide (https://www.netiq.com/
documentation/edirectory-92/edir_admin/data/bookinfo.html).

For more information about eDirectory performance tuning, see Managing eDirectory (https://
www.netiq.com/documentation/edirectory-92/edir_admin/data/a5zek7a.html) in the eDirectory
Administration Guide (https://www.netiq.com/documentation/edirectory-92/edir_admin/data/
bookinfo.html).

Enabling Compound Index on Identity Vault Attributes
Compound index is a value index covering multiple attributes. Compound index was primarily added
to support sorting on multiple attributes for the Server Side Sort control, you can use it for improving
the performance of searches if the attributes being searched are part of a compound index.

When compound index is not enabled, you are likely to encounter issues where results are not
displayed in the Identity Applications user interface. For example, the User Catalog page does not
display the results.

The Identity Applications installation program automatically creates the following indexes:
106 Tuning the Performance of the Applications

https://www.netiq.com/documentation/edirectory-92/edir_admin/data/a5tuuu5.html
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/a5zek7a.html
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/bookinfo.html
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/bookinfo.html
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/bookinfo.html

0$GnSnIndex$0$0$0$1$Given Name$Surname
0$SnGnIndex$0$0$0$1$Surname$Given Name
0$CnSnIndex$0$0$0$1$CN$Surname
0$TitleSnIndex$0$0$0$1$Title$Surname
0$OuSnIndex$0$0$0$1$OU$Surname
0$LSnIndex$0$0$0$1$L$Surname
0$mailSnIndex$0$0$0$1$Internet EMail Address$Surname
0$telephoneNumberSnIndex$0$0$0$1$Telephone Number$Surname
To create and manage indexes and compound indexes, use eDirectory’s ndsindex utility. For
compound indexes, specify multiple attributes separated by $ sign in the ndsindex utility.

For example, to create a value index with the name MyIndex on the email address and surname
attributes, enter the following command:

ndsindex add –h myhost –D cn=admin, o=mycompany –w password –s cn=myhost,
o=netiq 'MyIndex;email address$surname;value'
Alternatively, you can create a compound index by using an LDIF file. For example, sort users on
custom attributes.

1 Create an LDIF file with the compound index entries.
1a dn: CN=linux-32ep,OU=servers,O=system (Your Server DN)

changetype: modify

add: indexdefinition

indexdefinition: 0$gnsnindex$0$0$0$1$given name$surname (specify
the correct order)

1b dn: CN=linux-32ep,OU=servers,O=system (Your Server DN)

changetype: modify

add: indexdefinition

indexdefinition: 0$sntitleindex$0$0$0$1$Title$surname
2 Run the following command to create indexes:

ice -S LDIF -a -c -f comp.ldif -D LDAP -s 164.99.178.47 -p 389 -d
cn=admin,ou=sa,o=system -w novell -F –B

3 (Optional) Check if the indexes are online:

ndsindex list -D cn=admin,ou=sa,o=system -w novell -s CN=linux-
32ep,OU=servers,O=system

Consider the following while creating compound indexes:

 Although you can specify multiple attributes for compound index, try not to add more than
three attributes. As you go on adding the attributes, the performance of the searches is
decreased. In case of value type compound index, you can add a maximum of five attributes.

 You are recommended to connect ndsindex utility to the same eDirectory server where the
index has been added.
Tuning the Performance of the Applications 107

NOTE: An index with ancestor id can only be created with value index type. Presence and Substring
index types are not supported with ancestor id.

 Database size increases after creating index with ancestor id.

Comparison with Other Indexes
The cost of managing compound indexes in terms of time is the same as any other value index. Any
modification such as addition or deletion of value requires the index to update.

The order of the number of attributes added to a compound index determine disk space used by the
index.

The key size for a compound index is higher because all attribute values are added to the key. If other
attributes are present, then a key for those attributes is added to the index. This can lead to bigger
keys and increased number of keys as compared to normal value indexes.

NOTE: Having a high number of indexes has an adverse performance impact on modify operations
because it requires updating the indexes with the modified attribute. This is not specific to
compound indexes.)

Any modification (addition/deletion of value) would require the index to be updated.

For more details on how to create or manage compound indexes, see Examples of Compound
Indexes (https://www.netiq.com/documentation/edirectory-92/edir_admin/data/
a6qjdjx.html#akiydau) in the eDirectory Administration Guide (https://www.netiq.com/
documentation/edirectory-92/edir_admin/data/bookinfo.html).

Sample Error Message
If an attribute is part of compound indexes, the following error message is displayed in the Manage
Users page.

Sorting functionality does not work for //attribute key//attribute. Please
contact the system administrator for more details".
The following error message is displayed in the catalina.out with complete exception trace.

OperationNotSupportedException: [LDAP: error code 53 - Unwilling To
Perform].
108 Tuning the Performance of the Applications

https://www.netiq.com/documentation/edirectory-92/edir_admin/data/a6qjdjx.html#akiydau
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/a6qjdjx.html#akiydau
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/bookinfo.html

Managing the eDirectory Database Cache Objects
Retrieved from the Identity Vault Server

The Database Cache allows you to configure and monitor the cache segments that are used by the
database subsystem of eDirectory. The easiest way to monitor, control, and configure Database
Cache settings is through iMonitor.

iMonitor can run on all platforms supported by eDirectory. This utility lets you monitor your servers
from any location on your network where a Web browser is available. You can monitor your
eDirectory environments based on a partition, replica, or server. You can also examine all tasks,
when they occur, their results, and how long they take. iMonitor provides several options for tuning
the Database Cache settings.

To access the Database Cache page in iMonitor, enter the following in your address bar and log in as
administrator with the fully distinguished name, or as an administrator equivalent:

https://<server ip>:8030/nds/agent?config=CacheCtl
The information that displays on the Database Cache page helps you determine whether you have
an adequate cache size and suggests how much cache to allocate. For most applications of the
directory, the default cache size and settings are adequate.
Tuning the Performance of the Applications 109

The Database Information section of the page shows the size of your DIB in KBs. In this example, the
DIB is about 4 GBs. It is hard-coded to use 10 GBs of RAM for the cache. The DIB has about 400,000
users and 100,000 groups.

To monitor the cache statistics, locate the Database Cache section on the page.

About 5.2 GB of the 10 GB allocated is actually used by the cache. When it reaches the maximum
allocated size, eDirectory divides the memory into equal parts, as the Max Entry and Max Block lines
show. To change this configuration, use the Block Cache percentage option at the bottom of the
page.

You can assign nearly fifty percent of the memory to the cache in normal cases. A new installation of
eDirectory on a Linux system defaults to 200 MBs. You can change it for your requirements.
110 Tuning the Performance of the Applications

You can view and change the cache settings from the Database Cache Configuration section.
eDirectory supports static and dynamic memory allocation. Static allocation is predictable and does
not pose maintenance overhead for the underlying operating system. You are recommended to use
static memory allocation, but consider your environment before making the selection. For more
information about controlling the cache memory consumption of eDirectory, see the eDirectory
Tuning Guide (https://www.netiq.com/documentation/edirectory-92/edir_tuning/data/
bqmivb8.html).

You can also view status of hits and misses to the cache from this section. In this example, 98% of the
hits were served from the cache. Like all caches, it may take some time for the cache to build up
after a service restart.

You can link to the Agent Summary, Agent Information, Agent Configuration, Trace Configuration,
DSRepair, Reports, and Search pages from any iMonitor page by using the icons in the Navigator
frame. You can also log in or link to the NetIQ Support Web page from any iMonitor page. For more
information about iMonitor and the features it provides, see iMonitor Features (https://
www.netiq.com/documentation/edirectory-92/edir_admin/data/b1gkpdzf.html#b1h7wmyw) in the
eDirectory Administration Guide.

Disabling the Nested Group Search
This section only applies when you are using Identity Manager 4.8.5 or later versions.

Groups that are members of a parent group or contain child groups are referred to as nested groups.
If you are using groups to manage permissions, a nested group will allow members to inherit
permissions from the parent group.

When a user launches the Identity Applications Dashboard, the application searches for the user's
group membership attribute and displays the permissions granted through direct group assignments
as well as the permissions inherited by virtue of the nested group. Since nested group search is
enabled by default, Identity Applications users may experience a delay in loading the Dashboard and
Applications pages. If you want to disable the default nested group search and have it only check for
direct group assignments, add the following property to the ism-configuration.properties
file and restart Tomcat:

DirectoryService/realms/jndi/params/USE_NESTED_GROUPS=false
Tuning the Performance of the Applications 111

https://www.netiq.com/documentation/edirectory-92/edir_tuning/data/bqmivb8.html
https://www.netiq.com/documentation/edirectory-92/edir_tuning/data/bqmivb8.html
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/b1gkpdzf.html#b1h7wmyw
https://www.netiq.com/documentation/edirectory-92/edir_admin/data/bookinfo.html

112 Tuning the Performance of the Applications

10 10Customizing the Identity Applications for
Your Enterprise

Identity Manager provides several tools for localizing or customizing the content in the identity
applications user interface. This section helps you perform the following activities:

 “Linking the Dashboard to External Applications” on page 114
 “Customizing the Look of the User Interfaces” on page 114
 “Localizing the Text in the Interfaces” on page 116
 “Adding a Language to the Identity Applications” on page 121
 “Configuring User Names” on page 128
 “Configuring Email Notification Templates for the Dashboard” on page 130
 “Configuring Forgot Password? Functionality” on page 131
 “Ensuring that Characters Display Properly in Role Report PDF Files” on page 132
 “Ensuring that Dates Display Correctly in Norwegian” on page 133
 “Configuring Client Settings Mode” on page 133
 “Copying the Client Settings” on page 134
 “Copying the Workflow Migration” on page 136
 “Changing Identity Applications Client Settings” on page 139
 “Hiding the Navigation Items from User Interface” on page 152
 “Configuring Separation of Duties Properties” on page 153

For more information about... See...

Setting the preferred locale “Specifying Locales and Localization Resource
Groups” in the NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity
Applications

Localizing email templates “Adding Localized Email Templates” on page 289

Localizing challenge questions “Security Best Practices” in the NetIQ Identity
Manager Security Guide

Localizing provisioning objects or customizing their
display text, such as:

 Directory abstraction layer objects
 Provisioning request definitions
 Workflow activity display names

“Localizing Provisioning Objects,” in the NetIQ
Identity Manager - Administrator’s Guide to
Designing the Identity Applications
Customizing the Identity Applications for Your Enterprise 113

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#specifyinglocalesandlocalizationresourcegroups
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#specifyinglocalesandlocalizationresourcegroups
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/security/security.pdf#identitymanagersecurityguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/security/security.pdf#identitymanagersecurityguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/security/security.pdf#identitymanagersecuritybestpractices
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#localizingdisplaylabels
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Linking the Dashboard to External Applications
You can modify the Applications page in the Dashboard to display all the applications, activities, and
permissions that you want users to access. To ensure that users can access Identity Reporting and
SSPR, add the following types of links to the Applications page:

Managing Featured Items
You can modify the Applications page to display all the applications, activities, and permissions that
you want users to access. By default, the identity applications provide a Home items category, which
cannot be deleted.

You can create any number of applications and permissions that you might want to add to the
Applications page. You can create or modify the categories to organize the Applications items.

For more information about customizing the Applications page, click on the Dashboard.

Customizing the Look of the User Interfaces
The Dashboard allows you to modify the product title, logo, and colors in the header to meet your
organization’s branding requirements. In the footer you can customize with copyright/Trademark
and contact information. The identity applications provides a set of built-in themes that you can
apply to the look and feel of the user interface. You can also customize one of these themes or
create your own for branding purposes.

 “Applying Your Organization’s Brand to the Dashboard” on page 114
 “Adding Product title in your language to the Dashboard” on page 115
 “Applying a Cascading Style Sheet to the Dashboard” on page 115

Applying Your Organization’s Brand to the Dashboard
You can use your organization’s logo and name in the header and footer of the Dashboard. You also
can specify your brand colors and localize the content in the header. For more information about
applying your brand to the Dashboard, click on the Dashboard and see Client Customization >
Customize the User Interface > Customize the Branding.

Activity Link to...

Run identity reports Identity Reporting

Manage password Self-service Password Reset
114 Customizing the Identity Applications for Your Enterprise

Adding Product title in your language to the Dashboard
In Dashboard, when you localize labels, text in language other than English, the organization's
branding in the header has to be configured manually in that language from the Settings page.

To set a product title, say NetIQ Identity Manager in Swedish language, go to Settings > Branding >
Header, click Show languages and enter the title in the Swedish language text field. Save the changes.

A list of supported language is provided below:

 Chinese (China)
 Portuguese
 French
 Russian
 Japanese
 Chinese (Taiwan)
 Italian
 Danish
 German
 Spanish
 English
 Norwegian
 Swedish
 Czech
 Dutch
 Hebrew*
 Polish*

* Supported from Identity Manager 4.8.1.

Applying a Cascading Style Sheet to the Dashboard
You can change the appearance of the Dashboard user interface by using your own cascading style
sheet (css). The idmdash.war supports customization through a file called custom.css. It looks
for this file in a directory called netiq_custom_css within the home directory of the user that
started Tomcat on the server where the application server is running.

By default, this user is novlua, so the home directory is /home/users/novlua. If a custom.css
file exists, it overrides the default style sheet file provided with the Dashboard.

1 Add your custom.css file to the netiq_custom_css folder.
2 If Tomcat is already running, refresh your browser to see the changes. Otherwise, restart

Tomcat and clear the cache from your browser.

NOTE: This is applicable for Legacy Forms only.
Customizing the Identity Applications for Your Enterprise 115

Localizing the Text in the Interfaces
The text displayed in the identity applications is stored in either a set of language-based JSON files,
language-based JAR files, or properties files located in the User Application WAR and User
Application driver. In general, the file name includes a reference to the language. For example, the
English language strings for the identity applications are stored in the UserAppStrings_en.JAR.

NOTE: The labels and string text typically change between versions. This means that you have to
apply your string changes or customizations to each new release.

 “Localizing the Labels in the Dashboard” on page 116
 “Modifying the Text of the Application Tab” on page 117
 “Localizing Text Stored in the JAR Files” on page 118

You can also translate or localize the names and descriptions of provisioning objects in the Directory
Abstraction Layer, Provisioning Request Definition, and Role Catalog. For more information, see
Localizing Provisioning Objects.

Localizing the Labels in the Dashboard
Some organizations might want to customize the default names for the fields and navigation items in
the Dashboard. This procedure describes the process for updating the downloadable .properties
files.

WARNING: Do not modify any text in the code string before the = sign. For example, category-
featured-47-name =. The Dashboard might not function appropriately if you change the code
string incorrectly.

1 Log in to the Identity Manager Dashboard.

2 Select Applications > .
3 On the Manage Applications page, select the Localization icon.

The Dashboard lists the .properties files by language.

Language Locale Designation

Chinese (China) zh_CN

Chinese (Taiwan) zh_TW

Czech cs

Danish da

Dutch nl

English en

French fr

German de
116 Customizing the Identity Applications for Your Enterprise

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#localizingdisplaylabels

* Supported from Identity Manager 4.8.1.
4 In the Languages window, download the .properties file for each language that you want to

localize.
Depending on your browser settings, you might be prompted for the download path.

NOTE: If prompted, do not rename the .properties file. The Dashboard cannot upload a file
that does not match the expected name.

5 In a text editor, customize the displayed text for the attributes that you want to change.
For example, if you download the sv.properties file to localize the Dashboard in Swedish,
modify the properties file as follows:

English value: My Category
category-featured-47-name = Min kategori

NOTE: If you want to use double-byte or extended characters in the properties file, ensure that
you save the file using the correct encoding.

6 Save and close the file.
7 In the Languages window, upload the modified file to the appropriate language.
8 Close the Languages window, then select Edit Done.
9 Refresh the browser window to view the changes.

NOTE: Depending on the browser settings, you might need to log out of the Dashboard, clear
the cache in the browser, then log in again.

Modifying the Text of the Application Tab
You can modify the menu text and the header on the Application tab.

To change the Application menu text:

1 Log in to the Identity Manager Dashboard.

Hebrew* iw

Italian it

Japanese ja

Polish* pl

Norwegian nb

Portuguese pt

Russian ru

Spanish es

Swedish sv

Language Locale Designation
Customizing the Identity Applications for Your Enterprise 117

2 Select Applications > .

3 On the Manage Applications page, select .

4 On the Languages page, click next to the language file you want to download. For example,
English.

5 Modify the following line in the downloaded file. For example en.properties.
label-menu-main = Application
For example, you can modify the above line to:
label-menu-main = Applications Menu

6 Save the en.properties file.

7 Click next to English to upload the en.properties file.
8 Refresh the browser.

To change the header on the Applications Page:

1 Navigate to the /opt/netiq/idm/apps/tomcat/webapps/idmdash/i18n/json/
directory.

2 Edit the DashStringsRsrc_<language>.json file, where <language> is the language file
that you want to modify. For example, DashStringsRsrc_en.json.

3 Modify the following line:
"Applications": "Applications",
For example, you can modify the above line to:
"Applications": Applications List",

4 Refresh the browser.

Localizing Text Stored in the JAR Files
The text strings stored in the WAR files are found in a language-based .jar file. These .jar files
include various .properties files, which you can customize for the RBPM Configuration Utility as
well as most of the Dashboard and identity applications interfaces. You can also customize the labels
for One SSO Provider (OSP).

WARNING: Do not modify any text in the code string before the = sign. For example, category-
featured-47-name =. The identity applications might not function appropriately if you change
the code string incorrectly.

The .jar files are located by default in the following directories.

 Identity applications: /opt/netiq/idm/apps/UserApplication/l10n-resources/
userapp
For example, UserAppStrings_<locale>.jar.

 OSP: /opt/netiq/idm/apps/osp/osp-extras/l10n-resources
For example, osp-custom-resource.jar.
118 Customizing the Identity Applications for Your Enterprise

Customizing Strings for Identity Applications
To customize strings for identity applications:

1 Log in to the server where you installed the identity applications.
2 Identify the WAR file for the identity application that you want to modify.
3 In the WAR file, locate the .jar file(s) that you want to update.
4 Copy the .jar files that you want to update to a temporary directory.

WARNING: Do not change the file names or directory structure of the .jar files.

5 To access the .properties files in each .jar file in the temporary directory, complete one of
the following actions:
 Extract the .properties files
 Use WinRAR to open each .properties file

For example, access the OAuthManagerRsrc_en.properties file in the
UserAppStrings_en.JAR.

6 Browse the file directory to the .properties file that you want to edit.
For example, UserAppStrings_fr.properties.

7 In a text editor, customize the displayed text for the content that you want to change.

WARNING: Do not modify any text in the code string before the = sign. For example,
ADMIN_PASSWORD=. The identity applications might not function appropriately if you change
the code string incorrectly.

8 Save and close the editor.
9 To apply your changes to the application, complete the following steps:

WARNING: Do not change the file names or directory structure of the .jar and WAR files.

9a Using the Java JDK jar program, add the properties files back to the .jar file.
9b Add the modified .jar to the appropriate WAR file, maintaining the folder location within

the WAR.
You can use the Java JDK Jar program. For example:

jar -uvf IDMPRov.WAR WEB-INF/lib/UserAppStrings_fr.jar
9c Redeploy the WAR file to your application server.

10 Stop Tomcat.
For example:

systemctl stop netiq-tomcat
11 Delete all files and folders in the following directories:

 Tomcat temporary directory, located by default in /opt/netiq/idm/apps/tomcat/
temp
Customizing the Identity Applications for Your Enterprise 119

 Catalina directory, located by default in /opt/netiq/idm/apps/tomcat/work/
Catalina
You can view the log files and delete all log files from the tomcat/logs directory, located
by default in /opt/netiq/idm/apps/tomcat/logs.

12 Start Tomcat.
For example:

systemctl start netiq-tomcat
13 Before logging in to the identity applications, clear the browser cache to ensure that the

browser displays your changes.
14 To test your changes, complete the following steps:

14a Access the identity application that you modified.
14b Using your list of changes, review each occurrence of the string you changed to determine

if you made the change appropriately.

Customizing Strings for OSP
To customize the strings on the OSP login page:

1 Log in to the server where OSP is installed.
2 Navigate to osp-extras/l10n-resources.

By default, it is located in/opt/netiq/idm/apps/osp/osp-extras/l10n-resources.
3 Back up osp-custom-resources.jar file.
4 Copy the backed up osp-custom-resources.jar to a temporary directory.
5 Extract the osp-custom-resources.jar file in the temporary directory.

For example: jar xf osp-custom-resources.jar

NOTE: Make sure that you have maintained the existing directory structure during extraction.

6 Navigate to resources folder and open
oidp_enduser_custom_resources_en_US.properties file and uncomment the
following properties:

WARNING: Do not modify any text in the code string before the = sign. For example,
ADMIN_PASSWORD=. The identity applications might not function appropriately if you change
the code string incorrectly.

Organization name [nbsp], [reg], [tm], [amp], [br], [plus], [apos]
are pseudo-tags
that are converted at runtime into appropriate HTML.
OIDPENDUSER.LoginProductName=Company[nbsp]Name[reg]
Whether the company or product name should be displayed in the login
pages: "true" or "false"
OIDPENDUSER.LoginProductNameDisplay=true
These properties modify the banner name on the login page. You can uncomment other
properties and change them to localize different texts on the login page.
120 Customizing the Identity Applications for Your Enterprise

7 Save and close the editor.
8 Stop Tomcat.

For example:

systemctl stop netiq-tomcat
9 To apply your changes to the application, complete the following steps:

WARNING: Do not change the file names or directory structure of .jar and WAR files.

9a Using the Java JDK jar program, add the properties files back to the .jar file.
9b Update the osp-custom-resources.jar with the customized properties files in the

temporary directory.
You can use the Java JDK Jar program. For example:

jar -uf osp-custom-resources.jar resources/
oidp_enduser_custom_resources_en_US.properties

9c Copy the updated osp-custom-resources.jar to the tomcat/lib directory.
10 Delete all files and folders in the following directories:

 Tomcat temporary directory, located by default in /opt/netiq/idm/apps/tomcat/
temp

 Catalina directory, located by default in /opt/netiq/idm/apps/tomcat/work/
Catalina

11 Start Tomcat.
For example:

systemctl start netiq-tomcat
12 Before logging in to the identity applications, clear the browser cache to ensure that the

browser displays your changes.

Adding a Language to the Identity Applications
If the default languages for Identity Manager do not meet your organization’s needs, you can
translate the strings and user interface content to a different language. For example, you might want
to interact with the identity applications in Norwegian (language code=nb). To translate content to a
non-default language, you can copy the .properties files of an existing language.

To complete this process, we recommend perform the following steps in the listed order.

Checklist Items

 1. Configure the identity applications to support the new language. For more information, see
“Adding the New Language to the Identity Applications” on page 122.

 2. Copy an existing set of files that you can use as a template for translating to the new
language. For more information, see “Preparing Files for Translation” on page 123.

 3. Translate the files.
Customizing the Identity Applications for Your Enterprise 121

Adding the New Language to the Identity Applications
You must configure the identity applications to support the new language. You can perform this
action in iManager.

1 Log in to iManager as an Administrator.
2 Click icon for View Objects.
3 In the Tree tab, navigate to Context > Driver Set > Driver > AppConfig > AppDefs.

For example, netiq > TestDrivers > UserAppDriver > AppConfig > AppDefs.
4 Click locale-configuration.
5 In the Valued Attributes list, select XmlData, then click Edit.
6 In the Edit Attribute window, search for <locale code"=xx> </locale> and create similar

tags with the values for the language that you want to support.
Ensure that you verify the language code.

7 Search <supported-locale>xx</supported-locale> and add a new tag with the newly
created language code. For example:

<supported-locale>en</supported-locale>
8 Click OK, then OK again.
9 Restart the application server.

10 To verify that the identity applications can display the new language, complete the following
steps:
10a Log in to the Dashboard as an administrator.

10b Select Applications > .
10c On the Manage Applications page, select the Localize icon.

The Dashboard lists the .properties files by language.
10d Verify that the language you added to iManager appears in the list of Languages.

Although the Dashboard displays a Download option for the new language, there is not
content to download. To create that content, continue to “Preparing Files for Translation”
on page 123.

 4. Change the default language to the new language. For more information, see “Changing the
Default Language” on page 126.

 5. Add the translated files to the appropriate locations, such as WAR files or upload to the user
interface. For more information, see “Add the Translated Files to the Proper Locations” on
page 126.

 6. Update notification templates using Designer. For more information, see “Updating an Email
Notification Template” on page 127.

 7. Verify that the identity applications display the appropriate content. For more information,
see “Verifying the New Translations” on page 127.

Checklist Items
122 Customizing the Identity Applications for Your Enterprise

Preparing Files for Translation
The identity applications display content from several types of language-based .properties files
from the following sources:

 .json files, such as DashStringsRsrc_en.json

NOTE: This only applies to Identity Manager 4.8.x, where x is 0 to 5.

 .json files, such as AdminStringsRsrc_en.json
 .jar files, such as UserAppStrings_en.jar

WARNING: Do not change the directory structure of the .jar files or modify any text in the
code strings before the = sign. The identity applications might not function if you make
inappropriate alterations.

 Downloadable files, such as localizedLabels_en.properties
To make it easy to modify the content that the identity applications source from the WAR files,
we enable you to download the .properties files directly from the Dashboard. You do not
need to edit the WAR files.

You use different tools to customize the text depending on where the text is stored. To ensure that
all content appears in your preferred language, you must translate all of the files. This procedure
assumes that you will translate English .properties files to the new language, rather than starting
from another language such as French.

For more information about customizing the interface content, see “Localizing the Text in the
Interfaces” on page 116.

To prepare files for translation:

1 Complete the steps in “Adding the New Language to the Identity Applications” on page 122.
2 To prepare the file that the Dashboard uses for labels in the user interface, complete the

following steps:
2a To download a file to use as the template for translation, complete the procedure in

“Localizing the Labels in the Dashboard” on page 116.
2b Change the locale code in the file name to represent the language that you want to add.

For example, to add Norwegian, change

localizedLabels_en.properties
to

localizedLabels_nb.properties
3 To prepare the content in the .jar files, complete the following steps:

3a Create backup copies of the .jar files that you want to translate. Store the backups in a
safe location.
For more information about updating .jar files, see “Localizing Text Stored in the JAR
Files” on page 118.

3b Copy the .jar files that you want to translate to a temporary directory.
Customizing the Identity Applications for Your Enterprise 123

You will need these files again after the translations are complete.
3c To access the .properties files in each .jar file in the temporary directory, complete

one of the following actions:
 Extract the English .properties files
 Open the properties file in WinRAR

For example, access the OAuthManagerRsrc_en.properties file in the
UserAppStrings_en.JAR.

3d For each .properties file, change the locale code in the file name to represent the
language that you want to add.
For example, to add Norwegian, change

OAuthManagerRsrc_en.properties
to

OAuthManagerRsrc_nb.properties
3e Within each .properties file, change the language code in the key BUNDLE_LOCALE to

represent the language that you want to add.
For example, to add Norwegian, change

BUNDLE_LOCALE=en
to

BUNDLE_LOCALE=nb
3f (Conditional) If a string that you want to translate and use in the .properties file has a

comment, you must un-comment it.
For example, change

#OIDPENDUSER.50048=Next
to

OIDPENDUSER.50048=Next
3g Create .jar files to contain the .properties files that you want to translate.

For example, for the Norwegian translator, you might create UserAppStrings_nb.jar.
The new .jar files must mimic the directory structure of the original files.

3h Add the .properties files that are ready for translation to the new, appropriate .jar
files.
For example, add the OAuthManagerRsrc_nb.properties file to the
UserAppStrings_nb.jar file.
124 Customizing the Identity Applications for Your Enterprise

4 To prepare the content in the .json files, complete the following steps:
4a Locate the files as described in “Localizing Text Stored in the JAR Files” on page 118.

5 Provide the .jar files, localizedLabels_xx.properties files, and .json files to your
translator.

WARNING: Ensure that the translator maintains the file names and directory structure of the
.jar files. Also, do not modify any text in the code string before the = sign. For example,
com.netiq.UA.persistence.ops.AttributeDefinition.USER.guid=. The identity
applications might not function if you make inappropriate alterations.

6 (Conditional) For Identity Manager 4.8.x, where x is 0 to 5.
To add the supported locale for idmadmin.war, perform the following steps:
6a Navigate to idmadmin.war and open this file using Winrar.

\opt\netiq\idm\apps\tomcat\webapps\idmadmin.war
6b Add the new AdminStringsRsrc_xx.json file and validate this file.

\idmadmin.war\assets\i18n\
7 (Conditional) For Identity Manager 4.8.x, where x is 0 to 5.

To change the supported locale for idmadmin.war, perform the following steps:
7a Navigate to idmadmin.war and open this file using Winrar.

\opt\netiq\idm\apps\tomcat\webapps\idmadmin.war
7b Edit the AdminStringsRsrc_xx.json file and validate this file.

\idmadmin.war\assets\i18n\
7c Copy the edited AdminStringsRsrc_xx.json file to the following location.

\idmadmin.war\assets\i18n\
8 (Conditional) For Identity Manager 4.8.x, where x is 6, 7, and later.

To add the supported locale for idmdash.war, perform the following steps:
8a Navigate to idmdash.war and open this file using WinRAR.

\opt\netiq\idm\apps\tomcat\webapps\idmdash.war
8b Edit the AdminStringsRsrc_xx.json file and validate this file.

\idmdash.war\assets\i18n\
8c Copy the edited AdminStringsRsrc_xx.json file to the following location.

\idmdash.war\assets\i18n\

IMPORTANT: Make sure that the AdminStringsRsrc_xx.json file is present in the
\idmdash.war\assets\i18n\ folder before changing the preferred locale on the
Dashboard’s My Profile page.
Customizing the Identity Applications for Your Enterprise 125

Changing the Default Language
The configupdate Utility controls which languages appear in the identity applications and sets the
default language. Perform this procedure when you are ready to add new translations to the identity
applications.

1 Complete the steps in “Preparing Files for Translation” on page 123.
2 In a terminal, navigate to the configupdate directory, located by default in /opt/netiq/
idm/apps/configupdate or C:\NetIQ\idm\apps\configupdate.

3 At the command prompt, use one of the following methods to run the configuration utility:
 Linux: ./configupdate.sh
 Windows: configupdate.bat

NOTE: You might need to wait a few minutes for the utility to start up.

4 Select Miscellaneous.
5 For Supported Locales, add the locale code that represents the language(s) that you want to

include. Use a pipe sign to separate entries.
For example, enter |nb for Norwegian.

6 For Default Locale, specify the language that you want to use.
For example, enter nb for Norwegian.

7 Save your changes and close the utility.

Add the Translated Files to the Proper Locations
After translations are completed, you can add the translated files to their appropriate WAR and
uploaded locations.

1 Log in to the server where you installed the identity applications.
2 Copy the .jar file(s) to WEB-INF/lib/, by default in the /opt/netiq/idm/apps/tomcat/
webapps/IDMProv/ directory.

3 Upload the .json file to /home/users/novlua/netiq_custom_css.
4 Stop Tomcat.

For example:

systemctl stop netiq-tomcat
5 Delete all files and folders in the following Tomcat directories:

 temp, located by default in /opt/netiq/idm/apps/tomcat
 Catalina, located by default in /opt/netiq/idm/apps/tomcat/work

6 Delete all log files from the Tomcat logs directory, located by default in /opt/netiq/idm/
apps/tomcat.

7 Start Tomcat.
For example:

systemctl start netiq-tomcat
126 Customizing the Identity Applications for Your Enterprise

8 To upload the label files, complete the following steps:
8a Log in to the Dashboard as an administrator.

8b Select Applications > .
8c On the Manage Applications page, select the Localize icon.
8d For the language that you added to the identity applications, select Upload.

For example, if you added the locale code for Norwegian, upload the
localizedLabels_nb.properties file.

8e Refresh the browser window to view the changes.

NOTE: Depending on the browser settings, you might need to log out, clear the cache in
the browser, then log in again.

Updating an Email Notification Template
After adding a language to the identity applications, update the notification templates for the newly
added language using Designer.

1 Ensure that your localized notification template includes an appropriate locale code in the
filename.
If you are updating the localized template for Norwegian language, ensure your template’s
fiename includes.nb. For example Email Based Approval Templates.nb

2 Import the modified notification template into Default Notification Collection.
2a Right-click Default Notification Collection and select Import Templates from File.
2b Browse to and select the notification template.

3 Right-click Default Notification Template and select Live > Deploy.

Verifying the New Translations
1 In a browser, clear the browser cache.
2 Change the browser language to the language that you added.
3 Enter the URL for the identity applications.

If you did not translate the content in the OSP .jar files, the login page continues to appear in
the default language.

4 Log in.
5 Observe the translated content.
Customizing the Identity Applications for Your Enterprise 127

Configuring User Names
The Dashboard and the identity applications allow you to configure the format of displayed user
names in your environment based on the user’s current locale. To simply name entry, the identity
applications attempt to complete the names as you type them based on the information in the
database.

 “Configuring the Format of Displayed User Names” on page 128
 “Enabling Localized User Names in Typeahead Fields” on page 129
 “Configuring the Attribute for Sorting Users in Dashboard” on page 129

Configuring the Format of Displayed User Names
The Dashboard and the identity applications allow you to configure the format of displayed user
names in your environment based on the user’s current locale.

You can then use localized user names in Approval forms, using the literal
%LocaleFormattedFullName% for forms with the User entity definition key. For more
information about creating or configuring forms in Designer, see “Creating Forms for a Provisioning
Request Definition”, in the NetIQ Identity Manager - Administrator’s Guide to Designing the Identity
Applications.

1 Start Designer.
2 Open your current project and click the project name in the Outline view.
3 In the Provisioning view, right-click Full Name and select Edit.
4 In the Directory Abstraction Layer editor, expand Entities > Full Name.
5 Select the locale name pattern that you want to modify.
6 Modify the Calculated Attribute expression to specify the format you want to use for the locale.

For example, if you want to display the user’s surname first and given name second, modify the
expression as follows:

attr.getValue("Surname") + " " + attr.getValue("Given Name")
You can either modify the expression manually in the Expression field or click the Build
ECMAScript Expression icon and use the ECMA Expression Builder to modify the expression. For
more information about modifying ECMAScript expressions, see “Working with ECMA
Expressions” in the NetIQ Identity Manager - Administrator’s Guide to Designing the Identity
Applications.

7 Save your changes to the locale name pattern.
8 Repeat Step 5 through Step 7 for each name pattern you want to configure.
9 When finished, close the Directory Abstraction Layer editor.

10 In the Modeler, right-click the User Application driver and select Driver > Deploy.
11 Click Deploy, then click Yes to restart the driver.
12 Click OK.

The Assigned To column on Dashboard’s Tasks page (for both Self and Others) is configured by
default to display the addresseeFirstname attribute of a user entity. As a result, Dashboard
ignores the locale name pattern you configured for the displayed user name. You can change the
128 Customizing the Identity Applications for Your Enterprise

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#createformsforprovisioningrequestdefinitions
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#createformsforprovisioningrequestdefinitions
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#workingwithecmaexpressions
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#workingwithecmaexpressions
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

default setting in Identity Manager 4.8.7 and onwards by adding the
com.netiq.idm.isAddresseSupportNameFormatting property to the ism-
configuration.properties file. When set to true, the property checks whether the format of
the displayed user full name matches the format specified in the Calculated Attribute expression in
the Full Name entity and display the user’s full name in the Assigned To column based on the locale
name pattern configured. Note that if you do not add the property or set it to false, then Dashboard
will use the addresseeFirstname attribute to display the user name.

Enabling Localized User Names in Typeahead Fields
After you configure the Full Name entity in the Directory Abstraction Layer, the identity
applications automatically display user names formatted by locale.

However, to use user names with localized name formatting in typeahead fields within the identity
applications, you must create one or more custom registry entries. The identity applications use
typeahead controls when a supervisor wants to manage a specific or team, and the typeahead
controls do not use the %LocaleFormattedFullName% literal.

1 In the conf directory of your application server installation, create an empty file with the file
name UIControlRegistry_CustomProps.xml.

2 Open the User Application WAR, IDMProv.war by default, and extract the contents.
3 Locate the UIControlRegistry.xml file in the WAR’s WEB-INF directory.
4 In the UIControlRegistry.xml file, locate the entries for the UserDNLookup and
UserInTeamDNLookup keys.

5 Copy the <registry> element, <ctrls> element, and both keys to the
UIControlRegistry_CustomProps.xml file.

6 Modify the display-exp property of each of the copied keys as follows:

<prop name="display-exp" type="string">
 <value>FirstName LastName</value>
 <value xml:lang="en">LastName FirstName</value>
</prop>

7 Create an xml:lang value for each localized name format you want to use. You can include a
value for each language supported by the identity applications.

8 Save and close the UIControlRegistry_CustomProps.xml file.
9 Restart Tomcat.

Configuring the Attribute for Sorting Users in Dashboard
By default, the Identity Applications sorts the list of users on the Dashboard based on the First
Name attribute, irrespective of the user name format configured by the administrator in the
Directory Abstraction Layer (DAL). For example, if the administrator has configured the Full Name
Customizing the Identity Applications for Your Enterprise 129

entity to display the user’s surname first and the given name second, then the Dashboard will
display a user, John Smith as Smith John, where Smith is the surname and John the given name.
However, it will use John (first name of the user) while sorting the order in the list.

Identity Applications provides you an option to change the default setting and sort users based on
the attribute of your choice. You must provide the key value of the attribute for sorting. For example,
add the property com.netiq.idm.user.sortcol=LastName in the ism-
configuration.properties file to sort the users by the LastName.

Consider the following while configuring the property for sorting users:

 You can specify only one attribute for the com.netiq.idm.user.sortcol property.
 If the configured attribute is not part of the compound index or DAL, the application resets the

property com.netiq.idm.user.sortcol to the default value, FirstName in the ism-
configuration.properties file. Consequently, the users are sorted based on their
FirstName attribute.

 Server side sort uses sorting key attributes such as Given Name and Surname in the compound
index to perform searches. The application sorts the data based on the order in which these
attributes have been configured. The attribute set for the com.netiq.idm.user.sortcol
property is used as first sorting key, whereas the second sorting key attribute is selected by the
application. For example, when the com.netiq.idm.user.sortcol property is set to
LastName, the application uses Surname as the first sorting key attribute and Given Name as
second sorting key attribute while sorting the users. Similarly, if you set the property as
com.netiq.idm.user.sortcol=TelephoneNumber, the users will be sorted using the
Telephone Number and Surname as the first and second sorting attribute respectively.
For more information on compound indexes, see “Enabling Compound Index on Identity Vault
Attributes” on page 106.

Configuring Email Notification Templates for the
Dashboard

By default, email notification templates in Identity Manager direct recipients to the identity
applications. To direct recipients to the Dashboard, you must modify the default email notification
templates in Designer.

NOTE: Not all notification templates include links to the identity applications.
 Modifying an existing notification template marks that template as customized in Designer.

To direct recipients to the Dashboard:

1 Start Designer.
2 Make sure you have imported email notification templates into your Designer project.
3 In the Outline view, right-click the notification template you want to modify and select Copy.
130 Customizing the Identity Applications for Your Enterprise

NOTE: We recommend you create and modify a copy of the original notification template you
want to configure, rather than modifying the original. You can then specify the “Identity
Manager Dashboard” version of the template in any workflows where you want users to use the
Dashboard, and not modify the workflows where you want users to use the identity
applications.

4 Specify a name for the copied template and click OK.
5 Right-click the copied template and select Edit, then click Yes to confirm.
6 (Optional) To remove all links to the identity applications, change all instances of the following

text:

$PROTOCOL$://$HOST$:$PORT$/$TASKLIST_CONTEXT$
to:

$PROTOCOL$://$HOST$:$PORT$/idmdash/#tasks
7 (Optional) To retain the existing identity applications links, add text similar to the following line

to the notification template message:

You can review your tasks list using the Dashboard at
$PROTOCOL$://$HOST$:$PORT$/idmdash/#tasks.

8 When finished, save and close the notification template.
9 Repeat Step 3 through Step 8 for each notification template you want to modify, including any

localized templates.
10 Deploy the new templates to the Identity Vault.
11 Modify any workflows where the approver should use the Dashboard so the workflow uses the

new notification templates.

Configuring Forgot Password? Functionality
If you want the Dashboard login page to display the Forgot password? link, you must configure the
Password Management Settings in the Authentication tab of the configupdate utility and then
restart the Tomcat application server.

1 Launch the configupdate utility from the command line: configupdate.sh or
configupdate.bat

2 Navigate to Authentication > Password Management, then select Forgot Password.
3 Click OK.
4 Click Logout.
5 To start Tomcat, enter the following command in a command prompt:

/etc/init.d/netiq-tomcat restart
6 After Tomcat finishes restarting, go to the Dashboard login page to verify the page displays the

Forgot password? link.
Customizing the Identity Applications for Your Enterprise 131

Ensuring that Characters Display Properly in Role Report
PDF Files

By default, the role report feature of the identity applications uses “UniGB-UCS2-H” for the PDF
encoding and “STSong-Light” for the PDF font for Chinese simplified, Chinese traditional, Russian and
Japanese locales. For the other locales, “Cp1252” is used for PDF encoding and “Helvetica” or
“Helvetica-Bold” is used for the PDF font.

If the user's browser locale or preferred locale is set to one of the above four locales, the report will
be able to display most of characters from these locales. However, some extended characters found
in ISO-8859 may not be displayed properly in the report.

Conversely, if the browser locale or preferred locale is not set to one of these four locales then some
Asian characters will not display properly.

To allow all characters to display properly in generated PDF files, you need to:

 Edit the Configuration XML Data in iManager
 Configure the identity applications

NOTE: You may also notice problems displaying some characters in role reports for languages that
are not in the standard set of supported languages. If you add a new language (such as Polish), you
may also need to perform the steps provided in this section to ensure that all characters display
properly for that language as well.

 “Editing the Configuration XML Data in iManager” on page 132

Editing the Configuration XML Data in iManager
1 Login to iManager as your Administrator.
2 Click the View Objects icon.
3 In the , navigate to the following location:

Context > Driver Set > Driver > AppConfig > AppDefs
For example:

netiq > TestDrivers > UserAppDriver > AppConfig > AppDefs
4 Click configuration.
5 In the Valued Attributes list, select XmlData and click Edit.
6 In the Edit Attribute window, search for PREF_FONT and replace the corresponding <value></
value> with <value>Arialuni.ttf</value>.

7 Search for PREF_ENCODING and replace the corresponding <value></value> with
<value>Identity-H</value>.

8 Click OK, the click OK again.
9 Restart the User Application driver.
132 Customizing the Identity Applications for Your Enterprise

Ensuring that Dates Display Correctly in Norwegian
For language codes no and nb, you need to perform a workaround to ensure that dates display
correctly in Norwegian. The Date.js file contains no but not nb, however, the dmask value (dd/
MM/yyyy) is not correct. For both no and nb, the format should be dd.MM.yyyy.

To ensure that dates display correctly in Norwegian:

1 Copy the file com/netiq/common/i18n/I18nDateTimeRsrc_en.properties, modifying
the locale portion of the file name to match the desired locale (for example,
I18nDateTimeRsrc_nb.properties).

2 Modify the format(s) in the file to match the desired format. There are four format types: short,
medium, long and full. These formats correspond to the java.text.DateFormat.SHORT,
.MEDIUM, .LONG and .FULL constants.

3 Add the file to the IDMProv.war under WEB-INF/classes/com/netiq/common/i18n
using the jar utility (file must be placed in a directory corresponding to the above path).

jar uvf IDMProv.war
WEB-INF/classes/com/netiq/common/i18n/I18nDateTimeRsrc_nb.properties

Configuring Client Settings Mode
An administrator with the Settings page navigation rights can configure multiple clients with
different settings using the Identity Manager dashboard. Administrator can decide to save these
configurations using the following modes as part of application configuration:

Using File System
By default, the client settings directory is stored in the <tomcat_base_folder>/conf folder
when the directory is not configured. The clients settings configuration can also be stored in a clients
settings directory under the User Home folder. The administrator needs to add the
com.netiq.idmdash.client.settings.directory in the ism-
configuration.properties file with the appropriate value.

NOTE: You can set client settings directory as %user.home% to create the client settings directory
under the User Home folder. You can also set the client setting directory as %catalina.base% to
create the client setting folder under <tomcat_base_folder> folder. If you do not set the client
settings directory, the directory is created under the <tomcat_base_folder>/conf folder.

Using Database
Administrator can also store the configuration in the CLIENT_SETTINGS table in the identity
applications database.

By default, the client settings configuration is stored in File System mode. The administrator can
specify the mode of saving the configuration in the ism-configuration.properties file. Add
the com.netiq.idmdash.client.settings.store.preference with an appropriate value in
the ism-configuration.properties file. If you want to change the mode to database, set the
property value to database. To return to the default mode, either set the property value to file or
Customizing the Identity Applications for Your Enterprise 133

remove the property
com.netiq.idmdash.client.settings.store.preference=database from the ism-
configuration.properties file.

IMPORTANT: Always select the database mode for saving the client settings configuration on
each node of the cluster environment for each node to share the settings.

 To copy the client settings from File System to Database mode or vice versa, use the
MigrationSettings migration utility as instructed in “Copying the Client Settings” on
page 134.

 If you modify the client settings mode, you must also set the
com.netiq.idm.rbpm.updateConfig-On-StartUp property to true in the ism-
configuration.properties file. By default, the property is set to false. Setting this
property to true ensures that the application configurations are correctly refreshed and
updated in the database after Tomcat is restarted.

Copying the Client Settings
The Identity Applications client settings migration utility helps you copy the client settings from
Database to File System mode or vice versa. You can also use the utility to copy the client settings
from one Identity Applications server to another Identity Applications server, or just export the
settings, save them, and import them to another location a later time.

The migration utility is available as a zip file in the ISO files at <LINUX_ISO>/user_application/
IDM_Tools and <WINDOWS_ISO>/IdentityApplications/IDM_Tools. When the file is
unzipped, a jar file and a silent properties file is extracted in the /opt/netiq/common/utils/ or
C:\netiq\common\utils\ on your file system.

Run the jar file in a command prompt using the following syntax:

java -jar MigrationSettings.jar [-option1] [value1]....[-optionN] [valueN]
The following options are supported with the jar file:

-e Export to a file name. Example: clients.json

-i Import settings from a file name. Example: clients.json

-sp Source Server protocol (http/https default: http)

-ss Source Server IP address (default: localhost)

-spo Source Server port (default: 8180)

-srctx Source Server RBPM Context (default: IDMProv)

-su Source Username. Example: cn=uaadmin,ou=sa,o=data

-spwd Source Password

-dp Destination Server protocol (http/https default: http)
134 Customizing the Identity Applications for Your Enterprise

-ds Destination Server IP adrress(default: localhost)

-dpo Destination Server port (default: 8180)

-drctx Destination Server RBPM Context (default: IDMProv)

-du Destination Username. Example: cn=uaadmin,ou=sa,o=data

-dpwd Destination Password

-f <filename> Use this option to silently copy the settings. In a
silent mode, the file reads the values from the silent property file. Using
this option overrides the other options passed to the migration utility.
To copy the settings from one location to another location, you must specify the source and
destination details in the silent properties file as following:

source.protocol=http

source.ip=192.127.0.2

source.port=8180

source.rbpm.web.context=IDMProv

source.username=cn=uaadmin,ou=sa,o=data

source.password=password

destination.protocol=http

destination.ip=192.127.0.1

destination.port=8180

destination.rbpm.web.context=IDMProv

destination.username=cn=uaadmin,ou=sa,o=data

destination.password=password
where source specifies the location from where you want to copy the client settings and
destination specifies the location to which you want to copy these settings. Location can be a
server, File System, or a Database.

NOTE: You must specify the values for the properties for the source. If you do not specify the value
for the password property in the silent properties file, the utility prompts you for the value when you
run it in the command line.

Perform the following actions to copy the client settings:

1 Log in as a root user to the destination computer where you want to move the client settings.
2 Open a terminal session.
Customizing the Identity Applications for Your Enterprise 135

3 Specify the values for source and destination servers in the silent properties file.
4 Run the migration utility by entering the following command:

java -jar MigrationSettings.jar [-option1] [value1]....[-optionN]
[valueN]

Examples
Example 1: java -jar MigrationSettings.jar -e settings.json -f silent.properties

This command copies all client settings into the settings.json file. This option is useful when you
want to save the exported settings.

Example 2: java -jar MigrationSettings.jar -i settings.json -f silent.properties

This command imports all client settings from the settings.json file to the destination server by
reading the values provided in the silent properties file.

Example 3: java -jar MigrationSettings.jar -e settings.json -sp http -ss localhost -spo 8180 -srctx
IDMProv -su cn= admin,ou=sa,o=data -spwd password

This command exports all client settings from the server whose details are provided in the command
prompt. This option is useful when you want to save the exported settings.

Example 4: java -jar MigrationSettings.jar -i settings.json -dp http -ds localhost -dpo 8180 -drctx
IDMProv -du cn=admin,ou=sa,o=data -dpwd password

This command copies all client settings stored in the settings.json file to the destination server
whose details are provided in the command prompt.

Copying the Workflow Migration
Identity Manager enables you to pause and resume in-progress workflows through REST APIs. This is
typically useful when you want to upgrade your workflow database without losing the workflow
states. The Identity Applications workflow migration utility helps you copy the workflow data from
one database to another database.

The migration utility is available as a zip file in the ISO files at <LINUX_ISO>/user_application/
IDM_Tools/WorkflowMigrationAPI.zip and <WINDOWS_ISO/IdentityApplications/
IDM_Tools/WorkflowMigrationAPI.zip. Perform the following steps to copy the migration
data:

IMPORTANT: Before performing the data migration, you must stop the Roles and Resource Driver.
The Roles and Resource driver should not be started until the data export and import operations are
completed.

1 Copy the ISO file from <mountedISO>/user_application/IDM_Tools/
WorkflowMigrationAPI.zip folder to /home directory and unzip the file.

2 To copy the data from one location to another location, you must specify the source and
destination details in the silent properties file as following:
136 Customizing the Identity Applications for Your Enterprise

source.protocol=https

source.ip=yourIP

source.port=8543

source.rbpm.web.context=IDMProv

source.username=cn=uaadmin,ou=sa,o=data

source.password=password

destination.protocol=https

destination.ip=yourIP

destination.port=8543

destination.rbpm.web.context=IDMProv

destination.username=cn=uaadmin,ou=sa,o=data

destination.password=password

connection.timeout=10000000
3 Run the following commands to export data from their respective directories where you have

unzipped the ISO files based on your Operating System:
Linux: Run the following command for Linux:

/opt/netiq/common/jre/bin/java -jar WorkflowMigrationAPI.jar -e
filename.zip -f silent.properties
Windows: Run the following command for Windows:

C:\NetIQ\Common\JRE\bin\java -jar WorkflowMigrationAPI.jar -e
filename.zip -f silent.properties

4 Create a new database for workflow engine and update the newly created workflow database
details in the server.xml file.

5 Set com.netiq.idm.create-db-on-startup attribute to true in the ism-
configuration.properties file.

6 Start the Tomcat server and ensure that the Workflow DB Schema has been created as part of
the Tomcat startup.

7 Run the following commands to import the data which was exported in step 3:
Linux: Run the following command on Linux:

/opt/netiq/common/jre/bin/java -jar WorkflowMigrationAPI.jar -i
filename.zip -f silent.properties
Windows: Run the following command on Windows:
Customizing the Identity Applications for Your Enterprise 137

C:\NetIQ\Common\JRE\bin\java -jar WorkflowMigrationAPI.jar -i
filename.zip -f silent.properties

8 Start the Roles and Resource driver.

Workflow Migration Utility Command Usage
The following options are supported with the jar file:

-e Export to ZIP file name. Example: wf_db_migration.zip

-i Import data from ZIP file name. Example:
wf_db_migration.zip

-sp Source Server protocol (http/https default: https)

-ss Source Server IP address (default: localhost)

-spo Source Server port (default: 8543)

-srctx Source Server RBPM Context (default: IDMProv)

-su Source Username. Example: cn=uaadmin,ou=sa,o=data

-spwd Source Password

-dp Destination Server protocol (http/https default: https)

-ds Destination Server IP adrress(default: localhost)

-dpo Destination Server port (default: 8543)

-drctx Destination Server RBPM Context (default: IDMProv)

-du Destination Username. Example: cn=uaadmin,ou=sa,o=data

-dpwd Destination Password

-f <filename> Use this option to silently copy the data. In a silent
mode, the file reads the values from the silent property file. Using this
option overrides the other options passed to the migration utility.
where source specifies the location from where you want to copy the migration data and
destination specifies the location to which you want to copy these data. Location can be a server,
File System, or a Database.

NOTE: You must specify the values for the properties for the source. If you do not specify the value
for the password property in the silent properties file, the utility prompts you for the value when you
run it in the command line.
138 Customizing the Identity Applications for Your Enterprise

Perform the following actions to copy the migration data:

1 Log in as a root user to the destination computer where you want to move the workflow
migration.

2 Open a terminal session.
3 Specify the values for source and destination servers in the silent properties file.
4 Run the migration utility by entering the following command:

java -jar WorkflowMigrationAPI.jar [-option1] [value1]....[-optionN]
[valueN]

Examples
Example 1: java -jar WorkflowMigrationAPI.jar -e wf_db_migration.zip -f silent.properties

This command copies all workflow migration data into the wf_db_migration.zip file. This option
is useful when you want to save the exported settings.

Example 2: java -jar WorkflowMigrationAPI.jar -i wf_db_migration.zip -f silent.properties

This command imports all workflow migration data from the wf_db_migration.zip file to the
destination server by reading the values provided in the silent properties file.

Example 3: java -jar WorkflowMigrationAPI.jar -e wf_db_migration.zip -sp http -ss localhost -spo
8543 -srctx IDMProv -su cn=uaadmin,ou=sa,o=data -spwd password

This command exports all workflow migration data from the server whose details are provided in the
command prompt. This option is useful when you want to save the exported settings.

Example 4: java -jar WorkflowMigrationAPI.jar -i wf_db_migration.zip -dp http -ds localhost -dpo
8543 -drctx IDMProv -du cn=uaadmin,ou=sa,o=data -dpwd password

This command copies all client settings stored in the wf_db_migration.zip file to the destination
server whose details are provided in the command prompt.

Changing Identity Applications Client Settings
Identity Manager Dashboard allows you to modify the settings for every client configured in identity
applications. An administrator must have access to Your ID > Settings page to modify the client
settings.

The Settings page also allow you to add a client settings in the identity applications. To add a new
client settings, click and specify the Client Name and LDAP Filter to match. You can perform the
following activities in this page:

 “Changing General Client Settings” on page 140
 “Managing User Access” on page 140
 “Customizing the Views” on page 141
 “Changing the Client Branding Attributes” on page 148
 “Configuring a Client Helpdesk” on page 148
 “Managing Dashboard Widgets” on page 150
Customizing the Identity Applications for Your Enterprise 139

 “Customizing the Organization Chart View” on page 151
 “Deleting the Client Settings from Identity Applications” on page 152

Changing General Client Settings
The General tab allows you modify the basic client settings.

Client Name
Represents the name of a client.

LDAP Filter to match
Represents the condition that helps to determine the client settings to be applied for the logged
in user. If no condition is matching then it applies the default client settings.

Managing User Access
You can control user accesses using Access tab, this allows you to specify which user accounts are
trustees for the user and configuration based functions within the client. When a trustee logs in, the
application displays the page that has been provisioned. Otherwise, the page is hidden. You can add
users, groups, roles, and containers as trustees.

When configuring user access, you should consider the following conditions:

 Make sure that the users specified in Trustees are having sufficient Identity Vault rights to
perform tasks within the Identity Applications. However, trustees can access the page but
operations on the page will fail if they do not have the proper Identity Vault rights.

 Each Navigation item has a set of default trustees suitable for the services that can be accessed
through that page. However, if you remove all trustees for a navigation item, every user will be
able to access that page.

 If a user does not have access to the default navigation (or to the default menu item within a
navigation area), the application redirects the user to the Dashboard page. The application
might also display an error message, such as when a user attempts to login to page without
proper authorization. The user can log in but will be directed to the Dashboard page.

 When a user is in proxy mode, the application provides access according to the permissions for
the account being proxied, as opposed to the permissions for the logged in user. The proxy can
perform tasks on behalf of the other user but does not assume any of the role-type
permissions. For example, a user cannot perform Domain Administrator functions on behalf of
a Domain Administrator unless that user also has that role.

For more information, click on the Dashboard.
140 Customizing the Identity Applications for Your Enterprise

Customizing the Views
The Customization tab allows you to modify the Users page view for the selected client. You can
specify general settings for notifications and request forms. In Identity Manager 4.8.1 and later, you
can also modify the Organization Chart page view.

Select the following options from Navigation items to customize views for your client:

 “User Settings” on page 141
 “General Settings” on page 143
 “Entity Settings” on page 145

User Settings
The User settings enable you to configure the attributes displayed in the Users page for the selected
client. In Identity Manager 4.8.1 and later, you can also configure the Organization Chart page
attributes.

Card View
Represents the attributes that you want the application to display by default when the user
selects Card View on the Users page. In Identity Manager 4.8.1 and later, these attributes will
also appear on a user’s card on the Organization Chart page.
By default, the Card View will display the full name of a user entity in addition to the attributes
that you choose to display. The Identity Applications retrieves the full name of the user entity
from the Identity Vault based on the full name entity settings.

IMPORTANT:
 By default, the application displays only two primary and two secondary attributes on a

card, even if you add more than two for each attribute in the Card View. You can edit card
properties in the sample CSS file downloaded from the Settings page to display more
attributes on a card. For more information, see “Modifying the Card Properties” on
page 151.

 Because the Card View is configured by default to display the full name of a user entity,
when you select the First Name and Last Name as primary attributes, the user’s full
name may appear twice in the Card View on the Users page and in the organization chart.

 To enable the option for sending emails in a Manager-Employee relationship on the
Organization Chart page, add the Email attribute as a primary or secondary attribute in the
Card View. This allows a user to send emails to all team members who report directly to
the Manager, as well as individual members in a Manager-Employee hierarchy. The New
Email option will appear in an employee’s Card View only after you configure this setting.

Other Attributes
Represents additional attributes that provide details about a selected user.

Editable Attributes
Represents the attributes that can be modified for a user’s details. For most attributes, you can
also enter text to serve as default values or examples to aid in new user creation, as desired.
Customizing the Identity Applications for Your Enterprise 141

The following example allows a client user to edit Title, Manager, Telephone Number, Manager,
and Direct Report attributes:

Figure 10-1 Editable Attributes

To add more attributes to the list, click Add. You can also select a different attribute from the list
to modify the editable attributes.

Use Default Photo
This only applies from Identity Manager 4.8.1.
Represents the image that you want the application to display by default when you enable the
image toggle button in the Card View.

User Search Lookup Attributes
Represents the attributes that users can define when searching for a user entity. It applies to
the fields that use the DN Lookup widget in the Identity Applications Dashboard.

User Search Default Attribute
This only applies from Identity Manager 4.8.1.
Represents the attributes that users can define when searching for a user or filtering search
results in the Users page.

User General Settings
Represents the default container for storing users and how the application responds when
displaying search results.
 Base Container

Specifies the container in the Identity Vault that stores a newly created user.
When creating a user, you can see this value but cannot modify it. This limitation ensures
that all users are stored in the same container for that client.

 Users List Container
This only applies from Identity Manager 4.8.1.
Specifies the container in the Identity Vault that you want the application to use for listing
users in the Users page.
142 Customizing the Identity Applications for Your Enterprise

 User Profile Entry
This only applies from Identity Manager 4.8.1.
Specifies the entity that the application will display in the My Profile page. By default, a
user entity is displayed.

 Show All Permissions
This only applies from Identity Manager 4.8.2.
Enable this setting to list all permissions assigned to the user on the Permissions page. This
include permissions directly assigned to the user and those assigned indirectly through
groups or containers. By default, this settings is disabled, allowing the user to see the list of
directly assigned permissions only.

 User Search Limit
Specifies the maximum number of users that the application can list as a result of a user
search.

 Default Organization Chart Relationship
This only applies from Identity Manager 4.8.1.
Specifies the user to user relationship that the application will display by default in the
Organization Chart page. By default, it is set to Manager-Employee.
The Identity Applications ships with a default set of relationships namely, Manager-
Employee, Group’s membership, and User groups that is displayed in the drop-down list.
The administrator can also define custom relationships in the Directory Abstraction Layer
using the Designer. For more information, see Working with Relationships in the NetIQ
Identity Manager - Administrator’s Guide to Designing the Identity Applications.

 View Permissions Type
Enable the permission types such as Roles, Resources, and PRD. This allows your client
users to view or request the permission types that are selected.
By default, all the permission types are enabled.

 Enable Role Approval
This only applies to Identity Manager 4.8.2.1.
Enable the respective options in this setting to trigger an approval process before a role is
assigned to groups, containers, or mapped to another role. The approval process will be
triggered only if the approval is configured for that role. When this setting is disabled, the
role will be assigned to the recipients directly, without seeking approval. The approver(s)
will not receive an email notification, although the email approval setting is set to enabled.
By default, the Enable Role Approval is disabled for Role to Role, whereas it is enabled for
Role to Container and Role to Group options.

General Settings
The General settings specify how the client responds upon user login and when the user initiates
forms.

Notification Expiry
Specifies the number of days before a task or role expires that the application begins displaying
a notification when the user logs in.
Customizing the Identity Applications for Your Enterprise 143

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#workingwithrelationshipsindal
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Enable Task Bulk Approval
Allows the client users to approve or deny multiple requests at a time.

Disable Implicit Claim of Task
Specifies whether it is mandatory for the user to claim a task before approving or denying it. By
default, this flag is set as false; user can approve or deny the task without claiming it. If you set
this flag as true, user must claim the task explicitly. In this case, the approval and deny options
are not displayed until the task is claimed by a user. The functioning of Disable Implicit Claim of
Task option also applies to bulk approval of tasks.

Set Availability while creating a Delegation Assignment
Specifies whether the application displays options for providing the availability details when the
user creates a delegation. When selected, the application displays the availability options at the
same time when delegation is created. If you want to create delegation and specify availability
details in separate actions, do not select this option.

Show Add Workflow in Roles Page
Enabling this option displays the Add Workflow action in the Roles page. By default, it is
enabled.

Show Add Workflow in Resources Page
Enabling this option displays the Add Workflow action in the Resources page. By default, it is
enabled.

Feedback Message Span
Specifies the period for an information message to appear on the page.

Identity Governance URL
Specifies the Identity Governance URL.

Managers Hierarchy
Specifies the manager’s hierarchy. This helps the helpdesk users to reassign the helpdesk tickets
to the managers of the specified level. You can set the hierarchy up to 3.

Enable Eager Search Results in Roles and Resources Page
Enable this option to display the roles in the Roles page and the resources in the Resources
page. By default, this option is enabled. Disabling this option will not display the roles and
resources when the Roles and the Resources pages are loaded.

Organization Chart separator for multi-valued attributes
This only applies from Identity Manager 4.8.1.
Specifies the symbol that the application will use to separate values when displaying a multi-
valued attribute for an entity (user or custom) in the Organization Chart page. By default,
comma is used. For example, if the email attribute has more than one value for an entity, the
application will display the email addresses separated by comma.
144 Customizing the Identity Applications for Your Enterprise

Organization Chart hierarchy depth
This only applies from Identity Manager 4.8.1.
Specifies the maximum depth of the organization chart that the application can display for a
user relationship in the Organization Chart page. For example, an organization chart hierarchy
depth of 3 for a given relationship will display the hierarchy of a user up to level 3 from the root
user, where the root user is identified as level 1.

Notification Interval
This only applies from Identity Manager 4.8.2.1.
Specifies the time interval at which the application calls the notifyService API to retrieve
the information on any new task, role, or resource assigned to the logged-in user, then notify
the user on the Dashboard. The default value of this setting is 120000 milliseconds (2 minutes).

By default, the Dashboard opens a new window when the user requests for a new permission or
selects a task for approval.

Entity Settings
The Entity settings enable you to configure the attributes. The entities are created using Designer.
For more information see, About Entities and Attributes in the NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity Applications.

To configure an entity, click the icon and select the entity type from the drop down menu. The
deployed entities are displayed in the drop down menu. Click Create. This displays the selected entity
in the Entities tab and in the Navigation items menu.

To delete an entity, select the entity from the Navigation items menu and click the icon. The
deleted entity will not be listed under the Entities tab.

View Attributes
Represents the attributes that you want the application to display by default when you select
the created entity in the Entities tab
In the example shown in Figure 10-2 on page 145, description, direct reports, company,
language, photo, manager, city, mobile, title, and CN are selected for display by default.

Figure 10-2 View Attributes

Editable Attributes
Represents the attributes that can be modified for an entity. You can add or delete attributes
from the list of available entities.
Customizing the Identity Applications for Your Enterprise 145

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#dalentityoverview
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

In the example shown in Figure 10-3 on page 146, direct reports, description, city, company,
language, photo, manager, mobile, and title attributes are editable.

Figure 10-3 Editable Attributes

To add additional attributes to the list, click Add.

Search Attribute
It represents the attributes that can be used to search an object, such as Description and CN of
an entity. This setting is used to list the entities. This is a mandatory attribute.
Starting from Identity Manager 4.8.3, you can configure the Search Attribute for groups. For
example, if you want to customize the search attributes on People > Groups page for your client,
select Group from the Navigation items menu and choose the required attributes in the Search
Attribute option. On saving, the users will be able to search groups based on the selected
attributes. The following figure shows Description and CN as search attributes selected for the
“Group” entity type.

Figure 10-4 Search Attribute
146 Customizing the Identity Applications for Your Enterprise

NOTE: Identity Applications does not support attributes of the type DN as search attributes for
group entity.

Base Container
Specifies the container in the Identity Vault that stores a newly created entity.
This value cannot be modified. Therefore, all entities are stored in this container for a particular
client.

Default Organization Chart Relationship
This property has been added in Identity Manager 4.8.1 version.
Specify the relationship that will be displayed by default in the organization chart page for this
entity. This field is not mandatory.
If the default organization chart relationship is not defined, then the user has the option to
select the required relationship on the entities page, given that this entity has more than 1
relationship to display. If an entity has only one relationship, then the prompt for selection of
relationship is not displayed on the entities page. When the user clicks to view the organization
chart of this entity, the same relationship will be displayed by default.

Organization Chart View
This property has been added in Identity Manager 4.8.1 version.
Drag and drop the required attributes into Primary Attributes and Secondary Attributes from
Attributes field. You are allowed to add only two primary and two secondary attributes in the
card view.
These attributes are displayed when you want to view the organization chart for this entity
under the Entities menu. If the primary and secondary attributes of an entity are not defined,
then the Identity Applications displays the CN attribute of that entity in the card view.

Organization Chart Photo
This property has been added in Identity Manager 4.8.1 version.
This field is displayed when you enable the image toggle button in the Organization Chart View.
Specify the attribute whose value will be used to display the image for this entity in the
organization chart under the Entities menu. If an attribute has multiple values, the first value is
selected for display by default.

Display Attributes for Organization Chart Search
This property has been added in Identity Manager 4.8.1 version.
Specify the display attributes for organization chart search results. A maximum of two attributes
are allowed for selection.
Customizing the Identity Applications for Your Enterprise 147

Changing the Client Branding Attributes
You can use your organization’s logo and name in the header and footer of the dashboard. You also
can specify your brand colors and localize the content in the header.

In Advanced Settings, you can specify the customized cascading style sheet (CSS).

1 Click Download Sample CSS, to download the sample Custom.css file.
2 Modify the Custom.CSS file values and click Upload CSS.

For more information about applying your brand to the Dashboard, click on the Dashboard and
see Customize the Branding.

Configuring a Client Helpdesk
Helpdesk configuration is a two-part process. First you set up the Helpdesk contact details followed
by setting up granular permission details for the Helpdesk users.

As part of configuring Helpdesk contact details, you can specify Helpdesk information such as
Helpdesk Admin,Email Address, and Contact Number for each of the clients configured in the system.
A client user will immediately see the Helpdesk contact information when the administrator
completes configuring the Helpdesk for the client.

A Helpdesk user is a user configured to perform certain tasks for the tickets raised by the client
users. For more information about what tasks can be performed by a Helpdesk user, see
“Understanding a Client Helpdesk” on page 39.

NOTE:

 Ensure that the helpdesk admin user has read access to manager property of the user container.
 NetIQ recommends not to assign helpdesk admin role to a team manager to avoid conflicts in

between these roles.
 A Provisioning Administrator or any user with access to the Settings page cannot assign

Helpdesk access rights to users directly. They must also have the Resource Administrator
privileges to manage the Helpdesk resources, which includes the ability to assign and revoke the
resources.
148 Customizing the Identity Applications for Your Enterprise

For granting permissions, you must assign Helpdesk resources to the corresponding Helpdesk users.

NOTE: You cannot assign Helpdesk resources directly to a team or group. If you want to grant
helpdesk accesses to a team or group, you must include each members from the group or team
individually for the required access rights. Alternatively, you can perform the following steps:

1 Create a role for helpdesk users. See “Creating a New Role” on page 170.
2 Map the required helpdesk resources to the newly created role. See “Mapping Resources to

Roles” on page 173.
3 (Conditional) Assign this role to a group. See “Assigning Roles to Users” on page 174.
4 (Conditional) Team Manager can request for this role on behalf of team members. Approving

this role to the team allows team members to use helpdesk resources.

The Helpdesk section lists all Helpdesk resources.
Customizing the Identity Applications for Your Enterprise 149

Teams Access
Selected users are allowed to view teams and team members configured for the respective
client.

User Catalog Access
Selected users can view details of any user of the respective client.

Reassign Access
Selected users can reassign the user’s tasks to the approver’s manager.

NOTE: You can configure Managers Hierarchy in Customization to help the Helpdesk users to
reassign the user’s tasks to the managers of the specified level, if necessary.

History Access
Selected users can view request history of any user of the respective client.

Organization Chart Access
Selected users can view the organization chart of the respective client.

Group Access
Selected users can view groups of the respective client.

Using Helpdesk
After Helpdesk is configured, users can find the Helpdesk information in the following places:

 Your ID > Helpdesk.
 On the Request History page.
 (Conditional) At the footer.

To show the Helpdesk information in the footer, enable Show in Footer.

NOTE: You must ensure that the footer is enabled for the client that you have selected. To
enable it, go to Settings > Branding > Footer. For more information, click on the Dashboard.

Managing Dashboard Widgets
You can provision Dashboard Widgets for a User, Group, Container, or a Role.

You also can modify the Trustees for a selected widget. For more information, click on the
Dashboard.
150 Customizing the Identity Applications for Your Enterprise

Customizing the Organization Chart View
Organization chart view displays the information of an entity in a card format. As an administrator,
you can customize the card view and its appearance in the Settings page. Identity Application
Dashboard also allows you to select the relationship that you want to display by default for user
entity and custom entity in the Organization Chart page.

This section will guide you on how to configure the default settings for the organization chart page.

 “Setting the Default Organization Chart Relationship” on page 151
 “Modifying the Card Properties” on page 151

Setting the Default Organization Chart Relationship
The default organization chart relationship for user entity and custom entity are configured
separately in the Settings page.

To configure the default relationship for user entity,

1 Go to Settings > Customization and select User from the Navigation items menu.
2 Select the required relationship from Default Organization Chart Relationship drop-down list.

In addition to the default set of relationships shipped with Identity Manager, the drop-down list
includes custom relationship defined by the administrator in Directory Abstraction Layer with
the source entity set as “User”.

3 Click Save to apply the changes.

To configure the default relationship for custom entities,

1 Go to Settings > Customization and select the required entity from the Navigation items menu.
2 Select the required relationship from Default Organization Chart Relationship drop-down list.

The drop-down list includes custom relationship defined by the administrator in the Directory
Abstraction Layer with the custom entity selected as the source object.

3 Click Save to apply the changes.

Modifying the Card Properties
Because of the default card properties such as the card height and the height of the primary and
secondary attribute sections, the application displays only two primary and two secondary
attributes on the card in organization chart view. It also limits the length of an attribute to one line. If
the value of an attribute exceeds one line, an ellipsis is shown after the specified value. However,
you can customize the card view of the entity in the organization chart page by modifying these
properties in the custom.css file that is available in the Identity Applications Dashboard.

Perform the following actions to modify the appearance of a card:

1 Go to Settings > Branding > Advanced Settings and click Download Current CSS.
The sample custom.css file is downloaded on your system.
Customizing the Identity Applications for Your Enterprise 151

2 To increase the card size and the height of primary and secondary attributes sections, add
.orgchart-primary-attrs-section, .orgchart-secondary-attrs-section, and
.orgchart-card properties in the file and define the max-height value for each property as
shown in the following example:

.orgchart-primary-attrs-section {
 max-height: 70px;
}
.orgchart-secondary-attrs-section {
 max-height: 60px;
}
.orgchart-card {
 height: 170px;
}
where,
.orgchart-primary-attrs-section: Specifies the property of primary attribute section.
.orgchart-secondary-attrs-section: Specifies the property of secondary attribute section.
.orgchart-card: Specifies the overall size of the card.

3 To set the number of lines that an attribute can span, add .orgchart-primary-attrs and
.orgchart-secondary-attrs properties in the file, and define the -webkit-line-clamp
value for each property as shown in the following example:

.orgchart-primary-attrs {
 -webkit-line-clamp: 1;
}
.orgchart-secondary-attrs {
 -webkit-line-clamp: 1;
}

NOTE: You must evaluate the overall size of a card before setting the -webkit-line-clamp
CSS property as an improper provisioning may cause overlapping of attributes in the card view.

4 Save the custom.css file and click Upload CSS in the Dashboard.

Deleting the Client Settings from Identity Applications
If you want to remove a client settings from identity applications, perform the following steps:

1 Click .
2 Select the client settings from the table that you want to delete.

3 Click .

Hiding the Navigation Items from User Interface
Identity Applications allows you hide navigation items from the Dashboard. For example, if you want
to hide the Application tab from the Dashboard user interface, then perform the following actions:

1 Navigate to the /opt/netiq/idm/apps/tomcat/conf/clients/ directory.
2 Edit the 1.json file and ensure that the isDisabled value is set to False.
152 Customizing the Identity Applications for Your Enterprise

If the following section is not there, add it:

{
 "key": "main",
 "value": [],
 "type": "navItem",
 "isDisabled": false,
 "sectionKey": "Configuration",
 "areaDefault": false,
 "disableAreaDefault": false,
 "displayLable": "Application",
 "sectionLable": "Configuration",
 "page": null,
 "expanded": false,
 "level": 1
}

3 Save the 1.json file.
4 Assign the required permissions for the 1.json file.
chown novlua:novlua /opt/netiq/idm/apps/tomcat/conf/clients/1.json

5 Restart Tomcat.
systemctl restart netiq-tomcat.service

6 Log in to Identity Manager Dashboard.
7 Navigate to Settings > Access.
8 Add the required trustees.

Configuring Separation of Duties Properties
 Displaying SoD violation for inherited roles is disabled by default; however, you can enable it by

adding the com.microfocus.idm.sod.inheritedroles=true property in ism-
configuration.properties file located at /opt/netiq/idm/apps/tomcat/conf/
directory. When enabled, a user cannot be assigned a parent role if the SoD Constraint defined
at the child role level is violated by the current role of the user.

This property has been added in Identity Manager 4.8.2 version.
 If SoD approval is configured in the SoD policy, the SoD approval process is triggered to override

the SoD constraints, when you assign conflicting roles to users, groups, or containers. However,
you can bypass the approval process only when groups and containers are the recipients for the
role. This can be achieved by adding the
com.microfocus.idm.sod.bypassapproval=true property in ism-
configuration.properties file located at /opt/netiq/idm/apps/tomcat/conf/
directory.
This property has been added in Identity Manager 4.8.2.1 version.
Customizing the Identity Applications for Your Enterprise 153

154 Customizing the Identity Applications for Your Enterprise

11 11Setting Up the Dashboard for Identity
Applications

This section helps you to set up Identity Manager Dashboard.

Checklist for Setting Up the Dashboard for Identity
Applications

NetIQ recommends that you review the following checklist for setting up the enhanced Identity
Manager Dashboard:

Checklist Items

 1. (Conditional) If you have installed identity applications on Linux, you must create compound
indexes for all the basic attributes. To use any other attributes, you must create compound
index for those attributes. For more information about creating compound indexes, see
Creating Compound Indexes in the NetIQ Identity Manager Setup Guide for Windows.

NOTE: If you create a compound index for a multivalued attribute and this attribute has
multiple values, the identity applications return duplicate records in user catalog when you
sort using that attribute.

For example, if you created a compound index for multivalued attribute named as First
Name, and it holds multiple values, you will see duplicate records for each values when this
attribute is used for sorting.

The Linux installer automatically creates the compound indexes for all the basic attributes.

 2. Add a new language that is not a default language, see “Adding a Language to the Identity
Applications” on page 121.

 3. Modify the administration configuration settings for the Dashboard. You can customize the
following settings:

 User access to pages
 Attributes displayed in user profiles
 Logo, stylesheet, and other brand settings

For more information, click on the Dashboard and see Customize the User Interface.
Setting Up the Dashboard for Identity Applications 155

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#t42eydl0a0k8
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

 4. Add links to the Applications page to provide your users easy access to common
permissions and activities.

For more information about providing links for your users, see “Linking the Dashboard to
External Applications” on page 114 and click on the Dashboard.

NOTE: With Identity Manager 4.7, the Dashboard replaces Identity Manager Home and
Provisioning Dashboard. The Dashboard’s Applications page replicates Featured Items that
were part of Identity Manager Home.

Checklist Items
156 Setting Up the Dashboard for Identity Applications

12 12Configuring a Multi-Threaded Role and
Resource Service Driver

This chapter provides information about setting up a Role and Resource Service driver for multi-
threaded services.

How the Driver Works
In a multi-threaded driver environment, a Role and Resource Service driver uses a unique data set to
achieve parallel processing of requests. The driver makes use of worker threads to process requests
to unique identity data (disjoint set), where data is different based on certain attributes. This
requires each driver thread to have a unique identity data, where data is different based on certain
attributes. For example, Container 1 and Container 2 have different users, group, or subcontainers.

While processing the requests, the driver executes policies to implement a set of predefined rules
and conditions for multi-threading. Prior to Identity Manager version 4.8.3, all the rules set for the
driver were defined within the NOVLRSERVB-sub-etp policy in the Role and Resource Service Driver
package. From the 4.8.3 release onward, the Role and Resource Service driver package is divided
into three different policy modules. The rules are set individually on these policy modules and a
weight is assigned to each policy module to determine the order during policy execution. The
following list describes the policy modules in detail:

 NOVLSERVB-sub-etp-Scoping: The weight assigned to this policy module is 100. It contains the
following set of rules:
 Trace Operation
 Ignore everything except add, modify, rename, and synchronization operations for all

classes
 NOVLRSERVB-sub-etp-DisjointSets: The weight assigned to this policy module is 400. It

contains the following set of rules:
 Skip if multi-threading is not enabled or disjoint set is already determined by a previous

policy

IMPORTANT: This rule simultaneously checks for the following conditions:
 whether multi-threading is disabled on the driver
 whether a disjoint set is already created by a custom multi-threading policy

If either or both the conditions matches the value, the driver does not execute the default
NOVLRSERVB-sub-etp-DisjointSets policy. This prevents the driver from overwriting the
disjoint set value in case you are using a custom multi-threading policy over the default
policy provided in the Role and Resource Service Driver package.

 Resolve the disjoint set for which the role request or resource request belongs to
 Resolve the disjoint set for which the user resynchronization request belongs to
Configuring a Multi-Threaded Role and Resource Service Driver 157

 Set disjoint set value for resource association and role processing Event
 Set disjoint-set operation property

 NOVLRSERVB-sub-etp: The weight assigned to this policy module is 500. It contains the
following set of rules:
 Clean up the entitlement results for entitlements granted by NRF
 Convert the event into a custom command to send to the driver
 Get rid for any association that might be there and veto the original event

NOTE: Based on the weight assigned to each policy, the Role and Resource Service Driver will
execute the default policies in the following sequence:

 NOVLSERVB-sub-etp-Scoping
 NOVLRSERVB-sub-etp-DisjointSets
 NOVLRSERVB-sub-etp

Identity Manager provides a default mapping table with two columns to support defining a unique
data set based on the Organizational Unit (OU) criteria. The first column lists the criteria to search in
the data set and the second column contains the name of the unique data set to search for (should
be unique).

In this example, the first column contains the container DNs and the second column contains the
user-defined key for a unique data set, where container DN is the criteria for identifying the data set.

By default, this mapping table is internally linked to the following rules which are defined under the
Identity Manager policies:

 Resolve the disjoint set for which the role request or resource request belongs to
 Resolve the disjoint set for which the user resynchronization request belongs to

When the driver starts processing the requests, it creates a worker thread with the same name that
you specified for the unique data set.

To use a different criterion for differentiating data, you must define a unique data set in the Mapping
Table editor. For example, specify the container DN as a criterion for identifying a data set. After
defining the data set, add the mapping table to an existing policy or create a new policy.
158 Configuring a Multi-Threaded Role and Resource Service Driver

When the driver receives a request from the engine, it processes the associated policies and
determines the unique set of the request and stores the request in the driver storage. If a worker
thread is already created for the unique data set, then the driver's main thread hands over the
request to that worker thread for processing. Otherwise, it dynamically creates a worker thread for
that data set and hands over the request to that thread. As request processing is actually done by
the worker threads, the main thread is free to receive new requests from the engine

When the driver completes processing a request, it removes that request from the driver storage. If
the driver stops abruptly while processing a request, the request is processed when the driver starts
again. You can instruct the driver start or stop processes to process the unprocessed events if an
exception occurred when it was processing the unprocessed events by using the Allow driver to start
if reading unprocessed events fails parameter. If you want to remove an unprocessed request, check
the request in the DriverStorage attribute and then manually remove the request. By default, the
driver storage can accommodate 500 requests. NetIQ recommends you to use a value less than the
default value. Using a higher value causes memory build up issue. You can control this behavior by
using the Maximum number of command's in the driver storage parameter.

Perform the following activities to set up a Role and Resource Service driver for multi-threaded
services:

1 Define a unique data set in Mapping Table. For more information, see “Modifying the Default
Mapping Table Object” on page 160.

2 Enable the driver for multi-threaded services using the driver configuration parameters. For
more information, see “Configuring the Driver” on page 160.

3 Deploy the driver to the Identity Vault. For more information, see “Deploying the Driver” on
page 161.

Prerequisites
 Identity Manager 4.8
 Designer 4.8

Defining a Unique Data Set
A unique data set comprises of users, group, or sub-containers that do not overlap. You can define a
data set by using the default mapping table provided with the driver. The mapping table has two
columns. The first column lists the criteria which defines the unique data set and the second column
has the key for that unique data set.

To use a different criterion, you must define a unique data set in a mapping table. For example, you
can specify the container DN as a criterion for identifying a data set. You can either create a policy or
select an existing policy and add the mapping table to it.

By default, the driver supports creation of unique data sets based on Organizational Units (OU's). To
use a different criterion, you must define the data set in the mapping table and modify the policy
rules that are linked with the mapping table. For example, if you want to specify Location as a
criterion for creating a data set, the mapping table must contain location details. You also need to
modify the policy rules linked with the mapping table.
Configuring a Multi-Threaded Role and Resource Service Driver 159

Modifying the Default Mapping Table Object
1 In the Outline view, right-click the mapping table object.
2 Select Open the editor.
3 In the File Conflict message, click Yes to save the project before opening the Mapping Table

editor.
4 Specify a column name and data type, and then click Close. For example, Microfocus.

Column names must be unique. The data type lets you specify the column values as Case
Sensitive, Case Insensitive, or Numeric.

5 Select New Value and specify a cell value. For example, Problem-Set: O=data\OU=Microfocus
Target: Microfocus.

6 Press Ctrl+S to save the mapping table object.

Identity Manager automatically links this mapping table object to the following policies:

 Resolve the disjoint set for which the role request or resource request belongs to
 Resolve the disjoint set for which the user resynchronization request belongs to

Configuring the Driver
1 Open your project in Designer.
2 In the Outline pane, expand Identity Vault.
3 Right-click the driver set containing your driver and select Driver > Driver Configuration.
4 For Enable multi-threaded Role and Resource driver option, select true.

The following options are displayed:
 Allow driver to start if reading unprocessed events fails: Specify whether the driver

should start or stop when it encounters an exception while reading unprocessed requests.
By default, the value is set to false, which disallows the driver to read the unprocessed
requests.
160 Configuring a Multi-Threaded Role and Resource Service Driver

 Maximum number of command's in the driver storage: Specify the number of
commands that the driver storage will store. The default value is 500. NetIQ recommends
to use a value less than the default value to avoid any memory issues.

5 Click OK.
6 Continue with “Deploying the Driver” on page 161.

Deploying the Driver
1 Right-click the driver that you configured in “Configuring the Driver” on page 160.
2 Select Live > Deploy.
3 Restart the Identity Vault for the changes to take effect.

Guidelines for Creating Custom Policy
This section applies to Identity Manager 4.8.3 and later.

Here are few guidelines to follow when you create a custom multi-threading policy to define a
unique data set (disjoint set) in Designer:

 To add a custom multi-threading policy, you must create a new package in the Package Catalog,
then install the package to the Roles and Resource Service Driver. For a detailed information on
how to create custom packages, see Developing Packages in the NetIQ Designer for Identity
Manager Administration Guide. NetIQ recommends that you also read the Best Practices for
Package Development section before you start developing custom packages.

 You must include a “disjoint-set” operation property in the rule that evaluates the requests for
disjoint set criteria in your policy. You can create this operation property using the Actions
Builder by specifying the disjoint set variable in the string value. The driver uses this property to
ensure that the default NOVLRSERVB-sub-etp-DisjointSets policy does not overwrite the
disjoint set created by the custom multi-threading policy.

 You must ensure that the driver executes the custom multi-threading policy before the default
NOVLRSERVB-sub-etp-DisjointSets policy. You can accomplish this by assigning a policy
weightage value between 100 and 400 for the custom multi-threading policy. For example, if
you assign a policy weightage value of 200 for the custom multi-threading policy, the driver will
execute the policy modules in the following sequence:
 NOVLSERVB-sub-etp-Scoping
 Custom Policy
 NOVLRSERVB-sub-etp-DisjointSets
 NOVLRSERVB-sub-etp

For more information on how to assign a weight to your policy, see Assigning Weight to the
Policy.
Configuring a Multi-Threaded Role and Resource Service Driver 161

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#packmandevelop
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#packmanbestpractices
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#packmanbestpractices

Assigning Weight to the Policy
To assign weight to the policy, perform the following actions:

1 Right-click the policy in the Outline view.
2 Select Properties > Linkage.

NOTE: Make sure to add rules to your custom policy, else the Linkage option will not be shown
in the properties window.

3 Specify the desired value in the Weight field. As a best practice, use a policy weight ending with
5 or 0.

4 Click OK.

Limitations
 The driver does not support parallelization of events for the same unique data set. Such events

are sequentially processed.
 The driver does not support multiple threads for a specific unique data set. Each unique data

set has a dedicated thread.

Troubleshooting
A multi-threaded driver logs messages to the driver log. The messages are appended with Thread
IDs. To troubleshoot the driver, check the Thread IDs as a starting point for analysis. For more
information, see “Troubleshooting Multi-Threaded Role and Resource Service driver Issues” on
page 682.
162 Configuring a Multi-Threaded Role and Resource Service Driver

13 13Configuring Identity Applications
Clustering and Permission Clustering

You can configure Identity Applications clustering and permission clustering to use TCP or UDP.

Configuring Identity Applications Clustering to Use TCP or
UDP

You can configure the Identity Applications clustering to use TCP or UDP in local or global settings.
The configuration process must be completed on each server in the cluster because the local settings
are saved on the file system for each server.

To configure the Identity Applications clustering to use TCP or UDP:

1 Log in to Identity Applications as the an administrator and go to Configuration > Caching and
Cluster.

2 In the Caching Management page that opens, click Cluster Cache Configuration.
3 Navigate to Local Settings and perform the following actions:

3a Enable the Enable Local and Local check boxes in the Cluster Enabled row.
3b Enable the Enable Local check box in the Cluster Properties row and specify a value in the

text field in the Local column.
To use TCP, specify the following string:

TCP(bind_addr=idmapps;bind_port=$bindport):TCPPING(initial_hosts=$h
ost_details;port_range=5):MERGE3(min_interval=10000;max_interval=30
000):FD_SOCK:
FD(timeout=2500;max_tries=5):VERIFY_SUSPECT(timeout=1500):BARRIER:
pbcast.NAKACK2(use_mcast_xmit=false):UNICAST3:pbcast.STABLE(desired
_avg_gossip=50000;max_bytes=4M):pbcast.GMS(print_local_addr=true;jo
in_timeout=2000):MFC(max_credits=2M;min_threshold=0.4):FRAG2(frag_s
ize=60K):pbcast.STATE_TRANSFER
For example,

TCP(bind_addr=idmapps;bind_port=7818):TCPPING(initial_hosts=192.168
.162.10[7818],192.168.162.11[7818];port_range=3):MERGE3(min_interva
l=10000;max_interval=30000):FD_SOCK:FD(timeout=2500;max_tries=5):VE
RIFY_SUSPECT(timeout=1500):BARRIER:pbcast.NAKACK2(use_mcast_xmit=fa
lse):UNICAST3:pbcast.STABLE(desired_avg_gossip=50000;max_bytes=4M):
pbcast.GMS(print_local_addr=true;
join_timeout=2000):MFC(max_credits=2M;min_threshold=0.4):FRAG2(frag
_size=60K):pbcast.STATE_TRANSFER
To use UDP, specify the following string:
Configuring Identity Applications Clustering and Permission Clustering 163

UDP(mcast_addr=$host;mcast_port=$port):PING:FD(timeout=10000;max_tr
ies=5):VERIFY_SUSPECT:pbcast.NAKACK2:UNICAST3:pbcast.STABLE:FRAG:pb
cast.GMS
For example,

UDP(mcast_addr=228.8.8.8;mcast_port=45655):PING:FD(timeout=10000;ma
x_tries=5):VERIFY_SUSPECT:pbcast.NAKACK2:UNICAST3:pbcast.STABLE:FRA
G:pbcast.GMS
For UDP, the cluster nodes must reside in the same subnet.
For more information, see the JGroups 4.0.12 documentation.

4 Save the changes. These changes are written to the local file system for your server. Remember
to make these changes for all servers in the cluster. Any server that does not have these changes
uses the global settings values.

5 Restart the server.

NOTE: bind_port and mcast_port should be different for Permission Index Cluster Properties and
Cluster Properties.

Configuring Permission Clustering to Use TCP or UDP
You can configure the permission clustering to use TCP or UDP. The configuration process must be
completed on each server in the cluster because the local settings are saved on the file system for
each server.

To configure the permission clustering to use TCP or UDP:

1 Log in to Identity Applications as the an administrator and go to Configuration > Caching and
Cluster.

2 In the Caching Management page that opens, click Cluster Cache Configuration.
3 Navigate to Global Settings and perform the following actions:

3a Enable the Global check box in the Permission Index Cluster Enabled row.
3b Click Permission Index Cluster Properties, specify a value in the text field in the Global

column:
To use TCP, specify the following string:

TCP(bind_addr=idmapps;bind_port=$bindport):TCPPING(initial_hosts=$h
ost_details;port_range=5):MERGE3(min_interval=10000;max_interval=30
000):FD_SOCK:
FD(timeout=2500;max_tries=5):VERIFY_SUSPECT(timeout=1500):BARRIER:
pbcast.NAKACK2(use_mcast_xmit=false):UNICAST3:pbcast.STABLE(desired
_avg_gossip=50000;max_bytes=4M):pbcast.GMS(print_local_addr=true;jo
in_timeout=2000):MFC(max_credits=2M;min_threshold=0.4):FRAG2(frag_s
ize=60K):pbcast.STATE_TRANSFER
For example:
164 Configuring Identity Applications Clustering and Permission Clustering

TCP(bind_addr=idmapps;bind_port=7815):TCPPING(initial_hosts=192.168
.162.10[7815],192.168.162.11[7815];port_range=3):MERGE3(min_interva
l=10000;max_interval=30000):FD_SOCK:FD(timeout=2500;max_tries=5):VE
RIFY_SUSPECT(timeout=1500):BARRIER:pbcast.NAKACK2(use_mcast_xmit=fa
lse):UNICAST3:pbcast.STABLE(desired_avg_gossip=50000;max_bytes=4M):
pbcast.GMS(print_local_addr=true;
join_timeout=2000):MFC(max_credits=2M;min_threshold=0.4):FRAG2(frag
_size=60K):pbcast.STATE_TRANSFER
To use UDP, specify the following string:

UDP(mcast_addr=$host;mcast_port=$port):PING:FD(timeout=10000;max_tr
ies=5):VERIFY_SUSPECT:pbcast.NAKACK2:UNICAST3:pbcast.STABLE:FRAG:pb
cast.GMS
For example,

UDP(mcast_addr=228.8.8.8;mcast_port=45654):PING:FD(timeout=10000;ma
x_tries=5):VERIFY_SUSPECT:pbcast.NAKACK2:UNICAST3:pbcast.STABLE:FRA
G:pbcast.GMS
For UDP, the cluster nodes must reside in the same subnet.
For more information, see the JGroups 4.0.12 documentation.

4 (Conditional) Perform the following actions for using TCP:
4a Set bind_port. This value must take into account the ports that are already in use and the

value for port_range to avoid port conflicts. Depending on your configuration, you may
need to troubleshoot to find an unused port.

4b Change the IP addresses to include the IP addresses of all the nodes in the cluster and their
bind_port values. The list should begin with the local IP address.

5 Save the changes. These changes are written to the local file system for your server. Remember
to make these changes for all servers in the cluster. Any server that does not have these changes
uses the Global Settings values.

6 Restart the server.

NOTE: bind_port and mcast_port should be different for Permission Index Cluster Properties and
Cluster Properties.
Configuring Identity Applications Clustering and Permission Clustering 165

166 Configuring Identity Applications Clustering and Permission Clustering

III IIIIdentity Applications Administration

This section provides information about managing the roles and resources that you intend to grant
to users in your organization.

 Chapter 14, “Creating and Managing Roles,” on page 169
 Chapter 15, “Creating and Managing Resources,” on page 181
 Chapter 16, “Adding Workflow to Roles and Resources,” on page 191
 Chapter 17, “Monitoring Workflows,” on page 199
 Chapter 18, “Creating and Managing Delegations,” on page 203
 Chapter 19, “Separation of Duties Constraints,” on page 205
 Chapter 20, “Using Controlled Permission Reconciliation Services,” on page 209
 Chapter 21, “Configuring Email-Based Approval,” on page 221
 Chapter 22, “Configuring Identity Applications Default Settings,” on page 223
 Chapter 23, “Configuring and Managing Objects for Entities,” on page 247
Identity Applications Administration 167

168 Identity Applications Administration

14 14Creating and Managing Roles

A role defines a set of permissions related to one or more target systems or applications. For
example, a user administrator role might be authorized to reset a user's password, while a system
administrator role might have the ability to assign a user to a specific server.

Identity applications allow you to create or modify roles, associate resources and roles to a role, and
assign a role to users.

Go to Administration > Roles to create and manage roles. This page displays the list of roles in your
organization. For more information, click on the Dashboard.

To create and manage roles, you must have one of the following identity applications roles:

 Role Administrator
 Role Manager

To modify the default role settings, see “Configuring Default Roles Settings” on page 223.

NOTE: You must have Security Administrator role to modify the system roles.

You can perform the following operations on the roles within your organization:

 “Listing Roles” on page 169
 “Creating a New Role” on page 170
 “Editing Roles” on page 171
 “Creating a Workflow For a Role” on page 175
 “Managing the Role and Resource Service Driver” on page 176
 “List of Stop Words Ignored In Search Query” on page 178

Listing Roles
Roles page displays all the roles within your organization. You can search roles using role name or
description. You can also filter roles based on role level and categories. If you wish to see the
columns other than default columns, you can customize the columns.

The search functionality has been enhanced in Identity Manager 4.8.5. You can now broaden the
search results by adding an asterisk character (*) right after the keyword. Using an asterisk with the
keyword allows you to locate every name that begins with the keyword you type. This is especially
useful when your keyword consists of more than one word (with space). For example, a search for
Provisioning ad* returns results such as Provisioning - Administrator, Provisioning Manager, Security
Administrator, and RBPM Application -Administrator. You can also filter roles based on role level and
categories.
Creating and Managing Roles 169

IMPORTANT:

 If you are using Identity Manager 4.8 or 4.8.1, do not use the following special characters in the
search bar to find a role: < > , ; \ " + # = / | & *

 If you are using Identity Manager 4.8.2 or 4.8.2.1, do not use the following special characters in
the search bar to find a role: < ; \ " + # = / | *

 If you are using Identity Manager 4.8.3 or later, do not use the following special characters in
the search bar to find a role: < ; \ " + # = / | * ~

 When searching a role using description, do not use the stop words such as a, an, and in the
search bar. For a list of common stop words not included in the role search query, see “List of
Stop Words Ignored In Search Query” on page 178.

For more information, click on the dashboard.

Creating a New Role
To create a new role, click the + icon and specify the fields marked with an asterisk (*).

You cannot change the specified role level and subcontainer information later. If you want to have
different role level and subcontainer information, create a new role with the required information.

IMPORTANT: If you are using Identity Manager 4.8 or 4.8.1,

 Do not use the following special characters in the ID field: < > , ; \ " + # = / | * & '
! @ $ %

 Do not use the following special characters in the Name field: < > , ; \ " + # = / | * &
~

IMPORTANT: If you are using Identity Manager 4.8.2 or 4.8.2.1,

 Do not use the following special characters in the ID field: < ; \ " + # = / | * ' ! @ $ %
 Do not use the following special characters in the Name field: < ; \ " + # = / | * ~

IMPORTANT: If you are using Identity Manager 4.8.3 or later,

 Do not use the following special characters in the ID field: < ; \ " + # = / | * ~ ' ! @
$ %

 Do not use the following special characters in the Name field: < ; \ " + # = / | * ~
 Do not use the following special characters in the Description field: ~ |

For more information, click on the dashboard.
170 Creating and Managing Roles

Editing Roles
You can modify all the role parameters except Level and Subcontainer. Identity Manager Dashboard
allows you to edit each role separately or multiple roles at once.

Editing individual roles: To edit an individual role, select a role from the list that you want to edit.
You can perform the following operations:

 Changing the role details such as role name, description, and categories. Adding or removing
role owners.

NOTE: The role owner can be a user, a group, or a container. The role owner does not
automatically have the authorization to administer changes to a role definition. In some cases,
the owner must ask a Role Administrator to perform any administration actions on the role.

 Modifying the role approval and revocation process, see “Changing Approval and Revocation
Process” on page 172.

 Associating resources within your organization to the selected role. See, “Mapping Resources to
Roles” on page 173.

 Assigning the selected role to the required users in your organization. See,“Assigning Roles to
Users” on page 174.

 Checking the request status of the users requesting for the selected role.
 Mapping other roles to the selected roles. See, “Mapping Roles to Roles” on page 174.

Editing multiple roles at once: You can edit multiple roles as a group instead of requiring you to
repeat those actions on each role individually. Select the roles you want to manage from the list of
roles. You can change Categories, Owners, and Approval Details for the roles you selected. Also, you
can Append or Overwrite values for Categories and Owners for the selected roles. Append option
allows you to add values without altering the existing entries. Overwrite option replaces the values
that are entered for the existing values.

For more information, see “Changing Approval and Revocation Process” on page 172.

Delete Roles: To delete any role from the list, select the role and click Delete.

When you instruct the identity applications to delete a role, it first sets the role status to Pending
Delete. The Role and Resource Service driver then notes the change of status and performs these
steps:

 Removes the resource assignments for the role
 Deletes the role itself

The Role and Resource Service driver optimizes this process. However, the process may take some
time, depending on the number of users assigned to the role, because the Role and Resource driver
must ensure that it does not remove a resource from a user if they have this resource by other
means.

For example, to check the status of a Permission role, perform the following steps in iManager:

1 Delete the role in identity applications, for example, Email.
2 Log in to iManager.
Creating and Managing Roles 171

3 In Objects tab, browse to Driver Set > User Application Driver > AppConfig > RoleConfig > RoleDefs
> Level30.

4 Select the role that you have deleted in Step 1.
5 Click the nrfStatus attribute.

The value of the status is set to 15. The value 15 denotes that the role is in Pending Delete state.

When a role has the status of Pending Delete, you are unable to edit, delete, or assign the role.

What happens to existing role assignments If you delete a role that has an associated resource as
well as one or more identities assigned to it, the system removes the resource assignment from each
identity that has the associated resource.

NOTE: If you delete a role that has a resource assigned to it (or remove a user from the role), the
system removes resource assignments for users in that role, even if those resources were first
assigned directly. The reason for this is that the system assumes that the last authoritative source for
a resource assignment is the controller of that resource, as illustrated by the following scenario:

1. A resource is created with an entitlement.
2. A user is assigned to the resource created above.
3. A role is created that is bound to the resource created in the first step above.
4. The same user is then assigned to the role created above.
5. The user is removed from the role.

In this situation, the user gets removed from the resource even though they had the resource
assigned directly. Initially, the resource assignment is considered the authoritative source. However,
when the user is assigned to a role that is associated with the same resource, the role becomes the
authoritative source.

Changing Approval and Revocation Process
After you create a role, you can modify it to define the approval process for that role. An approver
can be a user, group, container, or a specific role.

You can define the approval process for a role using one of the following options:

 Serial Approval: Specify multiple approvers, and reorder the selected approvers to define the
approval hierarchy.

 Quorum Approval: Specify the approvers, then use the slide bar to specify the percent of those
approvers that are required to grant access.

 Custom: Specify the customized approval process from the list that you want to use. The list
displays the workflows that are defined using Designer.

NOTE: You must set up this approval process in Designer. For more information, see NetIQ
Identity Manager - Administrator’s Guide to Designing the Identity Applications.

If you choose None, no approvers are required for the role.

You can choose to have a revoke process or not. If Revoke Process Required is enabled, the
revocation process follows the same process that is defined for role approval.
172 Creating and Managing Roles

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Mapping Resources to Roles
A role defines a set of duties for an individual, to carry the duties for the assigned role might require
certain resources. For example, a Facilities Manager role should also have access to the Office
printer. In this case, you can map the Office printer (resource) to the Facilities Manager role. When
anyone requests for the Facilities Manager role, granting permission to the Facilities Manager role
also grants an access to the Office printer.

While editing a role you can map resources to the selected role. Roles page also allows you to map
resources to the role with more assistance such as:

 View the existing resource to role mappings at a time.
 Allows you to map resources/entitlements to role directly.
 Search and filter roles, resources, and entitlements for mapping on the same page.

Click the icon and map the resources to the required roles and perform the following steps:

1 Select the role from the roles list.
2 Drag and drop the resources/entitlements that you want to map from the Available Resources

and Entitlements list to Mapped Resources.
3 Specify the Mapping Description.
4 Click Apply.

The following image is an example for mapping resources to a role:

Figure 14-1 Map Resources to Role

Search Roles
Shows the list of roles in the organization.

Mapped Resources
Shows the list of resources mapped to the selected role.

Available Resources and Entitlements
Shows the list of available resources and entitlements in the organization.
Creating and Managing Roles 173

Assigning Roles to Users
You can directly assign the selected role to any user, group, and container in your organization. While
assigning roles, you can set the effective date and expiration date for this assignment.

1 Select a role that you want to assign to users.
2 In Role Assignments, Click +.
3 Specify the Initial Request Description, and mention the Recipients from the list.

NOTE: In Initial Request Description, describe the purpose of assigning a role to the mentioned
users in Recipients list.
In Recipients, you can mention users, group, and container from the list.

4 (Conditional) Set the Effective Date and Expiration Date for this assignment.
If you do not set effective and expiration date, the effective date will be set to the present day
and no expiry for this assignment.

5 Click Assign Role.

For more information, click on the dashboard.

NOTE: When you assign a role to groups or containers, the role will be assigned to its recipients
directly, without seeking approval. The approver will not receive an email notification, although the
email approval setting is set as enable. It applies to Identity Manager 4.8.x, where x = 0, 1, and 2.

A new setting has been added in Identity Manager 4.8.2.1 that allows you to enable approval. If an
approval is configured for a role, the approval process will be triggered when you assign that role to
users, groups, or containers. However, you can disable this setting only for groups and containers
from the Settings > Customization page. For more information, see “User Settings” on page 141.

Mapping Roles to Roles
Role levels define role hierarchy. The roles hierarchy supports three levels. Roles defined at the
highest level (called Business Roles) define operations that have business meaning within the
organization. Mid-level roles (called IT Roles) supports technology functions. Roles defined at the
lowest level of the hierarchy (called Permission Roles) define lower-level privileges.

A higher-level role automatically includes privileges from the lower-level roles that it contains. For
example, a Business Role automatically includes privileges from the IT Roles that it contains.
Similarly, an IT Role automatically includes privileges from the Permission Roles that it contains.

Role relationships are not permitted between peer roles within the hierarchy. In addition, lower-
level roles cannot contain higher-level roles.

You can modify the label used for each role level in the identity applications by defining localized
strings for the level’s Name and Description in the role configuration editor.

You can define Parent Roles and Child Roles for the selected role.
174 Creating and Managing Roles

Parent Roles
Roles which are higher to the selected role. These roles have all the permissions of the selected
role in addition to the permissions specified for these roles.

Child Roles
Roles which are lower to the selected role. The selected role has all the permissions of the child
roles in addition to the permissions specified for the selected role.

A child role must have a lower role level than the parent role, and the parent role is automatically
assigned the privileges assigned to the lower-level roles.

NOTE: When you map a child role to the parent role, the role is automatically assigned to its
recipients, without seeking approval. However, starting from Identity Manager 4.8.2.1, you can
enable the approval setting for role to role assignments via the Settings > Customization page. For
more information, see “User Settings” on page 141.

Figure 14-2 Map Roles to Roles

TIP: To see the role relationship of a Parent or Child Role, click on the role that you wish to see the
hierarchy.

For a Parent or Child Role mapped to the selected role, you can review the details such as the
requester, request description, and who approved the role assignment request. Click on the
mapped role to review the information. This option is available in Identity Manager 4.8.2.1 and
onwards.

Creating a Workflow For a Role
For more information on creating a workflow for a selected role, see Chapter 16, “Adding Workflow
to Roles and Resources,” on page 191.
Creating and Managing Roles 175

Managing the Role and Resource Service Driver
On occasion, you might want to change the settings for the Role and Resource Service driver or
update the indexes that it uses to display roles in the identity applications.

Configuring the Role and Resource Service Driver Settings
After creating the Role and Resource Service driver at installation time, you can optionally modify
some of the driver configuration settings in iManager.

1 In iManager, click Identity Manager > Identity Manager Overview.
2 Browse to the driver set where the driver exists, then click Search.
3 Click the upper-right corner of the Role and Resource Service driver icon, then click Edit

Properties.
4 Click on the Driver Configuration tab.
5 Scroll down to the Driver Settings section of the page.
6 Make any changes you would like to the settings, and click OK to commit your changes.

You can modify the following standard driver settings (listed under User Application/Workflow
Connection on the Driver Configuration page), which get their initial values at installation time:

Table 14-1 Standard Driver Settings

Option Description

User Application Driver DN The distinguished name of the User Application driver
object that is hosting the role system. Use the
eDirectory format, such as
UserApplication.driverset.org, or browse to find the
driver object. This is a required field.

User Application URL The URL used to connect to the User Application in
order to start Approval Workflows. This is a required
field.

User Application Identity The distinguished name of the object used to
authenticate to the User Application in order to start
Approval Workflows. This needs to a user who has
been assigned as a Provisioning Administrator for the
identity applications. Use the eDirectory format, such
as admin.department.org, or browse to find the user.

The identity needs to be entered in LDAP format (for
example, cn=admin,ou=department,o=org), rather
than dot format. Note that this is different from the
format required at driver install time, where dot
notation is expected.

This is a required field.
176 Creating and Managing Roles

In addition, you can modify the following additional settings (listed under Miscellaneous on the
Driver Configuration page) to customize the behavior of the Role and Resource Service driver:

Table 14-2 Additional Settings for Customizing the Role and Resource Service Driver

User Application Password Password of the account specified in the identity
applications Identity field. The password is used to
authenticate to the identity applications in order to
start approval workflows. This is a required field.

Reenter User Application Password Re-enter the password of the account specified in the
identity applications Identity field.

Option Description

Number of days before processing removed request
objects

Specifies the number of days the driver should wait
before cleaning up request objects that have finished
processing. This value determines how long you are
able to track the status of requests that have been
fulfilled.

