
SecureLogin 8.8
Java API Guide

December 2019

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

Copyright © 2019 Micro Focus. All rights reserved.
2

https://www.microfocus.com/about/legal/

Contents
About This Guide 5

1 API Overview 7

2 Configuring the User Data 9

3 Configuring the User Directory 11

4 Handling the Exceptions 13

5 Using the Command Line to Configure the Java APIs 15

Provisioning the User Credentials . 16
Linking the User Credentials with the Application . 17
Provisioning Passphrase for the User . 17
Disabling the Passphrase Prompt . 18
Contents 3

4

About This Guide

This guide describes the Java APIs supported by SecureLogin. It includes step-by-step instructions for
using these APIs.

Intended Audience

This guide is intended for SecureLogin administrators, developers and consultants who are creating
custom provisioning of applications with SecureLogin. It is assumed that you have the basic
knowledge of Java.

Additional Documentation

For the most recent version of this guide and other SecureLogin documentation resources, see the
SecureLogin Documentation (https://www.netiq.com/documentation/securelogin) and keep up to
date on patches and versions of both SecureLogin and the host operating system.

Contact Information

We want to hear your comments and suggestions about this book and the other documentation
included with this product. You can use the comment on this topic link at the bottom of each page of
the online documentation, or send an email to Documentation-Feedback@microfocus.com.

For specific product issues, contact Micro Focus Customer Care at https://www.microfocus.com/
support-and-services/.
About This Guide 5

https://www.netiq.com/documentation/securelogin
mailto:Documentation-Feedback@microfocus.com
https://www.microfocus.com/support-and-services/
https://www.microfocus.com/support-and-services/

6 About This Guide

1 1API Overview

The following scenarios explains the use cases where you can make use of this API in your
deployment scenario:

Scenario 1: Provisioning the application credentials of a new user in the SecureLogin data to allow
access to all the required applications.

Scenario 2: Provisioning the legacy application credentials in the SecureLogin data to enable identity
governance.

You can configure the scenarios mentioned above using the command line interface. For more
information on how to use command line to configure API, see Chapter 5, “Using the Command Line
to Configure the Java APIs,” on page 15.

The SecureLogin Java single sign-on API includes the following components:

 UserAPI: It allows provisioning and de-provisioning of user key store master secrets and the
application credentials. See Chapter 2, “Configuring the User Data,” on page 9.

 SchlapiConfig: It allows you to customize the your configuration. Use SchlapiConfig to
obtain the directory configurations or to store certificates. See Chapter 3, “Configuring the User
Directory,” on page 11.

 SchlapiException: UserAPI uses SchlapiException as a general purpose exception class to
report errors. See Chapter 3, “Configuring the User Directory,” on page 11.
API Overview 7

8 API Overview

2 2Configuring the User Data

An administrator can use UserAPI to allow Java applications to integrate with the SecureLogin
single sign-on data. The UserAPI class can perform the following actions.

 Validating the passphrase answer against the passphrase question

 Provisioning the user credentials

A UserAPI instance is created using the SchlAPI interface. The SchlAPI interface defines how the
UserAPI and supporting classes connect to the directory and SchlAPI license key. Once the UserAPI
instance is created, attach it to a user object by directory DN before you invoke other methods. For
example:

UserAPI api = new UserAPI(new MyConfig());
api.attach("cn=myname,cn=users,dc=protocom,dc=com");
String question = api.getQuestion();

Constructor Details

The following table includes the constructor details to create an UserAPI instance.

The UserAPI instances are not locked to an object after attach in invoked. To access another LDAP
object, invoke attach with that object's DN.

Methods Details

The following table explains the methods and modifiers to use with UserAPI.

Constructor Description

UserAPI(SchlapiConfig config) Creates an UserAPI instance.

