
Contents
NetIQ Directory and
Resource Administrator
PowerShell Usage and Examples
September 2013

This paper highlights how to use PowerShell to write DRA
Triggers, DRA Custom Policies, standalone scripts that use the
DRA ADSI Provider, and scripts that issue requests to directly to
DRA servers. Detailed information regarding the use of
PowerShell can be found at the Microsoft Developer Network
web site. This paper does not discuss the REST features allowing
access to DRA servers.
Binding to an Object Using
the DRA ADSI Provider in a
PowerShell Script 2

Checking for Errors in a
PowerShell Script 3

Creating an Object 3

Deleting an Object 3

Determining the Properties
of an Object 4

Enumerating Objects 4

Getting Object Properties
with the GetInfoEx Method 4

Setting Object Properties 4

Working with Resource
Objects 4

Writing DRA Triggers and
Custom Policies as
PowerShell Scripts 5

Issuing Request through
PowerShell Using DRA
COM Objects 8

2

Legal Notice

NetIQ Aegis is protected by United States Patent No(s): 6,792,462.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT ARE FURNISHED UNDER AND ARE
SUBJECT TO THE TERMS OF A LICENSE AGREEMENT OR A NON-DISCLOSURE AGREEMENT. EXCEPT AS
EXPRESSLY SET FORTH IN SUCH LICENSE AGREEMENT OR NON-DISCLOSURE AGREEMENT, NETIQ
CORPORATION PROVIDES THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO
NOT ALLOW DISCLAIMERS OF EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS; THEREFORE,
THIS STATEMENT MAY NOT APPLY TO YOU.

This document and the software described in this document may not be lent, sold, or given away without the prior written
permission of NetIQ Corporation, except as otherwise permitted by law. Except as expressly set forth in such license
agreement or non-disclosure agreement, no part of this document or the software described in this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, or otherwise,
without the prior written consent of NetIQ Corporation. Some companies, names, and data in this document are used for
illustration purposes and may not represent real companies, individuals, or data.

This document could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein. These changes may be incorporated in new editions of this document. NetIQ Corporation may make
improvements in or changes to the software described in this document at any time.

© 2013 NetIQ Corporation. All rights reserved.

U.S. Government Restricted Rights: If the software and documentation are being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier), in accordance with 48 C.F.R. 227.7202-
4 (for Department of Defense (DOD) acquisitions) and 48 C.F.R. 2.101 and 12.212 (for non-DOD acquisitions), the
government’s rights in the software and documentation, including its rights to use, modify, reproduce, release, perform,
display or disclose the software or documentation, will be subject in all respects to the commercial license rights and
restrictions provided in the license agreement.

Check Point, FireWall-1, VPN-1, Provider-1, and SiteManager-1 are trademarks or registered trademarks of Check Point
Software Technologies Ltd.

ActiveAudit, ActiveView, Aegis, AppManager, Change Administrator, Change Guardian, Compliance Suite, the cube logo
design, Directory and Resource Administrator, Directory Security Administrator, Domain Migration Administrator,
Exchange Administrator, File Security Administrator, Group Policy Administrator, Group Policy Guardian, Group Policy
Suite, IntelliPolicy, Knowledge Scripts, NetConnect, NetIQ, the NetIQ logo, PSAudit, PSDetect, PSPasswordManager,
PSSecure, Secure Configuration Manager, Security Administration Suite, Security Manager, Server Consolidator, VigilEnt,
and Vivinet are trademarks or registered trademarks of NetIQ Corporation or its subsidiaries in the USA. All other
company and product names mentioned are used only for identification purposes and may be trademarks or registered
trademarks of their respective companies.

For purposes of clarity, any module, adapter or other similar material ("Module") is licensed under the terms and conditions
of the End User License Agreement for the applicable version of the NetIQ product or software to which it relates or
interoperates with, and by accessing, copying or using a Module you agree to be bound by such terms. If you do not agree to
the terms of the End User License Agreement you are not authorized to use, access or copy a Module and you must destroy
all copies of the Module and contact NetIQ for further instructions.

Binding to an Object Using the DRA ADSI Provider in a PowerShell Script

When you run a DRA server on a 64-bit Windows platform, you must use the version of PowerShell
located in the \Windows\SysWOW64\ folder.

To bind to the Users generic container object in the NQTraining domain, use the following PowerShell
statement.