Frequency of reevaluation of dynamic and nested
groups (in minutes)

Specifies the number of minutes the driver should
wait before reevaluating dynamic and nested groups.
This value determines the timeliness of updates to
dynamic and nested groups used by the identity
applications. In addition, this value can have an
impact on performance. Therefore, before specifying
a value for this option, you need to weigh the
performance cost against the benefit of having up-to-
date information in the identity applications.

Generate audit events Determines whether audit events are generated by
the driver.

For details on audit configuration, see Chapter 8,
“Setting Up Logging in the Identity Applications,” on
page 71.

Enable Parallelization of resource requests on role
assignment

When set to true, the driver uses multiple threads to
process the resource requests in parallel. This setting
is specifically applicable to role assignments for
groups, where resources mapped to the role can be
simultaneously processed and assigned to the users
within the group. By default, the value of is set to
false.

Enable multi-threaded Role and Resource driver Sets the Role and Resource Service driver for
multithreaded services to achieve parallel processing
of requests. The value is set to true by default.

This setting has been added in Identity Manager 4.8.3
version.

Option Description
Creating and Managing Roles 177

Indexing for the Role and Resource Service Driver
The Role and Resource Service driver has relevant indexes in the Identity Vault for roles definitions. If
you upload a large number of roles, the indexing of these values may take some time. You can
monitor these indexes under Index Management in iManager.

Here is the list of Index Names for the indexes d for the Role and Resource Service driver:

nrf(Object Class)
nrf(nrfMemberOf)
nrf(nrfStatus)
nrf(nrfStartDate)
nrf(nrfNextExpiration)
nrf(nrfParentRoles)
nrf(nrfChildRoles)
nrf(nrfCategory)
nrf(nrfRoleCategoryKey)
nrf(nrfLocalizedNames)
nrf(nrfLocalizedDescrs)
nrf(nrfRoles)

List of Stop Words Ignored In Search Query
This section only applies to Identity Manager 4.8.1 or later.

The role and resource search query do not consider common words known as “Stop Words” in order
to speed up search results.

Allow driver to start if reading unprocessed events
fails

This setting allows you to specify whether the driver
should start or stop when it encounters an exception
while reading unprocessed requests. By default, the
value is set to false, which prevents the driver from
reading the unprocessed requests. If you set it to
true, the driver will restart and process the
unprocessed request again.

Maximum number of command’s allowed in the
driver storage

Specify the number of requests that the driver
storage can accommodate. The default value is 500
requests. It is recommended to use a value less than
the default value to avoid any memory issues.

Store resource history for days The number of days that the driver stores the
resource history information before cleaning up the
data from the storage.

Enable to start Dynamic Group evaluation in local
server time mid-night

When set to true, the dynamic and nested group
evaluation will begin at 12 a.m. as per the time zone
set on the Identity Applications server. The parameter
is set to false by default.

This setting has been added in Identity Manager 4.8.7
version.

Option Description
178 Creating and Managing Roles

Below is a list of words ignored in the search query:

a an and are as

at be but by for

if in into is it

no not of on or

such that the their then

there these they this to

was will with
Creating and Managing Roles 179

180 Creating and Managing Roles

15 15Creating and Managing Resources

A resource is any digital entity such as a user account, computer, or database that a business user
needs to be able to access. Creating a resource with an entitlement helps you manage the
entitlements in Identity Applications. For more information, see Resources in “Providing Permissions
to Users” on page 38.

Identity applications allow you to create and manage resources with or without entitlements.

Go to Administration > Resources to create and manage resources. This page displays the list of
resources in your organization. For more information, click on the Dashboard.

To create and manage resources, you must have one of the following identity applications roles:

 Resource Administrator
 Resource Manager

To view the default resource settings, see “Configuring Default Resource Settings” on page 224.

You can perform the following operations on the resources within your organization:

 “Listing Resources” on page 181
 “Creating a New Resource” on page 182
 “Editing Resources” on page 183
 “Creating a Workflow for a Resource” on page 188
 “Enabling Drivers for Resource Mappings” on page 188
 “Creating a List to Improve Resource Request Forms” on page 189

Listing Resources
Resources page lists all the resources alphabetically. You can search for resources using resource
name or description. You can also filter resources based on resource level and categories.

The search functionality has been enhanced in Identity Manager 4.8.5. You can now broaden the
search results by adding an asterisk character (*) right after the keyword. Using an asterisk with the
keyword allows you to locate every name that begins with the keyword you type. This is especially
useful when your keyword consists of more than one word (with space). You can also filter resources
based on resource level and categories.

IMPORTANT:

 If you are using Identity Manager 4.8 or 4.8.1, do not use the following special characters in the
search bar to find a resource: < > , ; \ " + # = / | * &

 If you are using Identity Manager 4.8.2 or 4.8.2.1, do not use the following special characters in
the search bar to find a resource: < ; \ " + # = / | *
Creating and Managing Resources 181

 If you are using Identity Manager 4.8.3 or later, do not use the following special characters in
the search bar to find a resource: < ; \ " + # = / | * ~

 When searching a resource using description, do not use the stop words such as a, an, and in
the search bar. For a list of common stop words not included in the resource search query, see
List of Stop Words Ignored In Search Query.

For more information, click on the Dashboard.

Creating a New Resource
To create a new resource, click the + icon. You can create a resource with or without entitlement.

With Entitlement:
If you choose to create a resource with this option, select the driver or entitlement for which you
want to create a resource. The Resource Name and Resource Description fields are auto-populated
based on the selected driver or entitlement.

IMPORTANT:

 If you are using Identity Manager 4.8 or 4.8.1, you must rename the Resource Name field to a
valid name if it contains any of these < > , ; \ " + # = / | * & ~ special characters.

 If you are using Identity Manager 4.8.2 or later, you must rename the Resource Name field to a
valid name if it contains any of these < ; \ " + # = / | * ~ special characters.

You can choose to tag an entitlement value during resource creation or allow the user to select
entitlement values at the time of the request.

 Tag an entitlement value to a resource: Specify the necessary entitlement values for the
selected driver or entitlement. For every specified entitlement values, a separate resource is
created.

A user can request this resource which has the defined entitlement value. For example, you
created a resource by selecting a printer as an entitlement value for the Office Resources
entitlement. A user can request for Office Resources entitlement that has the defined Printer
entitlement value.

 Allow users to select entitlement values at the time of request: Select Map Entitlement Values
at Resource Request time and specify Label for Value field.
For this type of resources, a user can select the required entitlement values from the list, while
requesting for this resource. For example, you created a resource for Office Resources
entitlement without defining an entitlement value, a user can select any entitlement value from
the list for the Office Resources entitlement at the time of the request.
To enable this option for the logical systems within the connected system, you must create a
separate resource for each logical systems.

NOTE: Select Allow this resource and entitlement to be assigned multiple times with different
values only if you want to allow users to request this resource multiple times with different
values.
182 Creating and Managing Resources

Without Entitlement
If you choose to create a resource with this option, specify the fields marked with an asterisk (*).

You cannot change the specified resource Level and Subcontainer information later. To change this
information, you must delete this resource and recreate the resource with the required resource
level and subcontainer information.

IMPORTANT: If you are using Identity Manager 4.8 or 4.8.1,

 Do not use the following special characters in the ID field: < > , ; \ " + # = / | * & '
! @ $ %

 Do not use the following special characters in the Name field: < > , ; \ " + # = / | * &
~

IMPORTANT: If you are using Identity Manager 4.8.2 or 4.8.2.1,

 Do not use the following special characters in the ID field: < ; \ " + # = / | * ' ! @ $ %
 Do not use the following special characters in the Name field: < ; \ " + # = / | * ~

IMPORTANT: If you are using Identity Manager 4.8.3 or later,

 Do not use the following special characters in the ID field: < ; \ " + # = / | * ' ! @ $
% ~

 Do not use the following special characters in the Name field: < ; \ " + # = / | * ~
 Do not use the following special characters in the Description field: ~ |

You can set the expiration period for the resources. The permission to the resource will be revoked
from the user, once it crosses the specified expiration period.

For more information, see “Setting Expiration Period for the Resource” on page 184.

Editing Resources
You can modify all the resource parameters except Level and Subcontainer. Identity applications
allow you to edit each resource separately or multiple resources at once.

Editing individual resources: Select a resource from the list that you want to edit and perform any of
the following operations:

 Changing the resource details such as resource name, description, and categories. Adding or
removing resource owners.

 Set expiration period for the selected resource. See “Setting Expiration Period for the Resource”
on page 184.

 (Conditional) This only applies to Identity Manager 4.8.1 or later. Assigning weightage to the
selected resource. See “Assigning Weightage to the Resource” on page 185

 Modifying the resource approval and revocation process. See, “Changing the Approval or
Revocation Process” on page 186.
Creating and Managing Resources 183

 Viewing the entitlements information for the selected resource.
 Assigning the selected resource to the required users in your organization. See, “Assigning

Resource to Users” on page 186.
 Checking the request status of the users requesting for the selected resource.
 Update the resource form for the selected resource. See, “Updating the Resource Request

Form” on page 186.

Editing multiple resources at once: You can edit multiple resources as a group instead of requiring
you to repeat those actions on each resource individually. Select the resources you want to manage
from the list of resources. You can change Categories, Owners, and Approval Details for the resources
you selected. Starting from Identity Manager 4.8.1, you can change Resource Weightage as well.

You can Append or Overwrite values for Categories and Owners for the selected resources. Append
option allows you to add values without altering the existing entries. Overwrite option replaces the
values that are entered for the existing values.

For more information, see “Changing the Approval or Revocation Process” on page 186.

Delete Resources: To delete a resource (without entitlement) from the list, select the resource and
click Delete.

To delete a resource with entitlement, we recommend that you remove the role-to-resource
mapping first. Go to Administration > Roles, select the required role, then click Map Resources to Role
and remove that resource from the Mapped Resources list.

What happens to existing resource assignments: When you a delete a resource (without
entitlement) that already has one or more identities assigned to it, the system removes the resource
from those identities. If the resource has been associated with a role, the system also removes all
role associations that pertain to the deleted resource.

In Identity Manager 4.8.7 and onwards, the application will display an error message when you
delete a resource with entitlement. We recommend that you remove the role-resource mapping
before deletion.

Setting Expiration Period for the Resource
To set the expiration period, enable Expiration required and set the number of Days/Months/Years
when the access to the selected resource(s) should expire.

Expiration period sets the expiration date for a resource from the date of assignment.

Users can also request for resources in Access > Request page, for a specific period. For more
information, see Requesting Permissions in NetIQ Identity Manager - User’s Guide to the Identity
Applications.

For more information, click on the Dashboard.
184 Creating and Managing Resources

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#requestrolesresourcesinidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

Assigning Weightage to the Resource
This section only applies to Identity Manager 4.8.1 or later.

You can assign a resource weightage value to the resources with entitlement. The Role and Resource
Service Driver (RRSD) uses this value to determine the order in which the resource entitlement is
assigned and revoked in the connected system. This provides you the control to prioritize the
assignment and revocation of entitlements. Supported values include 100, 200, 300, 400, and 500,
where 100 has the highest priority and should be assigned first followed by 200 and so on.

NOTE: The Resource Weightage option will not be available in the Dashboard if:

 Identity Vault schema for resource weightage attribute is not updated.
 User Application driver package and Role and Resource Service Driver are not updated to the

latest version.

When assigning resource weightage, you should consider the following conditions:

 A resource cannot be assigned if the user requests for a resource with group entitlement before
requesting for user entitlement resource.

 Resource weightage is only applicable when the resource is mapped to a role. For example,
consider a user account entitlement and a group entitlement mapped to a role. The user
account entitlement is assigned a weightage value of 100 and the group entitlement, a
weightage value of 200. When you assign the role to a user, the RRSD driver determines the
order of assignment based on resource weightage value set for each entitlement, and assigns
the user account entitlement before the group entitlement. In case of revocation, the group
entitlement is revoked and then the user account entitlement.

When you create a resource with entitlement, there is no weightage associated with it. However,
while editing you can assign the weightage to one or more resources at the same time.

1 Select the resource(s) from the list that you want to assign a weightage.
2 Click Edit Resources.
3 Under Details, Owners, and Approvals tab, select the required value from the Resource

Weightage drop-down list.
For example, if you have selected a resource with user account entitlement and want this
resource to be assigned before the group entitlement, then you must assign a resource
weightage value of 100 to the user account entitlement and the group entitlement resource any
value other than 100 (say 300). The user is first assigned to the user account entitlement and
then to the group entitlement.

4 Click Apply.
Creating and Managing Resources 185

Changing the Approval or Revocation Process
After you create a resource, you can modify the resource information and define the approval
process for it. You can choose the role approval process to override the resource approval process.

You can define the approval process for a resource using one of the following options:

 Serial Approval: Specify multiple approvers, and define the order by selecting an approver and
moving that approver earlier or later in the order by clicking the arrows at the right of the
approval list.

 Quorum Approval: Specify the approvers, then use the slide bar to specify the percent of those
approvers that are required to grant access.

 Custom: Specify the customized approval process from the list that you want to use. The list
displays the workflows that are defined using Designer.

NOTE: You must set up this approval process in Identity Manager Designer. For more
information, see NetIQ Identity Manager - Administrator’s Guide to Designing the Identity
Applications.

If you choose None, no approvers are required for assigning the resources.

You can choose to have a revoke process or not. The revocation process can match the approval
process. Also, you can define a different revocation process.

You can modify the expiration period for the selected resources. See, “Setting Expiration Period for
the Resource” on page 184.

Assigning Resource to Users
You can directly assign the selected resource to any user in your organization.

1 Select a resource that you want to assign to users.
2 In Resource Assignments, Click +.
3 Specify the Initial Request Description, and mention the Recipients from the list.

NOTE: In Initial Request Description, describe the purpose of assigning a resource to the
mentioned users in Recipients list.

4 Click Assign Resource.

For more information, click on the Dashboard.

Updating the Resource Request Form
A resource form is used to gather necessary data to properly assign a resource. Create and define the
fields for the resource.

This is an example for resource form. The Region field is added for the Mobile resource. Following
illustration displays the form at the time of the request.
186 Creating and Managing Resources

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Figure 15-1 Example Resource Request Form

You can assign a value to the field and select At request/assign time to allow users to specify the
values at the time of request or resource assignment. If you want to assign values now, select Now.

In Data Value List, you can select one of the following data types to add a field into the request form:

Data Type Description

Integer This allows you to gather only numerical information about the selected
resource.

For example,

If you require to gather information related to quantity or number of days,
weeks, or hours, you can use this data type.

Boolean This allows you to gather true/false sort of information.

For example,

If the selected resource is printer, you might need to confirm whether they
require a color printer or not. In this case, you can use this data type to
provide an option to requesters.

List This allows you to select values from the list.

If you want users to select the defined values, you can provision the options
using this data type.

For example,

If you want to know the time zone of the requester, you can provision this field
by listing all the timezones for this field.

For more information about creating such lists, see “Creating a List to Improve
Resource Request Forms” on page 189.
Creating and Managing Resources 187

NOTE: When you select Now option in Assign Value, these fields appear on the request form at the
time of request or assignment by default. If you want to hide these fields, select Hide.

For more information, click on the Dashboard.

Creating a Workflow for a Resource
For more information on creating a workflow for a selected resource, see Chapter 16, “Adding
Workflow to Roles and Resources,” on page 191.

Enabling Drivers for Resource Mappings
The identity applications includes updated configuration files for the following drivers:

 Active Directory
 GroupWise
 LDAP
 Notes
 eDirectory
 SAP User Management
 SAP GRC Access Control

All of these updated driver configuration files contain a new section on the driver's Global
Configuration Values (GCV) page labeled Role and Resource Mapping.

To display the configuration options available in the new section, select show for the Show role and
resource mapping configuration GCV.

To enable resource mapping for the driver, select Yes for the Enable resource mapping GCV.

Depending on the driver's capabilities, one or more lower-level options are displayed once resource
mapping is turned on. The Active Directory driver, for example, has three lower-level options:

 Allow mapping of user accounts
 Allow mapping of groups
 Allow mapping of Exchange mailboxes

Each option can be turned on or off individually by selecting Yes or No.

String This allows you to gather more information on a resource request.

For example,

If you want to know the reason for this request or assignment, you can use this
data type for a field to gather this information.

Data Type Description
188 Creating and Managing Resources

After saving the changes and restarting the driver, RBPM will detect the driver as enabled for
resource mapping.

NOTE: Before Identity Applications detect the driver, it must query the entitlement system. Identity
Applications sends the query to the entitlement system every 1440 minutes by default, but you can
force the application to send the query immediately using the identity applications.

To force the query to run immediately, click Refresh in Entitlement Query Settings. See, “Configuring
Entitlement Query Settings” on page 225.

Creating a List to Improve Resource Request Forms
You can use lists in request forms to display various options for specifying a resource assignment.
This section provides instructions for adding lists to the database by executing a few SQL statements.
Once these lists have been created, they can be displayed on a request form on the Roles and
Resources tab.

The following example shows how you would create a simple set of values for a list:

INSERT INTO PROVISIONING_CODE_MAP SET VIEWID='Factory-Locations',
VERSIONNO=1,
DESCRIPTION='Factory Locations', NAME='Factory
Locations',ENTITYKEY='Factory-Locations', ENTITYTYPE=1,
LASTREFRESHED=UNIX_TIMESTAMP();

INSERT INTO PROVISIONING_VIEW_VALUE SET VALUEID='Factory-Locations-1',
VERSIONNO=1, VIEWID='Factory-Locations', PARAMVALUE='Cambridge, MA 02440';

INSERT INTO PROVISIONING_VIEW_VALUE SET VALUEID='Factory-Locations-2',
VERSIONNO=1, VIEWID='Factory-Locations', PARAMVALUE='Provo, UT 97288';
The following example uses SQL statements that work with PostgreSQL:

INSERT INTO PROVISIONING_CODE_MAP
(VIEWID,VERSIONNO,DESCRIPTION,NAME,ENTITYKEY,ENTITYTYPE,LASTREFRESHED)
VALUES ('Factory-Locations',1,'Factory Locations','Factory-
Locations','Factory-Locations',1,extract(epoch FROM now()));

INSERT INTO PROVISIONING_VIEW_VALUE (VALUEID,VERSIONNO,VIEWID,PARAMVALUE)
VALUES ('Factory-Locations-1','1','Factory-Locations','Cambridge, MA
02440');

INSERT INTO PROVISIONING_VIEW_VALUE (VALUEID,VERSIONNO,VIEWID,PARAMVALUE)
VALUES ('Factory-Locations-2','1','Factory-Locations','Waltham, MA
02451');

INSERT INTO PROVISIONING_VIEW_VALUE (VALUEID,VERSIONNO,VIEWID,PARAMVALUE)
VALUES ('Factory-Locations-3','1','Factory-Locations','Provo, UT 97288');
The VIEWID is the primary key for the PROVISIONING_CODE_MAP. The ENTITYTYPE value 1 identifies
the map type as a list. The VIEWID is the foreign key for the PROVISIONING_VIEW_VALUE
relationship to the PROVISIONING_CODE_MAP table. The VALUEID is the primary key for the
PROVISIONING_VIEW_VALUE table.
Creating and Managing Resources 189

After the Company Location field has been added to the form, you can specify that the company
location value should come from the Company Locations list at request time.

After the Factory Location field has been added, you can specify that the factory location value must
come from the Factory Locations list at request time.

At request time, the user can then select the company location and factory location values when
assigning the resource.

After the resource has been assigned, the Request Status tab for the resource displays the parameter
values chosen from the lists for the request form fields.
190 Creating and Managing Resources

16 16Adding Workflow to Roles and Resources

Identity Applications introduces a new simplified method for adding a workflow to role and
resource. The Identity Applications user interface includes a new option, namely Add Workflow, in
the Roles and Resources pages for role and resource request process. This new method is an
alternative to the existing method of creating workflows in Designer. It is targeted to ease the user
experience of creating workflows. For greater flexibility and ease of use, NetIQ recommends that
you use this method whenever possible.

Benefits
 Allows you to quickly create a workflow in Identity Applications without switching to Designer.
 Provides an illustrative, easy-to-understand interface for creating workflows.
 Includes a progress bar to help you track the status and progress of the workflow creation

process.

This method leverages the same workflow concepts that are used for creating workflows in Designer.
For more information, see NetIQ Identity Manager - Administrator’s Guide to Designing the Identity
Applications. For the Add Workflow REST API operations, see Chapter 43, “REST Services,” on
page 635.

Adding a Workflow
By default, the Add Workflow option is enabled. If you do not find this option in Roles and Resources
page, you must first enable it from the Settings page. For more information, see “General Settings”
on page 143.

You can add a workflow in Roles and Resource catalog based on system templates. For more
information on system templates, see “System Templates and Template Forms” on page 194. Let us
understand the workflow addition process through a two-step serial approval workflow example.

To add a workflow:

1 Click Administration > Roles or Administration > Resources option.
2 Select the required Role or Resource that you want under workflow control and click Add

Workflow.
3 A new WORKFLOW TEMPLATE SELECTION window is displayed. Select Approval Step(s) as Two

and Approval Type as Serial and click Next.
These workflow templates are obtained from the System Templates bundled in Create
Workflow Templates package for with User Application Driver in Designer.

4 A new Create Workflow Form window is displayed. Under General, specify the tabulated details
and click Next.
Adding Workflow to Roles and Resources 191

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

5 Under Request Info, select the required request form, specify the details, and click Next.
You can use this view to map data from the data flow into fields in a form (pre-activity mapping)
and to map data from the form back to the data flow (post-activity mapping).
For pre-activity mapping, specify the Source Expression for the item that you want to map. For
post-activity mapping, click in the Target Expression field for the item that you want to map, and
specify an expression.
For more information, see Workflow Activity Reference in the NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity Applications.

6 Under Approval Info, specify the tabulated details for approval activity. Depending on the
number of approval step(s) selected for the workflow initially, provide the details for those
number of approvals.
Fill in the details for First Approval and Second Approval here and click Next.

Field Description

Identifier (CN) Specify the unique CN (common name) for the workflow.

Name Specify the display name for the workflow. This is the name that is
displayed to the user in Designer and Identity Applications (idmdash).

Description Specify the description for the workflow.

Status Specify the status for the workflow creation as either:

Active: Select this option to make the workflow available for use in the
Identity Applications after successful creation.

Inactive: Select this option to make the workflow temporarily
unavailable for use in the Identity Applications. Administrator has to use
Designer to make the workflow active and deploy to Identity
Applications.

You can use this option when you want keep the roles of the person who
develops the workflow separate from the person who activates the
workflow. For example, a developer could be responsible for marking the
workflow as Inactive, and an administrator could be responsible for
changing the status to Active.

NOTE: Use Designer for editing workflows created through Add
Workflow for Roles or Resources.

Permission Displays the selected role or resource for which the workflow is being
created. This field is not editable.

Permission binding Specify if you want the workflow to have either request binding activity
or request activity.

The request binding activity directly approves or denies the permission
without going through further approval process set on the permission.
Whereas the request activity makes a request for the permission and
then go through further approval process set on that permission.
192 Adding Workflow to Roles and Resources

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#workflowactivityreference
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

7 Under Finish, specify the notification details and click Create Workflow.

The created workflow is successfully attached to the selected Role or Resource. Now when a user
request for the workflow to request a Role or Resource, the request and approval process will be as
per attached workflow.

The workflows are saved in the Identity Vault which can later be imported into Designer for
modifications.

Field Description

Approvers Specify the approver for the workflow. An
approver can be a manager, initiator, user, or
group.

Select Approval Form Lists all the forms displayed under Approval forms
category. Select an approval form from the list.

Escalation Timeout Specifies a dynamic expression that defines (in
terms of number of days) the period of time
allotted for the approver to complete the activity.

Escalation Addressee Specifies a dynamic expression that identifies the
user who should get this task if the escalation
timeout limit has been reached. The escalation
addressee is determined at runtime, based on how
the expression is evaluated.

Approval Timeout Specifies a dynamic expression that defines (in
terms of number of days) the period of time
allotted for the escalation addressee to complete
the task.

Timeout Action Determines the final state of the request in the
event that the workflow times out. The choices
are:
 Approved
 Denied

Field Description

Notification Required Specifies whether approvers are notified by email
about pending approval tasks, and whether
initiators are notified by email of workflow
completion.

Trustees Specifies the users, groups, or containers that can
read, compare, and browse the roles. (Read,
compare, and browse are the default privileges.)
Adding Workflow to Roles and Resources 193

NOTE: Note that a workflow created using Add Workflow cannot be modified or deleted in Identity
Applications.

 If workflow addition to the selected Role or Resource fails, check catalina log file for error
messages in order to debug the issue.

System Templates and Template Forms
Identity Applications includes a set of predefined workflow process templates called System
Templates and forms called Template Forms with default event mappings that correspond to
specific Identity Applications tasks related to role and resource. Add Workflow option based on these
System Templates and Template Forms allows you to add workflows to a role and resource entirely
from within Identity Applications.

These system templates and forms are stored in the Identity Vault. For the list of system templates
and forms, see NetIQ Identity Manager - Administrator’s Guide to Designing the Identity
Applications.

IMPORTANT: Do not modify the System templates or System forms.
194 Adding Workflow to Roles and Resources

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Custom Templates
Identity Applications also provides an option to add workflow to Role and Resource based on user-
defined template called as Custom Templates.

Add Workflow feature uses three components:

1. Custom Templates workflow

New workflow will be created by taking the content of the custom template workflow.
2. Template Forms

Any user input to create workflow can be configured via the template form. This form needs to
be associated with the Request form of Custom Template.
Adding Workflow to Roles and Resources 195

3. REST API
This creates the workflow when the user inputs from Template Forms and the custom template
workflow DN is provided. It gets triggered from the Template Forms. This is provided by the
Identity Applications REST API.

You can create your own Custom Templates and Template Forms using Designer. For more
information, see section “Creating a Custom Template in Designer” on page 196.

You can add a workflow to the selected Role or Resource using the custom template with Add
Workflow option. For procedure, see “Adding Workflow Using Custom Template” on page 196.

Adding Workflow Using Custom Template
To add a workflow to the Role and Resource using custom template:

1 Launch the Designer. Create your own workflow process template (custom template) and
deploy it. For procedure, see “Creating a Custom Template in Designer” on page 196.

2 Login to the Identity Applications Dashboard.
3 Click Administration > Roles or Administration > Resources option.
4 Select the required Role or Resource that you want under workflow control and click Add

Workflow. A new toggle button with a prompt Do you want to select custom template? is
displayed in the WORKFLOW TEMPLATE SELECTION window.

5 Enable this toggle button and select the custom template that you created in step 1.
6 Click Next. A new Create Workflow Form window is displayed. Provide details for the fields

provisioned as per the custom template.

Creating a Custom Template in Designer
For a Custom Template in Designer, you need to create a template form using the Form Builder tool
and then configure a provisioning request definition (PRD). Detailed steps are mentioned below:

1 Launch the Designer and open your project.
2 To create your own workflow template form:

2a Go to the Provisioning view and click Workflow Forms. Right-click the Template Forms
container and select New.

2b Enter the Form Identifier in the New Workflow Forms dialog box and click Finish.
The Form Builder is launched.
2b1 Click + and select the template as Create Workflow Form.
2b2 Click Create.
2b3 Drag and drop the required components and save the changes made to the form.

Based on the selected form type, some fields are automatically added to the form. You
can remove or modify these fields as required. The form components that are placed
on the form determine the appearance of the form. For more information, see NetIQ
Identity Manager - User’s Guide to Form Builder.

2b4 Click Save.
3 Right-click the new template form and select Live > Deploy to deploy it.
196 Adding Workflow to Roles and Resources

https://www.netiq.com/documentation/identity-manager-48/form_builder/data/form_builder.html
https://www.netiq.com/documentation/identity-manager-48/form_builder/data/form_builder.html

4 To create a new Custom Template:
4a Right-click the Provisioning Request Definitions option and select New. Specify the basic

information and select the workflow template for this PRD. Select the category as Custom
Templates and click Finish.

4b The new PRD provisioned is displayed in Provisioning Request Definition Details Panel on
the Overview tab. Select the Category as Custom Templates and Status as Template.

4c Click the Workflow tab and create the workflow topology.
For information about creating a workflow topology, see NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity Applications.

4d Click the JSON Forms tab and select the workflow forms from FormID drop down menu for
start workflow activity. You can associate either the standard forms available by default or
custom forms created using the Form Builder tool.
As you selected the Category as Custom Templates in step 4b above, the FormID menu lists
only custom template forms from Template Forms for selection.

4e Click Save.
5 Right-click the new PRD and select Live > Deploy to deploy it. On successful creation, the PRD is

added under Custom Templates.

You can now add workflow to the Role and Resource based on this custom template in Identity
Applications.

Recommendations
NetIQ recommends you to not use the Add Workflow option in the following scenarios:

 When a resource has a dynamic entitlement, that is, a resource whose entitlement value can be
set at request time.

 When a resource contains Resource Form Fields.
Adding Workflow to Roles and Resources 197

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

198 Adding Workflow to Roles and Resources

17 17Monitoring Workflows

This chapter only applies to Identity Manager 4.8.6 and later.

After the Workflow Engine initiates a workflow, you can track its progress on the Workflow
Monitoring page. You can view the current status, reassign activities within the workflow, terminate
a workflow, and even view the comments logged during its execution.

Go to Administration > Workflow Monitoring to monitor and manage workflows.

You must have one of the following identity applications roles to monitor workflows:

 Security Administrator
 Provisioning Administrator

NOTE: After upgrading Identity Manager to 4.8.6, the security and provisioning administrator roles
must be listed as trustee in the access settings. However, in some upgrade instances, the default
trustee for workflow monitoring is left blank, and the Workflow Monitoring page is accessible to all
users. To restrict the access, add the roles to the client settings file. For more information, see TID:
KM000011013 (https://portal.microfocus.com/s/article/KM000011013?language=en_US).

This chapter helps you to perform the following activities:

 “Search for Workflows” on page 199
 “Sort Workflows” on page 200
 “Customize Columns” on page 200
 “View Workflow Status” on page 200
 “View Approval Status” on page 201
 “Actions You Can Perform On This Page” on page 201

Search for Workflows
You can use any of the following search criteria to find a workflow process:

Simple Search
Enter the name of the recipient or requester in the search bar.

Filtered Search

You can use the available filters to search for workflow processes. Click and use one of the
following options:
 Name of the requester who initiated the workflow process.
 Name of the recipient.
 Status of the workflow process.
Monitoring Workflows 199

https://portal.microfocus.com/s/article/KM000011013?language=en_US
https://portal.microfocus.com/s/article/KM000011013?language=en_US

 Status of the approval activity.
 Requested date. To filter, select filter by Request Date, choose whether you want to

filter Before or After a date, then enter a date and time.

You can navigate through the list of workflows using the pagination option and choose the number
of entries to display on each page.

Sort Workflows
Workflow processes on the Workflow Monitoring page are sorted by request date by default, with
the most recently requested process at the top of the list. You can sort this list by the requester or

recipient name. To sort, click next to the column. You can then shuffle the list in alphabetic order
as desired.

Customize Columns
Using the Column Customization option, you can select which columns to display on the Workflow
monitoring page. Dashboard saves your customization settings. Next time when you navigate to the
page, columns that are configured to display will be shown.

To customize the columns:

1 Click .
2 Select the check box next to the desired column that you want to display. The selected columns

are simultaneously added to the Workflow Monitoring page.

TIP: To choose all columns, select the check box provided near the search field. To uncheck all
columns, deselect the check box.

3 To save your preferences, click the close sign (x) or the drop down arrow on the Column
Customization window.

View Workflow Status
A workflow process will display one of the following statuses in the Status column at any given time:

Running
Indicates that a workflow process is in progress. One or more approval request activities are
waiting for an action from the approver.

Completed
Indicates that a workflow process is complete. You can view the approval status in the Approval
Status column. For more information on different states of approval, see View Approval Status.

Stopped
(Applies to a non-clustered workflow engine environment) Indicates that an instance of the
workflow engine is currently down and not reachable.
200 Monitoring Workflows

Terminated
Indicates that a workflow process was terminated before completion.

Click to get an up-to-date workflow process list from the workflow runtime database. The refresh
option also updates the most recent status of all workflow processes that are currently running.

View Approval Status
The Approval Status column displays the current approval status of a workflow process.

A workflow process will display one of the following statuses at any given time:

Processing
Indicates that one or more workflow activities are awaiting approval from the approver. For
example, two approval activities are defined in a workflow process, one is approved, and the
other is pending approval. Because the workflow process is still in progress in this case, so the
approval status is displayed as Processing.

Approved
Indicates that all approval activities in the workflow process are complete.

Denied
Indicates that the approver rejected one or more approval activities in the workflow process.

Retracted
Indicates that the requester retracted the permission access request. In this case, the workflow
process is terminated before its completion.

Error
Indicates that one or more approval activities in the workflow process are not working properly.
In this case, the workflow process is terminated before its completion. The errors can occur due
to many reasons, some of them are listed below:
 An error occurred when calling the token end point
 An error occurred while initializing the scripting engine or the scripting context
 When forwarding a task, the Activity ID or Addressee details are missing or empty

Actions You Can Perform On This Page
The Dashboard provides the following actions that allow you to manage the workflow processes:

 Terminate a Workflow Process
 Reassign a Workflow Process
 View Comments to Know More About Workflows
Monitoring Workflows 201

Terminate a Workflow Process
You can terminate a workflow process if you do not want to continue its processing. All activities
associated with that workflow process will end, and the workflow status will change to
Terminated. When terminating a workflow process, you must provide a reason for your action.

You can terminate a running workflow process in the following scenarios:

 When an activity is open for a long time, preventing the workflow process from being
completed.

 When a workflow process has come to a stop and cannot be restarted.

NOTE: The workflow engine automatically terminates a workflow process when it detects an error in
the workflow definition.

For more information, click on the dashboard.

Reassign a Workflow Process
The activities assigned to an individual may occasionally need to be delegated to another person.
You can assign one or more activities to a different addressee within the organization. When you
reassign an activity, the workflow engine notifies the task recipient. When reassigning an activity,
you must also provide a reason for your action.

Review the following guidelines before reassigning a workflow process:

 Reassign a workflow process only if an approval request activity has timed out or has been left
unattended for an extended period. This can happen when the requester is unavailable or has
left the organization.

 You can reassign a workflow process that has come to a stop and cannot be restarted.

For more information, click on the dashboard.

View Comments to Know More About Workflows
While a workflow process is running, the workflow engine logs key events as comments. To read

these comments click in the Actions tab.

The application displays user comments by default. Select the View System Comments check box to
see both the system and user comments. The events are listed in reverse chronological order, with
the most recent event listed first. Each event includes a comment with a timestamp, the activity
name, and author of the comment.

System comments corresponds to the actions taken by the application while executing a workflow.
For example, assigning the approval activity to someone who has the authority to approve the
request. User comments, on the other hand, are comments added by a user. For example, the reason
provided by an administrator for terminating a workflow process.

The View Comments feature provides insight into workflow execution. If the workflow engine
terminates a workflow process with an error, the administrator can easily trace the error details
from the workflow comments window.
202 Monitoring Workflows

18 18Creating and Managing Delegations

In some organizations, you might be allowed to delegate your tasks to other team members. This
feature allows you to delegate your tasks to multiple users based on the selected Provisioning
Request Definitions (PRD).

A delegate user is a user to whom one or more specific tasks appropriate to that user’s rights can be
delegated so that the delegate can work on those specific tasks on behalf of someone else.

To view delegations, go to People > Delegation. All users in the organization can see their delegation
assignments.

To create or modify delegation, you must have one of the following roles:

 Provisioning Administrator
 Provisioning Manager
 Team Manager

The Provisioning Administrator and Provisioning Manager have the ability to define delegate
assignments for any user in the organization.

The team manager can define delegation assignments for self or for the team members. Make sure
that Configure Delegate and Configure Availability permissions are granted to the team manager for
the requested team to create delegation:

Go to People > Teams and edit the team permissions to enable delegation feature.

Figure 18-1 Add Permissions to the Teams to Create Delegation

NOTE: If team manager wants to create a delegation for self, ensure Include the selected requesters
in the recipients list is selected.

To modify the default delegation settings, see Section 22, “Configuring Identity Applications Default
Settings,” on page 223.

For more information about delegations, click on the Dashboard.
Creating and Managing Delegations 203

204 Creating and Managing Delegations

19 19Separation of Duties Constraints

Separation of duties is an important aspect of an organization’s security controls because it helps
prevent fraud and user error related to user access. In a separation of duties constraint, the
conflicting roles must be at the same level in the roles hierarchy.

A Role Administrator can create or modify for roles in the organization.

A SoD constraint represents a rule that makes two roles mutually exclusive unless there is an
exception allowed for that constraint. You can define whether exceptions to the constraint are
always allowed or are only allowed through an approval flow. When a role assignment results in a
potential separation of duties conflict, the initiator has the option to override the separation of
duties constraint and provide a justification for making an exception to the constraint.

You can add or delete separation of duties constraints in:

Administration > Separation of Duties page.

To modify the default Separation of Duties settings, see Section 22, “Configuring Identity
Applications Default Settings,” on page 223.

To understand the Role and Resource assignment process, see:

 “Role Assignments” on page 205
 “Resource Assignments” on page 206

Role Assignments
When a user requests a role that results in a potential SoD conflict, the initiator has the option to
override the SoD constraint and provide a justification for making an exception. In some cases, a SoD
conflict can cause a workflow to start. The workflow coordinates the approvals needed to allow the
SoD exception to take effect.

Your workflow designer and system administrator are responsible for setting up the contents of the
Roles and Resources in the Administration tab for you and the others in your organization. The flow
of control for a roles-based workflow or SoD workflow, as well as the appearance of forms, can vary
depending on how the workflow designer defined the workflow's approval definition in the Designer
for Identity Manager. In addition, your job requirements and level of authority determine what you
can see and do.

For more information, click on the Dashboard.

NOTE: The ability to define custom roles is available only with Identity Manager 4.5 and later.
Separation of Duties Constraints 205

Resource Assignments
Resources can be assigned to users only. They cannot be assigned to groups or containers. However,
if a role is assigned to a group or container, the users in that group or container might automatically
be granted access to the resources associated with the role.

A Resource Administrator can configure the approval process for resources. The approval process for
a resource might be handled by one of the following:

 a provisioning request definition
 an external system, by setting the status code on the resource request

If a role assignment initiates a request for a resource, it is possible that the request will not be
granted, even though the role is provisioned. The most likely reason for this would be that the
necessary approvals were not provided.

When a user requests a resource, the request starts a workflow. The workflow coordinates the
approvals needed to fulfill the request. Some requests require approval from a single individual;
others require approval from several individuals. In some instances, a request can be fulfilled
without any approvals.

The following business rules govern the behavior of resources within the identity applications:

 Resources can only be assigned to a user. The resource can be granted to users in a container or
group based on implicit role assignment. But the resource assignment will only be associated
with a user.

 Resources can be assigned in any of the following ways:
 Directly by a user through UI mechanisms
 Through a provisioning request
 Through a role request assignment
 Through a Rest or SOAP interface

 The same resource can be granted to a user multiple times (if this capability has been enabled
in the resource definition).

 A resource definition can have no more than one entitlement bound to it.
 A resource definition can have one or more same-entitlement references bound to it. This

capability provides support for entitlements where the entitlement parameters represent
provisionable accounts or permissions on the connected system.

 Entitlement and decision support parameters can be specified at design time (static) or at
request time (dynamic).

Your workflow designer and system administrator are responsible for setting up the identity
applications for you and the others in your organization. The flow of control for a resource-based
workflow, as well as the appearance of forms, can vary depending on how the workflow designer
defined the workflow's approval definition in the Designer for Identity Manager. In addition, your job
requirements and level of authority determine what you can see and do.
206 Separation of Duties Constraints

Resource Request Process Flow
The following example shows the process flow for a resource assignment request. In this example, a
user requests a resource that grants access to an SAP profile:

1. In the Dashboard, a user requests access to SAP.
2. The Identity Vault creates a User Request object.
3. The Role and Resource Service Driver processes the new request.
4. The Role and Resource Service Driver starts a workflow, and changes the request status.
5. The identity applications perform the approval process. Upon completion of the approval

process, the workflow activity changes the request status.
6. The Role and Resource Service driver picks up the change in the status and begins to provision

the resource if all of the necessary approvals have been provided.
7. The User Object attributes are updated to include the resource binding and approval

information.
8. An entitlement request is made for the SAP Profile.
9. The SAP Driver processes the entitlement and creates the user’s profile in SAP.
Separation of Duties Constraints 207

208 Separation of Duties Constraints

20 20Using Controlled Permission Reconciliation
Services

Controlled Permission Reconciliation Services (CPRS) helps you to keep the Identity Manager
Resource Catalog synchronized with the permissions across connected applications. You can use
CPRS for the following activities:

 Initial Permission Onboarding: Allows you to select each entitlement or driver and migrate the
permissions of the managed users from the connected application to Resource Catalog.

 Controlled Reconciliation: Select a driver or entitlement and monitor changes to the user
permissions in Resource Catalog. You can publish the permission changes to Resource Catalog
for specific or all users.

Ensure you have Resource Administrator or User Administrator access to use CPRS.

The following video describes the concepts of CPRS:

http://www.youtube.com/watch?v=l4-IyRTu2pU

IMPORTANT: CPRS currently supports Active Directory, Multi-Domain Active Directory (MDAD),
LDAP, Loopback, Delimited, REST, and Workday drivers.

This section provides valuable information for planning a CPRS implementation in your Identity
Manager environment.

 “How CPRS Helps” on page 209
 “Prerequisites” on page 210
 “Considerations for Supported Drivers” on page 210
 “Understanding the Components of CPRS” on page 211
 “Managing Permission Reconciliation Settings” on page 213
 “Permission Reconciliation” on page 215
 “Migrating to CPRS” on page 217

How CPRS Helps
Permission Collection and Reconciliation Service (PCRS) helps you create custom entitlements for
connected system roles and resources and allows you to synchronize these permission assignment
changes to identity applications Resource Catalog.

When PCRS is configured for an Identity Manager driver, user permissions from that connected
application are seamlessly reconciled into Resource Catalog based on PCRS settings configured for
the connected application. PCRS does not allow Identity Manager administrators control
reconciliation requests. In addition, configuration and troubleshooting of PCRS solution can become
difficult due to involvement of many floating components such as policies, job, mapping tables, and
Using Controlled Permission Reconciliation Services 209

http://www.youtube.com/watch?v=l4-IyRTu2pU

some engine APIs. The primary issues are performance, complexity of implementation and stability/
reliability of the deployments.Therefore, resulting in degraded performance of the system. CPRS
provides an improved solution with the following benefits over PCRS:

 Secures the permission reconciliation model in which reconciliations are controlled by an
administrator.

 Requires minimal configuration to get CPRS working after Identity Manager is installed.
 Enhances overall system performance.
 Simpler troubleshooting as all the involved components are integrated with the Identity

Applications user interface.

Prerequisites
Before using CPRS, review the following considerations:

 Identity Manager 4.7
 Identity Manager drivers are updated to the latest driver package.

For more information, see Preparing Drivers to Use CPRS in the NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity Applications.

 Identity Manager drivers enabled with entitlements are up and running.

Considerations for Supported Drivers
This section describes all the considerations for the following drivers:

 “MDAD Driver” on page 210
 “Loopback Driver” on page 211
 “REST Driver” on page 211
 “Delimited Text Driver” on page 211

MDAD Driver
MDAD driver allows permission reconciliation for every logical system. You must enable your logical
system in Designer or iManager. To enable a logical system in iManager:

1. Login to iManager as an administrator.
2. Right-click the MDAD driver and navigate to Edit Properties > Global Configuration Values >

Entitlement.
3. Set Add Logical System information to Entitlement Values to Yes for the entitlement for which

you want to use CPRS.

WARNING: This setting (Yes) invalidates all the existing resources for the entitlement. This
results in loss of all existing resources for the entitlement. Therefore, you need to recreate
resources and publish the assignments. For more information, see “Managing Permissions for a
MDAD Driver” on page 218.
210 Using Controlled Permission Reconciliation Services

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#updatecustomentitlementstousecprs
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Loopback Driver
To create associations for the existing users, migrate the user container using Migrate from Identity
Vault option in iManager. Perform the following tasks to use the existing Loopback driver:

1 Upgrade the driver to the latest Loopback base package.
2 To create associations for the existing users, migrate the user container from Identity Vault to

connected application.

REST Driver
Perform the following tasks to use the existing REST driver:

1 Upgrade the Identity Manager to 4.7.1 version.
2 Upgrade the REST driver to 1.0.1.1 version.

Delimited Text Driver
CPRS uses the driver query functionality to fetch permission information from the connected
application. Therefore, ensure that the query capability is available in the driver policies for
codemap queries and permission queries.

Understanding the Components of CPRS
CPRS is integrated with Identity Manager Dashboard. The following figure depicts different
components involved in synchronizing user permissions:
Using Controlled Permission Reconciliation Services 211

 User interface - The following web pages are available:
 Permission Reconciliation - Use this page for migrating permissions and to compute the

difference in permission assignments between the connected application and Resource
Catalog. Use the following icons to manage permission reconciliation, compute
assignments, publish assignments, and to view the status of the processes triggered:

 Manage Permission Reconciliation

 Compute selected (driver/entitlement) assignments

 Publish All (driver/entitlement) assignments

 Status of the process
For more information, see “Permission Reconciliation” on page 215.

 Permission Reconciliation Settings – Use this page to view the CPRS settings.
 Permission reconciliation Settings Edit – Use this page to modify the permission

reconciliation settings for entitlements. For more information, see “Managing Permission
Reconciliation Settings” on page 213.

 Permission Reconciliation Configuration - Navigate to Configuration > Permission
Reconciliation. Use this page to perform the following tasks:
 Enable permission reconciliation
 Set the polling time for status checker
 Set the time for retention for computed permission assignments

For more information, see “Configuring Permission Reconciliation Settings” on page 227.
 Identity applications Database - Contains the computation and the published records.
212 Using Controlled Permission Reconciliation Services

 Identity Manager drivers - Used to fetch permissions for data synchronization.
 Connected System - Any system, directory, database, application, or operating system whose

identity information you want to manage.

The following sequence describes how the permission differences between resource catalog and
connected systems are computed and published.

1. Log in as a Resource Administrator or User Administrator to Identity Manager User Interface >
Administration > Permission Reconciliation.

2. Click the Manage Permission Reconciliation icon and click Edit Permission Reconciliation
Settings to enable the resources to be used for CPRS.

3. In the Permission Reconciliation page, select a driver or entitlement you want to compute or
publish.

4. Select an entitlement and click or for a request to be triggered. This action leads to
creation of an eDirectory object under a defined container. This object contains information
such as, resource to entitlement mapping, operation type, status, and so on.
The Identity Manager engine is notified when a request is created under the eDirectory
container. On detecting a new request, the engine begins to process it. The request object is
updated periodically.

5. The difference or change in permission assignments between Resource Catalog and connected
applications is called delta. The Identity Manager engine calculates the delta between the
Resource Catalog and connected system and stores it in a persistence layer.

6. The Status checker API updates the identity applications database process records. Once the
process status is Completed or Error, it cleans the request object from the eDirectory container.

7. The identity applications REST layer receives the delta of permission assignments from the
Identity Manager engine through an LDAP extension.

8. The CPRS computed data is maintained for the configured value in the Permission Reconciliation
Configuration page > Retention time for computed permission assignments.
For more information, see “Configuring Permission Reconciliation Settings” on page 227.

The following video helps you configure and manage CPRS in Identity Manager Dashboard:

http://www.youtube.com/watch?v=QTh8gnxIVS0

Managing Permission Reconciliation Settings
The Permission Reconciliation Settings page allows you to manage the behavior of permission
assignment reconciliation between Resource Catalog or Identity Application, and the connected
application.

The Permission Reconciliation Settings page allows you to configure the resources, to be used by
permission reconciliation for publishing the assignments.

NOTE: The permission reconciliation does not use the configured resource for delta computation. It
is only used during the publishing of permission assignments to the resource catalog.

Perform the following actions to create settings to reconcile permissions:
Using Controlled Permission Reconciliation Services 213

http://www.youtube.com/watch?v=QTh8gnxIVS0

Navigate to Administration > Permission Reconciliation. Click . The Permission Reconciliation
Settings page appears.

This page lists all the settings made for Identity Applications resources:
 Driver Name
 Entitlement
 Permission
 Resource Name

Ensure a resource is created to configure the permission reconciliation settings.

The existing resources can be mapped in CPRS settings. For more information, click on the
Dashboard.

NOTE: If settings are listed, click to customize the columns. Drag and drop the required
columns from Available Columns to Selected Columns.

Editing Permission Reconciliation Settings
Perform the following steps to edit the Permission Reconciliation settings:

1. Click to map entitlement from the connected application to the Identity Manager resource.
2. Select an Entitlement you want to manage.

For example: LDAP Driver > User Account Entitlement

NOTE: If you select MDAD driver, you must select the required Logical system to reconcile. By
default the first Logical system is selected.

3. Perform the following actions to create or edit the permission reconciliation settings between
the selected entitlement and mapped resources:

a. (Conditional) In Entitlement Value Association, select the List Resources With Dynamic Value
to list the resources that are not associated with entitlement values. De-select this option
to list resources that are associated with entitlement values.
The list of resources already configured for the selected entitlement is displayed.

b. Type the resource name you want to select from the list. This lists the resources that are
already present in the Resources page.You can select more than one resource for a
multivalued entitlement.
If no resources are listed, you should create a resource with entitlement for the required
connected application. To create a new resource, see “Creating a New Resource” on
page 182.
214 Using Controlled Permission Reconciliation Services

4. Click Save.
You can view this setting on the Permission Reconciliation Settings page.

Permission Reconciliation
Permission Reconciliation page allows you to compute and publish the permission assignments
between Resource Catalog and connected systems.

Ensure that the drivers or entitlements are configured with CPRS settings to compute or publish.

IMPORTANT: CPRS computes all permission assignments for the selected driver or entitlement
during collection. It does not filter the assignments based on the resource you configure for
permission reconciliation on the Permission Reconciliation Settings page.

Perform the following actions to publish permissions for the selected driver or entitlement:

1 Navigate to Administration > Permission Reconciliation.
2 In Driver or Entitlement, select a driver or an entitlement that you wish to compute or publish.

IMPORTANT: For a Fan-Out driver (for example MDAD), select a Logical system. This option is
displayed only for Fan-Out driver. By default the first Logical system is selected.

3 Click to compute the difference in assignments between the Resource Catalog and the
connected application.

Click to view the process status. You can view the computed assignments data in the CPRS
Assignments table only when the process is completed for the triggered event. Click All
Assignments in CPRS Assignment to view the list of all computed assignments. For more
information, see “CPRS Assignments Table” on page 216.
Using Controlled Permission Reconciliation Services 215

NOTE: The time taken for computation depends on the number of assignments present in the
connected application and Resource Catalog.

4 Click to assign or revoke assignments to Resource Catalog.

NOTE: Ensure that the assignment is associated with a resource.

5 (Conditional) Click to view the process status of the selected entitlement.
The PROCESS STATUS page lists the following columns:

CPRS Assignments Table
On selecting an entitlement in the Permission Reconciliation page, the assignments appears. If the
computation is already performed, all the assignments is displayed.

The following actions can be performed in the CPRS Assignment section:

 From the list of displayed assignments, you can filter assignments based on name or
permission.

Column Name Description

Process Type Specifies the type of processes that are initiated for
the entitlement such as Compute or Publish

Start Time Specifies the start time of the process

Completion Time Specifies the completion time of the process

Status Specifies the status of the process. For example,
Submitted, In Progress, Completed, or Error

Message Displays error messages (if any)
216 Using Controlled Permission Reconciliation Services

 View the assignments using the following options:
 All Assignments: This option is selected by default. All the permissions (new and revoked)

are displayed.
 New Assignments: This option displays the permissions that are available in the application

but not present in the Resource Catalog.
 Revoked Assignments: This option displays the permissions that are present in Identity

Manager resource catalog but not in the application.

 To publish one or more assignments to Resource Catalog, select the permission and click
beside CPRS Assignments. Note that you can select and publish only those assignments which
are configured for permission reconciliation. Other assignments for resources not present in the
permission reconciliation settings may throw an error while publishing.

NOTE: By default, events generated by CPRS assignments do not flow to the Subscriber channel of
the driver. This behavior is controlled by Allow Entitlement event loopback from cprs to subscriber
channel Engine Control Value. To change the default setting, change the control to True. For more
information about Engine Control Values, see Engine Control Values in the NetIQ Identity Manager
Driver Administration Guide.

Migrating to CPRS
Migration to CPRS does not change the resource settings. It only changes the mode of permission
reconciliation.This section explains how to migrate resource configurations to CPRS.

 “Prerequisites” on page 217
 “Managing Existing Permissions for AD and LDAP Drivers” on page 218
 “Managing Permissions for a MDAD Driver” on page 218
 “Post Migration Activities” on page 219

Prerequisites
Before migrating the resources, review the following considerations:

 Upgrade from Identity Manager Engine 4.6.x to 4.7

For more information, see Upgrading Identity Manager Engine (Linux) or Preparing to Upgrade
Identity Manager (Windows) based on your platform

 Upgrade Identity Applications from 4.6.x to 4.7
For more information, see Upgrading Identity Applications (Linux) or Upgrading Identity
Applications (Windows) based on your platform.

 Upgrade the driver packages.

NOTE: The existing MDAD resources become invalid after the driver is upgraded.

For more information, see Upgrading the Driver Packages for Identity Applications (Linux) or
Upgrading the Driver Packages for Identity Applications (Windows) based on your platform.
Using Controlled Permission Reconciliation Services 217

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b94psjw
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#preparingtoupgradeidentitymanager
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#preparingtoupgradeidentitymanager
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#upgardingengine
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#upgradingidentityapplications
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#t45ixro127k2
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#t45ixro127k2
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#upgradingidentityapplicationsandidentityreporting
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#upgradingidentityapplicationsandidentityreporting

Managing Existing Permissions for AD and LDAP Drivers
Managing existing permissions involves migrating the existing resources and creating CPRS settings
for those resources in the identity applications. The procedure is similar for AD and LDAP drivers.
The following procedure uses LDAP driver as an example.

1 Navigate to Administration > Configuration > Permission Reconciliation and enable Permission
Reconciliation.

2 In the Permission Reconciliation Settings Edit page, select an entitlement. For example:
LDAP_Groups.

3 Select an existing resource. For example: Group_Membership_PCRS.

NOTE: You can select one or more resources for a multivalued entitlement.

4 Click Save.
5 Compute and publish permissions for Group_Membership_PCRS entitlement.

Managing Permissions for a MDAD Driver
1 Set Add Logical System information to Entitlement Values to Yes in Global Configuration Values

using iManager or Designer.
Enabling this option makes all the existing resources for an entitlement invalid. Therefore, you
need to recreate the resources and publish the assignments.

2 Navigate to Administration > Resource and create new resources that have Logical System with
entitlements.

3 In the Permission Reconciliation Settings Edit page, select an entitlement. For example,
MDAD_Groups.
218 Using Controlled Permission Reconciliation Services

4 Select a Logical System and map the newly created resource with the new entitlement values.

NOTE: You can select one or more resource for a multivalued entitlement.

5 Click Save.
6 Compute and publish permissions for MDAD_Groups entitlement.

Post Migration Activities
Few eDirectory objects created during PCRS are not cleaned up during CPRS package upgrade.
Manually remove the following eDirectory objects from the driver object path after entitlement
package upgrade:

 PermissionOnboarding
 Group_values
 PermissionEntMapping
 PermissionNameToFile
 StaticValueEntitlementMap
 EntitlementLLIDMapping (Only for MDAD)

TIP: Use idapps.out and driverset log files to trace the CPRS actions and events.
Using Controlled Permission Reconciliation Services 219

220 Using Controlled Permission Reconciliation Services

21 21Configuring Email-Based Approval

As an administrator, you can configure the identity applications to send an email that notifies users
that they have a pending task to approve or reject a permission request.

Administration > Email-based approval

NOTE: Before enabling email-based approvals, ensure that you have configured the provisioning
request definitions (PRDs) to support notifications and (optional) digital signatures. Also, configure
the outgoing mail server. For more information, see the Email Based Approvalin NetIQ Identity
Manager - Administrator’s Guide to Designing the Identity Applications.

You can configure the following settings to allow users to approve requests on their emails:

Incoming Email Settings
Specifies the server type, SSL settings, port type, and notification templates.

Outgoing Email Settings
Specifies the notification template host, protocol, and SMTP server. This tab allows specifies
digital signature settings.

For more information, click on the Dashboard.
Configuring Email-Based Approval 221

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#approveordenytasksonemail
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

222 Configuring Email-Based Approval

22 22Configuring Identity Applications Default
Settings

To modify the default settings of identity applications administration settings, navigate to
Configuration.

The settings and configurations made on this page affects while performing any operations on the
components that are listed in this page.

 “Configuring Roles and Resources Settings” on page 223
 “Configuring Delegation and Proxy Settings” on page 226
 “Configuring Permission Reconciliation Settings” on page 227
 “Configuring Logging Settings” on page 228
 “Configuring Caching and Cluster Settings” on page 229
 “Assigning Administrators in Identity Applications” on page 235
 “Configuring Workflow Engines and Cluster Settings” on page 240
 “Viewing User Application Driver Status” on page 243
 “Configuring the Default Provisioning Display Settings” on page 243
 “Configuring the Identity Governance Settings” on page 245

Configuring Roles and Resources Settings
The Roles and Resources page allows you to modify the basic configurations of Roles and Resources
Subsytem.

NOTE: You should have both Role Administrator and Resource Administrator permissions to modify
the role and resource configurations on this page.

A Role Manager or Resource Manager can also access this page. Additionally, they should have
Configuration Role Settings and Configuration Resource Settings permissions to modify the settings.
For more information, see “Assigning Permissions to a Delegated Administrator” on page 237.

Configuring Default Roles Settings
The Role Container, Role Request Container, and Default Role Approval Definition show the LDAP
settings that are saved in the Identity Vault during installation.

Role Container
The container where all the roles are stored.
Configuring Identity Applications Default Settings 223

Role Request Container
The container where all the role provisioning requests are stored.

Default Role Approval Definition
This determines the default workflow used for role assignment or revocation process.

Role Assignment Grace Period
Set the grace period which determines the time difference between removing the role
assignment and dissociating entitlements from the role.

Enable Role Approval
This only applies to Identity Manager 4.8.3 or later.
Enable the respective options in this setting to trigger an approval process before a role is
assigned to groups, containers, or mapped to another role. The approval process will be
triggered only if the approval is configured for that role. When this setting is disabled, the role
will be assigned to the recipients directly, without seeking approval. The approver(s) will not
receive an email notification, although the email approval setting is set to enabled.
By default, the Enable Role Approval is disabled for Role to Role, whereas it is enabled for Role to
Container and Role to Group options.

Role Level Display Names
You can change the display names of role levels for all supported languages. To change the
language, see “Understanding Roles” on page 26.

NOTE: In identity applications, you can set a role to any of these levels:
 Level 10
 Level 20, or
 Level 30

These levels appear on the roles with their specified display names.

Click Apply to save your changes.

Configuring Default Resource Settings
You can view the resource settings that are stored in Identity Vault.

Resource Container
The container where all the resources are stored.

Resource Request Container
The container where all the resource provisioning requests are stored.

Default Resource Approval Definition
The container where all the workflows related to resource approval process is stored. When you
select Custom approval process for any resource, it populates the workflow options from this
container.
224 Configuring Identity Applications Default Settings

Configuring Entitlement Query Settings
The identity applications periodically make queries to an entitlement from connected systems that
are displayed in the Administration > Resources list. Entitlement Query Settings allow you to specify
the interval to refresh the code map tables and also allow you to refresh manually.

Default Query Timeout
Specifies the interval in minutes that system should wait for the query result.

Default Refresh Rate
Specifies the interval in minutes to refresh entitlement queries in the system.

Refresh Status
Indicates whether the entitlement values have been refreshed.
You can refresh All Drivers at a time or select specific driver or entitlements that you want to
refresh. To refresh the entitlement values manually, click .

Click Apply to save your changes.

Configuring Separation of Duties Settings
You can control the behavior of the separation of duties used in identity applications.

SoD Container
The container where all the SoD constraints are stored.

SoD Approval Definition
To allow permissions for users despite SoD constraints require an approval. This determines the
workflow that is used for custom approvals. You can set the approval definition for custom
approval process.
This list displays the SoD approval definitions created using Designer. For more information, see
NetIQ Identity Manager - Administrator’s Guide to Designing the Identity Applications.

Default Approval Type
This determines the default approval type for SoD constraints when the approval process is
enabled for those SoD constraints.

Default SoD Approvers
This determines the default users, groups, roles, or containers who review SoD constraints and
approve those requests as required.

Click Apply to save your changes.
Configuring Identity Applications Default Settings 225

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Configuring Delegation and Proxy Settings
The Delegation and Proxy option allows you to configure the retention time for these assignments
and the notification template which is used to generate alerts for the respective users. This option
also allows you to configure the synchronization and cleanup services for these assignments.

 “Configuring Delegation Settings” on page 226
 “Configuring Proxy Settings” on page 226
 “Configuring Synchronization and Cleanup Service” on page 227

Configuring Delegation Settings
Provisioning Administrator can modify the delegation settings.

The Delegation page allows you to update retention time and delegation notification template.

IMPORTANT: The assigned proxy can always see all your requests. This option does not apply to the
proxy.

1 (Optional) Enable Allow All Requests.
This provides the All option in Request Type Selection while creating delegation.

2 Specify the retention time (minutes) for your delegation assignments.
3 Specify the retention time (minutes) for your availability settings.
4 Select the Delegation Notification Template from the list.

This list displays the delegation template created using Designer. For more information, see
NetIQ Identity Manager - Administrator’s Guide to Designing the Identity Applications.

5 Select the Availability Notification Template from the list.
This list displays the availability template created using Designer. For more information, see
NetIQ Identity Manager - Administrator’s Guide to Designing the Identity Applications.

6 Click Apply to save the changes.

Configuring Proxy Settings
Proxy allows you to modify the retention time and set the notification template for proxy
assignments.

Retention time for Proxy assignments
Specify the retention time (minutes) for the proxy assignments in the system after they expire.

Proxy notification template
Select the proxy template from the list. This list displays the proxy templates that are created
using Designer. For more information, see NetIQ Identity Manager - Administrator’s Guide to
Designing the Identity Applications.

Click Apply to save your changes.
226 Configuring Identity Applications Default Settings

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Configuring Synchronization and Cleanup Service
Synchronization and Cleanup Service allows you to define the interval for these services.

Synchronization Service Activation Interval
Specify the interval that synchronizes the delegation, proxy, and available settings.

Cleanup Service Activation Interval
This option allows you to clean up the expired assignments which have passed the retention
time. You can set the cleanup service using one of the following methods:
 Minutes: This option removes the expired assignments that occur for every specified

interval.
 Date: This option removes the expired assignments that occur within the every specified

date.

Click Apply to save your changes.

NOTE: These changes will take effect next time you start the Identity Applications.

Configuring Permission Reconciliation Settings
The Permission Reconciliation page allows you to configure default operations of identity application
components. For example, you can set the polling time for status checker and set time for retention
of computed permission assignments.

Perform the following actions to configure permission reconciliations:

1 Enable Permission Reconciliation, to start using CPRS.
This option helps you to create custom entitlements for connected system roles or resources.
You can synchronize the connected application’s permission assignments to the Identity
Manager resources. To view system resources, go to Administration > Resources. For more
information about resources, see Chapter 15, “Creating and Managing Resources,” on page 181.

2 In Polling time for status checker (minutes), specify the time interval to check the permission
reconciliation status.
By default, the value is set to 10 minutes.

3 In Retention time for computed permission assignments (days), specify the number of days to
retain the CPRS process records and computed records.
By default, the value is set to 7 days.

4 Click Submit.
Configuring Identity Applications Default Settings 227

Configuring Logging Settings
Logging allows you to debug the identity applications configuration. The logging service provides
facilities for writing, viewing, filtering, and listening for log messages.

By default, Identity Manager saves the logging configuration in idmuserapp_logging.xml file.
For workflow events, there is a separate workflow_logging.xml file. Both these files are located
at:

Linux: /opt/netiq/idm/apps/tomcat/conf/
Windows: C:\netiq\idm\apps\tomcat\conf

NOTE: The workflow events are generated only if CEF auditing is enabled in
workflow_logging.xml file.

For more information, see Chapter 8, “Setting Up Logging in the Identity Applications,” on page 71.

Configuring Auditing Service Settings
The Auditing Configuration under Configuration > Logging allows you to enable or disable audit
service in CEF format. You should specify the following auditing server details after enabling CEF
format.

For any audit related settings, NetIQ recommends you to refer to the NetIQ Identity Manager -
Configuring Auditing in Identity Manager.

Fields Description

Destination host Specifies the destination hostname or IP address of the auditing server.

Destination Port Specifies the destination port number of the auditing server.

Network Protocol Specifies the protocol that should be used to establish communication with
the auditing server.

To establish a secure communication with the auditing server, select TCP
protocol and enable Use TLS option. Provide the Keystore file name and the
Keystore password.
228 Configuring Identity Applications Default Settings

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/configure_auditing/configure_auditing.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/configure_auditing/configure_auditing.pdf#bookinfo

Configuring the Identity Manager Packages and their Log Levels
Each feature in identity applications uses one or more packages. Each package handles a specific
area of a feature and has its own independent log level that obtains event messages from different
parts of the application.

The package names are based on log4j conventions. The event messages include these package
names indicating the context of the message output. The logs include tags and values that allow the
administrator to identify and correlate which package log entries pertaining to a given transaction
and user.

The logs contain information about processing and interactions among identity applications
components that occur while fulfilling users and administrative requests and during general system
processing. By enabling the correct log levels for various packages, an administrator can monitor
how identity applications process users and administrative requests. For more information, see
“Configuring Logging Settings in Identity Manager Dashboard” on page 89.

Configuring Caching and Cluster Settings
Caching allows you to manage various caches maintained by Identity Applications. These caches
store the reusable data temporarily on the application server to optimize the system performance.

This page displays the cache settings (latest to your application restart). You can manage the cache
collection mechanism by changing their configuration settings. You can also flush the cache
contents, if necessary.

 “Flushing Caches” on page 230
 “Configuring Cache Settings” on page 230
 “Managing Cluster Cache Settings” on page 235

Intermediate event store
directory

Specifies the temporary directory where the events can be stored. This
directory serves as a backup for an auditing server. If Identity Applications is
freshly installed, the directory path will be populated by default.

You can also provide path to intermediate event store directory of your choice.
Make sure that the permission and ownership are changed to novlua for that
directory. To change the permission of the directory, run the following
commands on Linux platforms:

chown novlua:novlua <directory_path>
chmod 755 <directory_path>
where <directory_path> is the path to the intermediate event store
directory.

On Windows platform, provide Administrative permission to that directory.

Fields Description
Configuring Identity Applications Default Settings 229

Flushing Caches
The caches are named according to the subsystems that use them in the identity applications.
Normally, you don’t need to flush them yourself, because the identity applications does that
automatically based on how frequently their data is used or when the source data changes.
However, if you have a specific need, you can manually flush selected caches or all caches.

1 Go to Configuration > Caching and Cluster.
2 In Flush Cache, select the type of cache from the list that you want to flush.
3 Click Flush Cache.

Flushing the Directory Abstraction Layer Cache
The Identity Applications directory abstraction layer also has a cache. The
DirectoryAbstractLayerDefinitions cache stores abstraction layer definitions on the
application server to optimize performance for all data model operations.

In a typical situation, the Identity Applications automatically keeps the
DirectoryAbstractLayerDefinitions cache synchronized with the abstraction layer
definitions stored in the Identity Vault. But, if necessary, you can manually flush the
DirectoryAbstractLayerDefinitions cache as described in “Flushing Caches” on page 230 to
force the latest definitions to be loaded from the Identity Vault.

For more information on the directory abstraction layer, see NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity Applications.

Flushing Caches in a Cluster
Cache flushing is supported in both clustered and non-clustered application server environments. If
your application server is part of a cluster and you manually flush a cache, that cache is
automatically flushed on every server in the cluster.

Configuring Cache Settings
You can use the Caching page to display and change cache configuration settings for a clustered or
non-clustered application server environment. Your changes are saved immediately, but they don’t
take effect until the next restart Identity Applications server.

TIP: To restart the Identity Applications, you can reboot the application server; redeploy the
application (if the WAR has been changed in some way), or force the application to restart (as
described in your application server’s documentation).

 “How Caching Is Implemented” on page 231
 “How Cache Settings Are Stored” on page 231
 “How Cache Settings Are Displayed” on page 231
 “Changing Basic Cache Settings” on page 232
 “Changing Non Customizable Cache Settings” on page 232
 “Changing Customizable Cache Settings” on page 233
230 Configuring Identity Applications Default Settings

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

How Caching Is Implemented
In the Identity Applications, caching is implemented via JBoss Cache. JBoss Cache is an open source
caching architecture that’s included with the JBoss Application Server but also runs on other
application servers.

How Cache Settings Are Stored
Two levels of settings are available for controlling cache configuration: global and local. Use these
settings to customize the caching behavior of the Identity Applications.

There are two levels of settings available to control the cache collection on your application server:

 Global Settings: Global settings are stored in a central location (the Identity Vault) so that
multiple application servers can use the same setting values. For example, If you have a cluster
of application servers, the cluster configuration values use the global settings.

To find the global settings in your Identity Vault, look for the following object under your User
Application driver:

configuration.AppDefs.AppConfig
For example:

configuration.AppDefs.AppConfig.MyUserApplicationDriver.MyDriverSet.My
Org
The XmlData attribute of the configuration object contains the global settings data.

 Local Settings: Local settings are stored separately on each application server so that an
individual server can override the value of one or more global settings.
For example, you might want to specify a local setting to remove an application server from the
cluster specified in the global settings, or to reassign a server to a different cluster.
Go to tomcat/conf/ism-configuration.properties, the sample local cache settings
are:

com.sssw.fw.cache.LockAcquisitionTimeout = 15000
com.sssw.fw.cache.EvictionPolicyClass =
org.jboss.cache.eviction.LRUPolicy
com.sssw.fw.cache.eviction.WakeUpIntervalSeconds = 4
When you enable the Local Settings option for a cache, the modified local settings are stored in
the ism-configuration.properties file.

The global settings are the default values for every application server that uses a particular instance
of User Application driver. Altering the global settings values affects every server unless it specifies
local settings to override the global settings.

How Cache Settings Are Displayed
The Caching page displays the current cache settings (from the latest Tomcat restart). It also displays
the corresponding global and local values of those settings and lets you change them.

The global settings always have values. The local settings are optional.
Configuring Identity Applications Default Settings 231

Changing Basic Cache Settings

Changing Non Customizable Cache Settings

Click Save to save your configuration values.

Settings What to do

Lock Acquisition Timeout Specify the time interval (in milliseconds) that the cache waits for a lock to be
acquired on an object.

You might want to increase this setting if the Identity Applications imposes a
lot of lock timeout exceptions in the application log.

The default value is 15000 ms.

Wake Up Interval Seconds Specify the time interval (in seconds) that the cache eviction policy waits
before invoking the following activities:

 Processes the evicted node events.
 Cleanup the size limit and expired nodes.

Eviction Policy Class Specify the classname for the cache eviction policy that you want to use.

The default is the LRU eviction policy that JBoss Cache provides:

org.jboss.cache.eviction.LRUPolicy
If appropriate, you can change this to another eviction policy that JBoss Cache
supports.

TIP: In Local Settings, select Enable Local for the required settings to override the global settings and specify
the values.

Settings What to do

Max Nodes Specify the maximum number of nodes allowed in the cache.

If you don’t want to restrict the number of nodes, specify 0.

Time To Live Seconds Specify the time to idle (in seconds) before the node is swept away.

If you don’t want to restrict the Time To Live Seconds, specify 0.

TIP: In Local Settings, select Enable Local for the required settings to override the global settings and specify
the values.
232 Configuring Identity Applications Default Settings

Changing Customizable Cache Settings
This allows you to customize certain cache holders in identity applications. To modify the cache
holders:

1 Click the Cache Holder ID that you want to modify. For more information about Cache Holders,
see Table 22-1, “Customizable Cache Holders,” on page 233.

2 (Conditional) Change the required values such as Max Nodes, Time To Live Seconds, and Max
Age.

NOTE: The system clears the events in the cache according to the value specified for Max Age.

3 (Conditional) In Local Settings, select Enable Local for the required settings to override the
global settings and specify the values.

4 Click Save.

NOTE: You must restart the Tomcat on each node of the cluster for the changes to take effect.

Table 22-1 Customizable Cache Holders

Cache Holder Name Description

Authorization.Admin.Levels
CacheHolder

Caches the Administrator type information of the logged in user such as a
domain administrator, delegated administrator, team manager, or a business
user (self-service). See, “Administrator and Manager Categories” on page 32.

DirectoryAbstractionLayerD
efinitions

Caches the Directory Abstraction Layer definitions to optimize performance
for all data model operations. See “Flushing the Directory Abstraction Layer
Cache” on page 230.

DirectoryService.Container
CacheHolder

Caches containers in the directory layer. Containers are shared by many users
and groups, and reading them from the directory layer involves both network
communication (with the LDAP server) and object creation. By default, the
cache is limited to 50 containers, and the LRUs have a default Time To Live
(TTL) of 10 minutes. Depending on the directory topography in your
enterprise, you might need to adjust the maximum number of nodes or the
TTL if you find the performance is suffering because of queries to the LDAP
server for container objects. Making settings too high in combination with a
large number of usable containers can cause unneeded memory consumption
and net lower performance from the server.

DirectoryService.DelProxyR
untimeServiceDelegate

Caches delegate assignments.

DirectoryService.DelProxyR
untimeService.Delegation

Caches user availability settings.

DirectoryService.DelProxyR
untimeService.Delegator

Caches the delegator entities.

DirectoryService.DelProxyR
untimeService.Proxy

Caches proxy assignments.
Configuring Identity Applications Default Settings 233

DirectoryService.GroupCach
eHolder

Caches groups in the directory layer. Groups are often shared by many users,
and reading them from the directory layer involves both network
communication (with LDAP server) and object creation. By default, the cache
is limited to 500 groups, and the LRUs have a default TTL of 10 minutes.
Depending on the user/group topography in your enterprise, you might need
to adjust the maximum number of nodes or the TTL if you find the
performance is suffering because of queries to the LDAP server for groups
objects. Settings that are too high, in combination with a large number of
usable groups, can cause unneeded memory consumption, and net lower
performance from the server.

DirectoryService.Memberhi
pCacheHolder

Caches the relationship between a user and a set of groups. Querying the set
of groups a user belongs to can be a network and CPU intensive operation on
the LDAP server, especially if dynamic groups are enabled. For this reason,
relationships are cached with an expiration interval so that changes in the
criteria for inclusion/exclusion in a group (such as time-based dynamic groups)
are reflected. The default Max Age is five minutes. However, if you use
dynamic groups which have a requirement for finer grained time control, then
you can adjust the Max Age on this cache holder to be just below the
minimum time your finest grained time based dynamic group requires. The
lower this value is, the more times the user's groups are queried during a
session. Setting a value too high keeps the user/group relationships in memory
perhaps longer than the user's session needlessly consuming memory.

DirectoryService.RolesMem
bershipCacheHolder

Caches the application role membership list by role.

DirectoryService.TeamMana
gerRuntime.Team

Caches the application team instances and team provisioning requests.

DirectoryService.UserCache
Holder

Caches users in the directory layer. Reading users from the directory layer
involves both network communication (with LDAP server) and object creation.
By default, the cache is limited to 1000 users, and the LRUs have a default TTL
of 10 minutes. Depending on the user topography in your enterprise, you
might need to adjust the maximum number of nodes or the TTL if you find the
performance is suffering because of queries to the LDAP server for user
objects. Making settings too high combined with a large number of different
users logging in can cause unneeded memory consumption and net lower
performance from the server.

GlobalCacheHolder The general purpose cache holder. This configuration applies to all caches that
are not customizable (that is, all cache holders not listed in this table.)

JUICE Caches the resource bundles used by the user interface controls and DN
display expression lookup results. Changing the setting of the cache holder has
a performance impact for the DN display expression lookups because they are
frequently used in the identity applications. The low value should be at least
300 seconds, but a higher value than 900 seconds is ok. A lower value should
be used if the customer is frequently changing the attributes that are used in
the DN display expression

RoleManager.RolesCacheHo
lder

Caches user role memberships listed by the user.

Workflow.Model.Process Caches the provisioning process XML object structure.

Cache Holder Name Description
234 Configuring Identity Applications Default Settings

Managing Cluster Cache Settings
Specify the following settings in Cluster Configuration that helps in caching across the cluster:

Assigning Administrators in Identity Applications
An administrator assignment specifies a domain type (Provisioning, Role, Resource, and Security), as
well as a set of permissions for the assignment. For more information, see “Administrator and
Manager Categories” on page 32.

To assign administrative roles, you must either be a Security Administrator or have a Domain
Administrator-type of role, such as Provisioning Administrator.

Workflow.Model.Request Caches the provisioning request XML object structure.

Workflow.Provisioning Caches provisioning request instances that have not completed. The default
maximum capacity for the LRU cache is 500. The capacity can be modified by
clicking the Administration/Provisioning and choosing the Engine and Cluster
settings. The Process Cache Maximum Capacity appears on this page. This
cache reduces the memory footprint for workflow processing without
compromising performance.

Setting What to do

Permission Index Cluster
Enabled

Enable this option if you want to update the permission index changes to the
other nodes in the cluster for the specified Permission Index Group ID.

Permission Index Group Id Specify the Permission Index Group ID of the JGroups cluster in which you
want to participate. There’s no need to change the default Group ID that’s
provided for the identity applications cluster unless you want to use a different
cluster.

Permission Index Cluster
Properties

Specify the JGroups protocol stack for the cluster specified by Permission
Index Group ID. This setting is to adjust the cluster properties.

Cluster Enabled Enable this option if you want to overwrite the cache changes to the other
nodes in the cluster for the specified Group ID.

Group ID Specify the Group ID of the JGroups cluster in which you want to participate.
There’s no need to change the default Group ID that’s provided for the identity
applications cluster unless you want to use a different cluster.

The Group ID must be unique and must not match any of the known JBoss
cluster names such as DefaultPartition and Tomcat-Cluster.

TIP: To see the Group ID in logging messages, make sure that the level of the
caching log (com.sssw.fw.cachemgr) is set to Info or higher.

Cluster Properties Specify the JGroups protocol stack for the cluster specified by Group ID. This
setting is to adjust the cluster properties.

TIP: In Local Settings, select Enable Local for the required settings to override the global settings and specify
the values.

Cache Holder Name Description
Configuring Identity Applications Default Settings 235

NOTE: Delegated administrators (Domain Managers) of a domain have no access to Administrator
Assignments page.

The permissions for an administrator assignment define the actions that administrators can take on
a particular scope of object instances within the domain type selected. For example, if you select the
Role domain as the domain type for an assignment, the permissions determine what actions the
administrators can take on the set of role instances selected as the scope for the assignment. These
permissions might specify, for the selected scope of roles, that administrators can perform actions
such as assigning roles to users, viewing role assignments, and deleting on role assignments.

IMPORTANT: Compliance, Configuration, and Reports domain types are discontinued from Identity
Manager 4.7.1. This change does not remove the existing assignments that have been previously
made to these domain types. However, you cannot edit those assignments.

The Reports domain type is deprecated with this release. You must use the Identity Reporting
functionality to manage Identity Manager reports. This requires you to assign Reporting
Administrator role to any users that you want to access the reporting functionality. You can assign
this role to a user in one of the following ways within the identity applications:

 By requesting Reporting Administrator role using the Request page. See, Requesting Permissions
in NetIQ Identity Manager - User’s Guide to the Identity Applications.

 By selecting Reporting Administrator role and assigning to a user in the Roles page. See,
“Assigning Roles to Users” on page 174.

 “Listing the Administrator Assignments” on page 236
 “Creating a New Administrator Assignment” on page 236
 “Assigning Permissions to a Delegated Administrator” on page 237
 “Deleting an Administrator Assignment” on page 240

Listing the Administrator Assignments
You can search for administrator assignments by specifying the username. You can also filter the
assignments by User, Group, Container, or Role categories.

Creating a New Administrator Assignment
You can create an administrator assignment for a user, group, container, or role type. Perform the
following steps to create a new administrator assignment:

1 Click .
2 Specify the Initial Request Description that describes the purpose of this assignment.
3 Select the Domain Type from the list.
236 Configuring Identity Applications Default Settings

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#requestrolesresourcesinidentitymanagerdashboard
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

4 Select the Assignment Type for which you want to create an assignment.
This displays the list of users, groups, container, or roles based on the selected assignment type.

5 Select the required user, group, container or a role on from the provided list to create an
assignment.

6 (Conditional) Specify the Effective Date for this assignment. If you do not specify any date,
creates an assignment immediately.

7 (Conditional) Specify the Expiration Date for this assignment. If you do not specify any date, the
expiration date is set to never.

8 (Conditional) To create a domain administrator assignment for the selected domain, enable All
Permissions.

NOTE: This option cannot be edited after creating the assignment. For a delegated
administrator, you can assign permissions individually. See, “Assigning Permissions to a
Delegated Administrator” on page 237.

If this option is disabled, a delegated administrator is created for the selected domain.
9 Click Create.

Assigning Permissions to a Delegated Administrator
A delegated administrator has the ability to perform selected operations for a subset of authorized
objects within the domain for all users. For more information about different types of users, see
“Types of User Categories in Identity Applications” on page 31.

The permissions are displayed for an assignment based on the domain type of the assignment. For
more information, see Step 3 in “Creating a New Administrator Assignment” on page 236.

To assign permissions for the assignment, you should select the required permissions from the
categories. Following sections explain the permissions associated with the Identity Applications
domain types:

 “Provisioning” on page 238
 “Role” on page 238

Domain Description

Provisioning This domain defines the rights to launch and retract process requests,
manage addressee tasks, and configure delegate, proxy, and availability
settings.

Role This domain defines the rights to manage roles and SoDs, assign, revoke,
and report on roles, as well as rights to configure role settings.

Resource This domain defines the rights to manage resources, assign, revoke, and
report on resources, as well as rights to configure resource settings and bind
entitlements.

Security This domain defines the rights to manage Identity Applications security,
such as assign and revoke domain administrators and managers. This also
provides the right to configure teams.
Configuring Identity Applications Default Settings 237

 “Resource” on page 239
 “Security” on page 240

Provisioning
This domain type consists of the permissions that are related to Provisioning Request Definitions
(PRD) and User Application Driver.

Role
This domain type consists the permissions related to roles, Separation of Duties, and configuration
of role settings.

Category Permission

Provisioning Request
Definition Permissions

This category allows you to assign any of the following permissions for the
selected Provisioning Request Definition to a delegated administrator:

 Initiate PRD: Allows the user to initiate the selected provisioning
requests.

NOTE: The Initiate PRD permission has no effect on the behavior of the
installed PRDs for resources and roles within the Identity Applications
since these PRDs cannot be initiated directly from the Identity
Applications. However, this permission does control whether these PRDs
can be initiated from a SOAP call.

 Retract PRD: Allows the user to retract the selected provisioning
requests when they are in progress.

 View Running PRD: Allows the user to view the selected provisioning
requests when they are in progress.

 Configure Delegate: Allows the user to configure delegate assignments
for the selected provisioning requests.

 Manage Addressee Task: Allows the user to manage tasks associated
with the selected provisioning requests that have been addressed to
other users.
When this permission is enabled, Domain and Delegated Administrators
can manage tasks for all users, including addresses and recipients.
Managers are able to manage tasks for addressees, but not for recipients.

 Configure Availability: Allows the user to configure availability for tasks
associated with the selected provisioning requests.

User Application Driver
Permissions

This category allows you to assign the Configure Proxy permission to the
delegated administrator. This permission allows the user to configure proxy
assignments for the provisioning requests.
238 Configuring Identity Applications Default Settings

Resource
This domain type consists the permissions related to resources, entitlements, and configuration of
resource settings

Category Permission

Role Permissions This category allows you to assign any of the following permissions for the
selected Role Level or Roles to a delegated administrator:

 Create Role: Allows the user to create roles.
 Delete Role Allows the user to delete the selected roles.

This setting applies only at the container level.
At installation time, no user has the ability to delete system roles.
However, the administrator may grant the user access to the system
roles.

 Update Role and Role Relationship: Allows the user to update the
selected roles and modify role relationships.
This setting applies only at the container level.

 View Role: Allows the user to view the selected roles.
This setting applies only at the container level.

 Assign Role to a User: Allows the user to assign users to the selected
roles.
IMPORTANT: Only the Security Administrator can assign system roles to a
user.

 Revoke Role from a User: Allows the user to revoke user assignments for
the selected roles.

 Assign Role To Group and Container: Allows the user to assign groups
and containers to the selected roles.

 Revoke Role From Group and Container: Allows the user to revoke
group and container assignments for the selected roles.

Separation of Duties
Permissions

This category allows you to assign any of the following permissions for the
selected SoDs to the delegated administrator:

 Create SoD: Allows the user to create the separation of duties
constraints.

 Update SoD: Allows the user to update the selected separation of duties
constraints.

 Delete SoD: Allows the user to delete the selected separation of duties
constraints.

 View SoD: Allows the user to look at the selected separation of duties
constraints.

Configuration Permissions This category allows you to assign the Configure Role Settings permission to
the delegated administrator. This permission allows the user to configure the
settings of the roles subsystem.
Configuring Identity Applications Default Settings 239

Security
When you select this domain type all permissions are provided. Therefore, the assignments that
belong to this domain type will have All permissions enabled at the time of assignment creation.

Deleting an Administrator Assignment
You can delete one or more assignments from the Administrator Assignments page. To delete
multiple assignments, select multiple check boxes against the required assignments.

Configuring Workflow Engines and Cluster Settings
The Workflow Engine and Cluster Settings page helps in configuring the Workflow Engine and
configuring cluster settings. These settings apply to all engines in the cluster. When any of these
settings are changed, other engines in the cluster will detect these changes in the database and use
the latest values. The engines check for changes to these settings at the same rate as specified by the
Pending Process Interval. For more information about configuring workflow engines settings, see
“Configure the Workflow Engine Settings” on page 241.

When the workflow engine starts up it checks to see if its engine ID is already in use by another node
in the cluster. When this is the case, the workflow engine checks the cluster database to see if the
status of the engine is SHUTDOWN or TIMEDOUT. If it is, the workflow engine starts. If the status is
STARTING or RUNNING, the workflow engine logs a warning, then waits for a heartbeat timeout to

Category Permission

Resource Permissions This category allows you to assign any of the following permissions for the
delegated administrator:

 Create Resource: Allows the user to create resources.
 Delete Resource: Allows the user to delete the selected resources.
 Update Resource: Allows the user to update the selected resources.
 View Resource: Allows the user to view the selected resources.
 Assign Resource: Allows the user to assign users to the selected

resources.
 Revoke Resource: Allows the user to revoke user assignments for the

selected resources.

If you want to provide access only for the specific container or resources. You
can select Resource Sub Container or Select Resources and assign the
required permissions for the administrator.

Entitlements Permissions This category allows you to assign the Bind Entitlement permissions to the
delegated administrator. This permission allows the user to bind entitlements
with a resource for the selected drivers.

Configuration Permissions This category allows you to assign the Configure Resource Settings permission
to the delegated administrator. This permission allows the user to configure
the settings of the resource subsystem.
240 Configuring Identity Applications Default Settings

occur. If the heartbeat timeout occurs, that means that the other workflow engine with the same ID
was not shut down properly, so it's safe to start. If the heartbeat timer is updated, that means
another workflow engine with the same ID is running in the cluster, so the workflow engine cannot
start. You can specify the heartbeat timeout (the maximum elapsed time between heartbeats before
a workflow engine is considered timed out) by setting Heartbeat Interval and Heartbeat Factor. For
more information about configuring the cluster settings, see “Configure Workflow Cluster Settings”
on page 242.

The process cache settings and heartbeat settings require a server restart to take effect.

Configure the Workflow Engine Settings
Following are the engine settings that you might require to configure for your workflow engine
settings:

Engine Setting Description

Enable Email Notification Enables or disables email notifications for the entire workflow engine.
Defaults to enabled.

Web Service Activity Timeout
(minute)

Specifies the default Web Service activity timeout in minutes. The
default is 50 minutes.

User Activity Timeout (hour, 0 for
no timeout)

Specifies the default user activity timeout. The default is 0 days, which
indicates no timeout.

Completed Process Timeout (day) Specifies the number of days that a completed process state is kept in
the workflow database system. The default is 120 days.

Completed Process Cleanup
Interval (hour)

Specifies how often the engine checks for and removes completed
processes that have been in the workflow database system for longer
than the completed process timeout. The default is 12 hours.

Pending Process Interval (second) User activities that are executed on an engine which the process is not
bound to are put into a pending state. This interval specifies how often
to check for pending activities in order to continue their execution. The
default is 30 seconds.

Retry Queue Interval (minute) Activities that fail because of suspected database connectivity issues
are put on a retry queue. This interval specifies how often the engine
attempts to retry these activities. The default is 15 minutes.

Thread Keep Alive Time (second) If the pool is larger than the minimum size, excess threads that have
been idle for more than the keep-alive time will be destroyed. The
default is 5 minutes.

Maximum Engine Shutdown
Timeout (minute)

The engine attempts to shutdown gracefully. When shutting down it
stops queuing new activities for execution and attempts to complete
any activities already queued. This timeout specifies the maximum
time that the engine waits for all queued activities and threads
executing activities to complete. If this time is exceeded, the engine
halts processing of queued activities and attempts to stop all threads
executing activities. The default is 1 minute.

Maximum Thread Pool Size The maximum number of threads that the engine uses to execute
activities. The default is 20.
Configuring Identity Applications Default Settings 241

Configure Workflow Cluster Settings
Following are the settings that you might require to configure for your workflow cluster settings:

Minimum Thread Pool Size The minimum number of threads that the engine uses to execute
activities. When a thread is requested and fewer than the minimum are
in the pool, a new thread will be created even if there are idle threads
in the pool. The default is 10.

Initial Thread Pool Size Number of pre-started threads in the pool when it is created. The
default is 5.

Process Cache Load Factor The load factor specifies how full the cache is allowed to get before
increasing its capacity. If the number of entries in the cache exceeds
the product of the load factor multiplied by the current capacity, then
the capacity is increased. The default is 0.75.

Process Cache Initial Capacity The process cache is backed by a hash map. The capacity is the number
of buckets in the hash map. The initial capacity is the number of
buckets at the time the cache is created. The default is 700.

Process Cache Maximum Capacity Before adding a process to the cache, if the number of processes in the
cache equals or exceeds the Process Cache Maximum Capacity, the
cache attempts to remove the oldest inactive process from the cache.
The maximum capacity is a soft limit, so the number of processes in the
cache might exceed the Process Cache Maximum Capacity if there are
no inactive processes (only active processes) in the cache.

The default is 500.

Cluster Setting Description

Heartbeat Interval Specifies the interval at which the workflow engine’s heartbeat is
updated.

When the workflow engine starts up, it detects if its engine ID is
already being used by another node in the cluster and refuses to start if
the ID is in use. The identity applications database maintains a list of
engine IDs and engine states. If an engine crashes and is restarted, its
last state in the database indicates that it is still running. Therefore, the
workflow engine uses a heartbeat timer, which writes heartbeats at the
specified interval, to determine if an engine with its ID is still running in
the cluster. If it’s already running, it refuses to start.

The minimum value for the heartbeat interval is 60 seconds.

Heartbeat Factor Specifies the factor that is multiplied with the heartbeat interval to
arrive at the heartbeat timeout.

The timeout is the maximum elapsed time permitted between
heartbeats before an engine will be considered timed out.

The minimum value for the heartbeat factor is 2.

Engine Setting Description
242 Configuring Identity Applications Default Settings

Viewing User Application Driver Status
The Driver Status page displays the User Application Driver details such as:

Driver Name
Displays the name of the driver in LDAP format. For example:

cn=User Application Driver,cn=driverset1,o=system
Driver Version

Displays the driver version used in Identity Manager.

Application Revision
Displays the revised version of Identity Applications.

Patch Level
Displays the patch applied for the driver.

Build Revision
Displays the updated build version.

Status
Displays the driver state.

Configuring the Default Provisioning Display Settings
Provisioning Display Settings page controls the behavior of general search results in Identity Manager
Dashboard. You can also modify the appearance of Tasks and Request History page.

 “Managing General Display Settings” on page 243
 “Managing the Appearance of Tasks Page” on page 244
 “Managing the Appearance of Request History Page” on page 245

Managing General Display Settings
Following settings apply for the search results showing on the accessed Identity Applications pages:

Setting Description

Default number of results
displayed per page

Specifies the default number of rows to display on the Identity Manager
Dashboard pages.

Identity Applications fetch the results for the specified number and stores in
the cache and displays to a user on accessing the Identity Applications pages.
Each time the user requests to see the next page, another set of rows is
returned from the cache.

The default value for this setting is 25.
Configuring Identity Applications Default Settings 243

Managing the Appearance of Tasks Page

Click Save to apply your changes.

Options for number of
results displayed per page

Allows you to specify additional values that the user can select to override the
default number of rows displayed on the Identity Applications pages. The list
of values you type must be separated by commas and ranging from 1-10000.

NOTE: The number specified in Default number of results displayed per page
is always included in the list of values for the user to select.

The default value for this setting is 5,10,25,50,100,500.

Field Description

Select Column to set default
sort

By default, the task results in the Tasks page are sorted by Assigned To.

You can select a different column from the list to sort the task results. Also, you
can sort the results by ascending or descending order.

Use Sort by Descending Order to sort the results in descending order.
Disabling this option displays the results in ascending order.

Allow user to customize
columns

By default, this option is enabled. Disabling this option restricts the user from
customizing columns in the Tasks page.

 Available columns: Displays the columns which are disabled for user
customization.

 User default columns: Displays the columns that are already showing on
the Tasks page.

 Available columns for User customization: Displays the columns that
can be customized by users.

Allow user to customize
task detail open

By default, this option is enabled. This option allows you to change the
preferences of opening the approval form in the Tasks page. Go to Tasks page
and click to change the preferences.

Disabling this option will restrict the system users from changing the
preferences of opening the approval form in the Tasks page. However, you can
change this preferences in the Settings > Customization page.

Setting Description
244 Configuring Identity Applications Default Settings

Managing the Appearance of Request History Page

Click Save to apply your changes.

Configuring the Identity Governance Settings
The Identity Governance page allows you to configure the Identity Governance configurations.

Click Apply to save changes.

Field Description

Select Column to set default
sort

By default, the request statuses in the Request History page are sorted by
Request Date.

You can select a different column from the list to sort the results. Also, you can
sort the results by ascending or descending order.

Use Sort by Descending Order to sort the results in descending order.
Disabling this option displays the results in ascending order.

Allow user to customize
columns

By default, this option is enabled. Disabling this option restricts the user from
customizing columns in the Request History page.

 Available columns: Displays the columns which are disabled for user
customization.

 User default columns: Displays the columns that are already showing on
the Request History page.

 Available columns for User customization: Displays the columns that
can be customized by users.

Field Description

Application URL Specifies the Identity Governance URL.

This option was available in Customization > General
Settings in Identity Manager 4.7.

Administrator Username Specifies the user name of the administrator.

Administrator Password Specifies the administrator password.

Show IG Approvals in tasks page Enable this option to display all the Identity
Governance Approvals in the Tasks page.

Show IG Catalog in request page Enable this option to display all the Identity
Governance Catalog in the Access > Request page.
Configuring Identity Applications Default Settings 245

246 Configuring Identity Applications Default Settings

23 23Configuring and Managing Objects for
Entities

Any Identity Vault object that you want to search, display, or edit in the Identity Applications must be
defined in the directory abstraction layer. For more information, see About Entities and Attributes in
the NetIQ Identity Manager - Administrator’s Guide to Designing the Identity Applications.

Identity Applications allow you to create and modify objects for a specific entity. The configuration
of the entities displayed in the Entities tab is specific to the Client selected.The Edit page displays the
list of objects for the selected entity.

After an entity is created, it is listed under Access Settings in the Settings page. It provides control on
which users, roles, groups, and containers can view and list the entities. You must have the
appropriate permission to create, view, or manage objects. By default, the trustee is the Provisioning
Administrator. Ensure that the users specified in Trustees are having sufficient Identity Vault rights to
perform tasks within the Identity Applications. However, trustees can access the page but operations
on the page will fail if they do not have the proper Identity Vault rights.

You can perform the following operations on the Entities page:

 “Listing the Objects” on page 247
 “Creating an Object” on page 247
 “Editing an Object” on page 248
 “Deleting an Object” on page 248
 “Exporting to CSV” on page 248
 “Viewing the Organization Chart of an Object” on page 248

Listing the Objects
The Entities page displays all the objects associated with the selected entity. You can search for
attributes based on the criteria specified in the Settings page. For more information, see View
Attributes in “Entity Settings” on page 145. If you wish to view columns other than the default
columns, you can customize the them by clicking the icon.

IMPORTANT: Do not use these[< > , ; \ " + # = / | & ' ! @ $ %] special characters or a whitespace in
the search bar to find an object.

Creating an Object
Perform the following actions to create an object:

1 Click the icon and specify the fields marked with an asterisk (*).
Configuring and Managing Objects for Entities 247

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#dalentityoverview
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

The fields that are displayed are based on the criteria specified on the Settings page. For more
information, see View Attributes in “Entity Settings” on page 145.

2 Enter the details and click Create.

IMPORTANT: Do not use these [< > , ; \ " + # = / | & * ' ! @ $ %] special characters or a whitespace
in the ID field.

Editing an Object
Perform the following actions to edit an object:

1 Select the object from the list and click Edit.
The fields that can be edited are based on the criteria specified on the Settings page. For more
information, see Editable Attributes in “Entity Settings” on page 145.

2 Edit the required fields.
3 Click Save.

Deleting an Object
To delete any object from the list, select the entity and click the icon. You can delete one or more
objects at a time.

Exporting to CSV
Perform the following actions to save one or more objects in a csv file:

1 Select the required object.

2 Click the icon.
3 Click Save.

Viewing the Organization Chart of an Object
This section only applies to Identity Manager 4.8.1 or later.

Perform the following actions to view the organization chart of an object:

1 Select the required object.
You can view organization chart of only one object at a time.

2 Click the icon.
248 Configuring and Managing Objects for Entities

Based on the default relationship set for that entity, the organization chart of the object is
displayed.

3 (Optional) If Default Organization Chart Relationship for an entity is not defined in the Settings
page, then a prompt to select the required relationship is displayed. Select the organization
chart relationship from the drop-down list and click View.
Configuring and Managing Objects for Entities 249

250 Configuring and Managing Objects for Entities

IV IVConfiguring and Managing
Provisioning Workflows

These sections describe how to configure and manage provisioning requests and workflows:

 Chapter 24, “Configuring the User Application Driver to Start Workflows,” on page 253
 Chapter 25, “Managing Provisioning Request Definitions,” on page 259
 Chapter 26, “Managing Provisioning Workflows,” on page 267
Configuring and Managing Provisioning Workflows 251

252 Configuring and Managing Provisioning Workflows

24 24Configuring the User Application Driver to
Start Workflows

This section describes the User Application driver and how to configure it to automatically trigger a
workflow based on an event in the Identity Vault.

About the User Application Driver
The User Application driver is responsible for starting provisioning workflows and for notifying the
identity applications of changes in the Identity Vault. For example, when you make changes to the
directory abstraction layer using the Designer for Identity Manager. Only the Subscriber channel is
used in this driver. The driver processes messages from the Identity Vault to the identity applications
running on an application server. Although there are events that occur in the identity applications
that are reported back to the Identity Vault, these events do not flow through the Publisher channel
of the User Application driver.

When the application server is started, the driver establishes a session with the application server.
The driver sends messages to the identity applications running on the application server (for
example, “retrieve a new set of virtual directory definitions”).

The source components of the driver include:

 ComposerDriverShim.jar – The Composer Driver Shim. It is installed in the lib directory
\Netiq\NDS\lib in Windows or the classes directory /usr/lib/dirxml/classes in
Linux.

 srvprvUAD.jar – The Application Driver Shim. It is installed in the lib directory
\Netiq\NDS\lib in Windows or the classes directory /usr/lib/dirxml/classes in
Linux.

 UserApplicationDriver.xml – A file that contains configuration data for setting up the
new driver. It is installed in the DirXML.Drivers directory, which is
\Tomcat\webapps\nps\DirXML.Drivers in Windows and either /opt/netiq/
eDirectory/lib/dirxml/rules/ or /var/opt/netiq/iManager/nps/
DirXML.Drivers in Linux.

The User Application driver components are installed when you install Identity Manager. Before you
can run the identity applications, you must add the User Application driver to a new or existing
driver set, and activate the driver.

Depending on your work environment, very little configuration of the User Application driver might
be required, or you might want to implement a complex set of business rules in the driver policies.
The User Application driver provides the same flexible mechanisms for data synchronization as other
Identity Manager drivers.
Configuring the User Application Driver to Start Workflows 253

Setting Up Workflows to Start Automatically
Workflows are automatically started when a user starts a provisioning request by requesting a
resource. In addition, the User Application driver listens for events in the Identity Vault and, when
configured to do so, responds to events by starting the appropriate provisioning workflows. For
example, you can configure the User Application driver to automatically start a provisioning
workflow if a new user is added to the Identity Vault. You configure the User Application driver to
automatically start workflows using Identity Manager policies and rules.

About Policies
You can use filters and policies with the User Application driver in the same way that you can with
other Identity Manager drivers. When an event occurs in the Identity Vault, Identity Manager
creates an XML document that describes the event. The XML document is passed along the channel
to the connected system (in this case, the connected system is the identity applications). Filters and
policies associated with a driver allow you to define how to respond to the event, and in the process
transform that XML document to the format that is expected by the connected system. Identity
Manager provides several categories of policies (for example, Event Transformation, Command
Transformation, Schema Mapping, Output Transformation) that you can apply, in a prescribed order,
to transform the XML document.

This section provides an example of starting a workflow based on events in the Identity Vault.
Although any of the policies can be used to trigger a workflow, the example presented in this section
demonstrates the easiest and most useful method.

When you create a User Application driver, an Event Transformation Policy is created for use by the
driver. The Event Transformation Policy is responsible for creating the XML document that is
processed by the remaining Subscriber channel policies.

NOTE: Do not change the Event Transformation policy that was created when the User Application
driver was created. The DN of this policy begins with Manage.Modify.Subscriber. Changing this
policy might cause the workflow process to fail.

An empty Schema Mapping Policy is also created. You can use this policy as a starting point for
triggering a workflow, based on events in the Identity Vault.

Using the Policy Builder
The Policy Builder provides a Start Workflow action that simplifies the process of setting up a
workflow to start automatically.

1 In iManager, expand the Identity Manager Role, then click Identity Manager Overview.
2 Specify a driver set.
3 Click the driver for which you want to manage policies. The Identity Manager Driver Overview

opens.
4 Click the policy that you want to edit.
5 Click Insert to open the Policy Builder.
254 Configuring the User Application Driver to Start Workflows

6 Click Create a new policy.
7 Type a name for the policy.
8 Click Policy Builder.
9 Click OK.

iManager displays a screen that lists defined policy rules.
10 Click Append New Rule.

iManager displays the Rule Builder.

11 Type a Description for the rule.
12 Select operation attribute for the If condition in Condition Group 1.
Configuring the User Application Driver to Start Workflows 255

13 Use the Browse attributes button for the Enter name field to specify the Identity Vault attribute
that you want to use to start the workflow.
For example, to start a workflow when a telephone number changes, select the Telephone
Number attribute.

14 Use the Select Operator list to select the operator to use to test the specified attribute.
For example, to start a workflow when a telephone number changes, select changing.

15 Select start workflow from the Action list.
16 Use the Object Selector in the Enter provisioning request DN field to select the provisioning

request definition that you want to be executed when the if condition is true.
The Enter user application URL and Enter authorized user DN fields are filled in automatically.

17 Type the password for the identity applications administrator in the Enter authorized user
password field.

We recommend using a named password, because typing a password in clear text is a security
risk.

18 In the Enter recipient DN field, specify the DN of the recipient of the workflow in LDAP format.
The expression for the recipient DN must evaluate to a DN that conforms to RFC 2253 format (in
other words, cn=user,ou=organizational unit,o=organization). For example, you can click the
Argument Builder button in the Enter recipient DN field to create the following expression to
pass the recipient’s DN to the workflow:

Parse DN("qualified-slash","ldap",XPath("@qualified-src-dn"))
256 Configuring the User Application Driver to Start Workflows

19 Specify the arguments for the workflow in the Enter additional arguments field.
You must use this field to specify the reason attribute, which is required by the workflow. You
can click the String Builder button in the Enter additional arguments field to specify the reason
attribute and create a value for the attribute (for example, “the recipient’s telephone number
has changed”).

20 Click OK to close the Rule Builder.
21 Click OK to close the Policy Builder.
22 Click OK to close the Policies screen.
23 Make sure that you add any attributes needed by the workflow to the filter.

In the example described in this procedure, you would need to add Telephone Number and CN
to the filter.
Configuring the User Application Driver to Start Workflows 257

258 Configuring the User Application Driver to Start Workflows

25 25Managing Provisioning Request Definitions

This section provides instructions for managing provisioning request definitions.

About the Provisioning Request Configuration Plug-in
You can use the Provisioning Request Configuration plug-in to iManager to view a read-only display
of a provisioning request definition that was created in the Designer for Identity Manager. This plug-
in allows you to delete, activate, inactivate and retire existing provisioning request definitions.

NOTE: The Provisioning Request Configuration plug-in to iManager does not allow you to create or
edit provisioning request definitions. To create or edit a provisioning request definition, you need to
use the Designer for Identity Manager.

You can find the Provisioning Request Configuration plug-in in the Identity Manager category in
iManager. The plug-in includes the Provisioning Requests task in the Provisioning Configuration role.
The Provisioning Requests task consists of the panels described in Table 25-1.

Table 25-1 Provisioning Requests Task: Panels

Panel Description

Provisioning Driver Selection Gives you the opportunity to select an Identity Manager
User Application driver. The driver contains a set of
predeployed provisioning request definitions, so you need to
pick a driver before you can begin configuring your
provisioning requests.

Provisioning Request Configuration Provides tools that let you:

 Browse the available provisioning request definitions
and select one to configure

 Create a new provisioning request definition based on
an existing definition

 Set the properties of a provisioning request definition
 Assign the provisioning request definition to a

provisioned resource
 Edit the addressee and timeout settings for each

activity in the associated workflow

When you choose to create a new provisioning request or
edit an existing one, the plug-in runs the Provisioning
Request Configuration Wizard.
Managing Provisioning Request Definitions 259

Working with the Installed Templates
You can define provisioning request definitions from scratch in the Designer for Identity Manager.
Alternatively, you can define provisioning requests by modeling them after the provisioning request
templates that ship with the product. To use the templates, you define new objects based on the
installed templates and customize these objects to suit the needs of your organization.

The installed templates let you determine the number of approval steps required for the request to
be fulfilled. You can configure a provisioning request to require:

 No approvals
 One approval step
 Two approval steps
 Three approval steps
 Four approval steps
 Five approval steps

You can also specify whether you want to support sequential or parallel processing, and whether
you want to approve or deny the request in the event that the workflow times out during the course
of processing.

Identity Manager ships with the templates listed in Table 25-2.

Table 25-2 Templates for Provisioning Requests

Template Description

Self Provision Approval Allows a provisioning request to be fulfilled without
any approvals.

One Step Approval (Timeout Approves) Requires a single approval for the provisioning
request to be fulfilled. If an activity times out, the
activity approves the request and the work item
forwards to the next activity.

Two Step Sequential Approval (Timeout
Approves)

Requires two approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports sequential processing.

Three Step Sequential Approval (Timeout
Approves)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports sequential processing.
260 Managing Provisioning Request Definitions

Four Step Sequential Approval (Timeout
Approves)

Requires four approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports sequential processing.

Five Step Sequential Approval (Timeout
Approves)

Requires five approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports sequential processing.

One Step Approval (Timeout Denies) Requires a single approval for the provisioning
request to be fulfilled. If an activity times out, the
workflow denies the request.

This template supports sequential processing.

Two Step Sequential Approval (Timeout Denies) Requires two approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports sequential processing.

Three Step Sequential Approval (Timeout
Denies)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports sequential processing.

Four Step Sequential Approval (Timeout Denies) Requires four approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports sequential processing.

Five Step Sequential Approval (Timeout Denies) Requires five approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports sequential processing.

Two Step Parallel Approval (Timeout Approves) Requires two approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports parallel processing.

Three Step Parallel Approval (Timeout
Approves)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports parallel processing.

Template Description
Managing Provisioning Request Definitions 261

Workflows and provisioned resources. When you create a new provisioning request definition, you
bind it to a provisioned resource. You can change the provisioned resource associated with the
request definition, but not the workflow or its topology.