Modifier and Type Method and Description

boolean attach(String object)
Attaches this instance to an LDAP object.

void close()

This is not part of attach but must be invoked when
you no longer need the UserAPI instance so that
LDAP connections can be closed.

void deprovisionAccount(String account)

Removes an account from the directory.
Configuring the User Data 9

string getQuestion()
Displays the SecureLogin single sign-on passphrase
question.

void provisionAccount(String account, Map
credentials, String description)

Creates an account and provisions credentials.

void provisionLinks(String platform, String
credId, String isSetPlat)

Links credentials to a specific application.

void provisionPassphraseQA(String password,
String question, String answer)

Provisions an account with a new passphrase
question and answer.

void removeNonRepudiation(String password,
String answer)

Re-encrypts the user's entries using the new
Windows password.

boolean verifyAnswer(String answer)

Indicates if the answer to the SecureLogin single sign-
on question is correct.

Modifier and Type Method and Description
10 Configuring the User Data

3 3Configuring the User Directory

The SchlapiConfig class allows the Java applications to integrate with the directory that stores
the SecureLogin single sign-on data. A user with necessary right can access the directory using the
UserAPI with SchlAPIConfig. The following is an example of credentials provisioning.

Map creds = new HashMap();
 creds.put("username", "Joe User");
 creds.put("password", "my secret");
 SchlapiConfig config = new SchlapiConfig() { ... }; // API user's will
need to provide details of the directory configuration
 UserAPI api = new UserAPI(config);
 api.attach("cn=juser,ou=engineering,o=corporation");
 api.provisionAccount("some account", creds, null);
 api.close();

Methods Details

The following table explains the methods and modifiers to use with SchlAPIConfig.

Modifier and Type Method and Description

string getCertificateFile()

If you are using SSL you have two options for
providing the server certificate. You can either import
it into Java's keystore as a trusted certificate or you
can specify the certificate filename. It requires JRE
v1.4 or above. Specify null if you do not wish to
provide a certificate.

string [] getContexts()
Contexts to search for users if the full LDAP DN is not
provided.

string getLicense()

This is the license key provided by Protocom.

string getPassword()

Password for the user specified in getUser(), this
password is used to connect to the directory.
Configuring the User Directory 11

int getPort()

Port number to connect to the directory. This is
usually 389 (LDAP) or 636 (LDAP/SSL).

string getServer()
The IP address or DNS name of the directory server
that includes single sign-on data.

string getUser()

Username to connect to the directory. UserAPI
requires a user with required rights to the
SecureLogin single sign-on attributes.

boolean useSSL()

Indicates to use SSL for connection.

Modifier and Type Method and Description
12 Configuring the User Directory

4 4Handling the Exceptions

UserAPI uses the SchlapiException class as a general purpose exception to report the error
messages.
Handling the Exceptions 13

14 Handling the Exceptions

5 5Using the Command Line to Configure the
Java APIs

This section describes how to configure the API using the command line. The API configuration
parameters are provided directly from the command line. The following table lists the Windows
Installer command line options used to perform various configurations required to login to an
application using SecureLogin.

IMPORTANT: You must specify the admin.json file while using the following arguments except -h
and --help.

Table 5-1 Java API Command Line Options

The above mentioned command line arguments are used with the admin.json file and the
user.json file. The admin.json file contains the administrator details and the user.json file
contains the user credentials for the application and the passphrase. The following are the examples
of these files.

Admin.json

"user":"CN=Administrator,CN=Users,DC=domain,DC=com",
 "password":"samplepassword",
 "server":"WIN-O8QA8KVQ9OH.domain.com",
 "SecurePort":"636",
 "CertPath":"C:\\Users\\username\\Documents\\NSL Provisioning SDK-8.8.0-
0\\dp3.cer",

"licence":"3266238b8bcbd0b5e8ad8e552ef97fc44ca64dc5b20c588c9c1c2e9d0026863
31841d66a09ce66b1"
User.json

Arguments Usage

-a Displays administration details.

-p, --provision Provisions credential to a user, group or container.

-l, --link Links credential to an application for a user, group or container.

-pp, --pprovision Provisions passphrase for a user.

-r Re-encrypts the SecureLogin data with the new password.

