Operations Center
Scripting Guide

September 2016

“dNetia

Legal Notice

For information about NetlQ legal notices, disclaimers, warranties, export and other use restrictions, U.S. Government
restricted rights, patent policy, and FIPS compliance, see https://www.netig.com/company/legall.

Copyright (C) 2016 NetlQ Corporation. All rights reserved.

https://www.netiq.com/company/legal/

Contents

4.5.8

About This Guide
1 Introduction
1.1 ABOUE NOC SCIIPL. . . .ot e e e e e e e e e e
1.2 NOC Script, JavaScript, and ECMASCHIPt oo e
1.3 Learning JavaSCriptottt
2 Creating and Debugging Scripts
2.1 Adding a Scriptto the Script Library.
2.2 Usingthe Script Debugger.
221 Debugging a Script Using the Debugger.
2.2.2 Automatically Running Debugger SCriptst
2.3 Additional Options for Running the Script Debugger
231 Running the Debugger from the Command Line.
2.3.2 Adding Settings in Property Files to Run Scripts in the Debugger.
233 Instrumenting a Script for Debugging
3 Scripting Conventions
3.1 PrOPeIY SYNtaX . . vttt e e
R 70 o To] IR/ | - G
3.3 Declaring ObjecCts.o
3.4 DECIarNg ArTAYS. . o ottt
3.5 ImplementingaJava Interface.
3.6 Exception Handling: try/catch/throw.
4 The NOC Script Object Model
4.1 The Formula Object o e
4.2 Top-Level Elements in Hierarchy Structure e
4.3 Session Functions (formula.login)
43.1 LOgIN).« e
4.3.2 IOQOUL(). . . .ot
4.4 Logging Functions (formula.log). e
44.1 oo
4.4.2 I0gCatEgONY . . o et
4.4.3 Creatinga New Log InStance.
45 Utility Functions (formula.util). e
45.1 String searchAndReplace (String s, String needle, String haystack)
45.2 String encodeURL (String url) e
453 String decodeURL (String url)
45.4 String encodeXML (StrNg S)o oot
455 String[] breakOnTokens (String s, Stringtok)
45.6 String[] breakONCommas (StriNg S) oottt e
457 InputStream captureOutputStream (String commandLine, String [] environment)

throws an EXCEPLIONottt
InputStream captureOutputStream (String commandLine) throws an Exception.

Contents

17

17
17
17
18
18
18

3

4

45.9 String captureOutputString (String commandLine, String [] environment) throws an

EXCEPHION . . . 26

4.5.10 String captureOutputString (String commandLine) throws an Exception. 26
4.5.11 String escapeRegEXpP (String regeXpP) . . . oot i i e e 27
4.5.12 void copyStream (InputStream input, OutputStream output) throws an IOException 27
4.5.13 byte[] toByteArray (InputStream input) throws an IOException 27
4.5.14 String nameToFile (String name) 28
4.5.15 void center (java.awt.WIiNndoOW W)ot 28
45.16 Object makeRemote(Object obj) throws JavaScriptException 28
4.5.17 void notify (Objectsignal) 29
4.5.18 void notifyAll (Objectsignal) e e 29
4.5.19 void wait (Object signal, long timeout). e 29
4.5.20 void page (pagerid, message, host, port) 29
A.5.20 USEI . oot e 29
4522 Class USHINgGot 29
4523 class ORB 30
4524 Class POStEMSy . . .\ttt 30
4525 class TelnetFrame e 30
4526 class ViewBUIlder. 31

4.6 Condition Functions (formula.conditions). e 31
4.6.1 CONAITIONS. . . et 32

4.6.2 SBVEIIES . . . vttt e 32

4.7 Navigating Relationships (formula.relations) i 33
4.8 formula.Commands. 33
5 Element Functions 35
5.1 Understanding Distinguished Names. 35
5.2 Understanding Element Standard Properties. e 35
5.3 Traversing the Element Hierarchy 36
53.1 Children Property.o 36

5.3.2 Relationships Property.o e 36

5.3.3 Parent Property 36

5.3.4 Walk FUNCHIONo 37

5.35 Hierarchy Utilities. e e e e 37

5.4 Browsing for Elements Function (formula.gui) 38
5.5 Element Properties and the Properties Object. 39
5.6 Getting and Setting Propertiesot e 39
5.7 Accessing CuStom Propertiest e e 40
5.8 Performing Operations with Menu Options i e e e 40
5.8.1 Using the Perform Method. 40