$objContainer = [ADSI]"OnePoint://netiqwin2k8r20/CN=Users,DC=nqtraining,DC=lab"

NOTE: Specifying netiqwin2k8r20 identifies netiqwin2k8r20 as the DRA server to which the request
will be directed. If a DRA server is omitted along with the training “/”, the ADSI provider will choose a
DRA server from among the available DRA servers.
PowerShell Usage and Examples

Checking for Errors in a PowerShell Script

By using the trap construct, you can implement behavior in DRA Triggers and Custom Policies
corresponding to the “On Error Resume Next” mechanism offered by the VBScript engine. Specifically,
by including the following at the beginning of your PowerShell scripts, terminating and non-
terminating errors can be ignored but logged.

$ErrorActionPreference = "SilentlyContinue"

$Error.Clear()

trap { continue }

NOTE: Depending on the status of the PowerShell environment on a particular DRA server, you may
not need to assign a value to $ActionPreference.

Error is a PowerShell object you don’t need to declare. It functions to record errors that occur as a
PowerShell Trigger or Custom Policy executes. Error can be accessed in much the same way as an array.
For example, $Error[0].

NOTE: The trap construct may not be able to recognize all errors. In particular, executing a statement
such as $v = 1/0 will result in an unrecoverable error.

Creating an Object

The following fragment shows how a new user object can be created using the DRA ADSI Provider:

netiqwin2k8r20 below identifies a DRA server. If a server name is omitted, the
provider will choose # a DRA server from among the servers in the multi-master set
supporting the domain

$objContainer = [ADSI]"OnePoint://netiqwin2k8r20/cn=Users,DC=nqtraining,DC=lab"

$objUser = $objContainer.Create("user", "cn=Jack Jones")

$objUser.Put("userPrincipalName", "jjones@central.com")

$objUser.Put("sAMAccountName", "jjones")

Additional attributes and their values can also be specified using the Put method.

Note that when specifying values for passwords, you must use the PutEncrypted
method.

$password = 'P@ssw0rd'

$objUser.PutEncrypted("userPassword", "P@ssw0rd") # currently not functioning

objUser.SetInfo()

Deleting an Object

The statements below fail, even though the three statements succeed if OnePoint is changed to LDAP,
after removing the DRA server name.

$objContainer = [ADSI] "OnePoint://netiqwin2k8r20/cn=Users,DC=nqtraining,DC=lab"
NetIQ Directory and Resource Administrator 3

4

$objContainer.Delete("user", "cn=user1x") # currently not functioning-functions w/
LDAP provider

$objContainer.Delete("contact", "cn=cntct1") # currently not functioning-functions
w/LDAP provider

Determining the Properties of an Object

The statements below retrieve and display the sAMAccountName and userPrincipalName for a user
account.

$objU1x = [ADSI]"OnePoint://netiqwin2k8r20/cn=user1x,CN=Users,DC=nqtraining,DC=lab"

$sam = $objU1x.Get('sAMAccountName')

$sam

$up = $objU1x.Get('userPrincipalName')

$up

Enumerating Objects

Object enumeration involving ADSI filters seems not to function correctly. Please see the DRA SDK for
examples.

Getting Object Properties with the GetInfoEx Method

Please see the DRA SDK for examples that can be rewritten as PowerShell scripts.

Setting Object Properties

The following is an example of a fragment that modifies the value of the initials attribute of a user
account.

$objU1x = [ADSI]"OnePoint://netiqwin2k8r2/cn=Bob
Slydell,CN=Users,DC=nqtraining,DC=lab"

$initials = $objU1x.Get('initials')

$initials = $initials.ToUpper();

$objU1x.Put('initials', $initials)

$objU1x.SetInfo()

Working with Resource Objects

Please see the DRA SDK for examples that can be rewritten as PowerShell scripts.
PowerShell Usage and Examples

Writing DRA Triggers and Custom Policies as PowerShell Scripts

DRA 8.7 supports Triggers and Custom Policies as PowerShell scripts. These scripts execute on DRA
servers using the PowerShell engine installed on those servers. PowerShell Triggers and Custom
Policies succeed or fail depending on a Boolean value that is returned. For example:

return $true # returns control to the DRA server signaling success

return $false # returns control to the DRA server signaling failure

To prevent the execution of malicious scripts, PowerShell enforces an execution policy. By default, the
execution policy is set to Restricted, which means that PowerShell scripts will not run. You can
determine the current execution policy by using the following cmdlet:

Get-ExecutionPolicy

The execution policies you can use are:

Restricted: Scripts won’t run.

RemoteSigned: Scripts created locally will run, but those downloaded from the Internet will not run
unless they are digitally signed by a trusted publisher.

AllSigned: Scripts will only run if they have been signed by a trusted publisher.

Unrestricted: Scripts will run regardless of their origin and whether they are signed.

