
NetIQ® eDirectory™
Tuning Guide
November 2015

Legal Notice

THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT ARE FURNISHED UNDER AND ARE
SUBJECT TO THE TERMS OF A LICENSE AGREEMENT OR A NON-DISCLOSURE AGREEMENT. EXCEPT AS
EXPRESSLY SET FORTH IN SUCH LICENSE AGREEMENT OR NON-DISCLOSURE AGREEMENT, NETIQ
CORPORATION PROVIDES THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT
ALLOW DISCLAIMERS OF EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS; THEREFORE, THIS
STATEMENT MAY NOT APPLY TO YOU.

For purposes of clarity, any module, adapter or other similar material ("Module") is licensed under the terms and conditions of
the End User License Agreement for the applicable version of the NetIQ product or software to which it relates or interoperates
with, and by accessing, copying or using a Module you agree to be bound by such terms. If you do not agree to the terms of
the End User License Agreement you are not authorized to use, access or copy a Module and you must destroy all copies of
the Module and contact NetIQ for further instructions.

This document and the software described in this document may not be lent, sold, or given away without the prior written
permission of NetIQ Corporation, except as otherwise permitted by law. Except as expressly set forth in such license
agreement or non-disclosure agreement, no part of this document or the software described in this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, or otherwise,
without the prior written consent of NetIQ Corporation. Some companies, names, and data in this document are used for
illustration purposes and may not represent real companies, individuals, or data.

This document could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein. These changes may be incorporated in new editions of this document. NetIQ Corporation may make improvements in
or changes to the software described in this document at any time.

U.S. Government Restricted Rights: If the software and documentation are being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier), in accordance with 48 C.F.R. 227.7202-
4 (for Department of Defense (DOD) acquisitions) and 48 C.F.R. 2.101 and 12.212 (for non-DOD acquisitions), the
government’s rights in the software and documentation, including its rights to use, modify, reproduce, release, perform, display
or disclose the software or documentation, will be subject in all respects to the commercial license rights and restrictions
provided in the license agreement.

© 2013 NetIQ Corporation and its affiliates. All Rights Reserved.

For information about NetIQ trademarks, see https://www.netiq.com/company/legal/.

https://www.netiq.com/company/legal/

Contents
About this Book and the Library 5
About NetIQ Corporation 7

1 Overview 9
1.1 Prerequisites . 9

2 eDirectory Subsystems 11
2.1 FLAIM Database . 11

2.1.1 Checkpoint . 11
2.1.2 Indexes . 12
2.1.3 Roll-Forward Log . 12
2.1.4 FLAIM Attribute Containerization . 13

2.2 Thread Pool . 13

3 Analyzing System Bottlenecks 15
3.1 Disk I/O Subsystem . 15
3.2 CPU Subsystem. 16
3.3 Memory Subsystem . 16
3.4 Network Subsystem . 17

4 Tuning eDirectory Subsystems 19
4.1 FLAIM Database . 19

4.1.1 Choosing Indexes . 20
4.1.2 Tuning for Updates . 20

4.2 Thread Pool . 20
4.3 ACLs . 21

4.3.1 Improving eDirectory Searches and Reads . 21
4.3.2 Disabling ACL Templates. 21

4.4 Replication . 23
4.5 Solid State Disk (SSD) . 24
4.6 NMAS Login Update Interval . 25
4.7 SSL Overhead . 25
4.8 Import Convert and Export (ICE) . 25
4.9 ldif2dib . 25
4.10 Enhanced NCP Packet Size . 25

5 eDirectory Configuration 27
5.1 Configuring the FLAIM Subsystem . 27

5.1.1 Hard Cache Limit . 27
5.1.2 Dynamically Adjusting the Limit . 27

5.2 Modifying FLAIM Cache Settings. 27
5.2.1 Modifying FLAIM Cache Settings through iMonitor . 28
5.2.2 Modifying FLAIM Cache Settings through _ndsdb.ini . 29
Contents 3

4 NetIQ eDirectory Tuning Guide

About this Book and the Library

The describes how to analyze and tune the NetIQ eDirectory (eDirectory) product to yield superior
performance in all deployments.

For the most recent version of the NetIQ eDirectory 9.0 Tuning Guide, see the NetIQ eDirectory
online documentation Web site.

Intended Audience
The guide is intended for network administrators.

Other Information in the Library
The library provides the following information resources:

XDASv2 Administration Guide
Describes how to configure and use XDASv2 to audit eDirectory and NetIQ Identity Manager.

Installation Guide
Describes how to install eDirectory. It is intended for network administrators.

Administration Guide
Describes how to manage and configure eDirectory.

Troubleshooting Guide
Describes how to resolve eDirectory issues.

What’s New Guide
Describes the new features of eDirectory.

These guides are available at NetIQ eDirectory documentation Web site.

For information about the eDirectory management utility, see the NetIQ iManager 2.7 Administration
Guide.
About this Book and the Library 5

https://www.netiq.com/documentation/edir88/
https://www.netiq.com/documentation/edir88/
https://www.netiq.com/documentation/edir88/
https://www.netiq.com/documentation/imanager/
https://www.netiq.com/documentation/imanager/

6 NetIQ eDirectory Tuning Guide

About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in your
environment: Change, complexity and risk—and how we can help you control them.

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster
We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios in
which IT organizations like yours operate — day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion
We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and you
need someone that is truly easy to work with — for a change. Ultimately, when you succeed, we
all succeed.

Our Solutions
Identity & Access Governance
Access Management
Security Management
Systems & Application Management
Workload Management
Service Management
About NetIQ Corporation 7

Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. If you have suggestions for
improvements, click Add Comment at the bottom of any page in the HTML versions of the
documentation posted at www.netiq.com/documentation. You can also email Documentation-
Feedback@netiq.com. We value your input and look forward to hearing from you.