5.8.2 Using Customized Operations.o vt e e e 41

5.8.3 Loading ANOther SCriptt 41

58.4 Using Hidden Operations. ot e 41

5.9 Printing Operations for Elements e 41
5.10 Client-Side Methods. 41
5.11 Server-Side Methodso 42
5.11.1 sendMessage (MESSAQE) . .o vttt et et et e e e 42

5.11.2 monitorProcess (name, command)ttt e 42

6 Alarm Functions 43
6.1 Creating Alarmes e 43
6.2 Getting and Setting Alarm Properties. 44
6.3 Getting the Element Associated withthe Alarm. 44
6.4 Modifying Alarm CONLENTo 45
6.5 Developing Automation Scripts for Alarms. 45

Operations Center Scripting Guide

7 User Functions 47

7.1 INtrodUCHION a7
7.2 Getting and Setting Properties oottt 47
7.3 Setting Properties for LDAP USErIS.t 48
7.4 Managing UsSerSttt 48
7.4.1 Understanding Script FUNCLIONS.o e e e e 48

7.4.2 Changing a User's Group Membership 50

8 Using the State Variable to Cache and Store Information 51
9 Miscellaneous Scripting Functions 53
9.1 Script FUNCtions t0 SEt ROOt CaAUSE oottt e e e e 53
9.2 Scripting Functions in Automation Tasks 54
9.2.1 Accessing SLA INformation 54

9.2.2 Using Event Variables e 54

9.2.3 Sample Code. 55

9.3 Remotely Calling One Script from Another 57
9.4 Accessing Metamodel Properties. e 58
9.5 SCMand SCripting« oo 58
9.5.1 Scheduling a SCM Job by Using a Script 59

9.5.2 Scheduling Multiple SCM Jobs by Usinga Script o 60

9.5.3 Generating Elements by Usinga Script. e 61

9.5.4 BUIldiNg COre VIBWS.ottt 62

9.6 Miscellaneous Scripting FUNCHIONS.ot e 64

10 Command Line Scripting: The fscript Utility 67
101 Starting fSCriPt . . . oot 67
10.2 Invoking a Scriptby File Name 68
10.3 Invoking a Scriptby Module Name e 69
10.4 Invoking a Script with ArgUMENtS. e e 69
10.5 Using the Interactive Option. e 70
10.6 EXItiNG fSCIIPL . . . o o e 70

11 Usage Scenarios 71
11.1 Use Case: Opening a Connectionto aJDBC Databaseiiiiiinn.. 71
11.2 Use Case: Gathering Information from the User for Script Invocationona Server.............. 72
11.2.1 Configuring the Script 72

11.2.2 Script File Content. 73

11.2.3 Notes AbOUt the SCrIPt.ot 74

11.3 Use Case: Invoking a Server-Side ScriptfromaClientScript. 74
11.4 Use Case: Creating User Interface Scripts with Java and JFC/Swing. 75
11.4.1 Syntax for Bean-Listener Patterns. i e 76

11.4.2 UtIZINg NEtBEANS oottt e e 76

11.5 Use Case: Running an EXternal ProCeSS.ottt e 83

A The Script Library 85

Contents 5

6

Operations Center Scripting Guide

About This Guide

Operations Center extends its reach into the scripting engine to allow for customization and definition
of business-specific behavior. It does this by using NOC Script, which is an extension of the
ECMAScript Version 3 scripting language.

For ECMASCcript information and objects, see the ECMAScript Language Reference (http://
www.webreference.com/javascript/reference/ECMA-262/E262-3.pdf)

The Scripting Guide provides instructions to use NOC Script to customize and define business-
specific behavior:

+ Chapter 1, “Introduction,” on page 9

+ Chapter 2, “Creating and Debugging Scripts,” on page 11

+ Chapter 3, “Scripting Conventions,” on page 17

+ Chapter 4, “The NOC Script Object Model,” on page 21

+ Chapter 5, “Element Functions,” on page 35

+ Chapter 6, “Alarm Functions,” on page 43

+ Chapter 7, “User Functions,” on page 47

+ Chapter 8, “Using the State Variable to Cache and Store Information,” on page 51

+ Chapter 9, “Miscellaneous Scripting Functions,” on page 53

+ Chapter 10, “Command Line Scripting: The fscript Utility,” on page 67

+ Chapter 11, “Usage Scenarios,” on page 71

+ Appendix A, “The Script Library,” on page 85

Audience

This guide is intended for Operations Center system administrators using the NOC Script language.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Additional Documentation & Documentation Updates

This guide is part of the Operations Center documentation set. For the most recent version of the
Scripting Guide and a complete list of publications supporting Operations Center, visit our Online
Documentation Web Site at Operations Center online documentation.