NOTE: You can set PowerShell’s execution policy by using the following cmdlet:

Set-ExecutionPolicy <policy name>

The examples and fragments described in this paper were executed on a DRA server after the following
PowerShell cmdlet had been executed at a PowerShell command prompt as an administrator of the
DRA server:

Set-ExecutionPolicy Unrestricted

When PowerShell DRA Triggers and Custom Policies execute, InVarSet requires no declaration and is
initialized to the contents of the VarSet object.

Varset exposes following methods:

Object, InVarSet.Get(<string key>): Retrieves a value from InVarSet. Null is returned if the key
does not exist in the varset.

Void InVarSet.Put(string key, value): Adds or updates a value in inVarSet. If key already exists
in InVarSet, its value will be updated, if not it will be added.

Void InVarSet.Put(string key, string[] value): Adds or updates a string[] in InVarSet. If the
key already, its value will be updated, if not it will be added.

Void InVarSet.Put(string key, object[] value): Adds or updates an object[] in InVarSet. If
key already exists, its value will be updated, if not it will be added.

Void InVarSet.PutEncrypted(string key, object value): Adds or updates an encrypted value in
the VarSet. If key already exists, its value will be updated, if not it will be added.

Void InVarSet.Remove(string key) ::: Removes a key and all subkeys from InVarSet.

Void InVarSet.Clear(): Removes all keys and values from InVarSet. In practice, this method will
rarely be used in a Trigger or Custom Policy.
NetIQ Directory and Resource Administrator 5

6

Void InVarSet.DumpToFile(string filename): Writes InVarSet data to a human-readable log file.

The statements below could be collected into a file having a .ps1 extension and installed as a DRA Pre-
Task Trigger for the operation UserCreate. This text is just intended to illustrate some of the features of
PowerShell Triggers and Custom Policies and does not represent any sort of recommendation.

Error recovery in PowerShell Triggers and Custom Policies can be handled using

the PowerShell "try/catch/finally" mechanism. In addition, using the next three
lines can

offer behavior similar to the error recovery mechanism currently supporting
VBScript triggers.

$ErrorActionPreference = "SilentlyContinue"

$Error.Clear()

trap { continue }

Creating a File where text can be directed. (Although you can use this approach to
collect debugging # data, conflicts can arise if multiple instances of a trigger
execute at the same time.)

Set-Content -Value "DRAPretask" -Path C:\DRAPretask.txt

Creating an event source for a Windows log. (Directing debugging text to a Windows
log, avoids

potential conflicts since the operating system manages log output even if multiple
instances

of a trigger execute at the same time.)

New-EventLog -LogName Application -Source DRATriggers

Write-EventLog -LogName Application -Source DRATriggers -EventId 1001 -Message "From
PretaskA"

$zero = 0

$v = 1/$zero

#$Error.Count

#$Error[0]

Add-Content -Value $Error.Count -Path C:\DRAPretask.txt

Add-Content -Value $Error[0] -Path C:\DRAPretask.txt

$gsScriptName = "PreTaskA.ps1";

$gsErrorMsgFirstLine = "Automation trigger script: " + $gsScriptName;

$FirstArg = ""

$initials = ""

$InVarset.Put("Out.ErrorMsg.Script", $gsErrorMsgFirstLine + " exiting at the
beginning!!!");

return $false

#For retrieving the commandline agruments
PowerShell Usage and Examples

$CmdLineArgs = $InVarSet.Get("CmdLine")

Add-Content -Value $CmdLineArgs -Path C:\DRAPretask.txt

#To retrieve the number of arguments in the argument string

$number = $InVarSet.Get("CmdLine.numArgs")

#Adding the content into file

Add-Content -Value $number -Path C:\DRAPretask.txt

$InVarSet.DumpToFile("C:\vsdump.txt")

return $True

if($number -ne 0) {

 #To retrieve an individual argument and also if required to retrieve multiple
arguments

 $FirstArg = $InVarSet.Get("CmdLine.arg0")

 $initials = $InVarSet.Get("CmdLine.arg1")

 Add-Content -Value $FirstArg -Path C:\DRAPretask.txt

 $Message = "From PretaskA: FirstArg: " + $FirstArg

 Write-EventLog -LogName Application -Source DRATriggers -EventId 1001 -Message
$Message

}

$InVarset.Put("Out.ErrorMsg.Script", $gsErrorMsgFirstLine + " before return
false!");

return $False

if($FirstArg -ne "Arg0x") {

 $InVarset.Put("Out.ErrorMsg.Script", $gsErrorMsgFirstLine + " before Arg0x
check!");

 return $FALSE

}

 $sOperationName = $InVarset.Get("In.OperationName");

 if($sOperationName.length -eq 0) {

 $sErrorMsgText = " OperationName not retrieved from $InVarset.";