Categories for provisioning requests. Each provisioning request template is also bound to a
category. Categories provide a convenient way to organize provisioning requests for the end user.
The default category for all provisioning request templates is Entitlements. The category key, which is
the value of the srvprvCategoryKey attribute, is entitlements (lowercase).

You can create your own categories by using the directory abstraction layer editor. When you create
a new category, make sure the category key (the value of srvprvCategoryKey) is lowercase. This is
necessary to ensure that categories work properly in the identity applications.

For details on creating provisioning categories, see the Identity Manager User Application: Design
Guide.

Four Step Parallel Approval (Timeout Approves) Requires four approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Approves) Requires five approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item forwards to
the next activity.

This template supports parallel processing.

Two Step Parallel Approval (Timeout Denies) Requires two approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports parallel processing.

Three Step Parallel Approval (Timeout Denies) Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Denies) Requires four approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Denies) Requires five approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports parallel processing.

Template Description
262 Managing Provisioning Request Definitions

Configuring a Provisioning Request Definition
Before configuring a provisioning request definition, you need to select the User Application driver
that contains the definition. Having selected the driver, you can create a new provisioning request
definition or edit an existing definition. You can also delete provisioning request definitions, change
the status of a request definition, or define rights for a request definition.

Selecting the Driver
To select a User Application driver:

1 Select the Identity Manager category in iManager.
2 Open the Provisioning Request Configuration role.
3 Click the Provisioning Requests task.

iManager displays the User Application Driver panel.
4 Specify the driver name in the User Application Driver field, then click OK.

iManager displays the Provisioning Request Configuration panel. The Provisioning Request
Configuration panel displays a list of available provisioning request definitions.
The installed templates appear in dark text with a status of Template. Request definitions that
are templates do not display hypertext links because they are read only.

NOTE: If the request definitions were configured to use localized text, the names and
descriptions for these definitions show text that is suitable for the current locale.

Changing the driver. When you have selected a driver, the driver selection remains in effect for the
duration of your iManager session, unless you select a new driver. To select a new driver, click the
Actions command, then choose Select User Application Driver from the Actions menu.

Deleting a Provisioning Request
To delete a provisioning request:

1 Select the provisioning request you want to delete by clicking the check box next to the name.
You are not permitted to delete a provisioning request that is a template.
Managing Provisioning Request Definitions 263

2 Click the Delete command in the Provisioning Request Configuration panel.

Filtering the List of Requests
To filter the list of requests:

1 Click the Actions command in the Provisioning Request Configuration panel.
2 Click the Define a Filter command on the Actions menu.
264 Managing Provisioning Request Definitions

Specify the filter characteristics:

Changing the Status of an Existing Provisioning Request
To change the status of an existing provisioning request:

1 Select the provisioning request for which you want to change status by clicking the check box
beside the name.

2 Click the Actions command in the Provisioning Request Configuration panel.
3 Click the Change Status command on the Actions menu.
4 Click the status in the Status menu:

5 Click the button for the correct action (Grant or Revoke).
6 Click Finish.

Defining Rights on an Existing Provisioning Request
To define rights on an existing provisioning request:

1 Select the provisioning request for which you want to define rights by clicking the check box
beside the name.

2 Click the Actions command in the Provisioning Request Configuration panel.
3 Click the Define Rights command on the Actions menu.
4 Specify the rights for the request.

Choice Description

Turn off filtering Disables any existing filtering for the list.

Filter for status equals Filters based on the status. You can filter the list
based on any of the following status codes:

Active
Inactive
Template
Retired

Filter for category equals Filters based on category. Select any of the defined
categories.

Filter for description contains Allows you to search for text in the request
description. Type the string you want to search for.

Status Description

Active Available for use.

Inactive Temporarily unavailable for use.

Retired Permanently disabled.
Managing Provisioning Request Definitions 265

To define rights on a provisioning request with iManager:

1 Select the provisioning request for which you want to define rights by clicking the check box
beside the name.

2 Click the Actions command in the Provisioning Request Configuration panel.
3 Click the Define Rights with iManager command on the Actions menu.
266 Managing Provisioning Request Definitions

26 26Managing Provisioning Workflows

This section provides instructions for managing provisioning workflows at runtime. It also provides
instructions for configuring email notification for provisioning workflows.

About the Workflow Administration Plug-in
The Workflow Administration plug-in to iManager provides a browser-based interface that lets you
view the status of workflow processes, reassign activities within a workflow, or terminate a workflow
in the event that it is stopped and cannot be restarted.

You can find the Workflow Administration plug-in in the Identity Manager category in iManager. The
plug-in includes the Workflows task in the Workflow Administration role.

The Workflow Administration role also includes the Email Templates and Email Server Options tasks.
These tasks are shortcuts to other tasks listed under the Passwords role.

The Workflows task comprises the panels listed in Table 26-1.

Table 26-1 Workflows Task: Panels

Managing Workflows
This section includes procedures for managing provisioning workflows using the Workflow
Administration plug-in.

Panel Description

Workflows Provides the primary user interface for administering provisioning
workflows. The interface lists workflows currently being processed
and lets you perform various actions on these workflows.

When you first start the Workflows task, the Workflows panel
requires that you select a User Application driver. The driver points to
a workflow server. You need to select a driver before you can log in to
the server and begin workflow administration.

When you have selected a driver, you can specify search criteria for
selecting the workflows to manage.

Workflow Detail Provides a read-only user interface for viewing the details about a
specific workflow.
Managing Provisioning Workflows 267

Connecting to a Workflow Server
Before you can begin managing workflows, you need to connect to a workflow server. If the User
Application driver is bound to a single workflow server, you can simply specify the name of the driver
to use. If the driver is associated with multiple workflow servers, you need to select the target
workflow server.

To connect to a workflow server:

1 Select the Identity Managercategory in iManager.
2 Open the Workflow Administration role.
3 Click the Workflows task.

iManager displays the Workflows panel.

4 If you accessed the target workflow server previously, you can select the server from the
Previously accessed servers drop-down list.
iManager fills in the remaining fields on the panel.

5 If you have not yet accessed a workflow server, specify the driver name in the User Application
Driver field, then click OK.
iManager fills in the Workflow server URI and User fields.

6 Type the password for the user in the Password field.
7 Click Login.
268 Managing Provisioning Workflows

The Workflow Administration plug-in displays a page that allows you to specify a filter for
finding workflows:

Restricting Access to Workflows
When you install the Roles Based Provisioning Module with the default settings, all users can view all
workflows when searching for them. To restrict access to workflows to only the workflow trustees,
use NetIQ eDirectory to add an Inheritance Rights Filter (IRF) on the AppConfig container, which is
located under the User Application driver. For information about adding an IRF, see the eDirectory
Administration Guide (https://www.netiq.com/documentation/edirectory-92/).

Finding Workflows that Match Search Criteria
If the target workflow server is running a large number of workflow processes, you might want to
filter the list of workflows you see in iManager. To do this, you can specify search criteria.

1 Select Show Workflows with.
By default, Show all Workflows is selected. Do not change the default if you want to see the
complete list of workflows on the server.

2 Select the attribute for which you want to specify criteria.
Managing Provisioning Workflows 269

https://www.netiq.com/documentation/edirectory-92/
https://www.netiq.com/documentation/edirectory-92/

3 Select an operator:

4 Specify a value in the field below the attribute and operator.
For Creation time, you can use the Date and time control to select the value. For Initiator and
Recipient, you can use Object History or Object Selector to specify a value. For all other
attributes, select the value from the drop-down list.

5 Click OK.
iManager displays the workflows you have selected on the Workflows panel.

Changing the target server and filter. When you have selected a workflow server, this selection
remains in effect for the duration of your iManager session, unless you select a new server. To select
a new server, click the Actions command, then choose Select Server from the Actions menu.

To specify different search criteria, choose Define Filter on the Actions menu.

Controlling the Active Workflows Display
The Workflows panel lists the workflows that match the search criteria you specified. In addition to
filtering the list, you can control the display. For example, you can specify how often to refresh the
list and sort the list on a particular column.

Attribute Description

Creation time Time that the workflow was initiated.

Initiator Username of the requestor.

Recipient Username of the recipient.

Process Status Status of the workflow process as a whole (Completed, Running, or
Terminated).

Approval status Status of the approval process (Approved, Denied, or Retracted).

Entitlement status Status of the entitlement initiated by the provisioning request
(Error, Fatal, Success, Unknown, or Warning).

Operator Comment

Equals Supported for all attributes.

Before Only supported for the Creation time attribute.

After Only supported for the Creation time attribute.

Between Only supported for the Creation time attribute.
270 Managing Provisioning Workflows

Refreshing the List of Workflows
When the workflow server is very busy, the list of active workflows can change very frequently. In
this case, you should refresh the list of active workflows running on the server.

1 Click the Refresh command in the Workflows panel.
2 Specify the refresh interval you want to use by selecting one of these options from the Refresh

menu:
 Refresh Off
 Refresh Now
 10 seconds
 30 seconds
 60 seconds
 5 minutes

3 Click OK.

Using Quick Filters to Control the Display
Sometimes you might want to show or hide workflows that have a particular status.

1 Click the Quick Filters command in the Workflows panel.
2 Select one of the following choices to filter the items in the list:

Choice Description

Show all workflows Disables all previous filters and displays all
workflows in process.

Hide/show completed workflows Hides or shows workflows that have completed
processing.

Hide/show terminated workflows Hides or shows workflows that have been
terminated.

Hide/show stopped workflows Hides or shows workflows that have been stopped
by user action.

Hide/show running workflows Hides or shows workflows that are still running.
Managing Provisioning Workflows 271

Sorting the List of Workflows
If you have a large number of request definitions, you might want to sort the list by a particular
column, such as Name or Description.

1 Click the heading for the sort column.

Displaying the Process Request ID
You can display and sort data based on the internal process ID for a request.

1 Click the Actions command in the Workflows panel.
2 Click Show Request ID on the Actions menu.

Depending on your display, you might need to scroll to the right to see the Request ID column.
To sort the data based on the process request ID, click the heading for the Request ID column.

Terminating a Workflow Instance
If you do not want a workflow instance to continue its processing, you can terminate the workflow.

1 Select the workflow in the Workflows panel by clicking the check box next to the workflow
name.

2 Click the Terminate command in the Workflows panel.

Viewing Details about a Workflow Instance
When you have displayed a set of running workflows on a particular server, you can select a
workflow instance to see more details about the running process.

NOTE: If a workflow instance uses a serial processing design pattern, the display shows a single
activity as current because only one user can act on the work item at any point in time. However, if
the workflow handles parallel processing and branching, there might be multiple current activities
for a workflow instance.

To view details about a particular workflow instance:

1 Click the name of the workflow instance in the Workflows panel.
iManager displays the Workflow Detail panel.
272 Managing Provisioning Workflows

Reassigning a Workflow Instance
If a workflow instance has stopped and cannot be restarted, you can reassign the work item to
another user or group.

1 Select the current activity associated with the workflow by clicking the check box next to the
name in the Workflow Detail panel.

2 Click the Reassign command in the Workflow Detail panel.

3 Select the user or group to which you want to reassign the work item.

Managing Workflow Processes in a Cluster
You can use the Workflows screen to reassign processes from one workflow engine to another. For
example, you could use this feature to reassign processes back to a failed workflow engine when the
workflow engine is brought back online, or you could redistribute processes to other engines when
an engine is permanently removed from the cluster.

The source engine(s) must be a in a SHUTDOWN or TIMEDOUT state. The target engine must be
restarted in order to restart the processes that were reassigned to that engine.

Reassigning a Process from One Workflow Engine to Another
1 In the Workflows panel, select the workflow that you would like to reassign by clicking the

check box next to the workflow name.
2 Select Actions > Reassign.
Managing Provisioning Workflows 273

3 Select the workflow engine to which you want to reassign the workflow process from the Target
Engine list.

4 Click OK.

Reassigning a Percentage of Processes from One Workflow Engine to
Another

1 In the Workflows panel, select the workflow that you would like to reassign by clicking the
check box next to the workflow name.

2 Select Actions > Reassign Percentage.

3 In the Percentage field, type the percentage of workflow processes that you would like to
reassign from one workflow engine to another.

4 Use the Source engine list to select the workflow engine from which you want to reassign
processes.

5 Use the Target engine field to select the workflow engine to which you want to reassign
processes.

6 Click OK.

Reassigning All Processes from One Workflow Engine to Another
1 In the Workflows panel, select the workflow that you would like to reassign by clicking the

check box next to the workflow name.
2 Select Actions > Reassign All.
274 Managing Provisioning Workflows

3 Use the Source engine list to select the workflow engine from which you want to reassign
processes.

4 Select the workflow engines to which you would like to reassign processes by clicking the check
box next to the name of the workflow engine.
If you select multiple target engines, the processes from the source engine will be evenly
distributed to the target engine.

5 Click OK.

Configuring the Email Server
A workflow process often sends email notifications at various points in the course of its execution.
For example, an email might be sent when a user assigns a workflow activity to a new addressee.

Before you can take advantage of the email notification capabilities of Identity Manager, you need to
configure the SMTP email server. To do this, you need to use the Email Server Options task within the
Workflow Administration role in iManager.

NOTE: This task is a shortcut to the Email Server Options task under the Passwords role.

To configure the email server:

1 Select the Identity Managercategory in iManager.
2 Open the Workflow Administration role.
3 Click on the Email Server Options task.

iManager displays the Email Server Options panel.
4 Type the name (or IP address) of the host server in the Host Name field.
Managing Provisioning Workflows 275

5 Type the email address for the sender in the From field.
When the recipient opens the email, this text is displayed in the From field of the email header.
Depending on your mail server settings, the text in this field might need to match a valid sender
in the system in order to allow the mail server to do reverse lookups or authentication. An
example is helpdesk@company.com instead of descriptive text such as The Password
Administrator.

6 If your server requires authentication before sending email, select the Authenticate to server
using credentials check box and specify the username and password.

7 When you are finished, click OK.

Working with Email Templates
Identity Manager includes email notification templates that are designed specifically for workflow-
based provisioning. These email templates include the following.

 New Provisioning Request (Provisioning Notification)
 Availability Setting Notification (Availability)
 Delegate Assignment Notification (Delegate)
 Provisioning Approval Notification (Provisioning Approval Completed Notification)
 Reminder - A request is waiting on your approval (Provisioning Reminder)
 Proxy Assignment Notification (Proxy)
 New Role Request (Role Request Notification)
 Role Request Approval Notification (Role Request Approval Completed Notification)
 Compliance Task (Attestation Notification)
 New Resource Request (Resource Request Notification)
 Resource Request Approval Notification (Resource Request Approval Completed Notification)

The subject lines are listed first above. The template names (as they appear in iManager and
Designer) are given in parentheses.

You can edit the templates to change the content and format of email messages. You can also create
new templates. If you create new templates, you need to follow these naming conventions.

 The language-independent version of the Provisioning Notification template can have any name
you like. The default template for notification email messages is called:

Provisioning Notification
 The language-independent version of the Provisioning Reminder template can have any name

you like. The default template for reminder email messages is called:
Provisioning Reminder

 Each delegation template must have a name that begins with the word:
delegate
The language-independent name can be followed by one or more characters that describe the
purpose or content of the template.

 Each proxy template must have a name that begins with the word:
276 Managing Provisioning Workflows

proxy
The language-independent name can be followed by one or more characters that describe the
purpose or content of the template.

 Each availability template must have a name that begins with the word:
availability
The language-independent name can be followed by one or more characters that describe the
purpose or content of the template.

Each language-specific version of a template must have a suffix that provides a language code (for
example, _fr for French, _es for Spanish, and so forth).

To create or edit an email template, use the Email Templates task within the Workflow
Administration role in iManager.

NOTE: This task is a shortcut to the Edit Email Templates task under the Passwords role.

You also can create and edit email templates in Designer.

When you create a User Application driver in iManager or Designer, any email notification templates
that are missing from the standard set of email notification templates are replaced. Existing email
notification templates are not updated. This is to prevent overwriting email notification templates
that you have customized. You can manually update the existing email notification templates using
Designer. For more information, see About Email Notification Templates in the NetIQ Identity
Manager - Administrator’s Guide to Designing the Identity Applications and Setting Up E-Mail
Notification Templates in the NetIQ Designer for Identity Manager Administration Guide.

NOTE: When you use a localized email template in a provisioning request definition, the preferred
locale setting of the recipient of the notification is ignored. For example, the Provisioning
Notification of a request using a localized email notification template of Spanish will only send a
Spanish email, regardless of the preferred locale setting for the user.

Default Content and Format
This section shows you what the content of the email templates looks like after you install the
product. It also describes the replacement tags that can be used in the email template.

New Provisioning Request
This template identifies the provisioning request definition that triggered the email message. In
addition, it includes a URL that redirects the addressee to the task that requires approval, as well as a
URL that displays the complete list of tasks pending for that user.
Managing Provisioning Workflows 277

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#emailnotificationtemplate
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#notiftemploverview
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#notiftemploverview
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#bookinfo

Hi,

A new provisioning request has been submitted that requires your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this request at $SECURE_PROTOCOL$://
$HOST$:$SECURE_PORT$/$TASK_DETAILS$ to take the appropriate action.

You can review a list of all requests pending your approval at
$SECURE_PROTOCOL$://$HOST$:$SECURE_PORT$/$TASKLIST_CONTEXT$.

Table 26-2 New Provisioning Request Template: Replacement Tags

Availability Setting Notification
This template identifies a user whose availability has been updated. It includes the start time and
expiration time of the period for which the user is unavailable, and the resources for which the user
is unavailable.

Tag Description

$userFirstName$ The first name of the addressee.

$requestTitle$ The display name of the provisioning request definition.

$initiatorFullName$ The full name of the initiator.

$recipientFullName$ The full name of the recipient.

$PROTOCOL$ The protocol for URLs included in the email message.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the email message.

$HOST$ The host for the Tomcat application server that is running the
identity applications. For information about setting the value
for this parameter, see “Modifying Default Values for the
Template” on page 289.

$PORT$ The port for the identity applications. For information about
setting the value for this parameter, see “Modifying Default
Values for the Template” on page 289.

$SECURE_PORT$ The secure port for the identity applications. For information
about setting the value for this parameter, see “Modifying
Default Values for the Template” on page 289.

$TASKLIST_CONTEXT$ The page that displays the list of all requests pending for the
addressee.

$TASK_DETAILS$ The page that displays details for the request for which this
email message was generated.
278 Managing Provisioning Workflows

Hi,

$submitterFirstName$ $submitterLastName$ has updated availability settings
for
 $userFirstName$ $userLastName$.
 This user has $operation$ an availability setting that applies to the
following resources:

 $resources$

 This setting indicates that $userFirstName$ $userLastName$ is unavailable
to work on these resources during the timeframe outlined below:

 Start time: $startTime$
 Expiration time: $expirationTime$

 When a user is unavailable, any delegates assigned may handle resource
requests for that user.

You can review a list of your availability settings at $SECURE_PROTOCOL$:/
/$HOST$:$SECURE_PORT$/$AVAILABILITY_CONTEXT$.

Table 26-3 Availability Setting Notification Template: Replacement Tags

Tag Description

$submitterFirstName$ The first name of the user who updated the
availability setting.

$PROTOCOL$ The protocol for URLs included in the email message.

$PORT$ The port for the identity applications. For information
about setting the value for this parameter, see
“Modifying Default Values for the Template” on
page 289.

$startTime$ The start time of the workflow for this provisioning
request.

$resources$ The resources (provisioning requests) for which the
addressee is unavailable.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the email
message.

$expirationTime$ The time at which the availability will expire.

$submitterLastName$ The last name of the user who updated the
availability setting.

$SECURE_PORT$ The secure port for the identity applications. For
information about setting the value for this
parameter, see “Modifying Default Values for the
Template” on page 289.

$userFirstName$ The first name of the user to whom this availability
setting applies.
Managing Provisioning Workflows 279

Delegate Assignment Notification
This template notifies a user when a provisioning request has been submitted that requires the
user’s approval. It includes the name of the request, the user who submitted the request, and the
full name of the recipient. It includes links for viewing the provisioning request and for viewing all
provisioning requests awaiting the user’s approval.

Hi,

A new provisioning request has been submitted that requires your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this request at $SECURE_PROTOCOL$://
$HOST$:$SECURE_PORT$/$TASK_DETAILS$ to take the appropriate action.

You can review a list of all requests pending your approval at
$SECURE_PROTOCOL$://$HOST$:$SECURE_PORT$/$TASKLIST_CONTEXT$.
_SUBJECT

Table 26-4 Delegate Assignment Notification: Replacement Tags

$userLastName$ The last name of the user to whom this availability
setting applies.

$HOST$ The host for the Tomcat application server that is
running the identity applications. For information
about setting the value for this parameter, see
“Modifying Default Values for the Template” on
page 289.

$ASSIGNMENT_LIST_CONTEXT$ The context or path of the URL to the identity
applications.

Tag Description

$submitterFirstName$ The first name of the user who assigned the delegate.

$PROTOCOL$ The protocol for URLs included in the email message.

$PORT$ The port for the identity applications. For information
about setting the value for this parameter, see
“Modifying Default Values for the Template” on
page 289.

$resources$ The resources (provisioning requests) for which the
delegate is available.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the email
message.

Tag Description
280 Managing Provisioning Workflows

Provisioning Approval Notification
This template notifies a user when an approval process for a provisioning request submitted by the
user has been completed.

Hi,

The approval process of your provisioning request has completed.

Request name: $requestTitle$
Request id: $requestId$
Submitted by: $initiatorFullName$
Submitted on: $requestSubmissionTime$
Recipient: $recipientFullName$

Status: $requestStatus$

$fromUsers$ The users for which the assigned delegate is
authorized to handle resource requests.

$relationship$ The relationship defined in the directory abstraction
layer that was selected for this delegate assignment.

$expirationTime$ The time at which the delegate assignment will
expire.

$fromContainers$ The containers for which the assigned delegate is
authorized to handle resource requests.

$fromGroups$ The groups for which the assigned delegate is
authorized to handle resource requests.

$submitterLastName$ The last name of the user who assigned the delegate.

$SECURE_PORT$ The secure port for the identity applications. For
information about setting the value for this
parameter, see “Modifying Default Values for the
Template” on page 289.

$userFirstName$ The first name of the user who has been assigned as a
delegate.

$userLastName$ The last name of the user who has been assigned as a
delegate.

$HOST$ The host for the Tomcat application server that is
running the identity applications. For information
about setting the value for this parameter, see
“Modifying Default Values for the Template” on
page 289.

$ASSIGNMENT_LIST_CONTEXT$ The context or path of the URL to the identity
applications.

Tag Description
Managing Provisioning Workflows 281

Table 26-5 Provisioning Approval Notification: Replacement Tags

Reminder - A Request Is Waiting on Your Approval
This template reminds a user that a provisioning request that requires the user’s approval is waiting
in a queue for approval. It includes the name of the request, the user who submitted the request,
and the recipient. It includes links for viewing the provisioning request and for viewing all
provisioning requests awaiting the user’s approval.

Hi,

This is a reminder that a provisioning request is sitting in your queue
waiting on your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this request at $SECURE_PROTOCOL$://
$HOST$:$SECURE_PORT$/$TASK_DETAILS$ to take the appropriate action.

You can review a list of all requests pending your approval at
$SECURE_PROTOCOL$://$HOST$:$SECURE_PORT$/$TASKLIST_CONTEXT$.

Table 26-6 Reminder - A request is waiting on your approval: Replacement Tags

Tag Description

$initiatorFullName$ The full name of the initiator.

$requestSubmissionTime$ The time at which the request was submitted.

$requestTitle$ The display name of the provisioning request
definition.

$requestId The ID of the provisioning request.

$recipientFullName$ The full name of the recipient.

Tag Description

$TASKLIST_CONTEXT$ The page that displays the list of all requests pending
for the addressee.

$PROTOCOL$ The protocol for URLs included in the email message.

$PORT$ The port for the identity applications. For information
about setting the value for this parameter, see
“Modifying Default Values for the Template” on
page 289.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the email
message.

$initiatorFullName$ The full name of the initiator.
282 Managing Provisioning Workflows

Proxy Assignment Notification
This template notifies the recipient that a proxy has been assigned. The user who has been assigned
as a proxy is identified, as are the users, groups, and containers for which the user is authorized to
act as proxy. It includes links for viewing the recipient’s list of proxy assignments.

Hi,

A proxy assignment that authorizes a user to act as proxy for
one or more users, groups, or containers was $operation$ by:
$submitterFirstName$ $submitterLastName$.
Unlike delegate assignments, proxy assignments are independent of resource
requests, and therefore apply to all work and settings actions.

The user selected as proxy is:

$userFirstName$ $userLastName$

The assigned proxy is authorized to handle all work for these users,
groups, and containers:

Users: $fromUsers$
Groups: $fromGroups$
Containers: $fromContainers$

This proxy assignment expires at:

$expirationTime$

You can review a list of your proxy assignments at $SECURE_PROTOCOL$://
$HOST$:$SECURE_PORT$/$PROXY_CONTEXT$.

$recipientFullName$ The full name of the recipient.

$TASK_DETAILS$ The page that displays details for the request for
which this email message was generated.

$SECURE_PORT$ The secure port for the identity applications. For
information about setting the value for this
parameter, see “Modifying Default Values for the
Template” on page 289.

$userFirstName$ The first name of the addressee.

$HOST$ The host for the Tomcat application server that is
running the identity applications. For information
about setting the value for this parameter, see
“Modifying Default Values for the Template” on
page 289.

$requestTitle$ The display name of the provisioning request
definition.

Tag Description
Managing Provisioning Workflows 283

Table 26-7 Proxy Assignment Notification: Replacement Tags

New Role Request
This template identifies the provisioning request definition that triggered the email message. In
addition, it includes a URL that redirects the addressee to the task that requires approval, as well as a
URL that displays the complete list of tasks pending for that user.

Tag Description

$submitterFirstName$ The first name of the user who assigned the proxy.

$PROTOCOL$ The protocol for URLs included in the email message.

$PORT$ The port for the identity applications. For information
about setting the value for this parameter, see
“Modifying Default Values for the Template” on
page 289.

$resources$ The resources (provisioning requests) for which the
proxy is available.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the email
message.

$fromUsers$ The users for which the assigned proxy is authorized
to handle resource requests.

$expirationTime$ The time at which the proxy assignment will expire.

$fromContainers$ The containers for which the assigned proxy is
authorized to handle resource requests.

$fromGroups$ The groups for which the assigned proxy is authorized
to handle resource requests.

$submitterLastName$ The last name of the user who assigned the proxy.

$SECURE_PORT$ The secure port for the identity applications. For
information about setting the value for this
parameter, see “Modifying Default Values for the
Template” on page 289.

$userFirstName$ The first name of the user who has been assigned as a
proxy.

$userLastName$ The last name of the user who has been assigned as a
proxy.

$HOST$ The host for the Tomcat application server that is
running the identity applications. For information
about setting the value for this parameter, see
“Modifying Default Values for the Template” on
page 289.

$ASSIGNMENT_LIST_CONTEXT$ The context or path of the URL to the identity
applications.
284 Managing Provisioning Workflows

Hi,

A new role request has been submitted that requires your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this role request at $SECURE_PROTOCOL$://
$HOST$:$SECURE_PORT$/$TASK_DETAILS$ to take the appropriate action.

You can review a list of all role requests pending your approval at
$SECURE_PROTOCOL$://$HOST$:$SECURE_PORT$/$TASKLIST_CONTEXT$.

Table 26-8 New Role Request Template: Replacement Tags

Role Request Approval Notification
This template notifies a user when an approval process for a role request submitted by the user has
been completed.

Tag Description

$userFirstName$ The first name of the addressee.

$requestTitle$ The display name of the request definition.

$initiatorFullName$ The full name of the initiator.

$recipientFullName$ The full name of the recipient.

$PROTOCOL$ The protocol for URLs included in the email message.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the email message.

$HOST$ The host for the Tomcat application server that is running the
identity applications. For information about setting the value
for this parameter, see “Modifying Default Values for the
Template” on page 289.

$PORT$ The port for the identity applications. For information about
setting the value for this parameter, see “Modifying Default
Values for the Template” on page 289.

$SECURE_PORT$ The secure port for the identity applications. For information
about setting the value for this parameter, see “Modifying
Default Values for the Template” on page 289.

$TASKLIST_CONTEXT$ The page that displays the list of all requests pending for the
addressee.

$TASK_DETAILS$ The page that displays details for the request for which this
email message was generated.
Managing Provisioning Workflows 285

Hi,

The approval process of your role request has completed.

Request name: $requestTitle$
Request id: $requestId$
Submitted by: $initiatorFullName$
Submitted on: $requestSubmissionTime$
Recipient: $recipientFullName$

Status: $requestStatus$

Table 26-9 Role Request Approval Notification: Replacement Tags

Compliance Task
This template notifies an attester when an attestation process has assigned a task to the attester.

Hi,

A new compliance activity has been submitted that requires your attention.

Request name: $requestTitle$
Submitted by: $initiatorFullName$

Please review the details of this compliance activity request at
$SECURE_PROTOCOL$://$HOST$:$PORT$/$TASK_DETAILS$ to take the appropriate
action.

You can review a list of all requests pending your action at
$SECURE_PROTOCOL$://$HOST$:$SECURE_PORT$/$TASKLIST_CONTEXT$.

Table 26-10 Compliance Task: Replacement Tags

Tag Description

$initiatorFullName$ The full name of the initiator.

$requestSubmissionTime$ The time at which the request was submitted.

$requestTitle$ The display name of the provisioning request
definition.

$requestId The ID of the role request.

$recipientFullName$ The full name of the recipient.

Tag Description

$initiatorFullName$ The full name of the initiator.

$requestTitle$ The display name of the attestation request.
286 Managing Provisioning Workflows

New Resource Request
This template identifies the resource request definition that triggered the email message. In
addition, it includes a URL that redirects the addressee to the task that requires approval, as well as a
URL that displays the complete list of tasks pending for that user.

Hi,

A new resource request has been submitted that requires your approval.

Request name: $requestTitle$
Submitted by: $initiatorFullName$
Recipient: $recipientFullName$

Please review the details of this role request at $SECURE_PROTOCOL$://
$HOST$:$PORT$/$TASK_DETAILS$ to take the appropriate action.

You can review a list of all resource requests pending your approval at
$SECURE_PROTOCOL$://$HOST$:$SECURE_PORT$/$TASKLIST_CONTEXT$.

Table 26-11 New Resource Request Template: Replacement Tags

Resource Request Approval Notification
This template notifies a user when an approval process for a resource request submitted by the user
has been completed.

Tag Description

$userFirstName$ The first name of the addressee.

$requestTitle$ The display name of the request definition.

$initiatorFullName$ The full name of the initiator.

$recipientFullName$ The full name of the recipient.

$PROTOCOL$ The protocol for URLs included in the email message.

$SECURE_PROTOCOL$ The secure protocol for URLs included in the email message.

$HOST$ The host for the Tomcat application server that is running the
identity applications.

$PORT$ The port for the identity applications.

$SECURE_PORT$ The secure port for the identity applications.

$TASKLIST_CONTEXT$ The page that displays the list of all requests pending for the
addressee.

$TASK_DETAILS$ The page that displays details for the request for which this
email message was generated.
Managing Provisioning Workflows 287

Hi,

The approval process of your resource request has completed.

Request name: $requestTitle$
Request id: $requestId$
Submitted by: $initiatorFullName$
Submitted on: $requestSubmissionTime$
Recipient: $recipientFullName$

Status: $requestStatus$

Table 26-12 Resource Request Approval Notification: Replacement Tags

Editing Email Templates
You can change the content or format of the supplied email templates. For information about
creating email templates, see “Configuring Email Notification” in the NetIQ Identity Manager
Administration Guide.

To edit a template:

1 Select the Identity Manager category in iManager.
2 Open the Workflow Administration role.
3 Click the Email Templates task.

iManager displays the Edit Email Templates panel.
4 Click the name of the email template that you would like to edit.

iManager displays the Modify Email Message screen.
5 Make your changes in the Message Body box.
6 If necessary, copy one or more of the supplied tags in the Replacement Tags list to include

dynamic text in the message body.
For a description of the replacement tags, see “Default Content and Format” on page 277.

7 When you are finished, click OK.

Tag Description

$initiatorFullName$ The full name of the initiator.

$requestSubmissionTime$ The time at which the request was submitted.

$requestTitle$ The display name of the provisioning request
definition.

$requestId The ID of the role request.

$recipientFullName$ The full name of the recipient.
288 Managing Provisioning Workflows

Modifying Default Values for the Template
At installation time, you can set default values for several of the replacement tags used in email
templates. After you have completed the installation, you can also modify these values by using the
Configuration Update utility.

1 Run the configupdate.sh script in the idm folder.

./configupdate.sh
On Windows, run configupdate.bat.

2 Make changes as necessary to any of the following fields:

3 Click OK to confirm your changes.

Adding Localized Email Templates
To add localized email templates:

1 Select the Identity Manager category in iManager.
2 Open the Workflow Administration role.
3 Click the Email Templates task.

iManager displays the Edit Email Templates panel.
4 Identify the email template (without any locale in the name) that you want to copy.

4a Write down the template name to use in Step 5.
4b Click the template subject to open the template and view its message subject, body, and

replacement tags.
4c Copy the message subject, body (to be translated), and replacement tags that you want to

use in your new template.
4d Click Cancel.

5 Click Create, then enter the template name with a locale extension. For example, to create a
Forgot Hint template in German, enter the name Forgot Hint_de, where _de signifies Deutsch
(German).
If you use a two-letter language and two-letter country code, this works fine. If you attempt to
use a locale with a variant such as en_US_TX, only the variant and language are considered. Do
not use locale variants when naming email templates.

6 Click OK.

Field Description

Email Notify Host Used to replace the $HOST$token in email templates used in
approval flows. If left blank, computed by the server.

Email Notify Port Used to replace the $PORT$token in email templates used in
approval flows.

Email Notify Secure Port Used to replace the $SECURE_PORT$token in email templates
used in approval flows.
Managing Provisioning Workflows 289

7 In the template list, click the newly created template, for example Forgot Hint_de, and enter the
translated subject and message body. Be sure to preserve the replacement tags surrounded by
the dollar ($) sign in the message body.

8 If necessary, copy one or more of the supplied tags in the Replacement Tags list to include
dynamic text in the message body.
For a description of the replacement tags, see “Default Content and Format” on page 277.

9 Click Apply.
10 Click OK.

NOTE: Email templates only send localized content if the preferred locale is set for the user (to
whom the mail is sent).

Allowing a Named Password to be Retrieved over LDAP
You can add a boolean definition to the User Application driver to allow a named password to be
retrieved over LDAP from a workflow. To take advantage of this feature, you need to create a global
configuration value “allow-fetch-named-passwords”.

Here’s a sample definition:

<definitions>
 <definition display-name="Allow Named Password to be retrieved over
LDAP"
name="allow-fetch-named-passwords" type="boolean">
 <value>false</value>
 <description>Allow Named Password to be retrieved over LDAP. If the
value is true, then the named password value can be fetched using the LDAP
extension
com.novell.nds.dirxml.ldap.GetNamedPasswordRequest/
com.novell.nds.dirxml.ldap.GetNamedPasswordResponse.</description>
 </definition>
</definitions>
If the global configuration is not present, the runtime functions as if the definition is present and the
value is set to false. If you then try to use the GCV script method getValueForNamedPassword(String
valueKey), an exception is thrown since the permission is set to false. If you want to be able to use
the method, then the value for allow-fetch-named-passwords variable must be true.

If the gcv variable allow-fetch-named-passwords does not exist, you have to create the variable and
set it to true. If it already exists, you can simply need to set the value to true.

NOTE: To retrieve a named password, you must use the GCV script method
getValueForNamedPassword on a GCV of the password-ref type, which points to the named
password. You cannot use the get script method.

To add the GCV value for the allow-fetch-named-passwords option:

1 In iManager, double click on the User Application driver.
2 Click on the Global Configuration Values tab.
290 Managing Provisioning Workflows

3 Click on the Add button.
4 Fill out the definition, as described below:

4a Specify allow-fetch-named-passwords as the name for the global configuration
definition.

4b Specify Allow Named Password to be retrieved over LDAP as the display name.
4c Provide a description for the definition.
4d Specify boolean as the Type.

5 Click OK.
6 Set the value to true or false and click Apply.
7 Create a named password in your User Application driver.
8 Create a GCV of the type password-ref that points to the named password you want to be

able to read.
9 In your workflow, use the function getValueForNamedPassword to retrieve the value of the

named password, using the following syntax:

GCV.getValueForNamedPassword('PasswordRefGCV')
Managing Provisioning Workflows 291

292 Managing Provisioning Workflows

V VWeb Service Reference

These sections describe the Web Service endpoints provided for the identity applications.

 Chapter 27, “Provisioning Web Service,” on page 295
 Chapter 28, “Metrics Web Service,” on page 367
 Chapter 29, “Notification Web Service,” on page 387
 Chapter 30, “Directory Abstraction Layer (VDX) Web Service,” on page 397
 Chapter 31, “Role Web Service,” on page 423
 Chapter 32, “Resource Web Service,” on page 523
 Chapter 33, “Forgot Password Web Service,” on page 559
Web Service Reference 293

294 Web Service Reference

27 27Provisioning Web Service

This section describes the Provisioning Web Service, which allows SOAP clients to access
Provisioning functionality.

About the Provisioning Web Service
The identity applications includes a workflow system that executes approval flows. A workflow
process is based on a provisioning request definition, which is an XML document stored in the
Identity Vault. The provisioning request definition describes an arbitrary topology using activities
and links. For example, a provisioning request to grant an entitlement might have a workflow that
collects approvals from relevant users and writes the entitlement to the directory.

To support access by third-party software applications, the provisioning workflow system includes a
Web service endpoint. The endpoint offers all provisioning functionality (for example, allowing SOAP
clients to start a new approval flow, or list currently executing flows). The Web service is built using
the NetIQ Web Service SDK (WSSDK), which supports the WS-I Basic Profile, thus guaranteeing
interoperability with other standards based SOAP implementations.

This Appendix describes the provisioning Web service in detail and shows how to access it using the
Web or by writing a Java or C# client. We provide an overview of the operations in the SOAP
endpoint and describe how to use the Web interface. We show how to develop a Java client using
the SOAP toolkit included with Identity Manager provisioning, followed by how to write a C# client
using Mono. The sample source code a the Java client and associated ANT build file is provided.

Provisioning Web Service Overview
Identity Manager is composed of two main systems: the Identity Vault and the workflow application.
The Identity Vault is capable of connecting to a large number of different systems such as databases,
financial systems, and other enterprise applications, and keep these systems synchronized. The rules
for synchronizing the remote systems can be very complex and the Identity Vault engine supports a
sophisticated scripting language for expressing the rules.

The workflow application is composed of several subsystems. The identity applications provides a
user-interface for workflows. The identity applications is a Web application for requesting and
managing approval flows. The Web application runs in a portal, which also includes administration
portlets. The workflow application contains a security layer, a directory abstraction layer and a
logging subsystem, which can send log events to NetIQ Sentinel. The workflow subsystem is
responsible for executing approval flows. The identity applications runs on a Tomcat application
server and uses a database (for example, Oracle) for persistence.

The Web service for the workflow system is only used by the User Application driver, which is
capable of listening to certain events emitted by the Identity Vault engine and convert these events
into an appropriate SOAP message. For example, when a specific attribute in the Identity Vault
changes, the Identity Vault engine emits an event, which the identity applications picks up from the
subscriber channel. The User Application driver then sends a SOAP message to the provisioning Web
service to start a new approval flow.
Provisioning Web Service 295

Removing Administrator Credential Restrictions
By default, the requirement for invoking the public interfaces for the SOAP services is that the HTTP
session logged in user must have administrator credentials. The Provisioning and Directory Services
require Provisioning Administrator credentials. The Role Service and Resource Service require Role
Administrator and Resource Administrator credentials respectively. The restrictions can be removed
to allow a session with a logged in user who does not have administrator credentials to invoke the
methods for the services by changing the configuration settings for the service. The details for
changing the Provisioning Service follow. Instructions for the other SOAP services are provided with
the documentation for these services.

To remove the administrator credential restriction for the Provisioning Service:

1 Open the ism-configuration.properties file, located by default in the /netiq/idm/
apps/tomcat/conf directory.

2 Change WorkflowService/SOAP-End-Points-Accessible-By-
ProvisioningAdminOnly to false.

3 Save and close the file.

These are the methods that can be invoked by users without Provisioning Administrator credentials
if the WorkflowService/SOAP-End-Points-Accessible-By-ProvisioningAdminOnly property is set to
false:

 getAllProvisioningRequests(String)
 getDataItems(String workId)
 getDefinitionByID(String definitionID, String recipient)
 getProvisioningCategories()
 getProvisioningRequests(String recipient, String category, String operation)
 getWork(String workId)
 getWorkEntries(T_WorkEntryQuery query, int maxRecords)
 start(String processId, String recipient, DataItemArray items)
 startAsProxy(String processId, String recipient, DataItemArray items, String proxyUser)
 startAsProxyWithDigitalSignature(String processId, String recipient, DataItemArray items, String

digitalSignature, SignaturePropertyArray digitalSignaturePropertyArray, String proxyUser)
 startWithCorrelationId(String processId, String recipient, DataItemArray items, String

digitalSignature, SignaturePropertyArray digitalSignaturePropertyArray, String proxyUser, String
correlationId)

 startWithDigitalSignature(String processId, String recipient, DataItemArray items, String
digitalSignature, SignaturePropertyArray digitalSignaturePropertyArray)

All other methods for this service always require Provisioning Administrator credentials independent
of whether the WorkflowService/SOAP-End-Points-Accessible-By-ProvisioningAdminOnly property is
set to false.

Provisioning Web Service Method Categories
The methods provided by the provisioning Web service endpoint are divided into six categories:
296 Provisioning Web Service

Table 27-1 Provisioning Web Service Operation Categories

The methods provided by the provisioning Web service are described in detail in Section 27,
“Provisioning Web Service,” on page 295.

Developing Clients for the Provisioning Web Service
Web Access to the Provisioning Web Service
A SOAP-based Web service is usually accessed by inserting a SOAP message in the body of an HTTP
Post request. The Web service toolkit used to build the provisioning Web service also supports
access using HTTP GET. In other words, you can open the URL of the Web service endpoint in a
browser and interact with the Web service. In particular, the provisioning Web service lets you
invoke each of its operations.

Accessing the Test Page
You can access the provisioning Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/provisioning/service?test
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/provisioning/service?test
The following page is displayed:

Category Description

Comments Methods for retrieving comments and for adding a
comment to a pending user activity

Configuration Methods for getting and setting configuration
parameters for the workflow system (for example,
timeouts, thread pool settings).

Miscellaneous Several unrelated methods (for example, for getting a
JPG with a provisioning request's topology, for getting
the XML definition of a provisioning request, and for
getting the XML for the request form).

Processes Methods for getting information about running and
completed workflow processes.

Provisioning Requests Methods for working with provisioning requests (for
example, listing available provisioning requests,
listing provisioning categories)

Work Entries Methods for retrieving and manipulating work entries
(items awaiting approval).
Provisioning Web Service 297

Figure 27-1 Web Service Test Page

You can also access the SOAP endpoint by going to the Administration within the identity
applications. To do this, you need to select the Application Configuration tab, then select Web
Services from the left-navigation menu. After selecting Web Services, pick the Web Service endpoint
you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment. For details on enabling the test page, see the instructions provided for the
Role Service in “Enabling the Test Page” on page 425.

Entering Arguments for Operations
To see an example of an operation that is particularly useful to invoke from the browser, scroll down
to the Miscellaneous section and click getGraph.

NOTE: The Graphviz program must be installed on the computer where the application server and
the identity applications is running. For more information about Graphviz, see Graphviz (http://
www.graphviz.org).

A page is displayed that allows you to enter the parameters for the getGraph method.
298 Provisioning Web Service

http://www.graphviz.org

Figure 27-2 Parameters for getGraph Method

The method takes one argument, which is the distinguished name of a provisioning request. Enter
the DN, and the underlying workflow is displayed as a JPG file..

Figure 27-3 Output of getGraph

A Java Client for the Provisioning Web Service
This section describes how to develop a simple Java client for the provisioning Web service, which
lists all the processes in the workflow system. For complete source code for the client, see “Sample
Code for the Java Client” on page 303.
Provisioning Web Service 299

Prerequisites
To develop a Java client you must install a supported Java Developer’s Kit. Also, a client program
needs the following JAR files:

activation.jar
commons-httpclient.jar
IDMfw.jar
IDMrbac.jar
log4j.jar
saaj-api.jar
wssdk.jar
commons-codec-1.3.jar
commons-logging.jar
jaxrpc-api.jar
mail.jar
workflow.jar
xpp3.jar

Developing a Java Client
Developing a client that accesses a Web service consists of two steps:

 Get the stub, which is the object that represents the remote service
 Invoke one or more of the operations available in the remote service

The Java programming model for Web services is very similar to RMI. The first step is to lookup the
stub using JNDI:

InitialContext ctx = new InitialContext();
ProvisioningService service = (ProvisioningService)
ctx.lookup("xmlrpc:soap:com.novell.soa.af.impl.soap.ProvisioningService");
Provisioning prov = service.getProvisioningPort();
The first line of code creates the initial context for JNDI lookups. The second line looks up the service
object, which is a kind of factory that can be used to retrieve the stub for the provisioning Web
service. The last line gets the provisioning stub from the service.

Before invoking an operation on the provisioning stub, it is necessary to set some properties,
including the credentials used for authentication on the service, as well as the endpoint URL.

Stub stub = (Stub) prov;
// set username and password
stub._setProperty(Stub.USERNAME_PROPERTY, USERNAME);
stub._setProperty(Stub.PASSWORD_PROPERTY, PASSWORD);
// set the endpoint URL
stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, url);
These and other stub properties are described in more detail in “Frequently Used Stub Constants”
on page 301. Now that we have a fully configured stub, we can invoke the getAllProcesses operation
and dump information about each of the processes returned on the console:
300 Provisioning Web Service

// invoke the getAllProcesses method
ProcessArray array = prov.getAllProcesses();
Process[] procs = array.getProcess();
// print process array
System.out.println("list of all processes:");
if (procs != null) {
for (int i = 0; i < procs.length; i++) {
System.out.println(" process with request identifier " +
procs[i].getRequestId());
System.out.println(" initiator = " + procs[i].getInitiator());
System.out.println(" recipient = " + procs[i].getRecipient());
System.out.println(" processId = " + procs[i].getProcessId());
procs[i].getCreationTime().getTime());
if (null != procs[i].getCompletionTime()) {
System.out.println(" completed = " +
procs[i].getCompletionTime().getTime());
}
System.out.println(" approval status = " +
procs[i].getApprovalStatus());
System.out.println(" process status = " +
procs[i].getProcessStatus());
if (i != procs.length - 1)
System.out.println();
}
}
A method invocation on the stub results in a SOAP message being sent using the HTTP transport to
the provisioning Web service. For operations that have arguments, the stub takes care of marshaling
those Java objects into XML. The Web service returns a SOAP message, and the stub unmarshals the
XML, in this case converting it into a ProcessArray Java object.

Running the Client
The sample ANT build file has a target for running the client (see “Sample Ant File” on page 305).
The client needs the JAR files described in “Prerequisites” on page 300 to be in the CLASSPATH. You
can change the code to have a different default address for the provisioning Web service SOAP
endpoint, or simply specify it as a command line argument. For example:

ant -Durl=http://www.company.com:80/IDMProv/provisioning/service run

Frequently Used Stub Constants
The com.novell.soa.ws.portable.Stub class (which is part of WSSDK) supports several properties that
can be used to configure a stub instance (for example, to fine-tune aspects of the HTTP
communication). The following table lists a small subset of these properties, which are frequently
used:
Provisioning Web Service 301

Table 27-2 Provisioning Web Service Stub Constants

The TCP Tunnel
The TCP Tunnel is a useful tool for looking at the SOAP messages that are exchanged between a
client and a server. The ANT build file (see “Sample Ant File” on page 305) has a target for starting
the tunnel. Once the tunnel starts you need to enter the port on which the tunnel will listen, and the
host/port of the remote Web service. The default settings cause the tunnel to listen on port 9999
and connect to a service running on localhost port 8080. The client program (see “Developing a Java

Property Type Description

ENDPOINT_ADDRESS_PROPERTY java.lang.String The URL of the Web service. The URL protocol
scheme can be HTTP or HTTPS depending on
the requirements of the server. The path
portion should be:

/IDMProv/provisioning/service
HTTP_HEADERS java.util.Map Additional HTTP headers as String name/value

pairs.

HTTP_TIME_OUT java.lang.Integer The number of milliseconds to wait to establish
a connection to the host before timing out.

HTTP_MAX_TOTAL_CONNECTIONS java.lang.Integer The number of concurrent connections that this
client program can establish to all server hosts it
accesses. The default limit is 20.

HTTP_MAX_HOST_CONNECTIONS java.lang.Integer The number of concurrent connections this
client program can establish to an individual
server host. The default limit is 2. This value
may not exceed that of
HTTP_MAX_TOTAL_CONNECTIONS, so if a
client requires more than 20 connections to the
server, it must also set
HTTP_MAX_TOTAL_CONNECTIONS to the
desired value.

USERNAME java.lang.String The user ID for HTTP authentication.

PASSWORD java.lang.String The password for HTTP authentication.

HTTP_PROXY_HOST java.lang.String The host DNS name of a proxy. Setting this
property requires setting HTTP_PROXY_PORT as
well.

HTTP_PROXY_PORT java.lang.Integer The port to use on a proxy. Setting this property
requires setting HTTP_PROXY_HOST as well.

HTTP_PROXY_AUTH_SCHEME java.lang.Integer The authentication scheme (Basic or Digest) to
use for a proxy.

HTTP_PROXY_USERNAME java.lang.String The user ID for HTTP authentication using a
proxy.

HTTP_PROXY_PASSWORD java.lang.String The password for HTTP authentication via proxy.
302 Provisioning Web Service

Client” on page 300) uses the first command line parameter to set the
ENDPOINT_ADDRESS_PROPERTY. Using the default values, you can run the client using the following
command, after starting the tunnel:

ant -Durl=http://localhost:9999/IDMProv/provisioning/service run

Sample Code for the Java Client
The following is the code for the Java client for listing all processes in the workflow system

package com.novell.examples;
import javax.naming.InitialContext;
import com.novell.soa.af.impl.soap.AdminException;
import com.novell.soa.af.impl.soap.Process;
import com.novell.soa.af.impl.soap.ProcessArray;
import com.novell.soa.af.impl.soap.Provisioning;
import com.novell.soa.af.impl.soap.ProvisioningService;
import com.novell.soa.ws.portable.Stub;
public class Client
{
private static final String USERNAME = "admin";
private static final String PASSWORD = "test";
public static void main(String[] args)
{
try {
String url = args.length > 0 ? args[0] :
"http://localhost:8080/IDMProv/provisioning/service";
listProcesses(url);
} catch (AdminException ex) {
System.out.println("command failed: " + ex.getReason());
} catch (Exception ex) {
ex.printStackTrace();
}
}
private static void listProcesses(String url)
throws Exception
{
// get the stub
InitialContext ctx = new InitialContext();
ProvisioningService service = (ProvisioningService)
ctx.lookup("xmlrpc:soap:com.novell.soa.af.impl.soap.ProvisioningService");
Provisioning prov = service.getProvisioningPort();
Stub stub = (Stub) prov;
// set username and password
stub._setProperty(Stub.USERNAME_PROPERTY, USERNAME);
stub._setProperty(Stub.PASSWORD_PROPERTY, PASSWORD);
// set the endpoint URL
stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, url);
// invoke the getAllProcesses method
ProcessArray array = prov.getAllProcesses();
Process[] procs = array.getProcess();
// print process array
System.out.println("list of all processes:");
if (procs != null) {
for (int i = 0; i < procs.length; i++) {
Provisioning Web Service 303

System.out.println(" process with request identifier " +
procs[i].getRequestId());
System.out.println(" initiator = " + procs[i].getInitiator());
System.out.println(" recipient = " + procs[i].getRecipient());
System.out.println(" processId = " + procs[i].getProcessId());
System.out.println(" created = " +
procs[i].getCreationTime().getTime());
if (null != procs[i].getCompletionTime()) {
System.out.println(" completed = " +
procs[i].getCompletionTime().getTime());
}
System.out.println(" approval status = " +
procs[i].getApprovalStatus());
System.out.println(" process status = " +
procs[i].getProcessStatus());
if (i != procs.length - 1)
System.out.println();
}
}
}
}

Developing a Mono Client
The previous section described how to create a Java client using the Web service toolkit and the pre-
compiled stub code included with Identity Manager. This section describes how to develop a client
using just the WSDL for the provisioning Web service. This example uses Mono and creates a C#
client that changes the default retention time of 120 days for completed workflows to 30.

Prerequisites
To get started, you need to download Mono and install it on your system (see the Mono Project
Website (https://www.mono-project.com/)). The version of Mono available at the time this
document was written did not support complex schema types in which an element has the nillable
attribute set to true. Because this construct is used in the provisioning WSDL, you must manually
edit the Provisioning.WSDL file and remove the three places where nillable="true" is used.

Generating the Stub
Compared to the Java client developed in “Developing a Java Client” on page 300, there is one
additional step required when building the C# client. Since the stub for accessing the Web service
SOAP endpoint is not provided, you must generate the stub from the WSDL document. Mono
includes a compiler called wsdl that processes the WSDL file and creates the stub. You can
download the WSDL file from your identity applications server by accessing the following URL:

http://myserver:8080/IDMProv/provisioning/service?wsdl
Replace “myserver” with the name of your server, and “IDMProv” with the name of your User
Application war file.

Compile the WSDL file using the following command:

wsdl Provisioning.wsdl
304 Provisioning Web Service

https://www.mono-project.com/
https://www.mono-project.com/

This will generate a C# file called ProvisioningService.cs, which you need to compile into a DLL using
the following Mono C# compiler command:

mcs /target:library /r:System.Web.Services.dll ProvisioningService.cs
Compared to the Java client, the resulting ProvisioningService.dll file is the equivalent of
workflow.jar, which contains the stub code and supporting classes for accessing the provisioning
Web service. The following is the source code for the simple C# client that sets the flow retention
time and displays the new value on the console:

using System;
using System.Net;
class provclient {
public static void Main(string [] args) {
// create the provisioning service proxy
ProvisioningService service = new ProvisioningService();
// set the credentials for basic authentication
service.Credentials = new NetworkCredential("admin", "test");
service.PreAuthenticate = true;
// set the value for completed request retention to 30 days
setCompletedProcessTimeoutRequest req = new
setCompletedProcessTimeoutRequest();
req.arg0 = 30;
service.setCompletedProcessTimeout(req);
// display the new value on the console
getCompletedProcessTimeoutResponse res =
service.getCompletedProcessTimeout(new
getCompletedProcessTimeoutRequest());
Console.WriteLine(res.result);
}
}
You need to edit the file using the administrator credentials on your deployed Identity Manager
system. Compile the client using the following command:

mcs /r:ProvisioningService.dll /r:System.Web provclient.cs
This generates the provclient.exe file.

Running the Client
Use the following command to run the client:

mono provclient.exe

Sample Ant File
The sample Ant file includes useful targets for extracting the necessary JAR files from the Identity
Manager installation, compiling and running the Java client, and for launching the TCP Tunnel.
Provisioning Web Service 305

<?xml version="1.0"?>
<project name="client" default="all" basedir=".">
<target name="all" depends="clean, extract, compile"></target>
<!-- main clean target -->
<target name="clean">
<delete quiet="true" dir="classes"/>
<delete quiet="true" dir="lib"/>
</target>
<!-- init sets up the build environment -->
<target name="init">
<mkdir dir="classes"/>
<copy todir="${basedir}/lib">
<fileset dir="${basedir}" includes="log4j.properties"/>
</copy>
<!-- classpath -->
<path id="CLASSPATH">
<pathelement location="${basedir}/classes"/>
<fileset dir="${basedir}/lib" includes="*.jar"/>
</path>
</target>
<!-- extract -->
<target name="extract">
<property name="idm.home" value="/opt/netiq/idm3"/>
<property name="tomcat.lib" value="${idm.home}/tomcat-4.0.3/server/
IDMProv/lib"/>
<mkdir dir="lib"/>
<unzip src="${idm.home}/IDMProv.war" dest="${basedir}/lib">
<patternset>
<include name="WEB-INF/lib/commons-codec-1.3.jar"/>
<include name="WEB-INF/lib/commons-httpclient.jar"/>
<include name="WEB-INF/lib/commons-logging.jar"/>
<include name="WEB-INF/lib/jaxrpc-api.jar"/>
<include name="WEB-INF/lib/saaj-api.jar"/>
<include name="WEB-INF/lib/xpp3.jar"/>
<include name="WEB-INF/lib/workflow.jar"/>
<include name="WEB-INF/lib/wssdk.jar"/>
<include name="WEB-INF/lib/IDMfw.jar"/>
</patternset>
</unzip>
<move todir="${basedir}/lib">
<fileset dir="${basedir}/lib/WEB-INF/lib" includes="*.jar"/>
</move>
<delete quiet="true" dir="${basedir}/lib/WEB-INF"/>
<copy todir="${basedir}/lib">
<fileset dir="${tomcat.lib}" includes="activation.jar, mail.jar,
log4j.jar"/>
</copy>
</target>
<!-- tunnel -->
<target name="tunnel" depends="init">
<java classname="com.novell.soa.ws.impl.tools.tcptunnel.Tunnel"
fork="true"
spawn="true">
<classpath refid="CLASSPATH"/>
306 Provisioning Web Service

</java>
</target>
<!-- compile -->
<target name="compile" depends="init">
<javac srcdir="${basedir}" destdir="classes"
includes="Client.java">
<classpath refid="CLASSPATH"/>
</javac>
</target>
<!-- run -->
<target name="run" depends="init">
<property name="url" value="http://localhost:8080/IDMProv/provisioning/
service"/>
<java classname="com.novell.examples.Client" fork="true">
<arg line="${url}"/>
<classpath refid="CLASSPATH"/>
</java>
</target>
</project>

Sample Log4J File
The following log4j file sets the default log level to “error”:

log4j.rootCategory=ERROR, R
log4j.appender.R=org.apache.log4j.ConsoleAppender
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%-5p: %m%n

Provisioning Web Service API
This section provides details about the Provisioning Web service methods.

All of the methods throw com.novell.soa.af.impl.soap.AdminException and
java.rmi.RemoteException. To improve readability, the throws clause has been omitted from the
method signatures.

Processes
This section provides reference information for each Processes method.

getProcessesByQuery
Used to get information about processes.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray
getProcessesByQuery(com.novell.soa.af.impl.soap.T_ProcessInfoQuery query,
int maxRecords)
Provisioning Web Service 307

Example
 //

 // Query information about processes for a user that are running and
 // have not been approved yet.
 String logic = "AND";
 T_ProcessInfoOrder order = T_ProcessInfoOrder.APPROVAL_STATUS;
 int CHOICE_SIZE = 4;
 Integer approvalStatusInteger = new
Integer(ProcessConstants.PROCESSING);
 Integer processStatusInteger = new
Integer(ProcessConstants.RUNNING);
 //
 // Setup the query with the above params
 T_ProcessInfoQueryChoice [] choice = new
T_ProcessInfoQueryChoice[CHOICE_SIZE];
 choice[0] = new T_ProcessInfoQueryChoice();
 choice[0].setApprovalStatus(approvalStatusInteger);
 choice[1] = new T_ProcessInfoQueryChoice();
 choice[1].setProcessStatus(processStatusInteger);
 choice[2] = new T_ProcessInfoQueryChoice();
 choice[2].setRecipient(recipient);
 choice[3] = new T_ProcessInfoQueryChoice();
 choice[3].setRequestId(requestId);

 int maxRecords = -1;
 T_ProcessInfoQuery processInfoQuery =
 new T_ProcessInfoQuery(T_Logic.fromString(logic), order,
choice);
 ProcessArray processArray =
stub.getProcessesByQuery(processInfoQuery, maxRecords);

getProcessesByStatus
Used to get information about processes with a specified status (for example, running processes).

Method Signature
public com.novell.soa.af.impl.soap.ProcessArray
getProcessesByStatus(com.novell.soa.af.impl.soap.T_ProcessStatus status)

Example
 T_ProcessStatus processStatus = T_ProcessStatus.Running;
 //
 // Get processes by status
 ProcessArray processArray =
stub.getProcessesByStatus(processStatus);
 Process [] process = processArray.getProcess();

getProcesses
Used to get information about processes, specified by processID.
308 Provisioning Web Service

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcesses(java.lang.String id,
long time,com.novell.soa.af.impl.soap.T_Operator op, java.lang.String
initiator, java.lang.String recipient)

Parameters

Example
 int processMatchCount = 0;
 T_Operator operator = T_Operator.GT;
 long currentTimeInMillis = System.currentTimeMillis();
 String [] requestIds = requestIdArray.getString();
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();

 ProcessArray processArray = stub.getProcesses(processId,
currentTimeInMillis, operator, initiator, recipient);
 }

Parameter Description

processId The process Id (java.lang.String).

creationTime The time at which the process was started (long).

op The operator to use. The operators are:

EQ - equals
LT - less than
LE - less than or equal to
GT - greater than
GE - greater than or equal to

initiator The initiator of the workflow.

recipient The recipient of the approval activity.
Provisioning Web Service 309

getAllProcesses
Used to get information about all running and completed provisioning requests.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getAllProcesses()

Example
 ProcessArray array = stub.getAllProcesses();
 Process [] processes = array.getProcess();
 if(_process != null)
 {
 sb = new StringBuffer();
 sb.append("\nProcess List:");
 for(int index = 0; index < _process.length; index++)
 {
 String processId = _process[index].getProcessId();
 String approvalStatus = _process[index].getApprovalStatus();
 Calendar completionTime = _process[index].getCompletionTime();
 Calendar creationTime = _process[index].getCreationTime();
 String engineId = _process[index].getEngineId();
 String proxy = _process[index].getProxy();
 String initiator = _process[index].getInitiator();
 String processName = _process[index].getProcessName();
 String processStatus = _process[index].getProcessStatus();
 String p_recipient = _process[index].getRecipient();
 String p_requestId = _process[index].getRequestId();
 int valueOfapprovalStatus =
_process[index].getValueOfApprovalStatus();
 int valueOfprocessStatus =
_process[index].getValueOfProcessStatus();
 String version = _process[index].getVersion();
 }

getProcessesArray
Used to limit the number of processes returned. If the limit you specify is less than the system limit,
the number you specify is returned. If you exceed the system limit, the Workflow Engine returns the
system limit. If the limit you specify is less than or equal to 0, the Workflow Engine returns all
processes.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesArray(int
maxRecords);
310 Provisioning Web Service

Example
 /**
 * Method to augment the getAllProcesses() method that impose limits
 * on the number of processes returned.
 * @throws TestProgramException
 */
 public void adding_Limits_To_getProcessArray_TestCase()
 throws TestProgramException
 {
 String recipient =
ServiceUtils.getInstance().getLoginData().getUsername(LoginData.RECIPIENT_
TYPE);
 String requestNameToStart =
provUtils.getProvisioningResourceNameForRecipient(recipient,
 "Enable Active Directory");
 //
 // Get the stub
 Provisioning stub =
ServiceUtils.getInstance().getProvisioningStub();
 try
 {
 //
 // Start multiple requests
 final int NUMBER_OF_REQUESTS_TO_START = 2;

 Map map = MapUtils.createAndSetMap(new Object[] {
 Helper.RECIPIENT, recipient,

IProvisioningConstants.PROVISIONING_REQUEST_TO_START,
requestNameToStart});
 //
 // Start request(s)
 StringArray requestIdArray =
 provUtils.startMultipleProvisioningRequests(map, null,
NUMBER_OF_REQUESTS_TO_START);
 LoggerUtils.sleep(3);
 LoggerUtils.sendToLogAndConsole("Started " +
NUMBER_OF_REQUESTS_TO_START + " provisioning requests");
 //
 // New method to limit the number of processes returned
 //
 // Test Results : maxProcesses <= 0 returns all processes
 // maxProcesses up to system limit returns
maxProcess count
 // maxProcesses > system limit returns system
limit
 int maxProcesses = 10;
 ProcessArray processArray =
stub.getProcessesArray(maxProcesses);
 Process [] processes = processArray.getProcess();
 if(processes != null)
 {
 LoggerUtils.sendToLogAndConsole("Process count returned: "
+ processes.length);
Provisioning Web Service 311

 Assert.assertEquals("Error: Processes returned shouldn't
exceed max count.",
 maxProcesses, processes.length);
 }
 }
 catch(AdminException error)
 {
 RationalTestScript.logError(error.getReason());
 throw new TestProgramException(error.getReason());
 }
 catch(RemoteException error)
 {
 RationalTestScript.logError(error.getMessage());
 throw new TestProgramException(error.getMessage());
 }
 }

getProcessesById
Used to get information about a specific process, specified by the Process Id.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesById(java.lang.String
id)

Example
 Process [] allProcesses = stub.getAllProcesses().getProcess();
 if(allProcesses != null)
 {
 String processId = allProcesses[0].getProcessId;
 ProcessArray array = stub.getProcessesById(processId);
 Process [] processes = array.getProcess();
 }

terminate
Used to terminate a running provisioning request.

Method Signature
void terminate(java.lang.String requestId,
com.novell.soa.af.impl.soap.T_TerminationType state, java.lang.String
comment)
312 Provisioning Web Service

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Now retract the request
 T_TerminationType terminationType = T_TerminationType.RETRACT;
 stub.terminate(requestId, terminationType, terminationType.getValue() +
" the request");

getProcess
Used to get information about a running or completed provisioning request, specified by Request ID.

Method Signature
com.novell.soa.af.impl.soap.Process getProcess(java.lang.String requestId)

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request

Parametere Description

requestId The Id of the provisioning request.

state The reason for terminating the process. The choices
are:

RETRACT

ERROR

comment Adds a comment about the terminate action.
Provisioning Web Service 313

 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 boolean bMatchProcess = false;
 if((recipient.compareTo(process.getRecipient()) == 0) &&
(requestId.compareTo(process.getRequestId()) == 0))
 {
 bMatchProcess = true;
 }
 if(bMatchProcess)
 {
 String msg = "Found process with requestId : " + requestId;
 LoggerUtils.sendToLogAndConsole(msg);
 }
 //
 // Assert if we could not find a match
 Assert.assertTrue("Could not find process with request id: " +
requestId, bMatchProcess);
 }

getProcessesByCreationTime
Used to get information about processes created between the current time and the time at which
the workflow process was created.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray getProcessesByCreationTime(long
time, com.novell.soa.af.impl.soap.T_Operator op)

Parameters

Parameter Description

creationTime The time at which the process was started.

op The operator to use. The operators are:

EQ - equals
LT - less than
LE - less than or equal to
GT - greater than
GE - greater than or equal to
314 Provisioning Web Service

Example
 T_Operator operator = T_Operator.GT;
 //
 // Get processes with operator relative to the current time
 long currentTime = System.currentTimeMillis();//
currentDateTime.getTime();
 ProcessArray processArray =
stub.getProcessesByCreationTime(currentTime, operator);

getProcessesByApprovalStatus
Used to get information about processes with a specified approval status (Approved, Denied, or
Retracted).

Method Signature
com.novell.soa.af.impl.soap.ProcessArray
getProcessesByApprovalStatus(com.novell.soa.af.impl.soap.T_ApprovalStatus
status)

Example
 T_ApprovalStatus approvalStatus = T_ApprovalStatus.Approved;
 //
 // Get all the processes based upon approval status above
 ProcessArray processArray =
stub.getProcessesByApprovalStatus(approvalStatus);
 Process [] processes = processArray.getProcess();

getProcessesByRecipient
Used to get information about processes that have a specific recipient Id.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray
getProcessesByRecipient(java.lang.String recipient)

Example
 String recipient = "cn=ablake,ou=users,ou=idmsample-komodo,o=netiq";
 //
 // Get processes by recipient
 ProcessArray processArray = stub.getProcessesByRecipient(recipient);
 Process [] process = processArray.getProcess();

getProcessesByInitiator
Used to get information about processes that have a specific initiator Id.
Provisioning Web Service 315

Method Signature
com.novell.soa.af.impl.soap.ProcessArray
getProcessesByInitiator(java.lang.String initiator)

Example
 String initiator = "cn=admin,ou=idmsample-komodo,o=netiq";

 //
 // Get processes by initiator
 ProcessArray processArray = stub.getProcessesByInitiator(initiator);
 Process [] process = processArray.getProcess();

setResult
Used to set the entitlement result (approval status) of a previously completed provisioning request.

Method Signature
void setResult(java.lang.String requestId,
com.novell.soa.af.impl.soap.T_EntitlementState state,
com.novell.soa.af.impl.soap.T_EntitlementStatus status, java.lang.String
message)

Parameters

Parameter Description

requestId The Id of the provisioning request.

state The state of the provisioning request. The possible
values are:

Unknown
Granted
Revoked

status The status of the provisioning request. The possible
values are:

Unknown
Success
Warning
Error
Fatal
Submitted

message A message about the entitlement result.
316 Provisioning Web Service

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if (process != null)
 processId = process.getProcessId();
 //
 // Reset the state of the provisioning request
 T_EntitlementState newEntitlementState =
T_EntitlementState.Revoked;
 T_EntitlementStatus newEntitlementStatus = T_EntitlementStatus.Success;
 String comment = "Revoked the provisioning request";
 stub.setResult(processId, newEntitlementState, newEntitlementStatus,
comment);

getProcessesByCreationInterval
Used to get information about processes started between two specified times.

Method Signature
com.novell.soa.af.impl.soap.ProcessArray
getProcessesByCreationInterval(long start, long end)

Parameters

Parameter Description

startTime The start time (YYYY/MM/DD).

endTime The end time (YYYY/MM/DD).
Provisioning Web Service 317

Example
 long startTime = System.currentTimeMillis();
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);

 long endTime = System.currentTimeMillis();
 //
 // Get all the processes between the start and end time ProcessArray
processArray = stub.getProcessesByCreationInterval(startTime, endTime);
 Process [] processes = processArray.getProcess();

Provisioning
This section provides reference information for each Provisioning method.

multiStart
Used to start a workflow request for each specified recipient.

Method Signature
com.novell.soa.af.impl.soap.StringArray multiStart(java.lang.String
processId, com.novell.soa.af.impl.soap.StringArray recipients,
com.novell.soa.af.impl.soap.DataItemArray items)

Parameters

Parameter Description

processId The Id of the provisioning request to start.

recipients The DN of each recipient.

dataItem The list of data items for the provisioning request.
318 Provisioning Web Service

Example
 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);

 //
 // If there are some then,
 if(requestArray != null)
 {
 String Id = " ";
 StringArray requestIdStringArray = null;
 String [] listOfRecipients = {recipient, addressee};
 //
 // Select a provisioning resource
 String requestNameToStart = "Enable Active Directory Account (Mgr
Approve-No Timeout)";
 //
 // Loop thru and find the request that we want to start
 ProvisioningRequest [] requests =
requestArray.getProvisioningrequest();
 for(int index = 0; index < requests.length; index++)
 {
 //
 // Is this the name of the request to start?
 if(requests[index].getName().compareTo(requestNameToStart) ==
0)
 {
 //
 // Get the current associated data items. Replicate a new
 // dataitem array excluding the null values.
 Id = requests[index].getId();
 DataItem [] dataItem =
requests[index].getItems().getDataitem();
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 {
 DataItemArray newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 //
 // Create a string array initializing with multiple
recipients
 StringArray listOfRecipientsStringArray = new
StringArray(listOfRecipients);
 //
 // Start the request for multiple recipients
 logStep("Calling stub.multiStart(" + Id +
",listOfRecipientsStringArray,newDataItemArray)");
 requestIdStringArray = stub.multiStart(Id,
listOfRecipientsStringArray, newDataItemArray);
 }
 }
}
Provisioning Web Service 319

start
Used to start a provisioning request.

Method Signature
java.lang.String start(java.lang.String processId, java.lang.String
recipient, com.novell.soa.af.impl.soap.DataItemArray items)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
The example above calls the startProvisioningRequest method. This method is not part of the
identity applications. We show it here to finish illustrating the example:

 /**
 *Method to start a provisioning request using the supplied
 *Map and dataitem object. Handling of digital certificate
 *resources is also handled.
 * @param _map
 * @param _in_dataItem
 * @return String
 * @throws TestProgrammException
 */
 public String startProvisioningRequest(Map _map, DataItem []
 _in_dataItem) throws TestProgramException
 {
 String requestId = null;
 try
 {
 String recipient =(String)_map.get(Helper.RECIPIENT);

Parameter Description

processId The Id of the provisioning request to start.

recipient The DN of each recipient.

dataItem The list of data items for the provisioning request.
320 Provisioning Web Service

 String requestToStart =
(String)_map.get(IProvisioningConstants.PROVISIONING_REQUEST_TO_START);
 String proxyUser
=(String)_map.get(IWorkFlowConstants.PROXY_USER);
 String digitalSignature =
String)_map.get(IDigitalSignatureConstants.DIGITAL_SIGNATURE);
 RationalTestScript.logInfo("Step: Calling
startProvisioningRequest(_map)");
 //
 //Get the stub
 Provisioning stub =
ServiceUtils.getInstance().getProvisioningStub();
 //
 //Get all the available resource requests for the recipient
 RationalTestScript.logInfo("Step: Calling
stub.getAllProvisioningRequests(" + recipient + ")");
 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);
 if(requestArray != null)
 {
 //
 //Get the provisioning request from the array
 ProvisioningRequest request =
getProvisioningRequestFromArray(requestArray, requestToStart);
 if(request != null)
 {
 DataItem [] dataItem = null;
 DataItemArray newDataItemArray = null;
 //
 // If the supplied data item is null then just replicate
 // what currently exists with the request.
 if(_in_dataItem == null)
 {
 //
 // Use the current data item associated with the request
 dataItem = request.getItems().getDataitem();
 if(dataItem != null)
 {
 newDataItemArray = replicateDataItemArray(dataItem);
 }
 }
 else
 {
 //
 // Set the incoming data item array
 newDataItemArray = new DataItemArray();
 newDataItemArray.setDataitem(_in_dataItem);
 }
Provisioning Web Service 321

 //
 // Start the Provisioning request for the recipient
 if(proxyUser == null && digitalSignature == null)
 {
 RationalTestScript.logInfo("Step: Calling stub.start(" +
request.getId() + "," + recipient + "dataItemArray)");
 requestId = stub.start(
 request.getId(),
 recipient,
 newDataItemArray);
 }
 else if(proxyUser != null && digitalSignature == null)
 }
 .
 .
 .

getAllProvisioningRequests
Used to return an array of available provisioning requests.

Method Signature
com.novell.soa.af.impl.soap.ProvisioningRequestArray
getAllProvisioningRequests(java.lang.String recipient)

Example
 //

 // Get all the provisioning requests for this recipient

 ProvisioningRequestArray provReqArray =
stub.getAllProvisioningRequests(recipient);
 ProvisioningRequest [] provRequest =
provReqArray.getProvisioningrequest();
 if(provRequest != null)
 {
 String description = provRequest[0].getDescription();
 String category = provRequest[0].getCategory();
 String digitialSignatureType =
provRequest[0].getDigitalSignatureType();
 String requestId = provRequest[0].getId();
 DataItemArray itemArray = provRequest[0].getItems();
 String legalDisclaimer = provRequest[0].getLegalDisclaimer();
 String name = provRequest[0].getName();
 String operation = provRequest[0].getOperation();
 }

getProvisioningRequests
Used to return an array of provisioning requests for a specified category and operation.
322 Provisioning Web Service

Method Signature
com.novell.soa.af.impl.soap.ProvisioningRequestArray
getProvisioningRequests(java.lang.String recipient, java.lang.String
category, java.lang.String operation)

Parameters

Example
 String operation = IProvisioningRequest.GRANT;
 try
 {
 //
 // Get the stub
 Provisioning stub =
ServiceUtils.getInstance().getProvisioningStub();
 logStep("Calling stub.getProvisioningCategories()");
 StringArray categoriesStringArray =
stub.getProvisioningCategories();
 String [] categories = categoriesStringArray.getString();
 //
 // Loop thru and get the provisioning requests for each category
 for(int index = 0; index < categories.length; index++)
 {
 //
 // Get the provisioning request based upon recipient
 logStep("Calling stub.getProvisioningRequests(" + recipient +
"," + categories[index] + "," + operation + ")");
 ProvisioningRequestArray provRequestArray =
stub.getProvisioningRequests(recipient, categories[index], operation);
 ProvisioningRequest [] provRequests =
provRequestArray.getProvisioningrequest();
 }

getProvisioningCategories
Used to get the list of available provisioning categories.

Method Signature
com.novell.soa.af.impl.soap.StringArray getProvisioningCategories()

Parameter Description

recipient The recipient of the provisioning request.

category The category of the provisioning request.

operation The provisioning request operation
(0=Grant,1=Revoke, 2=Both)
Provisioning Web Service 323

Example
 StringArray categoriesStringArray =
stub.getProvisioningCategories();
 String [] categories = categoriesStringArray.getString();

startAsProxy
Used to start a workflow as a proxy.

Method Signature
java.lang.String startAsProxy(java.lang.String processId, java.lang.String
recipient, com.novell.soa.af.impl.soap.DataItemArray items,
java.lang.String proxyUser)

Parameters

Example
 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);
 //
 // If there are some then,
 if(requestArray != null)
 {
 String Id = " ";
 String requestId = " ";
 String requestNameToStart = "Enable Active Directory Account (Mgr
Approve-No Timeout)";
 //
 // Loop thru and find the request that we want to start
 ProvisioningRequest [] requests =
requestArray.getProvisioningrequest();
 for(int index = 0; index < requests.length; index++)
 {
 //
 // Is this the name of the request to start?
 if(requests[index].getName().compareTo(requestNameToStart) ==
0)
 {
 //
 // Get the current associated data items. Replicate a new
 // dataitem array excluding the null values.

Parameter Description

processId The Id of the provisioning request.

recipient The recipient of the provisioning request.

Items The data items for the provisioning request.

proxyUser The DN of the proxy user.
324 Provisioning Web Service

 Id = requests[index].getId();
 DataItem [] dataItem =
requests[index].getItems().getDataitem();
 if(dataItem != null)
 {
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 DataItemArray newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 //
 // Start the Provisioning request for the recipient
 logStep("Calling stub.startAsProxy(" + Id + "," +
recipient + ",newDataItemArray," + proxyUser + ")");
 requestId = stub.startAsProxy(Id, recipient,
newDataItemArray, proxyUser);
 }
 }
 }
 }

getProvisioningStatuses
Used to get the status of provisioning requests.

Method Signature
com.novell.soa.af.impl.soap.ProvisioningStatusArray
getProvisioningStatuses(com.novell.soa.af.impl.soap.T_ProvisioningStatusQu
ery query, int maxRecords)
Provisioning Web Service 325

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 //
 T_ProvisioningStatusQueryChoice [] choice = new

Parameter Description

query Used to specify the provisioning status query. The
query has the following components:

 choice - the parameters used to filter the
results. You can specify multiple parameters.
The possible parameters are:

Recipient - a DN
RequestID
ActivityID
Status (an integer)
State (an integer)
ProvisioningTime (YYYY/MM/DD)
ResultTime (YYYY/MM/DD)

 logic - AND or OR
 order - the order in which to sort the results.

Possible values for order are:

ACTIVITY_ID
RECIPIENT
PROVISIONING_TIME
RESULT_TIME
STATE
STATUS
REQUEST_ID
MESSAGE

maxRecords Used to specify maximum number of records to
retrieve. A value of -1 returns unlimited records.
326 Provisioning Web Service

T_ProvisioningStatusQueryChoice[3];
 choice[0] = new T_ProvisioningStatusQueryChoice();
 choice[0].setRecipient(recipient);
 choice[1] = new T_ProvisioningStatusQueryChoice();
 choice[1].setRequestId(requestId);
 choice[2] = new T_ProvisioningStatusQueryChoice();
 choice[2].setStatus(new Integer(ProcessConstants.PROCESSING));
 //
 // Initialize the query
 T_ProvisioningStatusQuery query = new
T_ProvisioningStatusQuery(T_Logic.AND, T_ProvisioningStatusOrder.STATUS,
choice);
 //
 // Make the query
 StringBuffer sb = new StringBuffer();
 int maxRecords = -1;

 ProvisioningStatusArray provStatusArray =
stub.getProvisioningStatuses(query, maxRecords);

startWithDigitalSignature
Used to start a workflow and specify that a digital signature is required.

Method Signature
java.lang.String startWithDigitalSignature(java.lang.String processId,
java.lang.String recipient, com.novell.soa.af.impl.soap.DataItemArray
items, java.lang.String digitalSignature,
com.novell.soa.af.impl.soap.SignaturePropertyArray
digitalSignaturePropertyArray)

Parameters

Parameter Description

processId The request identifier.

recipient The request recipient.

items The data items for the provisioning request.

digital signature The digital signature.

digitalSignaturePropertyArray. The digital signature property map.
Provisioning Web Service 327

Example
 String recipient =
ServiceUtils.getInstance().getLoginData().getUsername(LoginData.RECIPIENT_
TYPE);
 //
 // Get the digital signature string for admin
 String digitalSignature =
DigitalSignatureUtils.getDigitalSignatureFromFile(IDigitalSignatureConstan
ts.ADMIN_DIGITAL_SIGNATURE_FILENAME);

 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);
 //
 // If there are some then,

 if(requestArray != null)
 {
 String Id = " ";
 String requestId = " ";
 String requestNameToStart = "Enable Active Directory Account (Mgr
Approve-No Timeout)";
 //
 // Loop thru and find the request that we want to start
 ProvisioningRequest [] requests =
requestArray.getProvisioningrequest();
 for(int index = 0; index < requests.length; index++)
 {
 //
 // Is this the name of the request to start?
 if(requests[index].getName().compareTo(requestNameToStart) ==
0)
 {
 //
 // Get the current associated data items. Replicate a new
 // dataitem array excluding the null values.
 Id = requests[index].getId();
 DataItem [] dataItem =
requests[index].getItems().getDataitem();
 if(dataItem != null)
 {
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
328 Provisioning Web Service

 // Identity Manager User Application.
 DataItemArray newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 //
 // Start a digitally signed provisioning resource for
the recipient
 requestId =
stub.startWithDigitalSignature(request.getId(), recipient,
newDataItemArray, digitalSignature, null); // Don't get any property values
(optional)
 }
 }
 }
 }

startAsProxyWithDigitalSignature
Used to start a workflow using a proxy for the initiator, and specify that a digital signature is
required.

Method Signature
java.lang.String startAsProxyWithDigitalSignature(java.lang.String
processId, java.lang.String recipient,
com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String
digitalSignature, com.novell.soa.af.impl.soap.SignaturePropertyArray
digitalSignaturePropertyArray, java.lang.String proxyUser)

Parameters

Parameter Description

processId The request identifier.

recipient The request recipient.

items The data items for the provisioning request.

digital signature The digital signature.

digitalSignaturePropertyArray. The digital signature property map.

proxyUser The DN of the proxy user.
Provisioning Web Service 329

Example
 //
 // Get the digital signature string for admin
 String digitalSignature =
DigitalSignatureUtils.getDigitalSignatureFromFile(IDigitalSignatureConstan
ts.ADMIN_DIGITAL_SIGNATURE_FILENAME);

 ProvisioningRequestArray requestArray =
stub.getAllProvisioningRequests(recipient);
 //
 // If there are some then,
 if(requestArray != null)
 {
 String Id = " ";
 String requestId = " ";
 String requestNameToStart = "Enable Active Directory Account (Mgr
Approve-No Timeout)";
 //
 // Loop thru and find the request that we want to start
 ProvisioningRequest [] requests =
requestArray.getProvisioningrequest();
 for(int index = 0; index < requests.length; index++)
 {
 //
 // Is this the name of the request to start?
 if(requests[index].getName().compareTo(requestNameToStart) ==
0)
 {
 //
 // Get the current associated data items. Replicate a new
 // dataitem array excluding the null values.
 Id = requests[index].getId();
 DataItem [] dataItem =
requests[index].getItems().getDataitem();
 if(dataItem != null)
 {
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 DataItemArray newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 //
 // Start a digitally signed provisioning resource as
proxy for the recipient

 requestId =
stub.startAsProxyWithDigitalSignature(request.getId(), recipient,
newDataItemArray, digitalSignature, null, proxyUser);
 }
 }
 }
 }
330 Provisioning Web Service

startWithCorrelationId
Used to start a workflow with a correlation ID. The correlation ID provides a way to track a set of
related workflow processes. When started with this method, workflow processes can be queried and
sorted by correlation ID.

Method Signature
java.lang.String startWithCorrelationId(java.lang.String processId,
java.lang.String recipient, com.novell.soa.af.impl.soap.DataItemArray
items, java.lang.String signature,
com.novell.soa.af.impl.soap.SignaturePropertyArray props, java.lang.String
proxyUser, java.lang.String correlationId)
 throws com.novell.soa.af.impl.soap.AdminException,
java.rmi.RemoteException;

Parameters

Work Entries
This section provides reference information for each Work Entries method.

forward
Used to forward a task to the next activity in the workflow with the appropriate action (approve,
deny, refuse).

Method Signature
void forward(java.lang.String wid, com.novell.soa.af.impl.soap.T_Action
action, com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String
comment)

Parameter Description

processId The request identifier.

recipient The request recipient.

items The data items for the provisioning request.

digital signature The digital signature.

digitalSignaturePropertyArray The digital signature property map.

proxyUser The DN of the proxy user.

correlationID The string that identities the correlation ID. The
correlation ID cannot be longer than 32 characters.
Provisioning Web Service 331

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // Create work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

Parameter Description

wid The work Id.

action The action to take (approve, deny, refuse).

items The data items required by the workflow.

comment The comment.
332 Provisioning Web Service

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

 if(workEntry != null

 {
 for(int wIndex = 0; wIndex < workEntry.length; wIndex++)
 {
 String workId = workEntry[wIndex].getId();
 //
 //
 LoggerUtils.sendToLogAndConsole("Forwarding : " +
workEntry[wIndex].getActivityName() + " work id: " + workId);
 //
 // Get the dataitem for this item of work
 DataItemArray dataItemArray = stub.getWork(workId);
 DataItem [] dataItem = dataItemArray.getDataitem();
 DataItemArray newDataItemArray = null;
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 else
 throw new TestProgramException("DataItem is null.");
 //
 // Claim request for recipient
 String comment = _action.toString() + " this request: " +
requestId + " for " + recipient;
 stub.forward(workId, _action, newDataItemArray, comment);
 }

 }

reassignWorkTask
Used to reassign a task from one user to another.

Method Signature
void reassignWorkTask(java.lang.String wid, java.lang.String addressee,
java.lang.String comment)

Parameters

Parameter Description

wid The Id of the task.

addressee The addressee of the task.

comment A comment about the task.
Provisioning Web Service 333

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, initiator);
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map, T_WorkEntryOrder.REQUEST_ID,
T_Logic.AND);

 if(workEntry == null)
 throw new TestProgramException("Work list is empty.");
 //
 // Reassign the work entry from recipient to the addressee
 //
 // Should only be one item
 String reassignComment = null;
 String workId = workEntry[0].getId();
 if(workId != null)
 {
 //
 // Reassign work entry(s) to addressee
 reassignComment = "Reassigning work entry " + workId + "
from " + recipient + " to " + addressee;
 stub.reassign(workId, addressee, reassignComment);
 LoggerUtils.sendToLogAndConsole("Reassign work entry " +
workId + " from " + recipient + " to " + addressee);
 }
 }
334 Provisioning Web Service

getWork
Used to retrieve data items for a work entry identified by the Id (UUID) of a task.

Method Signature
com.novell.soa.af.impl.soap.DataItemArray getWork(java.lang.String workId)

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, initiator);
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map, T_WorkEntryOrder.REQUEST_ID,
T_Logic.AND);
 //
 // Do assertion here
 Assert.assertNotNull("WorkEntry is null for recipient : " +
recipient + " with request id : " + requestId, workEntry);
 DataItemArray dataItemArray = stub.getWork(workEntry[0].getId()
);
 DataItem [] dataItem = dataItemArray.getDataitem();
 if(dataItem != null)
 LoggerUtils.sendToLogAndConsole(dataItem[0].getName());
 }
Provisioning Web Service 335

forwardWithDigitalSignature
Used to forward a provisioning request with a digital signature and optional digital signature
properties. For example, this can be used by an administrator to force a user-facing activity to be
approved, denied or refused.

Method Signature
void forwardWithDigitalSignature(java.lang.String wid,
com.novell.soa.af.impl.soap.T_Action action,
com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String comment,
java.lang.String digitalSignature,
com.novell.soa.af.impl.soap.SignaturePropertyArray
digitalSignaturePropertyArray)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 T_Action action = T_Action.APPROVE;

Parameter Description

wid The workId.

action The action to take (approve, deny, refuse).

items The data items required by the workflow.

comment A comment about the action.

digitalSignature The digital signature.

digitalSignaturePropertyArray The digital signature property map.
336 Provisioning Web Service

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 // Get the digital signature string for admin
 String digitalSignature =
DigitalSignatureUtils.getDigitalSignatureFromFile(IDigitalSignatureConstan
ts.ADMIN_DIGITAL_SIGNATURE_FILENAME);

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // Create work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

 if(workEntry != null

 {
 for(int wIndex = 0; wIndex < workEntry.length; wIndex++)
 {
 String workId = workEntry[wIndex].getId();
 //
 //
 LoggerUtils.sendToLogAndConsole("Forwarding : " +
workEntry[wIndex].getActivityName() + " work id: " + workId);
 //
 // Get the dataitem for this item of work
 DataItemArray dataItemArray = stub.getWork(workId);
 DataItem [] dataItem = dataItemArray.getDataitem();
 DataItemArray newDataItemArray = null;
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
Provisioning Web Service 337

 // Identity Manager User Application.
 newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 else
 throw new TestProgramException("DataItem is null.");
 //
 // Claim request for recipient
 String comment = _action.toString() + " this request: " +
requestId + " for " + recipient;
 stub.forwardWithDigitalSignature(workId, _action,
newDataItemArray, comment, digitalSignature, null);
 }

 }

forwardAsProxy
Used to forward a provisioning request. For example, this can be used by an administrator to force a
user-facing activity to be approved, denied or refused.

Method Signature
void forwardAsProxy(java.lang.String wid,
com.novell.soa.af.impl.soap.T_Action action,
com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String comment,
java.lang.String proxyUser)

Parameters

Parameter Description

wid The workId (activity Id).

action The action to take (approve, deny, refuse).

items The data items required by the workflow.

comment The comment to add to the activity.

proxyUser The DN of the proxy user.
338 Provisioning Web Service

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

 if(workEntry != null

 {
 for(int wIndex = 0; wIndex < workEntry.length; wIndex++)
 {
 String workId = workEntry[wIndex].getId();
 //
 //
Provisioning Web Service 339

 LoggerUtils.sendToLogAndConsole("Forwarding : " +
workEntry[wIndex].getActivityName() + " work id: " + workId);
 //
 // Get the dataitem for this item of work
 DataItemArray dataItemArray = stub.getWork(workId);
 DataItem [] dataItem = dataItemArray.getDataitem();
 DataItemArray newDataItemArray = null;
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 else
 throw new TestProgramException("DataItem is null.");
 //
 // Claim request for recipient
 String comment = _action.toString() + " this request: " +
requestId + " for " + recipient;
 String proxyUser =
ServiceUtils.getInstance().getLoginData().getUsername(LoginData.PROXY_TYPE
);
 stub.forwardAsProxy(workId, _action, newDataItemArray, comment,
proxyUser); }

 }

unclaim
Used to unclaim a provisioning request. This method only works if the request was claimed in the
identity applications. You cannot unclaim a request once it has been forwarded using the SOAP
interface, because the forward API method (see “forward” on page 331) claims and forwards in
one operation.

Method Signature
void unclaim(java.lang.String wid, java.lang.String comment)

Parameters

Parameter Description

workId The Id of the activity to unclaim.

comment A comment about the action.
340 Provisioning Web Service

Example
 // Action and Approval Types
 final int SELECTED_ACTION = 0; final int CLAIMED_SELECTED_ACTION = 0;
 T_Action [] action = {T_Action.APPROVE, T_Action.REFUSE,
T_Action.DENY};
 T_ApprovalStatus [] claimedAction = {T_ApprovalStatus.Approved,
T_ApprovalStatus.Retracted, T_ApprovalStatus.Denied};
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 //
 // Claim the request
 WorkEntry workEntry = workEntryUtils.claimWorkEntry(map,
action[SELECTED_ACTION]);
 if(workEntry != null)
 {
 //
 // Now unclaim the entry
 String workId = workEntry.getId();
 stub.unclaim(workId, "Unclaiming this work item : " + workId + " for
request id : " + requestId);
 }

forwardAsProxyWithDigitalSignature
Used to forward a provisioning request with a digital signature and digital signature properties. For
example, this can be used by an administrator to force a user-facing activity to be approved, denied
or refused.

Method Signature
void forwardAsProxyWithDigitalSignature(java.lang.String wid,
com.novell.soa.af.impl.soap.T_Action action,
com.novell.soa.af.impl.soap.DataItemArray items, java.lang.String comment,
java.lang.String digitalSignature,
com.novell.soa.af.impl.soap.SignaturePropertyArray
digitalSignaturePropertyArray, java.lang.String proxyUser)
Provisioning Web Service 341

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
 if(process != null)
 processId = process.getProcessId();

 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //

Parameter Description

wid The workId (activity Id).

action The action to take (approve, deny, refuse).

items The data items required by the workflow.

comment The comment to add to the activity.

digitalSignature The digital signature.

digitalSignaturePropertyArray The digital signature property map.

proxyUser The DN of the proxy user.
342 Provisioning Web Service

 // work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);

 WorkEntry [] workEntry = workEntryArray.getWorkentry();

 if(workEntry != null

 {
 for(int wIndex = 0; wIndex < workEntry.length; wIndex++)
 {
 String workId = workEntry[wIndex].getId();
 //
 //
 LoggerUtils.sendToLogAndConsole("Forwarding : " +
workEntry[wIndex].getActivityName() + " work id: " + workId);
 //
 // Get the dataitem for this item of work
 DataItemArray dataItemArray = stub.getWork(workId);
 DataItem [] dataItem = dataItemArray.getDataitem();
 DataItemArray newDataItemArray = null;
 if(dataItem != null)
 // Call method replicateDataItemArray on the
 // provUtils utility object, which refers to a
 // utility class that does not ship with the
 // Identity Manager User Application.
 newDataItemArray =
provUtils.replicateDataItemArray(dataItem);
 else
 throw new TestProgramException("DataItem is null.");
 //
 // Claim request for recipient
 String comment = _action.toString() + " this request: " +
requestId + " for " + recipient;
 String digitalSignature =
DigitalSignatureUtils.getDigitalSignatureFromFile(IDigitalSignatureConstan
ts.MMACKENZIE_DIGITAL_SIGNATURE_FILENAME);
 String proxyUser =
ServiceUtils.getInstance().getLoginData().getUsername(LoginData.PROXY_TYPE
);

 stub.forwardAsProxyWithDigitalSignature(workId, _action,
newDataItemArray, comment, digitalSignature, null, proxyUser);
 }

 }

reassign
Used to reassign a task from one user to another.
Provisioning Web Service 343

Method Signature
void reassign(java.lang.String wid, java.lang.String addressee,
java.lang.String comment)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, initiator);
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map, T_WorkEntryOrder.REQUEST_ID,
T_Logic.AND);

 if(workEntry == null)
 throw new TestProgramException("Work list is empty.");
 //
 // Reassign the work entry from recipient to the addressee
 //

Parameter Description

wid The Id of the activity to be reassigned.

addressee The addressee of the activity.

comment A comment about the action.
344 Provisioning Web Service

 // Should only be one work item
 String reassignComment = null;
 String workId = workEntry[0].getId();
 if(workId != null)
 {
 //
 // Reassign work entry(s) to addressee
 reassignComment = "Reassigning work entry " + workId + "
from " + recipient + " to " + addressee;
 stub.reassign(workId, addressee, reassignComment);
 LoggerUtils.sendToLogAndConsole("Reassign work entry " +
workId + " from " + recipient + " to " + addressee);
 }
 }

getWorkEntries
Used to query the work entries (activities) and returns a list of WorkEntry objects that satisfy the
query.

Method Signature
com.novell.soa.af.impl.soap.WorkEntryArray
getWorkEntries(com.novell.soa.af.impl.soap.T_WorkEntryQuery query, int
maxRecords)
Provisioning Web Service 345

Parameters

Parameter Description

query Used to specify the query used to retrieve the list of
activities. The query has the following components:

 choice - the parameters used to filter the
results. You can specify multiple parameters.
The possible parameters are:

Addressee - Possible values for this parameter
are a DN or self. Use self if you want to
retrieve work entries for the caller of the
query, as identified by the authentication
header of the SOAP header.

ProcessId
RequestId
ActivityId
Status (an integer)
Owner
Priority
CreationTime (YYYY/MM/DD)
ExpTime (YYYY/MM/DD)
CompletionTime (YYYY/MM/DD)
Recipient
Initiator
ProxyFor

 logic - AND or OR
 order - the order in which to sort the results.

Possible values for order are:

ACTIVITY_ID
RECIPIENT
PROVISIONING_TIME
RESULT_TIME
STATE
STATUS
REQUEST_ID
MESSAGE

maxRecords Used to specify maximum number of records to
retrieve. A value of -1 returns unlimited records.
346 Provisioning Web Service

Example
 T_Action action = T_Action.APPROVE;

 T_Logic logic = T_Logic.AND;

 T_WorkEntryOrder workEntryOrder = T_WorkEntryOrder.REQUEST_ID;

 T_WorkEntryQueryChoice [] workEntryqueryChoice = new
T_WorkEntryQueryChoice[3];
 workEntryqueryChoice[0] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[0].setRecipient(recipient);
 workEntryqueryChoice[1] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[1].setRequestId(requestId);
 workEntryqueryChoice[2] = new T_WorkEntryQueryChoice();
 workEntryqueryChoice[2].setProcessId(processId);
 //
 // work entry query
 T_WorkEntryQuery query = new T_WorkEntryQuery(logic, _workEntryOrder,
workEntryqueryChoice);
 //
 // Get all work entries (max records)
 WorkEntryArray workEntryArray = stub.getWorkEntries(query, -1);
 WorkEntry [] workEntry = workEntryArray.getWorkentry();

getQuorumForWorkTask
Used to get information about the quorum for a workflow activity. A quorum must have actually
been specified for the workflow activity by the workflow designer for this method to work.

Method Signature
com.novell.soa.af.impl.soap.Quorum getQuorumForWorkTask((java.lang.String
workId)

Example
 //

 // Note: Provisioning resource must contain a quorum in the flow for
this api method to work

 //
 // Action and Approval Types
 final int SELECTED_ACTION = 0; final int CLAIMED_SELECTED_ACTION = 0;
 T_Action [] action = {T_Action.APPROVE, T_Action.REFUSE,
T_Action.DENY};
 T_ApprovalStatus [] claimedAction = {T_ApprovalStatus.Approved,
T_ApprovalStatus.Retracted, T_ApprovalStatus.Denied};
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 String processId = null;
Provisioning Web Service 347

 if(process != null)
 processId = process.getProcessId();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, process.getInitiator());
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);

 Assert.assertNotNull("WorkEntry is null for recipient : " +
recipient + " with request id : " + requestId, workEntry);
 //
 //
 String workId = workEntry[0].getId();

 Quorum quorum = stub.getQuorumForWorkTask(workId);
 Assert.assertNotNull("Quorum for work task is null for recipient :
" + recipient + " with request id : " + requestId, quorum);
 //

 // Extract some data
 int approvalCondition = quorum.getApprovalCondition();
 int status = quorum.getStatus();
 int approveCount = quorum.getApproveCount();
 int participantCount = quorum.getParticipantCount();
 int refuseCount = quorum.getRefuseCount();

resetPriorityForWorkTask
Used to reset the priority for a task. You should only use this method on provisioning requests that
have a single approval branch.

Method Signature
void resetPriorityForWorkTask(java.lang.String workId, int priority,
java.lang.String comment)

Parameters

Parameter Description

workId The Id of the activity.

priority The priority to set for the activity.

comment A comment about the action.
348 Provisioning Web Service

Example
// Calls method getProvisioningResourceNameForRecipient
// on the provUtils utility object, which refers to a utility class
// that does not ship with the Identity Manager User Application.
String requestNameToStart =
provUtils.getProvisioningResourceNameForRecipient(recipient, "Enable
Active Directory Account");
 Map map = MapUtils.createAndSetMap(new Object[] {
 Helper.RECIPIENT, recipient,
 IProvisioningConstants.PROVISIONING_REQUEST_TO_START,
requestNameToStart});
 //
 // Try and start the provisioning request
 String requestId =
provWrapper.startProvisioningRequest(recipient, requestNameToStart);
 RationalTestScript.sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, process.getProcessId());
 map.put(Helper.INITIATOR, process.getInitiator());
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);
 //
 // Now reset the priority for this work item.
 String workId = workEntry[0].getId();
 String comment = "Resetting priority for this work item.";
 int priority = 0;
 stub.resetPriorityForWorkTask(workId, priority, comment);
}

Comments
This section provides reference information for each Comments method.

getCommentsByType
Used to get workflow comments that are of a specific type (for example, user, system).

Method Signature
com.novell.soa.af.impl.soap.CommentArray
getCommentsByType(java.lang.String requestId,
com.novell.soa.af.impl.soap.T_CommentType type)
Provisioning Web Service 349

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable
Active Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get the comments by type : either User or System
 T_CommentType [] commentTypes = {T_CommentType.User,
T_CommentType.System};

 for(int types = 0; types < commentTypes.length; types++)
 {
 CommentArray commentArray = stub.getCommentsByType(requestId,
commentTypes[types]);
 Comment [] comments = commentArray.getComment();
 if(comments != null)
 {
 for(int index = 0; index < comments.length; index++)
 {
 LoggerUtils.sendToLogAndConsole(" \nComment Type = " +
commentTypes[types].getValue() + "\n" +
 "Activity Id: " +
comments[index].getActivityId() + "\n" +
 "Comment : " + comments[index].getComment()
+ "\n" +
 "User : " + comments[index].getUser() + "\n"
+
 "System comment : " +
comments[index].getSystemComment() + "\n" +
 "Time stamp : " +
comments[index].getTimestamp().getTime().toString());
 }
 }
 }

Parameter Description

requestId The process identifier.

type The comment type (USER or SYSTEM)
350 Provisioning Web Service

getCommentsByActivity
Used to get the comments for a specific activity.

Method Signature
com.novell.soa.af.impl.soap.CommentArray
getCommentsByActivity(java.lang.String requestId, java.lang.String aid)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable
Active Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get the process id for this running process
 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 String processId = process.getProcessId();
 String initiator = process.getInitiator();
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 map.put(Helper.PROCESSID, processId);
 map.put(Helper.INITIATOR, initiator);
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map,

Parameter Description

requestId The process identifier.

aid The activity identifier.
Provisioning Web Service 351

T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);
 //
 // Get the activity id associated with the item of work
 String activityId = workEntry[0].getActivityId();
 //
 // Get the comments based on activity
 if(activityId != null)
 {
 CommentArray commentArray =
stub.getCommentsByActivity(requestId, activityId);
 Comment [] comments = commentArray.getComment();
 }

 }

getCommentsByUser
Used to get the comments made by a specific user.

Method Signature
com.novell.soa.af.impl.soap.CommentArray
getCommentsByUser(java.lang.String requestId, java.lang.String user)

Parameters

Parameter Description

requestId The process identifier.

user The the DN of the user (recipient) who created the
comments
352 Provisioning Web Service

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable
Active Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,\
null);
 sleep(5);
 //
 // Get the comments by recipient (should be the same as user)
 CommentArray commentArray = stub.getCommentsByUser(requestId,
recipient);
 Comment [] comments = commentArray.getComment();

getCommentsByCreationTime
Used to get comments made at a specific time.

Method Signature
com.novell.soa.af.impl.soap.CommentArray
getCommentsByCreationTime(java.lang.String requestId, long time,
com.novell.soa.af.impl.soap.T_Operator op)

Parameters

Parameter Description

requestId The process identifier.

time The time stamp.

op The query operator to use. Possible values for
operator are:

EQ - equals
LT - less than
LE - less than or equal to
GT - greater than
GE - greater than or equal to
Provisioning Web Service 353

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable
Active Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Get comments by creation time for the provisioning request
started above.
 long currentTime = System.currentTimeMillis();
 LoggerUtils.sendToLogAndConsole("-->Current date = " + new
java.util.Date(currentTime).toString());
 //
 //
 T_Operator operator = T_Operator.GT;
 CommentArray commentArray =
stub.getCommentsByCreationTime(requestId, currentTime, operator);
 Comment [] comments = commentArray.getComment();

addComment
Used to add a comment to a workflow activity.

Method Signature
void addComment(java.lang.String workId, java.lang.String comment)

Parameters

Parameter Description

workId The activity identifier (UUID).

comment A comment about the activity.
354 Provisioning Web Service

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.REQUESTID, requestId);
 map.put(Helper.RECIPIENT, recipient);
 WorkEntry [] workEntry = workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.REQUEST_ID, T_Logic.AND);
 //
 // Add comment to the work entry
 String workId = workEntry[0].getId();
 String processId = workEntry[0].getProcessId();
 String addComment = "Test comment for work id " + workId;
 stub.addComment(workId, addComment);
 sleep(2);

getComments
Used to get comments from a workflow.

Method Signature
com.novell.soa.af.impl.soap.CommentArray getComments(java.lang.String
workId, int maxRecords)

Parameters

Parameter Description

workId The activity Id (UUID).

maxRecords An integer specifying the maximum number of
records to retrieve.
Provisioning Web Service 355

Example
 //
 // Setup for the query
 HashMap map = new HashMap();
 map.put(Helper.RECIPIENT, addressee);
 WorkEntry [] workEntry =
workEntryUtils.getWorkEntriesUsingQuery(map,
T_WorkEntryOrder.ADDRESSEE, T_Logic.OR);
 //
 // Get all the comment records for this workId
 int maxRecords = -1;
 CommentArray commentArray = stub.getComments(workId, maxRecords);
 Comment [] comment = commentArray.getComment();

Configuration
This section provides reference information for each Configuration method.

setCompletedProcessTimeout
Used to set the timeout for completed processes. Processes that were completed more than timeout
days ago are removed from the system. The default value is 120 days. The valid range is 0 days to 365
days.

Method Signature
void setCompletedProcessTimeout(int time)

Example
accessConfigurationSettings(SET_COMPLETED_PROCESS_TIMEOUT, new
Integer(212));

setEngineConfiguration
Used to set workflow engine configuration parameters.

Method Signature
void setEngineConfiguration(com.novell.soa.af.impl.soap.Configuration
config)

Parameters

Parameter Description

minPoolSize The minumum thread pool size.

maxnPoolSize The maximum thread pool size.

initialPoolSize The initial thread pool size.
356 Provisioning Web Service

Example
accessConfigurationSettings(SET_ENGINE_CONFIGURATION, new Integer(313));

getCompletedProcessTimeout
Used to get the timeout for completed processes.

Method Signature
int getCompletedProcessTimeout()

Example
accessConfigurationSettings(GET_COMPLETED_PROCESS_TIMEOUT, new
Integer(121));

setEmailNotifications
Used to globally enable or disable email notifications.

Method Signature
void setEmailNotifications(boolean enable)

keepAliveTime Thread pool keep live time.

pendingInterval The cluster synchronization time.

cleanupInterval The interval between purging processes from
databases.

retryQueueInterval The interval between retrying failed processes.

maxShutdownTime The maximum time to let threads complete work
before engine shutdown.

userActivityTimeout The default user activity timeout.

completedProcessTimeout The default completed process timeout.

webServiceActivityTimeout The default Web service activity timeout.

emailNotification Turns email notification on or off.

processCacheInitialCapacity The process cache initial capacity.

processCacheMaxCapacity The process cache maximum capacity.

processCacheLoadFactor The process cache load factor.

heartbeatInterval The heartbeat interval.

heartbeatFactor The heartbeat factor.

Parameter Description
Provisioning Web Service 357

Parameters

Example
accessConfigurationSettings(SET_EMAIL_NOTIFICATIONS, new Boolean(false));

clearNIMCaches
Clear the NetIQ Integration Manager (previously named exteNd Composer) caches.

Method Signature
void clearNIMCaches()

Example
accessConfigurationSettings(CLEAR_NIM_CACHES, new Object());

setWebServiceActivityTimeout
Used to set the timeout for Web service activities. The default value is 50 minutes. The valid range is
1 minute to 7 days.

Method Signature
void setWebServiceActivityTimeout(int time)

Parameters

Example
accessConfigurationSettings(SET_WEBSERVICE_ACTIVITY_TIMEOUT, new
Integer(767));

getUserActivityTimeout
Used to get the timeout for user-facing activities.