Contacting the Online User Community
Qmunity, the NetIQ online community, is a collaborative network connecting you to your peers and
NetIQ experts. By providing more immediate information, useful links to helpful resources, and
access to NetIQ experts, Qmunity helps ensure you are mastering the knowledge you need to realize
the full potential of IT investments upon which you rely. For more information, visit http://
community.netiq.com.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
8 NetIQ eDirectory Tuning Guide

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com
http://community.netiq.com

1 1Overview

NetIQ eDirectory 9.0 is a standards-compliant, cross-platform, highly scalable, fault-tolerant, and
high-performance directory services solution. This guide provides information on tuning your
eDirectory environment for improved performance.

Tuning for performance is a complex activity. It requires understanding of both the eDirectory and
operating system's subsystems. It involves monitoring the system to identify bottlenecks and fixing
them one at a time. Many a times resources are limited and tuning is confined to eDirectory and the
operating system.

In this guide, read the Prerequisites section before attempting any kind of tuning, then proceed to the
other sections. eDirectory Subsystems chapter describes primary subsystems that influence
eDirectory performance. Analyzing System Bottlenecks chapter describes various system resources
and their influence on eDirectory performance. Tuning eDirectory Subsystems chapter describes how
to analyze and tune eDirectory under various conditions and environments. Finally, the eDirectory
Configuration chapter describes how to configure various tunable parameters.

1.1 Prerequisites
Ensure that the following general prerequisites are met before attempting to tune the system for
performance:

A good eDirectory tree design can enhance eDirectory performance. The following
considerations might apply:

Applications read all the information locally on the server without needing to chain the
requests.
eDirectory efficiently handles object references automatically. If possible, objects on a
server should not refer to objects that are not local on that server, because maintaining non-
local object references can take more time. If such references exist, backlinks must be
maintained. This becomes cumbersome in large deployments.
If you need a group with 10,000 members or more, dynamic groups are recommended. This
allows you to avoid the overhead associated with maintaining references for so many
people. Choose your dynamic group configuration carefully, because using multiple
dynamic groups with improper search criteria might overload the server and reduce overall
server performance. If a search operation takes a long time to complete, the chosen index
might be inefficient. Minimize the use of regular (static) groups as this can increase tree
walking on login.
Use ACLs efficiently. For example, use the [This] trustee and assign it at the container level
instead of using an ACL template that assigns rights to itself. The fewer ACLs, the better the
performance. For more information on ACLs, see “eDirectory Rights” in the NetIQ
eDirectory Administration Guide.
Distribute the load onto multiple replica servers.
Overview 9

https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#Fbachifb
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo

Although a good tree design minimizes the need for tree walking, it is still sometimes
necessary. You can consider “Advanced Referral Costing” in the NetIQ eDirectory
Administration Guide.
If logins are slow, you can disable login updates. There are separate ways to disable login
updates for both NDS and NetIQ Modular Authentication Service (NMAS) logins. However,
it is important to understand the security implications (http://www.novell.com/
documentation/nmas33/admin/data/bg8dphs.html).

Run health checks through iMonitor. For more information, see “Viewing eDirectory Server
Health” in the NetIQ eDirectory Administration Guide. Ensure the following:

Time is in sync across all replica servers.
Replica synchronization and background processes are in a healthy state.
10 NetIQ eDirectory Tuning Guide

https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#b9u7705
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo
http://www.novell.com/documentation/nmas33/admin/data/bg8dphs.html
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#b1h7wu8c
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#b1h7wu8c
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo

2 2eDirectory Subsystems

This section discusses the eDirectory Subsystems.

Section 2.1, “FLAIM Database,” on page 11
Section 2.2, “Thread Pool,” on page 13

2.1 FLAIM Database
eDirectory uses FLAIM as its database. FLAIM (Flexible Adaptable Information Manager) is used for
traditional, volatile, and complex information. It is a very scalable database engine that supports
multiple readers and a single-writer concurrency model. Readers do not block writers and writers do
not block readers.

Physically, FLAIM organizes data in blocks. Some of the blocks are typically held in memory. They
represent the block cache. The entry cache (sometimes called a record cache) caches logical entries
from the database. Entries are constructed from the items in the block cache. FLAIM maintains hash
tables for both caches. The hash bucket size is periodically adjusted based on the number of items.

By default eDirectory uses a block size of 4 KB. The block cache size for caching the complete DIB is
equal to the DIB size, and the size required for the entry cache is about two to four times the DIB size.

While retrieving an entry, FLAIM first checks for the entry in the entry cache. If the entry exists,
reading from the block cache isn't necessary. While retrieving a block from the disk, FLAIM first
checks for the block in the cache. If the block exists, a disk read operation isn't necessary.

When an entry is added or modified, the corresponding blocks for that entry are not directly
committed to the disk, so the disk and memory might not be in sync. However, the updates made to
the entry are logged to the roll-forward log (RFL). An RFL is used to recover transactions after a
system failure.

Least Recently Used (LRU) is the replacement algorithm used for replacing items in the cache.