-h, --help Displays the API help.
Using the Command Line to Configure the Java APIs 15

{
 "users":[
 {
 "dn":"cn=user,ou=users,o=data",
 "password":"samplepassword",
 "credentials":[
 {
 "credential_name":"samplecred",
 "details": {
 "Username":"sampleuser",
 "password":"samplepass"
 }
 }
],
 "link":[
 {
 "credential_name":"samplecred",
 "application_name":"sampleapp.exe"
 }
],
 "passphrase":{
 "question":"What is the name of your organisation",
 "answer":"Micro Focus"
 }
 }
]
}
You can create your own .json files or edit the files provided. Provisioning an application includes
the following configurations. You must download the Java Single Sign-on package and extract the
Java SSO SDK-8.8.0-0.zip file before you start performing the following configurations.

 “Provisioning the User Credentials” on page 16

 “Linking the User Credentials with the Application” on page 17

 “Provisioning Passphrase for the User” on page 17

 “Disabling the Passphrase Prompt” on page 18

Provisioning the User Credentials
Perform the following steps to create credentials that allow user to login to an application using
SecureLogin.

1 Navigate to the folder where the JSSO API files are saved.

2 Open the command prompt and run the following command:

java -jar "jssoapi-cmd-8.8.0-0.jar" -a admin.json -p user.json

NOTE: The user.json file must contain the following information.
16 Using the Command Line to Configure the Java APIs

https://www.netiq.com/documentation/securelogin-88/references/Java%20SSO%20SDK-8.8.0-0.zip

"credentials":[
 {
 "credential_name":"samplecred",
 "details": {
 "Username":"sampleuser",
 "password":"samplepass"
 }
 }
]

3 Restart SecureLogin.

4 Verify that the user credentials created in Step 2 are listed in SecureLogin > My Logins.

Linking the User Credentials with the Application
Perform the following steps to link the user credentials with the application.

1 Navigate to the folder where the JSSO API files are saved.

2 Open the command prompt and run the following command:

java -jar "jssoapi-cmd-8.8.0-0.jar" -a admin.json -l user.json

NOTE: The user.json file must contain the following information.

"credentials":[
 {
 "credential_name":"samplecred",
 "details": {
 "Username":"sampleuser",
 "password":"samplepass"
 }
 }
],
"link":[
 {
 "credential_name":"samplecred",
 "application_name":"sampleapp.exe"
 }
]

3 Restart SecureLogin or perform a cache refresh to refresh the data store settings.

Provisioning Passphrase for the User
Perform the following steps to provision the passphrase question and answer for a user.

NOTE: If the passphrase is already provisioned, performing these steps will change the passphrase.

1 Navigate to the folder where the JSSO API files are stored.

2 Open the command prompt and run the following command:
Using the Command Line to Configure the Java APIs 17

java -jar "jssoapi-cmd-8.8.0-0.jar" -a admin.json -pp user.json

NOTE: The user.json file must contain the following information.

"passphrase":{
 "question":"What is the name of your organisation",
 "answer":"Micro Focus"

3 Restart SecureLogin.

4 Navigate to SecureLogin > Advanced > Change Passphrase and verify that the passphrase is
provisioned.

Disabling the Passphrase Prompt
When password is changed, SecureLogin prompts the user to specify passphrase answer. You can
configure SecureLogin to re-encrypt the users’ data using the new password without prompting for
the passphrase. Perform the following steps to disable the passphrase prompt:

1 Navigate to the folder where the JSSO API files are stored.

2 Open the command prompt and run the following command:

java -jar "jssoapi-cmd-8.8.0-0.jar" -a admin.json -r user.json

NOTE: The user.json file must contain the new password in the following format before you
run this command.

"users":[
 {
 "dn":"cn=user101,ou=users,o=data",
 "password":"newpassword"

3 Restart SecureLogin.
18 Using the Command Line to Configure the Java APIs

	SecureLogin 8.8 Java API Guide
	About This Guide
	1 API Overview
	2 Configuring the User Data
	3 Configuring the User Directory
	4 Handling the Exceptions
	5 Using the Command Line to Configure the Java APIs
	Provisioning the User Credentials
	Linking the User Credentials with the Application
	Provisioning Passphrase for the User
	Disabling the Passphrase Prompt