Method Signature
int getUserActivityTimeout()

Parameter Description

enable Email notifications are enabled if true; otherwise
they are disabled.

Parameter Description

time The timeout value in minutes.
358 Provisioning Web Service

Example
accessConfigurationSettings(GET_USER_ACTIVITY_TIMEOUT, new Integer(3767)
);

getEmailNotifications
Used to determine if global email notifications are enabled or disabled.

Method Signature
boolean getEmailNotifications()

Example
accessConfigurationSettings(GET_EMAIL_NOTIFICATIONS, new Boolean(true));

setUserActivityTimeout
Used to set the timeout for user-facing activities. The default value is no timeout (a value of zero).
The valid range is 1 hour to 365 days.

Method Signature
void setUserActivityTimeout(int time)

Parameters

Example
accessConfigurationSettings(SET_USER_ACTIVITY_TIMEOUT, new Integer(1767)
);

getEngineConfiguration
Used to get the workflow engine configuration parameters.

Method Signature
com.novell.soa.af.impl.soap.Configuration getEngineConfiguration()

Example
accessConfigurationSettings(GET_ENGINE_CONFIGURATION, new Integer(141));

Parameter Description

time The timeout value in hours.
Provisioning Web Service 359

getWebServiceActivityTimeout
Used to get the timeout for Web service activities.

Method Signature
int getWebServiceActivityTimeout()

Example
accessConfigurationSettings(GET_WEBSERVICE_ACTIVITY_TIMEOUT, new
Integer(808));

Miscellaneous
This section provides reference information for each Miscellaneous method.

getGraph
Used to get a JPG image of the workflow. The Graphviz program must be installed on the computer
where the application server and the identity applications is running. For more information about
Graphviz, see Graphviz (http://www.graphviz.org).

Method Signature
byte[] getGraph(java.lang.String processId)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap,
null);
 sleep(5);
 //

 //

Parameters Description

processId The request Id.
360 Provisioning Web Service

http://www.graphviz.org

 Process process = stub.getProcess(requestId);
 if(process != null)
 {
 byte [] graph = null;
 if((recipient.compareTo(process.getRecipient()) == 0) &&
(requestId.compareTo(process.getRequestId()) == 0))
 {
 graph = stub.getGraph(process.getProcessId());
 }
 //
 // Do assert
 Assert.assertNotNull("Graph is null.", graph);
 }

getFlowDefinition
Used to get the XML for a provisioning request.

Method Signature
java.lang.String getFlowDefinition(java.lang.String processId)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //

 //

 Process process = stub.getProcess(requestId);

Parameters Description

processId The request Id.
Provisioning Web Service 361

 if(process != null)
 {
 String XMLFlowDefinition = null;
 if((recipient.compareTo(process.getRecipient()) == 0) &&
(requestId.compareTo(process.getRequestId()) == 0))
 {
 XMLFlowDefinition =
stub.getFlowDefinition(process.getProcessId());
 }
 //
 // Do assert
 Assert.assertNotNull("Flow Definition is null.",
XMLFlowDefinition);
 }

getFormDefinition
Used to get the XML for a form for a provisioning request.

Method Signature
java.lang.String getFormDefinition(java.lang.String processId)

Parameters

Example
 //
 // Initialize and start a provisioning request
 HashMap provMap = new HashMap();
 provMap.put(Helper.RECIPIENT, recipient);
 provMap.put(I"Provisioning_Request_To_Start_Key", "Enable Active
Directory Account (Mgr Approve-No Timeout)");
 //
 // Start request
 // Calls method startProvisioningRequest on the provUtils
 // utility object which refers to a utility class that does not
 // ship with the Identity Manager User Application.
 String requestId = provUtils.startProvisioningRequest(provMap, null);
 sleep(5);
 //

 //

 Process process = stub.getProcess(requestId);
 if(process != null)

Parameters Description

processId The request Id.
362 Provisioning Web Service

 {

 String XMLFormDefinition = null;
 if((recipient.compareTo(process.getRecipient()) == 0) &&
(requestId.compareTo(process.getRequestId()) == 0))
 {
 XMLFormDefinition =
stub.getFormDefinition(process.getProcessId());
 }
 //
 // Do assert
 Assert.assertNotNull("Form Definition is null.",
XMLFormDefinition);
 }

getVersion
Used to get the version of the workflow system.

Method Signature
com.novell.soa.af.impl.soap.T_Version getVersion()

Example
 StringBuffer result = new StringBuffer();

 T_Version version = stub.getVersion();
 if (version != null)
 {
 result.append(" Major = " + version.getMajor());
 result.append(" Minor = " + version.getMinor());
 result.append(" Revision = " + version.getRevision());

 System.out.println("Version Information " + result.toString());
 }

Cluster
This section provides reference information for each Cluster method.

getEngineState
Used to get the IEngineState for a workflow engine, specified by engine Id.

Method Signature
com.novell.soa.af.impl.soap.EngineState getEngineState(java.lang.String
engineId)
Provisioning Web Service 363

Parameters

Example
 EngineStateArray engineStateArray = stub.getClusterState();
 EngineState [] engineState = engineStateArray.getEngineStates();
 if(engineState != null)
 {
 LoggerUtils.sendToLogAndConsole("EngineCount in cluster:" +
engineState.length);
 for(int index = 0; index < engineState.length; index++)
 {
 EngineState engine =
stub.getEngineState(engineState[index].getEngineId());
 LoggerUtils.sendToLogAndConsole(
 "Engine Id: " + engine.getEngineId() + "\n" +
 "Engine status: " + engine.getEngineStatus() + "\n" +
 "Value of engine status: " +
engine.getValueOfEngineStatus() + "\n" +
 "Heartbeat: " + ((engine.getHeartbeat() != null) ?
engine.getHeartbeat().getTime().toString() : "null") + "\n" +
 "Shutdown time: " + ((engine.getShutdownTime()!= null)
? engine.getShutdownTime().getTime().toString() : "null") + "\n" +
 "Start time: " + ((engine.getStartTime() != null) ?
engine.getStartTime().getTime().toString() : "null"));
 }
 }

reassignAllProcesses
Used to reassign all processes from the source engine to a list of target engines.

Method Signature
int reassignAllProcesses(java.lang.String sourceEngineId,
com.novell.soa.af.impl.soap.StringArray targetEngineIds)

Parameters

getEngineState
Used to get a list that contains an IEngineState object for each engine in the cluster.

Parameter Description

engineId The Id of the workfow engine.

Parameter Description

sourceEngineId The Id of the source workflow engine.

targetEngineIds The Ids of the target workflow engines.
364 Provisioning Web Service

Method Signature
public com.novell.soa.af.impl.soap.EngineState
getEngineState(java.lang.String engineId)

Parameters

Example
 EngineStateArray engineStateArray = stub.getClusterState();
 EngineState [] engineState = engineStateArray.getEngineStates();
 if(engineState != null)
 {
 LoggerUtils.sendToLogAndConsole("EngineCount in cluster:" +
engineState.length);
 for(int index = 0; index < engineState.length; index++)
 {
 EngineState engine =
stub.getEngineState(engineState[index].getEngineId());
 LoggerUtils.sendToLogAndConsole(
 "Engine Id: " + engine.getEngineId() + "\n" +
 "Engine status: " + engine.getEngineStatus() + "\n" +
 "Value of engine status: " +
engine.getValueOfEngineStatus() + "\n" +
 "Heartbeat: " + ((engine.getHeartbeat() != null) ?
engine.getHeartbeat().getTime().toString() : "null") + "\n" +
 "Shutdown time: " + ((engine.getShutdownTime()!= null)
? engine.getShutdownTime().getTime().toString() : "null") + "\n" +
 "Start time: " + ((engine.getStartTime() != null) ?
engine.getStartTime().getTime().toString() : "null"));
 }
 }

reassignPercentageProcesses
Used to reassign a percentage of processes from the source engine to the target engine.

Method Signature
int reassignPercentageProcesses(int percent, java.lang.String
sourceEngineId, java.lang.String targetEngineId)

Parameter Description

engineId The Id of the workfow engine.
Provisioning Web Service 365

Parameters

reassignProcesses
Used to reassign one or more processes from the source engine to the target engine.

Method Signature
int reassignProcesses(com.novell.soa.af.impl.soap.StringArray requestIds,
java.lang.String sourceEngineId, java.lang.String targetEngineId)

Parameters

removeEngine
Used to remove an engine from the cluster state table. The engine must be in the SHUTDOWN or
TIMEDOUT state.

Method Signature
void removeEngine(java.lang.String engineId)

Parameters

Parameter Description

percent An integer representing the percentage of processes
to be reassigned.

sourceEngineId The Id of the source workflow engine.

targetEngineIds The Id of the target workflow engine.

Parameter Description

requestIds A list of requestIds of the processes to be reassigned.

sourceEngineId The Id of the source workflow engine.

targetEngineIds The Id of the target workflow engine.

Parameter Description

engineId The Id of the workflow engine to be removed.
366 Provisioning Web Service

28 28Metrics Web Service

This section describes the Metrics Web Service, which provides metrics for provisioning workflows.

About the Metrics Web Service
The workflow engine includes a Web Service for gathering workflow metrics. The addition of the
Metrics Web Service to the workflow engine lets you monitor an approval flow process. In addition,
it provides indicators the business manager can use to modify the process for optimal performance.

The metrics are based on traditional business process flow management principles, which
emphasize the need for metrics to be actionable. This ensures that the metrics provided match what
an operations manager usually looks for when analyzing and optimizing business flows. Therefore,
the metrics identify bottlenecks and provide other capacity indicators. The Metrics Web Service
allows you to narrow down the metrics to a common and established set of data, instead of trying to
anticipate the myriad of metrics and reports that can be created for a business process flow.

When working with the Metrics Web Service, you should keep in mind that the service is not
intended to be an all-purpose metrics system:

 The Metrics Web Service is not a reporting tool or reporting engine. Consequently it does not
use a complex query language.

 The Metrics Web Service is not designed as an all-purpose performance management system.
This helps to limit the impact of the needed queries against the live system being monitored.

Operations management stresses three key internal process performance measures that together
capture the essence of process flow. These three measures can serve as leading indicators of
customer satisfaction: flow time, flow rate, and inventory.

With these measures, an operations manager can answer the following questions:

 On average, how much time does a provisioning request spend within the process boundaries?
(Flow time)

 On average, how many provisioning requests pass through the process per unit of time? (Flow
rate)

 On average, how many provisioning requests are within the process boundaries at any point in
time? (Inventory)

These three measures are related by Little's law:

Inventory=Flow Rate*Flow Time
Metrics Web Service 367

Web Service Semantics
The following semantics apply to the use of the Metrics Web Service:

 Activities in the Metrics Web Service refer only to user-facing activities (Approval Activities).
Negligible running time and the impossibility of controlling the other activities make collecting
metrics for these inappropriate.

 The Metrics Web Service distinguishes between Working Days and Calendar Days. Calendar
Days refer to all days between two dates. Working Days refer only to working days between two
dates. Since working days may be specified differently in different environments, all Working
Days methods return a raw data set that can be used to compute what is appropriate. If no such
detail is required, the Calendar Days method will readily return the appropriate metric.

Accessing the Test Page
The Metrics Web Service endpoint can be accessed at the following URL:

http://server:port/warcontext/metrics/service
You can also access the SOAP endpoint by going to the Administration within the identity
applications. To do this, you need to select the Application Configuration tab, then select Web
Services from the left-navigation menu. After selecting Web Services, pick the Web Service endpoint
you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment. For details on enabling the test page, see the instructions provided for the
Role Service in “Enabling the Test Page” on page 425.

Web Service Methods Grouped by Security Permissions
The service is secured using Basic Authentication. Therefore, you should use SSL to connect to the
service. The service uses the same security layer as the identity applications and consequently not
all service operations are allowed to all users. Only a Provisioning Administrator will have
unconditional access to all the methods. On the other hand team managers will only have access to
metrics that pertain to their team and team members.

Hence the Metrics Web Service operations are divided into 3 categories according to role and
security permissions:

 Team manager operations
 Provisioning Application Administrator operations
 Utility operations

Team Metrics
Team managers can only retrieve metrics on a team for which they are managers. These are the
methods are available to team managers:
368 Metrics Web Service

Table 28-1 Team Metrics Methods

Method Description

getClaimedFlowTimeCalendarDays Returns the average time in hours the provisioning
request was claimed for within the specified time
interval

getClaimedFlowTimeWorkingDays Returns the result set required to compute the
average time the provisioning request was claimed
for the specified time interval

getToClaimedFlowTimeCalendarDays Returns the average time in hours it took the
provisioning request to be claimed from the moment
it was available to addressees

getToClaimedFlowTimeWorkingDays Returns the average time it took the provisioning
request to be claimed from the moment it was
available to addresses, within the specified time
interval

getClaimedInventory Returns the average number of provisioning requests
claimed within the specified interval

getClaimedThroughputWorkingDays Returns the average number of provisioning requests
claimed within the specified interval

getTeamLongestRunning Returns a result set of the longest running request in
seconds for which members of the team acted as
addressees

getTeamFlowHistory Returns a result set of the activity outcomes,
addressee and addressee messages for the specified
list of provisioning requests

getTeamHistoryForInitiators Returns a result set of the provisioning request and
their status for which members of the team acted as
initiators

getTeamHistoryForRecipients Returns a result set of the provisioning request and
their status for which members of the team acted as
recipients

getTeamRunningTime Returns the average time in seconds the specified
provisioning requests have been running

getTeamDecisionCount Returns the number of decisions the team made as
addressees for the specified provisioning request

getTeamInitiatedCount Returns the number of provisioning requests initiated
by the team

getTeamRecipientCount Returns the provisioning requests for which a
member of the team acts as a recipient
Metrics Web Service 369

Provisioning Administrator Metrics
This role is unrestricted and may perform any of the service's operations. These are the methods
that are only available to Provisioning Administrators.

Table 28-2 Provisioning Administrator Metrics Methods

Method Description

getActivityFlowTimeCalendarDays Returns the average time in hours the user activity
took to complete

getActivityFlowTimeWorkingDays Returns the result set required to compute the
average time the user activity took to complete

getActivityInventory Returns the average number of provisioning requests
at any one time for the specified user activity

getActivityThroughputCalendarDays Returns the average number of provisioning requests
per hours that exited the specified user activity
within the specified time interval

getActivityThroughputWorkingDays Returns the result set required to compute average
time it takes a provisioning request to complete for
the specified time interval

getFlowTimeCalendarDays Returns average time in hours it takes a provisioning
request to complete for the specified time interval

getFlowTimeWorkingDays Returns the result set required to compute average
time it takes a provisioning request to complete for
the specified time interval

getInventory Returns the average number of provisioning requests
in the system at any one time for the specified time
interval

getLongestClaimed Returns a result set of the provisioning requests that
have been claimed but not acted upon (time in
seconds)

getLongestRunning Returns a result set of the longest running
provisioning requests (time in seconds)

getFlowCount Returns the number of provisioning requests

getFlowHistory Returns a result set of the activity outcomes,
addressee and addressee messages for the specified
list of provisioning requests

getFlowHistoryForInitiators Returns the list of provisioning requests and their
status for the specified initiators

getFlowHistoryForRecipients Returns the list of provisioning requests and their
status for the specified recipients

getRunningTime Returns the average running time in seconds for the
provisioning requests that are currently running
370 Metrics Web Service

Utility Operations
Both team managers and administrators may perform these operations:

Table 28-3 Utility Operations

Specifying Filters
As mentioned above, the Metrics Webservice does not use a complex query language. Instead filters
can be use to narrow results by criteria such as date ranges or approval statuses.

These are the filters you can specify (see type FilterConstants in service’s WSDL):

Table 28-4 Filters for Narrowing Metric Results

getThroughputCalendarDays Returns the average number of provisioning requests
per hour that completed within the specified interval

getThroughputWorkingDays Returns the result set required to compute the
average number per hour of provisioning requests
that completed within the specified interval

Method Description

getVersion Returns the server version of the Web service. This
should always used to ensure version matching
between client and server code.

getAllProvisioningFlows Returns the list of provisioning flows that the logged
in user can see

getUserActivityOnlyFlow Returns a GraphViz DOT (http://www.graphviz.org/)
representation of the provisioning workflow

getTeams Returns the list of teams the logged in user manages

getTeamMembers Returns the list of team members for the specified
team

Filter Description

KEY_ACTIVITY_ID A User Activity Id as defined in the provisioning
request definition

Method Description
Metrics Web Service 371

KEY_APPROVAL_STATUS The approval status for the provisioning request.
Possible values are:

 ApprovalStatusProcessing
 ApprovalStatusDenied
 ApprovalStatusRefused
 ApprovalStatusApproved
 ApprovalStatusRetract
 ApprovalStatusError

KEY_ENTITLEMENT_STATE The state of the entitlement associated with the
provisioning request. Possible value are:

 EntitlementUnknown
 EntitlementGranted
 EntitlementRevoked

KEY_ENTITLEMENT_STATUS The status of the entitlement associated with the
provisioning request. Possible values are:

 EntitlementSuccess
 EntitlementWarning
 EntitlementError
 EntitlementFatal

KEY_INITIATOR The user DN of the workflow initiator

KEY_L_COMPLETION_TIME The date indicating the start of the interval for
workflow completion

KEY_S_COMPLETION_TIME The date indicating the end of the interval for
workflow completion

KEY_L_ENTITLEMENT_TIME The date indicating the start of the interval for
entitlement time

KEY_S_ENTITLEMENT_TIME The date indicating the end of the interval for
entitlement time

KEY_S_START_TIME The date indicating the start of the interval for
workflow start

KEY_L_START_TIME The date indicating the end of the interval for
workflow start

KEY_PROCESS_ID The DN of the provisioning request

Filter Description
372 Metrics Web Service

Here is a Java example. Note that your code will obviously differ depending on the platform you use
for your Web Service client:

 HashMap map=new HashMap();
 map.put(MetricsFilter.KEY_PROCESS_STATUS,
 MetricsFilter.ProcessStatusRunning);
 double flowtime = metrics.getFlowTimeCalendarDays(processId,
 processVer, activity, 5, calendar1.getTime(),
 calendar2.getTime(), MetricsFilter.ACTIVITY_CLAIMED,
 MetricsFilter.ACTIVITY_FORWARDED, map);
 ...
Please consult the WebService WSDL for more information:

http://server:port/warcontext/metrics/service?WSDL

Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the NetIQ WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.soa.af.metrics.soap.impl:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/
jaxrpc-api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar";
com.novell.soa.ws.impl.tools.wsdl2java.Main -verbose -ds gensrc -d C:\ -
noskel -notie -genclient -keep -package
com.novell.soa.af.metrics.soap.impl -javadoc metrics.wsdl

KEY_PROCESS_STATUS The status of the provisioning request. Possible
values are:

 ProcessStatusRunning
 ProcessStatusStopped
 ProcessStatusTerminated
 ProcessStatusCompleted

KEY_PROCESS_VERSION The process version associated with the workflow
version

KEY_RECIPIENT The user DN of the workflow recipient

KEY_REQUEST_ID The unique id associated with the workflow instance

Filter Description
Metrics Web Service 373

You can change the wsdl2java parameters to suit your requirements.

Obtaining the Remote Interface
Before you can begin calling methods on the Metrics Web Service, you need to have a reference to
the remote interface.

The code below shows how to obtain the remote interface.

import java.util.Locale;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.xml.rpc.Stub;
import com.novell.qa.soap.common.util.LoggerUtils;
import com.novell.qa.soap.common.util.LoginData;
import com.novell.qa.soap.common.util.ServiceUtils;
import com.novell.soa.af.ClusterException;
import com.novell.soa.af.impl.soap.Provisioning;
import com.novell.soa.af.impl.soap.ProvisioningService;
import com.novell.test.automator.framework.TestProgramException;
import com.rational.test.ft.script.RationalTestScript;
import com.novell.soa.af.metrics.soap.MetricsClientHelper;
import com.novell.soa.af.metrics.soap.MetricsStubWrapper;
import com.novell.soa.af.metrics.soap.impl.MetricsService;
import com.novell.soa.af.metrics.soap.impl.MetricsServiceException;
import com.novell.soa.af.metrics.soap.impl.IRemoteMetrics;

/**
* Method to obtain the remote interface to the Metrics endpoint
* @param _url
* @param _username
* @param _password
* @return IRemoteMetrics interface
* @throws Exception
*/
private IRemoteMetrics getStub(String _url, String _username, String
_password) throws Exception

{
 Properties properties = new Properties();
 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");

 String lookup =
374 Metrics Web Service

"xmlrpc:soap:com.novell.soa.af.metrics.soap.impl.MetricsService";

 InitialContext ctx = new InitialContext();
 MetricsService svc = (MetricsService) ctx.lookup(lookup);

 Stub stub = (Stub)svc.getIRemoteMetricsPort();

 stub._setProperty(Stub.USERNAME_PROPERTY, _username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, _password);
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);
 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, _url);

 return (IRemoteMetrics) stub;
}
Here’s the code to call the method defined above:

IRemoteMetrics stub = null;
 try
 {
 //
 // Get the stub
 String url = m_loginData.getURL();
 stub = getStub(url,_username,_password);
 }
 catch(Exception e)
 {
 String msg = e.getMessage();
 LoggerUtils.logError(msg);
 throw new TestProgramException(msg);
 }
 return stub;
In order for this code to work, the URL passed to the getStub() method would need to point to the
SOAP endpoint, as shown below:

http://myserver:8080/IDMProv/metrics/service
The user name needs to be a fully qualified DN such as the following:

"cn=admin,ou=idmsample,o=netiq"

Metrics Configuration Settings
The Metrics Web Service impact on the live system is limited by 4 settings that may be modified in
the IDMfw.jar/WorkflowService-conf/config.xml file:
Metrics Web Service 375

Table 28-5 Metrics Configuration Settings

When the limit has been reached for any of these settings a Web Service fault is generated indicating
the problem. In addition, for settings 1 and 2, the fault includes an error code.

 If the fault is caused by a TimeRequiredBetweenClientRequests error, the error code is 100.
 If the fault is caused by a MaxClients errors, the error code is 200.
 If the fault is caused by a closed client connection error, the error code is 300.

Client consumers of the Metrics Web Service will have to include in their code provisions for retrying
a request. Here is a simple Java listing that shows how this can be achieved:

 try {
 for (int i = 0; i < retries; i++) {
 try {
 return metrics.getFlowCount(strDN, strId, new
 HashMap());
 } catch (MetricsServiceException e) {
 if (e.getErrorCode() == 100 //subsequent call
 error
 || e.getErrorCode() == 200) { //too many
 clients
 try {
 Thread.sleep(retryPause);
 }

 catch (Exception ex) {
 // to nothing
 }
 } else {
 throw e2;
 }

Key in config.xml Description

<key>Metrics/TimeRequiredBetweenClientRequests</key> Required time between client requests in
ms (default is 250 ms)

<key>Metrics/MaxClients</key> Maximum number of concurrent client
sessions (default is 10)

<key>Metrics/MaxRows</key> Maximum number of rows any query can
return

<key>Metrics/MaxTeamMembers</key> Maximum Number of Team Members

<key>Metrics/SecondsToAnythingDivider</key> The divider used in all throughput
computations (default 3600). Original
values are in seconds so all throughputs are
consequently per hour.
376 Metrics Web Service

 } else {
 throw new RuntimeException(e);
 }
 } catch (Exception e) {
 throw e;
 }
 }
 throw new RuntimeException("Did not succeed making
 webservice call");
 } catch (Exception e) {
 throw e;
 }
 }
...

Metrics Web Service API
This section provides details about the methods available with the Metrics web service.

All of the methods throw MetricsServiceException and RemoteException. To improve readability, the
throws clause has been omitted from the method signatures.

Team Manager Methods
This section provides reference information for each method available to team managers.

getClaimedFlowTimeCalendarDays
Syntax: Here’s the method signature:

double getClaimedFlowTimeCalendarDays(String processId, String
processVersion, Date startCompletionTime, Date endCompletionTime, String
teamDN,Map filters)

getClaimedFlowTimeWorkingDays
Syntax: Here is the method signature:

MetricsResultset getClaimedFlowTimeWorkingDays(String processId, String
processVersion, Date startCompletionTime, Date endCompletionTime,String
teamDN, Map filters)

getToClaimedFlowTimeCalendarDays
Syntax: Here is the method signature:

 double getToClaimFlowTimeCalendarDays(String processId, String
processVersion, Date startCompletionTime, Date endCompletionTime, String
teamDN,Map filters)
Metrics Web Service 377

getToClaimedFlowTimeWorkingDays
Syntax: Here is the method signature:

 MetricsResultset getToClaimFlowTimeWorkingDays(String processId, String
processVersion, Date startCompletionTime, Date endCompletionTime,String
teamDN, Map filters)

getClaimedInventory
Syntax: Here is the method signature:

 double getClaimedInventory(String processId, String processVersion, Date
startCompletionTime, Date endCompletionTime, String teamDN, Map filters)

getClaimedThroughputCalendarDays
Syntax: Here is the method signature:

 double getClaimedThroughputCalendarDays(String processId, String
processVersion, Date startCompletionTime, Date endCompletionTime, String
teamDN Map filters)

getClaimedThroughputWorkingDays
Syntax: Here is the method signature:

 MetricsResultset getClaimedThroughputWorkingDays(String processId,
String processVersion, Date startCompletionTime, Date endCompletionTime,
String teamDN, Map filters)

getTeamLongestRunning
Syntax: Here is the method signature:

MetricsResultset getTeamLongestRunning(String processId, String
processVersion, String teamDN, Map filters)

getTeamLongestClaimed
Syntax: Here is the method signature:

MetricsResultset getTeamLongestClaimed(String processId, String
processVersion, String teamDN, Map filters)

getTeamFlowHistory
Syntax: Here is the method signature:

MetricsResultset getTeamFlowHistory(List requestIds)
378 Metrics Web Service

getTeamHistoryForInitiators
Syntax: Here is the method signature:

MetricsResultset getTeamHistoryForInitiators(String teamDN, Map filters)

getTeamHistoryForRecipients
Syntax: Here is the method signature:

MetricsResultset getTeamHistoryForRecipients(String teamDN, Map filters)

getTeamRunningTime
Syntax: Here is the method signature:

double getTeamRunningTime(String processId, String processVersion, String
teamDN, Map filters)

getTeamDecisionCount
Syntax: Here is the method signature:

int getTeamDecisionCount(String processId, String processVersion, String
teamDN, Map filters)

getTeamInitiatedCount
Syntax: Here is the method signature:

 int getTeamInitiatedCount(String processId, String processVersion, String
teamDN, Map filters)

getTeamRecipientCount
Syntax: Here is the method signature:

 int getTeamRecipientCount(String processId, String processVersion, String
teamDN, Map filters)

Provisioning Application Administrator Methods
This section provides reference information for each method available to the Provisioning
Application Administrator.

getActivityFlowTimeCalendarDays
Syntax: Here is the method signature:

double getActivityFlowTimeCalendarDays(String processId, String
processVer, String activityId, Date startTime, Date completeTime, Map
filters)
Metrics Web Service 379

getActivityFlowTimeWorkingDays
Syntax: Here is the method signature:

 MetricsResultset getActivityFlowTimeWorkingDays(String processId,
String processVer, String activityId, Date startTime, Date completeTime,
Map filters)

getActivityInventory
Syntax: Here is the method signature:

double getActivityInventory(String processId, String processVersion,
String activityId, Date startTime, Date completeTime, Map filters)

getActivityThroughputCalendarDays
Syntax: Here is the method signature:

double getActivityThroughputCalendarDays(String processId, String
processVersion, String activityId, Date startTime, Date completiontime, Map
filters)

getActivityThroughputWorkingDays
Syntax: Here is the method signature:

 MetricsResultset getActivityThroughputWorkingDays(String processId,
String processVersion, String activityId, Date startTime, Date
completiontime, Map filters)

getInventory
Syntax: Here is the method signature:

double getInventory(String processId, String processVersion, Date
startTime, Date completeTime, Map filters)

getLongestClaimed
Syntax: Here is the method signature:

 MetricsResultset getLongestClaimed(String processId, String
processVersion, Map filters)

getLongestRunning
Syntax: Here is the method signature:

MetricsResultset getLongestRunning(String processId, String
processVersion, Map filters)
380 Metrics Web Service

getFlowCount
Syntax: Here is the method signature:

int getFlowCount(String processId, String processVersion, Map filters)

getFlowHistory
Syntax: Here is the method signature:

MetricsResultset getFlowHistory(List requestIds)

getFlowHistoryForInitiators
Syntax: Here is the method signature:

 MetricsResultset getFlowHistoryForInitiators(List initiators, Map
filters)

getFlowHistoryForRecipients
Syntax: Here is the method signature:

MetricsResultset getFlowHistoryForRecipients(List recipients, Map filters)

getRunningTime
Syntax: Here is the method signature:

 double getRunningTime(String processId, String processVersion, Map
filters)

getThroughputCalendarDays
Syntax: Here is the method signature:

double getThroughputCalendarDays(String processId, String processVersion,
Date startTime, Date completiontime, Map filters)

getThroughputWorkingDays
Syntax: Here is the method signature:

MetricsResultset getActivityThroughputWorkingDays(String processId, String
processVersion, String activityId, Date startTime, Date completiontime,
Map filters)

Utility Methods
This section provides reference information for each utility method. Both team managers and
administrators can call these methods.
Metrics Web Service 381

getVersion
Syntax: Here is the method signature:

VersionVO getVersion()

getAllProvisioningFlows
Syntax: Here is the method signature:

MetricsResultset getAllProvisioningFlows()

getUserActivityOnlyFlow
Syntax: Here is the method signature:

BasicModelVO getUserActivityOnlyFlow(String processId, String processVer)

getTeams
Syntax: Here is the method signature:

MetricsResultset getTeams()

getTeamMembers
Syntax: Here is the method signature:

MetricsResultset getTeamMembers(String teamDN)

Metrics Web Service Examples
This section provides examples that show how to use the Metrics Web Service to gather workflow
metrics. The examples assume that you have obtained a stub, as shown in “Obtaining the Remote
Interface” on page 374, and potentially wrapped it in an object that handles the potential error
conditions, as described in “Metrics Configuration Settings” on page 375.

General Examples
This example uses the KEY_APPROVAL_STATUS filter to compare the decision outcomes for a
provisioning request type. This could be used to generate a pie chart for example.
382 Metrics Web Service

FilterConstants constants=new FilterConstants();
Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
map.put(MetricsFilter.KEY_APPROVAL_STATUS,constants.getApprovalStatusAppro
ved());
double accepted=stubWrapper.getFlowCount(processId,processVersion,map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,constants.getApprovalStatusDenie
d());
double denied=stubWrapper.getFlowCount(processId,processVersion,map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,constants.getApprovalStatusError
());
double error=stubWrapper.getFlowCount(processId,processVersion,map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,constants.getApprovalStatusRetra
ct());
double retracted=stubWrapper.getFlowCount(processId,processVersion,map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getApprovalStatusRefused());
double refused = stubWrapper.getFlowCount(processId,
processVersion, map);
Additional filters may be specified by adding appropriate entries to the filter map. The following
examples illustrate how you might add various types of filters.

Adding a start date filter
To add a start date filter (01/01/2006 < date < 02/01/2006):

Calendar startDate=Calendar.getInstance();
startDate.set(2006,0,1);
Calendar endDate=Calendar.getInstance();
endDate.set(2006,1,1);
map.put(MetricsFilter.KEY_L_START_TIME,startDate);
map.put(MetricsFilter.KEY_S_START_TIME,endDate)

Adding a completion date filter
To add a completion date filter (02/01/2005 < date <03/01/2005)

Calendar startDate=Calendar.getInstance();
startDate.set(2006,0,1);
Calendar endDate=Calendar.getInstance();
endDate.set(2006,1,1);
map.put(MetricsFilter.KEY_L_COMPLETION_TIME,startDate);
map.put(MetricsFilter.KEY_S_COMPLETION_TIME,endDate)

Narrowing requests to a specific initiator
To narrow down counted requests to a specific initiator

map.put(MetricsFilter.KEY_INITIATOR,"cn=admin,ou=idmsample,o=netiq");

Narrowing requests to a specific recipient
To narrow down counted requests to a specific recipient
Metrics Web Service 383

map.put(MetricsFilter.KEY_RECIPIENT,"cn=admin,ou=idmsample,o=netiq");

Other Examples
The following examples illustrate the use of various methods for retrieving workflow counts.

Retrieving decision counts for a team
This example describes how to retrieve the various decision outcomes of a team. The team's DN is
required and can be obtained by using the getTeams() method:

FilterConstants constants=new FilterConstants();
Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
map.put(MetricsFilter.KEY_ACTIVITY_END,
constants.getActivityApproved());
double accepted = stubWrapper.getTeamDecisionCount(processId,
processVersion, teamDN, map);
map.put(MetricsFilter.KEY_ACTIVITY_END,
constants.getActivityDenied());
double denied = stubWrapper.getTeamDecisionCount(processId,
processVersion, teamDN, map);
map.put(MetricsFilter.KEY_ACTIVITY_END,
 constants.getActivityReassigned());
double reassigned = stubWrapper.getTeamDecisionCount(processId,
 processVersion, teamDN, map);
map.put(MetricsFilter.KEY_ACTIVITY_END,
 constants.getActivityRefused());
double refused = stubWrapper.getTeamDecisionCount(processId,
 processVersion, teamDN, map);

Retrieving decision counts for requests where team members are
recipients
This example describes how to retrieve the various decisions outcomes for requests for which
members of the team act as recipients
384 Metrics Web Service

FilterConstants constants = new FilterConstants();
Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getActivityApproved());
double accepted = stubWrapper.getTeamRecipientCount(processId,
processVersion, teamDN, map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getApprovalStatusDenied());
double denied = stubWrapper.getTeamRecipientCount(processId,
processVersion, teamDN, map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getApprovalStatusError());
double error = stubWrapper.getTeamRecipientCount(processId,
processVersion, teamDN, map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getApprovalStatusError());
double retracted = stubWrapper.getTeamRecipientCount(processId,
processVersion, teamDN, map);
map.put(MetricsFilter.KEY_APPROVAL_STATUS,
constants.getApprovalStatusRefused());
double refused = stubWrapper.getTeamRecipientCount(processId,
processVersion, teamDN, map);

Retrieving requests that have been claimed but not acted on
This example describes how to retrieve the requests started after 03/01/2006 that have been
claimed but not acted upon.

Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
Calendar startDate=Calendar.getInstance();
startDate.set(2006,2,1);
map.put(MetricsFilter.KEY_L_START_TIME,startDate);
MetricsResultset rset = stubWrapper.getLongestClaimed(processId,
processVersion, map);

Retrieving the longest running requests started by a particular user
This example describes how to retrieve the longest running requests that have been started by
initiator "cn=admin,ou=idmsample,o=netiq";

Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
map.put(MetricsFilter.KEY_INITIATOR,""cn=admin,ou=idmsample,o=netiq");
MetricsResultset rset = stubWrapper.getLongestRunning(processId,
processVersion, map);

Retrieving activity inventory
This example describes the average inventory for users handling decision with activity id
"managerApproval" between 01/01/2006 and 02/01/2006
Metrics Web Service 385

Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
Calendar startDate=Calendar.getInstance();
startDate.set(2006,0,1);
Calendar endDate=Calendar.getInstance();
endDate.set(2006,1,1);
MetricsResultset rset = stubWrapper.getActivityInventory(processId,
processVersion,"managerApproval", startDate, endDate, map);

Retrieving the Claimed Throughput and Inventory for a Team
This example describes the team's throughput and inventory over the time interval between 01/01/
2006 and 02/01/2006

Map<MetricsFilter, Object> map = new HashMap<MetricsFilter, Object>();
Calendar startDate=Calendar.getInstance();
startDate.set(2006,0,1);
Calendar endDate=Calendar.getInstance();
endDate.set(2006,1,1);
double throughput =
stubWrapper.getClaimedThroughputCalendarDays(processId, processVersion,
startDate, endDate,teamDN, map);
double inventory = stubWrapper.getClaimedInventory(processId,
processVersion, startDate, endDate, teamDN, map)
386 Metrics Web Service

29 29Notification Web Service

This section describes the Notification Web Service, which allows SOAP clients to use the email
notification facility.

About the Notification Web Service
The identity applications includes an email notification facility that lets you send email messages to
notify users of changes in the state of the provisioning system, as well as tasks that they need to
perform. To support access by third-party software applications, the notification facility includes a
Web service endpoint. The endpoint lets you send an email message to one or more users. When
you send an email, you include parameters that specify the target email address, the email template
to use, and the replacement values for tokens in the email template.

This Appendix describes the programming interface for the Notification Web Service.

Accessing the Test Page
You can access the Notification Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/notification/service?test
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/notification/service?test
You can also access the SOAP endpoint by going to the Administration within the identity
applications. To do this, you need to select the Application Configuration tab, then select Web
Services from the left-navigation menu. After selecting Web Services, pick the Web Service endpoint
you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment. For details on enabling the test page, see the instructions provided for the
Role Service in “Enabling the Test Page” on page 425.

Accessing the WSDL
You can access the WSDL for the Notification Web Service using a URL similar to the following:

http://server:port/warcontext/notification/service?wsdl
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/notification/service?wsdl
Notification Web Service 387

Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the NetIQ WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.ws.client.notification:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/
jaxrpc-api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar";
com.novell.soa.ws.impl.tools.wsdl2java.Main -verbose -ds gensrc -d C:\ -
noskel -notie -genclient -keep -package com.novell.ws.client.notification -
javadoc notification.wsdl
You can change the wsdl2java parameters to suit your requirements.

Notification Web Service API
This section provides details about the methods available with the Notification Web service. This API
presumes you’re using Java code generated by the WSSDK toolkit. The API will be different if you’re
using another Web Service toolkit.

All of the methods throw RemoteException. To improve readability, the throws clause has been
omitted from the method signatures.

iRemoteNotification
This section provides reference information for each method associated with the
iRemoteNotification interface.

getVersion
Returns the version number of the notification facility you’re running.

Syntax: Here is the method signature:

VersionVO getVersion()

sendNotification
Sends an email notification.

Syntax: Here is the method signature:

void sendNotification(NotificationMap arg0)

BuiltInTokens
This section provides reference information for each method associated with the BuiltInTokens class.
388 Notification Web Service

BuiltInTokens constructor
The BuiltInTokens class has a single constructor.

Syntax: Here is the constructor for the BuiltInTokens class:

BuiltInTokens()

getTO
Returns the fixed string TO, which can be used as a key to identify the value for the TO system token.

Syntax: Here is the method signature:

public java.lang.String getTO()

getCC
Returns the fixed string CC, which can be used as a key to identify the value for the CC system token.

Syntax: Here is the method signature:

public java.lang.String getCC()

getBCC
Returns the fixed string BCC, which can be used as a key to identify the value for the BCC system
token.

Syntax: Here is the method signature:

public java.lang.String getBCC()

getTO_DN
Returns the fixed string TO_DN, which can be used as a key to identify the value for the TO_DN
system token.

Syntax Here is the method signature:

public java.lang.String getTO_DN()

getCC_DN
Returns the fixed string CC_DN, which can be used as a key to identify the value for the CC_DN
system token.

Syntax: Here is the method signature:

public java.lang.String getCC_DN()
Notification Web Service 389

getBCC_DN
Returns the fixed string BCC_DN, which can be used as a key to identify the value for the BCC_DN
system token.

Syntax: Here is the method signature:

public java.lang.String getBCC_DN()

getREPLYTO
Returns the fixed string REPLYTO, which can be used as a key to identify the value for the REPLYTO
system token.

Syntax: Here is the method signature:

public java.lang.String getREPLYTO()

getREPLYTO_DN
Returns the fixed string REPLYTO_DN, which can be used as a key to identify the value for the
REPLYTO_DN system token.

Syntax: Here is the method signature:

public java.lang.String getREPLYTO_DN()

getLOCALE
Returns the fixed string LOCALE, which can be used as a key to identify the value for the LOCALE
system token.

Syntax: Here is the method signature:

public java.lang.String getLOCALE()

getNOTIFICATION_TEMPLATE_DN
Returns the fixed string NOTIFICATION_TEMPLATE, which can be used as a key to identify the value
for the NOTIFICATION_TEMPLATE system token.

Syntax: Here is the method signature:

public java.lang.String getNOTIFICATION_TEMPLATE_DN()

Entry
The Entry class represents an entry in an EntryArray object. It is used to specify a token in an email
template.

This section provides reference information for each method associated with the Entry class.
390 Notification Web Service

Entry constructors
The Entry class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

Entry()
Syntax 2: Here is the syntax for a constructor that takes two parameters, the key value and an array
of values:

Entry(java.lang.String KeyVal, StringArray ValuesVal)

getKey
Returns the key defined for the Entry object. The key identifies the token.

Syntax: Here is the method signature:

java.lang.String getKey()

setKey
Sets the key for the Entry object. The key identifies the token. If the object represents a built-in
token, you can use the BuiltInTokens class to set the key. Otherwise, you can pass a string to the
setKey method that specifies the key.

Syntax: Here is the method signature:

void setKey(java.lang.String KeyVal)

getValues
Returns a StringArray object representing the values for the Entry object.

Syntax: Here is the method signature:

StringArray getValues()

setValues
Sets the values for the Entry object.

Syntax: Here is the method signature:

void setValues(StringArray ValuesVal)

EntryArray
The EntryArray class is a container for an array of Entry objects. It is contained by the
NotificationMap object.

This section provides reference information on the methods associated with the EntryArray class.
Notification Web Service 391

EntryArray constructors
The EntryArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

EntryArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Entry objects as a parameter:

EntryArray(Entry[] EntryVal)

getEntry
Returns the Entry object contained within this EntryArray object.

Syntax: Here is the method signature:

Entry[] getEntry()

setEntry
Sets the Entry object for this EntryArray object.

Syntax: Here is the method signature:

void setEntry(Entry[] EntryVal)

NotificationMap
The NotificationMap object is a map that contains an EntryArray object. It is passed to the
sendNotification method on the stub.

This section provides reference information for the methods associated with the NotificationMap
class.

NotificationMap constructors
The NotificationMap class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

NotificationMap()
Syntax 2: Here is the syntax for a constructor that takes an EntryArray object as a parameter:

NotificationMap(EntryArray EntriesVal)

getEntries
Returns the EntryArray object contained by this NotificationMap object.

Syntax: Here is the method signature:

EntryArray getEntries()
392 Notification Web Service

setEntries
Sets the EntryArray object for this NotificationMap object.

Syntax: Here is the method signature:

void setEntries(EntryArray EntriesVal)

NotificationService
This section provides reference information for the NotificationService interface.

getIRemoteNotificationPort
Gets the stub for the remote service. The stub is a port of type IRemoteNotification.

Syntax: Here is the method signature:

IRemoteNotification getIRemoteNotificationPort() throws
javax.xml.rpc.ServiceException

StringArray
This section provides reference information for the StringArray class.

StringArray constructors
The StringArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringArray()
Syntax 2: Here is the syntax for a constructor that takes a String array as a parameter:

StringArray(java.lang.String[] StringVal)

getString
Returns the array of strings defined for this StringArray object.

Syntax: Here is the method signature:

java.lang.String[] getString()

setString
Sets the array of strings for this StringArray object. This method is called by the second constructor,
which takes a String array as a parameter.

Syntax: Here is the method signature:

void setString(java.lang.String[] StringVal)
Notification Web Service 393

VersionVO
This section provides reference information on the VersionVO class.

getValue
Returns the version number of the service.

Syntax: Here is the method signature:

java.lang.String getValue()

Notification Example
The following code example shows how one might use the Notification service to send an email
message using a pre-defined system template. To get a reference to the SOAP endpoint for the
Notification service, a call is made to the getNotificationStub() method. After acquiring the stub
interface, the code sets the email notification template as well as values for the built-in tokens in the
template. In addition, the code specifies values for the requestTitle and initiatorFullName tokens. For
each token, the code creates an Entry object. Once all of the entries have been created, it packages
the entry array into a map of type NotificationMap, which is then passed to the sendNotification
method on the stub.

import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.xml.rpc.Stub;
import java.rmi.RemoteException;
//
// Notification imports
import com.novell.ws.client.notification.IRemoteNotification;
import com.novell.ws.client.notification.BuiltInTokens;
import com.novell.ws.client.notification.Entry;
import com.novell.ws.client.notification.EntryArray;
import com.novell.ws.client.notification.StringArray;
import com.novell.ws.client.notification.NotificationMap;
import com.novell.ws.client.notification.IRemoteNotification;
import com.novell.ws.client.notification.NotificationService;

public class NotificationTest
{
 private static final int LOCALHOST = 0; // localhost
 private static final int TESTSERVER = 1; // testserver
 private static final int SELECTED_URL = TESTSERVER;

 private String [] SERVER_URLS = {
 "http://localhost:8080/IDMProv/notification/service",
 "http://testserver:8080/IDMProv/notification/service"
 };
 private String url = SERVER_URLS[SELECTED_URL];
 private String username = "cn=admin,ou=idmsample,o=netiq";
394 Notification Web Service

 private String password = "test";

 public void emailNotificationTestCase()
 throws Exception
 {
 System.out.println("\nCalling emailNotificationTestCase() test
case");

 try
 {
 String targetEmailAddress = "jsmith@somewhere.com";
 //
 // Get the notification stub
 IRemoteNotification notificationStub =
getNotificationStub(url, username, password);

 BuiltInTokens builtInTokens = new BuiltInTokens();
 //
 // Set the To: entry
 Entry to = new Entry();
 to.setKey(builtInTokens.getTO());
 StringArray arr = new StringArray(new
String[]{targetEmailAddress});
 to.setValues(arr);
 //
 // Set which email template to use : list in iManager
(Workflow Admin->Email Templates)
 Entry notificationTemplate = new Entry();

notificationTemplate.setKey(builtInTokens.getNOTIFICATION_TEMPLATE_DN());
 //
 // Use one of the email templates specifying DN
 String EMAIL_TEMPLATE_NAME = "Provisioning Notification";
 String templateDN = "cn=" + EMAIL_TEMPLATE_NAME +
",cn=Default Notification Collection,cn=Security";
 arr = new StringArray(new String[]{templateDN});
 notificationTemplate.setValues(arr);
 //
 // Substitute key values defined in email templates
 Entry token1 = new Entry();
 token1.setKey("requestTitle"); // key is %requestTitle%
 arr = new StringArray(new String[]{"Sample Email using
Notification Web Service"});
 token1.setValues(arr);
 Entry token2 = new Entry();
 token2.setKey("initiatorFullName");
 arr = new StringArray(new String[]{username});
 token2.setValues(arr);
 //
 // Setup the notification map
 NotificationMap map = new NotificationMap();
 Entry[] entries = new
Entry[]{to,notificationTemplate,token1,token2};
 EntryArray entryArray = new EntryArray();
 entryArray.setEntry(entries);
Notification Web Service 395

 map.setEntries(entryArray);
 //
 // Make the notification endpoint call
 notificationStub.sendNotification(map);
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 /**
 * Method to obtain the remote interface to the Notification
endpoint
 * @param _url
 * @param _username
 * @param _password
 * @return IRemoteNotification interface
 * @throws Exception
 */
 private IRemoteNotification getNotificationStub(String _url,
String _username, String _password)
 throws Exception
 {
 Properties properties = new Properties();
 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");

 String lookup =
"xmlrpc:soap:com.novell.ws.client.notification.NotificationService";

 InitialContext ctx = new InitialContext();
 NotificationService svc = (NotificationService)
ctx.lookup(lookup);

 Stub stub = (Stub)svc.getIRemoteNotificationPort();

 stub._setProperty(Stub.USERNAME_PROPERTY, _username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, _password);
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY,
Boolean.TRUE);
 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, _url);

 return (IRemoteNotification) stub;
 }

}

396 Notification Web Service

30 30Directory Abstraction Layer (VDX) Web
Service

This section describes the VDX Web Service, which allows SOAP clients to access the directory
abstraction layer.

About the Directory Abstraction Layer (VDX) Web Service
The directory abstraction layer provides a logical view of the Identity Vault data. To support access
by third-party software applications, the directory abstraction layer includes a Web service endpoint
called the VDX Web Service. This endpoint lets you access the attributes associated with entities
defined in the directory abstraction layer. It also lets you perform ad hoc searches for entities and
execute predefined searches called global queries. You can think of global queries as stored
procedures for LDAP.

This Appendix describes the programming interface for the VDX Web Service.

Accessing the Test Page
You can access the VDX Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/vdx/service?test
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMProv/vdx/service?test
You can also access the SOAP endpoint by going to the Administration within the identity
applications. To do this, you need to select the Application Configuration tab, then select Web
Services from the left-navigation menu. After selecting Web Services, pick the Web Service endpoint
you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment. For details on enabling the test page, see the instructions provided for the
Role Service in “Enabling the Test Page” on page 425.

Accessing the WSDL
You can access the WSDL for the VDX Web Service using a URL similar to the following:

http://server:port/warcontext/vdx/service?wsdl
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:
Directory Abstraction Layer (VDX) Web Service 397

http://myserver:8080/IDMProv/vdx/service?wsdl

Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the NetIQ WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.ws.client.vdx:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/
jaxrpc-api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.8.0_162\lib\tools.jar";
com.novell.soa.ws.impl.tools.wsdl2java.Main -verbose -ds gensrc -d C:\ -
noskel -notie -genclient -keep -package com.novell.ws.client.vdx -javadoc
vdx.wsdl
You can change the wsdl2java parameters to suit your requirements.

Removing Administrator Credential Restrictions
The VDX Web Service supports two levels of security, one that restricts access to Provisioning
Administrators and another that restricts access to the authenticated user. The default setting
restricts access to all operations to the Provisioning Administrator.

You can modify the settings for security configuration in the ism-configuration.properties
file, located by default in the /netiq/idm/apps/tomcat/conf directory. . Each property can be
set to true or false. A value of true locks down the operation, whereas a value of false opens up the
operation.

You can open up the VDX Web Service to authenticated users by setting the VirtualDataService/soap
property to false. To open up a particular operation to authenticated users, you need to set the
property for that operation (VirtualDataService/soap/operation) to false as well. If you set all of the
properties to false, you can open up all operations to authenticated users. The operation names are
the same as the names of the methods supported by the service.

Example To ensure that the security configuration opens up all operations within the VDX Web
Service, the ism-configuration.properties file must have the following setting:

 VirtualDataService/soap = false
To restrict globalQuery, change the VirtualDataService/soap/globalQuery to true in the
ism-configuration.properties file.

Even though the service does not require the Administrator credentials since you set the
VirtualDataService/soap property to false, the globalQuery operation will still require the
Administrator credentials since you set a property for the operation to true.
398 Directory Abstraction Layer (VDX) Web Service

VDX Web Service API
This section provides details about the methods available with the VDX Web service. This API
presumes you’re using Java code generated by the WSSDK toolkit. The API will be different if you’re
using another Web Service toolkit.

All of the methods throw VdxServiceException. To improve readability, the throws clause has been
omitted from the method signatures.

IRemoteVdx
This section provides reference information for each method associated with the IRemoteVdx
interface.

getVersion
Returns the version number of the VDX service you’re running.

Syntax: Here is the method signature:

VersionVO getVersion() throws java.rmi.RemoteException;

globalQuery
Allows you to execute predefined searches called global queries. Global queries are saved searches
for LDAP. They provide some of the capabilities of stored procedures.

To define a global query, you need to use the directory abstraction layer editor. For details, see the
chapter on the directory abstraction layer editor in the Identity Manager User Application: Design
Guide.

Syntax: Here is the method signature:

java.lang.String[] globalQuery(java.lang.String queryDN, StringMap
queryParameterValues) throws VdxServiceException,
java.rmi.RemoteException;

query
Allows you to perform ad hoc queries by specifying an entity, a set of attributes, and a query
expression that filters the data returned.

Syntax: Here is the method signature:

EntityAttributeMap query(java.lang.String entityDefinition,
java.lang.String[] attributeKeys, java.lang.String queryFilter) throws
VdxServiceException, java.rmi.RemoteException;

Query Grammar
The queryFilter parameter of the query() method lets you pass in search criteria expressions that
filter the data returned. This section describes the grammar for these expressions.
Directory Abstraction Layer (VDX) Web Service 399

Query syntax 1: The simplest form of a query is the following:

RelationalExpression1

Query syntax 2: A query can also combine relational expressions with a logical operator:

RelationalExpession1 logicalOperator RelationalExpression2
Query syntax 3: Alternatively, a query can use parentheses to set off the expressions:

(RelationalExpession1) logicalOperator (RelationalExpression2)
Query syntax 4: A query can also use parentheses to set off sub queries:

RelationalExpession1 logicalOperator (RelationalExpression2
logicalOperator1 RelationalExpression3)
Relational expressions must be separated by a logical operator which must remain the same. In
other words, the following query is valid:

expression1 AND expression2 AND expression3
However, this query is not valid:

expression1 AND expression2 OR expression3
You can use parentheses to create a condition group, as in the following example:

expression1 AND (expression2 OR expression3)

Grammar for Relational Expressions
Relational expression syntax: A relational expression must conform to this syntax:

attribute relationalOperator value

Grammar for Operators and Values
Relational operators: The relational operator must be one of the following:

> , < , >= , <= , = , != , !< , !> , !<= , !>= , STARTWITH, !STARTWITH, IN
, !IN , PRESENT, !PRESENT
Logical operators: The logical operator must be one of the following:

AND, OR
Value: The value side of an expression must be one of the following:

'foo',"foo", 1-9, true, false
The PRESENT and !PRESENT relational operators require no value.

getAttribute
Returns a single Attribute object that can be used to retrieve and examine data for an attribute in
the directory abstraction layer.

Syntax: Here is the method signature:
400 Directory Abstraction Layer (VDX) Web Service

Attribute getAttribute(java.lang.String objectDN, java.lang.String
entityDefinition, java.lang.String attributeKey) throws
VdxServiceException, java.rmi.RemoteException;

getAttributes
Returns an array of Attribute objects that can be used to retrieve and examine data in the directory
abstraction layer.

Syntax: Here is the method signature:

Attribute[] getAttributes(java.lang.String objectDN, java.lang.String
entityDefinition, java.lang.String[] attributeKeys) throws
VdxServiceException, java.rmi.RemoteException;

Attribute
The Attribute class represents an attribute in the directory abstraction layer.

This section provides reference information for the Attribute class.

Attribute constructors
The Attribute class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no arguments:

Attribute()
Syntax 2: Here is the syntax for a constructor that takes arrays of all the supported data types as
arguments:

Attribute(ByteArrayArray BinariesVal, BooleanArray BooleansVal, DateArray
DatesVal, IntegerArray IntegersVal, StringArray StringsVal, AttributeType
TypeVal)

getBinaries
Returns the ByteArrayArray object for the attribute.

Syntax: Here is the method signature:

ByteArrayArray getBinaries()

setBinaries
Sets the ByteArrayArray object for the attribute.

Syntax: Here is the method signature:

void setBinaries(ByteArrayArray BinariesVal)
Directory Abstraction Layer (VDX) Web Service 401

getBooleans
Returns the BooleanArray object for the attribute.

Syntax: Here is the method signature:

BooleanArray getBooleans()

setBooleans
Sets the BooleanArray object for the attribute.

Syntax: Here is the method signature:

void setBooleans(BooleanArray BooleansVal)

getDates
Returns the DateArray object for the attribute.

Syntax: Here is the method signature:

DateArray getDates()

setDates
Sets the DateArray object for the attribute.

Syntax: Here is the method signature:

void setDates(DateArray DatesVal)

getIntegers
Returns the IntegerArray object for the attribute.

Syntax: Here is the method signature:

IntegerArray getIntegers()

setIntegers
Sets the IntegerArray object for the attribute.

Syntax: Here is the method signature:

void setIntegers(IntegerArray IntegersVal)

getStrings
Returns the StringArray object for the attribute.

Syntax: Here is the method signature:

StringArray getStrings()
402 Directory Abstraction Layer (VDX) Web Service

setStrings
Set the StringArray object for the attribute.

Syntax: Here is the method signature:

void setStrings(StringArray StringsVal)

getType
Returns the AttributeType object for the attribute.

Syntax: Here is the method signature:

AttributeType getType()

setType
Sets the AttributeType object for the attribute.

Syntax: Here is the method signature:

void setType(AttributeType TypeVal)

AttributeArray
This section provides reference information on the AttributeArray class.

AttributeArray constructors
The AttributeArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

AttributeArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

AttributeArray(Attribute[] AttributeVal)

getAttribute
Returns an array of Attribute objects.

Syntax: Here is the method signature:

Attribute[] getAttribute()

setAttribute
Sets the array of Attribute objects associated with the AttributeArray class.

Syntax: Here is the method signature:
Directory Abstraction Layer (VDX) Web Service 403

void setAttribute(Attribute[] AttributeVal)

AttributeType
This section provides reference information on the AttributeType class.

AttributeType constructors
The AttributeType class supports a single constructor.

Syntax: Here is the syntax for the constructor:

protected AttributeType(java.lang.String value)

getValue
Returns a String that indicates the attribute type.

Syntax: Here is the method signature:

java.lang.String getValue()

BooleanArray
This section provides reference information for the BooleanArray class.

BooleanArray constructors
The BooleanArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

BooleanArray()
Syntax 2: Here is the syntax for a constructor that takes a boolean value as a parameter:

BooleanArray(boolean[] BooleanVal)

getBoolean
Returns an array of boolean values for an attribute.

Syntax: Here is the method signature:

boolean[] getBoolean()

setBoolean
Sets an array of boolean values for an attribute.

Syntax: Here is the method signature:

void setBoolean(boolean[] BooleanVal)
404 Directory Abstraction Layer (VDX) Web Service

ByteArrayArray
This section provides reference information on the ByteArrayArray class.

ByteArrayArray constructors
The ByteArrayArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

ByteArrayArray()
Syntax 2: Here is the syntax for a constructor that takes a Base 64 binary value as a parameter:

ByteArrayArray(byte[][] Base64BinaryVal)

getBase64Binary
Returns a two-dimensional array of bytes for an attribute.

Syntax: Here is the method signature:

byte[][] getBase64Binary()

setBase64Binary
Sets a two-dimensional array of bytes for an attribute.

Syntax: Here is the method signature:

void setBase64Binary(byte[][] Base64BinaryVal)

DateArray
This section provides reference information for the DateArray class.

DateArray constructors
The DateArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

DateArray()
Syntax 2: Here is the syntax for a constructor that takes a Calendar array as a parameter:

DateArray(java.util.Calendar[] DatetimeVal)

getDatetime
Returns an array of Calendar objects for an attribute.

Syntax: Here is the method signature:
Directory Abstraction Layer (VDX) Web Service 405

java.util.Calendar[] getDatetime()

setDatetime
Sets an array of Calendar objects for an attribute.

Syntax: Here is the method signature:

void setDatetime(java.util.Calendar[] DatetimeVal)

EntryAttributeMap
The EntryAttributeMap class is a container for an EntryArray object. It is returned by the query
method on the stub.

This section provides reference information on the methods associated with the EntryAttributeMap
class.

EntryAttributeMap constructors
The EntryAttributeMap class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

EntryAttributeMap()
Syntax 2: Here is the syntax for a constructor that takes an EntryArray object as a parameter:

EntityAttributeMap(EntryArray EntriesVal)

getEntries
Returns the EntryArray object contained within this EntryAttributeMap object.

Syntax: Here is the method signature:

EntryArray getEntries()

setEntries
Sets the EntryArray object for this EntryAttributeMap object.

Syntax: Here is the method signature:

void setEntry(EntryArray EntriesVal)

Entry
The Entry class represents an entry in an EntryArray object.

This section provides reference information for each method associated with the Entry class.
406 Directory Abstraction Layer (VDX) Web Service

Entry constructors
The Entry class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

Entry()
Syntax 2: Here is the syntax for a constructor that takes two parameters, the key value and an array
of attribute values:

Entry(java.lang.String KeyVal, AttributeArray ValuesVal)

getKey
Returns the key defined for the Entry object. The key identifies the attribute.

Syntax: Here is the method signature:

java.lang.String getKey()

setKey
Sets the key for the Entry object. The key identifies the attribute.

Syntax: Here is the method signature:

void setKey(java.lang.String KeyVal)

getValues
Returns a AttributeArray object representing the values for the Entry object.

Syntax: Here is the method signature:

AttributeArray getValues()

setValues
Sets the values for the Entry object.

Syntax: Here is the method signature:

void setValues(AttributeArray ValuesVal)

EntryArray
The EntryArray class is a container for an array of Entry objects. It is contained by the
EntryAttributeMap object.

This section provides reference information on the methods associated with the EntryArray class.
Directory Abstraction Layer (VDX) Web Service 407

EntryArray constructors
The EntryArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

EntryArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Entry objects as a parameter:

EntryArray(Entry[] EntryVal)

getEntry
Returns the Entry object contained within this EntryArray object.

Syntax: Here is the method signature:

Entry[] getEntry()

setEntry
Sets the Entry object for this EntryArray object.

Syntax: Here is the method signature:

void setEntry(Entry[] EntryVal)

IntegerArray
This section provides reference information for the IntegerArray class.

IntegerArray constructors
The IntegerArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

IntegerArray()
Syntax 2: Here is the syntax for a constructor that takes an int array as a parameter:

IntegerArray(int[] IntVal)

getInt
Returns an array of integers for an attribute.

Syntax: Here is the method signature:

int[] getInt()
408 Directory Abstraction Layer (VDX) Web Service

setInt
Sets an array of integers for an attribute.

Syntax: Here is the method signature:

void setInt(int[] IntVal)

StringArray
The StringArray class is a container for an array of String objects. When you call the query() and
getAttributes() methods, you pass in a StringArray object to specify which attributes you want to
retrieve values for.

This section provides reference information for the StringArray class.

StringArray constructors
The StringArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringArray()
Syntax 2: Here is the syntax for a constructor that takes an String array as a parameter:

StringArray(java.lang.String[] StringVal)

getString
Returns the array of String objects associated with the StringArray object.

Syntax: Here is the method signature:

java.lang.String[] getString()

setString
Sets the array of String objects associated with the StringArray object.

Syntax: Here is the method signature:

void setString(java.lang.String[] StringVal)

StringEntry
The StringEntry class is contained by the the StringEntryArray class.

This section provides reference information for the StringEntry class.

StringEntry constructors
The StringEntry class has two constructors.
Directory Abstraction Layer (VDX) Web Service 409

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringEntry()
Syntax 2: Here is the syntax for a constructor that takes a key and a String value as parameters:

StringEntry(java.lang.String KeyVal, java.lang.String ValuesVal)

getKey
Returns the key defined for the StringEntry object.

Syntax: Here is the method signature:

java.lang.String getKey()

setKey
Sets the key for the StringEntry object.

Syntax: Here is the method signature:

void setKey(java.lang.String KeyVal)

StringEntryArray
The StringEntryArray class is a container for an array of StringEntry objects. It is contained by the
StringMap object.

This section provides reference information for the StringEntryArray class.

StringEntryArray constructors
The StringEntryArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringEntryArray()
Syntax 2: Here is the syntax for a constructor that takes a StringEntry array as a parameter:

StringEntryArray(StringEntry[] StringentryVal)

getStringentry
Returns the key for the StringEntryArray object.

Syntax: Here is the method signature:

StringEntry[] getStringentry()

setStringentry
Sets the key for the StringEntryArray object.
410 Directory Abstraction Layer (VDX) Web Service

Syntax: Here is the method signature:

void setStringentry(StringEntry[] StringentryVal)

StringMap
The StringMap is a container for a StringEntryArray object.

This section provides reference information on the StringMap class.

StringMap constructors
The StringMap class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

StringMap()
Syntax 2: Here is the syntax for a constructor that takes a StringEntryArray as a parameter:

StringMap(StringEntryArray EntriesVal)

getEntries
Returns the StringEntryArray object contained by this StringMap object.

Syntax: Here is the method signature:

StringEntryArray getEntries()

setEntries
Sets the StringEntryArray object for this StringMap object.

Syntax: Here is the method signature:

void setEntries(StringEntryArray EntriesVal)

VdxService
This section provides reference information for the VdxService interface.

getIRemoteVdxPort
Gets the stub for the remote service. The stub is a port of type IRemoteVdx.

Syntax: Here is the method signature:

IRemoteVdx getIRemoteVdxPort() throws javax.xml.rpc.ServiceException;

VersionVO
This section provides reference information on the VersionVO class.
Directory Abstraction Layer (VDX) Web Service 411

getValue
Returns the version number of the service.

Syntax: Here is the method signature:

java.lang.String getValue()

VDX Example
The following code example shows how one might use the VDX service to access the attributes
associated with entities defined in the directory abstraction layer. It demonstrates the use of ad hoc
searches, as well as predefined searches called global queries. This code listing includes examples
that use the getAttribute(), getAttributes(), query(), and globalQuery() methods on the service.

To get a reference to the SOAP endpoint for the VDX service, it calls a method called getVdxStub().
The implementation for this method is shown at the end of the listing:

NOTE: This example presumes that you have generated client stubs from the WSDL file
IRemoteVdx.wsdl. Use the SOAP stack provider of your choice (such as AXIS or CFX) to generate
client stubs.

With Apache CXF, for example, you should be able to generate the stubs to match the package
names in the import statement by using the following command:

wsdl2java -p com.netiq.ws.client.vdx IRemoteVdx.wsdl

import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.xml.rpc.Stub;
import java.rmi.RemoteException;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.rmi.RemoteException;
import java.util.Calendar;
import java.util.Date;
import java.util.Hashtable;
import java.util.Map;
//
// Vdx imports
import com.netiq.ws.client.vdx.IRemoteVdx;
import com.netiq.ws.client.vdx.VdxService;
import com.netiq.ws.client.vdx.VdxServiceException;
import com.netiq.ws.client.vdx.VersionVO;
import com.netiq.ws.client.vdx.Attribute;
import com.netiq.ws.client.vdx.AttributeArray;
import com.netiq.ws.client.vdx.AttributeType;
import com.netiq.ws.client.vdx.ByteArrayArray;
import com.netiq.ws.client.vdx.BooleanArray;
412 Directory Abstraction Layer (VDX) Web Service

import com.netiq.ws.client.vdx.DateArray;
import com.netiq.ws.client.vdx.StringArray;
import com.netiq.ws.client.vdx.IntegerArray;
import com.netiq.ws.client.vdx.EntryArray;
import com.netiq.ws.client.vdx.Entry;
import com.netiq.ws.client.vdx.EntityAttributeMap;

public class ServiceTest
{
 public static final int VDX = 0;
 public static final int NOTIFICATION = 1;
 public static final int RESOURCE = 2;
 public static final int ENDPOINT_SERVICE = VDX;

 private static final int LOCALHOST = 0; // localhost
 private static final int TESTSERVER = 1; // testserver
 private static final int SELECTED_URL = TESTSERVER;

 private String [] SERVER_URLS = {
 "http://localhost:8080/IDMProv/vdx/service",
 "http://testserver:8080/IDMProv/vdx/service"
 };

 private String url = SERVER_URLS[SELECTED_URL];
 private String username = "cn=admin,ou=idmsample,o=netiq";
 private String password = "test";

 private String [] userAttributes = {
 //"passwordAllowChange", // boolean
 "UserPhoto", // binary
 //"loginTime", // time
 "Department", // string
 "Title",
 "Email",
 "manager", // dn = string
 "TelephoneNumber",
 "directReports",
 "FirstName",
 //"surname",
 "group",
 "srvprvHideAttributes",
 "NotificationPrefs",
 "srvprvQueryList",
 "Location",
 };

 public ServiceTest() { };

 public static void main(String [] args)
 {
 ServiceTest serviceTest = new ServiceTest();
 //
 // Set default if no params are given
 int wService = ENDPOINT_SERVICE;
Directory Abstraction Layer (VDX) Web Service 413

 if(args.length == 1)
 wService = Integer.parseInt(args[0]);

 try
 {
 serviceTest.run(wService);
 }
 catch(Exception e)
 {
 System.exit(-1);
 }
 }

 private void waitHere(long _time) { try { Thread.sleep(_time *
1000); } catch(InterruptedException ie) {} }

 public void run(int _service)
 throws Exception
 {
 if(_service == VDX)
 {
 System.out.println("Calling VDX endpoint");
 //
 // Get the version number
 getVersionTestCase();
 waitHere(2);
 //
 // Get attribute data for entity user
 getAttributeTestCase();
 waitHere(2);
 //
 // Get attributes
 getAttributesTestCase();
 waitHere(2);
 //
 // Query attributes
 queryAttributesTestCase();
 waitHere(2);
 //
 // Global query
 // Global query MUST be associated with a defined and
deployed query.
 // This can be done via the Designer.

 globalQueryTestCase();
 }
 else if(_service == NOTIFICATION)
 {
 System.out.println("Calling Notification endpoint");
 NotificationTest notificationTest = new
NotificationTest();
 //
 // Email Notification
414 Directory Abstraction Layer (VDX) Web Service

 notificationTest.emailNotificationTestCase();
 }
 else if(_service == RESOURCE)
 {
 System.out.println("Calling Resource endpoint");
 }
 else
 {
 System.out.println("Unrecognized service selection");
 }
 }

public void globalQueryTestCase()
 throws Exception
 {

System.out.println("\n<=========queryAttributesTestCase=========>");
 try
 {
 //
 // Get the vdx stub
 IRemoteVdx vdxStub = getVdxStub(url, username, password);
 //
 // Create entry items corresponding to param key in DAL
 StringEntry [] entry = {
 new StringEntry("titleattribute", "Chief Operating
Officer"),
 new StringEntry("managerattribute",
"cn=jmiller,ou=users,ou=idmsample-pproto,o=netiq")
 };
 //
 // Create and set the array of entries (key,value pairs)
 StringEntryArray entryArr = new StringEntryArray();
 entryArr.setStringentry(entry);
 //
 // Create and set the map using the entries
 StringMap map = new StringMap();
 map.setEntries(entryArr);
 //
 // Define and execute the global query
 int QUERY_KEY_INDEX = 0;
 String [] queryKeyName = {"TestVdxGlobalQuery2",
"TestVdxGlobalQuery"};
 //
 // Results from global query TestVdxGlobalQuery2 ----->
cn=apalani,ou=users,OU=idmsample-pproto,O=netiq
 //
 // Make the vdx endpoint call
 StringArray array =
vdxStub.globalQuery(queryKeyName[QUERY_KEY_INDEX], map);
 String [] str = array.getString();
 if(str == null)
Directory Abstraction Layer (VDX) Web Service 415

 throw new Exception("Global query returns null for key
name " + queryKeyName);
 else
 {
 System.out.println("Results for global query : " +
queryKeyName[QUERY_KEY_INDEX]);

System.out.println("===
===");
 for(int index = 0; index < str.length; index++)
 {
 System.out.println(str[index]);
 }
 }
 }
 catch(VdxServiceException error)
 {
 System.out.println(error.getReason());
 throw new Exception(error.getReason());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 public void queryAttributesTestCase()
 throws Exception
 {
 System.out.println("\nCalling queryAttributesTestCase() test
case");
 try
 {
 IRemoteVdx vdxStub = getVdxStub(url, username, password);

 StringArray attributes = new StringArray();
 attributes.setString(new String[]{"FirstName", "Title",
"UserPhoto", "Department"});
 String expression1 = "FirstName STARTWITH 'J'";
 String expression2 = "Title = 'Controller'";
 String expression3 = "vdxInteger > 0";
 String expression4 = "TelephoneNumber != '(555) 555-1201'";
 //
 // Test Cases
 // expression1 --> Should yield all users whose firstname
starts with J
 // expression1 AND expression2 --> Should yield jkelley who
is the Controller
 // expression1 AND expression3 --> Should yield only jmiller
 // expression1 AND expression4 --> Should yield all users
starting with J EXCEPT jmiller
 String finalExpression = expression1 + " AND " +
expression2;
416 Directory Abstraction Layer (VDX) Web Service

 //
 // Make the vdx endpoint call
 EntityAttributeMap map = vdxStub.query("user", attributes,
finalExpression);
 EntryArray entryArray = map.getEntries();
 Entry [] entries = entryArray.getEntry();
 if(entries != null)
 {
 for(int index = 0; index < entries.length; index++)
 {
 String dnKey = entries[index].getKey();
 System.out.println("DN Key = " + dnKey);
 AttributeArray attributeArray =
entries[index].getValues();
 Attribute [] attributeData =
attributeArray.getAttribute();
 for(int attrIndex = 0; attrIndex <
attributeData.length; attrIndex++)
 {
 //
 // Determine how to handle the return data
 examineAttributeData(attributeData[attrIndex],
" ");
 }

 }
 }
 }
 catch(VdxServiceException error)
 {
 System.out.println(error.getReason());
 throw new Exception(error.getReason());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 public void getVersionTestCase()
 throws Exception
 {
 System.out.println("\nCalling getVersionTestCase() test
case");

 try
 {
 IRemoteVdx vdxStub = getVdxStub(url, username, password);
 VersionVO version = vdxStub.getVersion();
 System.out.println("Version : " + version.getValue());
 }
 catch(RemoteException error)
 {
Directory Abstraction Layer (VDX) Web Service 417

 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 public void getAttributeTestCase()
 throws Exception
 {
 System.out.println("\nCalling getAttributeTestCase() test
case");

 try
 {
 IRemoteVdx vdxStub = getVdxStub(url, username, password);

 String recipient =
"cn=jmiller,ou=users,ou=idmsample,o=netiq";
 String entity = "user";
 for(int attributeIndex = 0; attributeIndex <
userAttributes.length; attributeIndex++)
 {
 //
 // Now, get the values for each attribute from the VDX
layer
 Attribute attributeData =
vdxStub.getAttribute(recipient,
 entity, userAttributes[attributeIndex]);
 //
 // Determine how to handle the return data
 examineAttributeData(attributeData,
userAttributes[attributeIndex]);
 }
 }
 catch(VdxServiceException error)
 {
 System.out.println(error.getReason());
 throw new Exception(error.getReason());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 public void getAttributesTestCase()
 throws Exception
 {
 System.out.println("\nCalling getAttributesTestCase() test
case");

 try
 {
 IRemoteVdx vdxStub = getVdxStub(url, username, password);
418 Directory Abstraction Layer (VDX) Web Service

 String recipient =
"cn=jmiller,ou=users,ou=idmsample,o=netiq";
 String entity = "user";
 StringArray userAttributesArray = new
StringArray(userAttributes);
 AttributeArray attributeArray =
vdxStub.getAttributes(recipient,
 entity, userAttributesArray);
 Attribute [] attributeData = attributeArray.getAttribute();
 for(int index = 0; index < attributeData.length; index++)
 {
 //
 // Determine how to handle the return data
 examineAttributeData(attributeData[index],
userAttributes[index]);
 }
 }
 catch(VdxServiceException error)
 {
 System.out.println(error.getReason());
 throw new Exception(error.getReason());
 }
 catch(RemoteException error)
 {
 System.out.println(error.getMessage());
 throw new Exception(error.getMessage());
 }
 }

 private void examineAttributeData(Attribute _attribute, String
_attributeName)
 throws Exception
 {
 AttributeType type = _attribute.getType();
 System.out.println("Attribute type : " + type);
 //
 // What type are we dealing with?
 if(type.getValue().compareTo(AttributeType._Integer) == 0)
 {
 IntegerArray intArray = _attribute.getIntegers();
 int [] intData = intArray.getInt();
 if(intData == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int intIndex = 0; intIndex < intData.length;
intIndex++)
 {
 System.out.println(_attributeName + " attribute : "
+ intData[intIndex]);
 }
 }
Directory Abstraction Layer (VDX) Web Service 419

 }
 else if(type.getValue().compareTo(AttributeType._Boolean) == 0)
 {
 BooleanArray boolArray = _attribute.getBooleans();
 boolean [] booleanData = boolArray.getBoolean();
 if(booleanData == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int boolIndex = 0; boolIndex < booleanData.length;
boolIndex++)
 {
 System.out.println(_attributeName + " attribute : "
+ booleanData[boolIndex]);
 }
 }
 }
 else if((type.getValue().compareTo(AttributeType._String) ==
0) ||
 (type.getValue().compareTo(AttributeType._DN) == 0))
 {
 StringArray dataArray = _attribute.getStrings();
 String [] stringData = dataArray.getString();
 if(stringData == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int strIndex = 0; strIndex < stringData.length;
strIndex++)
 {
 System.out.println(_attributeName + " attribute : "
+ stringData[strIndex]);
 }
 }
 }
 else if(type.getValue().compareTo(AttributeType._Binary) == 0)
 {
 ByteArrayArray byteArray = _attribute.getBinaries();
 byte [][] byteData = byteArray.getBase64Binary();
 if(byteData == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int byteIndex = 0; byteIndex < byteData.length;
byteIndex++)
 {
 byte [] data = byteData[byteIndex];
 //
 // Save the data to a gif file and view it to
 // make sure the binary return data is correct.
 try
 {
420 Directory Abstraction Layer (VDX) Web Service

 File fileObj = new File("C:\\temp\\photo.gif");
 if(fileObj.exists())
 fileObj.delete();
 FileOutputStream fout = new
FileOutputStream(fileObj);
 fout.write(data);
 fout.flush();
 }
 catch(FileNotFoundException fne)
 {
 throw new Exception(fne.getMessage());
 }
 catch(IOException ioe)
 {
 throw new Exception(ioe.getMessage());
 }
 }
 }
 }
 else if(type.getValue().compareTo(AttributeType._Time) == 0)
 {
 DateArray dateArray = _attribute.getDates();
 Calendar [] calendar = dateArray.getDatetime();
 if(calendar == null)
 System.out.println(_attributeName + " attribute : " +
"null because no attribute value exists.");
 else
 {
 for(int calIndex = 0; calIndex < calendar.length;
calIndex++)
 {
 System.out.println(_attributeName + " attribute : "
+ calendar[calIndex].getTime().toString());
 }
 }
 }

 }

 /**
 * Method to obtain the remote interface to the Vdx endpoint
 * @param _url
 * @param _username
 * @param _password
 * @return IRemoteMetrics interface
 * @throws Exception
 */
 private IRemoteVdx getVdxStub(String _url, String _username, String
_password)
 throws Exception
 {
 Properties properties = new Properties();
 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");
Directory Abstraction Layer (VDX) Web Service 421

 String lookup =
"xmlrpc:soap:com.netiq.ws.client.vdx.VdxService";

 InitialContext ctx = new InitialContext();
 VdxService svc = (VdxService) ctx.lookup(lookup);

 Stub stub = (Stub)svc.getIRemoteVdxPort();

 stub._setProperty(Stub.USERNAME_PROPERTY, _username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, _password);
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY,
Boolean.TRUE);
 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, _url);

 return (IRemoteVdx) stub;
 }

}

422 Directory Abstraction Layer (VDX) Web Service

31 31Role Web Service

This section describes the Role Web Service, which allows SOAP clients to access the role
management and SoD management functions.

About the Role Web Service
To support access by third-party software applications, the Role subsystem includes a Web service
endpoint called the Role Web Service. It supports a wide range of role management and SoD
management functions.

This Appendix describes the programming interface for the Role Web Service.

Accessing the Test Page
You can access the Role Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/role/service?test
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/role/service?test
You can also access the SOAP endpoint by going to the Administration within the identity
applications. To do this, you need to select the Application Configuration tab, then select Web
Services from the left-navigation menu. After selecting Web Services, pick the Web Service endpoint
you want from the list.

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment.

Servlet Declaration for the Test Page
A SOAP service using WSSDK is deployed by adding the following declarations in the deployment
descriptor (i.e. WEB-INF/web.xml):

<servlet>
 <servlet-name>Role</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.role.impl.RoleServiceSkeletonImpl</
servlet-class>
Role Web Service 423

<servlet-mapping>
 <servlet-name>Role</servlet-name>
 <url-pattern>/role/service</url-pattern>
</servlet-mapping>
</servlet>
This follows the normal servlet declaration pattern. It indicates that the servlet
com.novell.idm.nrf.soap.ws.role.impl.RoleServiceSkeletonImpl is deployed at /role/service.

When a user reaches this servlet using a HTTP GET by entering http://server-name/context/
role/service (for example, http://localhost:8080/IDMProv/role/service) in their
browser, the WSSDK provides a page that exposes some information about the deployed service. By
default the page looks like this:

Figure 31-1 SOAP Service with Test Page Disabled

After you enable the test page, the Test Service link is available:
424 Role Web Service

Figure 31-2 SOAP Servlet with Test Page Enabled

On the test page, the user can retrieve the WSDL document that describes the Web Service, see the
Java Remote Interface that represents the service, and also see the type mappings from XML to Java.
In addition, the user can test the service by invoking individual methods.

Enabling the Test Page

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment.

To enable the test page, you need to update the WEB-INF/web.xml file in the IDMProv.war file.
Before you make your changes, the web.xml should look like this:

<servlet>
 <servlet-name>Role</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.role.impl.RoleServiceSkeletonImpl</
servlet-class>
 <init-param>
 <param-name>com.novell.soa.ws.test.disable</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>
Change the servlet declaration, as follows:
Role Web Service 425

<servlet>
 <servlet-name>Role</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.role.impl.RoleServiceSkeletonImpl</
servlet-class>
</servlet>

Accessing the WSDL
You can access the WSDL for the Role Web Service using a URL similar to the following:

http://server:port/warcontext/role/service?wsdl
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/role/service?wsdl

Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the NetIQ WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.soa.af.role.soap.impl:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/
jaxrpc-api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar";
com.novell.soa.ws.impl.tools.wsdl2java.Main -verbose -ds gensrc -d C:\ -
noskel -notie -genclient -keep -package com.novell.soa.af.role.soap.impl -
javadoc role.wsdl
You can change the wsdl2java parameters to suit your requirements.

Removing Administrator Credential Restrictions
The Role Web Service supports two levels of security, one that restricts access to Role
Administrators, and another that restricts access to the authenticated user. The default setting
restricts access to all operations to the Role Administrator.

You can modify the settings for security configuration in the ism-configuration.properties
file, located by default in the /netiq/idm/apps/tomcat/conf directory. . Each property can be
set to true or false. A value of true locks down the operation, whereas a value of false opens up the
operation.

You can open up the Role Web Service to authenticated users by setting the RoleService/Role/soap
property to false. To open up a particular operation to authenticated users, you need to set the
property for that operation (RoleService/Role/soap/operation) to false as well. If you set all of the
properties to false, you can open up all operations to authenticated users. The operation names are
the same as the names of the methods supported by the service.
426 Role Web Service

Example To ensure that the security configuration opens up all operations within the Role Web
Service, the ism-configuration.properties file must have the following setting:

 RoleService/Role/soap = false

Role API
This section provides details about the methods available with the Role Web service. This API
presumes you’re using Java code generated by the WSSDK toolkit. The API will be different if you’re
using another Web Service toolkit.

IRemoteRole
This section provides reference information for each method associated with the IRemoteRole
interface.

createResourceAssociation
Create a resource association and return the resource association object with the newly created
resource association DN.

Syntax: Here is the method signature:

ResourceAssociation
createResourceAssociation(com.novell.idm.nrf.soap.ws.ResourceAssociation
resourceAssociation)
 throws com.novell.idm.nrf.soap.ws.NrfServiceException,
java.rmi.RemoteException;

deleteResourceAssociation
Deletes a resource association object.

Syntax: Here is the method signature:

void deleteResourceAssociation(com.novell.idm.nrf.soap.ws.DNString
resourceAssociationDn)
 throws com.novell.idm.nrf.soap.ws.NrfServiceException,
java.rmi.RemoteException;

getResourceAssociations
Retrieves resource association objects for a given role DN or resource DN. If the roleDn and
resourceDn parameters are null, the entire list is returned.

Syntax: Here is the method signature:
Role Web Service 427

ResourceAssociation[]
getResourceAssociations(com.novell.idm.nrf.soap.ws.DNString roleDn,
com.novell.idm.nrf.soap.ws.DNString resourceDn)
 throws com.novell.idm.nrf.soap.ws.NrfServiceException,
java.rmi.RemoteException;

Create Role
Creates a new role according to the specified parameters and returns the DN of the created role.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteRoleRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
The correlation ID is used for auditing.

Syntax: Here is the method signature:

public DNString createRole(RoleRequest role)
 throws NrfServiceException, RemoteException;

createRoleAid
Creates a new role with a correlation ID that you provide. The correlation ID is used for auditing to
link a set of related roles. This method returns the DN of the created role.

Syntax: Here is the method signature:

public DNString createRoleAid (RoleRequest role, String correlationId)
 throws NrfServiceException, RemoteException;

findRoleByExampleWithOperator
Finds an array of Role objects based on the search criteria specified in the given Role object. This
method also lets you specify whether to use AND as the operator for multi-value searches.

Syntax: Here is the method signature:

RoleArray findRoleByExampleWithOperator(Role searchCriteria, boolean
useAndForMultiValueSearch) throws NrfServiceException,
java.rmi.RemoteException
This method follows a query by example approach. It allows you to populate a Role object to specify
the desired search criteria. An AND operation is always used across multiple attributes within the
Role search object. For example, you might provide a value for the name and description
attributes, which indicates that the criteria for both attributes must be satisfied for a successful
search.

The second parameter (useAndForMultiValueSearch) allows you to specify which operator should be
used for multi-valued attributes (such as when multiple child roles are provided). A value of true
indicates that AND should be used for these operations, whereas a value of false indicates that OR
should be used.

Not all attributes in the Role object can be used for the search expression. Values found in the non-
supported search attributes are ignored.
428 Role Web Service

Table 31-1 Guidelines for Defining Search Criteria in the Role Object

Attribute Supported? Description

approvers Yes Uses a standard LDAP equal operator for the search. You can enter
multiple approvers and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search. You
need to provide valid Dns for the approvers. Note that an approver is
made up of multiple parts. It is of type TypedNameSyntax. You need to
specify the sequence number of the approver to execute a successful
search. This is a limitation in LDAP.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:approvers>
<!--Zero or more repetitions:-->
<ser:approver>
<ser:approverDN>cn=ablake,ou=users,ou=medical-

idmsample,o=netiq</ser:approverDN>
<ser:sequence>1</ser:sequence>
</ser:approver>
</ser:approvers>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles that have the specified
approver associated with them. An OR search is used since the
operator parameter is set to false.
Role Web Service 429

childRoles Yes Uses a standard LDAP equal operator for the search. You can enter
multiple child roles and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search. You
need to provide valid Dns for the child roles.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:childRoles>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>cn=Doctor,cn=Level20,cn=RoleDefs,cn=Role

Config,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,
o=netiq</ser:dn>

</ser:dnstring>
<ser:dnstring>
<ser:dn>cn=Nurse,cn=Level20,cn=RoleDefs,cn=RoleC

onfig,cn=AppConfig,cn=PicassoDriver,cn=TestDrivers,o
=netiq</ser:dn>

</ser:dnstring>
</ser:childRoles>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles with a child role of
“Doctor” or “Nurse. An OR search is used since the operator
parameter is set to false.

description Yes Uses an LDAP contains search. All entries are prefixed and suffixed
with the * (wild card character). Therefore, a search for “Doctor”
translates to “*Doctor*”. This is to accommodate searches across any
localized language.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:description>Doctor</ser:description>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles with a description of
“Doctor”. This description string results in a search string of
“*Doctor*”.

Attribute Supported? Description
430 Role Web Service

entityKey Yes If entered, this attribute causes a getRole operation to be performed.
All other search criteria are ignored in this case.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:entityKey>cn=Doctor,cn=Level20,cn=RoleDefs,cn

=RoleConfig,cn=AppConfig,cn=PicassoDriver,cn=TestDri
vers,o=netiq</ser:entityKey>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to retrieve a role with a specific entity
key.

implicitContainers Yes Uses a standard LDAP equal operator for the search. You can enter
multiple implicit containers and use the operator parameter to
determine whether an AND or an OR will be used for the multi-valued
search. You need to provide valid Dns for the implicit containers.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:implicitContainers>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>ou=medical-idmsample,o=netiq</ser:dn>
</ser:dnstring>
</ser:implicitContainers>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles that have the specified
implicit container associated with them. An OR search is used since
the operator parameter is set to false.

Attribute Supported? Description
Role Web Service 431

implicitGroups Yes Uses a standard LDAP equal operator for the search. You can enter
multiple implicit groups and use the operator parameter to determine
whether an AND or an OR will be used for the multi-valued search. You
need to provide valid Dns for the implicit groups.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:implicitGroups>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>cn=HR,ou=groups,ou=medical-

idmsample,o=netiq</ser:dn>
</ser:dnstring>
</ser:implicitGroups>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles that have the specified
implicit group associated with them. An OR search is used since the
operator parameter is set to false.

name Yes Uses an LDAP contains search. All entries will be prefixed and suffixed
with the * (wild card character). Therefore, a search for “Doctor”
translates to “*Doctor*”. This is to accommodate searches across any
localized language.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:name>Doctor</ser:name>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The above example shows how to find roles with a name of “Doctor”.
The name string results in a search string of “*Doctor*”.

Attribute Supported? Description
432 Role Web Service

owners Yes Uses a standard LDAP equal operator for the search. You can enter
multiple owners and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search. You
must provide valid Dns for the owners.

SoapUI Example Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:owners>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>cn=ablake,ou=users,ou=medical-

idmsample,o=netiq</ser:dn>
</ser:dnstring>
<ser:dnstring>
<ser:dn>cn=mmackenzie,ou=users,ou=medical-

idmsample,o=netiq</ser:dn>
</ser:dnstring>
</ser:owners>
</ser:role>
<ser:operator>true</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles that have the specified
owners. An AND search is used since the operator parameter is set to
true.

parentRoles Yes Uses a standard LDAP equal operator for the search. You can enter
multiple parent roles and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search. You
must provide valid Dns for the parent roles.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:parentRoles>
<!--Zero or more repetitions:-->
<ser:dnstring>
<ser:dn>cn=Doctor-

East,cn=Level30,cn=RoleDefs,cn=RoleConfig,cn=AppConf
ig,cn=PicassoDriver,cn=TestDrivers,o=netiq</ser:dn>

</ser:dnstring>
<ser:dnstring>
<ser:dn>cn=Doctor-

West,cn=Level30,cn=RoleDefs,cn=RoleConfig,cn=AppConf
ig,cn=PicassoDriver,cn=TestDrivers,o=netiq</ser:dn>

</ser:dnstring>
</ser:parentRoles>
</ser:role>
<ser:operator>true</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles that have the specified
parent roles. An AND search is used since the operator parameter is
set to true.

Attribute Supported? Description
Role Web Service 433

quorum Yes Uses a standard LDAP equal operator for the search.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:quorum>50%</ser:quorum>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles with the specified quorum
search string. The search string can include the wild card character
(“*”).

requestDef Yes Uses a standard LDAP equal operator for the search. You must provide
a valid DN for the request definition.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:requestDef>cn=Role

Approval,cn=RequestDefs,cn=AppConfig,cn=PicassoDrive
r,cn=TestDrivers,o=netiq</ser:requestDef>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles with the specified request
definition DN.

roleCategoryKeys Yes Uses a standard LDAP equal operator for the search. You can enter
multiple category keys and use the operator parameter to determine
whether an AND or an OR is used for the multi-valued search.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:roleCategoryKeys>
<!--Zero or more repetitions:-->
<ser:categorykey>
<ser:categoryKey>doctor</ser:categoryKey>
</ser:categorykey>
<ser:categorykey>
<ser:categoryKey>nurse</ser:categoryKey>
</ser:categorykey>
</ser:roleCategoryKeys>
</ser:role>
<ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find roles with a category of
“doctor” or “nurse. An OR search is used since the operator parameter
is set to false.

Attribute Supported? Description
434 Role Web Service

findSodByExample
Finds all SoD objects based on the search criteria in the given SOD object.

Syntax: Here is the method signature:

SodArray findSodByExample(Sod sod) throws NrfServiceException,
java.rmi.RemoteException

findSodByExampleWithOperator
Finds all SoD objects based on the search criteria found in the given SOD object. This method also
lets you specify whether to use And as the operator for multi-value searches.

Syntax: Here is the method signature:

SodArray findSodByExampleWithOperator(Sod searchCriteria, boolean
useAndForMultiValueSearch) throws NrfServiceException,
java.rmi.RemoteException

findSodById
Find by key.

Syntax: Here is the method signature:

Sod findSodById(java.lang.String entityKey) throws NrfServiceException,
java.rmi.RemoteException

roleLevel Yes Uses a standard LDAP equal operator for the search. You can only
enter one level at a time.

Sample SOAP Request:

<ser:findRoleByExampleWithOperatorRequest>
<ser:role>
<ser:roleLevel>
<ser:level>10</ser:level>
</ser:roleLevel>
</ser:role>
 <ser:operator>false</ser:operator>
</ser:findRoleByExampleWithOperatorRequest>
The example above shows how to find all level 10 roles.

associatedRoles No Not supported.

entitlementRef No Not supported.

roleAssignments No Not supported.

systemRole No Not supported.

Attribute Supported? Description
Role Web Service 435

getAssignedIdentities
Returns returns the list of identities having a particular role DN.

Syntax: Here is the method signature:

RoleAssignment[] getAssignedIdentities(java.lang.String roleDN,
IdentityType identityType, boolean directAssignOnly)

getConfigProperty
Retrieves configuration properties stored in the identity applications configuration XML files by
passing in a configuration property key or macro name.

Syntax: Here is the method signature:

public ConfigProperty getConfigProperty(String configPropertyKey) throws
NrfServiceException, RemoteException;
The configPropertyKey parameter can accept a fully qualified configuration key name from any of
the configuration XML files, such as the following:

DirectoryService/realms/jndi/params/USER_ROOT_CONTAINER
Alternativelly, the configPropertyKey parameter can accept a macro name that references a fully
qualified configuration key name. The following macro names are allowed:

Table 31-2 Macro Names Allowed

getConfiguration
Returns the role system configuration defined in the Role Catalog root (nrfConfiguration).

Syntax: Here is the method signature:

Configuration getConfiguration() throws NrfServiceException,
java.rmi.RemoteException

getContainer
Gets container and role information for a given container DN.

Configuration Macro Name Configuration Key Value

USER_CONTAINER DirectoryService/realms/jndi/params/
USER_ROOT_CONTAINER

GROUP_CONTAINER DirectoryService/realms/jndi/params/
GROUP_ROOT_CONTAINER

ROOT_CONTAINER DirectoryService/realms/jndi/params/ROOT_NAME

PROVISIONING_DRIVER DirectoryService/realms/jndi/params/
PROVISIONING_ROOT
436 Role Web Service

Syntax: Here is the method signature:

Container getContainer(java.lang.String containerDn)
throws NrfServiceException, java.rmi.RemoteException

getExceptionList
Returns a list of Sod instances for all SOD violations found for a specific identity and type.

Syntax: Here is the method signature:

SodArray getExceptionsList(java.lang.String identity, IdentityType
identityType) throws NrfServiceException, java.rmi.RemoteException

getGroup
Gets group and role information for a given group DN.

Syntax: Here is the method signature:

Group getGroup(java.lang.String groupDn) throws NrfServiceException,
java.rmi.RemoteException

getIdentitiesInViolation
Returns a map of identities which are in violation of a given SoD.

Syntax: Here is the method signature:

IdentityTypeDnMapArray getIdentitiesInViolation(java.lang.String sodDn)
throws NrfServiceException, java.rmi.RemoteException

getIdentityRoleConflicts
Returns a list of Sod instances for all SOD conflicts found for a given list of roles for a given identity.

Syntax: Here is the method signature:

SodArray getIdentityRoleConflicts(java.lang.String identity, IdentityType
identityType, DNStringArray requestedRoles) throws NrfServiceException,
java.rmi.RemoteException

getRole
Retrieves a role object defined by a role DN. Returns several role attributes, such as name, dn,
description, role level. Returns child roles, assigned containers, and assigned groups. However, this
API does not return assigned users. If you want assigned users, use the getAssignedIdentities API
with USER for identityType and true for directAssignOnly.

Syntax: Here is the method signature:

Role getRole(java.lang.String roleDn) throws NrfServiceException,
java.rmi.RemoteException
Role Web Service 437

getRoleAssignmentRequestStatus
Returns a list of role assignment request status instances given a correlation ID.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatus(java.lang.String correlationId) throws
NrfServiceException, java.rmi.RemoteException

getRoleAssignmentRequestStatusByIdentityType
Returns a list of role assignment request status instances given an identity and an identity type.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatusByIdentityType(java.lang.String identityDn,
IdentityType identityType) throws NrfServiceException,
java.rmi.RemoteException

getRoleAssignmentTypeInfo
Retrieves details about a RoleAssignmentType.

Syntax: Here is the method signature:

RoleAssignmentTypeInfo getRoleAssignmentTypeInfo(RoleAssignmentType type)
throws NrfServiceException, java.rmi.RemoteException

getRoleCategories
Gets role categories.

Syntax: Here is the method signature:

CategoryArray getRoleCategories() throws NrfServiceException,
java.rmi.RemoteException

getRoleConflicts
Returns a list of Sod instances found for all given roles. This method always returns a list.

Syntax: Here is the method signature:

SodArray getRoleConflicts(DNStringArray roles) throws NrfServiceException,
java.rmi.RemoteException

getRoleLevels
Gets the role levels.

Syntax: Here is the method signature:
438 Role Web Service

RoleLevelArray getRoleLevels() throws NrfServiceException,
java.rmi.RemoteException

getRoleLocalizedStrings
Gets role localized strings, such as names and descriptions. The method takes an integer parameter
that allows you to specify the type of the string. The number 1 indicates names; the number 2
indicates descriptions.

Syntax: Here is the method signature:

public LocalizedValue[] getRoleLocalizedStrings(DNString roleDn, int type)
 throws NrfServiceException, RemoteException;

getRolesInfo
Returns a list of RoleInfo instances given a list of role DNs.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfo(DNStringArray roleDns) throws
NrfServiceException, java.rmi.RemoteException

getRolesInfoByCategory
Returns a list of RoleInfo instances given a list of role category keys.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByCategory(CategoryKeyArray roleCategoryKeys)
throws NrfServiceException, java.rmi.RemoteException

getRolesInfoByLevel
Returns a list of RoleInfo instances given a list of role levels.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByLevel(LongArray roleLevels) throws
NrfServiceException, java.rmi.RemoteException

getTargetSourceConflicts
Returns a list of Sod instances for all SOD conflicts defined between the target role DN and the
source role DN.

Syntax: Here is the method signature:

SodArray getTargetSourceConflicts(java.lang.String targetName,
java.lang.String sourceName) throws NrfServiceException,
java.rmi.RemoteException
Role Web Service 439

getUser
Gets user info including all role assignments for a given user DN stored in a UserIdentity object.

Syntax: Here is the method signature:

User getUser(java.lang.String userDn) throws NrfServiceException,
java.rmi.RemoteException

getVersion
Returns the version of this Web Service.

Syntax: Here is the method signature:

VersionVO getVersion() throws java.rmi.RemoteException

isUserInRole
Returns boolean flag; true if role has been assigned to a User identity.

Syntax: Here is the method signature:

boolean isUserInRole(java.lang.String userDn, java.lang.String roleDn)

modifyRole
Modifies a role definition. This method does not update localized strings. Use the
getRoleLocalizedStrings(DNString roleDn, LocalizedString[] locStrings, int strType) method to update
localized names or descriptions for a role.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteRoleRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
The correlation ID is used for auditing.

Syntax: Here is the method signature:

public Role modifyRole(Role role)
 throws NrfServiceException, RemoteException;

modifyRoleAid
Modifies a role definition with a correlation ID that you provide. The correlation ID is used for
auditing to link a set of related roles. This method does not update localized strings. Use the
getRoleLocalizedStrings(DNString roleDn, LocalizedString[] locStrings, int strType) method to update
localized names or descriptions for a role.

Syntax: Here is the method signature:

public Role modifyRoleAid(Role role, String correlationId)
 throws NrfServiceException, RemoteException;
440 Role Web Service

removeRoles
Deletes specified roles from the Role Catalog and returns an array of DNs for the deleted roles as a
confirmation.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteRoleRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
The correlation ID is used for auditing.

Syntax: Here is the method signature:

public DNString[] removeRoles(DNString[] roleDns)
 throws NrfServiceException, RemoteException;

removeRolesAid
Deletes specified roles from the Role Catalog with a correlation ID that you provide. The correlation
ID is used for auditing to link a set of related roles. This method returns an array of DNs for the
deleted roles as a confirmation.

Syntax: Here is the method signature:

public DNString[] removeRolesAid(DNString[] roleDns, String correlationId)
 throws NrfServiceException, RemoteException;

requestRolesAssignment
Returns a list of request DNs created by the role assignment. Be aware that the role assignment
expires only if the role is assigned to a user and not when it is assigned to a group or a container.

If you do not want to supply date (effective or expiration) for role assignments with the
requestRolesAssignment endpoint, then you must remove these two elements from the SOAP call.
They must not be included with empty tags:

<ser:effectiveDate/>
<ser:expirationDate/>
If you want to omit the effective date or the expiration date, a request similar to the following will
work:
Role Web Service 441

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
"
xmlns:ser="http://www.netiq.com/role/service">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:requestRolesAssignmentRequest>
 <!--Optional:-->
 <ser:assignRequest>
 <ser:actionType>grant</ser:actionType>
 <ser:assignmentType>USER_TO_ROLE</ser:assignmentType>
 <ser:correlationID>testpolina</ser:correlationID>
 <ser:identity>cn=uaadmin,ou=sa,o=data</ser:identity>
 <ser:originator/>
 <ser:reason>test without expiration date</ser:reason>
 <ser:roles>
 <!--Zero or more repetitions:-->
 <ser:dnstring>
 <ser:dn>cn=test2
id,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=User Application
Driver,cn=driverset1,o=system</ser:dn>
 </ser:dnstring>
 </ser:roles>
 <ser:sodOveridesRequested/>
 </ser:assignRequest>
 </ser:requestRolesAssignmentRequest>
 </soapenv:Body>
</soapenv:Envelope>
With that said, without the these two elements in the soap request, the request will not validate. It
will work, but will not validate.

Syntax: Here is the method signature:

DNStringArray requestRolesAssignment(RoleAssignmentRequest
roleAssignmentRequest) throws NrfServiceException,
java.rmi.RemoteException

setRoleLocalizedStrings
Sets role localized strings, such as names and descriptions.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteRoleRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
The correlation ID is used for auditing.

Syntax: Here is the method signature:

public LocalizedValue[] setRoleLocalizedStrings(DNString roleDn,
LocalizedValue[] locStrings, int type)
 throws NrfServiceException, RemoteException;
442 Role Web Service

setRoleLocalizedStringsAid
Sets role localized strings, such as name and description, with a correlation ID that you provide. The
correlation ID is used for auditing to link a set of related roles.

Syntax: Here is the method signature:

public LocalizedValue[] setRoleLocalizedStringsAid(DNString roleDn, String
correlationId, LocalizedValue[] locStrings, int type)
 throws NrfServiceException, RemoteException;

Approver
Class to hold the approver information for SOD or normal request approvals.

Approver constructors
The Approver class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Approver()

getApproverDN
Gets the approver DN.

Syntax: Here is the method signature:

public java.lang.String getApproverDN()

getSequence
Gets the approver sequence.

Syntax: Here is the method signature:

public long getSequence()

setApproverDN
Sets the approver DN.

Syntax: Here is the method signature:

public void setApproverDN(java.lang.String approverDN)

setSequence
Sets the approver sequence.

Syntax: Here is the method signature:

public void setSequence(long sequence)
Role Web Service 443

ApproverArray
This section provides reference information on the ApproverArray class.

ApproverArray constructors
The ApproverArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

ApproverArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

ApproverArray(Approver[] ApproverVal)

getApprover
Returns an array of Approver objects.

Syntax: Here is the method signature:

Approver[] getApprover()

setApprover
Sets the array of Approver objects associated with the ApproverArray class.

Syntax: Here is the method signature:

void setApprover (Approver[] ApproverVal)

Category
Class to represent a role category.

Category constructors
The Category class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Category()

 getCategoryKey
Gets the category key.

Syntax: Here is the method signature:

public java.lang.String getCategoryKey()
444 Role Web Service

getCategoryLabel
Gets the category label.

Syntax: Here is the method signature:

public java.lang.String getCategoryLabel()

setCategoryKey
Sets the category key.

Syntax: Here is the method signature:

public void setCategoryKey(java.lang.String categoryKey)

setCategoryLabel
Sets the category label.

Syntax: Here is the method signature:

public void setCategoryLabel(java.lang.String categoryLabel)

CategoryArray
This section provides reference information on the CategoryArray class.

CategoryArray constructors
The CategoryArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

CategoryArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Category objects as a parameter:

CategoryArray(Category[] CategoryVal)

getCategory
Returns an array of Category objects.

Syntax: Here is the method signature:

Category[] getCategory()

setCategory
Sets the array of Category objects associated with the CategoryArray class.

Syntax: Here is the method signature:
Role Web Service 445

void setCategory(Category[] CategoryVal)

CategoryKey
Class to hold a Category Key.

CategoryKey constructors
The CategoryKey class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

CategoryKey()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

CategoryKey(java.lang.String categoryKey)

getCategoryKey()
Gets the categoryKey.

Syntax: Here is the method signature:

public java.lang.String getCategoryKey()

 setCategoryKey
Sets the category key.

Syntax: Here is the method signature:

public void setCategoryKey(java.lang.String categoryKey)

CategoryKeyArray
This section provides reference information on the CategoryKeyArray class.

CategoryKeyArray constructors
The CategoryKeyArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

CategoryKeyArray()
Syntax 2: Here is the syntax for a constructor that takes an array of CategoryKey objects as a
parameter:

CategoryKeyArray(CategoryKey[] CategoryVal)
446 Role Web Service

getCategorykey
Returns an array of Category objects.

Syntax: Here is the method signature:

CategoryKey[] getCategorykey()

setCategorykey
Sets the array of CategoryKey objects associated with the CategoryKeyArray class.

Syntax: Here is the method signature:

void setCategorykey(CategoryKey[] CategoryKeyVal)

Configuration
Class to represent the configuration object.

Configuration constructors
The Configuration class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Configuration()

 getDefaultRequestDef
Gets the default request definition.

Syntax: Here is the method signature:

public java.lang.String getDefaultRequestDef()

getDefaultSODRequestDef
Gets the default SOD request definition.

Syntax: Here is the method signature:

public java.lang.String getDefaultSODRequestDef()

getRemovalGracePeriod
Gets the removal grace period.

Syntax: Here is the method signature:

public int getRemovalGracePeriod()
Role Web Service 447

 getReportContainer
Gets the report container.

Syntax: Here is the method signature:

public java.lang.String getReportContainer()

getRoleLevels
Gets the role levels.

Syntax: Here is the method signature:

public RoleLevelArray getRoleLevels()

 getRoleRequestContainer
Gets the role request container.

Syntax: Here is the method signature:

public java.lang.String getRoleRequestContainer()

getRolesContainer
Gets the role container.

Syntax: Here is the method signature:

public java.lang.String getRolesContainer()

getSODApprovers
Gets SOD approvers.

Syntax: Here is the method signature:

public ApproverArray getSODApprovers()

getSODContainer
Gets the SOD container.

Syntax: Here is the method signature:

public java.lang.String getSODContainer()

 getSODQuorum
Gets the SOD quorum amount.

Syntax: Here is the method signature:

public java.lang.String getSODContainer()
448 Role Web Service

getSODRequestDef
Gets the SOD request definition.

Syntax: Here is the method signature:

public java.lang.String getSODRequestDef()

setDefaultRequestDef
Sets the default request definition.

Syntax: Here is the method signature:

public void setDefaultRequestDef(java.lang.String defaultRequestDef)

 setDefaultSODRequestDef
Sets the default SOD request definition.

Syntax: Here is the method signature:

public void setDefaultSODRequestDef(java.lang.String defaultSODRequestDef)

setRemovalGracePeriod
Sets the removal grace period.

Syntax: Here is the method signature:

public void setRemovalGracePeriod(int removalGracePeriod)

 setReportContainer
Sets the report container.

Syntax: Here is the method signature:

public void setReportContainer(java.lang.String reportContainer)

 setRoleLevels
Sets the role levels.

Syntax: Here is the method signature:

public void setRoleLevels(RoleLevelArray roleLevels)

setRoleRequestContainer
Sets the role request container.

Syntax: Here is the method signature:

public void setRoleRequestContainer(java.lang.String roleRequestContainer)
Role Web Service 449

setRolesContainer
Sets the role container.

Syntax: Here is the method signature:

public void setRolesContainer(java.lang.String rolesContainer)

setSODApprovers
Sets the SoD approvers.

Syntax: Here is the method signature:

public void setSODApprovers(ApproverArray sODApprovers)

setSODContainer
Sets the SoD container.

Syntax: Here is the method signature:

public void setSODContainer(java.lang.String sODContainer)

Container
Class to represent a Container object.

Container constructors
The Container class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Container()

getAssociatedRoles
Gets associated roles for this identity.

Syntax: Here is the method signature:

public DNStringArray getAssociatedRoles()

getEntityKey
Gets identity entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()
450 Role Web Service

getIdentityType
Gets identity type.