Section 2.1.1, “Checkpoint,” on page 11
Section 2.1.2, “Indexes,” on page 12
Section 2.1.3, “Roll-Forward Log,” on page 12
Section 2.1.4, “FLAIM Attribute Containerization,” on page 13

2.1.1 Checkpoint
A checkpoint brings the on-disk version of the database to the same coherent state as the in-memory
(cached) database. FLAIM can perform a checkpoint during the minimal update activity on the
database. It runs every second and writes the dirty blocks (dirty cache) to the disk. Blocks that are
modified in the cache but not yet written to the disk are called “dirty blocks”. FLAIM acquires a lock on
the database and performs the maximum amount of possible work until either the checkpoint
eDirectory Subsystems 11

completes or another thread is waiting to update the database. To prevent the on-disk database from
becoming too far out of sync, there are conditions under which a checkpoint is forced even if threads
are waiting to update the database:

If the checkpoint thread cannot complete a checkpoint within a specified time interval (the default
is 3 minutes), it is forced and the dirty cache is cleaned.
If the size of the dirty cache is larger than the maxdirtycache (if set), a checkpoint is forced to
bring down the dirty cache size to mindirtycache (if set) or to zero.

2.1.2 Indexes
An index is a set of keys arranged in a way that significantly speeds up the task of finding any
particular key within the index. Index keys are constructed by extracting the contents of one or more
fields (attributes) from the entries. Indexes are maintained in the block cache. Any changes to the
indexed attributes requires changes in the index blocks.

eDirectory defines a default set of indexes for system attributes (fields). System attributes such as
parentID and ancestorID are used for one-level and subtree searches. These indexes cannot be
suspended or deleted. The directory internally uses them. Default indexes are defined for attributes
such as CN, Surname, Given Name, and so on. Indexes can be of type presence, value, and substring
indexes. These indexes can be suspended. On deletion they are automatically re-created.

You can use iManager or the ndsindex Lightweight Directory Access Protocol (LDAP) utility to create
indexes. Indexes (http://www.novell.com/documentation/edir88/edir88/data/a5tuuu5.html) are server-
specific.

By enabling the Storage Manager (StrMan) tag in DSTrace (ndstrace), you can view the index chosen
for the search queries.

The following example is for a DSTrace log for a subtree search using "cn=admin", CN.

3019918240 StrMan: Iter #b239c18 query ((Flags&1)==1) &&
((CN$217A$.Flags&8=="admin") && (AncestorID==32821))

3019918240 StrMan: Iter #b239c18 index = CNIX220

The following example is for an DSTrace log for a subtree search using "Description= This is
for testing", AncestorID.

2902035360 StrMan: Iter #83075b0 query ((Flags&1)==1) &&
((Description$225A$.Flags&8=="This is for testing") && (AncestorID==32821))

2902035360 StrMan: Iter #83075b0 index = AncestorID_IX

2.1.3 Roll-Forward Log
FLAIM logs operations for each update transaction in a roll-forward log (RFL) file. An RFL is used to
recover transactions from a system failure or when restoring from a backup. The RFL file is truncated
after every checkpoint is completed unless it is turned on (rflkeepfiles) by using a hot continuous
backup (http://www.novell.com/documentation/edir88/edir88/data/a2n4mb7.html).
12 NetIQ eDirectory Tuning Guide

http://www.novell.com/documentation/edir88/edir88/data/a5tuuu5.html
http://www.novell.com/documentation/edir88/edir88/data/a2n4mb7.html
http://www.novell.com/documentation/edir88/edir88/data/a2n4mb7.html

2.1.4 FLAIM Attribute Containerization
To ensure optimal utilization of the entry cache and enhanced performance of attribute search
operations, FLAIM stores attributes with larger values or higher number of values in a separate
location namely, Attribute Container. By default the attributes will be moved to the container
automatically when the attribute:

has greater than 25 values
has a value greater than 2048 bytes

To disable the automatic containerization of attributes, add disablemovetoattrcontainer =1 in the
_ndsdb.ini file and restart eDirectory.

eDirectory provides you the flexibility of scheduling the attribute movement. You first view the
attributes that are ready to be moved and then schedule their movement as per your convenience.

To view the number of attributes ready for movement to attribute containers, run the ndscheck
command. To view the details of attributes, use iMonitor dsReadyContainerAttr attribute on the
Pseudo server objects.

You can start the attribute containerization by using the single object repair option of ndsrepair for
the Pseudo server object. To containerize an attribute, issue the ndsrepair command with the new
advance switch -am followed by the name of the attribute as below:

ndsrepair –J <Pseudo server object ID> –Ad –AM/–am <attribute name>

After moving an attribute to the Attribute Container, eDirectory creates a system index with the name
of the attribute. When an attribute is containerized, you cannot move it back to the original container.

2.2 Thread Pool
eDirectory is multi-threaded for performance reasons. In multi-threading, when the system is busy,
more threads are created to handle the load and some threads are terminated to avoid extra
overhead. It is inefficient and costly to frequently create and destroy threads. Instead of spawning
new threads and destroying them for every task, a number of threads are started and placed in a
pool. The system allocates the threads from the thread pool to several tasks as needed. Tasks are
held in two types of queues:

Tasks that need immediate scheduling are held in the Ready queue.
Tasks that need scheduling at a later time are held in the Waiting queue.

Not every module uses the thread pool. The actual number of threads for the process is more than
the number that exists in the thread pool. For example, FLAIM manages its background threads
separately.

Running the ndstrace -c threads command returns the following thread pool statistics:

The total number of threads that are spawned, terminated, and idle.
The total number of worker threads currently and the peak number of worker threads.
The number of tasks and peak number of tasks in the Ready queue.
The minimum, maximum and average number of microseconds spent in the Ready queue.
The current and maximum number of tasks in the Waiting queue.

An example of a sample thread pool:
eDirectory Subsystems 13

There are certain thread pool parameters:

n4u.server.max-threads: Maximum number of threads that can be available in the pool.
n4u.server.idle-threads: Maximum number of idle threads that can be available in the pool.
n4u.server.start-threads: Number of threads started.