 $InVarset.Put("Out.ErrorMsg.Script", $gsErrorMsgFirstLine + $sErrorMsgText);

 return $False;

}

 # Updating the description property value based on arguments

 $InVarset.put("In.Properties.description", $FirstArg)

 Add-Content -Value " Here 1" -Path C:\DRAPretask.txt

 #Updating the initials property value
NetIQ Directory and Resource Administrator 7

8

 $InVarset.put("In.Properties.initials", $initials)

 Add-Content -Value " Here 2" -Path C:\DRAPretask.txt

 $InVarset.Put("Out.WarningMsg.Script", $gsErrorMsgFirstLine + " Warning message
text here!!!");

 $Message = "From PretaskA: Warning: " + $gsErrorMsgFirstLine + " Warning message
text here!!!"

 Write-EventLog -LogName Application -Source DRATriggers -EventId 1001 -Message
$Message

 # return $True

 $sNewName = "";

 if($InVarset.Get("In.Properties.sn"))

 {

 if($InVarset.Get("In.Properties.givenName")) {

 $sNewName = $InVarset.Get("In.Properties.sn").Trim() + ", " +

 $InVarset.Get ("In.Properties.givenName").Trim()

 $InVarset.put("In.Properties.cn", $sNewName)

 }

 else

 {

 $sNewName = $InVarset.Get("In.Properties.sn").Trim();

 }

 $InVarset.Put("Out.WarningMsg.Script", $gsErrorMsgFirstLine + " Warning message
text!!!");

 Add-Content -Value " Before dump" -Path C:\DRAPretask.txt

 $InVarSet.DumpToFile("C:\vsdump.txt")

 return $True;

 }

 else

 {

 return $True;

 }

Issuing Request through PowerShell Using DRA COM Objects

The example script below instantiates several DRA COM objects installed on DRA servers and DRA
client computers and uses them to retrieve several attributes of a user object.

Get an instance of a DRA Connector

$sServer = "netiqwin2k8r20"
PowerShell Usage and Examples

$gWebDcom = New-Object -ComObject "McsWebDcom.Connector.1"

Get an instance of an EAServe object. $sServer in the next

statement identifies a computer running the NetIQ Administration Service

$gEaServerObject = $gWebDcom.GetEaServer($sServer)

Create an instance of the VarSet object to be used to contain inputs to a DRA
request

$VarSetIn = New-Object -ComObject "NetIQDRAVarSet.VarSet.1"

Issue the Put method on VarSetIn. This method accepts two parameters.

The first is a string that specifies the name for the item, called a

key. The second specifies its value.

$VarSetIn.put("Client.Version.Build", [long]0)

$VarSetIn.put("Client.Version.Major", [long]8)

$VarSetIn.put("Client.Version.Minor", [long]70)

$VarSetIn.put("Client.Version.Release", [long]696)

$VarSetIn.put("LocaleID", [long]1033)

$VarSetIn.put("OperationName", "UserGetInfo")

$VarSetIn.put("Properties.$McsFriendlyName", "")

$VarSetIn.put("Properties.$McsFriendlyPath", "")

$VarSetIn.put("Properties.$McsLocalAccount", "")

$VarSetIn.put("Properties.AccountDisabled", "")

$VarSetIn.put("Properties.AccountExpirationDate", "")

$VarSetIn.put("Properties.IsAccountLocked", "")

$VarSetIn.put("Properties.displayName", "")

$VarSetIn.put("Properties.manager", "")

$VarSetIn.put("Properties.sAMAccountName", "")

$VarSetIn.put("Properties.userPrincipalName", "")

$VarSetIn.put("User", "OnePoint://CN=Bob Slydell,CN=Users,DC=nqtraining,DC=lab")

$VarSetIn.put("VisibleProperties", $true)

#Submit the varset

$vsOut = $gEaServerObject.ScriptSubmit($VarSetIn)

if ($vsOut.get("Errors.numErrors") -gt 0) {

 write-host $vsOut.get("Errors.numErrors") " errors occurred!"

 return

}

$vsOut.get("Properties.sAMAccountName")

$vsOut.get("Properties.userPrincipalName")

$vsOut.get("Properties.displayname")
NetIQ Directory and Resource Administrator 9

10
$vsOut.get("Properties.IsAccountLocked")

As with earlier DRA releases, the CreateScriptsExt.dll extension can be copied to the \NetIQ\DRA
folder and registered by an Administrator account on 64-bit platforms. You can select Varset text lines
and use the extension appearing in the Tools menu to create VBScript text. That text can be transformed
to PowerShell by using the conventions shown in the example above.
PowerShell Usage and Examples