Syntax: Here is the method signature:

public IdentityType getIdentityType()

getRoleAssignments
Gets role assignments for this identity.

Syntax: Here is the method signature:

public RoleAssignmentArray getRoleAssignments()

setAssociatedRoles
Sets the associated roles for this identity.

Syntax: Here is the method signature:

public void setAssociatedRoles(DNStringArray associatedRoles)

 setEntityKey
Sets the identity entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setIdentityType
Sets the identity type.

Syntax: Here is the method signature:

public void setIdentityType(IdentityType identityType)

setRoleAssignments
Sets the role assignments for this identity.

Syntax: Here is the method signature:

public void setRoleAssignments(RoleAssignmentArray roleAssignments)

DNString
Class to hold a DN.
Role Web Service 451

DNString constructors
The DNString class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

DNString()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

DNString(java.lang.String dn)

getDn
Gets the DN.

Syntax: Here is the method signature:

public java.lang.String getDn()

setDn
Sets the DN.

Syntax: Here is the method signature:

public void setDn(java.lang.String dn)

DNStringArray
This section provides reference information on the DNStringArray class.

DNStringArray constructors
The DNStringArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

DNStringArray()
Syntax 2: Here is the syntax for a constructor that takes an array of DNString objects as a parameter:

DNStringArray(DNString[] DNStringVal)

getDnstring
Returns an array of DNString objects.

Syntax: Here is the method signature:

DNString[] getDnstring()
452 Role Web Service

setDnstring
Sets the array of DNString objects associated with the DNStringArray class.

Syntax: Here is the method signature:

void setDnstring(DNString[] DnstringVal)

Entitlement
Class to hold Entitlement information.

Entitlement constructors
The Entitlement class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Entitlement()

getEntitlementDn
Gets the entitlement DN.

Syntax: Here is the method signature:

public java.lang.String getEntitlementDn()

getEntitlementParameters
Gets the entitlement parameters.

Syntax: Here is the method signature:

public java.lang.String getEntitlementParameters()

 setEntitlementDn
Sets the entitlement DN.

Syntax: Here is the method signature:

public void setEntitlementDn(java.lang.String entitlementDn)

setEntitlementParameters
Sets the entitlement parameters.

Syntax: Here is the method signature:

public void setEntitlementParameters(java.lang.String
entitlementParameters)
Role Web Service 453

EntitlementArray
This section provides reference information on the EntitlementArray class.

EntitlementArray constructors
The EntitlementArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

EntitlementArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Entitlement objects as a
parameter:

EntitlementArray(Entitlement[] EntitlementVal)

getEntitlement
Returns an array of Entitlement objects.

Syntax: Here is the method signature:

Entitlement[] getEntitlement()

setEntitlement
Sets the array of Entitlement objects associated with the EntitlementArray class.

Syntax: Here is the method signature:

void setEntitlement(EntitlementArray EntitlementVal)

Group
Class to represent a Group object.

Group constructors
The Group class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Group()

getAssociatedRoles
Gets associated roles for this identity.

Syntax: Here is the method signature:

public DNStringArray getAssociatedRoles()
454 Role Web Service

 getDescription
Gets group description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

 getEntityKey
Gets identity entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getIdentityType
Gets identity type.

Syntax: Here is the method signature:

public IdentityType getIdentityType()

 getRoleAssignments
Gets role assignments for this identity.

Syntax: Here is the method signature:

public RoleAssignmentArray getRoleAssignments()

 setAssociatedRoles
Sets the associated roles for this identity.

Syntax: Here is the method signature:

public void setAssociatedRoles(DNStringArray associatedRoles)

 setDescription
Sets the group description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setEntityKey
Sets the identity entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)
Role Web Service 455

setIdentityType
Sets the identity type.

Syntax: Here is the method signature:

public void setIdentityType(IdentityType identityType)

setRoleAssignments
Sets the role assignments for this identity.

Syntax: Here is the method signature:

public void setRoleAssignments(RoleAssignmentArray roleAssignments)

IdentityType
An JAX-RPC friendly representation of com.novell.idm.nrf.api.IdentityType.

Table 31-3 Field summary

IdentityType constructors
The IdentityType class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

IdentityType()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

IdentityType(java.lang.String value)

convertToAPI
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.api.IdentityType convertToAPI()

Type Name

static IdentityType CONTAINER

static IdentityType GROUP

static IdentityType ROLE

static IdentityType USER
456 Role Web Service

 convertToRPC
Contructs an RPC friendly representation from an API object.

Syntax: Here is the method signature:

public static IdentityType
convertToRPC(com.novell.idm.nrf.api.IdentityType type)

 equals
This is an implementation of equals(). This implementation overrides the equals() method in
java.lang.Object.

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static IdentityType fromValue(java.lang.String value)

 getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

 hashCode
This is an implementation of hashCode(). This implementation overrides the hashCode() method in
java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

 setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toString
Implementation of toString() that returns a string representation of the class.
Role Web Service 457

Syntax: Here is the method signature:

public java.lang.String toString()

IdentityTypeDnMap
Class to represent DNs grouped by identity type. Used for SOD violations.

IdentityTypeDnMap
The IdentityTypeDnMap class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

IdentityTypeDnMap()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

IdentityTypeDnMap(IdentityType identityType, DNStringArray dns)

getDns
Gets the DNs associated with the identity type.

Syntax: Here is the method signature:

public DNStringArray getDns()

getIdentityType
Gets identity type (USER, ROLE, GROUP, CONTAINER).

Syntax: Here is the method signature:

public IdentityType getIdentityType()

setDns
Sets the DNs to associate with the identity type.

Syntax: Here is the method signature:

public void setDns(DNStringArray dns)

setIdentityType
Sets the identity type (USER, ROLE, GROUP, or CONTAINER).

Syntax: Here is the method signature:

public void setIdentityType(IdentityType identityType)
458 Role Web Service

IdentityTypeDnMapArray
This section provides reference information on the IdentityTypeDnMapArray class.

IdentityTypeDnMapArray constructors
The IdentityTypeDnMapArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

IdentityTypeDnMapArray()
Syntax 2: Here is the syntax for a constructor that takes an array of IdentityTypeDnMap objects as a
parameter:

IdentityTypeDnMapArray(IdentityTypeDnMap[] IdentityTypeDnMapVal)

getIdentitytypednmap
Returns an array of IdentityTypeDnMap objects.

Syntax: Here is the method signature:

IdentityTypeDnMap[] getIdentitytypednmap()

setIdentitytypednmap
Sets the array of IdentityTypeDnMap objects associated with the IdentityTypeDnMapArray class.

Syntax: Here is the method signature:

void setIdentitytypednmap(IdentityTypeDnMap[] IdentityTypeDnMapVal)

LocalizedValue
The LocalizedValue class has been added to support management of localized strings for role
definitions.

getValue
Returns a localized string value.

Syntax: Here is the method signature:

public String getValue()

setValue
Sets a localized string value.

Syntax: Here is the method signature:

public void setValue(final String value)
Role Web Service 459

getLocale
Returns a string representaton of the Locale object.

Syntax: Here is the method signature:

public String getLocale()

setLocale
Sets a string representation of the Locale object.

Syntax: Here is the method signature:

public void setLocale()

LongArray
This section provides reference information on the LongArray class.

LongArray constructors
The LongArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

LongArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Long objects as a parameter:

LongArray(long[] LongVal)

getLong
Returns an array of Long objects.

Syntax: Here is the method signature:

long[] getLong()

setLong
Sets the array of long objects associated with the LongArray class.

Syntax: Here is the method signature:

void setLong(LongArray LongVal)

NrfServiceException
This is the exception thrown by the remote Roles Web Service.
460 Role Web Service

NrfServiceException constructors
The NrfServiceException class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

NrfServiceException()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

NrfServiceException(java.lang.String reason)

 getReason
Returns the reason for the exception.

Syntax: Here is the method signature:

public java.lang.String getReason()

setReason
Sets the reason for the exception.

Syntax: Here is the method signature:

public void setReason(java.lang.String reason)

RequestCategoryType
An JAX-RPC friendly representation of com.novell.idm.nrf.persist.RequestCategoryType.

Table 31-4 Field Summary

Type Name

static RequestCategoryType ROLE_TO_CONTAINER_ADD

static RequestCategoryType ROLE_TO_CONTAINER_ADD_SUBTREE

static RequestCategoryType ROLE_TO_CONTAINER_REMOVE

static RequestCategoryType ROLE_TO_GROUP_ADD

static RequestCategoryType ROLE_TO_GROUP_REMOVE

static RequestCategoryType ROLE_TO_ROLE_ADD

static RequestCategoryType ROLE_TO_ROLE_REMOVE

static RequestCategoryType ROLE_TO_USER_ADD

static RequestCategoryType ROLE_TO_USER_REMOVE
Role Web Service 461

RequestCategoryType constructors
The RequestCategoryType class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RequestCategoryType()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

RequestCategoryType(java.lang.String value)

equals
Implementation of equals(). This implementation overrides the equals() method in java.lang.Object.

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.persist.RequestCategoryType fromRPC() throws
com.novell.idm.nrf.exception.NrfException

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static RequestCategoryType fromValue(java.lang.String value)

 getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This implementation overrides the hashCode() method in java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()
462 Role Web Service

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toRPC
Constructs an RPC friendly representation off of an API object.

Syntax: Here is the method signature:

public static RequestCategoryType
toRPC(com.novell.idm.nrf.persist.RequestCategoryType type)

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

RequestStatus
An JAX-RPC friendly representation of com.novell.idm.nrf.persist.RequestStatus.

Table 31-5 Field Summary

Type Name

static RequestStatus ACTIVATION_TIME_PENDING

static RequestStatus APPROVAL_PENDING

static RequestStatus APPROVAL_START_PENDING

static RequestStatus APPROVAL_START_SUSPENDED

static RequestStatus APPROVED

static RequestStatus CLEANUP

static RequestStatus DENIED

static RequestStatus NEW_REQUEST

static RequestStatus PROVISION

static RequestStatus PROVISIONED

static RequestStatus PROVISIONING_ERROR

static RequestStatus SOD_APPROVAL_START_PENDING
Role Web Service 463

RequestStatus constructors
The RequestStatus class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RequestStatus()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

RequestStatus(java.lang.String value)

equals
Implementation of equals().

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.persist.RequestStatus fromRPC() throws
com.novell.idm.nrf.exception.NrfException

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static RequestStatus fromValue(java.lang.String value)

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

static RequestStatus SOD_APPROVAL_START_SUSPENDED

static RequestStatus SOD_EXCEPTION_APPROVAL_PENDING

static RequestStatus SOD_EXCEPTION_APPROVED

static RequestStatus SOD_EXCEPTION_DENIED

Type Name
464 Role Web Service

hashCode
This implementation overrides the hashCode() method in java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toRPC
Constructs an RPC friendly representation off of an API object.

Syntax: Here is the method signature:

public static RequestStatus toRPC(com.novell.idm.nrf.persist.RequestStatus
type)

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

ResourceAssociation
Supporting class that holds information about resource associations for a role.

getRole
Returns the DN for the role involved in the association.

public String getRole()

setRole
Sets the DN for the role involved in the association.

public void setRole(String role)

getEntityKey
Returns the entity key for the association.
Role Web Service 465

public String getEntityKey()

setEntityKey
Sets the entity key for the association.

public void setEntityKey(String entityKey)

getResource
Returns the DN for the resource involved in the association.

public String getResource()

setResource
Sets the DN for the resource involved in the association.

public void setResource(String resource)

getDynamicParameters
Returns the list of dynamic parameters for the resource.

public DynamicParameter[] getDynamicParameters()

setDynamicParameters
Sets the list of dynamic parameters for the resource.

public void setDynamicParameters(DynamicParameter[] parameterValues)

getLocalizedDescriptions
Returns the list of localized descriptions.

public LocalizedValue[] getLocalizedDescriptions()

setLocalizedDescriptions
Sets the list of localized descriptions.

public void setLocalizedDescriptions(LocalizedValue[] descriptions)

getApprovalOverride
Returns the boolean flag indicating whether the role approval process overrides the resource
approval process.

public boolean getApprovalOverride()
466 Role Web Service

setApprovalOverride
Sets the boolean flag indicating whether the role approval process overrides the resource approval
process.

public void setApprovalOverride(boolean override)

getStatus
Returns the status of the association.

public int getStatus()

setStatus
Sets the status of the association.

public void setStatus(int status)

toString
Converts the resource association to a string.

public String toString()

Role
Value class to hold the role information.

Role constructors
The Role class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Role()

getApprovers
Gets the approvers of the role approval.

Syntax: Here is the method signature:

public ApproverArray getApprovers()

 getAssociatedRoles
Gets the associated roles.

Syntax: Here is the method signature:

public DNStringArray getAssociatedRoles()
Role Web Service 467

 getChildRoles
Gets the children roles.

Syntax: Here is the method signature:

public DNStringArray getChildRoles()

 getDescription
Gets the role description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getEntitlementRef
Gets the entitlement references.

Syntax: Here is the method signature:

public EntitlementArray getEntitlementRef()

getEntityKey
Gets the role entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getImplicitContainers
Gets the implicit container DNs.

Syntax: Here is the method signature:

public DNStringArray getImplicitContainers()

getImplicitGroups
Gets implicit group DNs.

Syntax: Here is the method signature:

public DNStringArray getImplicitGroups()

getName
Gets the role name.

Syntax: Here is the method signature:

public java.lang.String getName()
468 Role Web Service

getOwners
Gets the owner DNs.

Syntax: Here is the method signature:

public DNStringArray getOwners()

 getParentRoles
Gets the parent roles.

Syntax: Here is the method signature:

public DNStringArray getParentRoles()

getQuorum
Gets the quorum amount.

Syntax: Here is the method signature:

public java.lang.String getQuorum()

 getRequestDef
Gets the request definition for approval processing.

Syntax: Here is the method signature:

public java.lang.String getRequestDef()

getRoleAssignments
Gets the role assignments.

Syntax: Here is the method signature:

public RoleAssignmentArray getRoleAssignments()

getRoleCategoryKeys
Gets the role category keys.

Syntax: Here is the method signature:

public CategoryKeyArray getRoleCategoryKeys()

 getRoleLevel
Gets the role level object.

Syntax: Here is the method signature:

public RoleLevel getRoleLevel()
Role Web Service 469

 getSystemRole
Gets the system role flag.

Syntax: Here is the method signature:

public boolean getSystemRole()

setApprovers
Sets the approvers for role approval processing.

Syntax: Here is the method signature:

public void setApprovers(ApproverArray approvers)

 setAssociatedRoles
Sets the associated roles.

Syntax: Here is the method signature:

public void setAssociatedRoles(DNStringArray associatedRoles)

 setChildRoles
Sets the children roles.

Syntax: Here is the method signature:

public void setChildRoles(DNStringArray childRoles)

setDescription
Sets the role description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setEntitlementRef
Sets the entitlement references.

Syntax: Here is the method signature:

public void setEntitlementRef(EntitlementArray entitlementRef)

setEntityKey
Sets the role entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)
470 Role Web Service

setImplicitContainers
Sets the implicit container DNs.

Syntax: Here is the method signature:

public void setImplicitContainers(DNStringArray implicitContainers)

setImplicitGroups
Sets the implicit group DNs.

Syntax: Here is the method signature:

public void setImplicitGroups(DNStringArray implicitGroups)

 setName
Sets the role name.

Syntax: Here is the method signature:

public void setName(java.lang.String name)

 setOwners
Sets the owner DNs.

Syntax: Here is the method signature:

public void setOwners(DNStringArray owners)

setParentRoles
Sets the parent roles.

Syntax: Here is the method signature:

public void setParentRoles(DNStringArray parentRoles)

setQuorum
Sets the quorum amount.

Syntax: Here is the method signature:

public void setQuorum(java.lang.String quorum)

setRequestDef
Sets the request definition for approval processing.

Syntax: Here is the method signature:

public void setRequestDef(java.lang.String requestDef)
Role Web Service 471

setRoleAssignments
Sets the role assignments.

Syntax: Here is the method signature:

public void setRoleAssignments(RoleAssignmentArray roleAssignments)

setRoleCategoryKeys
Sets the role category keys.

Syntax: Here is the method signature:

public void setRoleCategoryKeys(CategoryKeyArray roleCategoryKeys)

setRoleLevel
Sets the role level object.

Syntax: Here is the method signature:

public void setRoleLevel(RoleLevel roleLevel)

setSystemRole
Sets the system role flag.

Syntax: Here is the method signature:

public void setSystemRole(boolean systemRole)

RoleAssignment
Value class to hold role assignment information.

RoleAssignment
The RoleAssignment class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleAssignment()

getAssignmentType
Gets the role assignment type.

Syntax: Here is the method signature:

public RoleAssignmentType getAssignmentType()
472 Role Web Service

getCauseIdentities
Gets the cause identities DNs.

Syntax: Here is the method signature:

public IdentityTypeDnMapArray getCauseIdentities()

getEffectiveDate
Gets the effective date.

Syntax: Here is the method signature:

public java.util.Date getEffectiveDate()

 getExpirationDate
Gets the expiration date.

Syntax: Here is the method signature:

public java.util.Date getExpirationDate()

 getExplicitIdentities
Gets the explicit identities DNs.

Syntax: Here is the method signature:

public DNStringArray getExplicitIdentities()

getRole
Gets the role associated with the assignment.

Syntax: Here is the method signature:

public java.lang.String getRole()

setAssignmentType
Sets the role assignment type.

Syntax: Here is the method signature:

public void setAssignmentType(RoleAssignmentType assignmentType)

setCauseIdentities
Sets the cause identities DNs.

Syntax: Here is the method signature:

public void setCauseIdentities(IdentityTypeDnMapArray causeIdentities)
Role Web Service 473

setEffectiveDate
Sets the effective date.

Syntax: Here is the method signature:

public void setEffectiveDate(java.util.Date effectiveDate)

setExpirationDate
Sets the expiration date.

Syntax: Here is the method signature:

public void setExpirationDate(java.util.Date expirationDate)

 setExplicitIdentities
Sets the explicit identities DNs.

Syntax: Here is the method signature:

public void setExplicitIdentities(DNStringArray explicitIdentities)

 setRole
Sets role associated with this assignment.

Syntax: Here is the method signature:

public void setRole(java.lang.String role)

RoleAssignmentArray
This section provides reference information on the RoleAssignmentArray class.

RoleAssignmentArray constructors
The RoleAssignmentArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RoleAssignmentArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

RoleAssignmentArray(RoleAssignment[] RoleAssignmentVal)

getRoleassignment
Returns an array of RoleAssignment objects.

Syntax: Here is the method signature:
474 Role Web Service

RoleAssignment[] getRoleassignment()

setRoleassignment
Sets the array of RoleAssignment objects associated with the RoleAssignmentArray class.

Syntax: Here is the method signature:

void setRoleassignment (RoleAssignment[] RoleAssignmentVal)

RoleAssignmentActionType
An JAX-RPC friendly representation of com.novell.idm.nrf.RoleAssignmentActionType.

Table 31-6 Field Summary

RoleAssignmentActionType constructors
The RoleAssignmentActionType class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RoleAssignmentActionType()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

RoleAssignmentActionType(java.lang.String value)

equals
Implementation of equals().

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.RoleAssignmentActionType fromRPC()

Type Name

static RoleAssignmentActionType EXTEND

static RoleAssignmentActionType GRANT

static RoleAssignmentActionType REVOKE
Role Web Service 475

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static RoleAssignmentActionType fromValue(java.lang.String value)

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This is an implementation of hashCode(). This implementation overrides the hashCode() method in
java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

 toRPC
Constructs an RPC friendly representation off of an API object.

Syntax: Here is the method signature:

public static RoleAssignmentActionType
toRPC(com.novell.idm.nrf.RoleAssignmentActionType type)

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

RoleAssignmentRequest
Class to represent a role assignment request.
476 Role Web Service

RoleAssignmentRequest
The RoleAssignmentRequest class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleAssignmentRequest()

 getActionType
Gets role assignment type (grant, revoke, extend).

Syntax: Here is the method signature:

public RoleAssignmentActionType getActionType()

getAssignmentType
Gets the role assignment type.

Syntax: Here is the method signature:

public RoleAssignmentType getAssignmentType()

getCorrelationID
Gets the correlation ID.

Syntax: Here is the method signature:

public java.lang.String getCorrelationID()

getEffectiveDate
Gets the effective date.

Syntax: Here is the method signature:

public java.util.Date getEffectiveDate()

getExpirationDate
Gets the expiration date.

Syntax: Here is the method signature:

public java.util.Date getExpirationDate()

getIdentity
Gets the identity to assign roles to.

Syntax: Here is the method signature:

public java.lang.String getIdentity()
Role Web Service 477

getReason
Gets the reason for the role assignment.

Syntax: Here is the method signature:

public java.lang.String getReason()

getRoles
Gets the roles to assign to the identity.

Syntax: Here is the method signature:

public DNStringArray getRoles()

getSodOveridesRequested
Gets the SOD DNs and justification to override.

Syntax: Here is the method signature:

public SodJustificationArray getSodOveridesRequested()

setActionType
Sets the action type (grant, revoke, extend).

Syntax: Here is the method signature:

public void setActionType(RoleAssignmentActionType actionType)

setAssignmentType
Sets the role assignment type.

Syntax: Here is the method signature:

public void setAssignmentType(RoleAssignmentType assignmentType)

setCorrelationID
Sets the correlation ID.

Syntax: Here is the method signature:

public void setCorrelationID(java.lang.String correlationID)

setEffectiveDate
Sets the effective date.

Syntax: Here is the method signature:

public void setEffectiveDate(java.util.Date effectiveDate)
478 Role Web Service

setExpirationDate
Sets the expiration date.

Syntax: Here is the method signature:

public void setExpirationDate(java.util.Date expirationDate)

setIdentity
Sets the identity to assign roles to.

Syntax: Here is the method signature:

public void setIdentity(java.lang.String identity)

setReason
Sets the reason for the role assignment.

Syntax: Here is the method signature:

public void setReason(java.lang.String reason)

setRoles
Sets the roles to assign to the identity.

Syntax: Here is the method signature:

public void setRoles(DNStringArray roles)

setSodOveridesRequested
Sets the SOD DNs and justification to override.

Syntax: Here is the method signature:

public void setSodOveridesRequested(SodJustificationArray
sodOveridesRequested)

RoleAssignmentRequestStatus
This class represents the status of a role assignment.

RoleAssignmentRequestStatus
The RoleAssignmentRequestStatus class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleAssignmentRequestStatus()
Role Web Service 479

getCategory
Gets the request category.

Syntax: Here is the method signature:

public RequestCategoryType getCategory()

getCorrelationId
Gets the correlation ID.

Syntax: Here is the method signature:

public java.lang.String getCorrelationId()

 getEffectiveDate
Gets the effective date.

Syntax: Here is the method signature:

public java.util.Date getEffectiveDate()

 getEntityKey
Gets the entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

 getExpirationDate
Gets the expiration date.

Syntax: Here is the method signature:

public java.util.Date getExpirationDate()

getReason
Gets the reason for the role assignment.

Syntax: Here is the method signature:

public java.lang.String getReason()

getRequestDate
Gets the request date.

Syntax: Here is the method signature:

public java.util.Date getRequestDate()
480 Role Web Service

 getRequester
Gets the request DN.

Syntax: Here is the method signature:

public java.lang.String getRequester()

getSource
Gets the source Role DN.

Syntax: Here is the method signature:

public java.lang.String getSource()

getStatus
Gets the request status.

Syntax: Here is the method signature:

public RequestStatus getStatus()

 getTarget
Gets the targeted identity DN.

Syntax: Here is the method signature:

public java.lang.String getTarget()

setCategory
Sets the request category.

Syntax: Here is the method signature:

public void setCategory(RequestCategoryType category)

setCorrelationId
Sets the correlation ID.

Syntax: Here is the method signature:

public void setCorrelationId(java.lang.String correlationId)

setEffectiveDate
Sets the effective date.

Syntax: Here is the method signature:

public void setEffectiveDate(java.util.Date effectiveDate)
Role Web Service 481

 setEntityKey
Sets the entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setExpirationDate
Sets the expiration date.

Syntax: Here is the method signature:

public void setExpirationDate(java.util.Date expirationDate)

 setReason
Sets the reason for the role assignment.

Syntax: Here is the method signature:

public void setReason(java.lang.String reason)

 setRequestDate
Sets the request date.

Syntax: Here is the method signature:

public void setRequestDate(java.util.Date requestDate)

 setRequester
Sets the requester DN.

Syntax: Here is the method signature:

public void setRequester(java.lang.String requester)

setSource
Sets the source Role DN.

Syntax: Here is the method signature:

public void setSource(java.lang.String source)

setStatus
Sets the request status.

Syntax: Here is the method signature:

public void setStatus(RequestStatus status)
482 Role Web Service

setTarget
Sets the identity targeted DN.

Syntax: Here is the method signature:

public void setTarget(java.lang.String target)

RoleAssignmentType
An JAX-RPC friendly representation of com.novell.idm.nrf.RoleAssignmentType.

Table 31-7 Field Summary

RoleAssignmentType constructors
The CategoryKey class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

CategoryKey()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

CategoryKey(java.lang.String categoryKey)

convertToAPI
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.RoleAssignmentType convertToAPI()

convertToRPC
Constructs an RPC friendly representation off of an API object.

Syntax: Here is the method signature:

public static RoleAssignmentType
convertToRPC(com.novell.idm.nrf.RoleAssignmentType type)

Type Name

static RoleAssignmentType CONTAINER_TO_ROLE

static RoleAssignmentType CONTAINER_WITH_SUBTREE_TO_ROLE

static RoleAssignmentType GROUP_TO_ROLE

static RoleAssignmentType ROLE_TO_ROLE

static RoleAssignmentType USER_TO_ROLE
Role Web Service 483

 equals
Implementation of equals().

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static RoleAssignmentType fromValue(java.lang.String value)

 getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

 hashCode
This is an implementation of hashCode(). This implementation overrides the hashCode() method in
java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

RoleAssignmentTypeInfo
An JAX-RPC friendly representation of the details of the com.novell.idm.nrf.RoleAssignmentType
enumeration.
484 Role Web Service

RoleAssignmentTypeInfo
The RoleAssignmentTypeInfo class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleAssignmentTypeInfo()

convertToRPC
Constructs an RPC friendly representation from an API object.

Syntax: Here is the method signature:

public static RoleAssignmentTypeInfo
convertToRPC(com.novell.idm.nrf.RoleAssignmentType type)

getIdentityType
Returns the JAX-RPC friendly identity type.

Syntax: Here is the method signature:

public IdentityType getIdentityType()

getSubtreeIncluded
Determines whether the sub is included.

Syntax: Here is the method signature:

public boolean getSubtreeIncluded()

 getSupportsApproval
Determines whether the assignment supports approval.

Syntax: Here is the method signature:

public boolean getSupportsApproval()

 getSupportsEffectiveDate
Determines whether the assignment supports an effective date.

Syntax: Here is the method signature:

public boolean getSupportsEffectiveDate()

getSupportsExpiration
Determines whether the assignment supports expiration.

Syntax: Here is the method signature:
Role Web Service 485

public boolean getSupportsExpiration()

getSupportsSODApproval
Determines whether the assignment supports SOD approval.

Syntax: Here is the method signature:

public boolean getSupportsSODApproval()

setIdentityType
Sets the JAX-RPC friendly identity type.

Syntax: Here is the method signature:

public void setIdentityType(IdentityType type)

 setSubtreeIncluded
Sets whether the sub is included.

Syntax: Here is the method signature:

public void setSubtreeIncluded(boolean bool)

setSupportsApproval
Sets whether the assignment supports approval.

Syntax: Here is the method signature:

public void setSupportsApproval(boolean bool)

setSupportsEffectiveDate
Sets whether the assignment supports effective date.

Syntax: Here is the method signature:

public void setSupportsEffectiveDate(boolean bool)

setSupportsExpiration
Sets whethers the assignment supports expiration.

Syntax: Here is the method signature:

public void setSupportsExpiration(boolean bool)

setSupportsSODApproval
Sets whether the assignment supports SOD approval.
486 Role Web Service

Syntax: Here is the method signature:

public void setSupportsSODApproval(boolean bool)

RoleInfo
Value class to hold main role information. This is a small subset of the role value class.

RoleInfo constructors
The RoleInfo class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleInfo()

 getDescription
Gets the role description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getEntityKey
Gets the role entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getName
Gets the role name.

Syntax: Here is the method signature:

public java.lang.String getName()

getRoleCategoryKeys
Gets the role category keys.

Syntax: Here is the method signature:

public CategoryKeyArray getRoleCategoryKeys()

getRoleLevel
Gets the role level object.

Syntax: Here is the method signature:
Role Web Service 487

public RoleLevel getRoleLevel()

setDescription
Sets the role description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setEntityKey
Sets the role entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setName
Sets the role name.

Syntax: Here is the method signature:

public void setName(java.lang.String name)

setRoleCategoryKeys
Sets the role category keys.

Syntax: Here is the method signature:

public void setRoleCategoryKeys(CategoryKeyArray roleCategoryKeys)

setRoleLevel
Sets role level object.

Syntax: Here is the method signature:

public void setRoleLevel(RoleLevel roleLevel)

RoleInfoArray
This section provides reference information on the RoleInfoArray class.

RoleInfoArray constructors
The RoleInfoArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RoleInfoArray()
488 Role Web Service

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

RoleInfoArray(RoleInfo[] RoleInfoVal)

getRoleinfo
Returns an array of RoleInfo objects.

Syntax: Here is the method signature:

RoleInfo[] getRoleinfo()

setRoleinfo
Sets the array of RoleInfo objects associated with the RoleInfoArray class.

Syntax: Here is the method signature:

void setRoleinfo (RoleInfo[] RoleInfoVal)

RoleLevel
This class represent a role level.

RoleLevel constructors
The RoleLevel class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleLevel()

getContainer
Gets the role level container.

Syntax: Here is the method signature:

public java.lang.String getContainer()

getDescription
Gets the role level description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getLevel
Gets the role level.

Syntax: Here is the method signature:
Role Web Service 489

public long getLevel()

getName
Gets the role level name.

Syntax: Here is the method signature:

public java.lang.String getName()

setContainer
Sets the role level container.

Syntax: Here is the method signature:

public void setContainer(java.lang.String container)

setDescription
Sets the role level description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setLevel
Sets the role level.

Syntax: Here is the method signature:

public void setLevel(long level)

setName
Sets the role level name.

Syntax: Here is the method signature:

public void setName(java.lang.String name)

RoleLevelArray
This section provides reference information on the RoleLevelArray class.

RoleLevelArray constructors
The RoleLevelArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

RoleLevelArray()
490 Role Web Service

Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

RoleLevelArray(RoleLevel[] RoleLevelVal)

getRolelevel
Returns an array of RoleLevel objects.

Syntax: Here is the method signature:

RoleLevel[] getRolelevel()

setRolelevel
Sets the array of RoleLevel objects associated with the RoleLevelArray class.

Syntax: Here is the method signature:

void setRolelevel (RoleLevel[] RoleLevelVal)

RoleRequest
The Role Request class has been added to support the creation of roles. The Role Request class is a
value class used to hold information about a request to create a role.

getName
Gets the role name.

Syntax: Here is the method signature:

public String getName()

getDescription
Gets the role description.

Syntax: Here is the method signature:

public String getDescription()

getEntityKey
Gets the entity key for the role.

Syntax: Here is the method signature:

public String getEntityKey()

getRoleLevel
Gets the role level object.
Role Web Service 491

Syntax: Here is the method signature:

public long getRoleLevel()

getRoleCategoryKeys
Gets the role category keys.

Syntax: Here is the method signature:

public CategoryKey[] getRoleCategoryKeys()

getQuorum
Gets the quorum amount.

Syntax: Here is the method signature:

public String getQuorum()

getRequestDef
Gets the provisioning request definition for approval processing.

Syntax: Here is the method signature:

public String getRequestDef()

getApprovers
Gets the approvers for the role definition.

Syntax: Here is the method signature:

public Approver[] getApprovers()

getOwners
Gets the owner DNs.

Syntax: Here is the method signature:

public DNString[] getOwners()

getRoleAssignments
Gets the associated roles.

Syntax: Here is the method signature:

public String getRoleAssignments()
492 Role Web Service

getSystemRole
Gets the system role flag, which indicates whether this is a system role.

Syntax: Here is the method signature:

public boolean getSystemRole()

getContainer
Gets the name of the role container.

Syntax: Here is the method signature:

public String getContainer()

setName
Sets the role name.

Syntax: Here is the method signature:

public void setName()

setDescription
Sets the role description.

Syntax: Here is the method signature:

public void setDescription()

setEntityKey
Sets the entity key for the role.

Syntax: Here is the method signature:

public void setEntityKey()

setRoleLevel
Sets the role level object.

Syntax: Here is the method signature:

public void setRoleLevel()

setRoleCategoryKeys
Sets the role category keys.

Syntax: Here is the method signature:

public void setRoleCategoryKeys()
Role Web Service 493

setQuorum
Sets the quorum amount.

Syntax: Here is the method signature:

public void setQuorum()

setRequestDef
Sets the provisioning request definition for approval processing.

Syntax: Here is the method signature:

public void setRequestDef()

setApprovers
Sets the approvers for role approval processing.

Syntax: Here is the method signature:

public void setApprovers()

setOwners
Sets the owner DNs.

Syntax: Here is the method signature:

public void setOwners()

setSystemRole
Sets the system role flag, which determines whether this is a system role.

Syntax: Here is the method signature:

public void setSystemRole()

setContainer
Sets the role container.

Syntax: Here is the method signature:

public void setContainer()

RoleServiceDelegate
Delegate class to perform the actual call to the API layer. Should be used by all skeleton classes.
494 Role Web Service

RoleServiceDelegate constructors
The RoleServiceDelegate class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleServiceDelegate(com.novell.srvprv.spi.security.ISecurityContext ctx,
java.util.Locale locale)

findSodByExample
Finds all SoD objects based on the search criteria in the given SOD object.

Syntax: Here is the method signature:

SodArray findSodByExample(Sod sod) throws NrfServiceException,
java.rmi.RemoteException

findSodByExampleWithOperator
Finds all SoD objects based on the search criteria found in the given SOD object

Syntax: Here is the method signature:

SodArray findSodByExampleWithOperator(Sod searchCriteria, boolean
useAndForMultiValueSearch) throws NrfServiceException,
java.rmi.RemoteException

findSodById
Find by key.

Syntax: Here is the method signature:

Sod findSodById(java.lang.String entityKey) throws NrfServiceException,
java.rmi.RemoteException

getAssignedIdentities
Returns a list of role assignments for a specified identity.

Syntax: Here is the method signature:

RoleAssignmentArray getAssignedIdentities(java.lang.String identityDn,
IdentityType type, boolean direct) throws NrfServiceException,
java.rmi.RemoteException

getConfiguration
Returns the role system configuration defined in the role vault root (nrfConfiguration)

Syntax: Here is the method signature:

Configuration getConfiguration() throws NrfServiceException,
java.rmi.RemoteException
Role Web Service 495

getContainer
Gets container and role information for a given container DN.

Syntax: Here is the method signature:

Container getContainer(java.lang.String containerDn)
throws NrfServiceException, java.rmi.RemoteException

getExceptionList
Returns a list of Sod instances for all SOD violations found for a specific identity and type.

Syntax: Here is the method signature:

SodArray getExceptionsList(java.lang.String identity, IdentityType
identityType) throws NrfServiceException, java.rmi.RemoteException

getGroup
Gets group and role information for a given group DN.

Syntax: Here is the method signature:

Group getGroup(java.lang.String groupDn) throws NrfServiceException,
java.rmi.RemoteException

getIdentitiesInViolation
Returns a map of identities which are in violation of a given SoD.

Syntax: Here is the method signature:

IdentityTypeDnMapArray getIdentitiesInViolation(java.lang.String sodDn)
throws NrfServiceException, java.rmi.RemoteException

getIdentityRoleConflicts
Returns a list of Sod instances for all SOD conflicts found for a given list of roles for a given identity.

Syntax: Here is the method signature:

SodArray getIdentityRoleConflicts(java.lang.String identity, IdentityType
identityType, DNStringArray requestedRoles) throws NrfServiceException,
java.rmi.RemoteException

getRole
Retrieves a role object defined by a role DN

Syntax: Here is the method signature:

Role getRole(java.lang.String roleDn) throws NrfServiceException,
java.rmi.RemoteException
496 Role Web Service

getRoleAssignmentRequestStatus
Returns a list of role assignment request status instances given a correlation ID.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatus(java.lang.String correlationId) throws
NrfServiceException, java.rmi.RemoteException

getRoleAssignmentRequestStatusByIdentityType
Returns a list of role assignment request status instances given an identity and an identity type.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatusByIdentityType(java.lang.String identityDn,
IdentityType identityType) throws NrfServiceException,
java.rmi.RemoteException

getRoleAssignmentTypeInfo
Retrieves details about a RoleAssignmentType.

Syntax: Here is the method signature:

RoleAssignmentTypeInfo getRoleAssignmentTypeInfo(RoleAssignmentType type)
throws NrfServiceException, java.rmi.RemoteException

getRoleCategories
Gets role categories.

Syntax: Here is the method signature:

CategoryArray getRoleCategories() throws NrfServiceException,
java.rmi.RemoteException

getRoleConflicts
Returns a list of Sod instances found for all given roles. This method always returns a list.

Syntax: Here is the method signature:

SodArray getRoleConflicts(DNStringArray roles) throws NrfServiceException,
java.rmi.RemoteException

getRoleLevels
Gets role levels.

Syntax: Here is the method signature:
Role Web Service 497

RoleLevelArray getRoleLevels() throws NrfServiceException,
java.rmi.RemoteException

getRolesInfo
Returns a list of RoleInfo instances given a list of role DNs.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfo(DNStringArray roleDns) throws
NrfServiceException, java.rmi.RemoteException

getRolesInfoByCategory
Returns a list of RoleInfo instances given a list of role category keys.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByCategory(CategoryKeyArray roleCategoryKeys)
throws NrfServiceException, java.rmi.RemoteException

getRolesInfoByLevel
Returns a list of RoleInfo instances given a list of role levels.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByLevel(LongArray roleLevels) throws
NrfServiceException, java.rmi.RemoteException

getTargetSourceConflicts
Returns a list of Sod instances for all SOD conflicts defined between the target role DN and the
source role DN.

Syntax: Here is the method signature:

SodArray getTargetSourceConflicts(java.lang.String targetName,
java.lang.String sourceName) throws NrfServiceException,
java.rmi.RemoteException

getUser
Gets user info including all role assignments for a given user DN stored in a UserIdentity object.

Syntax: Here is the method signature:

User getUser(java.lang.String userDn) throws NrfServiceException,
java.rmi.RemoteException

getVersion
Returns the version of this Web Service.
498 Role Web Service

Syntax: Here is the method signature:

VersionVO getVersion() throws java.rmi.RemoteException

isUserInRole
Returns boolean flag; true if role has been assigned to a User identity

Syntax: Here is the method signature:

boolean isUserInRole(java.lang.String userDn, java.lang.String roleDn)

requestRoleAssignment
Returns a list of request DNs created by the role assignment. Be aware that the role assignment
expires only if the role is assigned to a user and not when it is assigned to a group or a container.

Syntax: Here is the method signature:

DNStringArray requestRolesAssignment(RoleAssignmentRequest
roleAssignmentRequest) throws NrfServiceException,
java.rmi.RemoteException

RoleServiceSkeletonImpl
Class to represent the skeleton server side implementation of the Role Based offered services.

RoleServiceSkeletonImpl
The RoleServiceSkeletonImpl class supports a single constructor.

Syntax: Here is the syntax for the constructor:

RoleServiceSkeletonImpl()

findSodByExample
Finds all SoD objects based on the search criteria in the given SOD object.

Syntax: Here is the method signature:

SodArray findSodByExample(Sod sod) throws NrfServiceException,
java.rmi.RemoteException

findSodByExampleWithOperator
Finds all SoD objects based on the search criteria found in the given SOD object

Syntax: Here is the method signature:

SodArray findSodByExampleWithOperator(Sod searchCriteria, boolean
useAndForMultiValueSearch) throws NrfServiceException,
java.rmi.RemoteException
Role Web Service 499

findSodById
Find by key.

Syntax: Here is the method signature:

Sod findSodById(java.lang.String entityKey) throws NrfServiceException,
java.rmi.RemoteException

getAssignedIdentities
Returns a list of role assignments for a specified identity.

Syntax: Here is the method signature:

RoleAssignmentArray getAssignedIdentities(java.lang.String identityDn,
IdentityType type, boolean direct) throws NrfServiceException,
java.rmi.RemoteException

getConfiguration
Returns the role system configuration defined in the role vault root (nrfConfiguration)

Syntax: Here is the method signature:

Configuration getConfiguration() throws NrfServiceException,
java.rmi.RemoteException

getContainer
Gets container and role information for a given container DN.

Syntax: Here is the method signature:

Container getContainer(java.lang.String containerDn)
throws NrfServiceException, java.rmi.RemoteException

getExceptionList
Returns a list of Sod instances for all SOD violations found for a specific identity and type.

Syntax: Here is the method signature:

SodArray getExceptionsList(java.lang.String identity, IdentityType
identityType) throws NrfServiceException, java.rmi.RemoteException

getGroup
Gets group and role information for a given group DN.

Syntax: Here is the method signature:

Group getGroup(java.lang.String groupDn) throws NrfServiceException,
java.rmi.RemoteException
500 Role Web Service

getIdentitiesInViolation
Returns a map of identities which are in violation of a given SoD.

Syntax: Here is the method signature:

IdentityTypeDnMapArray getIdentitiesInViolation(java.lang.String sodDn)
throws NrfServiceException, java.rmi.RemoteException

getIdentityRoleConflicts
Returns a list of Sod instances for all SOD conflicts found for a given list of roles for a given identity.

Syntax: Here is the method signature:

SodArray getIdentityRoleConflicts(java.lang.String identity, IdentityType
identityType, DNStringArray requestedRoles) throws NrfServiceException,
java.rmi.RemoteException

getRole
Retrieves a role object defined by a role DN

Syntax: Here is the method signature:

Role getRole(java.lang.String roleDn) throws NrfServiceException,
java.rmi.RemoteException

getRoleAssignmentRequestStatus
Returns a list of role assignment request status instances given a correlation ID.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatus(java.lang.String correlationId) throws
NrfServiceException, java.rmi.RemoteException

getRoleAssignmentRequestStatusByIdentityType
Returns a list of role assignment request status instances given an identity and an identity type.

Syntax: Here is the method signature:

RoleAssignmentRequestStatusArray
getRoleAssignmentRequestStatusByIdentityType(java.lang.String identityDn,
IdentityType identityType) throws NrfServiceException,
java.rmi.RemoteException

getRoleAssignmentTypeInfo
Retrieves details about a RoleAssignmentType.

Syntax: Here is the method signature:
Role Web Service 501

RoleAssignmentTypeInfo getRoleAssignmentTypeInfo(RoleAssignmentType type)
throws NrfServiceException, java.rmi.RemoteException

getRoleCategories
Gets role categories.

Syntax: Here is the method signature:

CategoryArray getRoleCategories() throws NrfServiceException,
java.rmi.RemoteException

getRoleConflicts
Returns a list of Sod instances found for all given roles. This method always returns a list.

Syntax: Here is the method signature:

SodArray getRoleConflicts(DNStringArray roles) throws NrfServiceException,
java.rmi.RemoteException

getRoleLevels
Gets role levels.

Syntax: Here is the method signature:

RoleLevelArray getRoleLevels() throws NrfServiceException,
java.rmi.RemoteException

getRolesInfo
Returns a list of RoleInfo instances given a list of role DNs.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfo(DNStringArray roleDns) throws
NrfServiceException, java.rmi.RemoteException

getRolesInfoByCategory
Returns a list of RoleInfo instances given a list of role category keys.

Syntax: Here is the method signature:

RoleInfoArray getRolesInfoByCategory(CategoryKeyArray roleCategoryKeys)
throws NrfServiceException, java.rmi.RemoteException

getRolesInfoByLevel
Returns a list of RoleInfo instances given a list of role levels.

Syntax: Here is the method signature:
502 Role Web Service

RoleInfoArray getRolesInfoByLevel(LongArray roleLevels) throws
NrfServiceException, java.rmi.RemoteException

getTargetSourceConflicts
Returns a list of Sod instances for all SOD conflicts defined between the target role DN and the
source role DN.

Syntax: Here is the method signature:

SodArray getTargetSourceConflicts(java.lang.String targetName,
java.lang.String sourceName) throws NrfServiceException,
java.rmi.RemoteException

getUser
Gets user info including all role assignments for a given user DN stored in a UserIdentity object.

Syntax: Here is the method signature:

User getUser(java.lang.String userDn) throws NrfServiceException,
java.rmi.RemoteException

getVersion
Returns the version of this Web Service.

Syntax: Here is the method signature:

VersionVO getVersion() throws java.rmi.RemoteException

isUserInRole
Returns boolean flag; true if role has been assigned to a User identity

Syntax: Here is the method signature:

boolean isUserInRole(java.lang.String userDn, java.lang.String roleDn)

requestRoleAssignment
Returns a list of request DNs created by the role assignment

Syntax: Here is the method signature:

DNStringArray requestRolesAssignment(RoleAssignmentRequest
roleAssignmentRequest) throws NrfServiceException,
java.rmi.RemoteException

Sod
Value object to hold SOD information.
Role Web Service 503

Sod constructors
The Sod class supports a single constructor.

Syntax: Here is the syntax for the constructor:

Sod()

getApprovalType
Gets the SOD approval type.

Syntax: Here is the method signature:

public SodApprovalType getApprovalType()

getApprovers
Gets SOD approvers.

Syntax: Here is the method signature:

public ApproverArray getApprovers()

getDescription
Gets the SOD description.

Syntax: Here is the method signature:

public java.lang.String getDescription()

getEntityKey
Gets the SOD entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getName
Gets the SOD name.

Syntax: Here is the method signature:

public java.lang.String getName()

getQuorum
Gets the SOD quorum amount.

Syntax: Here is the method signature:

public java.lang.String getQuorum()
504 Role Web Service

getRequestDef
Gets the request definition for approval processing.

Syntax: Here is the method signature:

public java.lang.String getRequestDef()

getRoles
Gets the SOD roles.

Syntax: Here is the method signature:

public DNStringArray getRoles()

setApprovalType
Sets the SOD approval type.

Syntax: Here is the method signature:

public void setApprovalType(SodApprovalType approvalType)

setApprovers
Sets the SOD approvers.

Syntax: Here is the method signature:

public void setApprovers(ApproverArray approvers)

setDescription
Sets the SOD description.

Syntax: Here is the method signature:

public void setDescription(java.lang.String description)

setEntityKey
Sets the SOD entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setName
Sets the SOD name.

Syntax: Here is the method signature:

public void setName(java.lang.String name)
Role Web Service 505

setQuorum
Sets the SOD quorum amount.

Syntax: Here is the method signature:

public void setQuorum(java.lang.String quorum)

setRequestDef
Sets the request definition for approval processing.

Syntax: Here is the method signature:

public void setRequestDef(java.lang.String requestDef)

setRoles
Sets the SOD roles.

Syntax: Here is the method signature:

public void setRoles(DNStringArray roles)

SodArray
This section provides reference information on the SodArray class.

SodArray constructors
The SodArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

SodArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

SodArray(Sod[] SodVal)

getSod
Returns an array of Sod objects.

Syntax: Here is the method signature:

Sod[] getSod()

setSod
Sets the array of Sod objects associated with the SodArray class.

Syntax: Here is the method signature:
506 Role Web Service

void setSod (Sod[] SodVal)

SodApprovalType
An JAX-RPC friendly representation of com.novell.idm.nrf.api.SodApprovalType.

Table 31-8 Field Summary

SodApprovalType constructors
The SodApprovalType class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

SodApprovalType()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

SodApprovalType(java.lang.String value)

equals
Implementation of equals().

Syntax: Here is the method signature:

public boolean equals(java.lang.Object obj)

fromRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.api.SodApprovalType fromRPC() throws
com.novell.idm.nrf.exception.NrfException

fromValue
This method is for WSSDK serialization.

Syntax: Here is the method signature:

public static SodApprovalType fromValue(java.lang.String value)

Type Name

static SodApprovalType ALLOW_WITH_WORKFLOW

static SodApprovalType ALWAYS_ALLOW
Role Web Service 507

getValue
Gets the type.

Syntax: Here is the method signature:

public java.lang.String getValue()

hashCode
This is an implementation of hashCode(). This implementation overrides the hashCode() method in
java.lang.Object.

Syntax: Here is the method signature:

public int hashCode()

setValue
Sets the type.

Syntax: Here is the method signature:

public void setValue(java.lang.String type)

toRPC
Reconstructs an API representation object from an RPC representation.

Syntax: Here is the method signature:

public com.novell.idm.nrf.api.SodApprovalType fromRPC() throws
com.novell.idm.nrf.exception.NrfException

toString
Implementation of toString() that returns a string representation of the class.

Syntax: Here is the method signature:

public java.lang.String toString()

SodJustification
Class to represent an SOD DN to override with a justification. Used for assignment of roles to be able
to pass in a justification for overrides of SODs.

SodJustification constructors
The SodJustification class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

SodJustification()
508 Role Web Service

Syntax 2: Here is the syntax for a constructor that takes two String values as parameters:

SodJustification(java.lang.String sodDN, java.lang.String justification)

getJustification
Gets the SOD justification for override.

Syntax: Here is the method signature:

public java.lang.String getJustification()

getSodDN
Gets the SOD DN for override.

Syntax: Here is the method signature:

public java.lang.String getSodDN()

setJustification
Sets the justification for override.

Syntax: Here is the method signature:

public void setJustification(java.lang.String justification)

setSodDN
Sets the SOD DN for override.

Syntax: Here is the method signature:

public void setSodDN(java.lang.String sodDN)

SodJustificationArray
This section provides reference information on the SodJustificationArray class.

SodJustificationArray constructors
The SodJustificationArray class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

SodJustificationArray()
Syntax 2: Here is the syntax for a constructor that takes an array of Attribute objects as a parameter:

SodJustificationArray(SodJustification[] SodJustificationVal)
Role Web Service 509

getSodjustification
Returns an array of SodJustification objects.

Syntax: Here is the method signature:

SodJustification[] getSodjustification()

setSodjustification
Sets the array of SodJustification objects associated with the SodJustificationArray class.

Syntax: Here is the method signature:

void setSodjustification (SodJustification[] SodJustificationVal)

User
Value class to hold user identity information.

User constructors
The User class supports a single constructor.

Syntax: Here is the syntax for the constructor:

User()

getAssociatedRoles
Gets the associated roles for this identity.

Syntax: Here is the method signature:

public DNStringArray getAssociatedRoles()

getCn
Gets the cn.

Syntax: Here is the method signature:

public java.lang.String getCn()

getContainerRoles
Gets the container roles.

Syntax: Here is the method signature:

public DNStringArray getContainerRoles()
510 Role Web Service

getEmail
Gets the email address.

Syntax: Here is the method signature:

public java.lang.String getEmail()

getEntityKey
Gets the identity entity key.

Syntax: Here is the method signature:

public java.lang.String getEntityKey()

getExplicitAssignments
Gets the explicit role assignments.

Syntax: Here is the method signature:

public RoleAssignmentArray getExplicitAssignments()

getFirstName
Gets the first name.

Syntax: Here is the method signature:

public java.lang.String getFirstName()

getGroupRoles
Gets the group roles.

Syntax: Here is the method signature:

public DNStringArray getGroupRoles()

getIdentityType
Gets identity type.

Syntax: Here is the method signature:

public IdentityType getIdentityType()

getImplicitAssignments
Gets the implicit role assignments.

Syntax: Here is the method signature:

public RoleAssignmentArray getImplicitAssignments()
Role Web Service 511

getInheritedAssignments
Gets the inherited role assignments.

Syntax: Here is the method signature:

public RoleAssignmentArray getInheritedAssignments()

getInheritedRoles
Gets the inherited roles.

Syntax: Here is the method signature:

public DNStringArray getInheritedRoles()

getLastName
Gets the last name.

Syntax: Here is the method signature:

public java.lang.String getLastName()

getRoleAssignments
Gets the role assignments for this identity.

Syntax: Here is the method signature:

public RoleAssignmentArray getRoleAssignments()

setAssociatedRoles
Sets the associated roles for this identity.

Syntax: Here is the method signature:

public void setAssociatedRoles(DNStringArray associatedRoles)

setCn
Sets the CN.

Syntax: Here is the method signature:

public void setCn(java.lang.String cn)

setContainerRoles
Sets the container roles.

Syntax: Here is the method signature:

public void setContainerRoles(DNStringArray containerRoles)
512 Role Web Service

setEmail
Sets the email address.

Syntax: Here is the method signature:

public void setEmail(java.lang.String email)

setEntityKey
Sets the identity entity key.

Syntax: Here is the method signature:

public void setEntityKey(java.lang.String entityKey)

setExplicitAssignments
Sets the explicit role assignments.

Syntax: Here is the method signature:

public void setExplicitAssignments(RoleAssignmentArray
explicitAssignments)

setFirstName
Sets the first name.

Syntax: Here is the method signature:

public void setFirstName(java.lang.String firstName)

setGroupRoles
Sets the group roles.

Syntax: Here is the method signature:

public void setGroupRoles(DNStringArray groupRoles)

setIdentityType
Sets the identity type.

Syntax: Here is the method signature:

public void setIdentityType(IdentityType identityType)

setImplicitAssignments
Sets the implicit role assignments.

Syntax: Here is the method signature:
Role Web Service 513

public void setImplicitAssignments(RoleAssignmentArray
implicitAssignments)

setInheritedAssignments
Sets the inherited role assignments.

Syntax: Here is the method signature:

public void setInheritedAssignments(RoleAssignmentArray
inheritedAssignments)

setInheritedRoles
Sets the inherited roles.

Syntax: Here is the method signature:

public void setInheritedRoles(DNStringArray inheritedRoles)

setLastName
Sets the last name.

Syntax: Here is the method signature:

public void setLastName(java.lang.String lastName)

setRoleAssignments
Sets the role assignments for this identity.

Syntax: Here is the method signature:

public void setRoleAssignments(RoleAssignmentArray roleAssignments)

VersionVO
A value object for Version.

VersionVO constructors
The VersionVO class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

VersionVO()
Syntax 2: Here is the syntax for a constructor that takes a String as a parameter:

VersionVO(java.lang.String version)
514 Role Web Service

getValue
Gets the version.

Syntax: Here is the method signature:

public java.lang.String getValue()

setValue
Sets the version.

Syntax: Here is the method signature:

public void setValue(java.lang.String version)

Role Web Service Examples
This section provides examples that demonstrate how you might use the Role service.

Retrieving Roles for a Group
This example shows how to retrieve the role assignments for a given group:

public void getGroupTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling
getGroupTestCase()********************************");
 String groupDN = "cn=HR,ou=groups,ou=medical-idmsample,o=netiq";
 try
 {
 IRemoteRole stub = getRolesStub(username, password, acceptlanguage);
 Group group = stub.getGroup(groupDN);
 //Assert.assertNotNull("Group not found", group);
 if (group != null)
 {
 System.out.println("Group Found:");
 System.out.println(" entityKey : " +
group.getEntityKey());
 System.out.println(" identityType : " +
group.getIdentityType().getValue());
 System.out.println(" description : " +
group.getDescription());

 DNString[] roles = group.getAssociatedRoles().getDnstring();
 if (roles != null)
 {
 System.out.println("no of associated roles: " + roles.length);
 for (int rIndex = 0; rIndex < roles.length; rIndex++)
 {
 System.out.println(" role: " + rIndex);
 }
Role Web Service 515

 }
 else
 {
 System.out.println("no of associated roles:0");
 }

 RoleAssignment[] assignments =
group.getRoleAssignments().getRoleassignment();
 PrintRoleUtils.getAssignments(assignments);
 }
 else
 System.out.println("Group not found");
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }
 }

...
 /**
 * Returns the Roles remote stub
 * @param username - user name
 * @param password - password
 * @param acceptLanguage - HTTP header Accept-Language
 * @return the Roles remote stub
 * @throws Exception - catch all exceptions
 */
 public static IRemoteRole getRolesStub(String username,
 String password,
 String acceptLanguage)
 throws Exception
 {
 Stub stub = null;
 String stubCacheKey = username + ":" + password;
 if (g_rolesStubCache.containsKey(stubCacheKey)) {
 g_log.debug("Using Cached Roles stub for [" + username + "]");
 stub = (Stub) g_rolesStubCache.get(stubCacheKey);
 } else {
 g_log.debug("Using New Roles stub");
 RoleService service = new RoleServiceImpl();
 stub = (Stub) service.getIRemoteRolePort();

 if (username != null && password != null) {
 stub._setProperty(Stub.USERNAME_PROPERTY, username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, password);
 }
516 Role Web Service

 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
ServletParameters.getInstance().getUserAppUrl() + ROLES_SERVICE);
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY,
Boolean.TRUE);

 g_rolesStubCache.put(stubCacheKey, stub);
 }

 Properties props = new Properties();
 props.setProperty("Accept-Language", acceptLanguage);
 stub._setProperty(Stub.HTTP_HEADERS, props);

 return (IRemoteRole) stub;
 }

Retrieving Role Assignment Request Status
Returns a list of role assignment request status instances given a correlation ID.

 public void getRoleAssignmentRequestStatusTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling

getRoleAssignmentRequestStatusTestCase()********************************")
;
 String correlationId = "9a5feec728864b55ac443724a915e831";
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);
 RoleAssignmentRequestStatusArray reqArray =
stub.getRoleAssignmentRequestStatus(correlationId);
 RoleAssignmentRequestStatus[] reqStatus =
reqArray.getRoleassignmentrequeststatus();
 //Assert.assertNotNull("RoleAssignmentRequestStatus object is null
for

getRoleAssignmentRequestStatus", reqStatus);
 if (reqStatus != null)
 System.out.println(PrintRoleUtils.getRequestStatus(reqStatus));
 else
 System.out.println("RoleAssignmentRequestStatus object is null for
Role Web Service 517

getRoleAssignmentRequestStatus");

 //result += Util.getRequestStatus(reqStatus);
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }

Retrieving Type Information for a Role Assignment
This example shows how to retrieve the type for a role assignment:

 public void getRoleAssignmentTypeInfoTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling

getRoleAssignmentTypeInfoTestCase()********************************");
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);

 RoleAssignmentTypeInfo info =

stub.getRoleAssignmentTypeInfo(RoleAssignmentType.fromValue("ROLE_TO_ROLE"
));
 //Assert.assertNotNull("Role Assignment Type Info Not Found for
getRoleAssignmentTypeInfo", info);
 if (info != null)
 {
 System.out.println("Role Assignment Type Info:");
 System.out.println(" identity type: " +
info.getIdentityType().getValue());
 System.out.println(" subtree included: " +
info.getSubtreeIncluded());
 System.out.println(" suports approvals: " +
info.getSupportsApproval());
 System.out.println(" supports effective date: " +
info.getSupportsEffectiveDate());
 System.out.println(" supports expiration: " +
info.getSupportsExpiration());
 System.out.println(" supports SOD Approval: " +
info.getSupportsSODApproval());
 }
518 Role Web Service

 else
 System.out.println("Role Assignment Type Info Not Found for
getRoleAssignmentTypeInfo");
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }

Retrieving Role Categories
This example shows how to retrieve the defined role categories:

 public void getRoleCategoriesTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling
getRoleCategoriesTestCase()********************************");
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);
 CategoryArray entriesArray = stub.getRoleCategories();
 Category[] entries = entriesArray.getCategory();
 Assert.assertNotNull("No categories found.", entries);
 if (entries != null)
 {
 System.out.println("no of categories:" + entries.length);

 for (int i = 0; i < entries.length; i++)
 {
 System.out.println(" category key : " +
entries[i].getCategoryKey());
 System.out.println(" category label: " +
entries[i].getCategoryLabel());
 }
 }
 else
 System.out.println("No categories found.");
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }
Role Web Service 519

Retrieving Role Levels
This example shows how to retrieve the defined role levels:

 public void getRoleLevelsTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling
getRoleLevelsTestCase()********************************");
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);
 RoleLevelArray roleLevelArray = stub.getRoleLevels();
 RoleLevel[] entries = roleLevelArray.getRolelevel();
 //Assert.assertNotNull("No role levels found.", entries);
 if (entries != null)
 {
 System.out.println("no of levels:" + entries.length);

 for (int index = 0; index < entries.length; index++)
 {
 System.out.println(" Level : " +
entries[index].getLevel());
 System.out.println(" Name : " + entries[index].getName());
 System.out.println(" Description: " +
entries[index].getDescription());
 System.out.println(" Container : " +
entries[index].getContainer());
 }
 }
 else
 System.out.println("No role levels found.");
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }

Verifying Whether a User Is In a Role
This example shows how to determine whether a user has been assigned to a role:
520 Role Web Service

 public void isUserInRoleTestCase()
 throws Exception
 {
 System.out.println("\n****************Calling
isUserInRoleTestCase()********************************");
 String[] DNs = {
 "cn=ablake,ou=users,ou=medical-idmsample,o=netiq",

"cn=Doctor,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=HajenDrive
r,cn=TestDrivers,o=netiq"
 };
 try
 {
 IRemoteRole stub = getRoleStub(url, username, password);
 boolean inRole = stub.isUserInRole(DNs[0], DNs[1]);

 String sInRole = "User Not In Role";
 if (inRole)
 sInRole = new String("User In Role");

 System.out.println(sInRole);
 }
 catch (NrfServiceException nrf)
 {
 throw new Exception(nrf.getMessage());
 }
 catch (RemoteException re)
 {
 throw new Exception(re.getMessage());
 }

 }
Role Web Service 521

522 Role Web Service

32 32Resource Web Service

This section describes the Resource Web Service, which allows SOAP clients to invoke a subset of
actions that apply to resources.

About the Resource Web Service
The Resource Web Service exposes a small set of actions for the resource model. The service allows
remote clients to request that a resource be granted or revoked, and also to check on the status of
resource requests. By exposing these actions, the service makes it possible for a provisioning
workflow to invoke resource requests through the Integration activity.

Calls to the Resource Web Service calls require HTTP authentication. By default, access to the
resource service methods is restricted to Resource Administrators.

Accessing the Test Page
You can access the Resource Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/resource/service?test
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/resource/service?test

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment.

Servlet declaration for the Resource Service
A SOAP service using WSSDK is deployed by adding the following declarations in the deployment
descriptor (i.e. WEB-INF/web.xml):

<servlet>
 <servlet-name>Resource</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.role.impl.ResourceServiceSkeletonImpl</
servlet-class>
<servlet-mapping>
 <servlet-name>Resource</servlet-name>
 <url-pattern>/resource/service</url-pattern>
</servlet-mapping>
</servlet>
Resource Web Service 523

This follows the normal servlet declaration pattern. It indicates that the servlet
com.novell.idm.nrf.soap.ws.resource.impl.ResourceServiceSkeletonImpl is deployed at /resource/
service.

When a user reaches this servlet using a HTTP GET by entering http://server-name/context/
resource/service (for example, http://localhost:8080/IDMProv/resource/service)
in their browser, the WSSDK provides a page that exposes some information about the deployed
service.

Enabling the Test Page

WARNING: The test page is disabled by default. Since some of the methods allow data to be
updated, the test page presents a potential security vulnerability and should not be allowed in a
production environment.

To enable the test page, you need to update the WEB-INF/web.xml file in the IDMProv.war file.
Before you make your changes, the web.xml should look like this:

<servlet>
 <servlet-name>Resource</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.resource.impl.ResourceServiceSkeletonImpl
</servlet-class>
 <init-param>
 <param-name>com.novell.soa.ws.test.disable</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>
Change the servlet declaration, as follows:

<servlet>
 <servlet-name>Resource</servlet-name>
 <servlet-
class>com.novell.idm.nrf.soap.ws.resource.impl.ResourceServiceSkeletonImpl
</servlet-class>
 <init-param>
 <param-name>com.novell.soa.ws.test.disable</param-name>
 <param-value>false</param-value>
 </init-param>
</servlet>

Accessing the WSDL
You can access the WSDL for the Resource Web Service using a URL similar to the following:

http://server:port/warcontext/resource/service?wsdl
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/resource/service?wsdl
524 Resource Web Service

Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the NetIQ WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.soa.af.resource.soap.impl:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/
jaxrpc-api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar";
com.novell.soa.ws.impl.tools.wsdl2java.Main -verbose -ds gensrc -d C:\ -
noskel -notie -genclient -keep -package
com.novell.soa.af.resource.soap.impl -javadoc resource.wsdl
You can change the wsdl2java parameters to suit your requirements.

Removing Administrator Credential Restrictions
The Resource Web Service supports two levels of security, one that restricts access to Resource
Administrators, and another that restricts access to the authenticated user. The default setting
restricts access to all operations to the Resource Administrator.

You can modify the settings for security configuration in the ism-configuration.properties
file, located by default in the /netiq/idm/apps/tomcat/conf directory. Each property can be
set to true or false. A value of true locks down the operation, whereas a value of false opens up the
operation.

You can open up the Resource Web Service to authenticated users by setting the ResourceService/
Resource/soap property to false. To open up a particular operation to authenticated users, you need
to set the property for that operation (ResourceService/Resource/soap/operation) to false as well. If
you set all of the properties to false, you can open up all operations to authenticated users. The
operation names are the same as the names of the methods supported by the service.

The following methods can be invoked by users without Resource Administrator credentials if the
property ResourceService/Resource/soap property is set to false:

 requestResourceGrant
 requestResourceRevoke
 getResourceRequestStatusByCorrelationId
 getResourceRequestStatusForCurrentUser
 getResourceAssignmentsForCurrentUser

If you wish to change the restriction for a particular operation, you can modify the property
ResourceService/Resource/soap/operation for the method, setting its value to true to restrict access
to administrators for the operation and false to remove the restriction. If the ResourceService/
Resource/soap property is true, all methods are restricted to Resource Administrator credentials.
Resource Web Service 525

Example To ensure that the security configuration opens up all operations within the Resource Web
Service, except for the getResourceRequestStatusByIdentity operation, which would only be
accessible to the Resource Administrator, the ism-configuration.properties must have the
following settings:

 ResourceService/Resource/soap = false
 ResourceService/Resource/soap/requestResourceGrant = false
 ResourceService/Resource/soap/requestResourceRevoke = false
 ResourceService/Resource/soap/getResourceRequestStatusByCorrelationId =
false
 ResourceService/Resource/soap/getResourceRequestStatusForCurrentUser =
false
 ResourceService/Resource/soap/getResourceRequestStatusByIdentity = true

Resource Web Service Interface
This section provides details about the methods available with the Resource Web service. This
programming interface presumes you’re using Java code generated by the WSSDK toolkit. The
interface will be different if you’re using another Web Service toolkit.

IRemoteResource
This section provides reference information for each method associated with the IRemoteResource
interface.

checkCodeMapValueStatus
Checks to see if a particular value exists in the code map table for a specified entitlement and logical
system. The method returns the status for the code map value as a CodeMapValueStatus object.

This method is one of three SOAP endpoints to help you keep the code map tables for the Roles
Based Provisioning Module synchronized with the code map tables for the Role Mapping
Administrator. The user interface for the Role Mapping Administrator can trigger a code map refresh
if a mismatch is discovered while a user is creating mappings. In addition, the Roles Based
Provisioning Module allows you to use the three SOAP endpoints to refresh selected entitlements
within its code map tables.

In addition to checkCodeMapValueStatus, the Roles Based Provisioning Module includes the
following endpoints to help with code map synchronization:

 getRefreshStatus
 refreshCodeMap

The Entitlement Query Settings section of the Configure Roles and Resources Settings page in the
identity applications allows you to specify how often the Roles Based Provisioning Module code map
tables are refreshed and also start a manual refresh. However, this page does not allow to refresh
selected entitlements. To control which entitlements are refreshed, you need to use the SOAP
endpoints.

For additional information on the getRefreshStatus endpoint, see “getRefreshStatus” on page 529.
For additional information on the refreshCodeMap endpoint, see “refreshCodeMap” on page 535.
526 Resource Web Service

For code samples that use the new methods for code map synchronization, see “Code Map
Synchronization Code Samples” on page 556.

Syntax: Here is the method signature:

public CodeMapValueStatus checkCodeMapValueStatus(String entitilementDN,
String connectionName, String codeMapValue)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 entitlementDN entitlement DN as a string.

For example:

cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system
 connectionName connection (logical system) name. This is an optional parameter. Only fanout

drivers need to specify the connection name.
 codeMapValue code map value to verify.

For example:

\TEST1\data\groups\netiq\cambridge\rbpm\4AlphaGroup
SOAP Request: Here is the SOAP request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
" xmlns:ser="http://www.netiq.com/resource/service">
<soapenv:Header/>
<soapenv:Body>
<ser:checkCodeMapValueStatusRequest>
<!--Optional:-->
<ser:entitilementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=
system</ser:entitilementDN>
<!--Optional:-->
<ser:connectionName/>
<!--Optional:-->
<ser:codeMapValue>\WILLIAMS1\data\groups\netiq\cambridge\rbpm\4AlphaGroup<
/ser:codeMapValue>
</ser:checkCodeMapValueStatusRequest>
</soapenv:Body>
</soapenv:Envelope>
SOAP Response: Here is the SOAP response:
Resource Web Service 527

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<ns1:checkCodeMapValueStatusResponse xmlns="http://www.netiq.com/resource/
service" xmlns:ns1="http://www.netiq.com/resource/service">
<result>
<refreshStatus>
<connectionName xsi:nil="1"/>
<entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=syste
m</entitlementDN>
<guid>\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99</guid>
<lastRefresh>1329431650891</lastRefresh>
<status>SUCCESS</status>
</refreshStatus>
<upToDate>true</upToDate>
<value>\WILLIAMS1\data\groups\netiq\cambridge\rbpm\4AlphaGroup</value>
</result>
</ns1:checkCodeMapValueStatusResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

createResource
Creates a new resource according to the specified parameters, and returns a DN of the created
resource.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteResourceRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
The correlation ID is used for auditing.

Syntax: Here is the method signature:

public String createResource(Resource resource)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 resource specifies the resource object to create.

createResourceAid
Creates a new resource, with a correlation ID that you provide. The correlation ID is used for auditing
to link a set of related resources. This method creates the resource according to the specified
parameters, and returns a DN of the created resource.

Syntax: Here is the method signature:

public String createResourceAid(Resource resource, String correlationId)
 throws NrfServiceException, RemoteException;
528 Resource Web Service

findResourceByExampleWithOperator
Finds all Resource objects based on the search criteria specified in the given Resource object.

Syntax: Here is the method signature:

public Resource[] findResourceByExampleWithOperator(Resource
searchCriteria, boolean useAndForMultiValueSearch)

 throws NrfServiceException, RemoteException;
The parameters are described below:

 searchCriteria specifies Query by Example (QBE) search criteria within a Resource object.
 useAndForMultiValueSearch determines whether AND or OR will be used for multi-value search

expressions. If you specify a value of true, AND will be used for multi-value searches; if you
specify a value of false, OR will be used.

getEntitlementCodeMap
Returns an array of ProvisioningCodeMap objects, which include code map information from the
code map and code map label tables.

Syntax: Here is the method signature:

ProvisioningCodeMap[] getEntitlementCodeMap(java.lang.String codeMapKey,
int type)
 throws com.novell.idm.nrf.soap.ws.resource.NrfServiceException,
java.rmi.RemoteException;
The parameters are described below:

 codeMapKey specifies the code map key to retrieve values from. The codeMapKey is a GUID
that acts as a unique identifier for the code map. For example:

\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99
 type specifies the code map type. A value of 0 filters the list to include entitlement code maps

only.

getRefreshStatus
Gets the refresh status of a code map based on a specified entitlement DN. This method returns the
status as an array of CodeMapRefreshStatus objects. The structure returned contains the DN, GUID,
connection name status, and last refresh time.

This method is one of three SOAP endpoints to help you keep the code map tables for the Roles
Based Provisioning Module synchronized with the code map tables for the Role Mapping
Administrator. The user interface for the Role Mapping Administrator can trigger a code map refresh
if a mismatch is discovered while a user is creating mappings. In addition, the Roles Based
Provisioning Module allows you to use the three SOAP endpoints to refresh selected entitlements
within its code map tables.
Resource Web Service 529

In addition to getRefreshStatus, the Roles Based Provisioning Module includes the following
endpoints to help with code map synchronization:

 checkCodeMapValueStatus
 refreshCodeMap

The Entitlement Query Settings section of the Configure Roles and Resources Settings page in the
identity applications allows you to specify how often the Roles Based Provisioning Module code map
tables are refreshed and also start a manual refresh. However, this page does not allow to refresh
selected entitlements. To control which entitlements are refreshed, you need to use the SOAP
endpoints.

For additional information on the checkCodeMapValueStatus endpoint, see
“checkCodeMapValueStatus” on page 526. For additional information on the refreshCodeMap
endpoint, see “refreshCodeMap” on page 535.

For code samples that use the new methods for code map synchronization, see “Code Map
Synchronization Code Samples” on page 556.

Syntax: Here is the method signature:

 public CodeMapRefreshStatus[] getRefreshStatus(String entitlementDN)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 entitlementDN entitlement DN as a string

For example:

cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system
SOAP Request: Here is the SOAP request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
" xmlns:ser="http://www.netiq.com/resource/service">
<soapenv:Header/>
<soapenv:Body>
<ser:getRefreshStatusRequest>
<!--Optional:-->
<ser:entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=s
ystem</ser:entitlementDN>
</ser:getRefreshStatusRequest>
</soapenv:Body>
</soapenv:Envelope>
SOAP Response: Here is the SOAP response:
530 Resource Web Service

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<ns1:getRefreshStatusResponse xmlns="http://www.netiq.com/resource/
service" xmlns:ns1="http://www.netiq.com/resource/service">
<result>
<codemaprefreshstatus>
<connectionName xsi:nil="1"/>
<entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=syste
m</entitlementDN>
<guid>\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99</guid>
<lastRefresh>1329100366090</lastRefresh>
<status>SUCCESS</status>
</codemaprefreshstatus>
</result>
</ns1:getRefreshStatusResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

getResourceAssignmentsForCurrentUser
Returns the resource assignments for the current user.

Syntax: Here is the method signature:

ResourceAssignment[] getResourceAssignmentsForCurrentUser()
 throws com.novell.idm.nrf.soap.ws.resource.NrfServiceException,
java.rmi.RemoteException;

getResourceAssignmentsForUser
Returns the resource assignments for a particular user.

Syntax: Here is the method signature:

ResourceAssignment[] getResourceAssignmentsForUser(java.lang.String
userDn)
 throws com.novell.idm.nrf.soap.ws.resource.NrfServiceException,
java.rmi.RemoteException;
The parameters are described below:

 userDn DN of the target user

getAssignmentsForResource
Returns the resource assignments for a particular resource.

Syntax: Here is the method signature:

ResourceAssignment[] getAssignmentsForResource(java.lang.String
resourceDn)
 throws com.novell.idm.nrf.soap.ws.resource.NrfServiceException,
java.rmi.RemoteException;
Resource Web Service 531

The parameters are described below:

 resourceDn DN of the target resource

getResourceRequestStatusByCorrelationId
Returns all resource request status items for a given correlation ID.

Syntax: Here is the method signature:

public ResourceAssignmentRequestStatus[]
 getResourceRequestStatusByCorrelationId
 (String correlationId, String locale)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 correlationId specifies a resource assignment request correlation ID.
 locale supplies an iso639 language code to format localized string values; if the parameter is

null, the language defaults to the servlet request locale.

This method returns all resource request status instances for the specified correlationId parameter
value. For more information on the ResourceAssignmentRequestStatus class, see
“ResourceAssignmentRequestStatus” on page 553.

getResourceRequestsStatusForCurrentUser
Returns all resource request status items for the authenticated user.

Syntax: Here is the method signature:

 public ResourceAssignmentRequestStatus[]
 getResourceRequestStatusForCurrentUser(String locale)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 locale supplies an iso639 language code to format localized string values; if the parameter is
null, the language defaults to the servlet request locale.

This method returns all resource request status instances for the specified correlationId parameter
value. For more information on the ResourceAssignmentRequestStatus class, see
“ResourceAssignmentRequestStatus” on page 553.

getResourceRequestStatusByIdentity
Returns all resource assignment request status items for a particular user identity.

Syntax: Here is the method signature:

public ResourceAssignmentRequestStatus[]
 getResourceRequestStatusByIdentity(String identity, String
locale)
 throws NrfServiceException, RemoteException;
532 Resource Web Service

The parameters are described below:

 identity specifies the DN for a user.
 locale supplies an iso639 language code to format localized string values; if the parameter is

null, the language defaults to the servlet request locale.

This method returns all resource request status instances for the specified correlationId parameter
value. For more information on the ResourceAssignmentRequestStatus class, see
“ResourceAssignmentRequestStatus” on page 553.

getCodeMapValues
Returns a list of code map values for a specified code map.

Syntax: Here is the method signature:

public CodeMapValue[] getCodeMapValues(String codeMapKey, String locale)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 codeMapKey specifies the code map key to retrieve values from. The codeMapKey is a GUID
that acts as a unique identifier for the code map. For example:

\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99
 locale supplies an iso639 language code to format localized string values; if the parameter is

null, the language defaults to the servlet request locale.

getResource
Returns a resource object.

Syntax: Here is the method signature:

 public Resource getResource(String dn, String locale)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 dn specifies the DN of the resource you want to retrieve.
 locale supplies an iso639 language code to format localized string values; if the parameter is

null, the language defaults to the servlet request locale.

getResourceLocalizedStrings
Gets the localized strings for a resource, such as the names and descriptions. The type parameter
lets you specify whether the names or descriptions should be retrieved.

Syntax: Here is the method syntax:

public LocalizedValue[] getResourceLocalizedStrings(String resourceDn, int
type)throws NrfServiceException, RemoteException;
Resource Web Service 533

The parameters are described below:

 resourceDn specifies the DN of the resource for which you want to get the localized strings.
 type specifies the type of localized strings you want to retrieve. A type value of 1 retrieves a list

of names for the resource, whereas a type value of 2 retrieves a list of descriptions.

getResourcessInfoByCategory
Returns a list of ResourceInfo instances given a list of category keys.

Syntax: Here is the method signature:

public ResourceInfo[] getResourcessInfoByCategory(CategoryKey[]
resourceCategoryKeys)

 throws NrfServiceException, RemoteException;
The parameters are described below:

 resourceCategoryKeys specifies the list of resource category keys to retrieve resource
information objects for.

getResourcessInfo
Returns a list of ResourceInfo instances given a list of resource DNs.

Syntax: Here is the method signature:

public ResourceInfo[] getResourcessInfo(DNString[] resDns)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 resDns provides a list of resource DNs for which you want to retrieve resource information
objects.

modifyResource
Modifies a resource definition. This method does not perform a localized string modification update.
To update the localized names or descriptions for a resource, you need to use the
setResourceLocalizedStrings method.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteResourceRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
Syntax: Here is the method signature:

public Resource modifyResource(Resource resource)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 resource specifies the resource object to modify.
534 Resource Web Service

modifyResourceAid
Modifies a resource definition, with a correlation ID that you provide. The correlation ID is used for
auditing to link a set of related resources. This method does not perform a localized string
modification update. To update the localized names or descriptions for a resource, you need to use
the setResourceLocalizedStrings method.

Syntax: Here is the method signature:

public Resource modifyResourceAid(Resource resource, String correlationId)
 throws NrfServiceException, RemoteException;

refreshCodeMap
Refreshes the code map based on a specified entitlement DN. The method returns the status of the
refresh operation in the form of an EntitlementRefreshInfo object. This structure includes the
detailed status as an array of CodeMapRefreshStatus objects.

This method is one of three SOAP endpoints to help you keep the code map tables for the Roles
Based Provisioning Module synchronized with the code map tables for the Role Mapping
Administrator. The user interface for the Role Mapping Administrator can trigger a code map refresh
if a mismatch is discovered while a user is creating mappings. In addition, the Roles Based
Provisioning Module allows you to use the three SOAP endpoints to refresh selected entitlements
within its code map tables.

In addition to refreshCodeMap, the Roles Based Provisioning Module includes the following
endpoints to help with code map synchronization:

 checkCodeMapValueStatus
 getRefreshStatus

The Entitlement Query Settings section of the Configuration > Roles and Resources page in the
Identity Manager Dashboard allows you to specify how often the Roles Based Provisioning Module
code map tables are refreshed and also start a manual refresh.

For additional information on the checkCodeMapValueStatus endpoint, see
“checkCodeMapValueStatus” on page 526. For additional information on the getRefreshStatus
endpoint, see “getRefreshStatus” on page 529.

For code samples that use the new methods for code map synchronization, see “Code Map
Synchronization Code Samples” on page 556.

Syntax: Here is the method signature:

public EntitlementRefreshInfo refreshCodeMap(String entitlementDN rbpm-
refresh-rate="value" freeform-param="value")
 throws NrfServiceException, RemoteException;
The parameters are described below:

 entitlementDN entitlement DN to refresh the code map

For example:

cn=groups,cn=groupentitlementloopback,cn=driverset1,o=system
Resource Web Service 535

 rbpm-refresh-rate allows you to control the automatic or manual rate at which the
entitlement is refreshed. Specify 0 to disable automatic refreshing. Specify -111111 to disable
both automatic and manual refreshing.

 freeform-param allows you to control whether the code map refresh removes entries from
the database when the entitlement type is valued and the values were loaded directly into the
database. Specify false if you do not want the refresh to remove the values from the
database. Specify true if you want the refresh to remove the values from the database. The
default value is true.

SOAP Request: Here is the SOAP request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
" xmlns:ser="http://www.netiq.com/resource/service">
<soapenv:Header/>
<soapenv:Body>
<ser:refreshCodeMapRequest>
<!--Optional:-->
<ser:entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=s
ystem</ser:entitlementDN>
</ser:refreshCodeMapRequest>
</soapenv:Body>
</soapenv:Envelope>
SOAP Response: Here is the SOAP request:

<SOAP-ENV:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <ns1:refreshCodeMapResponse xmlns="http://www.netiq.com/resource/
service" xmlns:ns1="http://www.netiq.com/resource/service">
 <result>
 <detailedStatus>
 <codemaprefreshstatus>
 <connectionName xsi:nil="1"/>

<entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=syste
m</entitlementDN>
 <guid>\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99</
guid>
 <lastRefresh>1329244784180</lastRefresh>
 <status>SUCCESS</status>
 </codemaprefreshstatus>
 </detailedStatus>

<entitlementDN>cn=groups,cn=groupentitlementloopback,cn=driverset1,o=syste
m</entitlementDN>
 <guid>\2d\13\d1\a4\7b\99\d6\4c\03\9a\2d\13\d1\a4\7b\99</guid>
 <status>true</status>
 </result>
 </ns1:refreshCodeMapResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
536 Resource Web Service

removeResource
Deletes a specified resource from the Resource Catalog. Returns the DN for the deleted resource as a
confirmation.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteResourceRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
The correlation ID is used for auditing.

Syntax: Here is the method signature:

 public DNString removeResource(DNString resourceDn)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 resourceDn specifies the DN of the resource to delete.

removeResourceAid
Deletes a specified resource from the Resource Catalog, with a correlation ID that you provide. The
correlation ID is used for auditing to link a set of related resources. This method returns the DN for
the deleted resource as a confirmation.

Syntax: Here is the method signature:

 public DNString removeResourceAid(DNString resourceDn, String correlation
Id)
 throws NrfServiceException, RemoteException;

requestResourceGrant
Makes a grant resource request and returns a resource request correlation ID.

Syntax: Here is the method signature:

public String requestResourceGrant(String resourceTarget, String
requester, String userTarget, String reasonForRequest,
 ResourceRequestParam[] requestParams, String correlationId)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 resourceTarget specifies the target resource DN.
 requester supplies an identifier for the remote client application making the request to grant

the resource.
The requester parameter on this SOAP endpoint identifies the originator of the request. This
value is set in the resource request object nrfOriginator attribute, following this convention:
 For a SOAP call: “REMOTE_CLIENT:<requester param value>”
 For a workflow action: “WF:<wf process id>”

 userTarget specifies the DN for the being granted the resource.
 reasonForRequest provides a reason for the request.
Resource Web Service 537

 requestParams provides the parameter values for the request.
 correlationId specifies a resource assignment request correlation ID; if the parameter is null, a

correlation ID is generated.

The requester parameter is a client-supplied identifier for the agent making the request. For
example, an identifier such as IRemote-MyApplicationName might be used to identify a request
from MyApplicationName. The requestParams are the dynamic parameter values required by the
resource to make a request. If no values are required, the parameter value can be null or an empty
array. The correlationId allows a client to group request for the purpose of checking the staus. If the
parameter value is null, the service generates a unique correlation id. The correlation id is returned
to the caller.

requestResourceRevoke
Makes a revoke resource request and returns a resource request correlation ID.

The revoke invocation behavior mirrors the behavior for a grant opeation, except that a revoke
request for the resource is posted on the server.

Syntax: Here is the method signature:

public String requestResourceRevoke(String resourceTarget,
 String requester, String userTarget, String reasonForRequest,
 ResourceRequestParam[] requestParams, String instanceGuid,
String correlationId)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 resourceTarget specifies the target resource DN.
 requester supplies an identifier for the remote client application making the request to revoke

the resource.
The requester parameter on this SOAP endpoint identifies the originator of the request. This
value is set in the resource request object nrfOriginator attribute, following this convention:
 For a SOAP call: “REMOTE_CLIENT:<requester param value>”
 For a workflow action: “WF:<wf process id>”
 For the identity applications user interface: “USER_APP”

 userTarget specifies the DN for the user being granted the resource.
 reasonForRequest provides a reason for the request.
 requestParams provides the parameter values for the request.
 instanceGuid provides a GUID identifier for the resource assignment instance. The resource

assignment instance GUID supports revoking a single instance of a multi-value resource
assignment, if not all instances are to be revoked.

IMPORTANT: If you do not specify the instanceGuid value, and the user has more than one
value of that resource assigned, all instances of the resource assignment will be removed.

When you create a new resource assignment request, the instanceGuid is included just above
the correlationid field:
538 Resource Web Service

<ser:instanceGuid></ser:instanceGuid>
You need to specify the instance of the resource you want to revoke by supplying the value in
the instanceGuid parameter.
To find out which resources are assigned to a user, you need to use the
getResourceAssignmentsForUser method. This method returns the following data structure,
which also includes the instanceGuid:

<resourceassignment>
 <instanceGuid>1b335aa9f4a14bd4a2a802eb4ba092da</
instanceGuid>
 <reason>3b-Test</reason>
 <recipientDn>cn=ablake,ou=users,o=data</recipientDn>
 <requestDate>2011-08-18T14:25:21</requestDate>
 <requestParams>
 <resourcerequestparam>
 <name>param1</name>
 <value>3a3a</value>
 </resourcerequestparam>
 </requestParams>
 <requesterDn>cn=uaadmin,ou=sa,o=data</requesterDn>

<resourceDn>cn=Vodacom,cn=ResourceDefs,cn=RoleConfig,cn=AppConfig,cn=U
ser
Application Driver,cn=driverset1,o=system</resourceDn>
 </resourceassignment>

 correlationId specifies a resource assignment request correlation ID; if the parameter is null, a
correlation ID is generated.

setResourceLocalizedStrings
Sets the localized strings for a resource, such as the names and descriptions.

A correlation ID is generated automatically for this method that uses this format:

UserApp#RemoteResourceRequest#xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
Syntax: Here is the method signature:

public LocalizedValue[] setResourceLocalizedStrings(String resourceDn,
LocalizedValue[] locStrings, int type)
 throws NrfServiceException, RemoteException;
The parameters are described below:

 resourceDn specifies the DN of the resource for which you want to set the localized strings.
 locStrings provides an array of localized strings you want to define.
 type specifies the type of localized strings you want to retrieve. A type value of 1 retrieves a list

of names for the resource, whereas a type value of 2 retrieves a list of descriptions.
Resource Web Service 539

setResourceLocalizedStringsAid
Sets the localized strings for a resource, such as the names and descriptions, with a correlation ID
that you provide. The correlation ID is used for auditing to link a set of related resources.

Syntax: Here is the method signature:

public LocalizedValue[] setResourceLocalizedStringsAid(String resourceDn,
LocalizedValue[] locStrings, int type, String correlationId)
 throws NrfServiceException, RemoteException;

CodeMapRefreshStatus
Supporting class that provides details about the status of a code map refresh.

getConnectionName
Returns the name of the connected system.

Syntax: Here is the method signature:

public String getConnectionName()

getEntitlementDN
Returns the DN for the entitlement.

Syntax: Here is the method signature:

public String getEntitlementDN()

getGuid
Returns the GUID for the entitlement.

Syntax: Here is the method signature:

public String getGuid()

getLastRefresh
Returns the timestamp for the last refresh.

Syntax: Here is the method signature:

public long getLastRefresh()

getStatus
Returns the refresh status as a string indicating whether the refresh was successful.

Syntax: Here is the method signature:

public String getStatus()
540 Resource Web Service

setConnectionName
Sets the name of the connection system.

Syntax: Here is the method signature:

public void setConnectionName(final String connectionName)

setEntitlementDN
Sets the entitlement DN.

Syntax: Here is the method signature:

public void setEntitlementDN(String entitlementDN)

setGuid
Sets the GUID for the entitlement.

Syntax: Here is the method signature:

public void setGuid(String guid)

setLastRefresh
Sets the last refresh timestamp.

Syntax: Here is the method signature:

public void setLastRefresh(final long lastRefresh)

setStatus
Sets the refresh status.

Syntax: Here is the method signature:

public void setStatus(String status)

CodeMapValueStatus
Supporting class that provides details about the status of a refresh for a code map value.

getUpToDate
Returns true or false to indicate whether the status is up-to-date.

Syntax: Here is the method signature:

public boolean getUpToDate()
Resource Web Service 541

getRefreshStatus
Returns the refresh status as a CodeMapRefreshStatus object.

Syntax: Here is the method signature:

public CodeMapRefreshStatus getRefreshStatus()

getValue
Gets the code map value.

Syntax: Here is the method signature:

public String getValue()

setRefreshStatus
Sets the refresh as a CodeMapRefreshStatus object.

Syntax: Here is the method signature:

public void setRefreshStatus(final CodeMapRefreshStatus refreshStatus)

setUpToDate
Sets a boolean indicating whether the status is up-to-date.

Syntax: Here is the method signature:

public void setUpToDate(final boolean upToDate)

setValue
Sets the code map value.

Syntax: Here is the method signature:

public void setValue(final String value)

EntitlementRefreshInfo
Supporting class that provides refresh information for an entitlement after a code map refresh has
been performed.

getDetailedStatus
Returns the detailed status as an array of CodeMapRefreshStatus objects.

Syntax: Here is the method signature:

public CodeMapRefreshStatus[] getDetailedStatus()
542 Resource Web Service

getEntitlementDN
Returns the DN for the entitlement.

Syntax: Here is the method signature:

public String getEntitlementDN()

getGuid
Returns the GUID for the entitlement.

Syntax: Here is the method signature:

public String getGuid()

getStatus
Returns the status of the refresh as a boolean flag.

Syntax: Here is the method signature:

public boolean getStatus()

setDetailedStatus
Sets the detailed status as an array of CodeMapRefreshStatus objects.

Syntax: Here is the method signature:

public void setDetailedStatus(final CodeMapRefreshStatus[] detailedStatus)

setEntitlementDN
Sets the DN for the entitlement.

Syntax: Here is the method signature:

public void setEntitlementDN(String entitlementDN)

setGuid
Sets the GUID for the entitlement.

Syntax: Here is the method signature:

public void setGuid(String m_guid)

setStatus
Sets the status as a boolean flag.

Syntax: Here is the method signature:

public void setStatus(boolean m_status)
Resource Web Service 543

ProvisioningCodeMap
Value class to hold code map information from the code map and code map label tables.

getDescription
Returns the description

public String getDescription()

getName
Returns the name.

public String getName()

getEntityKey
Returns the entity key.

public String getEntityKey()

getEntityType
Returns the entity type.

public int getEntityType()

getQueryKey
Returns the query key.

public String getQueryKey()

getViewId
Returns the view ID.

public String getViewId()

getLastRefreshed
Returns the timestamp for the last refresh.

public long getLastRefreshed()

setDescription
Sets the description.

public void setDescription(String description)
544 Resource Web Service

setName
Sets the name.

public void setName(String name)

setEntityKey
Sets the entity key.

public void setEntityKey(String entityKey)

setEntityType
Sets the entity type.

public void setEntityType(int entityType)

setQueryKey
Sets the query key.

public void setQueryKey(String queryKey)

setViewId
Sets the view ID.

public void setViewId(String viewId)

setLastRefreshed
Sets the timestamp for the last refresh.

public void setLastRefreshed(long lastRefreshed)

getLabels
Returns the code map labels.

public ProvisioningCodeMapLabel[] getLabels()

setLabels
Sets the code map labels.

public void setLabels(ProvisioningCodeMapLabel[] labels)

getEntitlementDn
Returns the DN for the entitlement.
Resource Web Service 545

public String getEntitlementDn()

setEntitlementDn
Sets the DN for the entitlement.

public void setEntitlementDn(String entitlementDn)

getDriverDn
Returns the DN for the driver.

public String getDriverDn()

setDriverDn
Sets the DN for the driver.

public void setDriverDn(String driverDn)

getDriverDisplayName
Returns the display name for the driver.

public String getDriverDisplayName()

setDriverDisplayName
Sets the display name for the driver.

public void setDriverDisplayName(String driverDisplayName)

Resource
Supporting class that provides information about resources.

getName
Returns the name of the resource.

public String getName()

setName
Sets the name of the resource.

public void setName(String name)

getDescription
Returns the description of the resource.
546 Resource Web Service

public String getDescription()

setDescription
Sets the description of the resource.

public void setDescription(String description)

getEntityKey
Returns the entity key for the resource.

public String getEntityKey()

setEntityKey
Sets the entity key for the resource.

public void setEntityKey(String entityKey)

getResourceCategoryKeys
Returns the keys for the resource categories.

public CategoryKey[] getResourceCategoryKeys()

setResourceCategoryKeys
Sets the keys for the resource categories.

public void setResourceCategoryKeys(CategoryKey[] resourceCategoryKeys)

getEntitlementRef
Returns the entitlement reference for the resource.

public NrfEntitlementRef[] getEntitlementRef()

setEntitlementRef
Sets the entitlement reference for the resource.

public void setEntitlementRef(NrfEntitlementRef[] entitlementRef)

getGrantApprovers
Returns the list of approvers for resource grant operations.

public Approver[] getGrantApprovers()
Resource Web Service 547

setGrantApprovers
Sets the list of approvers for resource grant operations.

public void setGrantApprovers(Approver[] grantApprovers)

getGrantQuorum
Returns the quorum condition for grant operations.

public String getGrantQuorum()

setGrantQuorum
Sets the quorum condition for grant operations.

public void setGrantQuorum(String grantQuorum)

getGrantRequestDef
Returns the provisioning request definition for grant operations.

public String getGrantRequestDef()

setGrantRequestDef
Sets the provisioning request definition for grant operations.

public void setGrantRequestDef(String grantRequestDef)

getRevokeQuorom
Returns the quorum condition for revoke operations.

public String getRevokeQuorum()

setRevokeQuorom
Sets the quorum condition for revoke operations.

public void setRevokeQuorum(String revokeQuorum)

getRevokeRequestDef
Returns the provisioning request definition for revoke operations.

public String getRevokeRequestDef()

setRevokeRequestDef
Sets the provisioning request definition for revoke operations.
548 Resource Web Service

public void setRevokeRequestDef(String revokeRequestDef)

getRevokeApprovers
Returns the list of approvers for revoke operations.

public Approver[] getRevokeApprovers()

setRevokeApprovers
Sets the list of approvers for revoke operations.

public void setRevokeApprovers(Approver[] revokeApprovers)

getOwners
Returns the list of owners for the resource.

public DNString[] getOwners()

setOwners
Sets the list of owners for the resource.

public void setOwners(DNString[] owners)

getParameters
Returns the list of entitlement parameters defined for the resource.

public ResourceParameter[] getParameters()

setParameters
Sets the list of entitlement parameters for the resource.

public void setParameters(ResourceParameter[] parameters)

getActive
Returns a boolean flag indicating whether the resource is still active, or has been approved or
denied.

public boolean getActive()

setActive
Sets the boolean flag indicating whether the resource is still active.

public void setActive(final boolean active)
Resource Web Service 549

getAllowOverride
Returns a boolean flag indicating whether the approval process for the resource can be overridden
by the approval process for a role.

public boolean getAllowOverride()

setAllowOverride
Sets the boolean flag indicating whether the approval process for the resource can be overridden by
the approval process for a role.

public void setAllowOverride(final boolean allowOverride)

getAllowMulty
Returns a boolean indicating whether the resource allows a user to request multiple resource values.

public boolean getAllowedMulty()

setAllowMulty
Sets the boolean indicating whether the resource allows a user to request multiple resource values.

public void setAllowedMulty(final boolean allowedMulty)

ResourceAssignment
Supporting class that holds resource assignment information.

setResourceDn
Sets the DN for the resource.

public void setResourceDn(String resourceDn)

getResourceDn
Returns the DN for the resource.

public String getResourceDn()

setRequesterDn
Sets the DN for the requester.

public void setRequesterDn(String requesterDn)

getRequesterDn
Returns the DN for the requester.
550 Resource Web Service

public String getRequesterDn()

getRecipientDn
Returns the DN for the recipient of the assignment.

public String getRecipientDn()

setRecipientDn
Sets the DN for the recipient of the assignment.

public void setRecipientDn(String recipientDn)

getReason
Returns the reason for the assignment.

public String getReason()

setReason
Sets the reason for the assignment.

public void setReason(String reason)

getRequestDate
Returns the date of the assignment request.

public Date getRequestDate()

setRequestDate
Sets the date of the assignment request.

public void setRequestDate(Date requestDate)

setRequestParams
Sets the parameters for the request.

public void setRequestParams(ResourceRequestParam[] params)

getRequestParams
Returns the parameters for the request.

public ResourceRequestParam[] getRequestParams()
Resource Web Service 551

setInstanceGuid
Sets the instanceGuid for the resource assignment.

public void setInstanceGuid(String instanceGuid)

getInstanceGuid
Returns the instanceGuid for the resource assignment.

public String getInstanceGuid()

ResourceRequestParam
Supporting class that holds the name and value for a resource request parameter value.

ResourceRequestParam Constructors
The ResourceRequestParam class has two constructors.

Syntax 1: Here is the syntax for a constructor that takes no parameters:

public ResourceRequestParam()
 {
 }
Syntax 2: Here is the syntax for a constructor that takes two String parameters:

public ResourceRequestParam(String name, String value)
 {
 m_name = name;
 m_value = value;
 }

setName
Sets a parameter name.

Syntax: Here is the method signature:

public void setName(String name)

getName
Returns a parameter name.

Syntax: Here is the method signature:

public String getName()

setValue
Sets the value of a parameter.
552 Resource Web Service

Syntax: Here is the method signature:

public void setValue(String value)

getValue
Returns the value of a parameter.

Syntax: Here is the method signature:

public String getValue()

ResourceAssignmentRequestStatus
Supporting class that holds a resource request status item. The interface includes methods for
getting and setting various request status properties. However, you will not need to call the methods
for setting property values, since you are using this class to retrieve information about the request
status. After calling the requestResourceGrant() or the requestResourceRevoke() methods, you can
use the get methods to get the properties for each status object returned in the
ResourceAssignmentRequestStatus array.

setEntityKey
Sets the entity key.

Syntax: Here is the method signature:

public void setEntityKey(String entityKey)

getEntityKey
Gets the entity key.

Syntax: Here is the method signature:

public String getEntityKey()

setReason
Sets the reason for the role assignment.

Syntax: Here is the method signature:

public void setReason(String reason)

getReason
Gets the reason for the role assignment.

Syntax: Here is the method signature:

public String getReason()
Resource Web Service 553

setStatusValue
Sets the status value for the request.

Syntax: Here is the method signature:

public void setStatusValue(int value)

setStatusDescription
Sets the status description for the request.

Syntax: Here is the method signature:

public void setStatusDescription(String description)

getStatusValue
Gets the status value for the request.

Syntax: Here is the method signature:

public int getStatusValue()

getStatusDescription
Gets the localized description for the request.

Syntax: Here is the method signature:

public String getStatusDescription()

setCorrelationId
Sets the correlation ID.

Syntax: Here is the method signature:

public void setCorrelationId(String correlationId)

getCorrelationId
Gets the correlation ID.

Syntax: Here is the method signature:

public String getCorrelationId()

setRequester
Sets the requester DN.

Syntax: Here is the method signature:

public void setRequester(String requester)
554 Resource Web Service

getRequester
Gets the requester DN.

Syntax: Here is the method signature:

public String getRequester()

setRequestDate
Sets the request date.

Syntax: Here is the method signature:

public void setRequestDate(Date requestDate)

getRequestDate
Gets the request date.

Syntax: Here is the method signature:

public Date getRequestDate()

setSource
Sets the source resource DN.

Syntax: Here is the method signature:

public void setSource(String source)

getSource
Gets the source resource DN.

Syntax: Here is the method signature:

public String getSource()

setTarget
Sets the DN for the target identity.

Syntax: Here is the method signature:

public void setTarget(String target)

getTarget
Gets the DN for the target identity.

Syntax: Here is the method signature:

public String getTarget()
Resource Web Service 555

setRequestParams
Sets the dynamic request parameters.

Syntax: Here is the method signature:

public void setRequestParams(ResourceRequestParam[] params)

getRequestParams
Gets the dynamic request parameters.

Syntax: Here is the method signature:

public ResourceRequestParam[] getRequestParams()

Resource Web Service Examples
This section provides examples of using the Resource Web Service.

Code Map Synchronization Code Samples
This section provides code samples for using the SOAP endpoints for code map synchronization.

public IRemoteResource stub;
stub=getResourcesStub(url,adminname,password);

//refreshCodeMap
EntitlementRefreshInfo refreshResult =
stub.refreshCodeMap("cn=Devices,cn=DevicesLoopback,cn=driverset1,o=system"
);
System.out.println(refreshResult .getDetailedStatus());
System.out.println(refreshResult .getEntitlementDN());
System.out.println(refreshResult .getGuid());
System.out.println(refreshResult .getStatus());

//getRefreshStatus
CodeMapRefreshStatus[] refreshStatus
=stub.getRefreshStatus("cn=Devices,cn=DevicesLoopback,cn=driverset1,o=syst
em");
for (CodeMapRefreshStatus item : refreshStatus) {
 System.out.println("Connection Name is: " +
item.getConnectionName());
 System.out.println("Entitlement DN is: " +
item.getEntitlementDN());
 System.out.println("Entitlement GUID is: " + item.getGuid());
 System.out.println("Last Refresh of this Entitlement is: " +
item.getLastRefresh());
 System.out.println("Status is: " + item.getStatus());
 }

556 Resource Web Service

//checkCodeMapValueStatus
String connectionName="SAP123";
CodeMapValueStatus checkStatus =
String codeMapValue=null;

stub.checkCodeMapValueStatus("cn=Devices,cn=DevicesLoopback,cn=driverset1,
o=system",connectionName, codeMapValue);

 System.out.println("Connection Name is: " +
checkStatus.getRefreshStatus().getConnectionName());
 System.out.println("Entitlement DN is: " +
checkStatus.getRefreshStatus().getEntitlementDN());
 System.out.println("Entitlement GUID is: " +
checkStatus.getRefreshStatus().getGuid());
 System.out.println("Last Refresh of this Entitlement is: " +
checkStatus.getRefreshStatus().getLastRefresh());
 System.out.println("Status is: " +
checkStatus.getRefreshStatus().getStatus());

 System.out.println(checkStatus.getUpToDate());
 System.out.println(checkStatus.getValue());

private static IRemoteResource getResourcesStub(String url,
 String username, String password) throws ServiceException {
 Stub stub = null;

 ResourceService service = new ResourceServiceImpl();
 stub = (Stub) service.getIRemoteResourcePort();
 stub._setProperty(Stub.USERNAME_PROPERTY, username);
 stub._setProperty(Stub.PASSWORD_PROPERTY, password);

 stub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,url +"/resource/
service");
 stub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);

 return (IRemoteResource) stub;
 }
Resource Web Service 557

558 Resource Web Service

33 33Forgot Password Web Service

This section describes the Forgot Password Web Service, which allows SOAP clients to invoke a
subset of the actions available through the Password Management system.

About the Forgot Password Web Service
The Forgot Password Web Service exposes a small set of actions from the Password Management
system. The service allows remote clients to retrieve information about the forgot password
configuration. In addition, it allows clients to retrieve information about the forgot password settings
for a particular user, and perform challenge response and change password operations for a user.

The Forgot Password Web Service does not support the full range of password self-service
operations. The Forgot Password Web Service is only for forgot password operations. If you want to
create a custom user interface for performing password self service functions, such as answering or
updating the user’s hint or answer, or updating the challenge response questions, or checking on the
password policy status, you need to use the REST endpoints that have been added to RBPM.

Calls to the Forgot Password Web Service require HTTP authentication.

Accessing the Service
You can access the Forgot Password Web Service endpoint using a URL similar to the following:

http://server:port/warcontext/pwdmgt/service
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/pwdmgmt/service

NOTE: The URL for the Forgot Password Web Service can be changed on the Forgot Password Settings
page on the Administration tab in the identity applications. To change the URL, enter the new URL in
the Forgot Password Web Service URL field at the bottom of the page.

Accessing the WSDL
You can access the WSDL for the Forgot Password Web Service using a URL similar to the following:

http://server:port/warcontext/pwdmgt/service?wsdl
For example, if your server is named “myserver”, your identity applications is listening on port 8080,
and your User Application war file is named “IDMPROV”, the URL would be:

http://myserver:8080/IDMPROV/pwdmgt/service?wsdl
Forgot Password Web Service 559

Generating the Stub Classes
Before using the Web Service, you need to use the WSSDK tool or another SOAP tool kit to generate
the stub classes. To allow your code to find the stub classes, you also need to add the JAR that
contains the stub classes to your classpath.

If you want to use the NetIQ WSSDK tool, you can generate the client stubs by extracting the WSDL
and running the wsdl2java utility. For example, you could run this command to generate the stubs in
a package called com.novell.soa.af.pwdmgt.soap.impl:

"C:\Program Files\Java\jdk1.6.0_31\bin\java" -cp "../lib/wssdk.jar;../lib/
jaxrpc-api.jar";"../lib/mail.jar";"../lib/activation.jar";"c:\Program
Files\Java\jdk1.6.0_31\lib\tools.jar";
com.novell.soa.ws.impl.tools.wsdl2java.Main -verbose -ds gensrc -d C:\ -
noskel -notie -genclient -keep -package com.novell.soa.af.pwdmgt.soap.impl
-javadoc pwdmgt.wsdl
You can change the wsdl2java parameters to suit your requirements.

Password Management Web Service Interface
This section provides reference information for each forgot password operation available through
the Password Management interface.

processForgotConf
Gets the forgot password configuration parameters.

This method returns an object of type ForgotPasswordConfWSBean. This object contains the
following information about the configuration:

Table 33-1 ForgotPasswordConfWSBean Data

Syntax: Here is the method signature:

public ForgotPasswordConfWSBean processForgotConf()
 throws RemoteException;

Field Description

Configured Return Link Provides the forgot password return link.

Show Return Link Indicates whether to show the forgot password
return link.
560 Forgot Password Web Service

processUser
Retrieves forgot password configuration information for a user.

This method returns an object of type ForgotPasswordWSBean. If no match is found for the the user
name specified, an error message is returned in the getUsers() method of ForgotPasswordWSBean. If
multiple matches are found, the getUsers() method is returned with a String array of users. If a single
match is found, the getUsers() method has a length of 1, and the following methods in
ForgotPasswordWSBean are set:

 getConfiguredRtnLink()
 getShowReturnLink()
 getShowHint()
 getHint()
 getShowFullDN()
 getUserDisplayDN()
 getUserDN()
 getUser()
 getMessage()
 getAction()
 getChallengeQuestions()
 getChaResInUser()
 getMessage()

When a single user match is found, the user should be presented with the Challenge Response
screen. If getChaResInUse() returns false, then call processChaRes() and show the Forgot Success
screen directly without presenting the Challenge Response screen.

Syntax: Here is the method signature:

public ForgotPasswordWSBean processUser(final String userName)
 throws RemoteException;
The parameters are described below:

 userName specifies the name of a user.

processChaRes
Processes one or more challenge response answers for a particular user.

If the challenge response operation is authenticated, the following events may occur:

 If the password policy action is EmailHint, the operation will send an email with the hint to the
user, and set the message to indicate that the operation succeeded. Therefore, the caller of this
method should go to the Forgot Password Change Success screen, and display the message.