Run the ndsconfig get and ndsconfig set commands to get and set the thread pool size.
14 NetIQ eDirectory Tuning Guide

3 3Analyzing System Bottlenecks

There are several system resources that influence eDirectory performance. In addition, upgrading to
the latest version of operating system improves performance.

Section 3.1, “Disk I/O Subsystem,” on page 15
Section 3.2, “CPU Subsystem,” on page 16
Section 3.3, “Memory Subsystem,” on page 16
Section 3.4, “Network Subsystem,” on page 17

3.1 Disk I/O Subsystem
The disk subsystem is the most common bottleneck. The I/O takes a relatively long time with longer
queues, resulting in high disk utilization and idle CPU cycles. Use the iostat tool during expected peak
loads to determine the average response time indicators.

Disk read, write, and update operations can be sequential or random. Random reads and updates is
the most common access pattern in eDirectory deployments.

Some solutions for random workloads:

Increase the RAM. This allows caching frequently used data or read-ahead data at the
filesystem layer. It also allows caching the DIB within the FLAIM subsystem.
Use dedicated volumes for the DIB. Filesystem performance improves for volumes created
closer to the spindle. Use dedicated volumes for RFL and other logs.
As disks develop increasing latency over a period of time because of fragmentation, they should
be defragmented.
Add separate disk drives for FLAIM RFL. This type of logging can be performed on high-speed
disks.
Use a RAID 10(1+0) environment with more disk drives.

Files created by eDirectory can grow to 4 GB. Filesystems that are optimized to handle large files
work efficiently with eDirectory.

For Solaris™, the Veritas* VxFS filesystem is an extent-based file system where the file system
metadata is optimized for large files. The UFS filesystem is indirectly block-based, where the
filesystem metadata is stored in larger number of blocks. It can even be scattered for large files,
which makes UFS slower for larger files.
For Linux™, the Reiser filesystem is a fast journaling file system and performs better than the
ext3 filesystem on large DIB sets. However, the write back journaling mode of ext3 is known to
match the performance of the Reiser filesystem although the default ordered mode provides
better data consistency. XFS is a high-performance journaling file system, capable of handling
large files and offering smooth data transfers. eDirectory 9.0 is supported on SLES 11 32 and 64-
bit platforms having XFS file system.

FLAIM supports a block size of 4 KB and 8 KB. By default, it is 4 KB. This is same as the default block
size on Linux (tune2fs -l device). However, on Solaris, the UFS filesystem is created with a
default block size of 8 KB (df -g mountpoint). If the FLAIM block size is smaller than the filesystem
Analyzing System Bottlenecks 15

block size, partial block writes can happen. If the database block size is larger than the filesystem
block size, individual block reads and writes are split into a series of distinct physical I/O operations.
Therefore, you should always keep the FLAIM block size the same as the filesystem block size.

Block sizes can be controlled only during the creation of the DIB. Add a line “blocksize=8192” to
_ndsdb.ini to create the DIB with 8K block size.

Choosing the right block size depends on the average size of the FLAIM record on your deployments.
Empirical testing is required on the right set of test data to determine which block size is better for
your deployment.

3.2 CPU Subsystem
eDirectory is built on a highly scalable architecture. The performance increases with the increase in
the number of processors. Increased throughput is observed until at least the 12th processor under
heavy load. However, this increase is subject to the performance of other resources during the
increasing load on the system. Servers are often under-configured with disks and memory. You
should add more processors only under the following circumstances:

If the average load on currently used processors is beyond 75% percent utilization. If the current
CPU utilization is below 75%, adding more CPUs might not improve performance.
If there is a satisfying increase in performance.

If eDirectory is configured with too many threads, considerable amount of CPU time is spent in
context switching. In this case, a decrease in threads can result in better throughput.

3.3 Memory Subsystem
Server applications can perform significantly better when RAM is increased. Caching the eDirectory
database in the filesystem or in the FLAIM cache can lead to improved performances of search and
modify operations. However, you cannot cache the complete DIB in large deployments. Avoid page
swapping even if it means reducing the FLAIM entry and block cache sizes. Use the vmstat tool to
find more information on the memory subsystem.

As eDirectory uses memory, each thread from the thread pool uses 1 MB of RAM for its stack. By
default, the FLAIM cache size is set to 200 MB.

Several loadable modules are started when eDirectory starts, but the loadable module architecture of
eDirectory allows you to reduce the memory footprint of the process by not loading the unused
modules (for example, SecretStore, LDAP, or eMBox). In addition, products like IDM have some
modules that run inside eDirectory.

The memory used by eDirectory might appear to be growing. Although memory is freed by an
eDirectory process, it might not be released to the system free pool because the memory manager
used internally by eDirectory tries to optimize the memory allocations for future. This is one of the
reasons for not recommending FLAIM dynamic configuration. Use the Top tool to find the
approximate virtual memory size of the ndsd process in your deployment.

The maximum memory that can be allocated to a process is limited in several ways. A certain amount
of RAM is used by the operating system and other processes on the system. The operating system
can impose limitations on physical RAM that a process uses.
16 NetIQ eDirectory Tuning Guide

3.4 Network Subsystem
Typical deployments have sufficient bandwidth to handle peak network load. Adequate bandwidth
reduces errors, collisions, and dropped packets. Use the netstat tool to determine the network
statistics.

Several operating systems provide TCP/IP tunable parameters for tuning network intensive servers.
For information, refer to the documentation for the operating systems.

If the network is the bottleneck, you should increase the bandwidth. Configuring a dedicated private
network between the application servers and the eDirectory server might also help in reducing the
network congestion.
Analyzing System Bottlenecks 17

18 NetIQ eDirectory Tuning Guide

4 4Tuning eDirectory Subsystems

This section includes the following information:

Section 4.1, “FLAIM Database,” on page 19
Section 4.2, “Thread Pool,” on page 20
Section 4.3, “ACLs,” on page 21
Section 4.4, “Replication,” on page 23
Section 4.5, “Solid State Disk (SSD),” on page 24
Section 4.6, “NMAS Login Update Interval,” on page 25
Section 4.7, “SSL Overhead,” on page 25
Section 4.8, “Import Convert and Export (ICE),” on page 25
Section 4.9, “ldif2dib,” on page 25
Section 4.10, “Enhanced NCP Packet Size,” on page 25

4.1 FLAIM Database
Cache sizing is arguably the most important factor affecting the overall performance of eDirectory.
The greater the number of items (blocks and entries) that can be cached, the better the overall
performance is. The percentage of times that the blocks or entries are found in the cache is called the
hit ratio. A higher ratio results in better performance. iMonitor can be used to view the hit ratio.

The block cache is most useful for update operations. The entry cache is most useful for operations
that performs a base-scoped search for an entry. However, both one-level and sub-tree scoped
searches use the entry cache as well as the block cache. The block cache is used to retrieve indexes.
Create the right type of indexes as necessary, for more information see “Choosing Indexes” on
page 20.

A fault in the block cache can result in a disk read operation. Disk reads are always expensive, but
they can be avoided if a block is retrieved from the filesystem cache.

The amount of memory required to cache the complete database in the block cache is nearly the size
of the database on the disk, and the amount of memory required to cache the complete database in
the entry cache is nearly two to four times the database size on the disk. When you have less
memory on a system, try a smaller entry cache and a much larger block or filesystem cache.

If reads are localized to a set of entries in the directory, you should increase the entry cache as long
as it results in an improved entry cache hit ratio.

If the read pattern is completely random and the DIB is much larger than the available RAM, you
should have a larger block cache or a filesystem cache than the entry cache.

Any method you use to tune eDirectory for an improved performance needs empirical testing. A good
ratio of entry to block cache for search-intensive environments is 2:1 ratio. Ensure that sufficient
memory is left for other processes. Avoid page swapping even if it means reducing the FLAIM cache
sizes.

Because FLAIM provides preallocated caching, memory allocated to the eDirectory cache is never
fragmented by the native operating system memory manager.
Tuning eDirectory Subsystems 19

4.1.1 Choosing Indexes
Indexes are meant to improve the one-level or sub-tree scoped search performance. Dynamic groups
also use one-level or sub-tree scoped searches. Indexes are not used for base-scoped searches.

Because a Presence index does not differentiate between present and not present (deleted) values, it
is mainly used for internal purpose. If applications run a Presence type search query, this index is
never used, so applications should not have Presence indexes created for them.

Applications can create a Value index for an attribute, which is sufficient for most of the searches.
FLAIM can use a Value index for performing both Presence as well as Substring searches on the
attributes.

A Substring index can significantly decelerate the updates performed on an attribute. The number of
index blocks required to support a Substring index is quite large compared to the Value index. This
means more block cache is required to cache them. Create a Substring index only when necessary. A
Value index should suffice for most searches. However, if Substring searches do not yield acceptable
performance with a Value index, you can create a Substring index on those attributes.

If a search operation takes a long time to complete despite the chosen index, you might introduce a
newer value index on one of the attributes of the search filter. Pick the attribute that yields best results
when indexed.

4.1.2 Tuning for Updates
The block cache is most useful for update operations. Indexes also reside in the block cache.
Although indexes help in faster searches, having too many indexes keeps the server busy
maintaining them. Indexes are modified if attribute values are modified, added, or deleted. During
large upload operations, indexes can be disabled for faster upload.

Having the RFL directory on a different disk than the DIB directory improves performance.

An acceptable limit for response time for an update operation can be controlled by using the
maxdirtycache. For example, if an acceptable limit for the server response is 5 seconds and random
disk write speed is 20 MB per second, then the maxdirtycache should be set as 20x5 = 100 MB.
Ensure that the block cache can hold these dirty blocks in memory. See Section 5.2.2, “Modifying
FLAIM Cache Settings through _ndsdb.ini,” on page 29 for more information.

4.2 Thread Pool
By default, the maximum number of threads that can be available in the thread pool is 256. This
number should suffice for most deployments. It can be increased to 512 threads in larger
deployments. You should increase the number of threads in the pool in the following cases:

If the number of idle threads is often zero.
If the average amount of time spent by a task in the Ready queue is high and increasing.
If the number of tasks in the Ready queue is high and increasing.

Keep increasing the max threads if the performance of the server increases. It should also result in
increased CPU utilization.

For information about viewing the thread pool statistics, see “Viewing the Thread Pools Statistics” in
the NetIQ eDirectory Administration Guide.
20 NetIQ eDirectory Tuning Guide

https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#Akkzsjz
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo

4.3 ACLs
Section 4.3.1, “Improving eDirectory Searches and Reads,” on page 21
Section 4.3.2, “Disabling ACL Templates,” on page 21

4.3.1 Improving eDirectory Searches and Reads
An LDAP search in eDirectory returns results depending on the number of attributes returned for a
user (inetOrgPerson).

When an object is created in eDirectory, default ACLs might be added on the object. This depends on
ACL templates in the schema definition for the objectClass to which this object belongs. For example,
in the default configuration for inetOrgPerson, there can be up to six ACLs added on the user object.
When an LDAP search request is made to return this user object with all attributes, it takes slightly
longer to return this object to the client than returning this user object without ACL attributes.

Though default ACLs can be turned off, administrators may not want to turn them off because they
are required for better access control. However, you can improve the search performance by not
requesting them or by marking them as read filtered attributes. These changes do not break any
applications because most applications use effective privileges and do not rely on specific ACLs.