 If the password policy action is ShowHint, the operation will set the message to the user’s hint.
Therefore, the caller of this method should go to the Forgot Password Change Success screen,
and display the message with the hint on the page.
Forgot Password Web Service 561

 If the password policy action is EmailPassword, the operation will set send the password to the
user. Therefore, the caller of this method should go to the Forgot Password Change Success
screen, and display the message.

 If the password policy action is ChangePassword, the operation will set the password rules and
the password hint. Therefore, the caller of this method should go to the Forgot Password
Change screen.

This method returns an object of type ForgotPasswordWSBean. After the processCharRes operation
is called, the following methods are populated with values:

 getTimeout()
 getRules()
 getLocked()
 getError()
 getMessage()

If the getAction() method returned by the processUser() operation is ChangePassword, then present
the user with the Password Change screen. Otherwise, go to the Forgot Success screen and present
the user with the message returned from the getMessage() method.

Syntax: Here is the method signature:

public ForgotPasswordWSBean processChaRes(final String userDN, final
String[] chaAnswers) throws RemoteException;
The parameters are described below:

 userDN specifies the DN for a particular user.
 chaAnswers provides an array of challenge response answers. The answers are processed in the

order in which they are presented.

processChgPwd
Resets the password for a particular user.

After the processChgPwd operation is called, the following events may occur:

 If the change password operation succeeds, the caller of this method should go to the Forgot
Password Success screen, and display the success message.

 If the change password operation fails, the error field on the ForgotPasswordWSBean object is
set to true, and the message field is populated with the corresponding error message.
Therefore, the caller of this method should stay on the password screen and display the error
message.

This method returns an object of type ForgotPasswordWSBean. After the processChgPwd operation
is called, the following methods are populated with values:

 getTimeout()
 getError()

If the getError() method returns false, you need to present the user with the Password Change
Success screen.
562 Forgot Password Web Service

Syntax: Here is the method signature:

public ForgotPasswordWSBean processChgPwd(final String userDN, final String
newPassword, final String confirmPassword)
 throws RemoteException;
The parameters are described below:

 userDN specifies the DN for a particular user.
 newPassword supplies a password for the user.
 confirmPassword repeats the password for confirmation.

ForgotPasswordWSBean
Here is the complete structure of the ForgotPasswordWSBean object:

Table 33-2 ForgotPasswordWSBean Structure

Field Description

Users Provides a list of the users that match the search
criteria specified. When the wildcard feature is
enabled, multiple matches may be found.

Challenge Questions Supplies the challenge questions associated with the
user.

Configured Return Link Shows the Return link to be used after the user
performs a forgot password operation.

Show Return Link Indicates whether to show the Return link after the
user performs a forgot password operation.

Show Hint Indicates whether to show the user's password hint
on the Forgot Password Change screen.

Show Full DN Indicates whether to show the user's full DN or just
the CN name after the user performs a forgot
password operation.

User DN Shows the user's DN.

User Display DN Shows the user's display DN. For example,
cn=ablake,ou=users,o=netiq or
workforceID=ablake,ou=users,o=netiq.

User Provides the user's display name.

Error Returns true if an error occurs.

Message Returns a message in the event that there is an
application-specific error.

Action Specifies the policy action, which is one of the
following values: ShowHint, EmailHint,
EmailPassword, ChangePassword.
Forgot Password Web Service 563

Hint Specifies the user's password hint.

Rules Lists the password policy rules.

Is Challenge Response in User Indicates whether the challenge response feature is
enabled for this user. If challenge response in use is
false, then the user can only perform the email hint
and show hint functions.

Locked Indicates whether the user account is locked.

Timeout Indicates whether a session timeout occurred.

Login Attribute Specifies the user's Login Attribute.

Field Description
564 Forgot Password Web Service

VI VIConfiguring Single Sign-on Access in
Identity Manager

By default, Identity Manager uses OSP for single sign-on access in Identity Manager. When you install
Identity Reporting and the identity applications, you specify the basic settings for user
authentication. However, you can also configure the OSP authentication server to accept
authentication from the Kerberos ticket server or SAML. For example, you can use SAML to support
authentication from NetIQ Access Manager. You can also enable single-sign by configuring Access
Gateway as a reverse proxy server that provides single sign-on and restricts access to the identity
applications and Identity Reporting servers by securely providing credential information for
authenticated users. For more information about OSP, “Understanding How OSP Works with Identity
Manager” on page 574.
Configuring Single Sign-on Access in Identity Manager 565

566 Configuring Single Sign-on Access in Identity Manager

34 34Preparing for Single Sign-on Access

NetIQ recommends that you complete the steps in the following checklist:

Checklist Items

 1. Understand how OSP works in Identity Manager. For more information, see “Understanding
How OSP Works with Identity Manager” on page 574.

 2. Understand how Identity Manager uses OSP for single sign-on access. For more information,
see “Understanding Authentication with One SSO Provider” on page 570.

 3. Install the identity applications and password management components. For more
information, see the installation guide for your platform.

 4. (Optional) Install Identity Reporting. For more information, see the installation guide for
your platform.

 5. Configure the identity applications for single sign-on access using OSP. For more
information, see “Using One SSO Provider for Single Sign-on Access in Identity Manager” on
page 579.

 6. Install the authentication system that you want to use with Identity Manager. For example,
Access Manager or Kerberos.

 7. (Conditional) Configure Access Manager and OSP. For more information, see the following:

 “Using SAML Authentication for Single Sign-on” on page 582
 “Reverse Proxy Based Single Sign-On” on page 585

 8. Verify the single sign-on settings. For more information, see Chapter 41, “Verifying Single
Sign-on Access for the Identity Applications,” on page 619.
Preparing for Single Sign-on Access 567

568 Preparing for Single Sign-on Access

35 35Using Self-Service Password Management
in Identity Manager

Identity Manager includes NetIQ Self Service Password Reset (SSPR) to help users who have access
to the identity applications to reset their passwords without administrative intervention. The
installation process enables SSPR by default when you install or upgrade to the latest version of
Identity Manager. In a new installation, SSPR uses a proprietary protocol for managing
authentication methods. However, after an upgrade, you can instruct SSPR to use the NetIQ Modular
Authentication Services (NMAS) that Identity Manager traditionally has used for its legacy password
management program.

Depending on whether you want to use complex password management, you can configure one of
the following providers:

SSPR
NetIQ Self Service Password Reset is the default option when you install or upgrade Identity
Manager. For more information, see “Understanding the Default Self-Service Process” on
page 569.

Third-Party Provider Password Management
You can use an third-party program for managing forgotten passwords. You need to modify
some configuration settings for Identity Manager. For more information, see Using an External
System for Forgotten Password Management in the NetIQ Identity Manager Setup Guide for
Windows.

Understanding the Default Self-Service Process
SSPR automatically integrates with the single sign-on process for the identity applications and
Identity Reporting. It is the default password management program for Identity Manager, even when
you do not install SSPR. When a user requests a password reset, SSPR requires the user to answer
the challenge-response question. If the answers are correct, SSPR responds in one of the following
ways:

 Allow users to create a new password
 Create a new password and send it to the user
 Create a new password, send it to the user, and mark the old password as expired.

You configure this response in the SSPR Configuration Editor. After upgrading to a new version of
Identity Manager, you can configure SSPR to use the NMAS method that Identity Manager
traditionally has used for password management. However, SSPR does not recognize your existing
password policies for managing forgotten passwords.

You also can configure SSPR to use its proprietary protocol instead of NMAS. If you make this change,
you cannot return to using NMAS without resetting your password policies.
Using Self-Service Password Management in Identity Manager 569

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b1c1ajwb
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b1c1ajwb
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

Understanding Authentication with One SSO Provider
OSP supports the OAuth2 specification and requires an LDAP authentication server. By default,
Identity Manager uses Identity Vault (eDirectory). OSP can communicate other types of
authentication sources, or identity vaults, to handle the authentication requests. You can configure
the type of authentication that you want OSP to use: userID and password, Kerberos, or SAML.
However, OSP does not support MIT-style Kerberos or SAP login tickets.

How do OSP and SSO work?
If you use the Identity Vault as your authentication service and the specified containers in the
Identity Vault have CNs and passwords, authorized users can log in to Identity Manager
immediately after installation. Without these login accounts, only the administrator that you
specify during installation can log in immediately.
When a user logs in to one of the browser-based components, the process redirects the user’s
name/password pair to the OSP service, which queries the authentication server. The server
validates the user credentials. Then OSP issues an OAuth2 access token to the component and
browser. The browser uses the token during the user’s session to provide SSO access to any of
the browser-based components.
If you use Kerberos or SAML, OSP accepts authentication from the Kerberos ticket server or
SAML IDP then issues an OAuth2 access token to the component where the user logged in.

How does OSP work with Kerberos?
OSP and Kerberos ensure that users can log in once to create a session with one of the identity
applications and Identity Reporting. If the user’s session times out, authorization occurs
automatically and without user intervention. After logging out, users should always close the
browser to ensure that their sessions end. Otherwise, the application redirects the user to the
login window and OSP reauthorizes the user session.

How do I set up Authentication and Single Sign-on Access?
For OSP and SSO to function, you must install OSP. Then specify the URLs for client access to
each component, the URL that redirects validation requests to OSP, and settings for the
authentication server. You can provide this information during installation or afterward with the
RBPM configuration utility. You can also specify the settings for your Kerberos ticket server or
SAML IDP.

How OSP Works with Identity Manager
The identity applications provide authentication and single sign-on (SSO) through the One SSO
Provider service (OSP). OSP authenticates a user or a service on behalf of identity applications. For
OSP to function, you must install OSP included in the Identity Manager installation package. The
identity applications set up a trust relationship with an OSP instance via shared secrets and a public
or private key pair through TLS protocol.

After authenticating an entity, OSP sends an access token to the identity applications based on
OAuth 2.0 protocol. The identity applications use the token to obtain the identity information about
the authenticated entity. The identity applications then use the identity information to perform
authorization to resources controlled by the identity applications.
570 Using Self-Service Password Management in Identity Manager

The identity applications components interact with OSP through OAuth 2.0, where OSP acts as the
OAuth 2.0 provider. Although OSP supports a variety of authentication mechanisms such as
username/password, Kerberos and SAML, this chapter explains OSP configuration through OAuth
2.0.

OSP supported with OAuth 2.0 specification requires an LDAP authentication server. By default,
Identity Manager uses Identity Vault as an authentication server. OSP can communicate with other
types of authentication sources, or identity vaults, to handle the authentication requests. You can
configure the type of authentication that you want OSP to use, such as user ID and password,
Kerberos, or SAML. If you use Kerberos or SAML, OSP accepts authentication from the Kerberos
ticket server or SAML Identity Provider (IDP) and then issues an OAuth 2.0 access token to the
component where the user logged in. However, OSP does not support MIT-style Kerberos or SAP
login tickets.

OSP APIs expose all OAuth functionalities as endpoints for obtaining access tokens. The identity
applications expose these APIs. For example, OSP provides an HTTP endpoint that an application
uses to validate a token and obtain the identity information associated with the token. OSP also
provides an HTTP endpoint that allows an identity application to inform OSP that a user has
requested to log out of the application.

OSP Concepts
This section describes the basic concepts of OSP.

OSP Configuration
The configuration template for OSP resides in the osp-conf.jar file. The template includes
information from the following resources:

 ism-configuration.properties file
 identity applications configuration locations including Identity Vault and the file system

Most of the OSP properties are configured by using the Configuration Update utility
(configupdate.sh or configupdate.bat).

Access Tokens and Refresh Tokens
OAuth-defined authentication provides two types of tokens: access token and refresh token.

Access token is a bearer token. Any entity that obtains an access token may use the token. To keep
away the chances of unauthorized access, the lifetime of an access token is typically very short.

Refresh token is used when possibility of token leakage is low. For example, when the token is held
on a server than in a browser. A refresh token can be used to obtain an access token without
requiring the user to re-enter the credentials. The lifetime of a refresh token is typically quite long.
Using Self-Service Password Management in Identity Manager 571

Authentication Timeouts
The authentication process involves a number of different and related timeout values. The two most
important timeout values are:

 OAuth access token lifetime (default value is 60 seconds)
 OSP session timeout (session time-to-live; default value is 45 minutes)

Each time an access token expires, the application requests a new access token from OSP. Each time
a browser request is made to OSP, the session time-to-live token is reset. Therefore, as long as a user
is using an application and the application is getting new access tokens, the user is not logged out.

A refresh token allows an application to obtain a new access token without user interaction. Refresh
tokens are used by applications that can keep them secure. Therefore, refresh tokens have long
lifetimes (default 30 days although effective lifetime is 48 hours due to revocation timeout). The
identity applications use refresh tokens in the backend.

OSP automatically revokes a refresh token that was obtained through a browser-based request when
an OSP session is logged out.

Applications that obtain refresh token through a backend request use the http[s]://
<host>[:port]/osp/a/idm/auth/oauth2/revoke endpoint as described in RFC 7009. A
refresh token obtained through OAuth 2.0 Resource Owner Password Grant (backend name/
password method) must be manually revoked. If a refresh token is not revoked through session
logout or through a backend request, then the token revocation information remains in the
oidpInstanceData (osp.sch) attribute on the LDAP user object. When a user does not log out of the
identity applications, OSP does not remove the login entry from the oidpInstanceData. If the user
continues to log in without logging out, the size of the entry grows large and prevents OSP from
updating the attribute and may cause a login failure for the user.

To mitigate this issue, the Identity Applications has hard-set the size for the oidpInstanceData
attribute in Identity Manager 4.8.4 to 16 KB. When the attribute size is within the 16 KB limit, OSP
authentication process works normally as expected. However, when the attribute crosses this limit,
an alert is generated that triggers the attribute cleanup process in the application. The login entry
created through a script is immediately removed from the oidpInstanceData attribute. For the login
entry created through browser login, the Identity Applications will wait for the time defined in the
expiration interval property in the User Application driver configuration parameter before initiating
the cleanup process. For more information on how to configure this property, see Modifying the
User Application Driver Properties in the NetIQ Identity Manager - Administrator’s Guide to
Designing the Identity Applications.

Additionally, you can find few troubleshooting tips that allows you to manage the size of the
attribute manually. For more information, see “Managing the Size of oidPInstancedata Attribute” on
page 668.
572 Using Self-Service Password Management in Identity Manager

https://tools.ietf.org/html/rfc7009
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#t4g0o0e8z65g
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#t4g0o0e8z65g
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

OSP Cookies
OSP uses the following types of cookies in the authentication process:

 OSP Session Cookie: Records user information, such as user identifier and time-to-live. It is
stored in temporary memory and not retained after the browser is closed. This type of cookie is
removed when a user closes the web browser. Absence or expiry of this cookie means that the
user is not authenticated. An OSP session cookie is represented as x-oidp-session<group
of hex chars>.

 OAuth2 Cookie: Records OAuth 2.0 state between redirects. The default settings of Microsoft
browsers sometimes prevent the submission of OSP cookies to the OSP server that can be
determined by using browser developer tools or the OSP log. An OAuth2 cookie is represented
as x-oidp-oauth2-<group of hex chars>.

Browser Code for the OAuth 2.0 Interaction
The identity applications require JavaScript to implement interactions with OSP.

The open source project, Spiffy UI, provides an easy way to interact with OSP when using Google
Web Toolkit (GWT). For detailed information, see the following resources:

 http://www.spiffyui.org
 https://github.com/spiffyui?tab=repositories

If using AngularJS, the following project may be helpful: https://github.com/Gromit-Soft

OSP URLs
OSP uses the following URLs in authentication:

 grant
 getattributes
 logout

Examples used in the following sections assume a secured connection (HTTPS), where OSP is hosted
on a server named authentication host with the default port 8443, and the tenant is named
idm.

grant URL
Invoke this URL in a browser: https://authenticationhost:8443/osp/a/idm/auth/
oauth2/grant
This is the OAuth 2.0 Authorization endpoint defined by Section 3.1 of RFC 6749.

An implicit grant request can look similar to this:

https://authenticationhost:8443/osp/a/idm/auth/oauth2/
grant?response_type=token&redirect_uri=http://applicationhost:8180/
landing/com.netiq.ualanding.index/
oauth.html&client_id=ualanding&state=spiffystate0.5457210745662451
The allowable HTTP methods and parameters are as defined in Section 4 of RFC 6749.
Using Self-Service Password Management in Identity Manager 573

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

getattributes URL
Invoke this URL in a browser: https:// authenticationhost:8443/osp/a/idm/auth/
oauth2/getattributes
This is the OAuth 2.0 Token endpoint defined by Section 3.2 of RFC 6749. The identity applications
issue this token to obtain identity information about the entity for which an access token was
created. The identity information is presented in the form of attributes (name-value pairs).

A token validation request from a web page can look similar to this:

https://authenticationhost:8443/osp/a/idm/auth/oauth2/
getattributes?attributes=name+expiration&access_token=eHwA[...etc.]&callba
ck=jQuery20305550091890618205_1463435676921&_=1463435676922
The desired attributes are specified by a space-separated list of attribute names using the
“attributes” query item. The available attributes and their names are primarily defined by the
tenant's authentication configuration in authcfg.xml. There are also several pre-defined attributes
related to token management.

logout URL
Invoke this URL in a browser: https://authenticationhost:8443/osp/a/idm/auth/app/
logout
This is an OSP-specific endpoint that identity applications use to inform OSP that a user has
requested a logout and that OSP must invalidate the OSP session information from the encrypted
browser cookie. Typically this endpoint is invoked when a user selects Logout link on the identity
application's web page.

Understanding How OSP Works with Identity Manager
When using OAuth 2.0, the Identity Manager communication with OSP primarily consists of the
following actions:

1 Obtain an access token in the client browser.
2 Validate the access token when the client browser submits it to the identity applications server.

The following figure illustrates the components and process flow involved in basic authentication:
574 Using Self-Service Password Management in Identity Manager

https://tools.ietf.org/html/rfc6749

1 A user navigates to the identity application's home page.
2 The browser loads the identity application home page.
3 The application web page makes an HTTP request to the identity applications server endpoint.

Note that the application has not yet obtained an authentication token. Therefore, it does not
have any authentication information in the request and the identity applications server returns
an HTTP 401 status (unauthorized).

4 The identity applications web page recognizes that 401 status means that the web page must
obtain a valid authentication token. The web page directs the client browser to OSP grant
endpoint for an implicit grant request. In the implicit flow, OSP issues the client browser an
access token instead of an authorization code. For more information about implicit grant type,
see Section 4.2 of RFC 6749.
At this point, no authentication information exists because the OSP session cookie is either not
present or, if present, indicates that the browser session is unauthenticated. Therefore, OSP
presents a login web page.

5 The user enters authentication credentials (typically user name and password) on the OSP page
and selects Next.
OSP looks up the user in the Identity Vault and validates the user-entered password. You can
also configure OSP for one or more additional authentication factors.

6 After the user is authenticated using the provided credentials, OSP creates an access token and
redirects the browser to a redirect URI that the web application has provided. The access
token and other data defined by OAuth 2.0 is appended to the redirect URI as a URI fragment. In
addition, OSP returns its secure, encrypted session cookie to the browser.

7 The browser loads Identity Applications web page indicated by the redirect URI. Identity
Applications then extracts the access token from the URI fragment and validates the state
information contained in the fragment.

NOTE: The redirection endpoint URI must be an absolute URI as defined by Section 4.3 of
RFC3986. The endpoint URI may include an application/x-www-form-urlencoded
formatted query component according to Section 3.4 of RFC3986, which must be retained when
adding additional query parameters. The endpoint URI must not include a fragment
component. For more information, see sections 4.2.1 and 4.2.2 of RFC 6759.

Client Browser

Implicit grant request
in response to 401 error

With access token
GET (http://<Identity Applications

DNS Name or IP Address>:8180/idmdash)

Without OSP Token

With OSP Token

W
H

O
 A

M
 I

W
H

O
 A

M
 I

40
1

Er
ro

r

One SSO
Provider (OSP)

4

5
1

2

3

6

Identity
Applications
Using Self-Service Password Management in Identity Manager 575

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6759
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc6759

8 The identity applications inject the access token in the HTTP Authorization header (typically
using the Bearer authentication type) and request the identity applications server for
validating the token.

9 The identity applications server contacts OSP via a back-channel HTTP request to validate the
supplied token and to obtain identity information associated with the token. The identity
applications server then responds to the HTTP request appropriately.

10 If the token is validated, the identity applications web pages allow the user to perform the tasks
the user is allowed to do. When additional HTTP requests are made to the identity applications
server, the access token is supplied as part of the request in an HTTP authorization header.

11 The access token in use is set to expire within the default expiration time interval of two
minutes. If the identity applications server attempts to validate an access token after the token
has expired, OSP informs the identity applications server that the token is no longer valid. The
identity applications server then responds with an HTTP 401 status. The web application page
again directs the client browser to OSP to request an access token.

12 OSP determines (via OSP's secure session cookie) that the user is still authorized (the session
has not timed-out due to inactivity and has not been explicitly logged out) and redirects the
user back to the web application page with an access token without asking the user for re-
entering the credentials.

To understand the authentication process through REST endpoints, see “OSP Login Request Example
by Using REST Endpoints” on page 666

Guidelines for Enabling OSP Logging
The OSP log level is controlled by com.netiq.idm.osp.tenant.logging.level property
typically set in the setenv.sh file in Tomcat’s bin directory. For example, /opt/netiq/idm/
apps/tomcat/bin/setenv.sh on Linux. The setenv.sh file has the below entry at the end of
the file.

JAVA_OPTS=" "

export JAVA_OPTS
export CATALINA_OPTS="-Dcom.netiq.ism.config=/opt/netiq/idm/apps/tomcat/
conf/ism-configuration.properties -Dcom.netiq.osp.ext-context-file=/opt/
netiq/idm/apps/osp/lib/osp-conf-edir.jar -
Dcom.netiq.idm.osp.logging.level=INFO -
Dcom.netiq.idm.osp.client.host=10.71.128.247 -
Dcom.netiq.idm.osp.audit.enabled=false -
Dcom.netiq.idm.osp.logging.file.dir=${CATALINA_BASE}/logs -
Djava.awt.headless=true -Dsspr.applicationPath=/opt/netiq/idm/apps/sspr/
sspr_data -Dfile.encoding=UTF-8 -Dsun.jnu.encoding=UTF-8 -
Didmuserapp.logging.config.dir=/opt/netiq/idm/apps/tomcat/conf/ -
Dextend.local.config.dir=/opt/netiq/idm/apps/tomcat/conf/ -
Dlog4j.configuration=file:///opt/netiq/idm/apps/tomcat/conf/userapp-
log4j.xml -Dlogging.configuration=file:///opt/netiq/idm/apps/tomcat/conf/
logging.properties -Dcom.netiq.rpt.config.file=/opt/netiq/idm/apps/tomcat/
conf/ism-configuration.properties -Dlogback.configurationFile=/opt/netiq/
idm/apps/tomcat/conf/logback.xml -Dcom.novell.afw.wf.engine-id=ENGINE -
Dcom.microfocus.workflow.logging.level=INFO -
Djdk.tls.rejectClientInitiatedRenegotiation=true -
Djava.net.preferIPv4Stack=true"
576 Using Self-Service Password Management in Identity Manager

The property, -Dcom.netiq.idm.osp.logging.level=ALL, controls the amount of
information that OSP logs. The Apache Foundation defines the following trace levels for log4j:

 OFF
 FATAL
 ERROR
 WARN
 INFO
 DEBUG
 TRACE
 ALL

By default, OSP logging is set to INFO. You can set other levels depending on what you are
troubleshooting. After setting the log level, restart Identity Applications. For example, restart Tomcat
by performing the following command:

systemctl restart netiq-tomcat.service
Before enabling logging, NetIQ recommends to review the following guidelines:

 Use ALL to troubleshoot if OSP is able to find the certificate that you included. This level names
every single certificate in the known keystores it uses. This information can be useful because
JVM has 90 or more certificates. In general, set the log level to ALL to debug or troubleshoot
common issues. To generate additional messages, set com.netiq.idm.osp.debug property to
true either as a Java system property in setenv.sh or ism-configuration.properties file.

 File logging is enabled by default. OSP creates files name as osp-idm-<date of log
generation>.log file in the Tomcat directory. For example, /opt/netiq/idm/apps/
tomcat/logs/. File logging records the actions that have occurred. For example, you can
configure logging to list every request made to OSP. This can help you get a good idea of how
often visitors are coming and how they navigate the application pages. The content logged to
file logging can be controlled by specifying logger levels.

 When you enable console logging, OSP generates log messages in the catalina.out file
located in the logs directory under Tomcat’s root directory. For example, /opt/netiq/idm/
apps/tomcat/logs/catalina.out. NetIQ recommends you to use file logging on
Windows.

 OSP can handle thousands of requests per second. If transaction volume is high and each log
entry consumes a few hundred bytes, OSP can fill up the available disk space in a matter of
minutes. Logging also increases system overhead, which causes some degradation in system
performance. Therefore, refrain from using console logging in a production environment
because there is no default way to limit the size of the catalina.out file. For production use,
the logging level should be set to WARNING or less. More verbose logging levels result in much
more log data which requires both CPU resources to generate the log messages and disk
resources to store the log messages.
Using Self-Service Password Management in Identity Manager 577

578 Using Self-Service Password Management in Identity Manager

36 36Using One SSO Provider for Single Sign-on
Access in Identity Manager

To provide single sign-on access to the identity applications, you must configure the settings in the
RBPM Configuration utility. You should already have the certificates and keys necessary for single
sign-on from installing OSP.

This procedure assumes that your environment will use one certificate for eDirectory, the SSO
controller, and the OAuth Provider. If your organization requires additional layers of separation,
create a separate certificate for the OAuth Provider.

Preparing eDirectory for Single Sign-on Access
You must configure the Identity Vault, as part of your eDirectory installation, to support single sign-
on access for the identity applications and Identity Reporting.

The eDirectory Administrator should create value indexes for the manager, ismanager and
srvprvUUID attributes. Without value indexes on these attributes, identity applications users can
experience impeded performance, particularly in a clustered environment. You can create these
value indexes automatically during installation by selecting Advanced > Create eDirectory Indexes in
the RBPM Configuration utility. For more information about using Index Manager to create value
indexes, see the NetIQ eDirectory Administration Guide (https://www.netiq.com/documentation/
edirectory-92/edir_admin/data/bookinfo.html).

If you previously extended the eDirectory schema to include the SAML schema and installed the
required NMAS methods, you do not need to perform those steps a second time. Instead, skip to the
subsection about creating the Trusted Root Container.

Modifying the Basic Settings for Single Sign-on Access
When you install the identity applications, you generally configure the basic settings for single sign-
on access. This section helps you ensure that the settings work for your environment.

1 Run the RBPM Configuration utility.
2 To modify the authentication settings, complete the following steps:

2a Click Authentication.
2b (Conditional) To specify the actual server DNS name or IP address, change all instances of

localhost.
 The specified address must be resolvable from all clients. Use localhost only if all

access to Identity Manager will be local, including access through a browser.
Using One SSO Provider for Single Sign-on Access in Identity Manager 579

https://www.netiq.com/documentation/edirectory-92/edir_admin/data/bookinfo.html

 This “public” host name or IP address should be the same as the value of
PublicServerName that you specified when you installed OSP.

 In a distributed or clustered environment, all of the OAuth URLs should be the same
value. The URL should drive client access through your L4 switch or load balancer.
Also, the osp.war and configuration files must be installed on each deployment in
the environment.

2c For LDAP DN of Admins Container, click the Browse button, then select the container within
the Identity Vault that contains your identity applications administrator.

2d Specify the OAuth keystore file that you created when you installed OSP.
Include the keystore file path, keystore file password, key alias, and key password. The
default keystore file is osp.jks, and the default key alias is osp.

3 To modify the single sign-on settings, complete the following steps:
3a Click SSO Clients.
3b (Conditional) To specify the actual server DNS name or IP address, change all instances of

localhost.
 The specified address must be resolvable from all clients. Use localhost only if all

access to the Dashboard will be local, including access through a browser.
 This “public” host name or IP address should be the same as the value of
PublicServerName that you specified when you installed OSP.

 In a distributed or clustered environment, all of the OAuth redirect URLs should be the
same value. The URL should drive client access through your L4 switch or load
balancer.

3c (Conditional) If you use non-default ports, update the port numbers for the following
Identity Manager components:
 Identity Applications Administration
 Identity Manager Dashboard
 Identity Reporting
 Identity Applications

4 Click OK to save your changes, then close the configuration utility.
5 Start Tomcat.

Configuring Self Service Password Reset to Trust OSP
In order for single sign-on to work properly, you must configure a trust relationship with certificates
between the OSP and Self Service Password Rest (SSPR). You must export a certificate from the
keystore file of the OSP which is osp.jks.

After you export the certificate, you must import the certificate in to the keystore file for SSPR. The
default path keystore file for SSPR is:

 Linux/UNIX: /[Java_Home]/lib/security/cacerts
 Windows: C:\[Java_Home]\lib\security\cacerts

For more information about setting a secure channel, see “Setting Up a Secure Channel Between the
Application Server and the LDAP Server ” in the “Self Service Password Reset Administration Guide”.
580 Using One SSO Provider for Single Sign-on Access in Identity Manager

37 37Using NetIQ Access Manager for Single
Sign-On

This section helps you configure NetIQ Access Manager and OSP to support single sign-on access in
Identity Manager.

Before beginning, review the following assumptions for these instructions:

 You have installed a new, supported version of Access Manager.
 You have installed a new version of Identity Manager.
 Both installations use DNS names for the host name configuration.
 Both installations use SSL protocol for communication.
 (Conditional) For reverse-proxy single sign-on service, Access Manager and Identity Manager

are pointing to the same user store for authentication.
 (Conditional) For SAML supported authentication, Access Manager and Identity Manager are

pointing to any supported user store. For more information, see NetIQ Access Manager
Administration Guide.

 You have installed the certificate using DNS on application server where OSP is installed.

You need to be familiar with NetIQ Access Manager capabilities so that you understand the context
of the content in this section. For more information about NetIQ Access Manager, see the Access
Manager documentation website.

Understanding Third-Party Authentication and Single Sign-
On

You can configure Identity Manager to work with NetIQ Access Manager using SAML 2.0 or by
configuring Access Gateway as a reverse proxy server.

SAML 2.0
Enables you to use a technology that is not password-based to log in to the identity applications
through Access Manager. For example, users can log in through a user (client) certificate, such
as from a smart card.
Access Manager interacts with OSP to map the user to a DN in the Identity Vault. When a user
logs in to the identity applications through Access Manager, Access Manager can inject a SAML
assertion (with the user’s DN as the identifier) into an HTTP header and forward the request to
the identity applications. The identity applications use the SAML assertion to establish the LDAP
connection with the Identity Vault.
Accessory portlets that allow single sign-on authentication based on passwords do not support
single sign-on when SAML assertions are used for identity application authentication.
Using NetIQ Access Manager for Single Sign-On 581

https://www.netiq.com/documentation/access-manager-44/admin/data/b1tvhkg.html#userstoreslist
https://www.netiq.com/documentation/access-manager-44/admin/data/b1tvhkg.html#userstoreslist
https://www.netiq.com/documentation/access-manager-44
https://www.netiq.com/documentation/access-manager-44

Reverse Proxy
Protects the identity applications by creating a reverse proxy that acts as the front end to your
identity applications in your Identity Manager environment. In this approach, Access Gateway
uses a Form Fill policy for single sign-on authentication to the identity applications. A reverse
proxy can be configured to protect one or more proxy services by using a domain or path based
proxy service, single sign-on access, and simultaneous logout.
The identity applications retrieve the access token from OSP and provide access to the user. This
completes the single sign-on process for the first login. The identity applications uses this access
token for providing single sign-on access for future authentication requests to any of the
identity application and SSPR.

Using SAML Authentication for Single Sign-on
This section helps you configure both NetIQ Access Manager and OSP to support single sign-on
access in Identity Manager using SAML 2.0 authentication.

Establishing Trust between Identity Manager and Access
Manager
Identity Manager needs the URL of the SAML metadata to redirect users for authentication requests.
By default, Access Manager uses the following URL for storing the SAML metadata:

https://server:port/nidp/saml2/metadata
582 Using NetIQ Access Manager for Single Sign-On

where server:port represent the Access Manager Identity Server.

1 (Optional) To view an .xml document for the SAML metadata, open the URL in a browser.
If the URL does not produce the document, ensure that the link is correct.

2 Launch configupdate utility on the OSP server.
3 Click Advance to view more options.
4 Select Authentication.
5 In the Authentication Server section, specify the DNS name of the server that hosts OSP in the

Oauth server host identifier setting.
6 For Authentication Method:

6a Select SAML 2.0 from the Method list.
6b Select URL from the Metadata source list.
6c In Metadata URL, specify the URL that OSP uses to redirect the authentication request to

SAML metadata of Access Manager.
For example, https://server:port/nidp/saml2/metadata

6d Select Load on exit and Configure Access Manager on exit.
7 Click OK to save the changes.
8 Click Yes to accept the certificate.
9 In Access Manager Auto-Configuration of SAML 2, specify the Access Manager details:

Access Manger Administration Console
Specify the Access Manger URL with the full DNS.
For example,

https://<Access Manager DNS><port>

The default port is 8443.

Access Manger Administrator Credentials
Specify the username and password of the Access Manager administrator in LDAP format.
For example,
Username: cn=admin,o=novell

Authentication Server Administrator Credintials
Specify the username and password of the identity applications administrator. For
example, Username: uaadmin

10 Click OK.
11 Click Yes to accept the certificate.
12 Click Yes to continue.

Displays the Access Manager SAML 2 configuration summary.
13 Click OK.
14 Restart the Tomcat instance that hosts OSP.
Using NetIQ Access Manager for Single Sign-On 583

Updating the Login Pages for Access Manager
The default login pages for Access Manager use HTML iFrame elements that conflict with the
elements used for the identity applications. This section provides instructions for eliminating that
conflict by creating a new login method and contract for Access Manager. The .jsp files referenced
in this section are located by default in the /opt/novell/nam/idp/webapps/nidp/jsp
directory on Linux. On Windows, they are located by default in the C:\Program Files
(x86)\Novell\Tomcat\webapps\nidp\jsp directory.

For more information, see “Customizing the Identity Server Login Page” in the NetIQ Access
Manager Administration Guide.

1 Modify the top.jsp file according to TID 7004020 and TID 7018468.
2 (Optional) For backup purposes, copy and rename the login.jsp file. For example, rename it

to idm_login.jsp.
3 Open the Administration Console for Access Manager.
4 Create a new user store to connect to Identity Vault.

4a Click Devices > Identity Servers > Edit > Local > User Stores.
4b Click New and specify the required Identity Vault details:

Name
Specify the DNS of the Identity Vault.

Admin Name
Specify the Identity Vault administrator name in the LDAP format.

Admin Password
Specify the Identity Vault administrator password.

Directory type
Select eDirectory from the list.

Server Replica
1. Click New and specify Name and IP Address/DNS Name of Identity Vault.
2. Check Use Secure LDAP connections.
3. Click Auto import trusted root to import the Identity Vault certificate.
4. Click OK.

Search Contexts
1. Click New.
2. In Search Context, specify the search container.
3. In Scope, select Subtree.
4. Click OK.

5 To create a new login method, complete the following steps:
5a Click Devices > Identity Servers > Edit > Local > Methods.
5b Click New, then specify the Display Name for the new method. For example, IDM Name/

Password.
5c For Class, specify Name/Password-Form.
584 Using NetIQ Access Manager for Single Sign-On

https://www.netiq.com/documentation/access-manager-43/admin/data/bookinfo.html
https://www.netiq.com/documentation/access-manager-43/admin/data/bookinfo.html
https://support.microfocus.com/kb/doc.php?id=7004020
https://support.microfocus.com/kb/doc.php?id=7018468

5d For User Store, specify Identity Vault as an LDAP user store.
5e In the Properties section, click New, then specify the following properties:

5f Click OK.
5g Click Finish.

6 To create a contract that uses the new login method, complete the following steps:
6a Click Contracts > New.
6b In the Configuration tab, specify the Display Name for the new contract. For example, IDM

Name/Password.
6c For URI, specify name/password/uri/idm.
6d Under Methods, add the method that you created in Step 5. For example, IDM Name/

Password.
6e Click Next.
6f In the Authentication Card tab, specify an ID for the card. For example,

IDM_NamePassword.
6g Specify an image for the card.
6h Click Finish.

7 To specify the default values for how the system processes the new authentication contract,
complete the following steps:
7a On the Local tab, click Defaults.
7b For User Store, specify Identity Vault as an LDAP user store.
7c For Authentication Contract, specify the contract that you created in Step 6. For example,

IDM Name/Password-Form.
7d Click OK.

8 To update the Identity Server, click Devices > Identity Servers > Update > Update All
Configuration.

Reverse Proxy Based Single Sign-On
You can configure Access Manager to provide protected access to the Identity Manager web
resources (identity applications and Identity Reporting) by using a domain-based proxy service and
single sign-on access by using a form fill policy.

Name Value

JSP idm_login

MainJSP true
Using NetIQ Access Manager for Single Sign-On 585

You can either use an existing reverse proxy and add a new proxy service for protecting the web
resources or configure a new reverse proxy. While configuring the reverse proxy, create domain-
based services for the servers hosting OSP and SSPR, identity applications, and Identity Reporting to
enable single sign-on. You must configure these web resources as protected resources and specify
the authentication procedures and the policies that should be used to enforce protection.

This section discusses a domain based proxy-service method with an example configuration. For
more information about these proxy-service methods, see the NetIQ Access Manager 4.5
Administration Guide. Use information from the following table to understand the configuration
required for different deployment scenarios.

NOTE: In a distributed environment, if your applications do not have a common domain name and
reverse proxy is configured, then you cannot access the applications even after adding the
com.netiq.oauth.domain parameter in ism-configuration-properties file.

Identity
Applications

Access
Gateway

Identity Provider

Users

NetIQ Identity ManagerNetIQ Access Manager

One SSO
Provider

 Identity
Reporting

Self-Service
Password Reset
586 Using NetIQ Access Manager for Single Sign-On

https://www.netiq.com/documentation/access-manager-44/pdfdoc/admin/admin.pdf
https://www.netiq.com/documentation/access-manager-44/pdfdoc/admin/admin.pdf

Table 37-1 Sample Configuration

Deployment
Scenario

Published DNS
Name

Web Server
Host Name

HTML
Rewriting

Protected
Resources

Form Fill

All components
on the same
server

rbpm.mycompa
ny.com

rbpm.privatedn
s.com

Enable the
following:

 Rewrite
Inbound
Query
String
Data

 Rewrite
Inbound
Headers

 Enable
Rewrite
Actions

/*

Or

/osp/*

/sspr/*

/idmdash/*

/idmadmin/*

/IDMPROV/*

Page Matching
Criteria
<title>NetI
Q Access</
title>
Required only
for OSP.

OSP and SSPR
on a different
server

osp.mycompan
y.com

osp.privatedns.
com

Enable the
following:

 Rewrite
Inbound
Query
String
Data

 Rewrite
Inbound
Headers

 Enable
Rewrite
Actions

/osp/*

/sspr/*

Page Matching
Criteria
<title>NetI
Q Access</
title>
Required only
for OSP.

Identity
Applications on
a different
server

identityapplicat
ions.mycompan
y.com

identityapplicat
ions.privatedns.
com

Enable the
following:

 Rewrite
Inbound
Query
String
Data

 Rewrite
Inbound
Headers

 Enable
Rewrite
Actions

/idmdash/*

/idmadmin/*

/IDMPROV/*
Using NetIQ Access Manager for Single Sign-On 587

You must be familiar with NetIQ Access Manager capabilities to understand the context of the
content in this section. For more information about NetIQ Access Manager, see the Access Manager
documentation website.

 “Creating and Configuring the Proxy Service” on page 588
 “Creating Protected Resources” on page 590
 “Creating and Assigning a Form Fill Policy to a Protected Resource” on page 592
 “Configuring a Rewriter Profile” on page 594
 “Configuring Identity Providers” on page 595
 “Configuring Additional Redirect URLs in OSP Configuration File” on page 596
 “Testing the Single Sign-On” on page 597

Creating and Configuring the Proxy Service
This section assumes that you have installed:

 NetIQ Access Manager and a NetIQ Access Manager Access Gateway
 All identity applications components on a single server (first scenario in Table 37-1)

You will first create a reverse proxy, for example rbpm, and then configure it to include domain-
based multi-homed proxy services.

Remember that for the Web Server IP Address setting of the proxy service, you need to specify the IP
Address for the identity applications server, and for the Web Server Host Name setting of the proxy
service, you need to specify the DNS name of the identity applications web server.

1 Log in to the Administration Console. For example, https://idmnam.acmeinfotech.com/
nps.

2 Click Devices > Access Gateways > AG-Cluster > NAM-RP.

Identity
Reporting on a
different server

RPT.mycompan
y.com

RPT.privatedns.
com

Enable the
following:

 Rewrite
Inbound
Query
String
Data

 Rewrite
Inbound
Headers

 Enable
Rewrite
Actions

/IDMRPT/*

/IDMDCS/*

Deployment
Scenario

Published DNS
Name

Web Server
Host Name

HTML
Rewriting

Protected
Resources

Form Fill
588 Using NetIQ Access Manager for Single Sign-On

https://www.netiq.com/documentation/access-manager-43/
https://www.netiq.com/documentation/access-manager-43/

3 Generate a certificate key by using the Access Manager CA:
3a Click Auto-generate Key, then click New twice.
3b Specify a name for the certificate. For example, certificate_proxy_wildcard.
3c Click Edit on the Subject line and specify Common name as *.acmeinfotech.com.
3d Click OK twice, then click the name of the certificate.
3e Click OK to ensure that all CA certificate chains of the selected certificate are added to the

appropriate trust stores.
4 In the Proxy Service List section, click New.

4a Specify the following information:
Proxy Service Name: Specify a name that intuitively identifies this service on your Access
Gateway server. For example, specify rbpm.
Multi-Homing Type: Select Domain-Based. The Access Gateway will use this method to
identify the proxy service.
Published DNS Name: Specify the DNS name you want the public to use to access the web
server. This DNS name must resolve to the IP address you set up as the listening address.
For example, rbpm.mycompany.com
Web Server IP Address: Specify the IP address of the web server you want this proxy
service to manage. You can specify additional Web server IP addresses by clicking the Web
Server Addresses link when you have finished creating the proxy service.
Host Header: Specify the Web Server Host Name option. This allows the HTTP header to
contain the published DNS name.
Web Server Host Name: Specify the DNS name of the server hosting the application to
which the Access Gateway should forward requests. This entry matches what you specify in
the Published DNS Name field.
Using NetIQ Access Manager for Single Sign-On 589

NOTE: If OSP and Identity Applications are installed in a distributed environment, perform
these actions for each service. In this case, the published DNS Name will be different for
each service.

4b Click OK.
5 Click the newly added proxy service (rbpm), then select the Web Servers tab.

The Web servers added to this list must contain identical web content. Configuring your system
with multiple servers with the same content adds fault tolerance and increases the speed for
processing requests.
For caching to work correctly, the web servers must be configured to maintain a valid time. They
should be configured to use an NTP server.
5a To enable SSL connections between the proxy service and its web servers, select Connect

Using SSL and select Do not verify or Import SSL Mutual Certificate for the Web Server
Trusted Root option.
Use Do not verify when you want the information between the Access Gateway and the
identity applications server encrypted, but you do not need the added security of verifying
the certificate of the identity applications server.
Use Import SSL Mutual Certificate to set up mutual authentication so that the identity
applications server can verify the proxy service certificate.

5b In the Connect Port field, specify the port that the web server uses for SSL communication.
This is the port that the identity applications server is listening from Access Gateway. For
example, by default, the listening port is 8180.
If the identity applications server is listening on an SSL port, ensure that you specify that
port and enable Connect Using SSL.
If identity applications are listening on a non-SSL port, ensure that you configure that port
and verify that Connect Using SSL is disabled.

5c Leave the other settings unchanged.
5d Click OK.
5e Under Access Gateway Servers, click Update All for AG-Cluster to apply changes of reverse

proxy service created.

Creating Protected Resources
After creating the proxy service, create protected resources with resource paths to all applications
that are configured. The protected resource configuration specifies the authentication procedures
and the policies that should be used to enforce protection.

To create a resource for the identity applications:

1 Log in to the Access Manager Administration Console.
2 In the console, click Devices > Access Gateways > Edit > [Name of Reverse Proxy] > [Name of

Domain-Based Proxy Service or Primary Proxy Service] > Protected Resources.
3 Create a protected resource.

3a Select New, then specify a display name for the new resource you want to protect.
590 Using NetIQ Access Manager for Single Sign-On

For example, to create a resource that you want to use to represent all identity applications
resources, you can name the resource as osp_protected_resources.
When you create the display name, the Overview page for the new resource is displayed.

3b Fill in the fields to configure the resource:
Description: Specify a description for the protected resource. You can use it to briefly
describe the purpose for protecting this resource.
Authentication Procedure: Select Name/Password -Form from the drop-down list. This
specifies a form-based authentication over HTTP or HTTPS, using the Access Manager login
form.
URL Path List: Remove the /* path and add paths for Published DNS Name,
rbpm.mycompany.com.
For example, include the following paths for OSP and SSPR protected resource:

/osp/*
/sspr/*
For the identity applications protected resource, include the following paths:

/idmdash/*

/idmadmin/*
/IDMPROV/*
For Identity Reporting protected resource, include the following path:

/IDMRPT/*
/IDMDCS/*

Click OK.
3c Click the Protected Resources breadcrumb at the top of the Overview page to return to the

Protected Resources page.
Using NetIQ Access Manager for Single Sign-On 591

3d In the Protected Resource List, ensure that the protected resources you created are
enabled.

3e To apply your changes, click Devices > Access Gateways, then click Update.
4 Continue with Creating a Form Fill Policy for the newly created protected resources.

Creating and Assigning a Form Fill Policy to a Protected Resource
You must create a Form Fill policy and assign it to the OSP protected resource. This Form Fill policy
will match the OSP login form and fill the user credentials for single sign-on. The policy also includes
a failure policy which will redirect the identity applications logout request to also do the Access
Gateway logout.

Form Fill policy must be applied to only the OSP protected resource and not for identity applications
or Identity Reporting protected resources because these applications will be automatically
redirected to the OSP login page if a user is not logged in.

To create a Form Fill Policy for the OSP protected resource:

1 In the Administration Console, click Policies > Policies.
2 Select the policy container, then click New.
3 Specify a name for the policy, select Access Gateway: Form Fill as the type of the policy, then

click OK. For example, osp_form_fill
4 (Optional) Specify a description for the Form Fill policy. This is useful if you plan to create

multiple Form Fill policies.
5 In the Actions section, click New, then select Form Fill.
592 Using NetIQ Access Manager for Single Sign-On

6 In the Form Selection section, perform the following actions:
6a Select Form Name Specify the name of the form. For example, IDPLogin.
6b Select Page Matching Criteria. This causes the Access Gateway to search the HTML page for

the specified text. If the specified text is found on the page, the page is a match for the
policy. If it is not found, the page is not a match for the policy and the policy is not applied.
For example, suppose your HTML page has the following string within the <FORM>
element:

<title>NetIQ Access</title>
If you enter this string in the Page Matching Criteria box, the Access Gateway searches the
form for this string. If it finds the string, it knows it has a match (get this unique tag from
page source of OSP Login screen).

7 In the Fill Options section, create an entry for all the input fields and select options in the form.
For each input field or select option, you need to specify the following information:
 Input Field Name: Specifies the name of the field or option. This is the name attribute of

the element on the form. For example, Ecom_User_ID
 Input Field Type: Specifies the type attribute for the input field or select option in the

form. Select Text.
 Input Field Value: Specify the value for the field. You must specify the data type, then

enter the value. Select Credential Profile: LDAP Credentials: LDAP User Name
7a Click New and specify the values for the following fields:

 Input Field Name: Ecom_Password
 Input Field Type: Password
 Input Field Value: Credential Profile: LDAP Credentials: LDAP User Name

8 In the Submit Options section, select Auto Submit.
This action indicates you want the form submitted to the Web server without having the user
confirm the submission by clicking a Submit button. If this option is not selected, Form Fill can
fill in the data, but the user must click the Submit button before the data is sent to the Web
server. When the form is not auto submitted, all the JavaScript on the form is executed.

9 To create a login failure policy, click New in the Actions section, then select Form Login Failure.
10 In the Form Selection section, perform the following actions:

10a Select CGI Matching Criteria. This allows the Access Gateway to evaluate the query string in
the URL (the portion after the question mark) to differentiate pages that have the same
URL. Type logout.

11 In the Login Failure Processing section, specify the Access Gateway URL in the following field:
 Redirect to URL: Specify https://idmnam.mycompany.com/AGLogout.

When an LDAP or NSS error occurs, the user is redirected to the URL you specify in the text
box.

12 Use the up-arrow button to move the Form Login Failure policy to the top of the policy list.
You want the failure policy to execute first on login failure.

13 Click OK.
14 Click OK, then click Apply Changes and close the Policies window.
15 To enable the policy you just created (osp_form_fill), click Enable.
Using NetIQ Access Manager for Single Sign-On 593

16 Click OK in the Protected Resources tab.
17 Continue with configuring HTML rewriting for the proxy service.

Configuring a Rewriter Profile
The changes you make to the NetIQ Access Gateway configurations for the protected resources
require HTML rewriting because the web servers hosting the protected resources are not aware that
the Access Gateway system is obfuscating their DNS names. URLs contained in these pages must be
checked to ensure that these references contain the DNS names that the client browser
understands. On the other end, the client browsers are not aware that the Access Gateway is
obfuscating the DNS names of the resources they are accessing. The URL requests coming from the
client browsers that use published DNS names must be rewritten to the DNS names that the identity
applications web servers expect. For more information, see Configuring HTML Rewriting in the NetIQ
Access Manager 4.4 Administration Guide.

When you configure the HTML rewriter for a proxy service, these values are applied to all the
resources protected by this proxy service. Keeping everything as default, enable Rewrite Inbound
Query String Data, Rewrite Inbound Headers, and Enable Rewrite Actions in this profile and then
move this custom profile above the Default profile and save the configuration. Perform this action
for all the services in a distributed setup.

1 Log in to the Access Manager Administration Console.
2 Click Devices > Access Gateways > Edit > [Name of Reverse Proxy] > [Name of Proxy Service] >

HTML Rewriting.
3 Click HTML Rewriter Profile List to create a profile.

New: Specify a display name for the profile. For example, idmnamrewriter_custom.
Word: Select Word for Search Boundary. A Word profile searches for matches on words. For
example, “get” matches the word “get” and any word that begins with “get” such as “getaway”
but it does not match the “get” in “together” or “beget.”

4 Navigate to the rewriter profile that you created from HTML Rewriter and ensure the following
fields are selected:
 Rewrite Inbound Query String Data
 Rewrite Inbound Headers
 Enable Rewrite Actions

5 Click OK.
6 In HTML Rewriter Profile List, move the Word profile to be the first profile in the list.
594 Using NetIQ Access Manager for Single Sign-On

https://www.netiq.com/documentation/access-manager-44/pdfdoc/admin/admin.pdf
https://www.netiq.com/documentation/access-manager-44/pdfdoc/admin/admin.pdf

7 To save your changes, click OK.
8 To update the Access Gateway, the cached pages affected by the rewriter changes must be

updated on the Access Gateway. Click OK to purge all cache.To apply your changes, click the
Access Gateways link, then click Update > OK.

Configuring Identity Providers
User stores are LDAP directory servers to which end users authenticate. You must specify an initial
user store when creating an Identity Server configuration. You use the same procedure for setting up
the initial user store, adding a user store, or modifying an existing user store.

1 Log in to NetIQ Access Management Administration Console. For example, https://
idmnam.mycompany.com/nps.

2 Navigate to Devices > Identity Servers > AG-Cluster > Edit > Local.
3 In User Stores, click New to add a user store. This is the Identity Vault used by your Identity

Manager.
4 Fill in the following fields:

Name: The name of the user store for reference. For example, acmeidm
Admin Name: The distinguished name of the admin user of the LDAP directory, or a proxy user
with specific LDAP rights to perform searches. For the LDAP extension to work, the proxy user
requires write rights on the ACL. Administrator-level rights are required for setting up a user
store. This ensures read/write access to all objects used by Access Manager.
For example, cn=admin,ou=sa,o=system
Admin Password and Confirm Password: Specify the password for the admin user and confirm
it.
Directory Type: The type of LDAP directory. Select eDirectory.
If eDirectory has been configured to use Domain Services for Windows, eDirectory behaves like
Active Directory. When you configure such a directory to be a user store, its Directory Type must
be set to Active Directory for proper operation.

5 To specify a server replica, click New, then fill in the following fields:
For an eDirectory server, you must use a replica of the partition where the users reside. Ensure
that each LDAP server in the cluster has a valid read/write replica. One option is to create a
users partition (a partition that points to the OU containing the user accounts) and reference
this server replica.
Name: Specify the name of the Identity Vault used by the Identity Manager server.
IP Address: The IP Address of the Identity Vault used by the Identity Manager server. If your
eDirectory is replicated on multiple servers, use this name to identify a specific replica.
Use secure LDAP connections: Specifies that the eDirectory server requires secure (SSL)
connections with the Identity Server.
This is the only configuration we recommend for the connection between the Identity Server
and the eDirectory server in a production environment. If you use port 389, usernames and
passwords are sent in clear text on the wire.
Name: The display name for the eDirectory server. If your eDirectory is replicated on multiple
servers, use this name to identify a specific replica.
Using NetIQ Access Manager for Single Sign-On 595

6 To import the trusted root certificate from the eDirectory server, click Auto import trusted root.
7 Click OK to confirm the import.

The Root CA Certificate and Server Certificate are imported into the Access Manager server
keystore.

8 To add a search context, click New under Search Contexts and define the search context
o=context (for example: o=data) and define the search scope as Subtree.
The search context is used to locate users in the directory when a contract is executed.

9 Click Finish.
10 Navigate to Local > Methods and select the following authentication class:

Secure Name/Password - Form: Form-based authentication over HTTPS.
11 Locate the user store that you just created (acmeidm) under User stores and move it under

Available user stores.
12 Click Apply and OK.
13 If prompted to restart Tomcat, click OK. Otherwise, update the Identity Server. Open the

Identity Servers window > Servers > Update All > IDPCluster and apply the changes and ensure it
is current and green.

Configuring Additional Redirect URLs in OSP Configuration File
1 Install the latest OSP version.
2 Stop the Tomcat services (systemctl status netiq-tomcat.service).
3 Edit the ism-configuration.properties file from tomcat/conf and append

‘additional.redirect.urls’ entries in the file based on the published DNS names. For this
example, the entries can look like below:

ospservice:/opt/netiq/idm/apps/tomcat/conf # cat ism-
configuration.properties | grep redirect
com.netiq.idmdash.redirect.url = https://rbpm.mycompany.com:8543/
idmdash/oauth.html
com.netiq.idmdash.additional.redirect.urls = https://
rbpm.privatedns.com/idmdash/oauth.html
com.netiq.rbpm.redirect.url = https://rbpm.mycompany.com:8543/IDMProv/
oauth
com.netiq.rbpm.additional.redirect.urls = https://rbpm.privatedns.com/
IDMProv/oauth
com.netiq.rpt.redirect.url = https://RPT.mycompany.com:8543/IDMRPT/
oauth.html
com.netiq.rpt.additional.redirect.urls = https://RPT.privatedns.com/
IDMRPT/oauth.html
com.netiq.sspr.redirect.url = https://osp.mycompany.com:8543/sspr/
public/oauth
596 Using NetIQ Access Manager for Single Sign-On

com.netiq.sspr.additional.redirect.urls = https://osp.privatedns.com/
sspr/public/oauth

4 Start the Tomcat service (systemctl status netiq-tomcat.service).

IMPORTANT: If you have configured additional redirect URLs, you may observe a redirect URL
mismatch error in the logs after upgrading to Identity Manager 4.8.6. You will be unable to log in to
the application.

To resolve this issue, remove the following entries in the ism-configuration.properties file:

com.netiq.idmdash.additional.redirect.urls = https://rbpm.privatedns.com/
idmdash/oauth.html
com.netiq.rpt.additional.redirect.urls = https://RPT.privatedns.com/
IDMRPT/oauth.html
Save the file and start the Tomcat service.

Testing the Single Sign-On
1 Open a browser and launch the NAM URL protecting the identity applications.

For example: https://rbpm.privatedns.com/IDMProv/
Ensure that the URLs are resolvable either through the host entries or DNS.

2 On the authentication prompt, provide the user credentials in Secure Name/Password - Form.
For example, uaadmin and password.

3 Upon submitting the credentials you should be able to view Identity Applications Dashboard.
4 Access other pages also and you can observe the SSO experience.

For example: https://rbpm.privatedns.com/idmadmin
Using NetIQ Access Manager for Single Sign-On 597

598 Using NetIQ Access Manager for Single Sign-On

38 38Configuring Single Sign-On to Work With
Active Directory Federation Service

Identity Manager supports Active Directory Federation Service (AD FS) as an identity service as long
as AD FS is pointing to eDirectory or Active Directory. You must perform additional configuration
steps for OSP and AD FS for this integration to work. There are requirements that you must meet
before starting the configuration process.

Requirements for Configuring OSP to Work with AD FS
Ensure that the following requirements are met before you configure OSP to work with AD FS.

 AD FS must use the same TLS version that the Tomcat instance for Identity Manager uses for
both incoming and outgoing communication. By default, Identity Manager uses TLS 1.2 and AD
FS uses TLS 1.0. If AD FS uses a lower version than what Identity Manager uses, it can cause
issues with the integration. For more information, see Microsoft documentation.

 Identity Manager uses SSL for communication. For more information, see Chapter 42, “Using
SSL for Secure Communication,” on page 621.

 Identity Manager version must be 4.8 or later.

Configuring OSP to Provide SAML Authentications to AD FS
To configure OSP to provide authentications to AD FS, you must perform configuration steps for OSP
and AD FS. The following procedure contains information to match the users on the email attribute
from eDirectory (IDVault) using a local Active directory server. You must change the custom rule
examples for your environment.

1 Ensure that you meet the requirements for this integration. For more information, see
“Requirements for Configuring OSP to Work with AD FS” on page 599.

2 Configure the OSP server to provide SAML authentications to AD FS.
2a Log in to the server where you have installed OSP (Identity Applications). Ensure that

Tomcat is running on the that server.
2b Launch the configuration update utility. For example, configupdate.sh, from the /opt/

netiq/idm/apps/configupdate directory.
2c Click the Authentication tab.
2d Click Show Advanced Options at the end of the page.
2e Under Authentication Method > Method select SAML 2.0.
2f Use the following information to configure OSP to use SAML 2.0:

Mapping Attribute
Specify the attribute you want to use to map the user accounts. For example, mail.
Configuring Single Sign-On to Work With Active Directory Federation Service 599

https://docs.microsoft.com/en-us/windows-server/identity/ad-fs/operations/manage-ssl-protocols-in-ad-fs

Landing Page
Select the landing page for your users. The available options are Internal, External, and
None. The default value is None.
 None: Specifies that the landing page will not be used. Select this option if the

IDP URL is indicated.
 Internal: Specifies that the internal OSP landing page will be used.
 External: Specifies that you will be redirected to an external OSP landing page.

Metadata Source
Select URL to use the AD FS metadata.

Metadata URL
Specify the AD FS metadata URL in this field.

https://adfs-server/FederationMetadata/2007-06/
FederationMetadata.xml

Load On Save
Select this option to load the metadata.

2g Click OK.
2h Click Yes to accept the certificate.
2i Restart Tomcat.

3 Create a relying party trust in AD FS to the OSP server using the OPS metadata. For more
information, see Microsoft documentation.
3a Use OSP metadata URL to finish the configuration. The default location of the URL is:

https://osp-server:port/osp/a/idm/auth/saml2/spmetadata
3b At the end of the configuration, ensure that you select Configure claims assurance policy

for this application.
3c (Conditional) If the Configure claims assurance policy configuration does not automatically

load, right click on the Relaying Party Trust you created in Step 3, then select Edit Claims
Insurance Policy.

3d Add two custom rules to have AD FS send the email attribute and a local Active Directory
server information to the OSP server. For more information, see Microsoft documentation.
Sending the email attribute

Use the following information to create the first custom rule to send the email
attribute:
Name

Specify a name for the rule.
600 Configuring Single Sign-On to Work With Active Directory Federation Service

https://docs.microsoft.com/en-us/windows-server/identity/ad-fs/operations/create-a-relying-party-trust
https://docs.microsoft.com/en-us/archive/blogs/askds/ad-fs-2-0-claims-rule-language-primer

Provide the Custom Rule
The following is a sample rule that you might need to edit for your environment.

c:[Type == "http://schemas.microsoft.com/ws/2008/06/
identity/claims/windowsaccountname", Issuer == "AD
AUTHORITY"]
 => issue(store = "Active Directory", types = ("mail",
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
upn"), query = ";mail,userPrincipalName;{0}", param =
c.Value);

Sending Via SAML
Use the following information to create the second rule to send the attribute to the
OSP server via SAML:
Name

Specify a name for the custom rule.
Provide the Custom Rule

The following is a sample rule that you might need to edit for your environment.

c:[Type == "http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/upn"]
 => issue(Type = "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/nameidentifier", Issuer = c.Issuer,
OriginalIssuer = c.OriginalIssuer, Value = c.Value,
ValueType = c.ValueType, Properties["http://
schemas.xmlsoap.org/ws/2005/05/identity/claimproperties/
format"] = "urn:oasis:names:tc:SAML:2.0:nameid-
format:transient", Properties["http://schemas.xmlsoap.org/
ws/2005/05/identity/claimproperties/namequalifier"] =
"http://adfs-server/adfs/services/trust", Properties["http:/
/schemas.xmlsoap.org/ws/2005/05/identity/claimproperties/
spnamequalifier"] = "https://osp-server:osp-port/osp/a/idm/
auth/saml2/metadata", Properties["http://
schemas.xmlsoap.org/ws/2005/05/identity/claimproperties/
spprovidedid"] = c.Value);
Configuring Single Sign-On to Work With Active Directory Federation Service 601

602 Configuring Single Sign-On to Work With Active Directory Federation Service

39 39Using Kerberos for Single Sign-On

You can use Kerberos as an authentication method for the identity applications that allows single
sign-on (SSO). This also allows users to use Integrated Windows Authentication to log in to the
applications. This section provides instructions for configuring Active Directory to use Kerberos for
connecting to the identity applications:

 “Configuring the Kerberos User Account in Active Directory” on page 603
 “Configuring the Identity Applications Server” on page 604
 “Configure the End-User Browsers to Use Integrated Windows Authentication” on page 606
 “Logging In Using the Name Password Form” on page 607

Configuring the Kerberos User Account in Active Directory
Use the Active Directory administration tools to configure Active DIrectory for Kerberos
authentication. You need to create a new Active Directory user account for the identity applications
and identity reporting. The user account name must use the DNS name of the server that hosts the
identity applications and identity reporting.

NOTE: For domain or realm references, use uppercase format. For example @MYCOMPANY.COM.

1 As an Administrator in Active Directory, use the Microsoft Management Console (MMC) to
create a new user account with the DNS name of the server that hosts the identity applications.
For example, if the DNS name of the identity applications server is rbpm.mycompany.com, use
the following information to create the user:
First name: rbpm
User login name: HTTP/rbpm.mycompany.com
Pre-windows logon name: rbpm
Set password: Specify the appropriate password. For example: Passw0rd.
Password never expires: Select this option.
User must change password at next logon: Do not select this option.

2 Associate the new user with the Service Principal Name (SPN).
2a In the Active Directory server, open a cmd shell.
2b At the command prompt, enter the following:

setspn -A HTTP/DNS_Identity_Applications_server@WINDOWS-DOMAIN
userID
For example:

setspn -A HTTP/rbpm.mycompany.com@MYCOMPANY.COM rbpm
2c Verify setspn by entering setspn -L userID.
Using Kerberos for Single Sign-On 603

3 To generate the keytab file, use the ktpass utility:
3a At the command line prompt, enter the following:

ktpass /out filename.keytab /princ servicePrincipalName /mapuser
userPrincipalName /mapop set /pass password /crypto ALL /ptype
KRB5_NT_PRINCIPAL
For example:

ktpass /out rbpm.keytab /princ HTTP/rbpm.mycompany.com@MYCOMPANY.COM /
mapuser rbpm /mapop set /pass Passw0rd /crypto All /ptype
KRB5_NT_PRINCIPAL

IMPORTANT: For domain or realm references, use uppercase format. For example,
@MYCOMPANY.COM.

3b Copy the rbpm.keytab file to your identity applications server.
4 An an Administrator in Active Directory, create an end user account with the MCC to prepare for

SSO.
The end user account name has to match some attribute value of an eDirectory user in order to
support single sign-on. Create the user with some name such as cnano, remember the
password, and ensure that User must change password at next logon is not selected.

5 (Optional) Repeat these steps for Identity Reporting if you installed the reporting component on
a separate server.

6 Configure the server for the identity applications to accept the Kerberos configuration. For
more information, see “Configuring the Identity Applications Server” on page 604.

Configuring the Identity Applications Server
You must configure your identity applications server to use the Kerberos keytab file and the user
account that you have created in Active Directory. Ensure that you complete “Configuring the
Kerberos User Account in Active Directory” on page 603 before proceeding.

NOTE: For domain or realm references, use uppercase format. For example @MYCOMPANY.COM.

1 To define your operating system settings for the Kerberos configuration, complete the following
steps:
1a Open the krb5 file in a text editor on the server that hosts the identity applications.

Linux: /etc/krb5.conf
Windows: C:\Windows\krb5.ini
UNIX: /etc/krb5/krb5.conf

1b Add the following information to the krb5 file:
604 Using Kerberos for Single Sign-On

[libdefaults]
 default_realm = WINDOWS-DOMAIN
 kdc_timesync = 0
 forwardable = true
 proxiable = false
[realms]
 WINDOWS-DOMAIN = {
 kdc = FQDN Active Directory Server
 admin_server = FQDN Active Directory Server
 }
[domain_realm]
 .your.domain = WINDOWS-DOMAIN
 your.domain = WINDOWS-DOMAIN
For example:

[libdefaults]
 default_realm = MYCOMPANY.COM
 kdc_timesync = 0
 forwardable = true
 proxiable = false
[realms]
 MYCOMPANY.COM = {
 kdc = myadserver.mycompany.com
 admin_server = myadserver.mycompany.com
 }
[domain_realm]
 .mycompany.com = MYCOMPANY.COM
 mycompany.com = MYCOMPANY.COM

1c Save the changes and close the krb5 file.
2 (Conditional) To define the Kerberos configuration information for Tomcat, complete the

following steps:
2a Create a sample Kerberos_login.config file on the Tomcat application server with the

following content:

NOTE: The novlua user needs permissions to create the Kerberos_login.config file.

com.sun.security.jgss.krb5.accept {
 com.sun.security.auth.module.Krb5LoginModule required
 debug="true"
 refreshKrb5Config="true"
 useTicketCache="true"
 ticketCache="/opt/netiq/idm/apps/tomcat/kerberos/
spnegoTicket.cache"
 doNotPrompt="true"
 principal="HTTP/DNS_Identity_Applications_server@WINDOWS-
DOMAIN"
 useKeyTab="true"
 keyTab="/absolute_path/filename.keytab"
 storeKey="true";
 };
An example on a Windows server is as follows:
Using Kerberos for Single Sign-On 605

keyTab="c:\\NetIQ\\IdentityManager\\apps\\tomcat\kerberos\\rbpm.key
tab"

2b In the file, specify values for principal and keyTab. For example:

principal="HTTP/rbpm.mycompany.com@MYCOMPANY.COM"
keyTab="/home/usr/rbpm.keytab"
 The value for principal must match the same value that you specified for Kerberos.

For more information, see Step 3 on page 604.
 Provide the absolute path of the keytab file on your identity applications server. The

file does not have to reside in the default directory for the identity applications.
2c Refer to the Kerberos_login.config file in JVM java.security file with the

following line:

login.config.url.1=file:/opt/netiq/idm/apps/tomcat/kerberos/
Kerberos_login.config
The path listed is the default installation location for a Linux server.
An example of the java.security file on a Windows server is as follows:

login.config.url.1=file:c:/NetIQ/IdentityManager/apps/tomcat/
kerberos/Kerberos_login.config

3 To specify the Authentication method in the RBPM Configuration utility, complete the following
steps:
3a Open the Configupdate utility.
3b Click the Authentication tab.
3c Scroll down to the Authentication Method section.
3d In the Method field, select Kerberos.
3e In the Mapping attribute name field, specify cn.

4 (Optional) Repeat these steps for Identity Reporting if you installed the reporting component on
a separate server.

5 Configure the browsers that end-users use to access the identity applications. For more
information, see “Configure the End-User Browsers to Use Integrated Windows Authentication”
on page 606.

Configure the End-User Browsers to Use Integrated
Windows Authentication

The browsers that your end-users use to access the identity applications and identity reporting also
need to be configured for Integrated Windows Authentication. This section provides instructions for
configuring an end-user computer to support single sign-on access using Integrated Windows
Authentication.
606 Using Kerberos for Single Sign-On

NOTE: You must perform this procedure for each end-user computer where you want to provide
single sign-on access to the identity applications and identity reporting.

1 Log in to the computer where users will need single sign-on access.
2 Open the Internet options control panel.
3 Click Security.
4 Click Trusted Sites > Sites.
5 Add the DNS name of the identity applications server.

For example: rbpm.mycompany.com
6 Click Add, then click Close.
7 Click Custom level....
8 Under User Authentication, select Automatic logon with current user name and password.
9 Click OK.

10 In Internet Options, click Advanced.
11 Under Security, select Enable Integrated Windows Authentication.
12 Repeat this procedure for each end-user computer where you want to provide single sign-on

access to the identity applications and identity reporting.

Logging In Using the Name Password Form
When Identity Applications are configured for Kerberos authentication, the login process uses
Kerberos contract by default. If you want to log in using the name-password contract instead of the
default contact, use the following URL:

https://<ospserver:port>/osp/a/idm/auth/app?acAuthCardId=np-contract-
$default-card$&target=https://<rbpm server:port>/idmdash/
The logout process relogins you to the system as Kerberos logged-in user. You need to logout to
come out of the identity applications.
Using Kerberos for Single Sign-On 607

608 Using Kerberos for Single Sign-On

40 40Integrating Single Sign-on Access with
Identity Governance

If you have installed Identity Manager, your users can log in a single time to access Identity
Applications, Identity Reporting, and Identity Governance from the Identity Manager Home page. To
ensure single sign-on access, you must configure both Identity Manager and Identity Governance for
single sign on. Users can easily shift between the two applications without needing to enter their
credentials a second time. Identity Governance must use the same authentication server that the
identity applications use.

This chapter includes the following topics:

 “Ensuring Rapid Response to Authentication Requests” on page 609
 “Configuring Identity Governance for Integration” on page 610
 “Configuring Identity Manager for Integration” on page 613

Ensuring Rapid Response to Authentication Requests
You can configure OSP so users can log in with an email address or another attribute available in the
Identity Vault. If you use a non-default attribute, the server might take longer to respond to
authentication requests. Also, OSP automatically times out LDAP connections after 15 seconds. To
ensure a rapid response time, the LDAP authentication server should have an index for the login
attribute. You also must specify that attribute in the RBPM Configuration Utility.

1 To specify the login attribute, complete the following steps:
1a Run the RBPM Configuration utility.

For more information, see Configuring the Settings for the Identity Applications in the
NetIQ Identity Manager Setup Guide for Linux or Configuring the Settings for the Identity
Applications in the NetIQ Identity Manager Setup Guide for Windows.

1b Select Authentication > Show Advanced Options.
1c For Duplicate resolution naming attribute, specify the attribute that you want to use for

login activities. For example, Internet Email Address.
1d Save your changes.

2 (Conditional) To create an index for the login attribute in the Identity Vault, complete the
following steps:
2a Create the index.

For more information, see Creating Compound Indexes in NetIQ Identity Manager Setup
Guide for Windows.

2b For the attribute, select the same attribute that you specified for Duplicate resolution
naming attribute in the configuration utility.
Integrating Single Sign-on Access with Identity Governance 609

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configureidentityapplicationssettings
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#windowsconfiguresettingsidentityapplications
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#windowsconfiguresettingsidentityapplications
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#t42eydl0a0k8
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

2c For the index rule, specify Value.
2d Complete the process for creating the index.

Configuring Identity Governance for Integration
For proper integration, you must link Identity Governance to the Identity Manager Home page for
the identity applications. You can also choose to use the same authentication server that the identity
applications use to verify login attempts. This process includes the following activities:

 “Adding a Link for Identity Manager Home in the Identity Governance Menu” on page 610
 “Using the Same Authentication Server as Identity Manager” on page 610
 “Registering Identity Applications Server” on page 612

Adding a Link for Identity Manager Home in the Identity
Governance Menu
This section describes how to add a link in Identity Governance so users can easily switch to Identity
Manager Home.

1 Log in to Identity Governance with an account that has the Global Administrator authorization.
2 Select Configration > General Settings.
3 For Home Page URL, specify the URL for Identity Manager Home. For example, https://
myserver:8543/idmdash#/landing.

4 Select Save.
5 Refresh the browser for change to take effect.

Using the Same Authentication Server as Identity Manager
This section describes how to configure Identity Governance to use the same authentication server
as Identity Manager identity applications for verifying users who log in. This section assumes that,
when you installed Identity Governance, you did not specify the Identity Manager authentication
server. For example, you might have installed Identity Governance before adding Identity Manager
to your environment.

NOTE: Identity Applications use https communication by default. You should create a wildcard
certificate on one of the servers and copy the certificate on all the servers.

For example, the wildcard certificate *.example.com is created on OSP server.

1 Add this certificate to the keystoreFile on all the servers.
2 Restart Tomcat on all the servers.

Ensure that keystoreFile is updated in the server.xml.
610 Integrating Single Sign-on Access with Identity Governance

<Connector port="8543"
protocol="org.apache.coyote.http11.Http11NioProtocol" maxThreads="150"
SSLEnabled="true" scheme="https" secure="true" clientAuth="false"
sslProtocol="TLSv1.2" keystoreFile="conf/tomcat.ks" keystorePass="novell"
sslEnabledProtocols="TLSv1.2" />

1 Stop Tomcat.
systemctl stop identity_tomcat.service

2 Navigate to the /opt/netiq/idm/apps/idgov/bin directory and run the ./
configutil.sh -password <passwd> command.

3 In the configuration utility (configutil), navigate to the Authentication Server Details tab and
perform the following steps:

1. De-select the Same as IG Server check box.
2. Specify the authentication server details that is deployed with Identity Applications in the

Protocol, Host Name, and Port fields.
3. Set the value for the Authentication Source parameter from File to Identity Vault

and then specify the LDAP user DN in the Name field. Specify the complete DN of the user.
For example, cn=uaadmin,ou=sa,o=data.
(Conditional) If you are using Identity Governance 3.6, then you must use the LDAP
bootstrap user.
(Conditional) If you are using Identity Governance 3.5.x, then setting the LDAP bootstrap
user is optional based on the authentication method you used.

4. Specify the values for the Client ID and Redirect URL under the OAuth SSO Client parameter.

NOTE: The values for these settings must match the values that you specify for Identity
Governance in the Identity Applications Configuration update utility.

5. Click Save and close the configuration utility.
4 In the configuration utility (configutil), navigate to the Security Settings tab and make a note

of the Client ID for all the clients.

NOTE: The values for these settings must match the values that you specify for Identity
Governance in the Identity Applications Configuration update utility.

5 Navigate to /opt/netiq/idm/apps/configupdate directory and run the ./
configupdate.sh command.

6 In the configuration update utility (configupdate), navigate to the Authentication tab and
perform the following steps:

1. Specify the authentication server details that is deployed with Identity Applications.
2. Click Show Advanced.
3. (Conditional) If you are using Identity Governance 3.6, you must select the LDAP user check

box under the Identity Governance Bootstrap Administrator settings.
Integrating Single Sign-on Access with Identity Governance 611

4. (Conditional) If you are using Identity Governance 3.5.x and the authentication method is
set to Kerberos or SAML 2.0, then you must select the LDAP user check box under the
Identity Governance Bootstrap Administrator settings. If the authentication method is set to
Name and Password, you can select the file-based user or LDAP user as your bootstrap
administrator.

5. Click OK.
6. (Conditional) If the Tomcat certificate of the server where Identity Applications is deployed

has not been installed into the trust store, then you must accept the certificate. Ensure
that Tomcat is running on the Identity Applications server.

7 Start Tomcat.
systemctl start identity_tomcat.service

Registering Identity Applications Server
You should register Identity Applications server details on Identity Governance server that allows
Identity Applications to access Identity Governance through Identity Manager Dashboard.

Perform the following steps to register Identity Applications server:

1 Log in to Identity Governance server as an administrator.
2 Stop Tomcat.
systemctl stop identity_tomcat.service

3 Launch the configuration update utility in the console mode.
For example,
/opt/netiq/id/apps/idgov/bin/configutil.sh -password $db_password -
console

4 Run the following command to register the CORS client.
ap GLOBAL com.netiq.iac.CORSclient $URL_OF_RBPM_MACHINE
For example, ap GLOBAL com.netiq.iac.CORSclient https://
myserver.mydomain.com:8543

5 Verify the value using the following command.
dc com.netiq.iac.CORSclient

Before adding the Identity Governance widgets in the Identity Manager dashboard, you must
configure the Identity Governance URL from the Identity Governance settings page.

1 Log in to Identity Manager Dashboard as an administrator.
2 Select Configuration > Identity Governance.

For more information, see “Configuring the Identity Governance Settings” on page 245.
612 Integrating Single Sign-on Access with Identity Governance

Configuring Identity Manager for Integration
To ensure proper integration, you must install Identity Applications version 4.8 with Identity
Governance version 3.6.0 or 3.5.0. This procedure assumes that you have configured single sign-on
for the identity applications.

Configuring Identity Manager for Integration When Identity Manager is Installed for
the First Time
Perform the following steps if you are configuring Identity Manager for integration when Identity
Manager is installed for the first time.

1 On the server where you installed Identity Applications, log in as an administrator.
2 Navigate to the /opt/netiq/idm/apps/configupdate directory.
3 Modify the configupdate.sh.properties file and update the following details:

 Update the Identity Governance version in the apps_versions parameter. The supported
versions are 3.6.0 and 3.5.0, where 3.5.0 includes all versions of 3.5.x. The entries are a
comma-separated list. For example,
app_versions="ua#4.8.0,rpt#6.5.0,ig#3.6.0"

 Add the entry for ig to the list of applications in the sso_apps parameter. The entries are a
comma-separated list. For example, sso_apps=ua,rpt,ig

4 Run the configuration update utility.
./configupdate.sh

5 Navigate to the Authentication tab and click Show Advanced Options.
6 (Conditional) If you are using Identity Governance 3.6, you must select the LDAP user check box

under the Identity Governance Bootstrap Administrator settings.
7 (Conditional) If you are using Identity Governance 3.5.x and the authentication method is set to

Kerberoes or SAML 2.0, then you must select the LDAP user check box under the Identity
Governance Bootstrap Administrator settings. If the authentication method is set to Name and
Password, you can select the file-based user system or the LDAP user as your bootstrap
administrator.

8 Navigate to the IG SSO Clients tab.
9 (Conditional) If you want to change the authentication server for Identity Governance after

installation, specify the values based on the settings that you specified in Step 3 and Step 4 of
the “Using the Same Authentication Server as Identity Manager” on page 610 section.
The following considerations apply to these settings:
 (Conditional) If you are using Identity Governance 3.6, the default OAuth client ID is ig.

NOTE: The client secret is specified during the Identity Governance installation. You can
change the client ID and client secret after installation.

Specify the following details for Identity Governance Client:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Identity Governance to the authentication server. The default value is ig.
Integrating Single Sign-on Access with Identity Governance 613

 OAuth Redirect URI: The OAuth redirect URL must be an absolute URL and include the
specified value for OAuth client ID. For example, https://myserver.host:8443/
oauth.html. By default, the configuration update utility provides some of this URL.
However, you must ensure that you add the server and port information.

Specify the following details for Identity Governance Utility Client:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Identity Governance Utility to the authentication server. The default value is
iac.

 OAuth client secret: Specifies the password for the single sign-on client for the
Identity Governance utility client.

Specify the following details for Request Client:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Request to the authentication server. The default value is cx.
 OAuth Redirect URI: The OAuth redirect URL must be an absolute URL and include the

specified value for OAuth client ID. For example, https://myserver.host:8443/
cx/oauth.html. By default, the configuration update utility provides some of this
URL. However, you must ensure that you add the server and port information.

Specify the following details for Data Connectivity Service:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Data Connectivity Service to the authentication server. The default value is
iac-daas.

 OAuth client secret: Specifies the password for the single sign-on client for the Data
Connectivity Service client.

Specify the following details for General Service:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for General Service to the authentication server. The default value is iac-
service.

 OAuth client secret: Specifies the password for the single sign-on client for the
General Service client.

Specify the following details for Data Transformation and Processing Service:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Data Transformation and Processing Service to the authentication server.
The default value is iac-dtp.

 OAuth client secret: Specifies the password for the single sign-on client for the Data
Transformation and Processing Service client.

Specify the following details for Workflow Service:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Workflow Service to the authentication server. The default value is wf.
 OAuth client secret: Specifies the password for the single sign-on client for the

Workflow Service client.
 (Conditional) If you are using Identity Governance 3.5.x, the default OAuth client ID is iac.

NOTE: The client secret is specified during the Identity Governance installation. You can
change the client ID and client secret after installation.
614 Integrating Single Sign-on Access with Identity Governance

Specify the following details for Identity Governance Client:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Identity Governance to the authentication server. The default value is iac.
 OAuth client secret: Specifies the password for the single sign-on client for the

Identity Governance client.
 OAuth Redirect URI: The OAuth redirect URL must be an absolute URL and include the

specified value for OAuth client ID. For example, https://myserver.host:8443/
oauth.html. By default, the configuration update utility provides some of this URL.
However, you must ensure that you add the server and port information.

Specify the following details for Request Client:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Request to the authentication server. The default value is cx.
 OAuth client secret: Specifies the password for the single sign-on client for the

Request client.
 OAuth Redirect URI: The OAuth redirect URL must be an absolute URL and include the

specified value for OAuth client ID. For example, https://myserver.host:8443/
cx/oauth.html. By default, the configuration update utility provides some of this
URL. However, you must ensure that you add the server and port information.

Specify the following details for Data Connectivity Service:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Data Connectivity service to the authentication server. The default value is
iac-daas.

 OAuth client secret: Specifies the password for the single sign-on client for the Data
Connectivity Service client.

Specify the following details for General Service:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for General Service to the authentication server. The default value is iac-
service.

 OAuth client secret: Specifies the password for the single sign-on client for the
General Service client.

Specify the following details for Data Transformation and Processing Service:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Data Transformation and Processing Service to the authentication server.
The default value is iac-dtp.

 OAuth client secret: Specifies the password for the single sign-on client for the Data
Transformation and Processing Service client.

Specify the following details for Workflow Service:
 OAuth Client ID: Specifies the name that you want to use to identify the single sign-on

client for Workflow Service to the authentication server. The default value is wf.
 OAuth client secret: Specifies the password for the single sign-on client for the

Workflow Service client.
Integrating Single Sign-on Access with Identity Governance 615

10 (Conditional) If you are installing Identity Governance for the first time, specify the following
details during the Identity Governance installation:
 For the authentication server details, specify the Identity Manager OSP server details.
 Specify the LDAP user details when prompted for the Bootstrap administrator details.

NOTE: Based on the Identity Governance version that you are using (3.6 or 3.5.x), you can
choose whether LDAP user is required or not. For more information, see Step 6 and Step 7.

11 (Conditional) If you have already installed Identity Governance, log in to the server where
Identity Governance is installed and update the configuration values in the configuration utility
(configutil) and configuration update utility (configupdate). For more information, see
Step 3 through Step 6 of the “Using the Same Authentication Server as Identity Manager” on
page 610 section.

12 Delete the localhost folder in the tomcat/work/Catalina directory.
13 Delete all the files and folders in the /opt/netiq/idm/apps/tomcat/temp directory.
14 Restart Tomcat on the Identity Governance server.

systemctl restart identity_tomcat.service
15 Restart Tomcat on the Identity Applications server.

systemctl restart netiq-tomcat.service
16 Add a link to Identity Governance from the Identity Manager Home page:

1. Log in to the Identity Manager dashboard.
2. Navigate to the Applications page.
3. Click Manage Applications and add the Identity Governance tile to the home page and

modify the widget to add the Identity Governance URL.

Configuring Session-timeout for Identity Manager and Identity Governance
Integrated Setup
In Identity Manager and Identity Governance integrated setup, both Identity Applications and
Identity Governance are browser-based applications, each having a distinct session time out
property and value. The value represents the amount of time users can leave a page unattended in
their web browser before the server displays a session-time-out warning.

The Identity Applications session time out value is represented by the com.netiq.idm.session-
timeout property, whereas the Identity Governance session time out is represented by the
com.netiq.idm.osp.oauth.public.refreshTokenTTL property. You must configure value
for both these properties in the ism-configuration.properties file after Identity Manager
and Identity Governance integration.

To set the session time out, perform the following actions:

1 Login in to the Identity Applications server.
2 Navigate to the /opt/netiq/idm/apps/tomcat/conf/ location.
3 Open the ism-configuration.properties file in a text editor and add the two properties

namely, com.netiq.idm.session-timeout and
com.netiq.idm.osp.oauth.public.refreshTokenTTL with appropriate values.

4 Save the file and restart the Tomcat service.
616 Integrating Single Sign-on Access with Identity Governance

NOTE: To keep the session-timeout warning same for both the applications, it is recommended that
the value you set for com.netiq.idm.osp.oauth.public.refreshTokenTTL must be 120
seconds less than the value provided for the com.netiq.idm.session-timeout property.

Configuring Identity Manager for Integration When Identity Manager and Identity
Governance are Upgraded
Perform the following steps to configure Identity Manager for integration when Identity Manager is
upgraded to 4.8 version.

1 (Conditional) If the uaconfig-ig-defs.xml or uaconfig-ig36-defs.xml file exists in the
/opt/netiq/idm/apps/tomcat/conf directory, move (or delete) it to a different location,
for example, /home directory.

2 (Conditional) If you are upgrading to Identity Governance 3.6 version from 3.5.x version,
perform the following steps:

1. Navigate to the /opt/netiq/idm/apps/tomcat/conf directory.
2. Back up the ism-configuration.properties file.
3. Open the ism-configuration.properties file with a text editor and delete the

following properties:
 com.netiq.iac.redirect.url
 com.netiq.cx.clientPass._attr_obscurity
 com.netiq.cx.clientPass
 com.netiq.idm.osp.fileauthsrc.filename
 com.netiq.idm.osp.fileauthsrc.path
 com.netiq.iac.bootstrapadmin.authsrc

4. Save and close the ism-configuration.properties file.
3 On the server where Identity Applications is running, navigate to the /opt/netiq/idm/apps/
configupdate directory.

4 Modify the configupdate.sh.properties file and update the following details:
 Update the Identity Governance version in the apps_versions parameter. The supported

versions are 3.6.0 and 3.5.0, where 3.5.0 includes all versions of 3.5.x. The entries are a
comma-separated list. For example,
app_versions="ua#4.8.0,rpt#6.5.0,ig#3.6.0"

 Add the entry for ig to the list of applications in the sso_apps parameter. The entries are a
comma-separated list. For example, sso_apps=ua,rpt,ig

5 Launch configuration update utility by running the ./configupdate.sh command and
perform the following steps:

1. (Conditional) If the configuration settings are reset to the default values during upgrade,
you must change the settings manually.

2. (Conditional) If you are using Identity Governance 3.6, you must select the LDAP user check
box under the Identity Governance Bootstrap Administrator settings.

3. Navigate to the IG SSO clients Tab and modify the values as per the considerations listed in
Step 9.
Integrating Single Sign-on Access with Identity Governance 617

4. Navigate to the IDM SSO clients tab and verify the settings.
5. Click OK.

6 Delete the localhost folder in the /opt/netiq/idm/apps/tomcat/work/Catalina
directory.

7 Delete all the files and folders in the /opt/netiq/idm/apps/tomcat/temp directory.
8 Delete or back up all the files in the /opt/netiq/idm/apps/tomcat/logs directory.
9 Restart Tomcat on the Identity Governance server.
systemctl restart identity_tomcat.service

10 Restart Tomcat on the Identity Applications server.
systemctl restart netiq-tomcat.service

11 On the server where Identity Applications is running, launch the configuration update utility
again. If you are presented with any certificates, review and accept the certificates.

12 (Conditional) If you accepted certificates in step 11, restart Tomcat on both Identity Manager
and Identity Governance servers.
618 Integrating Single Sign-on Access with Identity Governance

41 41Verifying Single Sign-on Access for the
Identity Applications

After you install the identity applications and configure the settings for single sign-on, you should
verify that you can log in to the individual applications and switch among them without logging out.
By default, the applications use the following suffix in the URL link:

 Identity Manager Administration: /idmadmin
 Identity Manager Dashboard: /idmdash
 Identity Reporting: /IDMRPT

To customize the suffix, use the Configupdate utility. For more information, see Configuring the
Settings for the Identity Applications in the NetIQ Identity Manager Setup Guide for Linux or
Configuring the Settings for the Identity Applications in the NetIQ Identity Manager Setup Guide for
Windows.

To verify single sign-on functionality:

1 In a new browser window on your identity applications server, enter the URL for the Dashboard:

https://server:port/idmdash
Do not log in to the Dashboard.

2 In your browser, navigate to the User Application:

https://server:port/IDM-context
3 Verify that the User Application displays the same login page as shown in Step 1.
4 Log in to the User Application.
5 In the top right corner, click the Home icon and verify that you can access the Dashboard

without logging on again.
Verifying Single Sign-on Access for the Identity Applications 619

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configureidentityapplicationssettings
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configureidentityapplicationssettings
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#windowsconfiguresettingsidentityapplications
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

620 Verifying Single Sign-on Access for the Identity Applications

42 42Using SSL for Secure Communication

The identity applications and Identity Reporting use HTML forms for authentication. As a result, the
login process might expose user credentials. NetIQ recommends that you enable SSL protocol to
protect sensitive information. SSL protocol ensures that all communication between Identity
Manager components is secured.

You must have certificates to configure Tomcat server to communicate using SSL. You can obtain
certificates in two ways:

 External trusted Certificate Authority (CA) issued certificate
 Self-signed certificate

On Linux, the installation program automatically configures Identity Applications and Identity
Reporting components with a secured connection (HTTPS) using the certificate issued by the Identity
Vault. For a production environment, you are recommended to use a certificate issued by an
external Certificate Authority. You need to manually configure a secured connection on Windows.

Checklist for Ensuring SSL Connections
To ensure secure connections among the identity applications components and Identity Reporting,
NetIQ recommends that you perform the steps in the following checklist:

Checklist Items

 1. Ensure that you have a keystore to store the authentication certificates. For more
information, see “Creating a Keystore and Certificate Signing Request” on page 622.

 2. (Conditional) In a test environment, use self-signed certificates. For more information, see
“Enabling SSL with a Self-signed Certificate” on page 625. For production environment, it is
recommended to use external CA issued certificate.

 3. Ensure that you have configured the authentication server, identity applications, and
Identity Reporting to support SSL communication. For more information, see “Updating the
SSL Settings in the Configuration Utility” on page 632.

 4. Configure the authentication server, identity applications, and Identity Reporting to support
SSL communication. For more information, see “Updating the SSL Settings for the
Application Server” on page 631 and “Updating the SSL Settings in the Configuration Utility”
on page 632.
Using SSL for Secure Communication 621

Creating a Keystore and Certificate Signing Request
A keystore is a Java file that contains encryption keys and optionally, security certificates. To create a
keystore, you can use the Java Keytool utility included in the JRE. You create the .jks file, generate
a certificate into the keystore. Each certificate is associated with a unique alias. You place the
keystore in the conf directory for your application server that supports the identity applications and
Identity Reporting.

By default, the installer creates a keystore, namely tomcat.ks, in /opt/netiq/idm/apps/
tomcat/conf and uses this keystore to configure the https connection. If you create a keystore
file with the same name, replace this keystore file in this directory.

1 In a command prompt, navigate to the conf directory for your application server installation
where you have deployed the identity applications. For example, /opt/netiq/idm/apps/
tomcat/conf or C:\NetIQ\idm\apps\tomcat\conf.
The tomcat/conf path is the default for the identity applications installed on Tomcat. The path
can vary, depending on how you installed the application and Tomcat.

2 Set the environment path for creating the keystore using the following command:

cd /opt/netiq/idm/apps/tomcat/conf
export PATH=/opt/netiq/common/jre/bin:$PATH
or

cd C:\NetIQ\idm\apps\tomcat\conf
set PATH=C:\NetIQ\idm\apps\jre\bin:%PATH%

3 Create the keystore using the following command:

keytool -genkey -alias alias_name -keyalg RSA -keystore keystore_name -
validity 3650 -keysize 2048
For example:

keytool -genkey -alias IDMkey -keyalg RSA -keystore tomcat.ks -validity
3650 -keysize 2048

4 At the prompt, specify the parameter values according to the following considerations:
 For first and last name, specify the fully qualified name of the server. For example:

MyTomcatServer.NetIQ.com
 Use correct spelling. If you spell any words incorrectly, you will see errors when you

generate your signed certificate from the signing authority.
5 (Optional) Create a simple text file to save a copy of the information that you provide for the

parameter values.
Saving this information helps ensure that you supply the same information when you apply to
the signing authority and when you import your certificate.

6 Copy the keystore file to the /tomcat/conf directory for each application server instance
where you have deployed Identity Manager components and SSPR.

NOTE: In Linux system, you should change the owner of the file to novlua:
622 Using SSL for Secure Communication

chown novlua:novlua [keystore_name.keystore]

7 To generate the CA certificate request, complete the following steps:
7a In the conf directory, create a simple text file named your_request.csr. For example,

IDMcertrequest.csr.
7b Run the following command:

keytool -certreq -v -alias alias_name -file your_request.csr -
keypass keystore_password -keystore keystore_name -storepass
your_password
For example,

keytool -certreq -v -alias IDMkey -file IDMcertrequest.csr -keypass
IDMkeypass -keystore tomcat.ks -storepass IDMpass
When you run the command, the Keytool utility populates the .csr file with the appropriate
data for requesting a certificate.

8 (Conditional) To obtain a signed certificate, submit the .csr file to a valid Certificate Authority.
9 Copy the certificate in the configuration directory of your application server.

For example, /opt/netiq/idm/apps/tomcat/conf or
C:\NetIQ\idm\apps\tomcat\conf.

10 Stop Tomcat.

After creating a keystore and generating CA certificate request, perform the following procedures to
import the certificates into the keystore:

 For external CA signed certificate, see “Enabling SSL with a External CA Signed Certificate” on
page 623.

 For self-signed certificate, see “Enabling SSL with a Self-signed Certificate” on page 625.

NOTE: When a system certificate expires, you must manually renew the expired certificates. For
more information, see NetIQ Identity Manager Certificate Management Guide.

Enabling SSL with a External CA Signed Certificate
For a production environment, use a signed certificate issued by a valid Certificate Authority. This
section explains how to import a signed certificate into the default Tomcat application server for the
identity applications.

This procedure assumes that you have a signed certificate from a valid Certificate Authority. For
more information, see “Creating a Keystore and Certificate Signing Request” on page 622.

To use a signed certificate and SSL:

1 Copy the certificate in the configuration directory of your application server.
Linux: /opt/netiq/idm/apps/tomcat/conf
Windows: C:\NetIQ\idm\apps\tomcat\conf
Using SSL for Secure Communication 623

http://www.netiq.com/documentation/identity-manager-48/certificate-management/data/certificate-management.html

2 To convert the root certificate to DER format, complete the following steps:
2a Double-click on your certificate stored in the conf directory.
2b In the Certificate dialog, click Certificate Path.
2c Select the root certificate that you received from the signing authority.
2d Click View Certificate.
2e Click Details > copy to file.
2f In the Export Certificate Wizard, click next.
2g Select DER encoded binary for X.509 (.CER) and then click next.
2h Create a new file to store the newly formatted certificate and store it in the conf directory

for your application server.
2i Click Finish.

3 To import the converted certificate, complete the following steps:
3a In a command prompt, navigate to the conf directory for your application server. For

example, /opt/netiq/idm/apps/tomcat/conf or
C:\NetIQ\idm\apps\tomcat\conf.

3b Enter the following command:

keytool -import -trustcacerts -alias root -keystore keystore_name -
file yourRootCA.der
For example:

keytool -import -trustcacerts -alias root -keystore tomcat.ks -file
IDMTESTREE.der

NOTE: You must specify root as your alias.

After importing the certificate, the server displays Certificate was added to keystore.
3c Verify that the signed certificate is imported correctly into the conf directory using the

following command:

keytool -list -v -alias root -keystore keystore_name
For example:

keytool -list -v -alias root -keystore tomcat.ks
The server lists your certificates.

4 NetIQ recommends you to import the signed certificates to idm.jks. This is a centralized
keystore that stores all the certificates used by the identity applications and Identity Reporting.
For example:
Linux: keytool -import -trustcacerts -alias root -keystore /opt/netiq/
idm/apps/tomcat/conf/idm.jks -file IDMTESTREE.der
Windows: keytool -import -trustcacerts -alias root -keystore
C:\NetIQ\idm\jre\lib\security\cacerts -file IDMTESTREE.der

5 Update the SSL settings for the application server, see “Updating the SSL Settings for the
Application Server” on page 631.
624 Using SSL for Secure Communication

6 Update the SSL settings in the Configuration utility. For more information, see “Updating the SSL
Settings in the Configuration Utility” on page 632.

7 Update the SSL settings for Self Service Password Reset. For more information, see “Updating
the SSL Settings for Self Service Password Reset” on page 633

8 Restart Tomcat.

Enabling SSL with a Self-signed Certificate
If you want to use a self-signed certificate in your test environment, since this type of certificate is
easier to obtain than a signed certificate from a valid authority.

 “Exporting the Certificate Authority” on page 625
 “Generating the Self-signed Certificate” on page 626

Exporting the Certificate Authority
You can use iManager to export the Certificate Authority (CA) from your eDirectory server to
generate your self-signed certificate.

1 Log in to iManager with the eDirectory administrator’s username and password.
2 Click Administration > Modify Object.
3 In the Security container, browse to the CA object called TreeName CA.Security. For

example, IDMTESTTREE CA.Security.
4 Click OK.
5 Click Certificates > Self-Signed Certificate.
6 Select the self-signed certificate that you want to use.

Example: Self Signed Certificate RSA
6a Check Self Signed Certificate RSA.
6b Click Validate.

7 Click Export.
8 Clear Export private key.
9 Click Export format > DER.

10 Click Next.
11 Click Save the exported certificate.
12 Click Save File.

iManager saves the file as TreeName cert.der. For example, IDMTESTREE cert.der.
13 Click Close.
14 Copy the certificate in the configuration directory of your application server (cert.der).

For example, /opt/netiq/idm/apps/tomcat/conf or
C:\NetIQ\idm\apps\tomcat\conf.
Using SSL for Secure Communication 625

15 To import the root certificate, complete the following steps:
15a In a command prompt, navigate to the conf directory for your application server using

following command:

keytool -import -trustcacerts -alias root -keystore <keystore
file>.keystore -file exported_certificate_filename.der
Example:

keytool -import -trustcacerts -alias root -keystore tomcat.ks -file
cert.der

NOTE: You must specify root as your alias.

After importing the certificate, the server displays Certificate was added to keystore.
15b NetIQ recommends you to import root certificate to Java cacerts location also.

For example:

keytool -import -trustcacerts -alias root -keystore /opt/netiq/
common/jre/lib/security/cacerts -file cert.der
or

keytool -import -trustcacerts -alias root -keystore
C:\NetIQ\idm\jre\lib\security\cacerts -file cert.der

15c Verify the signed certificate is imported correctly in the conf directory by using following
command:

keytool -list -v -alias root -keystore keystore_name
For example,

keytool -list -v -alias root -keystore tomcat.ks
The server lists the certificates.

Generating the Self-signed Certificate
Before generating the self-signed certificate, ensure that you have a keystore and certificate request
file. For more information see “Creating a Keystore and Certificate Signing Request” on page 622.

1 Log in to iManager.
2 Navigate to Certificate Server > Issue Certificate.
3 Browse to the .csr file created in Step 7 in the “Creating a Keystore and Certificate Signing

Request” on page 622.
Example: IDMcertrequest.csr

4 Click Next twice.
5 For the certificate type, click Unspecified.
6 Click Next twice.

iManager saves the file as csr_request_name.der. Example: IDMcertrequest.der
626 Using SSL for Secure Communication

7 Copy the certificate in the configuration directory of your application server
(IDMcertrequest.der).
For example, /opt/netiq/idm/apps/tomcat/conf or
C:\NetIQ\idm\apps\tomcat\conf.

8 To import the generated self-signed certificate, complete the following steps:
8a In a command prompt, navigate to the conf directory for your application server using

following command:

keytool -import -alias alias_name -keystore <keystore_file> -file
<signed_certificate_filename>.der
For example,

keytool -import -alias IDMkey -keystore tomcat.ks -file
IDMcertrequest.der

NOTE: You must specify the keystore name as your alias.

After importing the certificate, the server displays Certificate was added to keystore.
8b NetIQ recommends that you also import the self-signed certificate to the Java cacerts

location.
For example:

keytool -import -alias IDMkey -keystore
/opt/netiq/common/jre/lib/security/cacerts -file IDMcertrequest.der
or

keytool -import -alias IDMkey -keystore
C:\NetIQ\idm\jre\lib\security\cacerts -file IDMcertrequest.der

8c Verify the signed certificate is imported correctly in the conf directory using the following
command:

keytool -list -v -alias alias_name -keystore keystore_name
For example,

keytool -list -v -alias IDMkey -keystore tomcat.ks
The server lists the certificates.

9 Update the SSL settings for the Application server. For more information, see “Updating the SSL
Settings for the Application Server” on page 631.

10 Update the SSL settings in the Configuration utility. For more information, see “Updating the SSL
Settings in the Configuration Utility” on page 632.

11 Update the SSL settings for Self Service Password Reset. For more information, see “Updating
the SSL Settings for Self Service Password Reset” on page 633

12 Restart Tomcat.
Using SSL for Secure Communication 627

Enabling SSL Between Sentinel and Identity Manager
Components

You can create and export a self-signed server certificate to ensure secure communication between
Sentinel and Identity Manager components. Use a signed certificate issued by a valid Certificate
Authority.

 “Enabling SSL between Sentinel and Identity Manager Engine/Remote Loader” on page 628
 “Enabling SSL between Sentinel and Identity Applications” on page 629

Enabling SSL between Sentinel and Identity Manager Engine/
Remote Loader

1 To create a new certificate, complete the following steps:
1a Log in to iManager.
1b Click NetIQ Certificate Server > Create Server Certificate.
1c Select the appropriate server.
1d Specify a nickname for the server.
1e Accept the rest of the certificate defaults.

2 To export the server certificate to .pfx format, complete the following steps:
2a In iManager, select Directory Administration > Modify Object.
2b Browse to and select the Key Material Object (KMO) object.
2c Click Certificates > Export.
2d Specify a password.
2e Save the server certificate as a PKCS#12. For example, certificate.pfx.

3 Extract the private key from the exported certificate to dxipkey.pem file using the following
command.
openssl pkcs12 -in certificate.pfx -nocerts -out dxipkey.pem –nodes

4 Extract the certificate to dxicert.pem file.
openssl pkcs12 -in certificate.pfx -nokeys -out dxicert.pem

5 To export the CA certificate of the eDirectory server created in Step 1 to Base64 format,
complete the following steps:
5a In iManager, navigate to Roles and Tasks > NetIQ Certificate Access > User Certificates.
5b Browse and select the created certificate.
5c Click Export.
5d Select the CA Certificate as OU=organizationCA.O=TREENAME from the drop-down menu.
5e Select the Export Format as BASE64 from the drop-down menu.
5f Click Next and save the certificate. For example, cacert.b64.

6 Import the CA certificate to a keystore using the following command:
keytool -import -alias <alias name> -file <b64 file> -keystore
<keystore file> –noprompt
628 Using SSL for Secure Communication

For example,
keytool -import -alias trustedroot -file cacert.b64 -keystore
idmKeystore.ks –noprompt

7 To import the certificate into the trust store of Audit Connector, complete the following steps:
7a Log in to the Sentinel Main interface as an administrator.
7b In the main ESM display, locate the Audit Server.
7c Right-click the Audit Server, then click Edit.
7d In the Security tab, select Strict.

NOTE: By default, it is configured to use Open (insecure) mode to allow initial connectivity.
However, when you are using it in a production environment, ensure that you set the mode
to Strict.

7e Click Import and navigate to the certificate you created in Step 6. For example,
idmkeystore.ks.

7f Click Open and then click Save.
7g Restart Audit Server.

8 Restart Identity Manager services.

Enabling SSL between Sentinel and Identity Applications
1 To create a new certificate, complete the following steps:

1a Log in to iManager.
1b Click NetIQ Certificate Server > Create User Certificate.
1c Select the appropriate user.
1d Specify a nickname for the user.
1e In Creation Method, select Custom.
1f Accept the rest of the certificate defaults.
1g Click Next.
1h In Custom Extensions, Select New DER Encoded Extensions.
1i Browse to \products\RBPM\ext.der custom extension.
1j (Optional) Specify the e-mail address.
1k Review the certificate parameters and click Finish.

2 To export the user certificate, complete the following steps:
2a Click NetIQ Certificate Access > User Certificates.
2b Select the user certificate that is imported in Step 1.
2c Select the valid user certificate and click Export.
2d Specify a password.
2e Save the user certificate as a PKCS12. For example, certificate.pfx.

3 Extract the private key from the exported certificate to key.pem file using the following
command.
Using SSL for Secure Communication 629

openssl pkcs12 -in certificate.pfx -nocerts -out key.pem –nodes
4 Extract the certificate to cert.pem file.
openssl pkcs12 -in certificate.pfx -nokeys -out cert.pem

5 Stop Tomcat.
6 Add the private key and certificate to the configupdate utility.

6a Open the configupdate utility.
6b Click Show Advanced Options.
6c In the NetIQ Sentinel Digital Signature Certificate field, copy the cert.pem.
6d In the NetIQ Sentinel Digital Signature Private Key field, navigate to the location where you

have extracted the private key (key.pem) and import the key.
6e Save the changes to the configupdate utility.

7 Restart Tomcat.
8 To export the CA certificate of the eDirectory server created in Step 1 to Base64 format,

complete the following steps:
8a In iManager, navigate to Roles and Tasks > NetIQ Certificate Access > User Certificates.
8b Select the created certificate.
8c Click Export and clear the Export private key check box.
8d Select the Export Format as BASE64 from the drop-down menu.
8e Click Next and save the certificate. For example, cacert.b64.

9 Import the CA certificate to a keystore using the following command:
keytool -import -alias <alias name> -file cacert.b64 -keystore
<keystore file> –noprompt
For example,
keytool -import -alias trustedroot -file cacert.b64 -keystore
idmKeystore.ks –noprompt

10 To import the certificate into the trust store of Audit Connector, complete the following steps:
10a Log in to the Sentinel Main interface as an administrator.
10b In the main ESM display, locate the Audit Server.
10c Right-click the Audit Server, then click Edit.
10d In the Security tab, select Strict.

NOTE: By default, it is configured to use Open (insecure) mode to allow initial connectivity.
However, when you are using it in a production environment, ensure that you set the mode
to Strict.

10e Click Import and navigate to the certificate you created in Step 9. For example,
idmKeystore.ks.

10f Click Open and then click Save.
10g Restart Audit Server.

11 Restart Identity Applications.
630 Using SSL for Secure Communication

Updating the SSL Settings for the Application Server
The installer automatically configures the application server that hosts the identity applications and
Identity Reporting to support SSL communication. It creates the connector by default in
server.xml file located by default in the following paths:

Linux: /opt/netiq/idm/apps/tomcat/conf/
Windows: C:\NetIQ\idm\apps\tomcat\conf
<Connector port="https_port"
protocol="org.apache.coyote.http11.Http11NioProtocol" maxThreads="150"
SSLEnabled="true" scheme="https" secure="true" clientAuth="false"
sslProtocol="TLSv1.2" keystoreFile="path_to_keystore_file"
keystorePass="keystore_password" sslEnabledProtocols="TLSv1.2" />
where:

keystoreFile
Specifies the path to the keystore file, for example, idmapps.keystore file. Place the file in
the respective directories based on your platform:
Linux: /opt/netiq/idm/apps/tomcat/conf/
Windows: C:\NetIQ\idm\apps\tomcat\conf

keystorePass
Specifies the password for the idmapps.keystore file.

You must verify that the keystore password and the keystore file path are correct in server.xml
file.