Not requesting ACLs: An ACL attribute is not needed by several applications, so the applications
can be modified to request specific attributes in which the application is interested. This results in
better performance of the LDAP search.

Marking an ACL as read filtered: If an application cannot be modified, the arf_acl.ldif can be
used by an administrator to mark the ACL attribute as a read filtered attribute. When the ACL is
marked as a read filtered attribute, the server does not return the attribute on the entry if all attributes
are requested. However, the if the LDAP search is done to return operational attributes or if the
request specifically asks for ACL attributes, the marked attribute is returned. rrf_acl.ldif can be
used to turn off the read filtered flag on an ACL attribute. These LDIFs affect the ACL attribute on the
schema, so only a user with Supervisor rights on tree root can extend them.

By default, an ACL is not marked as read filtered, so the performance benefit for requests to return all
attributes is not seen.

The following table depicts the location of arf_acl.ldif and rrf_acl.ldif files in different
platforms.

4.3.2 Disabling ACL Templates
You can disable the Access Control List (ACL) templates to increase the bulkload performance. The
implication of this is that some of the ACLs will be missing. However, you can resolve this by adding
the required ACLs to the LDIF file or applying them later.

1 Run the following command:

ldapsearch -D cn_of_admin -w password -b cn=schema -s base objectclasses=inetorgperson

The output of this command would be as follows:

Platform Location

Linux /opt/novell/eDirectory/lib/nds-schema/

Windows <unzipped_location>\nt\I386\NDSonNT\ndsnt\nds
Tuning eDirectory Subsystems 21

dn: cn=schema

objectClasses: (2.16.840.1.113730.3.2.2 NAME 'inetOrgPerson' SUP
organizationalPerson STRUCTURAL MAY (groupMembership $ ndsHomeDirectory
$ loginAllowedTimeMap $ loginDisabled $ loginExpirationTime $
loginGraceLimit $ loginGraceRemaining $ loginIntruderAddress $
loginIntruderAttempts $ loginIntruderResetTime $
loginMaximumSimultaneous $ loginScript $ loginTime $
networkAddressRestriction $ networkAddress $ passwordsUsed $
passwordAllowChange $ passwordExpirationInterval $
passwordExpirationTime $ passwordMinimumLength $ passwordRequired $
passwordUniqueRequired $ printJobConfiguration $ privateKey $ Profile $
publicKey $ securityEquals $ accountBalance $ allowUnlimitedCredit $
minimumAccountBalance $ messageServer $ Language $ UID $
lockedByIntruder $ serverHolds $ lastLoginTime $ typeCreatorMap $
higherPrivileges $ printerControl $ securityFlags $ profileMembership $
Timezone $ sASServiceDN $ sASSecretStore $ sASSecretStoreKey $
sASSecretStoreData $ sASPKIStoreKeys $ userCertificate
$ nDSPKIUserCertificateInfo $ nDSPKIKeystore $ rADIUSActiveConnections $
rADIUSAttributeLists $ rADIUSConcurrentLimit $ rADIUSConnectionHistory
$ rADIUSDefaultProfile $ rADIUSDialAccessGroup $ rADIUSEnableDialAccess
$ rADIUSPassword $ rADIUSServiceList $ audio $ businessCategory $
carLicense $ departmentNumber $ employeeNumber $ employeeType $
givenName $ homePhone $ homePostalAddress $ initials $ jpegPhoto $
labeledUri $ mail $ manager $ mobile $ pager $ ldapPhoto $
preferredLanguage $ roomNumber $ secretary $ uid $ userSMIMECertificate
$ x500UniqueIdentifier $ displayName $ userPKCS12) X-NDS_NAME 'User' X
-NDS_NOT_CONTAINER '1' X-NDS_NONREMOVABLE '1' X-NDS_ACL_TEMPLATES
('2#subtree#[Self]#[All Attributes Rights]' '6#entry#[Self]#loginScript'
'1#subtree#[Root Template]#[Entry Rights]' '2#entry#[Public]#messageServer'
'2#entry#[Root Template]#groupMembership' '6#entry#[Self]#printJobConfiguration'
'2#entry#[Root Template]#networkAddress'))

2 In the output noted in the previous step, delete the information marked in bold.
3 Save the revised output as an LDIF file.
4 Add the following information to the newly saved LDIF file:

dn: cn=schema

changetype: modify

delete: objectclasses

objectclasses: (2.16.840.1.113730.3.2.2)

-

add:objectclasses

Therefore, your LDIF should now be similar to the following:

dn: cn=schema

changetype: modify

delete: objectclasses

objectclasses: (2.16.840.1.113730.3.2.2)

-

add:objectclasses
22 NetIQ eDirectory Tuning Guide

objectClasses: (2.16.840.1.113730.3.2.2 NAME 'inetOrgPerson' SUP
organizationalPerson STRUCTURAL MAY (groupMembership $ ndsHomeDirectory
$ loginAllowedTimeMap $ loginDisabled $ loginExpirationTime $
loginGraceLimit $ loginGraceRemaining $ loginIntruderAddress $
loginIntruderAttempts $ loginIntruderResetTime $
loginMaximumSimultaneous $ loginScript $ loginTime $
networkAddressRestriction $ networkAddress $ passwordsUsed $
passwordAllowChange $ passwordExpirationInterval $
passwordExpirationTime $ passwordMinimumLength $ passwordRequired
$ passwordUniqueRequired $ printJobConfiguration $ privateKey $ Profile $
publicKey $ securityEquals $ accountBalance $ allowUnlimitedCredit $
minimumAccountBalance $ messageServer $ Language $ UID $
lockedByIntruder $ serverHolds $ lastLoginTime $ typeCreatorMap $
higherPrivileges $ printerControl $ securityFlags $ profileMembership $
Timezone $ sASServiceDN $ sASSecretStore $ sASSecretStoreKey $
sASSecretStoreData $ sASPKIStoreKeys $ userCertificate $
nDSPKIUserCertificateInfo $ nDSPKIKeystore $ rADIUSActiveConnections $
rADIUSAttributeLists $ rADIUSConcurrentLimit $ rADIUSConnectionHistory $
rADIUSDefaultProfile $ rADIUSDialAccessGroup $ rADIUSEnableDialAccess
$ rADIUSPassword $ rADIUSServiceList $ audio $ businessCategory $
carLicense $ departmentNumber $ employeeNumber $ employeeType $ givenName $
homePhone $ homePostalAddress $ initials $ jpegPhoto $ labeledUri $ mail
$ manager $ mobile $ pager $ ldapPhoto $ preferredLanguage $ roomNumber
$ secretary $ uid $ userSMIMECertificate $ x500UniqueIdentifier $
displayName $ userPKCS12) X-NDS_NAME 'User' X-ND S_NOT_CONTAINER '1' X
-NDS_NONREMOVABLE '1')

5 Enter the following command:

ldapmodify -D cn_of_admin -w password -f LDIF_file_name

4.4 Replication
In this release, some background processes have been redesigned to cater to large, dynamic
environments. For more information, see “Managing Background Process” in the NetIQ eDirectory
Administration Guide.

We recommend that you set the Hard Limit to 5ms and enable Asynchronous Outbound
Synchronization. However, if the CPU utilization goes high, increase the sleep duration. Figure 4-1
shows the values set for Background Process Delay Settings.
Tuning eDirectory Subsystems 23

https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#A2iiikt
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo

Figure 4-1 Background Process Settings

In-house lab tests were performed on a setup of 10 servers with the following settings: Hard Limit-
0ms, Asynchronous Outbound Synchronization - enabled, and Async Dispatcher Thread Delay -
0ms. The tests have shown that replication is 7 times faster than with the default settings. During this
test, no other client operations were performed.

NOTE: To reap the best benefits of the performance of your systems with these scalability
enhancements, you must be on eDirectory 9.0 on all servers. Even if there are some older versions in
the replica ring, there is improvement in performance.

4.5 Solid State Disk (SSD)
This release supports Enterprise SSD for improved IO operations. Table 4-1 on page 24 shows the
improvement in repair performance on SSD in our test setup:

Table 4-1 Repair Performance

DIB Size (GB) HDD (Time in Minutes) SSD (Time in Minutes) % Improvement

11 80 53 33.75

24 277 169 38.98
24 NetIQ eDirectory Tuning Guide

4.6 NMAS Login Update Interval
For more information, see “Using the sasUpdateLoginInfo and sasUpdateLoginTimeInterval Attribute
” in the NetIQ Modular Authentication Services Administration Guide.

4.7 SSL Overhead
LDAP over SSL adds an additional load on the CPU because of its encryption requirements. A lab
performance study shows greater than a 10% performance hit because of encryption overhead.

4.8 Import Convert and Export (ICE)
The NetIQ Import Convert and Export (ICE) utility uses an optimized bulk update protocol called
LBURP to upload data into eDirectory. This protocol is significantly faster than uploading data by
using a simple ldapmodify command. For more information, see Offline Bulkload Utility in the NetIQ
eDirectory Administration Guide.

4.9 ldif2dib
For tuning eDirectory performance during offline bulk upload by using the ldif2dib utility, for more
information, see Tuning ldif2dib in the NetIQ eDirectory Administration Guide.

4.10 Enhanced NCP Packet Size
To communicate among various servers, eDirectory uses Netware Core Protocol (NCP) as the
communication protocol. In previous releases, the maximum packet size that NCP allowed was 64
KB, which limited the maximum throughput when data was transferred over NCP. This release
improves the ability of NCP to handle packet size up to 1 MB, which enables eDirectory to
synchronize up to 1 MB data in a single packet. eDirectory starts synchronizing with 64 KB packet
size and increases the packet size based on the remaining data to be synchronized. This significantly
improves the replication performance. If your both servers are 9.0, you do not need to perform any
additional configuration to leverage this enhancement.

34 542 296 45.38

75 1383 618 55.31

98 3171 1023 67.73

DIB Size (GB) HDD (Time in Minutes) SSD (Time in Minutes) % Improvement
Tuning eDirectory Subsystems 25

https://www.netiq.com/documentation/edirectory-9/pdfdoc/nmas/nmas.pdf#bq1y61x
https://www.netiq.com/documentation/edirectory-9/pdfdoc/nmas/nmas.pdf#bookinfo
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#b1ie3e7k
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#b1ie3lxa
https://www.netiq.com/documentation/edirectory-9/pdfdoc/edir_admin/edir_admin.pdf#bookinfo

26 NetIQ eDirectory Tuning Guide

5 5eDirectory Configuration

This section includes the following information:

Section 5.1, “Configuring the FLAIM Subsystem,” on page 27
Section 5.2, “Modifying FLAIM Cache Settings,” on page 27

5.1 Configuring the FLAIM Subsystem
In order to address a wide range of deployments and configurations, two mechanisms for controlling
the cache memory consumption are provided in the eDirectory. These mechanisms are mutually
exclusive.

Section 5.1.1, “Hard Cache Limit,” on page 27
Section 5.1.2, “Dynamically Adjusting the Limit,” on page 27

5.1.1 Hard Cache Limit
You can specify a hard memory limit in one of the following ways:

As a fixed number of bytes.
As a percentage of physical memory.
As a percentage of available physical memory.