To modify the values supplied by the installation, perform the following actions:

1 Stop Tomcat.
systemctl stop netiq-tomcat.service

2 Navigate to the conf directory for Tomcat, located by default in the following directories:
Linux: /opt/netiq/idm/apps/tomcat/conf/
Windows: C:\NetIQ\idm\apps\tomcat\conf

3 Ensure that you have a keystore file in the conf directory. For example, tomcat.ks on Linux or
idmapps.keystore on Windows.
If you create the keystore file after performing this procedure, ensure that you use the same file
name that you provide in this procedure. For more information, see “Creating a Keystore and
Certificate Signing Request” on page 622.

4 In a text editor, open the server.xml file from the conf directory.
5 Configure SSL port for the Tomcat server.

For example, connector port for SSL is 8543.
Also, update the redirectPort attribute to 8543 and save server.xml.
Using SSL for Secure Communication 631

For example:

<Connector port="https_port"
protocol="org.apache.coyote.http11.Http11NioProtocol" maxThreads="150"
SSLEnabled="true" scheme="https" secure="true" clientAuth="false"
sslProtocol="TLSv1.2" keystoreFile="path_to_keystore_file"
keystorePass="keystore_password" sslEnabledProtocols="TLSv1.2" />

6 Start Tomcat.
systemctl start netiq-tomcat.service

Updating the SSL Settings in the Configuration Utility
On Linux, the installer automatically configures the SSL settings. If required, you can modify the
values using the configuration utility. Ensure that Tomcat is stopped.

systemctl stop netiq-tomcat.service
On Windows, when you install the identity applications and Identity Reporting, you should specify
https for the communication method. For example, Protocol. However, after installation, you can use
the ConfigUpdate utility to ensure that the applications communicate with SSL. For more
information about these parameters, see Configuring the Settings for the Identity Applications in the
NetIQ Identity Manager Setup Guide for Linux or Configuring the Settings for the Identity
Applications in the NetIQ Identity Manager Setup Guide for Windows.

To update the SSL settings:

1 Stop Tomcat.
2 Navigate to the RBPM Configuration utility, located by default in the installation directory for

the identity applications.
Linux: /opt/netiq/idm/apps/configupdate
Windows: C:\NetIQ\idm\apps\UserApplication

3 At the command prompt, use one of the following methods to run the configuration utility:
 Linux: ./configupdate.sh
 Windows: configupdate.bat

NOTE: You might need to wait a few minutes for the utility to start up.

4 (Conditional) If you configure SSL in the configupdate utility, navigate to the Authentication tab
and replace all the references mentioned in the SSO Clients tab.

https://<IP address>:<SSL Port number>
For example,

https://192.168.0.1:8543
5 Click Authentication > Show Advanced Options, and then modify the following settings:

OAuth server TCP port
Specifies the port for the authentication server.
632 Using SSL for Secure Communication

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configureidentityapplicationssettings
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#windowsconfiguresettingsidentityapplications
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#windowsconfiguresettingsidentityapplications
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

OAuth server is using TLS/SSL
Specifies that you want the authentication server to use TLS/SSL protocol for
communication.

Optional TLS/SSL keystore file
Specifies the path and filename of the Java JKS keystore file that contains the
authentication server trust certificate. This parameter applies when the authentication
server uses TLS/SSL protocol, and the trust certificate for the authentication server is not in
the JRE trust store (cacerts).

Optional TLS/SSL keystore password
Specifies the password used to load the keystore file for the TLS/SSL authentication server.

OAuth keystore file
Specifies the path to the Java JKS keystore file you want to use for authentication. The
keystore file must contain at least one public/private key pair.

OAuth keystore file password
Specifies the password used to load the OAuth keystore file.

Key alias of key for use by OAuth
Specifies the name of the public/private key pair in the OSP keystore file that you want to
use to symmetric key generation.

Key password key for use by OAuth
Specifies the password for the private key used by the authentication server.

6 Click SSO Clients.
7 Update all of the URL settings, such as URL link to landing page and OAuth redirect URL.

These settings specify the absolute URL to which the authentication server directs a browser
client when authentication is complete.
Use the following format: https://DNS_name:sslport/path. For example, https:/
nqserver.testsite:8543/landing/com.netiq.test.

8 Save the changes in the configuration utility.

Updating the SSL Settings for Self Service Password Reset
To modify the SSL settings for SSPR, you must be logged in to the application.

1 In a browser, enter the https URL that you specified in the Configuration utility for the Landing
page. For example, https://myserver.host:8543/sspr.

2 Log in using administrator credentials.
3 Click on user on the top-right corner and then click Configuration Editor.
4 Specify the configuration password and click Sign In.
5 Click Settings > Application > Application and ensure that all URLs use the HTTPS protocol and

correct ports.
6 Click Settings > Security > Web Security and ensure that the Redirect Whitelist uses HTTPS

protocol and correct port.
Using SSL for Secure Communication 633

7 Click Settings > Single Sign On (SSO) Client > OAuth and ensure that all URLs use the HTTPS
protocol and correct ports. Also, ensure that the correct certificate exists for the OAUTH Web
Service Certificate. If the certificate is not correct, click Clear and then click Import from Server to
import a new certificate.

8 Click at the top-right corner.

Troubleshooting Tip
After updating the SSL settings for SSPR, if you are not able to access the SSPR landing page, perform
the following actions to update the necessary URLs in the SSPRConfiguration.xml file.

1 Navigate to the SSPRConfiguration.xml file:

/opt/netiq/idm/apps/sspr/sspr_data
2 Update all the URLs with appropriate IP address and port numbers.

https://<IP address>:<SSL Port number>
Example:

https://192.168.0.1:8543
634 Using SSL for Secure Communication

43 43REST Services

The identity applications components incorporate several REST APIs that enable different features
within Identity Applications. The REST APIs and the corresponding documentation are available in
the idmappsdoc.war file. The war is automatically deployed when Identity Applications are
installed.

The APIs are broadly classified into three categories:

Access
This category includes the APIs that are related to administrator settings, user navigation rights,
user permissions, and assignment details.

Admin
This category includes the APIs that are related to logging, caching provisioning display settings,
and administrator assignments.

Catalog
This category includes the APIs that are related to roles, resources, SoDs, and driver services.

For more information about REST services, access idmappsdoc in your identity applications server.

NOTE: Identity applications REST services use OAUTH2 protocol to provide authentication. You can
invoke these APIs using a browser or curl command in scripts to automate the administrative tasks.
For more information, see the REST API documentation.

To access the REST API documentation on the server where identity applications are installed,
specify https://<identity applications servername>:<Port>/idmappsdoc, in the
address bar of your browser. For example: https://192.168.0.1:8543/idmappsdoc

Use Cases for Identity Applications REST API
This topic describes some of the basic use cases that you can accomplish using Identity Applications
REST API.

Before You Begin
Identity Applications provide a complete API accessible via HTTP/HTTPS. See the REST API
documentation for detailed information about the available endpoints. This information will also
help you to make the API calls described in this topic.

Use Cases
The following use case describe some of the basic operations that can be performed by using
Identity Applications REST APIs:
REST Services 635

Role Management
Roles are a key component in role-based provisioning and role-based access control. A role
represents a set of permissions that allows a user to perform defined activities. A role can be
mapped to one or more roles, resources, and entitlements from different connected systems. You
can assign any role to any user in your organization.

The following examples describe some of the basic role management operations. The role and
resource administration user interface of Identity Applications leverages the same APIs to
accomplish the role management tasks.

Access Rights Needed: Role Administrator or Role Manager

Example 1: Create a Role
Build roles depending on your organization’s needs to efficiently provision users with the resources
that they need access to, such as a software application or a security access card.

A role is created with a specific role level. You can associate a role with other roles, map it with
organizational resources, and assign it to users, groups, or containers. Use the following example
endpoint to create a role named PhysicsProfessor1.

Request URL: https://IP:port:8543/IDMProv/rest/catalog/roles

Request Method: POST

Sample Request Payload: {"id": "PhysicsProfessor1", "name":
"PhysicsProfessor1", "localizedNames": [{"locale": "en", "name":
"PhysicsProfessor1" }], "description": "PhysicsProfessor1",
"localizedDescriptions": [{"locale": "en", "desc": "PhysicsProfessor1"}],
"categories": [], "owners": [], "level": 30, "approvalRequired": false,
"revokeRequired": false}
Sample Success Response: Returns a JSON output containing the details of the role.

{"id":
"cn=PhysicsProfessor1,cn=Level30,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn
=User Application Driver,cn=driverset1,o=system", "name":
"PhysicsProfessor1", "description": "PhysicsProfessor1", "categories":
[null], "owners": [null], "level": 30, "approvalRequired": false,
"revokeRequired": false, "localizedNames": [{"locale": "en", "name":
"PhysicsProfessor1" }], "localizedDescriptions": [{"locale": "en",
"desc": "PhysicsProfessor1"}]}

Example 2: Modify a Role
You can modify all role parameters except Level and Subcontainer. You can edit each role separately
or multiple roles at the same time. For example, if you want to set the approval for a role, use the
following example endpoint:

Request URL: https://IP:port:8543/IDMProv/rest/catalog/roles/role

Request Method: PUT
636 REST Services

Sample Request Payload: {"roles": [{"id":
"cn=PhysicsProfessor1,cn=level30,cn=roledefs,cn=roleconfig,cn=appconfig,cn
=user application driver,cn=driverset1,o=system", "name":
"PhysicsProfessor1", "localizedNames": [{ "locale": "en", "name":
"PhysicsProfessor1"}], "description": "PhysicsProfessor1",
"localizedDescriptions": [{ "locale": "en", "desc": "PhysicsProfessor1"
}], "categories": [{"id": "system", "name": "System Roles", "type":
"category" }], "owners": [], "approvalRequired": true,
"approvalIsStandard": true, "approvalApprovers": [{ id":
"cn=kevin,o=data", "name": "kevin klaus", "type": "user", "sequence":
0}]}]}
Sample Success Response: Returns a JSON output containing the details of the updated role.

{"success": "true", "succeeded": {"id":
"cn=PhysicsProfessor1,cn=level30,cn=roledefs,cn=roleconfig,cn=appconfig,cn
=user application driver,cn=driverset1,o=system"}}

Example 3: Delete a Role
You can delete a role when it is no longer required in the system. When you issue the endpoint to
delete a role, Identity Applications set the status of the role to a pending delete status. The Role and
Resource Service driver notes the change of status for the role and removes the corresponding
references and then deletes the role from the Identity Vault.

Request URL: https://IP:port:8543/IDMProv/rest/catalog/roles/role

Request Method: DELETE

Sample Request Payload:

{"roles":[{"id":"cn=PhysicsProfessor1,cn=level30,cn=roledefs,cn=roleconfig
,cn=appconfig,cn=user application
driver,cn=driverset1,o=system","name":"PhysicsProfessor1","description":"P
hysicsProfessor1","level":30,"roleLevel":"Business
Role","rowId":"cn=PhysicsProfessor1,cn=level30,cn=roledefs,cn=roleconfig,c
n=appconfig,cn=user application driver,cn=driverset1,o=system"}]}
Sample Success Response: Returns a JSON output containing the DN of the deleted role.

{"success":"true","succeeded":{"id":"cn=PhysicsProfessor1,cn=level30,cn=ro
ledefs,cn=roleconfig,cn=appconfig,cn=user application
driver,cn=driverset1,o=system"}}

Example 4: Obtain the Details of a Role
A role can be associated with other roles, mapped with organizational resources, and assigned to
users, groups, or containers. To obtain the details of a role, use the following example endpoint:

Request URL: https://IP:port:8543/IDMProv/rest/catalog/roles/role

Request Method: POST

Sample Request Payload: {"roles": {"id":
"cn=PhysicsProfessor1,cn=level30,cn=roledefs,cn=roleconfig,cn=appconfig,cn
=user application driver,cn=driverset1,o=system"}}
{"arraySize":1,"roles":[{"id":"cn=PhysicsProfessor1,cn=level30,cn=roledefs
REST Services 637

,cn=roleconfig,cn=appconfig,cn=user application
driver,cn=driverset1,o=system","name":"PhysicsProfessor1","description":"P
hysicsProfessor1","approvalRequestDef":"cn=Role
Approval,cn=RequestDefs,cn=AppConfig,cn=User Application
Driver,cn=driverset1,o=system","approvalApprovers":[{"id":"cn=kevin,o=data
","name":"kevin
kevin","type":"user","sequence":"0"}],"level":30,"roleLevel":{"name":"Busi
ness
Role","level":30,"cn":"cn=Level30,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,c
n=User Application
Driver,cn=driverset1,o=system"},"subContainer":"","approvalIsStandard":tru
e,"approvalRequired":true,"localizedNames":[{"locale":"en","name":"Physics
Professor1"}],"localizedDescriptions":[{"locale":"en","desc":"PhysicsProfe
ssor1"}]}]}
Sample Success Response: Returns the details of the role.

{"roles": {"id":
"cn=PhysicsProfessor1,cn=level30,cn=roledefs,cn=roleconfig,cn=appconfig,cn
=user application driver,cn=driverset1,o=system"}}
{"arraySize":1,"roles":[{"id":"cn=PhysicsProfessor1,cn=level30,cn=roledefs
,cn=roleconfig,cn=appconfig,cn=user application
driver,cn=driverset1,o=system","name":"PhysicsProfessor1","description":"P
hysicsProfessor1","approvalRequestDef":"cn=Role
Approval,cn=RequestDefs,cn=AppConfig,cn=User Application
Driver,cn=driverset1,o=system","approvalApprovers":[{"id":"cn=kevin,o=data
","name":"kevin
kevin","type":"user","sequence":"0"}],"level":30,"roleLevel":{"name":"Busi
ness
Role","level":30,"cn":"cn=Level30,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,c
n=User Application
Driver,cn=driverset1,o=system"},"subContainer":"","approvalIsStandard":tru
e,"approvalRequired":true,"localizedNames":[{"locale":"en","name":"Physics
Professor1"}],"localizedDescriptions":[{"locale":"en","desc":"PhysicsProfe
ssor1"}]}]}

User Management
A user is an individual in an organization (typically an employee) who requires access to one or more
resources. Users are added to Identity Manager to provision resources to them. When you create a
user, the user is stored as a user object in the Identity Vault. Each user object is associated with
attributes that act as identifiers for the user. For example, a user’s attributes can include user’s first
name, last name, phone numbers, employee number, manager, and e-mail address.

The following examples describe some of the basic user management operations, such as create a
user, delete an existing user, and update the details of an existing user such as change the email ID,
phone number, and manager. You can edit a single user or multiple users at the same time.

Access Rights Needed: Provisioning Administrator

Example 1: Create a User
Use the following example endpoint to create a user.

Request URL: https://IP:port:8543/IDMProv/rest/access/user
638 REST Services

Request Method: POST

Sample Request Payload:

{"container":"o=data","password":"novell","attributes":[{"key":"FirstName"
,"dataType":"String","isRequired":true,"values":["kevin"],"action":"add"},
{"key":"LastName","dataType":"String","isRequired":true,"values":["kevin"]
,"action":"add"},{"key":"CN","dataType":"String","isRequired":false,"value
s":["kevin"],"action":"add"}] }
Sample Success Response: Returns a JSON output containing the details of the user created in the
Identity Vault.

{"dn":"cn=kevin,o=data"}

Example 2: Modify a User
You can modify all user attributes that are configured in the Directory Access Layer. For example, if
you want to change the title of a user, use the following example endpoint:

Request URL: https://IP:port:8543/IDMProv/rest/access/user

Request Method: PUT

Sample Request Payload:

{"dn":"cn=ABlake,o=data","attributes":[{"key":"Title","values":["SE"],"act
ion":"UPDATE"},{"key":"Email","values":[],"action":"UPDATE"},{"key":"Telep
honeNumber","values":[],"action":"UPDATE"},{"key":"manager","values":[],"a
ction":"UPDATE"},{"key":"directReports","values":[],"action":"UPDATE"}]}
Sample Success Response: Returns a JSON output containing all the details of the user.

{"dn":"cn=ABlake,o=data","attributes":[{"name":"Hidden attribute
List","key":"srvprvHideAttributes","hidden":false,"dataType":"String"},{"n
ame":"Email","key":"Email","
hidden":false,"dataType":"String"},{"name":"Manager","key":"manager","hidd
en":false,"dataType":"DN"},{"name":"Direct
Reports","key":"directReports","hidden":false,"dataType":"DN"},{"name":"Fi
rst
Name","key":"FirstName","values":["ABlake"],"hidden":false,"dataType":"Str
ing"},{"name":"Title","key":"Title","values":["SE"],"hidden":false,"dataTy
pe":"String"},{"name":"CN","key":"CN","values":["ABlake"],"hidden":false,"
dataType":"String"},{"name":"Telephone
Number","key":"TelephoneNumber","hidden":false,"dataType":"String"},{"name
":"User
Preferences","key":"srvprvUserPrefsPlus","hidden":false,"dataType":"Stream
"},{"name":"User
REST Services 639

Photo","key":"UserPhoto","hidden":false,"dataType":"Binary"},{"name":"Depa
rtment","key":"Department","hidden":false,"dataType":"String"},{"name":"Qu
ery
List","key":"srvprvQueryList","hidden":false,"dataType":"String"},{"name":
"User
Preferences","key":"srvprvUserPrefs","hidden":false,"dataType":"String"},{
"name":"Preferred
Notification","key":"NotificationPrefs","hidden":false,"dataType":"String"
},{"name":"Last
Name","key":"LastName","values":["ABlake"],"hidden":false,"dataType":"Stri
ng"},{"name":"Dashboard
Preferences","key":"srvprvDashboardPrefs","hidden":false,"dataType":"Strea
m"},{"name":"Region","key":"Location","hidden":false,"dataType":"String"},
{"name":"Group","key":"group","hidden":false,"dataType":"DN"}]}

Example 3: Delete a User
You can delete or make a user inactive if the user is no longer part of the organization. To delete a
user, use the following example endpoint:

Request URL: https://IP:port:8543/IDMProv/rest/access/user

Request Method: DELETE

Sample Request Payload: {"members":[{"dn":"cn=ABlake,o=data"}]}
Sample Success Response: Returns a JSON output containing the DN of the deleted user.

{"success":true,"succeeded":[{"id":"cn=ABlake,o=data","name":"Aston
Blake"}]}

Assign a Role to a User
An administrator can assign a role to a user, group, or a container.

To assign a role to a user, use the following example endpoint:

Access Rights Needed: Role Administrator or Role Manager

Request URL: https://IP:PORT/IDMProv/rest/catalog/roles/role/assignments/assign

Sample Request Method: POST

Sample Request Payload: {"reason": "change of designation", "assignments":
[{"id":
"cn=rolea,cn=level30,cn=roledefs,cn=roleconfig,cn=appconfig,cn=user
application driver,cn=driverset1,o=system", "assignmentToList": [{
"assignedToDn": "cn=kevin,o=data", "subtype": "user"}], "effectiveDate":
"", "expiryDate": ""}]}
Sample Success Response: Returns a JSON output containing a list of role assignments of the user.

{"success":"true","succeeded":{"id":"cn=rolea,cn=level30,cn=roledefs,cn=ro
leconfig,cn=appconfig,cn=user application
driver,cn=driverset1,o=system","assignToUsers":{"dn":"cn=kevin,o=data","na
me":"kevin"}}}
640 REST Services

The role catalog user interface of Identity Applications leverages the same API for assigning a role to
a user.

Request a Role for Yourself
Users can request a role for themselves.

Access Rights Needed: Any end-user who can log in to the Dashboard can access it.

Request URL: https://port:port/IDMProv/rest/access/requests/permissions

Request Method: POST

Sample Request Payload: {"reason":"change of
designation","effDate":"","expDate":"","reqPermissions":[{"id":"cn=Physics
Professor1,cn=level30,cn=roledefs,cn=roleconfig,cn=appconfig,cn=user
application
driver,cn=driverset1,o=system","dn":"cn=PhysicsProfessor1,cn=Level30,cn=Ro
leDefs,cn=RoleConfig,cn=AppConfig,cn=User Application
Driver,cn=driverset1,o=system","name":"PhysicsProfessor1","desc":"PhysicsP
rofessor1","entityType":"role","bulkRequestable":true,"link":"/IDMProv/
rest/access/permissions/
item","multiAssignable":true,"edition":"rbpm.role.1552670228469","isNewFor
m":false,"isExpirationRequired":"false"}]}
Sample Success Response: Returns a JSON output containing the details of the requested role.

{"success":true,"succeeded":[{"id":"cn=PhysicsProfessor1,cn=level30,cn=rol
edefs,cn=roleconfig,cn=appconfig,cn=user application
driver,cn=driverset1,o=system","instanceId":"cn=20190320201141-
05e23fe7133c4014bb4bcefc2e9d980b-
0,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=User Application
Driver,cn=driverset1,o=system"}]}

Task Management
Tasks are the activities assigned to a user who is responsible for granting permissions. The user can
either approve or deny the request for permissions one at a time or perform a bulk action for
multiple simple requests that do not require detailed information.

The following examples describe the basic operations that can be performed by using the REST APIs,
such as getting a task list and filtering tasks based on recipients.

Example 1: Getting the Task List
You can obtain a list of all tasks assigned to a user who is currently logged-in to the application. For
example, when a user navigates to the Tasks page, the Identity Applications invokes the following API
to obtain the task list assigned to that user.

Access Rights Needed: Any end-user who can log in to the Dashboard can access it.

Request URL: https://IP:port:8543/IDMProv/rest/access/tasks/list

Request Method: GET
REST Services 641

Sample Request Payload:

fromIndex=1&size=25&q=*&sortOrder=desc&sortBy=createTime&assignedTo=assign
edTo&recipient=recipientAsMe&expireUnit=weeks&expireWithin=&proxyUser=&ass
ignStatus=&delegatedTasks=false&onlyHelpdeskTask=false&status=
Sample Success Response: Returns a JSON output containing a list of tasks assigned to the logged-in
user (KEVIN).

{
 "total": 2,
 "hasMore": false,
 "tasks": [
 {
 "taskId": "99e28c696cda48fcaff9de2c8fdb74a6",
 "link": "/IDMProv/rest/access/tasks/item",
 "processName": "Add Role To User - Arole",
 "activityName": "Role Request/Revocation Approval",
 "createTime": "1612334004663",
 "recipient": "cn=ABlake,o=data",
 "recipientType": "user",
 "recipientName": "ABlake ABlake",
 "bulkApprovable": true,
 "approvalFormId": "Role Approval Form",
 "addresseetype": "0",
 "addresseeEntityType": "user",
 "addressee": "cn=Kevin,o=data",
 "assignedTo": "Kevin Chester",
 "priority": "2",
 "delegatedTask": "false",
 "assignStatus": "DEFAULT",
 "confirmationNumber": "20210203-13",
 "isNewForm": true
 },
 {
 "taskId": "444b199724bf45f4a415830b27b8bdb0",
 "link": "/IDMProv/rest/access/tasks/item",
 "processName": "Add Role To User - IT_service_desk_role",
 "activityName": "Role Request/Revocation Approval",
 "createTime": "1603355106283",
 "recipient": "cn=Anil,o=data",
 "recipientType": "user",
 "recipientName": "Anil K",
 "bulkApprovable": true,
 "approvalFormId": "Role Approval Form",
 "addresseetype": "0",
642 REST Services

 "addresseeEntityType": "user",
 "addressee": "cn=Kevin,o=data",
 "assignedTo": "Kevin Chester",
 "priority": "2",
 "delegatedTask": "false",
 "assignStatus": "DEFAULT",
 "confirmationNumber": "20201022-14",
 "isNewForm": true
 }
],
 "totalSize": 2,
 "nextIndex": 0,
 "userTypeInTask": true
}

Example 2: Filtering the Task List
The REST API provides you query parameters to filter tasks based on different task attributes, such as
process name, activity name, or recipient. For example, if you want to filter all tasks for a certain
recipient, then use the following sample endpoint:

Access Rights Needed: Any end-user who can log in to the Dashboard can access it. You can use this
API for both the end user and administrator’s tasks.

Request URL: https://IP:port:8543/IDMProv/rest/access/tasks/list

Request Method: GET

Sample Request Payload:

fromIndex=1&size=25&q=ABlake&sortOrder=desc&sortBy=createTime&assignedTo=a
ssignedTo&recipient=recipientAsMe&expireUnit=weeks&expireWithin=&proxyUser
=&assignStatus=&delegatedTasks=false&onlyHelpdeskTask=false&status=
Sample Success Response: Returns a JSON output containing all tasks for the recipient (ABlake) that
are assigned to the logged-in user.

{
 "total": 1,
 "hasMore": false,
 "tasks": [
 {
 "taskId": "99e28c696cda48fcaff9de2c8fdb74a6",
 "link": "/IDMProv/rest/access/tasks/item",
 "processName": "Add Role To User - Arole",
 "activityName": "Role Request/Revocation Approval",
 "createTime": "1612334004663",
 "recipient": "cn=ABlake,o=data",
 "recipientType": "user",
 "recipientName": "Allison Blake",
 "bulkApprovable": true,
 "approvalFormId": "Role Approval Form",
 "addresseetype": "0",
REST Services 643

 "addresseeEntityType": "user",
 "addressee": "cn=Kevin,o=data",
 "assignedTo": "Kevin Chester",
 "priority": "2",
 "delegatedTask": "false",
 "assignStatus": "DEFAULT",
 "confirmationNumber": "20210203-13",
 "isNewForm": true
 }
],
 "totalSize": 1,
 "nextIndex": 0,
 "userTypeInTask": true
}

NOTE: The query parameters provided with the IDMProv/rest/access/tasks/list REST API
can be used to match the legacy /v1/wf/workitems?filter={recipient}={value} RIS API
to obtain the task list for a specific recipient. However, the IDMProv does not provide a dedicated
REST API (similar to the RIS API) and can only filter the recipient’s tasks that assigned to the logged-in
user. For more information on the Identity Applications REST APIs and supported query parameters,
see the REST API documentation.

Example 3: Getting Task List for Others
A Helpdesk user and administrator can view the task list of all users present in the system.

Access Rights Needed: Provisioning Administrator

Request URL: https://IP:port:8543/IDMProv/rest/access/tasks/list/others

Request Method: GET

Sample Request Payload:

fromIndex=1&size=25&q=*&sortOrder=desc&sortBy=createTime&assignedTo=assign
edTo&recipient=recipientAsMe&expireUnit=weeks&expireWithin=&proxyUser=&ass
ignStatus=&status=
Sample Success Response: Returns a JSON output containing the task list for all users.

{
 "total": 3,
 "hasMore": false,
 "tasks": [
 {
 "taskId": "652f7db2851a4b40b15e14fadbd35683",
 "link": "/IDMProv/rest/access/tasks/item",
 "processName": "Add Role To User - IT_service_desk_role",
 "activityName": "Role Request/Revocation Approval",
 "createTime": "1612334700391",
 "recipient": "cn=Maria,o=data",
 "recipientType": "user",
 "recipientName": "Maria Belafonte",
 "bulkApprovable": true,
 "approvalFormId": "Role Approval Form",
644 REST Services

 "addresseetype": "2",
 "addresseeEntityType": "user",
 "addressee": "cn=Kevin,o=data",
 "assignedTo": "Kevin Chester",
 "priority": "2",
 "delegatedTask": "false",
 "assignStatus": "DEFAULT",
 "confirmationNumber": "20210203-20",
 "isNewForm": true
 },
 {
 "taskId": "ea9f8829b508435fbea9448789103349",
 "link": "/IDMProv/rest/access/tasks/item",
 "processName": "Add Role To User - IT_service_desk_role",
 "activityName": "Role Request/Revocation Approval",
 "createTime": "1612334700142",
 "recipient": "cn=ABlake,o=data",
 "recipientType": "user",
 "recipientName": "Allison Blake",
 "bulkApprovable": true,
 "approvalFormId": "Role Approval Form",
 "addresseetype": "2",
 "addresseeEntityType": "user",
 "addressee": "cn=Kevin,o=data",
 "assignedTo": "Kevin Chester",
 "priority": "2",
 "delegatedTask": "false",
 "assignStatus": "DEFAULT",
 "confirmationNumber": "20210203-19",
 "isNewForm": true
 },
 {
 "taskId": "824ed402ca2b45ab84651cfc1f4d28df",
 "link": "/IDMProv/rest/access/tasks/item",
 "processName": "Add Role To User - Arole",
 "activityName": "Role Request/Revocation Approval",
 "createTime": "1612334004355",
 "recipient": "cn=Kevin,o=data",
 "recipientType": "user",
 "recipientName": "Kevin Chester",
 "bulkApprovable": true,
 "approvalFormId": "Role Approval Form",
 "addresseetype": "2",
REST Services 645

 "addresseeEntityType": "user",
 "addressee": "cn=Margo,o=data",
 "assignedTo": "Margo Mackenzie",
 "priority": "2",
 "delegatedTask": "false",
 "assignStatus": "DEFAULT",
 "confirmationNumber": "20210203-11",
 "isNewForm": true
 }
],
 "totalSize": 3,
 "nextIndex": 0,
 "userTypeInTask": false
}

NOTE: The IDMProv/rest/access/tasks/list/others REST API can be used to match the
legacy /v1/wf/workitems RIS API to obtain the task list of all users in the system. For more
information on the Identity Applications REST APIs and supported query parameters, see the REST
API documentation.
646 REST Services

44 44Troubleshooting

The following sections contain information about troubleshooting different components of identity
applications:

 “Using Log Files for Troubleshooting” on page 647
 “Troubleshooting E-Mail Based Approval Issues” on page 664
 “Troubleshooting Self Service Password Reset Issues” on page 665
 “Troubleshooting Authentication Issues” on page 666
 “Troubleshooting General Issues” on page 671
 “Troubleshooting Multi-Threaded Role and Resource Service driver Issues” on page 682
 “Troubleshooting Resource Weightage Related Errors” on page 684
 “Troubleshooting Workflow Related Issues” on page 686

Using Log Files for Troubleshooting
The following sections provide information about how to use log files for troubleshooting problems:

 “Customizing Logging Settings” on page 647
 “Virtual Data Access Logging” on page 648
 “When a Code Map Refresh Is Triggered” on page 651
 “When Multiple Users Try to Authenticate From Different Interfaces” on page 652
 “When an E-Mail Approval Notification is Not Delivered” on page 653
 “When a Role Is Requested” on page 653
 “When a Role Is Listed in Role Catalog” on page 656
 “Schema Fails to Update When Updated Using a User Account That Was Not Used to Create the

Schema” on page 658
 “Checking the Status of Database Schema Validation” on page 660
 “Determining if Liquibase Changeset Has Executed” on page 660
 “When Assigning a Resource to a User That Does Not Exist” on page 662
 “When Checking the Workflow Engine Heartbeat” on page 662
 “catalina.out File Does Not Rotate the Log on Linux” on page 663

Customizing Logging Settings
By default, log entries include only function names and not the complete class path that can make it
difficult to determine which package is generating a particular message. To include the complete
class path in a log message, change all the instances of the following entry in the userapp-
log4j.xml file:
Troubleshooting 647

<param name="ConversionPattern" value="%d [%p] %c{1} %m%n"/>
to

<param name="ConversionPattern" value="%d [%p] %C %m%n"/>
After making this change, the following example trace entry:

2017-08-29 16:05:05,392 DEBUG [RBPM] Entity Definition found: sys-nrf-navitem
looks similar to this:

2017-08-29 16:05:05,392 DEBUG
com.novell.srvprv.impl.vdata.definition.VirtualDataDefinition- [RBPM]
Entity Definition found: sys-nrf-navitem

NOTE: The examples in the subsequent sections contain a complete class path to help you correctly
interpret the meaning of log entries in the catalina.out file.

Virtual Data Access Logging
The Virtual Data Access (VDA) trace is logged to the catalina.out file when you look for an entity
definition.

The VDA issues all of the identity applications LDAP queries for identity data such as entity definition
and attributes on the Identity Vault. First it queries the information from the local cache residing on
the identity applications server. If the information is not found in the local cache, it queries the
Identity Vault. After locating the object, the identity applications read the attributes of the object
and map the attributes with the entity definition in the local cache. When the entity definition
matches, the identity applications send the data to the client. The trace looks similar to the
following:

2017-08-29 16:05:05,389 [http-bio-8443-exec-10] DEBUG
com.novell.idm.nrf.util.CacheUtil- [RBPM] Role object was found in cache: cache-
key-nrf-config
2017-08-29 16:05:05,389 [http-bio-8443-exec-10] DEBUG
com.novell.idm.nrf.util.CacheUtil- [RBPM] Role object RETRIEVED from cache: cache-
key-nrf-config
2017-08-29 16:05:05,392 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM]
VDA.getEntityResultList
2017-08-29 16:05:05,392 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataModel- [RBPM]
VDM.getEntityDefinition(String, Locale):sys-nrf-navitem
2017-08-29 16:05:05,392 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] DAL Definition is null/not
found in cache: VDM_ENTITY_DEFINITION_sys-nrf-navitem, Is object in cache?false
2017-08-29 16:05:05,392 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.definition.VirtualDataDefinition- [RBPM] Entity
Definition found: sys-nrf-navitem
2017-08-29 16:05:05,393 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] DAL definition was found in
cache: VDD_ENTITY_ATTR_sys-nrf-navitem
648 Troubleshooting

2017-08-29 16:05:05,393 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] DAL Definition RETRIEVED from
cache: VDD_ENTITY_ATTR_sys-nrf-navitem
2017-08-29 16:05:05,393 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] PUT new DAL Definition into
cache: VDM_DEFINITION_ATTRIBUTE_LIST_sys-nrf-navitem
2017-08-29 16:05:05,394 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataModel- [RBPM]
VDM.getEntityDefinition(String, Locale):sys-nrf-navitem
2017-08-29 16:05:05,394 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM]
VDA.getEntityResultList query filter: (&(objectClass=nrfNavItem))
2017-08-29 16:05:05,439 [http-bio-8443-exec-10] DEBUG
com.novell.idm.security.ui.UIProvSecurityUtil- [RBPM] not Admin or Compliance tab,
so checkAccess with resource =
cn=WorkDashBoard,cn=NavItems,cn=UIConfig,cn=AppConfig,cn=UserApplication,cn=driver
set,ou=idm,ou=services,o=system
2017-08-29 16:05:05,443 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataModel- [RBPM]
VDM.getEntityDefinition(String, Locale):sys-nrf-user
2017-08-29 16:05:05,444 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.definition.VirtualDataDefinition- [RBPM] Entity
Definition found: sys-nrf-user
2017-08-29 16:05:05,444 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] PUT new DAL Definition into
cache: VDM_ENTITY_DEFINITION_sys-nrf-user
2017-08-29 16:05:05,444 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] VDA.getEntity:
cn=mytestuser,dc=data
2017-08-29 16:05:05,444 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] DAL definition was found in
cache: VDD_ENTITY_ATTR_sys-nrf-user
2017-08-29 16:05:05,444 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] DAL Definition RETRIEVED from
cache: VDD_ENTITY_ATTR_sys-nrf-user
2017-08-29 16:05:05,445 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] PUT new DAL Definition into
cache: VDM_DEFINITION_ATTRIBUTE_LIST_sys-nrf-user
2017-08-29 16:05:05,446 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] VDA.getLdapAttributes
Attributes and values
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Attribute ID: mail
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM]
mytestuser@acme.com
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Attribute ID:
modifyTimestamp
Troubleshooting 649

2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] 20150716124158Z
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Attribute ID:
givenName
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] mytestuser
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Attribute ID:
objectClass
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] inetOrgPerson
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] organizationalPerson
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Person
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] ndsLoginProperties
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Top
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] srvprvEntityAux
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Attribute ID: sn
2017-08-29 16:05:05,478 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] mytestuser
2017-08-29 16:05:05,479 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Attribute ID: cn
2017-08-29 16:05:05,479 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] VDA.checking if
object instance contains the required objectClass per DAL definition: sys-nrf-user
2017-08-29 16:05:05,479 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] VDA.does contain
required (search=true or auxilliary=false) objectClass:inetOrgPerson
2017-08-29 16:05:05,479 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] VDA.object instance
is correct type
2017-08-29 16:05:05,479 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataModel- [RBPM]
VDM.getEntityDefinition(String, Locale):sys-nrf-user
2017-08-29 16:05:05,479 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] DAL Definition RETRIEVED from
cache: VDM_ENTITY_DEFINITION_sys-nrf-user
2017-08-29 16:05:05,479 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] VDA.getEntity:
cn=mytestuser,dc=data
2017-08-29 16:05:05,480 [http-bio-8443-exec-10] DEBUG
650 Troubleshooting

com.novell.srvprv.spi.vdata.util.CacheUtil- [RBPM] DAL Definition RETRIEVED from
cache: VDM_DEFINITION_ATTRIBUTE_LIST_sys-nrf-user
2017-08-29 16:05:05,481 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] VDA.getLdapAttributes
Attributes and values
2017-08-29 16:05:05,481 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] Attribute ID: mail
2017-08-29 16:05:05,481 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM]
mytestuser@acme.com
2017-08-29 16:05:05,481 [http-bio-8443-exec-10] DEBUG
com.novell.srvprv.impl.vdata.model.VirtualDataAccess- [RBPM] 20150716124158Z
When an entity model is changed, you must clear the VDA cache for the changes to take effect. For
example, entity changes occur when a new attributes is added or the existing attributes are modified
or removed.

When a Code Map Refresh Is Triggered
When you initiate a code map refresh cycle, sometimes the refresh cycle is not successful. When this
occurs, the trace prints messages similar to the following:

2016-11-14 12:28:12,045 [Timer-1] INFO com.novell.idm.nrf.service.CodeMapEngine-
[RBPM] Building the Entitlement CODE MAP tables...
2016-11-14 12:28:12,450 [Timer-1] ERROR com.novell.idm.nrf.service.CodeMapEngine-
[RBPM] Unable to complete the CODE MAP refresh for entitlement:
cn=exchangemailbox,cn=ad,cn=dset,ou=idm,o=system.
2016-11-14 12:28:12,454 [Timer-1] INFO com.novell.idm.nrf.service.CodeMapEngine-
[RBPM] CODE MAP refresh on entitlement:
cn=exchangemailbox,cn=ad,cn=dset,ou=idm,o=system, processed, next refresh time:
20161115122812-0500.
2016-11-14 12:28:12,646 [Timer-1] ERROR com.novell.idm.nrf.service.CodeMapEngine-
[RBPM] Unable to complete the CODE MAP refresh for entitlement:
cn=group,cn=ad,cn=dset,ou=idm,o=system.
2016-11-14 12:28:12,835 [Timer-1] ERROR com.novell.idm.nrf.service.CodeMapEngine-
[RBPM] Unable to complete the CODE MAP refresh for entitlement:
cn=useraccount,cn=ad,cn=dset,ou=idm,o=system.
The first entry indicates that code map table refresh action is being initiated. The second entry
specifies that it is unable to refresh the code map table for
cn=exchangemailbox,cn=ad,cn=dset,ou=idm,o=system entitlement. The next line has the
time interval when the entitlement will be refreshed. The next two lines specify that code map table
was not refreshed for cn=group,cn=ad,cn=dset,ou=idm,o=system and
cn=useraccount,cn=ad,cn=dset,ou=idm,o=system entitlements.

The code map refresh process can fail when either connected system or the Identity Vault is not up
at the time of obtaining entitlement information. The trace logs the actual reason for failure.
Troubleshooting 651

When Multiple Users Try to Authenticate From Different
Interfaces
OSP supports the OAuth2 specification and requires an LDAP authentication server. By default,
Identity Manager uses Identity Vault (eDirectory) as an authentication server. When multiple users
try to log in to OSP from different user interfaces of the identity applications, the users are
redirected to the default landing page upon a successful login. When the access token expires within
the login session, OSP validates the token and refreshes the session by generating a new access
token without the user’s involvement. Otherwise, it directs the user to the login page. Such a trace
looks similar to the following:

2016-03-08 06:14:28,509 [http-bio-8443-exec-801] DEBUG
com.netiq.idm.auth.oauth.OAuthFilter- [RBPM] Original request going to RBPM is:
https://www.snet.acme.com:443/IDMProv/
workDashboard.do?apwaLeftNavItem=JSP_MENU_TASKS
2016-03-08 06:15:49,289 [http-bio-8443-exec-816] DEBUG
com.netiq.idm.auth.oauth.OAuthFilter- [RBPM] Original request going to RBPM is:
https://www.snet.acme.com:443/IDMProv/
2016-03-08 06:15:50,334 [http-bio-8443-exec-815] INFO
com.netiq.idm.auth.oauth.OAuthFilter- [RBPM] SSO Header issued by SSO Filter oauth
for User cn=Rob.Andrews,ou=Active,ou=People,o=acme.
2016-03-08 06:15:50,354 [http-bio-8443-exec-815] INFO
com.novell.common.auth.saml.AuthTokenGenerator- [RBPM] SAML Token is issued by the
request from SSO filter oauth
2016-03-08 06:15:50,414 [http-bio-8443-exec-815] INFO
com.novell.pwdmgt.util.PasswordHelper- [RBPM] [Login_Success]
cn=David.Scully,ou=Active,ou=People,o=acme successfully logged in.
2016-03-08 06:17:53,520 [http-bio-8443-exec-819] DEBUG
com.netiq.idm.auth.oauth.OAuthFilter- [RBPM] Original request going to RBPM is:
https://www.snet.acme.com:443/IDMProv/
2016-03-08 06:17:55,194 [http-bio-8443-exec-811] INFO
com.netiq.idm.auth.oauth.OAuthFilter- [RBPM] SSO Header issued by SSO Filter oauth
for User cn=neil.smith,ou=Active,ou=People,o=acme.
2016-03-08 06:17:55,204 [http-bio-8443-exec-811] INFO
com.novell.common.auth.saml.AuthTokenGenerator- [RBPM] SAML Token is issued by the
request from SSO filter oauth
2016-03-08 06:17:55,234 [http-bio-8443-exec-811] INFO
com.novell.pwdmgt.util.PasswordHelper- [RBPM] [Login_Success]
cn=neil.smith,ou=Active,ou=People,o=acme successfully logged in.
2016-03-08 06:20:56,616 [http-bio-8443-exec-813] DEBUG
com.netiq.idm.auth.oauth.OAuthFilter- [RBPM] Original request going to RBPM is:
https://www.snet.acme.com:443/IDMProv/
2016-03-08 06:21:02,129 [http-bio-8443-exec-823] INFO
com.netiq.idm.auth.oauth.OAuthFilter- [RBPM] SSO Header issued by SSO Filter oauth
for User cn=dean.gardner,ou=Active,ou=People,o=acme.
2016-03-08 06:21:02,149 [http-bio-8443-exec-823] INFO
com.novell.common.auth.saml.AuthTokenGenerator- [RBPM] SAML Token is issued by the
652 Troubleshooting

request from SSO filter oauth
2016-03-08 06:21:02,216 [http-bio-8443-exec-823] INFO
com.novell.pwdmgt.util.PasswordHelper- [RBPM] [Login_Success]
cn=dean.gardner,ou=Active,ou=People,o=acme successfully logged in.
2016-03-08 06:24:28,626 [http-bio-8443-exec-830] DEBUG
com.netiq.idm.auth.oauth.OAuthFilter- [RBPM] Original request going to RBPM is:
https://www.snet.acme.com:443/IDMProv/
workDashboard.do?apwaLeftNavItem=JSP_MENU_TASKS
2016-03-08 06:24:40,547 [http-bio-8443-exec-814] WARN
com.netiq.idm.auth.oauth.OAuthManager- [RBPM] Token validation failed. HTTP status
code: 401 Detail message from authentication server: The access token is expired.
This trace indicates that the user is accessing the application after some idle time. The last message
indicates that the token has expired. When the user tried to log in again, the token failed the
validation and as a result the user cannot be logged in.

When an E-Mail Approval Notification is Not Delivered
Sometimes an e-mail notification is not delivered due to errors in the connection between the client
and the mail server. When this occurs, the trace looks similar to the following:

2016-03-08 07:42:41,575 [NOTIFICATION THREAD] ERROR
com.novell.soa.notification.impl.NotificationThread- [RBPM] Error sending email.
com.novell.soa.notification.impl.NotificationException: Error sending email.
 at com.novell.soa.notification.impl.MailEngine.send(MailEngine.java:347)
at
com.novell.soa.notification.impl.NotificationThread.run(NotificationThread.java:96
)
Caused by: javax.mail.MessagingException: 421 Too many errors on this connection--
-closing
 at com.sun.mail.smtp.SMTPTransport.issueCommand(SMTPTransport.java:879)
at com.sun.mail.smtp.SMTPTransport.mailFrom(SMTPTransport.java:599)
 at com.sun.mail.smtp.SMTPTransport.sendMessage(SMTPTransport.java:319)
at com.novell.soa.notification.impl.MailEngine.send(MailEngine.java:344)
 ... 1 more
When an e-mail approval notification is not delivered, the first step should be to look at the logs and
determine whether the connection is proper, mail server is running and accessible. Sometimes the
e-mail fails to comply with e-mail template and fails to deliver.

When a Role Is Requested
When a role is requested in the identity applications, Identity Manager creates the role object in the
Identity Vault. The Role and Resource Service driver checks users for assigning this role, and then
provisions the role to the assigned users. When this occurs, the trace prints messages similar to the
following:
Troubleshooting 653

2016-03-08 08:43:10,660 [pool-2-thread-5] INFO
com.novell.idm.nrf.service.RoleManagerService- [RBPM] [Role_Request] Requested by
cn=David.Scully,ou=Active,ou=People,o=acme, Target DN:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source
DN:cn=PennDOT_Vehicle_Certification,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm
361,ou=services,o=acme, Request DN:cn=20160308084310-
15da49b28ddf4ee1b7d71b4ce220c080-
0,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm361,ou=services,
o=acme, Request Category: 10, Request Status: 0, Original Request Status: 0,
Correlation ID: UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278
2016-03-08 08:43:10,669 [pool-2-thread-5] INFO
com.novell.idm.nrf.service.RoleManagerService- [RBPM] [Role_Request] Requested by
cn=David.Scully,ou=Active,ou=People,o=acme, Target DN:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source DN:cn=PennDOT History and
Photos Users,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm
361,ou=services,o=acme, Request DN:cn=20160308084310-
3c5b20b79cc046bb8267a41cad88a96a-
1,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm361,ou=services,
o=acme, Request Category: 10, Request Status: 0, Original Request Status: 0,
Correlation ID: UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278
2016-03-08 08:43:10,678 [pool-2-thread-5] INFO
com.novell.idm.nrf.service.RoleManagerService- [RBPM] [Role_Request] Requested by
cn=David.Scully,ou=Active,ou=People,o=acme, Target DN:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source DN:cn=JWL Eligible
Agency,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm
361,ou=services,o=acme, Request DN:cn=20160308084310-
fc24ac874aca4fc8b1db0e1d7662d9b3-
2,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm361,ou=services,
o=acme, Request Category: 10, Request Status: 0, Original Request Status: 0,
Correlation ID: UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278
2016-03-08 08:43:10,712 [pool-2-thread-5] INFO
com.novell.idm.nrf.service.RoleManagerService- [RBPM] [Role_Request] Requested by
cn=David.Scully,ou=Active,ou=People,o=acme, Target DN:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source DN:cn=DPW Recipient Address
Eligible Agency,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm
361,ou=services,o=acme, Request DN:cn=20160308084310-
411abb1e8f6f488182c37c8629275245-
3,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm361,ou=services,
o=acme, Request Category: 10, Request Status: 0, Original Request Status: 0,
Correlation ID: UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278
2016-03-08 08:43:10,737 [pool-2-thread-5] INFO
com.novell.idm.nrf.service.RoleManagerService- [RBPM] [Role_Request] Requested by
cn=David.Scully,ou=Active,ou=People,o=acme, Target DN:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source DN:cn=cj-users,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm
361,ou=services,o=acme, Request DN:cn=20160308084310-
211a591e09b04fbbb195fb14d7f4df07-
4,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm361,ou=services,
o=acme, Request Category: 10, Request Status: 0, Original Request Status: 0,
Correlation ID: UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278
2016-03-08 08:43:10,790 [pool-2-thread-5] INFO
com.novell.idm.nrf.service.RoleManagerService- [RBPM] [Role_Request] Requested by
cn=David.Scully,ou=Active,ou=People,o=acme, Target DN:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source DN:cn=JTS Eligible
Agency,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm
361,ou=services,o=acme, Request DN:cn=20160308084310-
654 Troubleshooting

5339699630814a91ac44530a244a02ba-
5,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm361,ou=services,
o=acme, Request Category: 10, Request Status: 0, Original Request Status: 0,
Correlation ID: UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278
2016-03-08 08:43:10,799 [pool-2-thread-5] INFO
com.novell.idm.nrf.service.RoleManagerService- [RBPM] [Role_Request] Requested by
cn=David.Scully,ou=Active,ou=People,o=acme, Target DN:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Source DN:cn=Sentencing Guidelines
Eligible Agency,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm
361,ou=services,o=acme, Request DN:cn=20160308084310-
df2398cf36a042f0ac2241e693efb93c-
6,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,cn=idm361,ou=services,
o=acme, Request Category: 10, Request Status: 0, Original Request Status: 0,
Correlation ID: UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278
2016-03-08 08:43:10,800 [pool-2-thread-5] INFO
com.novell.soa.af.impl.LogEvent- [RBPM] [Role_Request_Submitted] Initiated by
cn=David.Scully,ou=Active,ou=People,o=acme, Process ID:
95f25f5f31224efcab1611fe0fc2471f, Process Name:
cn=newuserinvitation,cn=RequestDefs,cn=AppConfig,cn=UserApplication,cn=idm361,ou=s
ervices,o=acme, Activity: Activity6, Recipient:
CN=Kaitlin.Demore,OU=active,OU=People,O=acme, Correlation
ID:UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278, Submitted
Request:<?xml version="1.0" encoding="UTF-8"?><wfRoleRequest>
<attr name="sod-override-request">
<value>true</value>
</attr>
<attr name="target">
<value>CN=Kaitlin.Demore,OU=active,OU=People,O=acme</value>
</attr>
<attr name="action">
<value>GRANT</value>
</attr>
<attr name="targetType">
<value>USER</value>
</attr>
<attr name="roles">
<value>cn=PennDOT_Vehicle_Certification,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=ser
vices,o=acme</value>
<value>cn=PennDOT History and Photos Users,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=ser
vices,o=acme</value>
<value>cn=JWL Eligible Agency,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=ser
vices,o=acme</value>
<value>cn=DPW Recipient Address Eligible Agency,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=ser
vices,o=acme</value>
<value>cn=cj-users,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=ser
vices,o=acme</value>
<value>cn=JTS Eligible Agency,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=ser
vices,o=acme</value>
<value>cn=Sentencing Guidelines Eligible Agency,cn=Application
Access,cn=Level10,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=ser
vices,o=acme</value>
</attr>
<attr name="correlationId">
<value>UserApp#UserStartWorkflow#082080ec-5b10-498f-b87d-28825ab63278</value>
</attr>
<attr name="nrfRequest">
<value>cn=20160308084310-15da49b28ddf4ee1b7d71b4ce220c080-
Troubleshooting 655

0,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=services,o=acme</
value>
<value>cn=20160308084310-3c5b20b79cc046bb8267a41cad88a96a-
1,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=services,o=acme</
value>
<value>cn=20160308084310-fc24ac874aca4fc8b1db0e1d7662d9b3-
2,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=services,o=acme</
value>
<value>cn=20160308084310-411abb1e8f6f488182c37c8629275245-
3,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=services,o=acme</
value>
<value>cn=20160308084310-211a591e09b04fbbb195fb14d7f4df07-
4,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=services,o=acme</
value>
<value>cn=20160308084310-5339699630814a91ac44530a244a02ba-
5,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=services,o=acme</
value>
<value>cn=20160308084310-df2398cf36a042f0ac2241e693efb93c-
6,cn=Requests,cn=RoleConfig,cn=AppConfig,cn=UserApplication,ou=services,o=acme</
value>
</attr>
</wfRoleRequest>
2016-03-08 08:43:10,880 [pool-2-thread-5] INFO com.novell.soa.af.impl.LogEvent-
[RBPM] [Workflow_Forwarded] Initiated by System, Process ID:
95f25f5f31224efcab1611fe0fc2471f, Process Name:
cn=newuserinvitation,cn=RequestDefs,cn=AppConfig,cn=UserApplication,ou=services,o=
acme:205, Activity: Activity6, Recipient:
cn=Nancy.Wilmer,ou=Active,ou=People,o=acme

When a Role Is Listed in Role Catalog
When you issue a request to display a role in Role Catalog, the identity applications obtain the role
object from the cache and then display the role information in Role Catalog.

2017-09-22 09:28:26,495 [DEBUG] RuntimeAuthorizationManagerService [RBPM]
Authorized result for:
cn=roleAdmin,cn=System,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=User
Application Driver,cn=driverset1,o=system:role:read=true
2017-09-22 09:28:26,495 [DEBUG] CacheUtil [RBPM] Role object was found in cache:
cache-key-nrf-config
2017-09-22 09:28:26,495 [DEBUG] CacheUtil [RBPM] Role object RETRIEVED from cache:
cache-key-nrf-config
2017-09-22 09:28:26,509 [DEBUG] RuntimeAuthDelegatorBase [RBPM] Time to calculate
sel service access rights: 0milliseconds.
2017-09-22 09:28:26,509 [DEBUG] RuntimeAuthorizationManagerService [RBPM]
Authorized result for:
cn=secAdmin,cn=System,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=User
Application Driver,cn=driverset1,o=system:role:read=true
2017-09-22 09:28:26,510 [DEBUG] CacheUtil [RBPM] Role object was found in cache:
cache-key-nrf-config
2017-09-22 09:28:26,510 [DEBUG] CacheUtil [RBPM] Role object RETRIEVED from cache:
cache-key-nrf-config
2017-09-22 09:28:26,522 [DEBUG] RuntimeAuthDelegatorBase [RBPM] Time to calculate
sel service access rights: 0milliseconds.
2017-09-22 09:28:26,522 [DEBUG] RuntimeAuthorizationManagerService [RBPM]
656 Troubleshooting

Authorized result for:
cn=resourceManager,cn=System,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=
User Application Driver,cn=driverset1,o=system:role:read=true
2017-09-22 09:28:26,522 [DEBUG] CacheUtil [RBPM] Role object was found in cache:
cache-key-nrf-config
2017-09-22 09:28:26,522 [DEBUG] CacheUtil [RBPM] Role object RETRIEVED from cache:
cache-key-nrf-config
2017-09-22 09:28:26,533 [DEBUG] RuntimeAuthDelegatorBase [RBPM] Time to calculate
sel service access rights: 0milliseconds.
2017-09-22 09:28:26,533 [DEBUG] RuntimeAuthorizationManagerService [RBPM]
Authorized result for:
cn=roleManager,cn=System,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=User
Application Driver,cn=driverset1,o=system:role:read=true
2017-09-22 09:28:26,534 [DEBUG] CacheUtil [RBPM] Role object was found in cache:
cache-key-nrf-config
2017-09-22 09:28:26,534 [DEBUG] CacheUtil [RBPM] Role object RETRIEVED from cache:
cache-key-nrf-config
2017-09-22 09:28:26,545 [DEBUG] RuntimeAuthDelegatorBase [RBPM] Time to calculate
sel service access rights: 0milliseconds.
2017-09-22 09:28:26,545 [DEBUG] RuntimeAuthorizationManagerService [RBPM]
Authorized result for:
cn=resourceAdmin,cn=System,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=Us
er Application Driver,cn=driverset1,o=system:role:read=true
2017-09-22 09:28:26,545 [DEBUG] CacheUtil [RBPM] Role object was found in cache:
cache-key-nrf-config
2017-09-22 09:28:26,545 [DEBUG] CacheUtil [RBPM] Role object RETRIEVED from cache:
cache-key-nrf-config
2017-09-22 09:28:26,557 [DEBUG] RuntimeAuthDelegatorBase [RBPM] Time to calculate
sel service access rights: 0milliseconds.
2017-09-22 09:28:26,557 [DEBUG] RuntimeAuthorizationManagerService [RBPM]
Authorized result for:
cn=provAdmin,cn=System,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=User
Application Driver,cn=driverset1,o=system:role:read=true
2017-09-22 09:28:26,557 [DEBUG] CacheUtil [RBPM] Role object was found in cache:
cache-key-nrf-config
2017-09-22 09:28:26,557 [DEBUG] CacheUtil [RBPM] Role object RETRIEVED from cache:
cache-key-nrf-config
2017-09-22 09:28:26,567 [DEBUG] RuntimeAuthDelegatorBase [RBPM] Time to calculate
sel service access rights: 0milliseconds.
2017-09-22 09:28:26,567 [DEBUG] RuntimeAuthorizationManagerService [RBPM]
Authorized result for:
cn=reportAdmin,cn=System,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=User
Application Driver,cn=driverset1,o=system:role:read=true
2017-09-22 09:28:26,567 [DEBUG] CacheUtil [RBPM] Role object was found in cache:
cache-key-nrf-config
2017-09-22 09:28:26,567 [DEBUG] CacheUtil [RBPM] Role object RETRIEVED from cache:
cache-key-nrf-config
Troubleshooting 657

2017-09-22 09:28:26,582 [DEBUG] RuntimeAuthDelegatorBase [RBPM] Time to calculate
sel service access rights: 0milliseconds.
2017-09-22 09:28:26,582 [DEBUG] RuntimeAuthorizationManagerService [RBPM]
Authorized result for:
cn=provManager,cn=System,cn=Level20,cn=RoleDefs,cn=RoleConfig,cn=AppConfig,cn=User
Application Driver,cn=driverset1,o=system:role:read=true
2017-09-22 09:28:26,582 [DEBUG] JuiceHelper [RBPM] Kicked out of main loop with:
openR=-1 closeR=-1 i=0 idx=-1
2017-09-22 09:28:26,582 [DEBUG] JuiceHelper [RBPM] Setting RsMeta from cache:
METAlistRoles_defaultDescription&*~Name&*~enStatus_cn=uaadmin,ou=sa,o=data
2017-09-22 09:28:26,583 [DEBUG] VirtualDataModel [RBPM]
VDM.getEntityDefinition(String, Locale):sys-nrf-role
2017-09-22 09:28:26,583 [DEBUG] CacheUtil [RBPM] DAL Definition RETRIEVED from
cache: VDM_ENTITY_DEFINITION_sys-nrf-role
2017-09-22 09:28:26,583 [DEBUG] CacheUtil [RBPM] DAL Definition RETRIEVED from
cache: VDM_DEFINITION_ATTRIBUTE_LIST_sys-nrf-role
2017-09-22 09:28:26,583 [DEBUG] CacheUtil [RBPM] Role object was found in cache:
cache-key-nrf-config
2017-09-22 09:28:26,583 [DEBUG] CacheUtil [RBPM] Role object RETRIEVED from cache:
cache-key-nrf-config
The first log entry is the request to find the role object from the cache. The second log entry is the
response that is returned, and it indicates that the role object was found. The object is then read and
displayed in Role Catalog.

Schema Fails to Update When Updated Using a User Account
That Was Not Used to Create the Schema
If Identity Applications use a different user account to update the schema than the account that was
used to initially create it, the schema fails to update. It reports the following error in the
catalina.out file:

2018-06-11 15:47:37,956 [localhost-startStop-1] INFO liquibase- liquibase:
Clearing database change log checksums
2018-06-11 15:47:39,051 [localhost-startStop-1] ERROR
com.sssw.fw.servlet.EboBootServlet- [RBPM] Runtime exception initializing.
com.netiq.persist.PersistenceException: ORA-01031: insufficient privileges
 at
com.novell.soa.persist.DatabaseSchemaUpdate.unappliedChangeSets(DatabaseSc
hemaUpdate.java:365)
 at
com.novell.soa.persist.DatabaseSchemaUpdate.validateDatabaseSchema(Databas
eSchemaUpdate.java:229)
 at
com.sssw.fw.servlet.EboBootServlet.init(EboBootServlet.java:98)
 at
com.sssw.portal.servlet.EboPortalBootServlet.init(EboPortalBootServlet.jav
a:59)
 at
javax.servlet.GenericServlet.init(GenericServlet.java:158)
658 Troubleshooting

 at
org.apache.catalina.core.StandardWrapper.initServlet(StandardWrapper.java:
1284)
 at
org.apache.catalina.core.StandardWrapper.loadServlet(StandardWrapper.java:
1197)
 at
org.apache.catalina.core.StandardWrapper.load(StandardWrapper.java:1087)
 at
org.apache.catalina.core.StandardContext.loadOnStartup(StandardContext.jav
a:5229)
 at
org.apache.catalina.core.StandardContext.startInternal(StandardContext.jav
a:5516)
 at
org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150)
 at
org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java
:901)
 at
org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:877)
 at
org.apache.catalina.core.StandardHost.addChild(StandardHost.java:649)
 at
org.apache.catalina.startup.HostConfig.deployWAR(HostConfig.java:1083)
 at
org.apache.catalina.startup.HostConfig$DeployWar.run(HostConfig.java:1880)
 at
java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
 at java.util.concurrent.FutureTask.run(FutureTask.java:266)
 at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:
1142)
 at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java
:617)
 at java.lang.Thread.run(Thread.java:745)
Caused by: liquibase.exception.LockException:
liquibase.exception.DatabaseException: Error executing SQL CREATE TABLE
ora_user_id.DATABASECHANGELOGLOCK (ID NUMBER(10) NOT NULL, LOCKED NUMBER(1)
NOT NULL, LOCKGRANTED TIMESTAMP, LOCKEDBY NVARCHAR2(255), CONSTRAINT
PK_DATABASECHANGELOGLOCK PRIMARY KEY (ID)): ORA-01031: insufficient
privileges
 at
liquibase.lockservice.StandardLockService.acquireLock(StandardLockService.
java:209)
 at
liquibase.lockservice.StandardLockService.waitForLock(StandardLockService.
java:148)
 at liquibase.Liquibase.clearCheckSums(Liquibase.java:886)
 at
com.novell.soa.persist.DatabaseSchemaUpdate.unappliedChangeSets(DatabaseSc
hemaUpdate.java:340)
 ... 20 more
Troubleshooting 659

To resolve this issue, set the following Java system properties for Liquibase in the setenv startup
script at /opt/netiq/idm/apps/tomcat/bin/ or c:\NetIQ\idm\apps\tomcat\bin:
 -Dliquibase.schemaName={schema_owner_id}
 -Dliquibase.catalogName={schema_owner_id}

Checking the Status of Database Schema Validation
The identity applications database schema is validated when the administrator starts the identity
applications server. The trace prints messages similar to the following:

2017-09-22 09:39:41,363 [INFO] DatabaseSchemaUpdate [RBPM] Connecting to PostgreSQL
version 9.4.10.
2017-09-22 09:39:41,375 [INFO] DatabaseSchemaUpdate [RBPM] Checking for database
schema
2017-09-22 09:39:41,401 [INFO] DatabaseSchemaUpdate [RBPM] Checking schema for
table af_resource_request_status....found
2017-09-22 09:39:41,422 [INFO] DatabaseSchemaUpdate [RBPM] Checking schema for
table af_role_request_status....found
2017-09-22 09:39:41,481 [INFO] DatabaseSchemaUpdate [RBPM] Checking schema for
table afactivity....found
2017-09-22 09:39:41,501 [INFO] DatabaseSchemaUpdate [RBPM] Checking schema for
table afactivitytimertasks....found
2017-09-22 09:39:41,576 [INFO] DatabaseSchemaUpdate [RBPM] Checking schema for
table afbranch....found
2017-09-22 09:39:41,612 [INFO] DatabaseSchemaUpdate [RBPM] Checking schema for
table afcomment....found
2017-09-22 09:39:41,651 [INFO] DatabaseSchemaUpdate [RBPM] Checking schema for
table afdocument....missing
The first log entry indicates that a connection to the database is initiated. The second log entry
specifies that the database schema is being validated. The subsequent entries specify that the
presence of database tables is being checked. The last trace entry indicates that afdocument table
is not found.

Determining if Liquibase Changeset Has Executed
The Liquibase framework validates the database schema against the changelog.xml file, which
contains the database changes. Liquibase first verifies whether all the tables are present in the
schema. If any of the changesets was not executed, it indicates incomplete schema update and also
identifies the changesets. Any schema changes made in the identity applications are updated in the
database when the User Application server is started and com.netiq.idm.create-db-on-
startup flag is set to true in the ism-configuration properties file located by default in the /
netiq/idm/apps/tomcat/conf directory. The database compares the existing schema with
target schema and then updates the database schema. If the flag is not set, it reports the following
message:

One or more required tables are missing. Check log for messages indicating
tables that were not found.
660 Troubleshooting

When Liquibase validates the database schema, it generates log entries similar to the following:

2017-09-22 09:39:47,693 [INFO] liquibase liquibase: Reading from
public.databasechangelog
2017-09-22 09:39:49,133 [INFO] liquibase liquibase: Reading from
public.databasechangelog
2017-09-22 09:39:49,427 [INFO] liquibase liquibase: Reading from
public.databasechangelog
2017-09-22 09:39:49,551 [INFO] liquibase liquibase: Reading from
public.databasechangelog
2017-09-22 09:39:50,095 [INFO] liquibase liquibase: Reading from
public.databasechangelog
2017-09-22 09:39:50,403 [INFO] liquibase liquibase: Reading from
public.databasechangelog
2017-09-22 09:39:50,514 [ERROR] EboPortalBootServlet [RBPM] Unexpected Runtime
Exception initializing servlet
java.lang.RuntimeException: com.netiq.common.i18n.LocalizedRuntimeException:
Schema is invalid. One or more required tables are missing. Check log for messages
indicating tables that were not found.
 at com.sssw.fw.servlet.EboBootServlet.init(EboBootServlet.java:115)
 at
com.sssw.portal.servlet.EboPortalBootServlet.init(EboPortalBootServlet.java:62)
 at javax.servlet.GenericServlet.init(GenericServlet.java:158)
 at
org.apache.catalina.core.StandardWrapper.initServlet(StandardWrapper.java:1183)
 at
org.apache.catalina.core.StandardWrapper.loadServlet(StandardWrapper.java:1099)
 at org.apache.catalina.core.StandardWrapper.load(StandardWrapper.java:989)
 at
org.apache.catalina.core.StandardContext.loadOnStartup(StandardContext.java:4913)
 at
org.apache.catalina.core.StandardContext.startInternal(StandardContext.java:5223)
 at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150)
 at
org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:752)
 at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:728)
 at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:734)
 at org.apache.catalina.startup.HostConfig.deployWAR(HostConfig.java:952)
 at
org.apache.catalina.startup.HostConfig$DeployWar.run(HostConfig.java:1823)
 at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
 at java.util.concurrent.FutureTask.run(FutureTask.java:266)
 at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
 at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
 at java.lang.Thread.run(Thread.java:745)
Caused by: com.netiq.common.i18n.LocalizedRuntimeException: Schema is invalid. One
or more required tables are missing. Check log for messages indicating tables that
were not found.
 at
com.novell.soa.persist.DatabaseSchemaUpdate.validateDatabaseSchema(DatabaseSchemaU
pdate.java:245)
 at com.sssw.fw.servlet.EboBootServlet.init(EboBootServlet.java:99) ... 18
more
Sep 22, 2017 9:39:50 AM org.apache.catalina.core.StandardContext loadOnStartup
SEVERE: Servlet [PortalAggregator] in web application [/IDMProv] threw load()
exception java.lang.NullPointerException at
com.sssw.portal.manager.EboPortalManager.<init>(EboPortalManager.java:179)
Troubleshooting 661

You must restart the application server to apply the changes. You cannot bring up the identity
applications until the schema validation succeeds.

When Assigning a Resource to a User That Does Not Exist
If a user no longer exists in the system, and a request is issued to assign a resource to that user, the
trace records messages similar to the following:

2017-09-22 11:50:53,605 [DEBUG] DataItemEvaluator [RBPM] result: Add Resource To
User - Laptop
2017-09-22 11:50:53,607 [ERROR] VirtualDataAccess [RBPM] Error occurred checking
the object type for: cn=rocio,ou=users,o=data
javax.naming.NameNotFoundException: [LDAP: error code 32 - NDS error: no such entry
(-601)]; remaining name 'cn=rocio,ou=users,o=data'
 at com.sun.jndi.ldap.LdapCtx.mapErrorCode(LdapCtx.java:3161)
 at com.sun.jndi.ldap.LdapCtx.processReturnCode(LdapCtx.java:3082)
 at com.sun.jndi.ldap.LdapCtx.processReturnCode(LdapCtx.java:2888)
 at com.sun.jndi.ldap.LdapCtx.c_getAttributes(LdapCtx.java:1329)
 at
com.sun.jndi.toolkit.ctx.ComponentDirContext.p_getAttributes(ComponentDirContext.j
ava:235)
 at
com.sun.jndi.toolkit.ctx.PartialCompositeDirContext.getAttributes(PartialComposite
DirContext.java:141)
 at
com.sun.jndi.toolkit.ctx.PartialCompositeDirContext.getAttributes(PartialComposite
DirContext.java:129)
 at sun.reflect.GeneratedMethodAccessor432.invoke(Unknown Source)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
43)
 at java.lang.reflect.Method.invoke(Method.java:498)
 at
com.sssw.fw.directory.realm.impl.jndildap.EboLdapContextProxyHandler.invokeMethod(
EboLdapContextProxyHandler.java:145)
 at
com.sssw.fw.directory.realm.impl.jndildap.EboLdapContextProxyHandler.invoke(EboLda
pContextProxyHandler.java:86)
 at com.sun.proxy.$Proxy155.getAttributes(Unknown Source)
 at
com.novell.srvprv.impl.vdata.model.VirtualDataAccess.getObjectType(VirtualDataAcce
ss.java:3943)
 at
com.novell.srvprv.impl.vdata.model.VirtualDataAccess.getObjectType(VirtualDataAcce
ss.java:4003)
 at
com.novell.srvprv.impl.vdata.model.VirtualDataModel.getObjectType(VirtualDataModel
.java:1405)
 at com.novell.soa.util.LdapUtil.isTypeOf(LdapUtil.java:109)
 at com.novell.soa.util.LdapUtil.isUser(LdapUtil.java:89)
The trace displays object unavailable errors only when errors occur while retrieving an object.

When Checking the Workflow Engine Heartbeat
The following are example entries that are logged when a user issues a request to check the state of
the workflow engine.
662 Troubleshooting

2017-09-22 11:53:33,646 [TRACE] EngineStateDAO [RBPM] Updating heartbeat of Engine
Engine State: engineId = ENGINE, heartBeat=
2017-09-22 11:52:33.637, startTime= 2017-09-22 09:55:31.532, shutdownTime= 2017-
09-22 09:52:58.773, engineState= Running
2017-09-22 11:53:33,647 [DEBUG] HibernateUtil [RBPM] Beginning new transaction for
caller com.novell.soa.af.impl.persist.EngineStateDAO:141
2017-09-22 11:53:33,652 [TRACE] EngineStateDAO [RBPM] Engine heartbeat updated
successfully: Engine State: engineId = ENGINE, heartBeat= 2017-09-22 11:53:33.651,
startTime= 2017-09-22 09:55:31.532, shutdownTime= 2017-09-22 09:52:58.773,
engineState= Running
2017-09-22 11:53:33,660 [DEBUG] HibernateUtil [RBPM] Committed transaction for
caller com.novell.soa.af.impl.persist.EngineStateDAO:162
2017-09-22 11:53:33,660 [DEBUG] EngineImpl [RBPM] Heartbeat updated for engine:
ENGINE, time: 2017-09-22 11:53:33.651
2017-09-22 11:54:03,017 [DEBUG] HibernateUtil [RBPM] Beginning new transaction for
caller com.novell.soa.af.impl.timers.PendingActivityTimerTask:94
2017-09-22 11:54:03,018 [DEBUG] HibernateUtil [RBPM] Committed transaction for
caller com.novell.soa.af.impl.timers.PendingActivityTimerTask:94
If the workflow engine is not properly shutdown due to some reason, the identity applications
assume that the engine is still running when you start it the next time. The following example traces
are logged to indicate this situation.

2017-09-22 12:01:43,384 [WARN] EngineImpl [RBPM] Duplicate engine id detected. This
engine may not have been shutdown cleanly or another engine is running with engine-
id: ENGINE. Waiting 60000 ms for heartbeat to timeout.
2017-09-22 12:01:43,480 [INFO] EngineImpl [RBPM] Workflow Engine setState:
[RUNNING]

catalina.out File Does Not Rotate the Log on Linux
On Linux, logrotate utility handles the log rotation of catalina.out file. The log rotation
configuration is stored in the netiq-tomcat file in /etc/logrotate.d directory. If logrotate is
not scheduled to run daily, the logs are not rotated. NetIQ recommends you to rotate the logs at
12:00 a.m (midnight).

If SELinux is configured to run in Enforcing mode, logrotate might not work as expected.

Workaround: Run the following command:

semanage fcontext -a -t var_log_t '/opt/netiq/idm/apps/tomcat/logs(/.*)?'
restorecon -Frvv /opt/netiq/idm/apps/tomcat/logs
Troubleshooting 663

Troubleshooting E-Mail Based Approval Issues
Empty E-Mail Based Approval Token in the Provisioning Request
Mail
This can occur if E-Mail Based Approval is not enabled. For example, the feature is accidentally
disabled while using the new e-mail templates in PRDs.

Check the configuration in the Identity Manager Dashboard and enable the feature.

User Application is Not Acting on E-Mails
Check whether the incoming mailbox is connected and reachable from the server where it is
deployed. For more information, refer to the catalina.out logs.

Approve or Deny Link in E-Mail is Not Working
This can occur in the following cases:

 The e-mail client is not configured.
 Default application is not selected to send e-mails.

Approve/Deny links Missing from E-Mail after configuring E-Mail
Based Approval
This occurs if the e-mail templates are not properly configured on the workflows.

Verifying if E-Mail Based Approval Starts Properly
If you are enabling the feature from the new Dashboard, a success message appears indicating that
the feature has started properly without errors. Messages similar to the following are logged in the
catalina.out file:

INFO com.novell.soa.notification.impl.EmailReceiverEngine- [RBPM]
Successfully started persistent JMS notification system for email based
approval EmailReceiver Notification Thread]
INFO com.novell.soa.notification.impl.EmailReceiverThread- [RBPM] Starting
asynchronous notification system
INFO com.novell.soa.notification.impl.EmailReceiverEngine- [RBPM] Mailbox
service for incoming mail started successfully without any warning
INFO com.novell.soa.notification.impl.EmailReceiverEngine- [RBPM] Email
based approval token cleanup service started successfully.
In case the feature is accidentally turned off, check the configuration in the Identity Manager
Dashboard. You can also refer to the log for detailed information for each component of this feature
such as JMS, incoming mail box connection, and cleanup service.
664 Troubleshooting

When is Server Restart Needed
On a cluster setup, if you made changes to the incoming mailbox properties or turned off E-Mail
Based Approval, you may require to restart the cluster nodes other than the active node.

If you are continuously getting errors while trying to connect to the mailbox and the issue persists
for hours, verify the connectivity between the mailbox and the host.

E-Mail Based Approval Token is Empty in the Provisioning
Request E-Mail
E-Mail Based Approval is accidentally disabled while using the new e-mail templates in PRDs.

Troubleshooting Self Service Password Reset Issues
No Redirection to Challenge-Response Page When SSPR is
Installed in a Distributed Environment That Supports http and
https Communication
Issue: If identity applications or OSP use HTTPS communication and SSPR running on separate
computer uses a non-SSL (HTTP) communication, SSPR does not display the challenge-response
page. This occurs because the browser blocks the mixed-content access.

Workaround: Enable the mixed-content access option in your browser.

Unable to Unlock Account through SSPR
Issue: This issue occurs if NMAS or eDirectory Challenge Responses are stored only in eDirectory and
not in SSPR.

Workaround: Force the users to setup the challenge questions in SSPR as follows:

1 Go to SSPR Configuration Editor.
2 Click Modules > Enabled > Authenticated > Setup Security Questions > Force Response.

SSPR Reports Error 5027 When Attempting to Access
Configuration Manager through Internet Explorer
Issue: In a new installation or upgraded setup of Self Service Password Reset 4.x, when you
successfully log in to the SSPR portal, accessing the Configuration Manager or Configuration Editor
displays the following error:

2016-11-01T15:54:00Z, ERROR, http.PwmResponse, {21,uaadmin} 5027
ERROR_UNAUTHORIZED (Internet Explorer version is not supported for this
function. Please use Internet Explorer 11 or higher or another web
browser.) [151.155.213.181]
Troubleshooting 665

Workaround: Disable Compatibility View in Internet Explorer for the domain that hosts your SSPR
web application.

SSPR Reports Out of Order Page Request Error
Issue: This issue occurs when you click the Back button from the SSPR page. SSPR displays an
incorrect sequence message in the SSPR error log similar to the following:

ERROR, password.pwm.servlet.TopServlet, 5035
ERROR_INCORRECT_REQUEST_SEQUENCE (expectedPageID=3, submittedPageID=4,
url=<some sspr url>
Workaround: Disable the Back button detection from SSPR Configuration Manager > Settings >
Security > Web Security.

NOTE: Changing this setting has no effect on end users.

Pressing Enter Button in SSPR’s People Search Displays Locale
Screen on Internet Explorer
Issue: If you press Enter in People Search on Internet Explorer 11 browser, the Locale screen
appears.

This issue is not reported on other browsers such as Microsoft Edge, Mozilla Firefox, and Google
Chrome.

Workaround: Perform one of the following actions:

 The search bar searches as you type. Therefore, you do not require to press Enter to search.
 Use a different browser.
 Close the locale prompt.

Troubleshooting Authentication Issues
OSP Login Request Example by Using REST Endpoints
The Identity Applications server supports APIs that expose all OAuth functionalities as endpoints for
obtaining access tokens, and so forth.

The following is an example of the authentication sequence:

Browser requests Identity Applications Landing Page
GET http://<ip address/DNS name of identity applications>:8180/idmdash/
Result: 200 text/html

The query includes a bunch of requests to obtain stylesheet (css), JavaScript, and so on.
666 Troubleshooting

Landing Page makes “who am I” REST call to the Identity Applications server
The Landing Page makes a request to Identity Applications with no authorization header as the
landing page has no access token.

GET http://prvdvnam850.namdom025.lab:8180/IDMProv/rest/access/users/
fullName
Authorization header: none

Result: 401 error

The Landing Page causes browser to go to OSP grant URL
As Identity Applications do not yet have an OAuth access token, it responds with a 401 error. This
causes the Landing page to go to OSP to get an access token. Note that there are no OSP cookies yet.

GET
http://<ipaddress>:8180/osp/a/idm/auth/oauth2/
grant?response_type=token&redirect_uri=http:// <ipaddress>:8180/landing/
com.netiq.ualanding.index/
oauth.html&client_id=ualanding&state=spiffystate0.7645864660083901
Result: 200 text/html (The resulting page is the OSP login page)

The query includes a bunch of requests to obtain stylesheet (css) and favicon.

The result of the request to OSP (from the browser's point-of-view) is that a page is displayed with
entry fields for the user's name and password. There are also cookies returned from OSP with the
login page that will be sent by the browser in subsequent requests.

Browser POSTs user credentials from the login page
POST http://<ipaddress>:8180/osp/a/idm/auth/app/login?acAuthCardId=np-
contract-{%24default-card}&sid=1
Cookies: JSESSIONID 95...79 End Of Session

x-oidp-oauth2-1449687159117—1013136951 "Wtf...zx0~" End Of Session

x-oidp-session59303d34382c2d310 200-GX0...97kISI~ End Of Session

Result: 302 Redirect to OSP implicitcontinue

GET http://<ipaddress>:8180/osp/a/idm/auth/oauth2/
implicitcontinue?privateId=bb5b94976815f348307b&client_id=ualanding&irdpkg
=1449687159117--1013136951
Cookies: JSESSIONID 95...79 End Of Session

x-oidp-oauth2-1449687159117--1013136951 "Wtf...zx0~" End Of Session

x-oidp-session59303d34382c2d310 200-PP+...RzX0F6 End Of Session

Result: 302 Redirect to Identity Manager landing OAuth result page

After an internal redirect between the OSP pages, the result is a redirect to the redirect_uri
parameter that was originally sent with the initial request to OSP.
Troubleshooting 667

Browser redirects to the Landing OAuth Result Page
GET http://<ipaddress>:8180/idmdash/oauth.html
Cookies: x-oidp-session59303d34382c2d310 200-AZ...b/HQ~~ End Of Session

Result: 200

A fragment containing the access token (see section 4.2.2 of RFC 6749) is appended to the URL. The
Landing page extracts the OAuth access token from this fragment. You cannot see this fragment
because HTTP does not capture it.

Landing Page again makes the “who am I” request
The Landing Page again makes the “who am I” request, but this time with an authorization header as
the Landing page has an access token.

GET http://<ipaddress>:8180/IDMProv/rest/access/users/fullName
Authorization header: Authorization bearer eHw...343

Result: 200 {"dn":"cn=mary,ou=users,o=data","name":"Mary Contrary"}

Managing the Size of oidPInstancedata Attribute
OSP creates oidpInstanceData attribute (Case Ignore, Single Valued String) for a user when the user
logs in to the identity applications for the first time through OSP. OSP modifies this attribute each
time a user logs in and out of the identity applications.

 When a user is logged in, OSP adds a login entry to the attribute in base64 encoded and
encrypted value format.

 When the user logs out, OSP removes or modifies the login entry. When the user logs in again,
OSP updates the entry. When the user logs out, OSP removes that login entry from the
attribute.

 When the user logs in again, OSP updates the entry. When the user logs out, OSP removes that
login entry from the attribute.

When the user closes the browser instead of logging out, OSP does not remove the login entry
because closing the browser does not involve a logout action. If the user continues to log in without
logging out, the size of the entry grows large. This prevents OSP from updating the attribute and
causes login failure for the user.

Note that a logout operation can only remove the entry for the login it is mapped or matched to. For
example, if a user logs in three times and does not log out for these logins, and if the user logs in and
out one more time, OSP removes this login entry.
668 Troubleshooting

https://tools.ietf.org/html/rfc6749

If a user is not required to log out from the identity applications, perform one of the following
actions to manage the size of the oidPInstancedata attribute:

 Shorten the validity period of the login entry for the user. This allows OSP to automatically
remove the login entry for the user. The validity period is controlled by Refresh token lifetime
(hours) setting for OSP in the ConfigUpdate utility. The default value to store a login entry is 48
hours (2 days). After making the change in the ConfigUpdate utility, restart the Tomcat server
where OSP is deployed.

 Periodically delete the oidpInstanceData attribute from the user by using an LDAP based tool
(iManager, jXplore, Apache Studio, and so on).

OSP Fails to Update the oidpInstanceData Attribute
OSP cannot update the oidpInstanceData attribute for a user if one of the following conditions is
true:

 When the attribute is full with user’s login entries.

When the user logs in again, OSP fails to update the attribute with the new login entries
because of insufficient space to store the entries. However, you can change the maximum
length for storing the login entries based on your requirement.

 The user does not does not have sufficient rights in the Identity Vault.
 The OSP schema has not been extended in the Identity Vault and the user does not have this

attribute.

Managing Expired Server Certificates
To manually renew or extend the validity of the expired certificates, refer NetIQ Identity Manager
Certificate Management Guide.

Redirecting Non-Administrator User from the idmadmin Page to
the Dashboard Landing Page After Logout
If you have configured SAML 2.0 as the authentication method for single sign-on access to the
Identity Applications, you can direct the users to the dashboard landing page after logout. You can
configure this setting in the ConfigUpdate utility (/opt/netiq/idm/apps/configupdate/) by
setting the Landing page value to External and specifying your dashboard URL (https://
<serverip:port>/idmdash/) in the Authentication tab. As a result, when a non-administrator
user accessing the idmadmin page logs out of the application, they will be directed to the dashboard
landing page automatically.

Additionally, to prevent non-administrator users from accessing the idmadmin component on
Dashboard, the application displays a warning message whenever a user tries to access the
idmadmin page without authorization. The application then directs the user to the dashboard
landing page.
Troubleshooting 669

https://www.netiq.com/documentation/identity-manager-48/certificate-management/data/certificate-management.html
https://www.netiq.com/documentation/identity-manager-48/certificate-management/data/certificate-management.html

Identity Applications Does Not Terminate the Dashboard Session
Even After the Session Expires When Configured With a Third-
Party Authentication Service
Issue: When you configure the Identity Applications for single sign-on with NetIQ Access Manager
(NAM) or Active Directory Federation Service (AD FS) as an authentication service, then the
Dashboard session will not terminate even after the session expires. This issue is observed because
the default session timeout values for the Identity Applications, NAM, and AD FS are different.

Workaround: Ensure that you set the same session timeout values for all the sessions. For example,
20 minutes. To set the session timeout value for Identity Applications, see Authentication
Configuration in the NetIQ Identity Manager Setup Guide for Linux or Authentication Configuration
in the NetIQ Identity Manager Setup Guide for Windows.

To set the session timeout for NAM, perform the following actions:

1 Open the Administration Console for Access Manager.
2 Navigate to Devices > Identity Servers > IDPCluster and click Edit to modify the cluster

configuration.
3 In IDPCluster, go to Local > Contracts and select the contract between the Access Manager and

Identity Manager.
4 In the General tab, specify the Authentication Timeout value in minutes.
5 Click Apply.

To set the session timeout value for AD FS, perform the following actions:

1 (Conditional) To set the session timeout from the command line:
1a Launch the Windows PowerShell application on the server where Identity Applications is

installed.
1b Execute the following command:

Set-ADFSRelyingPartyTrust [-Targetname <relying_party>] [-
TokenLifetime <Int32>]
where,
-Targetname: Specifies the name of the relying party trust that is used to connect to the AD
FS.
-TokenLifetime: Specifies the duration (in minutes) for which the claims that are issued to
the relying party are valid (that is, the session timeout).

2 (Conditional) To set the session timeout from the AD FS user interface,
2a Open Microsoft AD FS Management console.
2b Right-click Service and then select Edit Federation Service Properties.
2c In the General tab, specify the Web SSO lifetime value in minutes.
2d Click Apply.
670 Troubleshooting

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#b1bmixdh
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#b1bmixdh
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#t45kibrudqoj
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

Troubleshooting General Issues
You might encounter the following issues while working with the identity applications:

 “Mismatch of Certificates Used by Identity Manager Engine and User Application Causes Code (-
9205) Error in vnd.nds.stream” on page 671

 “User Application Driver Fails to Communicate with the User Application Server on a Secured
Connection” on page 672

 “Entitlement Configuration Error During Codemap Refresh” on page 673
 “Error After Logging Out of the Dashboard on Linux” on page 673
 “Bulk Import of Roles and Resources May Not Update the Permission Index” on page 673
 “Absence of Notification Templates Causes Workflow Error” on page 673
 “Error Occurs When You Add a New Application With a Logo” on page 674
 “User Application Driver Fails to Process Delete Events” on page 674
 “Identity Applications Login Failure While Attempting to Contact the Authentication Service” on

page 675
 “Searching an Entity With a Combination of String and Integer Value Is Not Supported” on

page 675
 “Searching an Entity with Substring Value for DN Attribute Is Not Supported” on page 675
 “Unable to Change the Availability Status in the Availability Settings Page” on page 676
 “Workflow Forms for Three Steps Parallel Approval Process is Not Loading in the Workflow

Wizard” on page 676
 “New Request Page Not Listing Users in the Recipients Field” on page 677
 “Advanced Search for User Entities Displaying an Error When the Search Attribute Contains a

Hyphen” on page 677
 “Unable to Search for Users While Requesting For Permissions on Behalf of Others” on page 677
 “Entities Display Extended Characters Incorrectly in Dashboard” on page 678
 “Workflow Legacy Forms Displaying Errors After Upgrading to Identity Manager 4.8.5 Version”

on page 678
 “Identity Applications Reports ExceptionInInitializerError When Clustering is Enabled in the

Cluster Cache Configuration” on page 679
 “Dashboard Does Not Display Objects With Certain Special Characters in their Names, IDs, or

Descriptions” on page 680
 “Workflow Forms Hang While Loading” on page 680
 “Configuring Full Name Attribute for the Default Full Name Pattern Does Not Work in

Dashboard” on page 681

Mismatch of Certificates Used by Identity Manager Engine and
User Application Causes Code (-9205) Error in vnd.nds.stream
Issue: The Identity Manager drivers use Identity Manager engine’s keystore instead of User
Application's keystore to access the User Application. If these components use different certificates,
drivers report an error message similar to the following when set at Trace level 5:
Troubleshooting 671

DirXML Log Event
Message: Code(-9205) Error in vnd.nds.stream://VAULT/TEST/DRIVERSET1/
DRIVER1/Publisher/POLICY#XmlData:133:
Couldn't request assignment of role: '<Role DN>' to identity: '<User DN>':
com.novell.nds.dirxml.soap.UserAppClientException:
java.lang.RuntimeException: javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find
valid certification path to requested target
Workaround: Verify that the JRE used by the Identity Manager engine has the required certificate to
connect to the User Application. Otherwise, import the certificate from the User Application.

1 Locate cacerts in the Identity Manager engine directory.
For example, /opt/novell/eDirectory/lib64/nds-modules/jre/lib/security/
cacerts on Linux.

2 Determine the certificate used by the User Application.
2a Navigate to the User Application keystore.

For example, /opt/netiq/idm/apps/jre/lib/security/cacerts.
2b List the certificates by running the following command from the command line:

keytool -list -v -keystore cacerts
3 (Conditional) If you have access to the certificate, import the certificate into Identity Manager

engine’s cacerts directory by running the following command:

keytool -import -alias <newalias> -keystore cacerts -file
certificate.der

4 (Conditional) If you do not have access to the certificate, export the certificate from the User
Application’s cacerts directory, and then import the certificate into Identity Manager engine’s
cacerts directory.

5 Restart the Identity Vault.

User Application Driver Fails to Communicate with the User
Application Server on a Secured Connection
Issue: The User Application driver fails to communicate with the User Application server and returns
a retry status error. This issue may occur if one of the following conditions is true:

 You are using Java 1.7.x in your environment.
 The User Application driver does not have the certificate required for the connection.

Workaround: Perform the following actions:

 Manually update your current Java version to version 1.8 Update 92 or later.
 Import the certificates from User Application into Identity Manager engine's JRE directory for

use by the User Application driver. If your User Application server is protected by NetIQ Access
Manager or a load balancer, add the certificates from Access Manager or the load balancer into
Identity Manager engine's JRE directory.
672 Troubleshooting

Entitlement Configuration Error During Codemap Refresh
Issue: When a new resource is created in a driver, the resource is not added to the User Application
after running the code map refresh for the driver. One of the reasons that can cause this issue is
missing value of some of the parameters in the entitlement configuration of the driver. For example,
<entitlement data-collection="false" dn="CN=ExchangeMailbox,CN=AD Driver
for Groups,CN=DriverSet,O=system" parameter-format="" resource-mapping=""
role-mapping="">.

User Application reports the following error in the catalina.out file:

2017-11-03 15:55:21,373 [http-bio-8443-exec-340] ERROR
com.novell.idm.nrf.persist.DirXMLDriverDAO- [RBPM] Error occurred parsing
the entitlement configuration XML: cn=EntitlementConfiguration,cn=AD
Driver for Groups,cn=DriverSet,o=system
java.lang.StringIndexOutOfBoundsException: String index out of range: 0
Workaround: Add the missing values in the entitlement configuration for the driver. For example,
<entitlement data-collection="false" dn="CN=ExchangeMailbox,CN=AD Driver
for Groups,CN=DriverSet,O=system"parameter-format="idm4" resource-
mapping="true" role-mapping="true">.

Error After Logging Out of the Dashboard on Linux
Issue: On a Linux server, sometimes Identity Applications report the following error when you log
out of the Dashboard.

5082 ERROR_STARTUP_ERROR (unable to write to applicationPath /opt/netiq/
idm/apps/sspr/sspr_data)
Workaround: Manually restart Tomcat.

Bulk Import of Roles and Resources May Not Update the
Permission Index
Issue: Sometimes permission index is not updated if you are bulk importing roles or resources into
the Identify Vault. This prevents the User Application's Role or Resource Catalogs to display the
newly added roles or resources.

Workaround: Perform the following actions:

1 Stop the Tomcat application server where identity applications are deployed.
2 Delete the permission index from /apps/tomcat/temp/permindex.
3 Restart Tomcat.

Absence of Notification Templates Causes Workflow Error
Issue: Notification templates such as notification, email, and provisioning must reside in the Default
Notification Collection folder in Identity Vault’s Security container. If you perform any operations
such as request permissions in the identity applications in absence of these templates, the following
error is reported in the catalina.out file:
Troubleshooting 673

com.netiq.common.i18n.impl.LocalizedResourceResolverNoDefaultFoundExceptio
n: The resource resolver
com.novell.soa.notification.impl.vdx.LocalizedEmailTemplateResolver did
not return a resource for the default locale of en. It is required that a
resource exist for the default locale.
Workaround: Deploy the required packages for notification, email, and provisioning templates to
the Identity Vault.

1 Open your project in Designer.
2 In the Outline pane, expand your project.
3 Right-click Default Notification Collection.
4 Select Add All Templates.
5 Select Overwrite Existing Templates, then click OK.
6 Right-click Default Notification Collection, select Live, and click Deploy.
7 Click OK to deploy.

Error Occurs When You Add a New Application With a Logo
Issue: When you click the Add button to add a new application with a logo (image), the following
error appears:

Invalid image file uploaded
Workaround: Add the application without an image. Then, edit the newly added application to add
an image as follows:

1 Ensure the user has write permissions for user home directory.
For example: /home/users/novlua/

2 Log in to Identity Manager Dashboard and go to Applications.
3 Click Manage Applications icon.
4 Click Edit on the newly added application and add the logo (image).
5 Click Save.

User Application Driver Fails to Process Delete Events
If the User Application driver fails to establish a connection with the identity applications, the driver
fails to process the delete operation and loops infinitely. You can confirm this by looking at the User
Application driver startup and trace logs.

This issue typically occurs if the https certificates used by the identity applications are not available
in the User Application driver's certificate store. The default certificate store for the driver is the Java
cacerts directory (/opt/novell/eDirectory/lib64/nds-modules/jre/lib/security/
cacerts or <eDirectory install path>\jre\lib\security).
674 Troubleshooting

Identity Applications Login Failure While Attempting to Contact
the Authentication Service
If you are using custom certificates for authentication in a distributed environment where Identity
Engine is running in one server and Identity Applications in another server, your Identity
Applications will fail to connect to the OSP and consequently you will not be able to login to Identity
Applications. You will see the following error:

ERROR [com.netiq.idm.auth.oauth.OAuthRestFilter] (https-jsse-nio-8543-
exec-1) [RBPM] An error occurred while attempting to contact the
authentication service.
In case of Kubernetes environment, resolve this issue by performing the following actions:

1. Stop tomcat.
2. Go to the setenv.sh file located in tomcat directory under the idm/apps. For example,

 Linux: /opt/netiq/idm/apps/tomcat/bin/setenv.sh
 Windows: C:\NetIQ\idm\apps\tomcat\bin\setenv.bat

3. Add the property -Dcom.sun.net.ssl.checkRevocation=false in JAVA_OPTS as:
export JAVA_OPTS="-Dcom.sun.net.ssl.checkRevocation=false"
Alternatively, you can set JAVA_OPTS="-Dcom.sun.net.ssl.checkRevocation=false"

4. Start tomcat.

Searching an Entity With a Combination of String and Integer
Value Is Not Supported
Issue: For a custom entity, while searching for an integer type attribute, the valid search inputs are
either a string or an integer. For example, * or 1 or 123 etc. A combination of both in a search entity
throws an error because LDAP server does not support such filters for integer attributes.

For example, while searching for an integer type attribute, you can use either * or an integer (such as
1) as search input. You cannot search on values such as a1 or 1* etc.

Workaround: There is no workaround at this moment.

Searching an Entity with Substring Value for DN Attribute Is Not
Supported
Issue: For a custom entity, while searching for the DN type attribute, the valid search inputs are
either full DN or searching using *. However, providing substring value in the search entity will throw
an error because LDAP server does not support such filters for DN attribute.

For example, while searching for a DN type attribute, you can use either * or full DN (such as
cn=alison,o=data) as search input. You cannot search on substring values such as alison etc.

Workaround: There is no workaround at this time.
Troubleshooting 675

Unable to Change the Availability Status in the Availability
Settings Page
Issue: When you delegate all your requests to an assigned delegate (delegated user) in your
organization, the Identity Applications fails to list the PRD in the Availability Settings page and
displays the following error when you try to change your availability status:

An error occurred while fetching the prds
This issue can be observed in one scenario when the Identity Applications 4.8 version is installed for
the first time and other when you upgrade Identity Applications from 4.8 to 4.8.1 version. Upgrading
from a prior version of Identity Applications does not display any error.

Workaround: To resolve this issue, create a new Provisioning Request Definition (PRD) and assign
the trustee rights to the required user or data container to access the PRD. For more information,
see Creating a Provisioning Request Definition in the NetIQ Identity Manager - Administrator’s Guide
to Designing the Identity Applications.

Workflow Forms for Three Steps Parallel Approval Process is Not
Loading in the Workflow Wizard
Issue: While adding workflow to a role or resource using the Workflow wizard, when you select
three steps, parallel approval workflow, the request form is not loading in the browser. This issue is
specific to Identity Manager 4.8.1.

Workaround: To resolve this issue, perform the following actions:

1 Open your project in Designer.
2 In the Outline view, right-click the User Application Driver and select Properties.
3 Select Packages from the navigation menu.
4 Perform one of the following procedures as required:

If the Create Workflow Templates package is already installed, then:
1. Run a package update check to ensure that the package installed in your Designer is the

latest supported version. A green tick mark in the Available Upgrades check box indicates
that a new version of the package is available for upgrade. Click on the Operation drop-
down menu and select Upgrade.

NOTE: 1.1.0.20200316113624 is the latest version of Create Workflow Templates package
supported in Designer.

2. From a list of available packages, select the 1.1.0.20200316113624 radio button.
3. Click OK.

If the Create Workflow Templates package is not installed, then:

1. Click to add a new package.
2. From the list of available packages, select the Create Workflow Templates check box and

click OK.
5 Click Apply.
676 Troubleshooting

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#prdcreateprovrequestdef
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

6 Confirm the installation task by clicking Finish.
7 Click OK to close the window.

New Request Page Not Listing Users in the Recipients Field
Issue: If User Search Lookup Attribute in the Settings page includes the CN attribute, the New
Request page is not listing users under the Users tab in the Recipients field while requesting
permissions for others.

Workaround: To resolve this issue, perform the following actions:

1 Create a new CN attribute in the Directory Abstraction Layer with Key value as cn under the
User entity. For more information on how to add attributes using Designer, see Adding
Attributes in the NetIQ Identity Manager - Administrator’s Guide to Designing the Identity
Applications.

2 Log in to the Identity Applications Dashboard as an Administrator.
3 Go to Settings > Customization option and select the newly created CN attribute in the User

Search Lookup Attribute field.
4 Click Save.

Advanced Search for User Entities Displaying an Error When the
Search Attribute Contains a Hyphen
Issue: In Designer, when you add an attribute for the user entity in the directory abstraction layer,
that attribute can be added in the advanced search option to search for a user in the Dashboard.
However, if you define the attribute with a hyphen in the key value, the application throws an error
while searching using that attribute. This issue occurs because the Dashboard does not treat hyphen
as a valid character while performing advanced searches.

Workaround: There is no workaround at this time.

Unable to Search for Users While Requesting For Permissions on
Behalf of Others
Issue: When requesting permissions for others, team managers and administrative users are unable
to search for users on the New Request page. This occurs when the User Search Lookup Attribute or
User Search Default Attribute includes custom (non-default) attributes on the Settings page. This
issue is specific to Identity Manager 4.8.x, where x = 0, 1, and 2.

Workaround: To resolve this issue, modify the trustee rights of individual users with team manager
or administrative user roles in Identity Applications as described below:

1 Log in to iManager as an administrator.
2 Click the View Objects option.
3 In the Tree tab, click data.
4 Select the check box corresponding to the desired user name.
5 Go to Actions > Modify Trustees.
Troubleshooting 677

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#daladdingattributes
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#daladdingattributes
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

6 Click Assigned Rights option corresponding to the selected user name.
7 Click Add Property > [All Attributes Rights] > OK.
8 The user is assigned compare and read permissions by default. Assign additional rights as

necessary.
9 Click Done.

10 Select OK or Apply to save the changes to the directory.

You can also change the trustee rights for all users under the users.data trustee name. Click data
> users > (current level) check box in the Tree tab, then proceed to Step 5 through Step 10 in the
procedure above.

Entities Display Extended Characters Incorrectly in Dashboard
Issue: While requesting permissions through the Identity Manager Dashboard, if a user enter
extended characters such as ö, ä, ü (German umlauts) in the request form, the Identity Applications
will not display those characters appropriately on the Users page. This issue is specific to Identity
Manager 4.8.

Workaround: Follow the steps below to configure Identity Applications to use the UTF-8 character
set for identifying all characters, punctuations, and symbols.

1 Log in to the Identity Applications server.
2 Stop Tomcat.
3 Navigate to the C:\NetIQ\idm\apps\tomcat\conf\ folder.
4 Open the web.xml file in a text editor and add the following line:

<request-character-encoding>UTF-8</request-character-encoding>
5 Start Tomcat.

Workflow Legacy Forms Displaying Errors After Upgrading to
Identity Manager 4.8.5 Version
Issue: After upgrading to Identity Manager 4.8.5, workflow forms on the Identity Manager user
interface is displaying errors. This issue is only observed in the legacy forms. For example, when one
of the fields in the request form uses the outdated .size() function, the following error message is
displayed:

Field 1: An error 'TypeError: $(...).size is not a function' was
encountered while executing the script '$('#_Field0').val("Size: " + $(
"li").size()):'
This issue applies to Identity Manager 4.8.5 or later.

Workaround: Legacy form is updated in this release to use jQuery 3.5.1. As a result, existing forms
that use outdated functions from previous jQuery versions may display errors after upgrading.
Deprecated functions, however, may not throw an error and are still valid.
678 Troubleshooting

To resolve this issue, we recommend that you remove the outdated and deprecated functions from
existing forms and replace them with valid jQuery functions. You can perform this operation in
Designer by using the ECMA Expression Builder. The ECMA Expression builder can be accessed via
the scripts section of a form or the properties tab of a form field. After saving the form, ensure that
the provisioning request definition is deployed.

The following table lists the valid jQuery functions to use in place of the deprecated and outdated
functions:

Identity Applications Reports ExceptionInInitializerError When
Clustering is Enabled in the Cluster Cache Configuration
Issue: The Cluster Enabled option in the Cluster Cache Configuration global settings does not work
when its value is changed to true. Identity Applications encounters a null pointer exception while
attempting to locate the system language and country properties resulting in an
ExceptionInInitializerError which gets logged in the catalina.out file. This issue is
observed when Identity Manager is installed on Azure and Amazon Web Services (AWS) cloud
platforms.

Workaround: To resolve this error, you must ensure that the "-Duser.language" and "-Duser.country"
properties are set. You can include these Java properties in the /opt/netiq/idm/apps/tomcat/
bin/setenv.sh file.

For example, -Duser.language=en -Duser.country=US
(This will set the language to English and the country to the United States of America.)

Alternatively, you can resolve the error by adding -Djgroups.use.jdk_logger=true as
java_opt(s) to the /opt/netiq/idm/apps/tomcat/bin/setenv.sh file.

Replace With jQuery functions

Deprecated functions

jQuery.parseJSON() JSON.parse()
jQuery.isArray() Array.isArray()
For a list of all deprecated jQuery functions between jQuery version 2.0.3 and 3.5.1, see https://
api.jquery.com/category/deprecated/.

Outdated functions

.andSelf() .addBack()

.error(handler) .on("error", handler)

.load(handler) .on("load", handler)

.context No replacement

.size() .length

.unload(handler) .on("unload", handler)
For a list of all functions no longer supported between jQuery version 2.0.3 and 3.5.1, see https://
api.jquery.com/category/removed/.
Troubleshooting 679

https://api.jquery.com/category/deprecated/
https://api.jquery.com/category/deprecated/
https://api.jquery.com/category/removed/
https://api.jquery.com/category/removed/

Dashboard Does Not Display Objects With Certain Special
Characters in their Names, IDs, or Descriptions
Issue: When creating a new role, resource, user, or group on Dashboard, certain special characters
are not allowed in the Name, ID, and Description fields. However, there is no validation check if these
objects are created in Identity Vault via a connected system. If the object, such as a role, contains a
backslash (\) not permitted in Identity Applications, the catalina.out log file will display the
following exception:

Java.lang.IllegalArgumentException: Not a valid attribute string
value:FI\CO,improper usage of backslash at
javax.naming.ldap.Rdn.unescapeValue(Rdn.java:654)
at javax.naming.ldap.Rfc2253Parser.doParse(Rfc2253Parser.java:118)
at javax.naming.ldap.Rfc2253Parser.parseDn(Rfc2253Parser.java:70)
at javax.naming.ldap.LdapName.parse(LdapName.java:785)
at javax.naming.ldap.LdapName.<init>(LdapName.java:123)
javax.naming.InvalidNameException: Invalid name: cn=r12_employee helpdesk,
vision operations :
cs,cn=level10,cn=roledefs,cn=roleconfig,cn=appconfig,cn=user application
driver,cn=driverset,ou=services,o=bimbo
 at javax.naming.ldap.Rfc2253Parser.doParse(Rfc2253Parser.java:111)
 at javax.naming.ldap.Rfc2253Parser.parseDn(Rfc2253Parser.java:74)
 at javax.naming.ldap.LdapName.parse(LdapName.java:785)
 at javax.naming.ldap.LdapName.<init>(LdapName.java:123)
Workaround: Remove any invalid characters from the object’s name, ID, or description, then restart
Tomcat in the Identity Applications server.

IMPORTANT:

 Do not use the following special characters in the ID field: < ; \ " + # = / | * ~ ' ! @
$ %

 Do not use the following special characters in the Name field: < ; \ " + # / | * ~
 Do not use the following special characters in the Description field: | ~

Workflow Forms Hang While Loading
Issue: The application is unable to load some workflow forms. The following error is reported in the
NGINX error.log file: upstream prematurely closed connection while reading
response header from upstream. This issue happens when the IGAFormRenderer, which is
launched by the NGINX service, exceeds the maximum number of TCP connections allowed on the
server. This issue applies to Identity Manager 4.8.5 or later.
680 Troubleshooting

Workaround: This issue is related to the server’s ulimit settings. Navigate to the /etc/init.d/
netiq-golang.sh file on the application server and add the "ulimit -n 4096" line as shown in the
following sample, followed by the NGINX service restart:

#!/bin/bash
. gettext.sh
TEXTDOMAIN=install
export TEXTDOMAIN
TEXTDOMAINDIR=/opt/netiq/idm/uninstall_data/common/locale/
export TEXTDOMAINDIR
case $1 in
start)
str1=`gettext install "Starting IGA form renderer backend."`
echo $str1
ulimit -n 4096
(/opt/netiq/idm/apps/sites/IgaFormRenderer.sh -config /opt/netiq/idm/apps/
sites/config.ini -golangPort 3000 start &> /dev/null) &
;;

Configuring Full Name Attribute for the Default Full Name
Pattern Does Not Work in Dashboard
Issue: To customize how user names are displayed in Dashboard, you can set several attributes for
the Default Full Name Pattern in Designer, including CN, EMail Address, displayName, Full
Name, Given Name, Surname, and Description. However, when you configure the Full Name
attribute, the functionality does not work on certain pages, specifically the Permission of others
page, where the Dashboard fails to display user’s full name in the search result. This issue applies to
Identity Manager 4.8.2 or later.

Workaround: After setting the Full Name attribute in the user entity’s Default Full Name Pattern,
you must add the attribute property to the EntityDefs object in iManager or Designer. To resolve this
issue, perform the following steps in iManager:

1 Log in to iManager.
2 In Objects tab, browse to Driver Set > User Application Driver > AppConfig > DirectoryModel >

EntityDefs and select sys-nrf-user-group-container.
3 In the Valued Attributes list, select XmlData and click Edit.
4 In the Edit Attribute window, search for <attribute>...</attribute> tag and add the following tag

for the Full Name attribute:
Troubleshooting 681

<attribute
 editable="true" enabled="true" hideable="false"
 multivalue="true" protected="false" readable="true"
 required="false" searchable="true"
 viewable="true">
<key>FullName</key>
<ldap-name>fullName</ldap-name>
<nds-name>Full Name</nds-name>
<display
 xml:lang="en">
<label>Full Name</label>
</display>
<type>String</type>
</attribute>

5 Click OK, the click OK again.
6 Restart the User Application driver.

Troubleshooting Multi-Threaded Role and Resource
Service driver Issues

Use the following information to troubleshoot a multi-threaded Role and Resource Service driver:

 Information about the unique data set for which the request belongs to is appended in the
driver command. It is also printed in the log. This information helps you determine if the driver
policies correctly evaluated the disjoint set key for a request by comparing the key with the
mapping table.