When a hard limit is specified by using the second or third method, it is always translated to a fixed
number of bytes. This means that for the second method, the number of bytes is the percentage of
physical memory detected when eDirectory is started. For the third method, the number of bytes is
the percentage of available physical memory detected when eDirectory is started.

5.1.2 Dynamically Adjusting the Limit
A dynamic adjustment causes eDirectory to periodically adjust its memory consumption in response
to the variable memory consumption by other processes. Although adjusting memory dynamically
works well in typical scenarios, this mechanism is not recommended for optimal performance of
eDirectory on Linux platforms because of large differences in memory usage patterns and memory
allocators on Linux platforms.

5.2 Modifying FLAIM Cache Settings
Section 5.2.1, “Modifying FLAIM Cache Settings through iMonitor,” on page 28
Section 5.2.2, “Modifying FLAIM Cache Settings through _ndsdb.ini,” on page 29
eDirectory Configuration 27

5.2.1 Modifying FLAIM Cache Settings through iMonitor
You can use iMonitor to do the following:

View or change the cache settings.

Monitor the cache statistics.
28 NetIQ eDirectory Tuning Guide

Refer to the Database cache under Agent Configuration of iMonitor for the above information.

5.2.2 Modifying FLAIM Cache Settings through _ndsdb.ini
The FLAIM cache settings and other FLAIM configurations can be performed by modifying the
_ndsdb.ini file that resides in the DIB directory. Restart eDirectory when _ndsdb.ini file is
changed.

You can set the dynamically adjusting limit or the hard cache limit. The cache options are listed below.
Multiple options can be specified, in any order, separated by commas. All are optional.

DYN or HARD - Dynamically adjusting a limit or hard limit.
% : percentage - Percentage of available or physical memory to use.
AVAIL or TOTAL - The percentage specifies available memory or total physical memory. It is
applicable only for the hard limit and ignored for the dynamically adjusting limit, because
dynamically adjusting limits are always calculated based on the available physical memory. By
default, it is AVAIL.
MIN: bytes - Minimum number of bytes.
MAX: bytes - Maximum number of bytes.
LEAVE: bytes - Minimum number of bytes to leave.

Database Cache
Information

Description

Maximum Size The maximum size (in KB) that the specified cache is allowed to grow
to.

Current Size The current size (in KB) of the specified cache.

Items Cached The number of items in the specified cache.

Old Versions Cached The number of old versions in the specified cache. Old versions of
cache items are kept to maintain the consistency of read transactions
in the database. In other words, if one thread is in a read transaction
and another is in a write transaction, old versions of blocks modified
by the writer are maintained on behalf of the reader. This is done so
that the reader’s results are guaranteed to produce a consistent view
during the life of its transaction even though modifications are taking
place during that time.

Old Versions Size The size (in KB) of the old version items cached.

Hits The number of times an item was successfully accessed from the
specified cache.

Hit Looks The number of items looked at in the cache before an item was
successfully accessed from the specified cache. The hit-look-to-hit
ratio is a measure of cache lookup efficiency. Normally, the ratio
should be close to 1:1.

Faults The number of times an item was not found in the specified cache
and had to be obtained in a lower level cache or from the disk.

Fault Looks The number of items looked at in the cache before it was determined
that the desired item was not in the specified cache. The fault-look-to-
fault ratio is a measure of cache lookup efficiency. Normally, the ratio
should be close to 1:1.
eDirectory Configuration 29

For example:

cache=HARD,%:75, MIN:200000000

cache=500000000

preallocatecache: true/false - This setting causes eDirectory to preallocate the amount of
memory specified by the hard cache limit.
rfldirectory - A different path can be specified for RFL files.
cpinterval - Number of seconds after which FLAIM forces a checkpoint. The default is 3
minutes.
maxdirtycache - Maximum dirty cache bytes.
lowdirtycache - Minimum dirty cache bytes.
blockcachepercent - Percentage of the FLAIM cache used for block cache.
cacheadjustinterval - Interval in seconds for dynamically adjusting the cache.
cachecleanupinterval - Interval in seconds for cleaning up older versions of entries and blocks
from the cache.
30 NetIQ eDirectory Tuning Guide

	NetIQ eDirectory Tuning Guide
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	1 Overview
	1.1 Prerequisites

	2 eDirectory Subsystems
	2.1 FLAIM Database
	2.1.1 Checkpoint
	2.1.2 Indexes
	2.1.3 Roll-Forward Log
	2.1.4 FLAIM Attribute Containerization

	2.2 Thread Pool

	3 Analyzing System Bottlenecks
	3.1 Disk I/O Subsystem
	3.2 CPU Subsystem
	3.3 Memory Subsystem
	3.4 Network Subsystem

	4 Tuning eDirectory Subsystems
	4.1 FLAIM Database
	4.1.1 Choosing Indexes
	4.1.2 Tuning for Updates

	4.2 Thread Pool
	4.3 ACLs
	4.3.1 Improving eDirectory Searches and Reads
	4.3.2 Disabling ACL Templates

	4.4 Replication
	4.5 Solid State Disk (SSD)
	4.6 NMAS Login Update Interval
	4.7 SSL Overhead
	4.8 Import Convert and Export (ICE)
	4.9 ldif2dib
	4.10 Enhanced NCP Packet Size

	5 eDirectory Configuration
	5.1 Configuring the FLAIM Subsystem
	5.1.1 Hard Cache Limit
	5.1.2 Dynamically Adjusting the Limit

	5.2 Modifying FLAIM Cache Settings
	5.2.1 Modifying FLAIM Cache Settings through iMonitor
	5.2.2 Modifying FLAIM Cache Settings through _ndsdb.ini