[02/22/18 12:34:14.586]:Role and Resource Service driver ST:Submitting
document to subscriber shim:
[02/22/18 12:34:14.586]:Role and Resource Service driver ST:
<nds dtdversion="4.0" ndsversion="8.x">
 <source>
 <product edition="Advanced" version="4.7.0.0">DirXML</product>
 <contact>NetIQ Corporation</contact>
 </source>
 <input>
 <nrf:resrequest Disjoint-Set="NETIQ"
dn="O=system\CN=driverset1\CN=User Application
Driver\CN=AppConfig\CN=RoleConfig\CN=ResourceRequests\CN=2018022212341
4-b4645d87e41043459ae4546fd000dcb8-0" event-id="idm-sles12-
195#20180222070414#1#1:bc9e66f7-ddf3-45bf-8b4d-f7669ebcf3dd"
xmlns:nrf="urn:dirxml:nrf"/>
 </input>
</nds>

 While storing an event in the driver storage, check the log for information about the disjoint set
and the event IDs of all the commands for which processing is yet to complete.
682 Troubleshooting

[02/22/18 12:29:06.544]:Role and Resource Service driver :: Thread
ID:40 Processing request
DN: O=system\CN=driverset1\CN=User Application
Driver\CN=AppConfig\CN=RoleConfig\CN=Requests\CN=20180222122835-
9b90b601af744f5e890151b97d7fe7e4-0
[02/22/18 12:29:06.545]:Role and Resource Service driver ST:Receiving
DOM document from application.
[02/22/18 12:29:06.545]:Role and Resource Service driver ST:
<nds>
<source>
<product version="4.7.0.0">NetIQ Role and Resource Service Driver</
product>
<contact>NetIQ Corporation</contact>
</source>
<input>
<status level="success">Updating DirXML-DriverStorage attributes</
status>
<init-params event-id="storage">
<subscriber-state>
<nrf:request Disjoint-Set="NETIQ" dn="O=system\CN=driverset1\CN=User
Application
Driver\CN=AppConfig\CN=RoleConfig\CN=Requests\CN=20180222122835-
9b90b601af744f5e890151b97d7fe7e4-0" event-id="idm-sles12-
195#20180222065835#1#39:f1f354dc-81fa-4d8c-aa7c-dc54f3f1fa81"
xmlns:nrf="urn:dirxml:nrf"/>
<nrf:request Disjoint-Set="NETIQ" dn="O=system\CN=driverset1\CN=User
Application
Driver\CN=AppConfig\CN=RoleConfig\CN=Requests\CN=20180222122835-
de01c6eb63b34ec28ae66e1057e3f524-0" event-id="idm-sles12-
195#20180222065835#1#40:fdff5c1e-74d6-4415-9a61-1e5cfffdd674"
xmlns:nrf="urn:dirxml:nrf"/>
</subscriber-state>

 You can check the commands for which processing is yet to complete through iManager.
1. In iManager, open the Identity Manager Administration page.
2. Open the driver set that contains the multi-threaded Role and Resource Service driver.
3. If the driver set is not listed on the Driver Sets tab, use the Search In field to search for and

display the driver set.
4. Click the driver set to open the Driver Set Overview page.
5. Locate the driver icon, then click the upper right corner of the driver icon to display the

Actions menu.
6. Click Edit Properties to display the driver’s properties page.
7. Click General > DirXML-DriverStorage.

 Logs display the following information:
 Disjoint key which the driver evaluates from the request command.
 Information about the worker threads to which the driver will submit the request.
 Thread Id's of the worker threads.

Below is a sample log file content.
Troubleshooting 683

[02/23/18 11:59:34.977]:Role and Resource Service driver ST:: Thread
ID:65 Worker threads not found for the disjoint key. Disjoint Key: NETIQ
[02/23/18 11:59:34.979]:Role and Resource Service driver ST:: Thread
ID:65 Registered the worker threads with disjoint key. Disjoint Key:
NETIQ
<status event-id="idm-sles12-195#20180223062903#1#1:78daa132-558c-4d3f-
b088-32a1da788c55" level="success">Thread ID:65 Successfully updated
the event in the Driver Storage.
Request DN: O=data\OU=netiq\CN=netiq1</status>

 If the driver storage is full, information about event retry is printed in the logs. The log file
contains entries similar to the following:

[01/20/18 18:53:45.484]:Role and Resource Service Driver ST:: Thread
ID:30 Cant update the command in Driver Storage. Driver storage is
full!!!
[01/20/18 18:53:45.484]:Role and Resource Service Driver ST:: Request
processing completed in Roles and Resource driver
[01/20/18 18:53:45.485]:Role and Resource Service Driver ST:Requesting
30 second retry delay.
[01/20/18 18:53:45.485]:Role and Resource Service Driver ST:
DirXML Log Event -------------------
 Driver: \NOVELL_1\system\driverset1\Role and Resource Service
Driver
 Channel: Subscriber
 Status: Retry
 Message: Code(-9006) The driver returned a "retry" status
indicating that the operation should be retried later. Detail from
driver: Thread ID:30 Cant update the command in Driver Storage. Driver
storage is full!!!

Troubleshooting Resource Weightage Related Errors
Issue: While implementing the Resource Weightage feature in Identity Applications, if the schema
for resource weightage attribute is not synchronized across all servers, you may observe the
following error in the DSTrace (where User Application driver and Role and Resource Service driver
logs are generated):

com.sssw.b2b.rt.GNVException: rt007005:Error encountered executing WSDL
Action
The following error message is displayed in the catalina.out log file:

ERROR [com.netiq.idm.cis.PermIndex] (RBPM pool-1-permindex executor-ND-
thread-1) [RBPM] Unrecoverable error during creation of Permission Index
org.apache.solr.common.SolrException: No such core: iw
This issue applies to Identity Manager 4.8.1 or later.

Workaround: To resolve these errors, perform the following actions:

1 Extend the Identity Vault schema:
Linux:

1. Log in to the server where you need to extend the Identity Vault schema.
684 Troubleshooting

2. Navigate to /opt/novell/eDirectory/bin directory.
3. Run the following command:

./idm-install-schema
Windows:

1. Log in to the server where you need to extend the Identity Vault schema.
2. Create a new file in your preferred directory.

For example, create nrf-extensions.sch file in the C:\Temp directory.
3. Open the nrf-extensions.sch file and add the following content:

--
-- The nrfResourceWeightage attribute contained by nrfResource
object class specifies the weightage of
-- resource object which is used for assignment/revocation based on
priority
--
NDSSchemaExtensions DEFINITIONS ::=
BEGIN
"nrfResourceWeightage" ATTRIBUTE ::=
{
 Operation ADD,
 Flags
{DS_SYNC_IMMEDIATE, DS_SINGLE_VALUED_ATTR},
 SyntaxID SYN_INTEGER,
 ASN1ObjID {2 16 840 1 113719
1 33 4 174}
}

"nrfResource" OBJECT-CLASS ::=
{
 Operation MODIFY,
 MayContain {"nrfResourceWeightage"}
}
END

4. Navigate to the C:\NetIQ\eDirectory\ directory.
5. Run the following command to extend the schema:

ice -l <schema_update_log> -C -a -S SCH -f <file that you created in
step 2> -D LDAP -s <eDirectory DNS name/IP> -p <LDAP port> -d
<eDirectory_admin_dn> -w <eDirectory_admin_password>
where,
-C -a updates the destination schema.
-f indicates the schema file (sch).
-p indicates the port number of the LDAP server. The default port is 389. For secure
communication, use port 636. Secure communication needs an SSL Certificate.
-L indicates a file in DER format containing a server key used for SSL authentication.
-s indicates the DNS name or IP address of the LDAP server.
Troubleshooting 685

For example,

ice -l schemaupdate.log -C -a -S SCH -f C:\Temp\nrf-extensions.sch -
D LDAP -s idmorg.com -p 636 -d cn=admin,ou=idm,o=microfocus -w
password -L cert.der

2 Update the User Application driver package to 4.8.1.xxxx version, where xxxxx indicates the
time stamp when the driver package was created.

3 Update the Role and Resource Service driver to 4.8.1 version. For more information, see NetIQ
Identity Manager Role and Resource Service Driver 4.8.1 Readme.

4 Restart the Identity Vault.
5 Perform the following steps to delete the existing permindex folder in the temporary directory:

5a Stop the Tomcat service.
5b Navigate to the existing permindex folder in the temporary directory.

For example, /opt/netiq/idm/apps/tomcat/temp/permindex
5c Delete the existing permindex folder.
5d Start the Tomcat service.

Troubleshooting Workflow Related Issues
Resolving StackOverflow Error on Recursive Workflows
Issue: In a recursive workflow, when the event does not flow to the next approval, the following
StackOverflow error is seen in the catalina.out log file:

Servlet.service() for servlet [spring] in context with path [/IDMProv]
threw exception [Handler dispatch failed; nested exception is
java.lang.StackOverflowError] with root cause java.lang.StackOverflowError
This issue may be observed in a specific environment in which Identity Manager is deployed. For
more information, see “Increasing the Stack Size for Recursive Workflows” on page 99.

Workaround: To resolve this issue, set the value for the maxThreads attribute to 400 in the
server.xml file located at:

Linux: /opt/netiq/idm/apps/tomcat/conf
Windows: C:\NetIQ\idm\apps\tomcat\conf
686 Troubleshooting

https://www.netiq.com/documentation/identity-manager-48-drivers/RRSDriver481readme/data/RRSDriver481readme.html
https://www.netiq.com/documentation/identity-manager-48-drivers/RRSDriver481readme/data/RRSDriver481readme.html

VII VIIAppendix

The following sections provide additional reference information and advanced topics for the identity
applications.

 Appendix A, “Configuring the Identity Manager Approvals App,” on page 689
 Appendix B, “Working with Language-Specific Email Templates,” on page 701
 Appendix C, “Schema Extensions for the Identity Applications,” on page 705
 Appendix D, “JavaScript Search API,” on page 717
 Appendix E, “Trouble Shooting,” on page 727
 Appendix F, “Workflow Service,” on page 731
Appendix 687

688 Appendix

A AConfiguring the Identity Manager
Approvals App

The NetIQ Identity Manager Approvals app allows managers and resource owners to approve or
deny requests remotely, using an iPhone or iPad with the iOS operating system or any device with
Android operating system installed. Your users can see and work with the same approval tasks in the
app that they would normally see in the identity applications interface. All changes are synchronized
between the Approvals app and the identity applications.

This appendix provides information about configuring your environment to allow users to use the
new interfaces. These sections are intended to provide necessary information to administrators who
want to enable and configure the Approvals app in their environment.

Most users should not need to refer to this document, but should instead be able to install,
configure, and use the app without additional instructions. For information about installing or using
the Approvals app, see “Using the Identity Manager Approvals App” in the NetIQ Identity Manager -
User’s Guide to the Identity Applications.

Product Requirements
The Approvals app has the following prerequisites:

 On the Identity Applications server:
 Identity Manager 4.5 Advanced Edition or later
 Identity Manager Roles Based Provisioning Module 4.5 or later
 Designer for Identity Manager 4.5 or later with User Application driver and latest User

Application Base package installed
 Enable SSL using valid Certificate Authority (CA) issued certificate. For detailed information

on configuring and enabling SSL in your Identity Manager environment, see “Using SSL for
Secure Communication” on page 621.

 On the device: Apple iPhone or iPad with Apple iOS 5, iOS 6, or iOS 7 operating system.

Enabling Non-Administrators to Use the Approvals App
If you want users who are not provisioning administrators on Identity Applications server to use the
Approvals app, you must open the SOAP endpoints used by the server and the Approvals app to non-
provisioning administrator users.

NOTE: Opening SOAP endpoints to non-provisioning administrator users does not compromise
security. Identity Manager continues to enforce all other existing security checks.
Configuring the Identity Manager Approvals App 689

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqapprovalsapp
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_user/identity_apps_user.pdf#netiqidentitymanageruserguide

Complete the following steps to open the SOAP endpoints on the Identity Applications server:

1 Stop the server.
2 Back up the existing ism-configuration.properties file.

NOTE: By default, the ism-configuration.properties file is located at /opt/netiq/
idm/apps/tomcat/conf.

3 Open the ism-configuration.properties file and change the following configuration file
properties to the specified values:

4 Save and close the file.
5 Start the server.

Setting Up the Approvals App
Before your users can use the Approvals app, you must first configure your Identity Manager Roles
Based Provisioning Module environment.

After installing the app, users can configure the app manually or automatically. Because manually
configuring the Approvals app can be difficult, we recommend that administrators simplify the
configuration process by providing users the necessary information as part of the provisioning
process.

You provide configuration information to your users through a configuration link you customize for
your Identity Manager Roles Based Provisioning Module environment. The structure of the
configuration link is as follows:

Property Value

WorkflowService/SOAP-End-
Points-Accessible-By-
ProvisioningAdminOnly

false

WorkflowService/soap/
addComment

false

WorkflowService/soap/
getComments

false

VirtualDataService/soap false
690 Configuring the Identity Manager Approvals App

idmapproval://settings/
?userid=Username&passwordInKeychain=Password&host=HostName&port=PortNumber
&
rbpmContext=Context&userContainer=UserContainer&timeout=Timeout&vdxUserEnt
ity=UserEntity&
vdxNameFormatAttribute=NameFormat&vdxFirstNameAttribute=FirstNameAttr&vdxL
astNameAttribute=
LastNameAttr&vdxPhotoAttribute=UserPhotoAttr&vdxPhotoAttributeLdap=PhotoLD
APAttr&vdxPhoneAttribute=
WorkPhoneAttr&vdxMobileAttribute=MobilePhoneAttr&vdxEmailAttribute=EmailAt
tr&namingAttribute=
NamingAttr&provAdminGetTasksWorkaroundInPlace=ProvisioningAdmin
The link must include settings specific to your environment, so that users can easily connect to the
Identity Applications server from the Approvals app. However, none of the settings are explicitly
required for the link. If you leave any setting values empty, each user must configure those settings
on their device.

For example, if you want to provide a standard configuration link for all users in your environment,
you would leave the userid and passwordInKeychain values empty:

idmapproval://settings/
?userid=&passwordInKeychain=&host=123.112.20.109&port=8180&
rbpmContext=IDMProv&userContainer=ou=users,o=data&timeout=5&vdxUserEntity=
user&vdxNameFormatAttribute=
FirstName%20LastName&vdxFirstNameAttribute=FirstName&vdxLastNameAttribute=
LastName&
vdxPhotoAttribute=UserPhoto&vdxPhotoAttributeLdap=photo&vdxPhoneAttribute=
TelephoneNumber&
vdxMobileAttribute=mobile&vdxEmailAttribute=Email&namingAttribute=cn&
provAdminGetTasksWorkaroundInPlace=YES
For detailed information about the configuration settings, see “Understanding Approvals App
Settings” on page 691.

You can provide a configuration link to your users in one of the following ways:

 Customize and deploy the default “Request Mobile Approval App” process request definition
(PRD) to your identity applications. A user can log into the identity applications and request
access to the app using the PRD, which sends an email notification with a personalized
configuration link that includes information specific to that user.

 Embed your custom configuration link in an HTML page hosted on a Web server in your
environment. All users in your environment can navigate to the HTML page in a browser on
their device and then click the configuration link.

 Create a QR code from the configuration link and embed the QR code in an HTML page. Users
can use a QR code reader on their device to scan the code.

Understanding Approvals App Settings
An Approvals app configuration link can include the following settings:
Configuring the Identity Manager Approvals App 691

Configuration Setting Name Login Setting Description

userid Specifies the user name the user uses to access the
Identity Applications server.

passwordInKeychain Specifies the password the user uses to access the
Identity Applications server.

host Specifies the fully qualified domain name or IP
address of the Identity Applications server.

port Specifies the HTTPS port the app uses to connect to
the server.

rbpmContext Specifies the context used when installing the User
Application WAR file. The default value is IDMProv.

userContainer Specifies the full DN of the Identity Vault container
that contains the user LDAP entry.

NOTE: If you specify a user container to use, the
Approvals app uses that container. If you do not
specify a user container, the app attempts to detect
the appropriate user container in the Identity Vault,
searching all containers and subcontainers starting
with the user container dn specified when running
the Configuration (configupdate) utility.

If your Roles Based Provisioning Module environment
includes a number of user containers, we
recommend that you specify the container you want
the app to use.

You can configure a provisioning request definition
(PRD) like the default “Request Mobile Approval App”
definition to easily provision and configure your
mobile end users. For more information about
customizing the default PRD, see “Customizing and
Using the Default Approvals App Provisioning Request
Definition” on page 693.

timeout Specifies the number of seconds the app waits when
attempting to connect to the server before cancelling
the connection. The default value is 5 seconds.

vdxUserEntity Specifies the LDAP entity that represents a user in the
Identity Vault. The default value is user.

vdxNameFormatAttribute Specifies the DAL attribute representation the app
uses to format a user’s full name. The default value is
FirstName%20LastName.

vdxFirstNameAttribute Specifies the name of the DAL attribute that
represents a user’s first name. The default value is
FirstName.
692 Configuring the Identity Manager Approvals App

Customizing and Using the Default Approvals App Provisioning
Request Definition
As an administrator, you can use Designer to customize a generic “Request Mobile Approval App”
PRD that your users can use, through the identity applications, to request access to the Approvals
application.

When a user requests access, Identity Manager then verifies that the user has the permissions
required to access the mobile interface and that the Identity Applications server supports the
application. If the server is not configured correctly or does not have the correct patch installed, the
PRD generates a task for the provisioning administrator that lets the administrator know what needs
to be fixed in order to enable use of the Approvals app.

After Identity Manager verifies the user and environment meet all requirements, the PRD triggers an
email notification to the user. The user should open this email on the iPhone or iPad where the user
has already installed the Approvals app.

vdxLastNameAttribute Specifies the name of the DAL attribute that
represents a user’s last name. The default value is
LastName.

vdxPhotoAttribute Specifies the name of the DAL attribute that contains
a user’s photo. The default value is UserPhoto.

NOTE: If a user does not have a picture configured in
the Identity Manager or has configured their Identity
Manager settings to not display a picture, the app
displays a generic image instead.

vdxPhotoAttributeLdap Specifies the name of the LDAP attribute that
contains the photo of the user. The default value is
photo.

vdxPhoneAttribute Specifies the name of the DAL attribute that
represents a user’s work phone number. The default
value is TelephoneNumber.

vdxMobileAttribute Specifies the name of the DAL attribute that
represents a user’s mobile phone number. The
default value is mobile.

vdxEmailAttribute Specifies the name of the DAL attribute that
represents a user’s email address. The default value is
Email.

namingAttribute Specifies the naming DAL attribute used in the
Identity Vault to describe a name. The default value is
cn.

provAdminGetTasksWorkaroundInPlace Specifies whether the user is a Provisioning
Administrator on the Identity Applications server. The
default value is YES.

Configuration Setting Name Login Setting Description
Configuring the Identity Manager Approvals App 693

This email notification includes a special idmapproval://settings link that automatically
provides the settings the user needs to access the Approvals app from their device. The user clicks
the link from their device and can then access their tasks through the Approvals app.

The default “Request Mobile Approval App” is included in the User Application Base package, which
you can upgrade in Designer.

NOTE: The PRD and notification template provided in the User Application Base package are generic.
Most administrators need to modify the generic PRD and template for their specific environments.
However, we recommend that only users familiar with PRDs modify the default templates.

Customizing the Generic Notification Template
We recommend customizing the generic email notification template for your environment. To
customize the default template to notify users they have access to the Approvals app and provide a
link to automatically configure the app:

1 Ensure your Identity Manager environment meets all necessary requirements. For more
information about prerequisites for using the Approvals app, see “Product Requirements” on
page 689.

2 In Designer, ensure you have a valid User Application driver in production. If a User Application
driver does not exist in your Designer installation, install the driver before proceeding.

3 Upgrade the User Application Base package to the latest available version and install any
dependent packages. For information about upgrading packages in Designer, see Upgrading
Installed Packages in the NetIQ Designer for Identity Manager Administration Guide.

4 In the Outline view, expand Default Notification Collection.
5 Right-click IDM Approval Mobile Access Granted and select Edit.
6 Modify the Subject field, if necessary.
7 In the Message field, modify the notification HTML as necessary for your environment. You can

customize the email message text sent to your users, include graphics, or change the color and
layout of the message to fit your company’s branding. The following image shows the default
email message in the template editor:
694 Configuring the Identity Manager Approvals App

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#packmanupgrade
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#packmanupgrade
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#bookinfo

WARNING: If you customize or modify the default notification template, do not remove or
modify the token $idmapprovalUrl$, either in the Tokens list or in the HTML. The PRD uses
the $idmapprovalUrl$ token to provide the notification template a customized configuration
link for the requesting user.

8 When finished making any customizations, close and save the notification template.
9 In the Outline view, right-click IDM Approval Mobile Access Granted and select Live > Deploy.

10 Click Deploy.
11 Click OK.

Customizing the Generic PRD
We recommend customizing the generic PRD for your environment. You can customize the category,
workflow activities, entities, and forms. The PRD includes three forms by default:

 request_form: Request form users use to request access to the Approvals app.
 approval_form: Approval form managers use to approve or deny requests for access.
 approval_form_prov_admin: Approval form provisioning administrators use to fix issues with

the provisioning server configuration.

To create and customize a PRD to automatically configure your users’ settings in the Approvals app:

1 In the Outline view, navigate to the User Application driver.
2 Expand User Application Driver > Provisioning Request Definitions > Accounts.
3 Right-click Request Mobile Approval Access and select Edit.
4 Modify the Display Name and Description fields, if necessary.
5 (Optional) If you want to move the PRD from the default Accounts category, click the Category

drop-down menu and select the category you want to use.
Configuring the Identity Manager Approvals App 695

NOTE: Most users do not need to modify the Status, Flow Strategy, and Process Type fields for
the generic PRD. We recommend only advanced users modify these fields.

6 (Optional) By default, the User DAL entity does not have an attribute configure for a user’s
mobile telephone number. If you do not currently have a Mobile attribute configured for User
entities in your environment, you may need to add the attribute. Complete the following steps
to add the attribute to the entity:
6a In the Provisioning view, expand User Application Driver > Directory Abstraction Layer >

Entities.
6b Right-click User and select Edit.
6c In the Data Abstraction Layer view, expand Entities > User.
6d Right-click User and select Add Attribute.
6e In the Add Attribute window, select the mobile attribute in the Available Attributes for

Entity Class list.
6f Click Add Attribute to move the attribute to the Entity Attributes list.
6g Click OK.
6h Close and save the Data Abstraction Layer.

7 Click the Workflow tab.
8 Click Mobile Configuration (prov admin must edit these).
9 Click Data Item Mapping.

10 Edit the data item mapping expressions for the Mobile Configuration workflow activity. Ensure
that the data item mapping matches the way your DAL User entity is configured.
The following image shows the workflow activity and data item mapping:
696 Configuring the Identity Manager Approvals App

11 (Optional) If you want to modify the default Trustee rights for the PRD, complete the following
steps:
11a Click the Overview tab.
11b Click the plus icon.
11c Select the group or user you want to be able to request access to the Approvals app.

NOTE: By default, the PRD trustee rights are set to [ROOT]. This default setting allows all
users to request access to the Approvals app. Administrators can configure the trustee
rights to limit access to only certain users, if necessary.

11d Click OK.
12 (Optional) If you want to customize the default PRD request and approval forms, complete the

following steps:
12a In the Forms view, click the name of the form.
12b Modify the fields in the Form Controls window, as necessary.
12c Click the Preview icon to view the form.
12d Click OK when finished.

13 When finished, close and save the Request Mobile Approval App tab.
14 In the Outline view, right-click Request Mobile Approval App and select Sync to Package.
Configuring the Identity Manager Approvals App 697

15 Right-click Request Mobile Approval App and select Live > Deploy.
16 Click Deploy.
17 Click OK.

Creating and Deploying a Custom Configuration Link
If you want to provide a “generic” set of configuration settings to any user who installs the Approvals
app, you can embed a configuration link in an HTML page on a Web server your users can access.

Include the standard configuration link syntax in a link, as in the following example:

<a href="idmapproval://settings/
?userid=&passwordInKeychain=&host=123.112.20.109&port=8180&rbpmContext=IDM
Prov&
userContainer=ou=users,o=data&timeout=5&vdxUserEntity=user&vdxNameFormatAt
tribute=FirstName%20LastName&
vdxFirstNameAttribute=FirstName&vdxLastNameAttribute=LastName&vdxPhotoAttr
ibute=UserPhoto&vdxPhotoAttributeLdap=
photo&vdxPhoneAttribute=TelephoneNumber&vdxMobileAttribute=mobile&vdxEmail
Attribute=Email&namingAttribute=cn&
provAdminGetTasksWorkaroundInPlace=YES">Configure Approvals App
Unless you create a custom link for one specific user, most configuration links should leave the
userid and passwordInKeychain values blank, providing the Identity Applications server
information and Identity Vault information users need to be able to use the app.

A user clicks the link, and the link automatically configures the app with any settings you include in
the link. The user then manually configures their Username and Password settings within the app.

Creating and Deploying a Custom Configuration QR Code
If your users cannot access their work email from their devices, you can create a QR code from the
Approvals app configuration link and email that code to your users.

You can use any QR code generator you want to create the code, generating the code using a
configuration link customized for your environment. Embed the code in an HTML page on a Web
server your users can access.

For the example provided in “Setting Up the Approvals App” on page 690, the QR code could look
like the following image:
698 Configuring the Identity Manager Approvals App

A user can then install the app, open the email on their work computer, and use a QR code reader on
their device to scan the code displayed on the screen.

The QR code acts as a configuration link, automatically configuring the app with any settings you
include in the link. In most environments, your users need to then manually configure their
Username and Password settings within the app.

Optimizing Designer Forms for the Approvals App
The Approvals app renders Designer forms using either native iOS controls or HTML, depending on
the complexity of each specific form. Native iOS controls provide a more standard look and feel to
forms, while HTML-rendered forms look similar to forms in the identity applications interface.

When creating new forms in Designer, we recommend simplifying forms as much as possible so that
the app uses native iOS controls.

You can also configure your forms to display a more complex version of the form in the identity
applications and a less complex version in the Approvals app, using the suffix _mobile.

For example, if you have an Approval activity form called approveLaptop, you can create a new
form called approveLaptop_mobile that acts as a simplified version of the original Approval
activity form. In order for data item mapping to function correctly, the _mobile form must include
the same fields as the original. We recommend you keep both versions of the form synchronized.

The following steps can help you optimize your forms so the app can render using iOS controls:

1 Ensure the Identity Applications server has the correct version and patch installed. The server
must have version 4.0.2 Patch B or later installed.

2 Ensure the form has no scripts.
3 Ensure the form contains only fields with the following supported data types and control types:

 boolean: any control type
 date: any control type
 time: any control type
 decimal or integer: Text control type only
 dn: DNDisplay or read-only MVEditor control types only
 string: Text, Password, Title, TextArea, or read-only MVEditor control types only

For more detailed information about creating forms in Designer, see “Creating Forms for a
Provisioning Request Definition,” in the NetIQ Identity Manager - Administrator’s Guide to Designing
the Identity Applications.

Understanding Language Support in the Approvals App
The Approvals app includes localized text for all built-in text strings. For example, the titles displayed
at the top of a view within the app are available in multiple languages, depending on the user’s
locale. Approvals app strings are provided in the following languages, by default:

 Chinese (Simplified)
 Chinese (Traditional)
Configuring the Identity Manager Approvals App 699

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#createformsforprovisioningrequestdefinitions
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#createformsforprovisioningrequestdefinitions
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

 Danish
 Dutch
 English
 French
 German
 Italian
 Japanese
 Portuguese (Brazilian)
 Russian
 Spanish
 Swedish

As an administrator, you can also localize the form text displayed in the Approvals app. For example,
the Approvals app does not provide localized text for specific Approval tasks. You must localize text
strings for each of your PRDs, including form text, using Designer. For information about localizing
objects in Designer, see “Localizing Provisioning Objects,” in the NetIQ Identity Manager -
Administrator’s Guide to Designing the Identity Applications.
700 Configuring the Identity Manager Approvals App

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#localizingdisplaylabels
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

B BWorking with Language-Specific Email
Templates

This section applies to Identity Manager 4.8.6 and later.

To send localized emails, first create a custom provisioning request definition in Designer, followed
by a new role or resource with the custom PRD in Dashboard. For example, if you want to send an
email in Norwegian language when the approval process for a role request is complete, you need to
create a role with custom approval using the custom PRD and a Norwegian language email
notification template.

The following table outlines how to create a custom roles-based provisioning request using
language-specific email templates.

Table B-1 Basic Steps for Defining a Custom Role-Based PRD Using Language-Specific Email Notification Template

NOTE:

 You cannot change the email template tokens for roles and resource created using the default
role assignment/revoke approval workflow.

 When you choose a localized email template in a provisioning request definition, the email is
sent in the language of the template, regardless of the user’s default language. Make sure to
change the User Application Driver’s default language accordingly.

Step Action For More Information

1 Set the default locale for the User Application
Driver in Designer.

See Specifying the Default Locale.

2 Create a custom roles-based approval
provisioning request definition.

See Creating a Custom Roles-Based Provisioning
Request Definition.

3 In the Workflow tab, select the Role Request/
Revocation Approval activity and specify the
email notification settings.

See Defining the E-Mail Notification Settings.

4 Deploy the provisioning request definition to
Identity Vault.

From the Provisioning view in Designer, open Roles
in the Provisioning Request Definitions node. Select
the provisioning request definition created in Step 2,
right-click and select Live > Deploy.

5 Go to Dashboard and create a new role with
custom roles-based provisioning request
definition created in Step 2.

See Creating a New Role With a Custom Roles-Based
PRD.
Working with Language-Specific Email Templates 701

Specifying the Default Locale
To change the User Application driver’s default locale to your preferred language:

1 In Designer, right-click the User Application driver in the Provisioning view, then select Configure
> Default Locale.

2 Select the locale from the drop-down list box, then click OK.
If you do not see the locale in the list, you must add it through the Locales dialog box. For more
information, see Specifying Locales and Localization Resource Groups in the NetIQ Identity
Manager - Administrator’s Guide to Designing the Identity Applications.

Creating a Custom Roles-Based Provisioning Request
Definition

Role Assignment/Revocation Approval is a roles-based provisioning request definition in Designer
that you should use as a basis for your custom role approval provisioning request definitions.

To create a copy and customize its contents:

1 From the Provisioning view in Designer, open Roles in the Provisioning Request Definitions node.
2 Select Role Assignment/Revocation Approval, right-click, then select Create From.

Designer displays the Create a New PRD wizard.
3 Fill in the fields as follows:

4 Click Next.
5 Specify Roles for the category.
6 Select Notify participants by E-Mail to notify approvers by email.
7 Click Finish.

Designer displays the Provisioning Request Definition Details panel on the Overview tab.
8 To add a language code to the PRD, click Localize data beside the Display Name and Description

fields and add a language-specific suffix. For example, _nb for Norwegian.
9 Set the Status to Active to make the provisioning request definition available for use in the

User Application. For description of the parameters on the Overview tab, see Modifying Settings
of a Provisioning Request Definition in the NetIQ Identity Manager - Administrator’s Guide to
Designing the Identity Applications.

10 Click Save.

Field Description

Identifier (CN) The CN (common name) identifier for the provisioning request definition.
The name cannot be longer than 64 characters.

Display Name The display name for the provisioning request definition. This is the name
that is displayed in the Provisioning view.

Description A description of the provisioning request definition.
702 Working with Language-Specific Email Templates

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#specifyinglocalesandlocalizationresourcegroups
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#prdefmodifyingprd
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#prdefmodifyingprd
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/identity_apps_design/identity_apps_design.pdf#netiqidentityappsdesignguide

Defining the E-Mail Notification Settings
The E-Mail Notification view allows you to select an email template and specify expressions to
provide values for named parameters included in the email template.

To set email notification settings for the Role Request/Revocation Activity:

1 On the Workflow tab, right-click the Role Request/Revocation Approval activity and select Show
E-Mail Notification from the menu.
You can also display the E-Mail Notification tab by selecting Show E-Mail Notification from the
PRD menu.

2 Click the E-Mail Template field, then select the Roles Request Approval Completed Notification
from the list of defined templates.

3 Click in the Source field for a Target token and specify an ECMAScript expression that assigns a
value to the token. You must include locale in the expression for languages other than English.
Following that, the User Application Driver’s default locale is used.
For example, in the source expression for the requestStatus token, use
NrfRequest.getStatusLocaleString(locale) instead of
NrfRequest.getStatusLocaleString(java.util.Locale.getDefault()).

Creating a New Role With a Custom Roles-Based PRD
1 Log in to Identity Applications Dashboard as a role administrator or role manager and go to

Administration > Roles.
2 Click + to create a new role.
3 Specify the values for all the fields marked with an asterisk (*).

Click Show Languages, specify Name and Description for the role in the preferred language.
4 (Optional) Specify the Level, Subcontainer, Categories, and Owners from the list.
5 Click Create Role.
6 After the role is successfully created, select the role and click Details, Owners, and Approvals.
7 To select a custom roles-based PRD (created using Designer), click Grant Approval Process and

choose Custom, followed by searching and selecting the custom roles-based PRD in the Custom
Approval field.

8 Click Apply.

Now, when a user requests permission for a given role on the New Request page, the application
sends a localized email to the addressee once the approval process for the role request is complete.
Working with Language-Specific Email Templates 703

704 Working with Language-Specific Email Templates

C CSchema Extensions for the Identity
Applications

This section describes the schema extensions used by the identity applications.

Attribute Schema Extensions

Attribute Name Description

srvprvAllowMgrInitiate A flag that indicates if the manager is allowed to
initiate a provisioning request.

srvprvAllowMgrRetract A flag to indicate if the manager is allowed to retract
a provisioning request.

srvprvAllowMgrSetAvailability A flag that indicates whether the manager can set a
proxy for the team.

srvprvAllowMgrSetDelegate A flag to indicate if the manager is allowed to set
delegates for a provisioning request.

srvprvAllowMgrSetProxy A flag to indicate if the manager is allowed to set a
team proxy.

srvprvAllowMgrTaskClaim A flag to indicate if the manager is allowed to claim a
provisioning approval task.

srvprvAllowMgrTaskReassign A flag to indicate if the manager is allowed to reassign
a provisioning approval task.

srvprvAllRequests A flag to indicate if the assignment covers all
provisioning request definitions for a team.

srvprvAOLIMAddress AOL IM address.

srvprvAssetRef Representation of the aggregate asset properties for
a named asset associated to a user via the
srvprvAssetRecipientAux class.

srvprvAssignExpiration Time at which a proxy or delegate assignment
expires.

srvprvAssignFromContainer Container subjects of a proxy or delegate assignment.

srvprvAssignFromGroup Group subjects of a proxy or delegate assignment.

srvprvAssignFromUser User subjects of a proxy or delegate assignment.

srvprvAssignStartTime Time at which a delegation assignment takes effect.

srvprvAssignToRelationship A target relationship of a delegate assignment.
Schema Extensions for the Identity Applications 705

srvprvAssignToUser The User targets of a proxy or delegate assignment.

srvprvAutoDisplayTeam Automatically display team members.

srvprvCapabilities1-5 Listing of skills for a user.

srvprvCategoryKey Associates a given Provisioning Request Definition to
a set of provisioning categories. Values are keys to a
srvprvChoice instance.

srvprvCurrentDelegatees The delegations associated with a user.

srvprvCurrentDelegators The delegations associated with a user.

srvprvDefault The default .

srvprvDelegateeDef The delegates definition DN.

srvprvDelegationDef The delegation definition DN.

srvprvDelegators The users who are defined as delegators by this
assignment.

srvprvEntitlementRef Reference to a DirXML-Entitlement.

srvprvEntityType Specifies Directory Abstraction Layer Entity definition
type.

srvprvFlowStrategy Specifies the flow invocation strategy to be used for
the Provisioning Request Definition.

srvprvGrant Flag which if true specifies that the Provisioning
Request Definition supports a Grant operation.

srvprvGroupwiseIMAddress Groupwise IM address.

srvprvHideAttributes Flag indicating if certain attributes should be hidden
and not displayed.

srvprvHideUser Flag indicating if the user should be hidden when
search list queries are executed.

srvprvIMAddress Instant Messenger address.

srvprvIsTaskManager Indicates if user is a task group manager.

srvprvLocalizedDescrs Provides set of localized description strings for the
provisioning web applications, Designers and
iManager.

srvprvLocalizedNames Provides set of localized display name strings for the
provisioning web applications, Designers and
iManager.

srvprvManager Indicates users who are managers.

srvprvManagerGroup Indicates a group containing managers.

srvprvManagerNotMember Indicates that the manager is not a member of the
team.

Attribute Name Description
706 Schema Extensions for the Identity Applications

srvprvMember Indicates users who are team members.

srvprvMemberContainer The name of the container containing team
members.

srvprvMemberGroup The name of the group containing team members.

srvprvMemberRelationship The name of the directory abstraction layer
relationship that determines members based
attribute in manager object.

srvprvModified Flag to indicate changes to definitions object
instances in the directory model container.

srvprvNotificationPrefs Defines the set of notification types users want to
receive.

srvprvPreferredLocale Users preferred locale.

srvprvProcessXML XML document representing a Provisioning process
definition including Workflow and Provisioning
Action.

srvprvQueryList List of saved query/search criteria.

srvprvRelationship Defines relationships between objects in the identity
vault.

srvprvRequest Exposes one item to be granted or revoked, including
the workflow process which defines the run-time
aspects of the Workflow and Provisioning Target.

srvprvRequestDefName The provisioning request definition name associated
with a delegate definition.

srvprvRequestScope The scope of provisioning requests.

srvprvRequestXML XML document representing the initial request form
and its data bindings.

srvprvRevoke If true, this flag specifies that the Provisioning
Request Definition supports a Revoke operation.

srvprvStatus Specifies the status of the Provisioning Object
Supported values.

srvprvTaskGroups Groups for which the user is a task manager.

srvprvTaskManager Task manager of the task group.

srvprvTaskScopeAddressee The addressee’s task scope.

srvprvTaskScopeRecipient The recipient’s task scope.

srvprvTeam The container for team definitions.

srvprvUser The users associated with a delegation assignment.

srvprvUUID Unique identifier for portlet.

Attribute Name Description
Schema Extensions for the Identity Applications 707

Objectclass Schema Extensions

srvprvYahooIMAddress Yahoo* IM address.

Attribute Name Description

Objectclass Name Description

srvprvAppConfig Container for application configuration objects of
the Provisioning System to which its DirXML-Driver
parent connects.

srvprvAppDefs Container for configuration objects used to initialize
the Provisioning run-time environment, such as s for
the Identity Portal.

srvprvAssetRecipientAux Records the provisioning of non-IT assets on a user.

srvprvChoice Enumeration of values that can be assigned to a
particular attribute, used in a query, for use in the
Identity Portlets and other Web Application
components.

srvprvChoiceDefs Container for Directory Abstraction Layer Choice
definitions, to be exposed by the Identity Portlets
and Web Applications.

srvprvDelegateeAssignment Delegates assignment definition.

srvprvDelegateeDefs Container for delegates definitions.

srvprvDelegationAssignment Delegation or availability assignment definition.

srvprvDelegationDefs Container for delegation and delegators definitions.

srvprvDelegatorAssignment Delegation or availability assignment definition.

srvprvDirectoryModel Container for Directory Abstraction Layer meta-level
objects, selected contents of the directory to be
exposed by the Identity Portlets and Web
Applications.

srvprvDirectoryModelConfig Runtime Directory Abstraction Layer configuration
parameters.

srvprvEntity Defines a view of selected attributes for defined
classes in the directory, used by the Identity Portlets
and other Web Application components.

srvprvEntityAux Standard ObjectClass.

srvprvEntityDefs Container for Directory Abstraction Layer Entity
definitions, to be exposed by the Identity Portlets
and Web Applications.

srvprvProxyAssignment Proxy assignment definition.
708 Schema Extensions for the Identity Applications

srvprvProxyDefs Container for proxy definitions.

srvprvQuery Directory abstraction layer query definition.

srvprvQueryDefs Container for directory abstraction layer query
definition.

srvprvRelationship Defines relationships between objects in the
directory, for use in the Identity Portlets and other
Web Application components.

srvprvRelationshipDefs Container for Directory Abstraction Layer
Relationship definitions, to be exposed by the
Identity Portlets and Web Applications.

srvprvRequest Exposes one item to be granted or revoked,
including the workflow process which defines the
run-time aspects of the Workflow and Provisioning
Target.

srvprvRequestDefs Container for Provisioning Request Definitions, the
set of items to the Web Application run-time.

srvprvResource Defines the set of directory assignments to execute
for a provisioning fulfillment operation (either Grant
or Revoke).

srvprvResourceDefs Container for Provisioning Target definitions,
including design-time descriptions plus any template
or unused targets.

srvprvService Describes how to invoke a specific Web Service from
an Workflow This includes specification of input and
return values.

srvprvServiceDefs Container for Service Definition objects, which wrap
Web Services called by Workflows.

srvprvTaskGroupAux Service provisioning task group.

srvprvTeam Team for provisioning request management.

srvprvTeamDefs Container for team definitions.

srvprvTeamRequest Team provisioning requests.

srvprv Object.

srvprvUserAux Service provisioning user entity.

srvprvWebAppConfig Web Application configuration object.

srvprvWorkflow Defines the network of activities including traversal
conditions to be executed in order to obtain
approval for a provisioning action.

srvprvWorkflowDefs Container for Workflow objects, including design-
time descriptions plus any template or unused flows.

Objectclass Name Description
Schema Extensions for the Identity Applications 709

Resource Definition Object (nrfResource)
The schema object that contains provisioning resource definitions.

Table C-1 Resource Definition Object Schema Definition

Resource Request Object (nrfResourceRequest)
The schema object whose instances contain a resource request object. The resource request object
is used by the resource driver to provision the resource.

Attribute Name Description

nrfLocalizedName The localized name of the resource.

nrfLocalizedDescrs The localized description of the resource.

Owner The owner of the resource. It is the DN of an inetOrgPerson user.

nrfRequestDefGrant Provisioning request definition used for approving the granting of a
resource assignment.

nrfRequestDefRevoke Provisioning request definition usef for approving the revocation of a
resource assignment.

nrfEntitlementRef Identity Manager entitlement associated with the resource. Supports
embedding of dynamic parameter macros to allow users to specify
values at request time.

nrfApprovers Resource approvers. Order of approvers is maintained by an integer in
the second element.

nrfQuorum Used to support quorum approvals in templated PRDs. This is the
quorum condition. Can be percentage or number of approvers
required.

nrfDynamicParameters XML document that describes allowable parameter values that can be
specified at request time when the resource is being granted.

nrfCategoryKey Used to categorize resource.

nrfAllowAprOveride Allow requesting system (such as role provisioning) to override
approval of the resource provisioning.

nrfAllowMulti Allow the resource to be assigned to the same user multiple times.

nrfResourceWeightage Used to determine the order of assignment and revocation of resource
entitlement in the connected systems. Applicable when the resource is
assigned through a role.

This attribute has been added in Identity Manager 4.8.1 version.
710 Schema Extensions for the Identity Applications

Table C-2 Resource Request Object Schema Definition

Resource Request Status Codes (nrfStatus)

Table C-3 Valid Resource Request (nrfStatus) Status Codes

Attribute Description

nrfRequestDate Date-time resource request started.

nrfCategory 10-Resource To User Add

15 - Resource to User Remove

nrfResource DN of resource to grant or revoke.

nrfEntitlementRef Entitlement reference value of the resource being granted. This value is
copied from the resource definition with parameter values populated at
the time of the request.

nrfTargetDN DN of user who will be granted the resource or from whom the resource
will be revoked.

nrfRequester DN of user or role that requested assignment.

nrfStatus Status of request. Valid codes are described in “Resource Request Status
Codes (nrfStatus)” on page 711.

nrfDescription Description/Comment of the resource request.

nrfRequestDef Provisioning request definition used for approving the role.

nrfApprovers Resource approvers. Order of approvers can be maintained by an integer
in the second element.

nrfQuorum Used to support quorum approvals in templated PRDs. The quorum
condition can be percentage or numbers of approvers required.

nrfApprovalInfo Holds approval data needed by resource view and reports.

nrfApprovalProcessid Workflow process instance ID for resource assignment approval.

Status Code Key Description

01 New Request Initial value when request is created

12 Approval_Retry

13 Pending_Approval_RETRY

15 Approval Pending Set by driver after successful assignment/
revocation workflow.

20 Approved Set by resource assignment/revocation
workflow when approved.

30 Provision/Deprovision Set by driver after all necessary approvals
have been approved and role activation time
has been reached.
Schema Extensions for the Identity Applications 711

Role Definition Object (nrfRole)
The schema object that contains provisioning role definitions.

Table C-4 Role Definition Object Schema Definition

50 Provisioned/Deprovisioned Set by driver after role has been provisioned
or deprovisioned.

70 Cancel Request cancellation

75 Cancelled Cancellation request completed.

80 Provisioning Error Set by driver when an error occurred during
provisioning or deprovisioning.

95 DeniedSet Set by assignment/revocation workflow
when approved.

100 CleanupSet When nrfResourceRequest workflow should
be deleted.

Status Code Key Description

Attribute Description

nrfActive Whether role is active.

nrfApprovers Role approvers. Order of approvers is maintained by an integer in the
second element.

nrfChildRoles Child roles of the current role.

nrfEntitlementRef Identity Manager entitlement associated with the role. Supports
embedding of dynamic parameter macros to allow users to specify values
at request time.

nrfImplicitContainers Containers assigned to the role.

nrfImplicitGroups Groups assigned to the role.

nrfLocalizedDescrs The localized description of the role.

nrfLocalizedNames The localized name of the role.

nrfParentRoles Parent role of the current role.

nrfQuorum Used to support quorum approvals in template PRDs. This is the quorum
condition. Can be percentage or number of approvers required.

nrfRequestDef Provisioning request definition used for approving a role assignment.

nrfRevokeRequestDef Provisioning request definition used for approving the revocation of a
role assignment.

nrfRoleCategoryKey Used to categorize role.

nrfRoleLevel Role level that defines the role hierarchy.
712 Schema Extensions for the Identity Applications

Role Status Codes (nrfStatus)

Table C-5 Valid Role (nrfStatus) Status Codes

Request Object (nrfRequest)
The schema object whose instances contain a role request object. This request object is used by the
role driver to provision the role.

Table C-6 Request Object Schema Definition

nrfStatus Status of role. Valid codes are described in “Role Status Codes (nrfStatus)”
on page 713.

Status Code Key Description

50 CREATED Role created.

15 DELETE PENDING Role delete pending.

Attribute Description

Attribute Description

nrfApprovalInfo Holds approval data needed by role view and reports.

nrfApprovalProcessid Workflow process instance ID for role assignment approval.

nrfApprovers Role approvers. Order of approvers can be maintained by an integer in
the second element.

nrfCategory 10-Role To User Add

15 - Role to User Remove

nrfCorrectionId Used to group the role assignments request together.

nrfDecisionDate Indicates date when the request cleanup process evaluation should
happen.

nrfDescription Description/Comment of the role request.

nrfEndDate Indicates end date of role assignment.

nrfImmediate Indicates whether the permission has to be assigned immediately.

nrfMacros Macros definitions for approval by relationship.

nrfOriginator Used to determine what component originated role assignment request:
user application, role request workflow activity, or policy.

nrfQuorum Used to support quorum approvals in templated PRDs. The quorum
condition can be percentage or numbers of approvers required.

nrfRequestDate Date-time role request started.
Schema Extensions for the Identity Applications 713

Request Status Codes (nrfStatus)

Table C-7 Valid Request (nrfStatus) Status Codes

nrfRequester DN of user or role that requested assignment.

nrfRequestDef Provisioning request definition used for approving the role.

nrfSODApprovalInfo Approval data needed for SOD violation reporting.

nrfSODApprovalProcessId Provisioning request definition used for SOD Approval if SOD conflict
arises.

nrfSODConflicts List of SOD conflicts with the permission request.

nrfSODQuorum SOD quorum condition used for resolving SOD conflicts.

nrfSODRequestDef SOD definition that permission request resulted in conflict.

nrfStartDate Start date of the role assignment.

nrfSourceDN DN of user to whom the role is to be added or removed.

nrfTargetDN DN of user who will be granted the resource or from whom the resource
will be revoked.

nrfStatus Status of request. Valid codes are described in “Request Status Codes
(nrfStatus)” on page 714.

Status Code Key Description

00 New Request Set by User Applications on newly created
nrfRequest.

02 SOD RETRY Driver will reattempt to start the SOD
workflow.

03 SOD RETRY PENDING Occurs when the driver is not able to start a
SOD workflow.

A driver task will then reset these requests to
SOD_WORKFLOW_START_PENDING, to retry
the starting of the workflow.

05 SOD PENDING SOD approval pending; set by the driver after
successfully initiating the SOD workflow.

10 SOD APPROVED SOD approved; set by the SOD workflow
when approved.

12 Approval_RETRY Driver will reattempt to start the workflow.

13 Pending_Approval_RETRY Occurs when the driver is not able to start
the approval workflow.

Attribute Description
714 Schema Extensions for the Identity Applications

Role-Resource Configuration (nrfConfiguration)
Table C-8 Role-Resource Configuration Object Schema

15 Approval Pending Set by driver after successful assignment/
revocation workflow.

20 Approved Set by resource assignment/revocation
workflow when approved.

25 Assignment PENDING Activation time pending; set by the driver
after obtaining all necessary approvals and
when the activation time has not been
reached.

30 Provision/Deprovision Set by driver after all necessary approvals
have been approved and role activation time
has been reached.

50 Provisioned/Deprovisioned Set by driver after role has been provisioned
or deprovisioned.

70 Cancel Request cancellation

75 Cancelled Cancellation request completed.

80 Provisioning Error Set by driver when an error occurred during
provisioning or deprovisioning.

90 SOD Denied SOD denied; set by SOD exception workflow
when denied.

95 DeniedSet Set by assignment/revocation workflow
when approved.

100 CleanupSet When nrfResourceRequest workflow should
be deleted.

Status Code Key Description

Attribute Definition

nrfResourceRequestContainer Root container for resource requests.

nrfResourcesContainer Root container for resource definitions.

nrfResourceRevokeRequestDef Default PRD for approving resource
revocations

nrfResourceGrantRequestDef Default PRD for approving resource
assignments.
Schema Extensions for the Identity Applications 715

Resource Binding to Users (nrfIdentity)
Table C-9 Resource Binding to Users Object Schema

Resource Containers
ResourceRequests (nrfResourceRequests): A container objects that persists resource requests.

ResourceDefs (nrfResourceDefs): A container object that persists the definition of a resource.

Attribute Description

nrfResource Currently assigned and assigned resources.
Attribute contains DN for the resource DN,
the binding state of the resource, and the
cause of the assignment and approval
information.

nrfResourceHistory Contains historical information about each
resource grant, revocation, denial. Contains
the resource as well as XML that contains the
resource binding state, (0=inactive, 1=active,
2=pending, 3= deactivated). The XML also
contains the entitlement reference value used
to grant the entitlement, grant history (who
and when), and revocation history (similar to
approval information)
716 Schema Extensions for the Identity Applications

D DJavaScript Search API

The underlying framework for theidentity applications supports a JavaScript API for executing
searches that access the Directory Abstraction Layer. This API lets you build, save, and execute
queries from a JSP page running outside of the identity applications itself. To run a query, you can
invoke the services of the SearchListPortlet, passing parameters that specify the search criteria and
formatting options. Alternatively, you can run a search by using the API directly without involving the
SearchListPortlet.

Launching a Basic Search using the SearchListPortlet
To perform a basic search, you can specify a deep link to the SearchListPortlet from a JSP page. The
URL for the portlet must either pass a simple set of request parameters that specify the search
criteria, or pass a JSON-formatted query string. A basic search defines a single search criterion, such
as the following:

First Name starts with A
To launch a search, you can call the single portlet render url for the SearchListPortlet. You must pass
the request parameter MODE=MODE_RESULTS_LIST

Passing Request Parameters
You can pass a simple set of request parameters to the SearchListPortlet. These parameters specify
an entity, an attribute to search on, an operator, and a search string. The following script shows the
URL for the portlet, as well as the four request parameters you need to use:

<script type="text/javascript">
function openSearchResults(extraUrlParams) {
 var url = "/IDMProv/portal/portlet/SearchListPortlet?";
 url += "urlType=Render&novl-regid=SearchListPortlet";
 url += "&novl-inst=IDMProv.SearchListPortlet";
 url += "&wsrp-mode=view&wsrp-windowstate=normal";
 url += "&MODE=MODE_RESULTS_LIST&";
 url += extraUrlParams;
 var feat = "width=700,height=600";
 feat += ",menubar=no,resizable=yes,toolbar=no,scrollbars=yes";
 var win = window.open(url, "TestSearchPopup", feat);
 if (win) win.focus();
}

var search1a = "ENTITY_DEF=user";
search1a += "&COND_ROW_ATTR=FirstName";
search1a += "&COND_ROW_REL_OP=starts-with";
search1a += "&COND_ROW_VAL=A";
...
To call this function, you might have a button on the form with onclick event that looks like this:
JavaScript Search API 717

<input type="button" value="GO" onclick="openSearchResults(search1a)"/>
The following table describes the request parameters:

Table D-1 Request Parameters for Basic Search

Using a JSON-formatted String to Represent a Query
If you prefer to format your query as a JSON string, you need to pass the QUERY parameter to the
SearchListPortlet, instead of the request parameters described in the section above. The JavaScript
variable shown below illustrates how the QUERY parameter is constructed:

Request Parameter Description

ENTITY_DEF Specifies the key value for an entity in the Directory
Abstraction Layer.

COND_ROW_ATTR Specifies the attribute to search on.

COND_ROW_REL_OP Specifies the operator to use in the search
expression. The following operators are supported for
attributes of type string, boolean, integer, time,
dn_lookup, dynamic_list, and static_list:

equals
present
not_equals
not_present

The following operators are supported for attributes
of type string:

starts_with
ends_with
contains
not_starts_with
not_ends_with
not_contains

The following operators are supported for attributes
of type integer and time:

greater
greater_or_equal
less
less_or_equal
not_greater
not_greater_or_equal
not_less
not_less_or_equal

COND_ROW_VAL The value to search on.
718 JavaScript Search API

var search1b ='QUERY={"k":"Lastname starts with B","mxPg":"10",';
search1b +='"mxRes":"0","ptr":"1","grp":[{"map":{"row":[{"map":{';
search1b +='"rowRop":"starts-with","rowVal":"B","rowAttr":"LastName"';
search1b +='}}],"rowLop":"and"}}],';
search1b +='"orderBy":"LastName","entDef":"user",';
search1b +='"sScope":"","sRoot":"","grpLop":"and",';
search1b +='"selAttr":["FirstName","LastName",';
search1b +='"Title","Email","TelephoneNumber"]}';
The JSON structure gives you a way to specify values for most of the settings and preferences
associated with the SearchListPortlet.

The following table describes the JSON name/value pairs that define the QUERY parameter passed
to the SearchListPortlet:

Table D-2 JSON Structure for Defining the QUERY Parameter

The following table describes the JSON structure for defining a condition group:

JSON Setting Description

k Specifies a name for the search. (Optional)

mxPg Specifies the maximum number of rows per page.
(Optional)

mxRes Specifies the maximum number of total rows
retrieved. (Optional)

ptr Sets the scroll pointer, which defines the pagination
offset. (Optional)

grp Defines a condition group. You can specify one or
more condition groups. For details on the settings for
a condition group, see Table D-3 on page 720.

orderBy Specifies the attribute to sort on. (Optional)

entDef Specifies an entity in the Directory Abstraction Layer.

sScope Sets the search scope. (Optional)

sRoot Sets the search root. (Optional)

grpLop Defines the logical operator (and or or) for groups
within this query.

selAttr Lists the attributes to include in the search results.
JavaScript Search API 719

Table D-3 JSON Structure for Defining a Condition Group

The following table describes the JSON structure for defining a condition row:

Table D-4 JSON Structure for Defining the Fields for a Condition Row

Creating a New Query using the JavaScript API
As an alternative to using the basic search request parameters, or the JSON structure, you can call a
JavaScript API to execute queries. This section describes some simple techniques for using the API,
as well as reference documentation for the API.

The search API relies on the ajax framework embedded in the identity applications component
named JUICE. JUICE (JavaScript UI Controls and Extensions) is compliant with and uses the dojo
library. JUICE is merged into the dojo release used in the identity applications.

Therefore, to use JUICE on a custom page within the IDM User Application WAR file, you need to
have a script reference to dojo.js (not to JUICE). After adding the reference to dojo.js, you can add a
JavaScript line to tell dojo to download JUICE.

Before using the JavaScript API, you need to perform some setup steps on the page to make the dojo
module available for use:

1 Add a script tag for dojo.js in the HTML header. The reference to dojo.js must be in the header
(not the body), as shown below.

JSON Setting Description

row Defines a condition row. You can specify one or more
condition rows. For details on the settings for a
condition row, see Table D-4 on page 720.

rowLop Defines the logical operator (and or or) for rows
within this group.

JSON Setting Description

rowRop Defines the relational operator. The relational
operators supported in JSON are the same as those
for basic searches using request parameters. For a
complete list of the relational operators, see the
description of COND_ROW_REL_OP in Table D-1 on
page 718.

rowVal Sets the search value.

rowAttr Specifies the attribute to search on.
720 JavaScript Search API

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>JavaScript Search</title>
<script type="text/javascript">
 if(typeof dojo=="undefined"){
 var djConfig={isDebug: false,
 baseScriptUri: "/IDMProv/javascript/dojo/"};
 var buf="<script type='text\/javascript' ";
 buf+="src='/IDMProv/UIQuery?js=dojo\/dojo.js'><\/script>";
 document.writeln(buf);
 }
</script>
</head>

2 Add this JavaScript statement to load JUICE into the browser’s memory:

<script type="text/javascript">
 //This line must precede any code using JUICE.
 dojo.require("JUICE.*");
</script>

3 To take advantage of the JUICE.IDM services, which include entity searching, also add this
JavaScript statement:

<script type="text/javascript">
 //This line must precede any code using JUICE.IDM services.
 dojo.require("JUICE.IDM.*");
</script>

To build the query, you need to call the create() method on the JUICE.IDM.Entities.Search object,
passing in the name you want to give to the query. The create() method is a static method. Here’s
how you invoke it:

var newQuery = JUICE.IDM.Entities.Search.create("My New Search");
Once you’ve created the query object, you can call methods on this object to define the basic
settings for the query, as well as the condition groups and condition rows. The query structure you
create with the JavaScript API follows the model of the JSON representation. After you’ve created
the query object you append it to the QUERY request parameter.

The JavaScript example shown below illustrates how you use the JavaScript API to build a query:

function buildQuery3() {
 var newQuery = JUICE.IDM.Entities.Search.create("My New Search");
 newQuery.setFrom("user");
 var selAttrs = ["FirstName","LastName"];
 newQuery.setSelects(selAttrs);
 var newCondGrp1 = newQuery.addConditionGroup();
 var newCondRow1_1 = newCondGrp1.addConditionRow();
 newCondRow1_1.setRowAttr("FirstName");
 newCondRow1_1.setRowRop("contains");
 newCondRow1_1.setRowVal("C");
 openSearchResults("QUERY=" + newQuery);
}

JavaScript Search API 721

JavaScript API
This section provides reference documentation for the JavaScript API for searching entities in the
Directory Abstraction Layer.

The following table describes the static methods for the JUICE.IDM.Entities.Search object:

Table D-5 Static methods for JUICE.IDM.Entities.Search

The following table describes the methods for the Query object:

Table D-6 Methods for the Query object

Method Description

<Query> (createsearchName) Creates a new Query with the searchName

<void> load(uuid) Loads a user's saved search with the uuid

<Query> get(uuid) Returns the user's saved search with uuid as a Query

<String[]> getNames() Returns the names of all the logged in user's saved
searches

<String> getUUID(searchName) Returns the uuid of the saved search with the
searchName

Method Description

<void> setKey(searchName) Sets the searchName

<void> setFrom(defKey) Sets the from entity-definition

<void> setSelects(attrKey[]) Sets the selects (optional, if using SearchListPortlet)

<void> setSearchScope(scp) Sets the search scope (optional)

<void> setSearchRoot(rt) Sets the search root (optional)

<void> setMaxPage(int) Sets the max rows per page (optional)

<void> setMaxResults(int) Sets the max rows in total (optional)

<void> setOrderBy(attrKey) Sets the sort (optional)

<void> setPointer(int) Sets the pagination offset (optional)

<void> setGroupLop(lop) Sets the inter-group logical operator

<String> getKey() Gets the searchName

<String> getFrom() Gets the from entity-definition

<String> getSelects() Gets the selects

<String> getSearchScope() Gets the search scope

<String> getSearchRoot() Gets the search root
722 JavaScript Search API

The following table describes the methods for the CondGroup object:

Table D-7 Methods for the CondGroup object

The following table describes the methods for the CondRow object:

Table D-8 Methods for the CondRow object

<int> getMaxPage() Gets the max rows per page

<int> getMaxResults() Gets the max rows in total

<String> getOrderBy() Gets the sort

<int> getPointer() Gets the pagination offset

<String> getGroupLop() Gets the inter-group logical operator

<int> nbConditionGroups Returns the number of condition groups

<CondGroup> addConditionGroup Creates and returns a new condition group
(CondGroup object) appended to the query

<void> removeConditonGroup(i) Removes the condition group at i

<CondGroup> getConditonGroup(i) Returns the condition group at i

Method Description

<void> setRowLop(lop) Sets the intra-group logical operator

<String> getRowLop() Gets the intra-group logical operator

<int> nbConditionRows() Returns the number of condition rows

<CondRow> addConditionRow() Creates and returns a new condition row appended
to the condition group

<void> removeConditionRow(i) Removes the condition row at i

<CondRow> getConditionRow(i) Returns the condition row at i

Method Description

<void> setRowAttr(attrKey) Sets the attribute

<void> setRowRop(rop) Sets the relational operator.

<void> setRowVal(val) Sets the search value

<String> getRowAttr() Gets the attribute

<String> getRowRop() Gets the relational operator

<String> getRowVal() Gets the search value

Method Description
JavaScript Search API 723

Performing an Advanced Search Using a JSON-formatted
Query

You can use the QUERY parameter to perform an advanced search using JSON. The JSON syntax rules
are the same as those for the basic search. The only difference is that an advanced search typically
defines multiple condition groups and condition rows. The JavaScript variable shown below
illustrates how the QUERY parameter might be constructed for a search that uses several condition
groups and condition rows:

var search2 = 'QUERY={"k":"Complicated Search All
OK","mxPg":"10","mxRes":"0","ptr":"1","grp":[{"map":{"row":[{"map":{"rowRo
p":"equals","rowVal":"cn=bg1,ou=groups,ou=idmsample,o=netiq","rowAttr":"gr
oup"}},{"map":{"rowRop":"contains","rowVal":"0","rowAttr":"FirstName"}}],"
rowLop":"and"}},{"map":{"row":[{"map":{"rowRop":"not-
present","rowVal":"","rowAttr":"TelephoneNumber"}},{"map":{"rowRop":"equal
s","rowVal":"cn=ablake,ou=users,ou=idmsample,o=netiq","rowAttr":"directRep
orts"}},{"map":{"rowRop":"equals","rowVal":"cn=cnano,ou=users,ou=idmsample
,o=netiq","rowAttr":"manager"}}],"rowLop":"and"}},{"map":{"row":[{"map":{"
rowRop":"not-
present","rowVal":"","rowAttr":"TelephoneNumber"}},{"map":{"rowRop":"equal
s","rowVal":"cn=ablake,ou=users,ou=idmsample,o=netiq","rowAttr":"directRep
orts"}},{"map":{"rowRop":"equals","rowVal":"cn=cnano,ou=users,ou=idmsample
,o=netiq","rowAttr":"manager"}}],"rowLop":"and"}}],"orderBy":"LastName","e
ntDef":"user","sScope":"","sRoot":"","grpLop":"or","selAttr":["FirstName",
"Title","Email","TelephoneNumber"]}';
For details on each of the JSON settings, see “Using a JSON-formatted String to Represent a Query”
on page 718.

Retrieving all Saved Queries for the Current User
You can use the JavaScript API to retrieve all saved queries for the user who is currently logged on. To
do this, you need to call the getNames() static method on the JUICE.IDM.Enities.Search object.

The following JavaScript example illustrates the procedure for retrieving all saved queries for the
current user:

function query4GetSavedQueries() {
 var searchNames = JUICE.IDM.Entities.Search.getNames();
 var replaceDiv = document.getElementById("savedQueryNames");
 replaceDiv.innerHTML = searchNames;
}

Running an Existing Saved Query
You can use the JavaScript API to execute a saved query. Before you execute a saved query, you need
to perform the following JavaScript statement to retrieve the saved queries (as described in the
previous section):

JUICE.IDM.Entities.Search.getNames();
You need to call getNames() first, even if you know the name of the saved search you want to run.
724 JavaScript Search API

After calling the getNames() function, you need to perform these steps to execute the saved search:

1 Call the getUUID() method to access the UUID associated with the search name.
2 Call the load() method on the JUICE.IDM.Entities.Search object to load the saved query with the

UUID.
3 Call the get() method to retrieve the saved query structure.

All of these methods are static methods.

Once you have the query structure, you can use it to construct a QUERY request parameter.

The following JavaScript example illustrates the procedure for launching a saved query:

function runQuery4() {
 var textField = document.getElementById("savedQueryToRun");
 var queryName = textField.value;
 var queryUUID = JUICE.IDM.Entities.Search.getUUID(queryName);
 JUICE.IDM.Entities.Search.load(queryUUID);
 var myQuery = JUICE.IDM.Entities.Search.get(queryUUID);

 openSearchResults("QUERY=" + myQuery);
}

Performing a Search on All Searchable Attributes
You can use the JavaScript API to search all of the searchable attributes for an entity. This type of
search only applies to attributes that have a type of string. Therefore, it does not work with DN,
date, integer, boolean, and so forth.

To perform a search on all searchable attributes, you create a query object in the same manner that
you would using other search techniques (as described above). Then you need to get the list of
attributes for an entity definition by calling JUICE.IDM.Definition.load(). Once you have the list of
attributes, you need to verify that each attribute is a string and is searchable. For each attribute that
is a string and is searchable, you can now add a condition row by calling the addConditionRow()
method on the condition group object. When all condition rows have been added, you can execute
the search.

The following JavaScript example illustrates how to perform a search on all searchable attributes.

function buildQuery5() {
 var searchStr = document.getElementById("query5Text").value;
 if (searchStr == "") {
 alert("Enter a search string in the text field.");
 return;
 }
 var newQuery = JUICE.IDM.Entities.Search.create("My New Search");
 var entDef = "user";
 newQuery.setFrom(entDef);
 var selAttrs = new Array();
 selAttrs.push("FirstName");
 selAttrs.push("LastName");
 newQuery.setSelects(selAttrs);
 var newCondGrp1 = newQuery.addConditionGroup();
 newCondGrp1.setRowLop("or");
JavaScript Search API 725

 //get all the searchable attributes of entity-definition user that are
type string (excludes DN, date, integer, boolean, etc)
 JUICE.IDM.Definitions.load(entDef);
 var attrKeys = JUICE.IDM.Definitions.getAttributeKeys(entDef);
 for (var i = 0; i < attrKeys.length; i++) {
 var attrDef = JUICE.IDM.Definitions.getAttribute(entDef, attrKeys[i]);
 var attrType = attrDef.getType();
 var searchable = attrDef.isSearchable();

 if (attrType == "String" && searchable) {
 var newCondRow = newCondGrp1.addConditionRow();
 newCondRow.setRowAttr(attrKeys[i]);
 newCondRow.setRowRop("contains");
 newCondRow.setRowVal(searchStr);
 }
 }
 openSearchResults("QUERY=" + newQuery);
}

726 JavaScript Search API

E ETrouble Shooting

This section describes tips for working around common errors.

Permgen Space Error
You might encounter the following error when you redeploy the identity applications:

11:32:20,194 ERROR [[PortalAggregator]] Servlet.service() for servlet
PortalAggregator threw exception java.lang.OutOfMemoryError: PermGen space
To avoid this error, either:

 Restart the Tomcat server.

or

 Or, increase the PermSpace value by passing -XX:MaxPermSize to the Java virtual machine by
means of JAVA_OPTS in the start-tomcat script, for example:

-XX:MaxpermSize=128m

Email Notification Templates
If your email notification templates are displaying in a single language and not in the user’s default
locale as you expect, check to see what notification template is selected. You can select a default
template or a localized version of the template. When you select a localized template, the language
of the localized template is used regardless of the user’s default language. When you select the
default template (the template without a locale code), the email is in the user’s default language (if
the default is a supported language).

Org Chart and Guest Access
If you encounter an error like this at runtime, then you must modify the service definitions in the
User Application WAR:

error: "an error occurred Control instantiation of JUICE.OrgChartCtrl
failed (Object doesn't support this property or method). Please contact
your system administrator. Detailed information can be found in the
console." when accessing the portlet in a browser.
Trouble Shooting 727

Provisioning Notification
If the Notify Other Users of these Changes check box does not display on the following pages:

 Edit Availability
 My Proxy Assignments
 My Delegate Assignments
 Team Proxy Assignments
 Team Delegate Assignments
 Team Availability

Verify that Email Notification templates have been defined. You define them through the
Administration > RBPM Provisioning and Security > Delegation and Proxy.

javax.naming.SizeLimitExceededException
If you encounter a javax.naming.SizeLimitExceededException when you use the
Administration > Page Admin > Set As Default, you might have encountered a maximum size limit. You
can modify this limit in the PortalGroupPageDefaults portlet settings in the portlet.xml as
follows:

<portlet>
 <portlet-name>PortalGroupPageDefaults</portlet-name>
 <portlet-class>
com.novell.afw.portal.portlet.core.permission.PortalGroupPageDefaults
</portlet-class>
 <init-param>
 <name>MIN_CACHE_SIZE</name>
 <value>20</value>
 </init-param>
 <init-param>
 <name>MAX_CACHE_SIZE</name>
 <value>200</value>
 </init-param>
 <init-param>
 <name>PAC_MAX_RESULTS</name>
 <value>2000</value>
 </init-param>
 ...
</portlet>
If you have more than 200 groups and want to assign groups to the View permissions for the Page
Admin tab, you also need to update the settings for the PortalUserGroupSelection portlet.
Modify this limit in the portlet.xml as follows:
728 Trouble Shooting

<portlet>
 <portlet-name>PortalUserGroupSelection</portlet-name>
 <portlet-class>
com.novell.afw.portal.portlet.core.permission.PortalUserGroupSelection
</portlet-class>
 <init-param>
 <name>MIN_CACHE_SIZE</name>
 <value>20</value>
 </init-param>
 <init-param>
 <name>MAX_CACHE_SIZE</name>
 <value>200</value>
 </init-param>
 <init-param>
 <name>PAC_MAX_RESULTS</name>
 <value>2000</value>
 </init-param>
 ...
</portlet>
Redeploy the identity applications after you make your changes.

Linux Open Files Error
If you run the User Application on Linux, you might encounter a Too Many Open Files Error.Linux
allows 1024 open files for each process, but the identity applications often requires more. NetIQ
suggests increasing the number of open files to 4096 to avoid the Too Many Open Files error.

Use the ulimit command to increase the number of open files. There are some restrictions on
ulimit for non-root users. Here is an example of how you can use the ulimit command to
increase the number of open files to 4096 for a non-root user:

1 Log in as root.
2 Edit the file /etc/security/limits.conf. Add an entry for the user named smith and allow nofile up

to 4096:

smith hard nofile 4096
3 Log in as user smith and pass 4096 to the ulimit -n command. You can issue the command

again with no argument to see the current value:

smith@myhost:~> ulimit -n 4096
smith@myhost:~> ulimit -n

You might want to specify ulimit in the user environment or the start-tomcat script so that the
new value is always used.
Trouble Shooting 729

730 Trouble Shooting

F FWorkflow Service

Identity Manager 4.8 provides Workflow Engine as a separate service. This Workflow Engine replaces
the Workflow Engine that was embedded with Identity Applications in the previous versions of the
product.

How is the Separate Workflow Engine Installed?
By default, the Workflow Engine service is installed as part of Identity Applications installation. You
can cluster it the same way as in the earlier versions without any additional configuration.

The Workflow Engine persists the workflow state information in a new database named
igaworkflowdb. If an existing workflow process is in a running state, its data is moved to
igaworkflowdb before the new Workflow Engine starts managing it. The Identity Applications
installer copies the data from the Identity Applications database (idmuserappdb) to the Workflow
Engine database (igaworkflowdb). If you are upgrading Identity Manager 4.6.x or 4.7.x to Identity
Manager 4.8, use the workflow migration tool to export the data before starting the upgrade. The
tool internally uses the /IDMProv/rest/access/data/migration/workflow API for
migration. For more information about the migration tool, see Data Migration in the NetIQ Identity
Manager Setup Guide for Linux.

The Workflow Engine uses REST service to obtain the tasks and workflow history from the Workflow
Engine service.

The Identity Applications installation program automatically registers the Workflow Engine service
as a client with One SSO Provider (OSP) to ensure communication with other Identity Applications
components. The installer stores these connection and authentication properties in the ism-
configuration.properties file.

Features
The Workflow Engine continues to provide the same functionality as previous versions such as
starting a workflow process, logging, generating reminder and escalation notifications, retrying
failed processes, and heartbeat monitoring. In this release, it is packaged as a separate component
which has introduced a change in its interaction with Identity Vault and Identity Applications
components. The following diagram depicts how the Workflow Engine fits in the overall Identity
Applications architecture:
Workflow Service 731

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#t4arlk2s4efy

A workflow is a separate process. When a workflow executes, it may execute expressions to query
the identity store of the application it is connected to and modify one or more objects in the Identity
Vault. For example, it can create, modify, and delete users and other objects.

Interaction with Identity Vault
The Workflow Engine connects to the Identity Vault through the proxy authorization method. This is
a special form of authentication in which a user that binds to eDirectory using users’ own identity is
granted the rights of another user through proxy authorization.

The configuration details of Identity Vault and Identity Manager server are recorded in the ism-
configuration.properties file.

OAuth-Based Authentication
The Workflow Engine requires details about user objects and attributes that it requires to execute a
workflow. It uses Oauth-based authentication to communicate with Identity Applications. It validates
the requests it receives from known clients like Identity Applications.

 Identity Applications use their own client credentials to authenticate to the Workflow Engine.
 The Workflow Engine authenticates to Identity Applications through client credentials. It uses

client credentials to generate an OSP token and then uses that token while running Identity
Manager role and resource tasks to perform role or resource requests through REST service.

REST Layer

Workflow Client Interface

DAL Layer

LDAP Proxy
Authorization

Client
Database REST

Email-Based
Approval

Email
Notification

Audit
Server

Identity
Manager

Identity
Governance

One SSO
Provider

Email
Server

ActiveMQ

Workflow Service

Workflow Database

Authentication

Common
Event

Format (CEF)
Workflow Core Activities

Identity Manager Activities

Identity Governance
Activities

Identity Governance
Operations Database

Identity Vault
732 Workflow Service

Location of Workflow Definitions
By default, the workflow definitions are stored in the Identity Vault as object class
srvprvRequest in the RequestDefs container
(cn=RequestDefs,cn=AppConfig,cn=UserApp,cn=IDV,ou=system,o=data) under the
User Application Driver.

Email Based Approval
The Workflow Engine allows you to include identities like users or groups in your workflows to
handle activities that cannot be automated, such as approvals for requisitions. The Email
Notification system sends notifications to notify approvers, remind approvers, and escalate if there
is any delay in approvals. It processes Email responses from users and moves the workflow to the
next state. Email notifications can be routed through a role, which can be an individual user or a
group of users. Any user associated with that role can act on the notification.

Each notification includes a message that contains all the information a user needs to make a
decision. You can embed the message in the body or attach it as a separate document. A user can
click Approve or Deny links over the Email. The Workflow Engine interprets each Email response to
decide how to move on to the next workflow activity.

Identity
Manager

Workflow
Service

R
E
S
T

Identity
Manager
Activity

Role/Resource
Request

OAuth Token

Identity Vault
Workflow Service 733

Email Mail Integration
Electronic mail (Email) users can receive notifications of outstanding work items and can respond to
those notifications using their Email application. An Email notification can include an attachment
that provides an additional option of responding to the notification.

Workflow States
The Workflow Engine stores workflow states in its own database, which is different from the User
Application database. The process of storing workflow states is same as the earlier versions except
that the new database is added in this version.

Support for Existing Forms and Forms Created in the
Workflow Form Builder

When a workflow executes, the Workflow Engine determines the type of the form associated with
the provisioning request definition. Based on whether it is a legacy form or the form is created in the
new Form Builder, it takes appropriate action.

Legacy forms created in Designer
The Workflow Engine continues to support the workflow processes built in the earlier versions
that include the request and approval forms created in the Forms tab of Designer. When a
workflow executes, the Workflow Engine determines that a legacy form is associated with the
provisioning request definition and then generates an HTML and passes it on to the client based
on the data item mapped for rendering the form.

Modern and responsive forms created in the Workflow Builder
The new Form Builder is embedded within Designer and can be launched from Designer. The
forms that are created in the new Form Builder are stored in the JSON format. When a workflow
executes, the Workflow Engine determines that a new form is associated with the provisioning
request definition and reads the form from the Workflow Forms container in the Identity Vault.
For example, system\driverset1\UserApplicationDriver\workflow forms>. Based on the data
item mapping, the data is populated in the form and the form is sent to the client in the JSON
format. At the client side, the Form Renderer renders the form.
When a user submits the form, the Workflow Engine reads the data from the JSON format. The
data is persisted in the workflow database similar to the previous versions.

Creating a Provisioning Request Definition to Use a Form
Created in the Form Builder

1 In Designer, go to the Provisioning view, right-click the Provisioning Request Definitions node
and choose New.

2 Fill in Identifier (CN), Display Name, and Description.
3 Click Next.

The next page of the wizard is displayed.
734 Workflow Service

4 Select Create a provisioning request definition using one of the templates, select the desired
template from the Available Templates list, and then click Next.

NOTE: If the JSON based templates option is selected, then the next step is not required.

5 Ensure that JSON Forms Selection is selected in the Overview tab.
6 Create a new form for the PRD.

6a Open the Provisioning view, right-click Workflow Forms under the User Application driver
and select New.
The New Workflow Forms dialog is displayed.

6b Provide the Form Identifier and click Finish. The Form Builder is launched.
6c Create and save the form. For more information, see NetIQ Identity Manager - User’s Guide

to Form Builder (https://www.netiq.com/documentation/identity-manager-48/
form_builder/data/form_builder.html).
The form is saved in same location in the Workflow Forms container under the type of the
form that you chose to create. For example, an approval form is saved under Approval
Forms container.

7 Go to the Provisioning Request Definition editor and click JSON Forms.
8 For the Workflow activity that will use the new form, select the form that you created from the

Form ID column.

9 In the Workflow tab, right click the Start activity icon or the activity icon to which you wish to
associate the form. In the Data Item Mapping view, complete the data item mapping for the
form fields. The values in the Target Form Field are prepopulated from the new form.

10 Deploy the provisioning request definition and the form to the Identity Vault from Designer. The
form is saved in the Workflow Forms container in the User Application driver.

Any new requests from the workflows created using this procedure use the new form.

Repeat the procedure for adding new forms to a Provisioning Request Definition.
Workflow Service 735

https://www.netiq.com/documentation/identity-manager-48/form_builder/data/form_builder.html
https://www.netiq.com/documentation/identity-manager-48/form_builder/data/form_builder.html

Support for Migrating Legacy Workflow Forms to the
Forms Created in the Workflow Form Builder

Currently, there is no tool to migrate the legacy forms to the new forms. The only way to accomplish
it is by manually creating a new form in the Form Builder and then mapping the data items of the
existing form to the new form.

1 Take a backup of the legacy Provisioning Request Definition by making a copy of the workflow
and/or exporting the Provisioning Request Definition to a file.

2 Create a new form in the Workflow Form Builder.
2a Open the Provisioning view, right-click Workflow Forms under the User Application driver

and select New.

The New Workflow Forms dialog is displayed.
2b Provide the Form Identifier and click Finish. The Form Builder is launched.
736 Workflow Service

2c Create and save the form. For more information, see NetIQ Identity Manager - User’s Guide
to Form Builder (https://www.netiq.com/documentation/identity-manager-48/
form_builder/data/form_builder.html).
The form is saved in same location in the Workflow Forms container under the type of the
form that you chose to create. For example, an approval form is saved under Approval
Forms container.
Workflow Service 737

https://www.netiq.com/documentation/identity-manager-48/form_builder/data/form_builder.html
https://www.netiq.com/documentation/identity-manager-48/form_builder/data/form_builder.html

3 Associate the new form with your existing workflow.
3a In the Provisioning Request Definition editor, click the JSON Forms tab.
3b For the Workflow activity that will use the new form, select the form that you created from

the Form ID column.

4 In the Workflow tab, right click the Start activity icon or the activity icon to which you wish to
associate the form to display the Data Item Mapping view for the selected activity.
The values in the Target Form Field are prepopulated from the new form.

5 Deploy the provisioning request definition and form to the Identity Vault from Designer. The
form is saved in the Workflow Forms container in the User Application driver.

Guidelines for Enabling Workflow Logging
The Workflow Engine log level is controlled by the -
Dcom.microfocus.workflow.logging.level property typically set in the setenv.sh file in
the /TOMCAT_INSTALLED_HOME/bin/ directory. For example, /opt/netiq/idm/apps/
tomcat/bin/setenv.sh on Linux. The value of -
Dcom.microfocus.workflow.logging.level=ALL controls the amount of information that
the Workflow Engine logs. By default, the logging is set to INFO. Logs are saved in the
catalina.out file. You can set other levels when you are troubleshooting for more verbose
messages. After setting the log level, restart Tomcat. For example, restart Tomcat by performing the
following command:

systemctl restart netiq-tomcat.service
All loggers specific to the Workflow Engine are defined in the workflow_logging.xml file located
in the Identity Applications installed location. You can set the severity level for each logger at any
level in the hierarchy by editing this file. You also need to manually add the workflow packages in
workflow_logging.xml file to enable workflow logging.
738 Workflow Service

To add a workflow package:

1 Navigate to workflow_logging.xml file location.
Linux: /opt/netiq/idm/apps/tomcat/conf/workflow_logging.xml
Windows: C:\NetIQ\idm\apps\tomcat\conf\workflow_logging.xml

2 Open the file in a text editor, add the required workflow package and set the level for log
messages. For example:

<logger name="com.novell.soa.af.impl.timers" level="DEBUG"
additivity="true">
 </logger>

3 Save the file and issue a restart to Tomcat.
Similarly, add other workflow packages in the workflow_logging.xml file. You cannot add
them from dashboard in this release.

The Workflow Engine generates events in the CEF standard format and publishes them to the
configured audit server. The package level log details are specified in the workflow_logging.xml
file. Alternatively, you can set these values in the ism-configuration.properties file.

If a parameter value is specified as ${com.netiq.ism.audit.cef.host:localhost} in the
workflow_logging.xml file, the value for the parameter specified in the ism-
configuration.properties file takes precedence. Otherwise, the default value specified after
the ":" is considered. If the value is directly specified (hardcoded) in the workflow_logging.xml
file, the Workflow Engine does not check the value (even if it is specified) in the ism-
configuration.properties file. For example, the value will look like this in the
workflow_logging.xml file: <param name="SyslogHost" value="localhost" />.

You can configure the Workflow Engine log level in one of the following ways:

 At global level: Applies to all loggers and packages in the Workflow Engine
 At package level: Applies to a particular package

The log level selected for a particular package takes precedence by default. For example, if the log
level for a package, com.novell.soa.af.impl.timers is set to DEBUG, and the log level for the
Workflow Engine is INFO, then the application logs debugging information for the selected package.
Other packages and loggers are logged at the INFO log level.

However, you can modify the default behavior by enabling the Workflow Engine log level to take
precedence over the package log level. Add the
com.microfocus.workflow.default.logging=true property in the ism-
configuration.properties file. As a result, the Workflow Engine log level specified in the
setenv.sh file takes precedence, and the package log level is ignored.

NOTE: The com.microfocus.workflow.default.logging property is available in Identity
Manager 4.8.8 and later. In earlier versions, the log level specified in the setenv.sh file supersedes
the log level specified for individual packages. For example, if you wanted to collect debugging
information for a particular package, you had to set the entire Workflow Engine to the DEBUG
logging level instead of setting up the log level only for that package. As a result, a substantial
amount of debug information was generated from all loggers.
Workflow Service 739

Initiating a Workflow Process
A workflow process is initiated when a user requests a workflow. The process includes the following
steps in sequence:

1 A user searches for a workflow.
2 The Dashboard obtains all the workflows from Identity Applications.
3 The user selects a workflow.
4 The Dashboard obtains the selected workflow details from Identity Applications, which

internally calls the Workflow Engine service.
5 The user submits the form with the required inputs.
6 Identity Applications collect the data and send the data to the Workflow Engine service to

process it and persist it in the workflow data store.
7 The Workflow Engine service manages the lifecycle of the workflow process.
740 Workflow Service

	NetIQ Identity Manager - Administrator’s Guide to the Identity Applications
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	I Overview
	1 Introduction to the Individual Identity Applications Components
	Identity Manager Dashboard
	Identity Applications Administration
	Understanding Roles
	Understanding Resources
	Understanding Separation of Duties
	Understanding Email-based Approval
	Understanding Controlled Permission Reconciliation Services

	Understanding Entities
	Identity Manager Client Settings
	Identity Manager Workflows
	Identity Reporting
	Identity Applications Security and Password Management
	Identity Applications

	2 Types of User Categories in Identity Applications
	Administrative Users
	Identity Vault Administrator
	Identity Applications Administrator

	Administrator and Manager Categories
	Understanding Domain Administrators and Managers

	Designers
	Business Users

	3 Understanding the Functionality of the Identity Applications
	Enabling Self-Service Activities for Users
	Providing Permissions to Users
	Understanding Workflow-Based Provisioning
	Understanding a Client Helpdesk

	Ensuring Permission Assignments Comply with Your Standards
	Design and Configuration Tools

	4 Understanding the Back-end Functions for the Identity Applications
	User Interfaces
	Directory Abstraction Layer
	Workflow Engine
	SOAP Endpoints
	Application Server
	Database
	User Application Driver
	Role and Resource Service Driver
	Multi-Threaded Role and Resource Service Driver
	Designer for Identity Manager
	iManager
	Identity Manager Engine
	Identity Vault

	II Preparing the Identity Applications for Use
	5 Understanding the Design Needs
	Design Constraints
	High Availability Design

	6 Configuring Security in the Identity Applications
	Understanding Security in the Identity Applications Environment
	Using Secure Sockets for Identity Applications Connections to the Identity Vault
	Disabling Secure Communications Using the Configuration Update Utility
	Disabling Secure Communications Using iManager

	Enabling SSL for User Access
	Enabling SOAP Security
	Enabling Authentication
	Enabling Mutual Authentication
	Enabling Third-Party Authentication and Single Sign-On

	Encrypting Sensitive Identity Applications Data
	Preventing XSS Attacks
	Modifying Trustee Rights
	Modifying the Trustee Rights for User Preferences
	Modifying the Trustee Rights for a Provisioning Request Definition
	Restricting a User from Viewing Provisioning Request Definitions and Roles in Identity Applications

	Updating a Password for a Database User on Tomcat

	7 Assigning the Identity Applications Administrators
	Understanding the Administrators of the Identity Applications
	Changing the Default Administrator Assignments after Installation
	Granting or Removing Assignments in the Identity Applications
	Changing the Assignments in Configupdate Utility
	Changing the Default Administrator Assignments without an Administrator Account

	8 Setting Up Logging in the Identity Applications
	How Logging Services Help
	What Can Be Logged
	How Logging Works
	Terminology
	Components for Logging
	How Logging Works

	Types of Log Files
	Difference Among Catalina, Application, and Localhost Log Files
	Additional Log Files

	Understanding the Log Format
	Message Fields
	Message Severity

	Configuring Logging
	Understanding Logging Configuration
	Understanding the Log Level Settings
	Specifying the Severity Level for Commons Logging API Loggers
	Configuring Logging Settings in Identity Manager Dashboard
	Editing the log4j Files
	Managing Log File Size

	Configuring Logging in a Cluster
	Tomcat Logging
	Identity Applications Logging

	Enabling Sentinel Logging
	Using Log Files for Troubleshooting
	Log Events

	9 Tuning the Performance of the Applications
	Increasing the Heap Size
	Increasing the Stack Size for Recursive Workflows
	Ensuring Concurrent Access from Multiple Clients
	Decreasing the Session Time-out
	Increasing the Number of Maximum Open Files
	Increasing the Number of User Processes
	Adjusting the Threadpool Size
	Increasing the Database Connection Pool

	View Request Status Search Limit
	Decreasing the LDAP Socket Cleanup Interval
	Optimizing LDAP Connection with Identity Vault
	Indexing Attributes in the Identity Vault
	Enabling Compound Index on Identity Vault Attributes
	Comparison with Other Indexes
	Sample Error Message

	Managing the eDirectory Database Cache Objects Retrieved from the Identity Vault Server
	Disabling the Nested Group Search

	10 Customizing the Identity Applications for Your Enterprise
	Linking the Dashboard to External Applications
	Managing Featured Items

	Customizing the Look of the User Interfaces
	Applying Your Organization’s Brand to the Dashboard
	Adding Product title in your language to the Dashboard
	Applying a Cascading Style Sheet to the Dashboard

	Localizing the Text in the Interfaces
	Localizing the Labels in the Dashboard
	Modifying the Text of the Application Tab
	Localizing Text Stored in the JAR Files

	Adding a Language to the Identity Applications
	Adding the New Language to the Identity Applications
	Preparing Files for Translation
	Changing the Default Language
	Add the Translated Files to the Proper Locations
	Updating an Email Notification Template
	Verifying the New Translations

	Configuring User Names
	Configuring the Format of Displayed User Names
	Enabling Localized User Names in Typeahead Fields
	Configuring the Attribute for Sorting Users in Dashboard

	Configuring Email Notification Templates for the Dashboard
	Configuring Forgot Password? Functionality
	Ensuring that Characters Display Properly in Role Report PDF Files
	Editing the Configuration XML Data in iManager

	Ensuring that Dates Display Correctly in Norwegian
	Configuring Client Settings Mode
	Copying the Client Settings
	Copying the Workflow Migration
	Changing Identity Applications Client Settings
	Changing General Client Settings
	Managing User Access
	Customizing the Views
	Changing the Client Branding Attributes
	Configuring a Client Helpdesk
	Managing Dashboard Widgets
	Customizing the Organization Chart View
	Deleting the Client Settings from Identity Applications

	Hiding the Navigation Items from User Interface
	Configuring Separation of Duties Properties

	11 Setting Up the Dashboard for Identity Applications
	Checklist for Setting Up the Dashboard for Identity Applications

	12 Configuring a Multi-Threaded Role and Resource Service Driver
	How the Driver Works
	Prerequisites
	Defining a Unique Data Set
	Modifying the Default Mapping Table Object
	Configuring the Driver
	Deploying the Driver
	Guidelines for Creating Custom Policy
	Assigning Weight to the Policy

	Limitations
	Troubleshooting

	13 Configuring Identity Applications Clustering and Permission Clustering
	Configuring Identity Applications Clustering to Use TCP or UDP
	Configuring Permission Clustering to Use TCP or UDP

	III Identity Applications Administration
	14 Creating and Managing Roles
	Listing Roles
	Creating a New Role
	Editing Roles
	Changing Approval and Revocation Process
	Mapping Resources to Roles
	Assigning Roles to Users
	Mapping Roles to Roles

	Creating a Workflow For a Role
	Managing the Role and Resource Service Driver
	Configuring the Role and Resource Service Driver Settings
	Indexing for the Role and Resource Service Driver

	List of Stop Words Ignored In Search Query

	15 Creating and Managing Resources
	Listing Resources
	Creating a New Resource
	Editing Resources
	Setting Expiration Period for the Resource
	Assigning Weightage to the Resource
	Changing the Approval or Revocation Process
	Assigning Resource to Users
	Updating the Resource Request Form

	Creating a Workflow for a Resource
	Enabling Drivers for Resource Mappings
	Creating a List to Improve Resource Request Forms

	16 Adding Workflow to Roles and Resources
	Adding a Workflow
	System Templates and Template Forms
	Custom Templates
	Adding Workflow Using Custom Template
	Creating a Custom Template in Designer

	Recommendations

	17 Monitoring Workflows
	Search for Workflows
	Sort Workflows
	Customize Columns
	View Workflow Status
	View Approval Status
	Actions You Can Perform On This Page
	Terminate a Workflow Process
	Reassign a Workflow Process
	View Comments to Know More About Workflows

	18 Creating and Managing Delegations
	19 Separation of Duties Constraints
	Role Assignments
	Resource Assignments
	Resource Request Process Flow

	20 Using Controlled Permission Reconciliation Services
	How CPRS Helps
	Prerequisites
	Considerations for Supported Drivers
	MDAD Driver
	Loopback Driver
	REST Driver
	Delimited Text Driver

	Understanding the Components of CPRS
	Managing Permission Reconciliation Settings
	Editing Permission Reconciliation Settings

	Permission Reconciliation
	Migrating to CPRS
	Prerequisites
	Managing Existing Permissions for AD and LDAP Drivers
	Managing Permissions for a MDAD Driver
	Post Migration Activities

	21 Configuring Email-Based Approval
	22 Configuring Identity Applications Default Settings
	Configuring Roles and Resources Settings
	Configuring Default Roles Settings
	Configuring Default Resource Settings
	Configuring Entitlement Query Settings
	Configuring Separation of Duties Settings

	Configuring Delegation and Proxy Settings
	Configuring Delegation Settings
	Configuring Proxy Settings
	Configuring Synchronization and Cleanup Service

	Configuring Permission Reconciliation Settings
	Configuring Logging Settings
	Configuring Auditing Service Settings
	Configuring the Identity Manager Packages and their Log Levels

	Configuring Caching and Cluster Settings
	Flushing Caches
	Configuring Cache Settings
	Managing Cluster Cache Settings

	Assigning Administrators in Identity Applications
	Listing the Administrator Assignments
	Creating a New Administrator Assignment
	Assigning Permissions to a Delegated Administrator
	Deleting an Administrator Assignment

	Configuring Workflow Engines and Cluster Settings
	Configure the Workflow Engine Settings
	Configure Workflow Cluster Settings

	Viewing User Application Driver Status
	Configuring the Default Provisioning Display Settings
	Managing General Display Settings
	Managing the Appearance of Tasks Page
	Managing the Appearance of Request History Page

	Configuring the Identity Governance Settings

	23 Configuring and Managing Objects for Entities
	Listing the Objects
	Creating an Object
	Editing an Object
	Deleting an Object
	Exporting to CSV
	Viewing the Organization Chart of an Object

	IV Configuring and Managing Provisioning Workflows
	24 Configuring the User Application Driver to Start Workflows
	About the User Application Driver
	Setting Up Workflows to Start Automatically
	About Policies
	Using the Policy Builder

	25 Managing Provisioning Request Definitions
	About the Provisioning Request Configuration Plug-in
	Working with the Installed Templates
	Configuring a Provisioning Request Definition
	Selecting the Driver
	Deleting a Provisioning Request
	Filtering the List of Requests
	Changing the Status of an Existing Provisioning Request
	Defining Rights on an Existing Provisioning Request

	26 Managing Provisioning Workflows
	About the Workflow Administration Plug-in
	Managing Workflows
	Connecting to a Workflow Server
	Restricting Access to Workflows
	Finding Workflows that Match Search Criteria
	Controlling the Active Workflows Display
	Terminating a Workflow Instance
	Viewing Details about a Workflow Instance
	Reassigning a Workflow Instance
	Managing Workflow Processes in a Cluster

	Configuring the Email Server
	Working with Email Templates
	Default Content and Format
	Editing Email Templates
	Modifying Default Values for the Template
	Adding Localized Email Templates

	Allowing a Named Password to be Retrieved over LDAP

	V Web Service Reference
	27 Provisioning Web Service
	About the Provisioning Web Service
	Provisioning Web Service Overview
	Removing Administrator Credential Restrictions
	Provisioning Web Service Method Categories

	Developing Clients for the Provisioning Web Service
	Web Access to the Provisioning Web Service
	A Java Client for the Provisioning Web Service
	Developing a Mono Client
	Sample Ant File
	Sample Log4J File

	Provisioning Web Service API
	Processes
	Provisioning
	Work Entries
	Comments
	Configuration
	Miscellaneous
	Cluster

	28 Metrics Web Service
	About the Metrics Web Service
	Web Service Semantics
	Accessing the Test Page
	Web Service Methods Grouped by Security Permissions
	Specifying Filters
	Generating the Stub Classes
	Obtaining the Remote Interface
	Metrics Configuration Settings

	Metrics Web Service API
	Team Manager Methods
	Provisioning Application Administrator Methods
	Utility Methods

	Metrics Web Service Examples
	General Examples
	Other Examples

	29 Notification Web Service
	About the Notification Web Service
	Accessing the Test Page
	Accessing the WSDL
	Generating the Stub Classes

	Notification Web Service API
	iRemoteNotification
	BuiltInTokens
	Entry
	EntryArray
	NotificationMap
	NotificationService
	StringArray
	VersionVO

	Notification Example

	30 Directory Abstraction Layer (VDX) Web Service
	About the Directory Abstraction Layer (VDX) Web Service
	Accessing the Test Page
	Accessing the WSDL
	Generating the Stub Classes
	Removing Administrator Credential Restrictions

	VDX Web Service API
	IRemoteVdx
	Attribute
	AttributeArray
	AttributeType
	BooleanArray
	ByteArrayArray
	DateArray
	EntryAttributeMap
	Entry
	EntryArray
	IntegerArray
	StringArray
	StringEntry
	StringEntryArray
	StringMap
	VdxService
	VersionVO

	VDX Example

	31 Role Web Service
	About the Role Web Service
	Accessing the Test Page
	Accessing the WSDL
	Generating the Stub Classes
	Removing Administrator Credential Restrictions

	Role API
	IRemoteRole
	Approver
	ApproverArray
	Category
	CategoryArray
	CategoryKey
	CategoryKeyArray
	Configuration
	Container
	DNString
	DNStringArray
	Entitlement
	EntitlementArray
	Group
	IdentityType
	IdentityTypeDnMap
	IdentityTypeDnMapArray
	LocalizedValue
	LongArray
	NrfServiceException
	RequestCategoryType
	RequestStatus
	ResourceAssociation
	Role
	RoleAssignment
	RoleAssignmentArray
	RoleAssignmentActionType
	RoleAssignmentRequest
	RoleAssignmentRequestStatus
	RoleAssignmentType
	RoleAssignmentTypeInfo
	RoleInfo
	RoleInfoArray
	RoleLevel
	RoleLevelArray
	RoleRequest
	RoleServiceDelegate
	RoleServiceSkeletonImpl
	Sod
	SodArray
	SodApprovalType
	SodJustification
	SodJustificationArray
	User
	VersionVO

	Role Web Service Examples
	Retrieving Roles for a Group
	Retrieving Role Assignment Request Status
	Retrieving Type Information for a Role Assignment
	Retrieving Role Categories
	Retrieving Role Levels
	Verifying Whether a User Is In a Role

	32 Resource Web Service
	About the Resource Web Service
	Accessing the Test Page
	Accessing the WSDL
	Generating the Stub Classes
	Removing Administrator Credential Restrictions

	Resource Web Service Interface
	IRemoteResource
	CodeMapRefreshStatus
	CodeMapValueStatus
	EntitlementRefreshInfo
	ProvisioningCodeMap
	Resource
	ResourceAssignment
	ResourceRequestParam
	ResourceAssignmentRequestStatus

	Resource Web Service Examples
	Code Map Synchronization Code Samples

	33 Forgot Password Web Service
	About the Forgot Password Web Service
	Accessing the Service
	Accessing the WSDL
	Generating the Stub Classes

	Password Management Web Service Interface
	processForgotConf
	processUser
	processChaRes
	processChgPwd

	ForgotPasswordWSBean

	VI Configuring Single Sign-on Access in Identity Manager
	34 Preparing for Single Sign-on Access
	35 Using Self-Service Password Management in Identity Manager
	Understanding the Default Self-Service Process
	Understanding Authentication with One SSO Provider
	How OSP Works with Identity Manager
	OSP Concepts
	Understanding How OSP Works with Identity Manager
	Guidelines for Enabling OSP Logging

	36 Using One SSO Provider for Single Sign-on Access in Identity Manager
	Preparing eDirectory for Single Sign-on Access
	Modifying the Basic Settings for Single Sign-on Access
	Configuring Self Service Password Reset to Trust OSP

	37 Using NetIQ Access Manager for Single Sign-On
	Understanding Third-Party Authentication and Single Sign- On
	Using SAML Authentication for Single Sign-on
	Establishing Trust between Identity Manager and Access Manager
	Updating the Login Pages for Access Manager

	Reverse Proxy Based Single Sign-On
	Creating and Configuring the Proxy Service
	Creating Protected Resources
	Creating and Assigning a Form Fill Policy to a Protected Resource
	Configuring a Rewriter Profile
	Configuring Identity Providers
	Configuring Additional Redirect URLs in OSP Configuration File
	Testing the Single Sign-On

	38 Configuring Single Sign-On to Work With Active Directory Federation Service
	Requirements for Configuring OSP to Work with AD FS
	Configuring OSP to Provide SAML Authentications to AD FS

	39 Using Kerberos for Single Sign-On
	Configuring the Kerberos User Account in Active Directory
	Configuring the Identity Applications Server
	Configure the End-User Browsers to Use Integrated Windows Authentication
	Logging In Using the Name Password Form

	40 Integrating Single Sign-on Access with Identity Governance
	Ensuring Rapid Response to Authentication Requests
	Configuring Identity Governance for Integration
	Adding a Link for Identity Manager Home in the Identity Governance Menu
	Using the Same Authentication Server as Identity Manager
	Registering Identity Applications Server

	Configuring Identity Manager for Integration

	41 Verifying Single Sign-on Access for the Identity Applications
	42 Using SSL for Secure Communication
	Checklist for Ensuring SSL Connections
	Creating a Keystore and Certificate Signing Request
	Enabling SSL with a External CA Signed Certificate
	Enabling SSL with a Self-signed Certificate
	Exporting the Certificate Authority
	Generating the Self-signed Certificate

	Enabling SSL Between Sentinel and Identity Manager Components
	Enabling SSL between Sentinel and Identity Manager Engine/ Remote Loader
	Enabling SSL between Sentinel and Identity Applications

	Updating the SSL Settings for the Application Server
	Updating the SSL Settings in the Configuration Utility
	Updating the SSL Settings for Self Service Password Reset

	43 REST Services
	Use Cases for Identity Applications REST API
	Before You Begin
	Use Cases

	44 Troubleshooting
	Using Log Files for Troubleshooting
	Customizing Logging Settings
	Virtual Data Access Logging
	When a Code Map Refresh Is Triggered
	When Multiple Users Try to Authenticate From Different Interfaces
	When an E-Mail Approval Notification is Not Delivered
	When a Role Is Requested
	When a Role Is Listed in Role Catalog
	Schema Fails to Update When Updated Using a User Account That Was Not Used to Create the Schema
	Checking the Status of Database Schema Validation
	Determining if Liquibase Changeset Has Executed
	When Assigning a Resource to a User That Does Not Exist
	When Checking the Workflow Engine Heartbeat
	catalina.out File Does Not Rotate the Log on Linux

	Troubleshooting E-Mail Based Approval Issues
	Empty E-Mail Based Approval Token in the Provisioning Request Mail
	User Application is Not Acting on E-Mails
	Approve or Deny Link in E-Mail is Not Working
	Approve/Deny links Missing from E-Mail after configuring E-Mail Based Approval
	Verifying if E-Mail Based Approval Starts Properly
	When is Server Restart Needed
	E-Mail Based Approval Token is Empty in the Provisioning Request E-Mail

	Troubleshooting Self Service Password Reset Issues
	No Redirection to Challenge-Response Page When SSPR is Installed in a Distributed Environment That Supports http and https Communication
	Unable to Unlock Account through SSPR
	SSPR Reports Error 5027 When Attempting to Access Configuration Manager through Internet Explorer
	SSPR Reports Out of Order Page Request Error
	Pressing Enter Button in SSPR’s People Search Displays Locale Screen on Internet Explorer

	Troubleshooting Authentication Issues
	OSP Login Request Example by Using REST Endpoints
	Managing the Size of oidPInstancedata Attribute
	OSP Fails to Update the oidpInstanceData Attribute
	Managing Expired Server Certificates
	Redirecting Non-Administrator User from the idmadmin Page to the Dashboard Landing Page After Logout
	Identity Applications Does Not Terminate the Dashboard Session Even After the Session Expires When Configured With a Third- Party Authentication Service

	Troubleshooting General Issues
	Mismatch of Certificates Used by Identity Manager Engine and User Application Causes Code (-9205) Error in vnd.nds.stream
	User Application Driver Fails to Communicate with the User Application Server on a Secured Connection
	Entitlement Configuration Error During Codemap Refresh
	Error After Logging Out of the Dashboard on Linux
	Bulk Import of Roles and Resources May Not Update the Permission Index
	Absence of Notification Templates Causes Workflow Error
	Error Occurs When You Add a New Application With a Logo
	User Application Driver Fails to Process Delete Events
	Identity Applications Login Failure While Attempting to Contact the Authentication Service
	Searching an Entity With a Combination of String and Integer Value Is Not Supported
	Searching an Entity with Substring Value for DN Attribute Is Not Supported
	Unable to Change the Availability Status in the Availability Settings Page
	Workflow Forms for Three Steps Parallel Approval Process is Not Loading in the Workflow Wizard
	New Request Page Not Listing Users in the Recipients Field
	Advanced Search for User Entities Displaying an Error When the Search Attribute Contains a Hyphen
	Unable to Search for Users While Requesting For Permissions on Behalf of Others
	Entities Display Extended Characters Incorrectly in Dashboard
	Workflow Legacy Forms Displaying Errors After Upgrading to Identity Manager 4.8.5 Version
	Identity Applications Reports ExceptionInInitializerError When Clustering is Enabled in the Cluster Cache Configuration
	Dashboard Does Not Display Objects With Certain Special Characters in their Names, IDs, or Descriptions
	Workflow Forms Hang While Loading
	Configuring Full Name Attribute for the Default Full Name Pattern Does Not Work in Dashboard

	Troubleshooting Multi-Threaded Role and Resource Service driver Issues
	Troubleshooting Resource Weightage Related Errors
	Troubleshooting Workflow Related Issues
	Resolving StackOverflow Error on Recursive Workflows

	VII Appendix
	A Configuring the Identity Manager Approvals App
	Product Requirements
	Setting Up the Approvals App
	Understanding Approvals App Settings
	Customizing and Using the Default Approvals App Provisioning Request Definition
	Creating and Deploying a Custom Configuration Link
	Creating and Deploying a Custom Configuration QR Code

	Optimizing Designer Forms for the Approvals App
	Understanding Language Support in the Approvals App

	B Working with Language-Specific Email Templates
	Specifying the Default Locale
	Creating a Custom Roles-Based Provisioning Request Definition
	Defining the E-Mail Notification Settings
	Creating a New Role With a Custom Roles-Based PRD

	C Schema Extensions for the Identity Applications
	Attribute Schema Extensions
	Objectclass Schema Extensions
	Resource Definition Object (nrfResource)
	Resource Request Object (nrfResourceRequest)
	Resource Request Status Codes (nrfStatus)

	Role Definition Object (nrfRole)
	Role Status Codes (nrfStatus)

	Request Object (nrfRequest)
	Request Status Codes (nrfStatus)

	Role-Resource Configuration (nrfConfiguration)
	Resource Binding to Users (nrfIdentity)
	Resource Containers

	D JavaScript Search API
	Launching a Basic Search using the SearchListPortlet
	Passing Request Parameters
	Using a JSON-formatted String to Represent a Query

	Creating a New Query using the JavaScript API
	JavaScript API

	Performing an Advanced Search Using a JSON-formatted Query
	Retrieving all Saved Queries for the Current User
	Running an Existing Saved Query
	Performing a Search on All Searchable Attributes

	E Trouble Shooting
	Permgen Space Error
	Email Notification Templates
	Org Chart and Guest Access
	Provisioning Notification
	javax.naming.SizeLimitExceededException
	Linux Open Files Error

	F Workflow Service
	How is the Separate Workflow Engine Installed?
	Features
	Interaction with Identity Vault
	OAuth-Based Authentication
	Location of Workflow Definitions
	Email Based Approval
	Email Mail Integration
	Workflow States
	Support for Existing Forms and Forms Created in the Workflow Form Builder
	Creating a Provisioning Request Definition to Use a Form Created in the Form Builder
	Support for Migrating Legacy Workflow Forms to the Forms Created in the Workflow Form Builder
	Guidelines for Enabling Workflow Logging
	Initiating a Workflow Process