The Operations Center documentation set is also available as PDF files on the installation CD or ISO;
and is delivered as part of the online help accessible from multiple locations in Operations Center
depending on the product component.

About This Guide 7

http://www.webreference.com/javascript/reference/ECMA-262/E262-3.pdf
https://www.netiq.com/documentation/operations-center/

8

Additional Resources
We encourage you to use the following additional resources on the Web:
+ NetlQ User Community (https://www.netig.com/communities/): A Web-based community with a
variety of discussion topics.

+ NetlQ Support Knowledgebase (https://www.netiq.com/support/kb/
?product%5B%5D=0perations_Center): A collection of in-depth technical articles.

+ NetlQ Support Forums (https://forums.netiq.com/forumdisplay.php?26-Operations-Center): A
Web location where product users can discuss NetlQ product functionality and advice with other
product users.

Technical Support

You can learn more about the policies and procedures of NetlQ Technical Support by accessing its
Technical Support Guide (https://www.netig.com/Support/
process.asp#_ Maintenance_Programs_and).

Use these resources for support specific to Operations Center:

+ Telephone in Canada and the United States: 1-800-858-4000

+ Telephone outside the United States: 1-801-861-4000

¢ E-mail: support@netiq.com (support@netiq.com)

+ Submit a Service Request: http://support.novell.com/contact/ (http://support.novell.com/contact/)

Documentation Conventions

A greater-than symbol (>) is used to separate actions within a step and items in a cross-reference
path. The > symbol is also used to connect consecutive links in an element tree structure where you
can either click a plus symbol (+) or double-click each element to expand them.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a forward slash to preserve case considerations in
the UNIX* or Linux* operating systems.

A trademark symbol (®, ™, etc.) denotes a NetlQ trademark. An asterisk (*) denotes a third-party
trademark.

Operations Center Scripting Guide

https://www.netiq.com/communities/
https://www.netiq.com/support/kb/?product%5B%5D=Operations_Center
https://forums.netiq.com/forumdisplay.php?26-Operations-Center
https://www.netiq.com/Support/process.asp#_Maintenance_Programs_and
support@netiq.com
http://support.novell.com/contact/

1.1

1.2

Introduction

Operations Center extends its reach into the scripting engine to allow for customization and definition
of business-specific behavior. It does this by using NOC Script, which is an extension of the
ECMAScript scripting language. In turn, ECMAScript is a standardization of JavaScript*.

¢ Section 1.1, “About NOC Script,” on page 9

+ Section 1.2, “NOC Script, JavaScript, and ECMAScript,” on page 9

¢ Section 1.3, “Learning JavaScript,” on page 10

About NOC Script

NOC Script is an embedding of ECMAScript within the Operations Center server and client software,
and extends EMCAScript Version 3. For ECMAScript information and objects, see the ECMAScript
Language Reference (http://www.webreference.com/javascript/reference/ECMA-262/E262-3.pdf)

Use NOC Script in many areas within the Operations Center interface:

+ Set a series of actions to take when an adapter starts or stops

+ Perform powerful sorting and matching operations as part of Operations Center Automation
Events, allowing complex responses to alarms or events reported to Operations Center

+ Launch a program on the server when certain conditions are met

+ Launch a program from the browser by using a menu option

+ Query the Operations Center database

+ Send e-mails or pages when certain events occur, based on complex criteria

+ Extend the functions of Adapter Hierarchy Files

NOC Script, JavaScript, and ECMAScript

JavaScript* is a popular scripting engine used by virtually every Web browser. Despite its name,
JavaScript has little to do with the Java* programming language and environment. While the two
environments do share some syntax, more differences than similarities exist between JavaScript and
the Java programming language.

When competing versions of JavaScript-like languages threatened to break the scripting language
into competing proprietary versions, the Ecma International standards group created ECMAScript as
a vendor-neutral standard. NOC Script is an extension of this language.

For ECMAScript information and objects, see the ECMAScript Language Reference (http://
www.webreference.com/javascript/reference/ECMA-262/E262-3.pdf)

A similarity does exist in the way a browser and Operations Center each interact with JavaScript. A
browser exposes several top-level objects to the JavaScript engine before executing the script.
Notably, the navigator and document objects represent gateways into the browser and HTML
document, respectively. A script author uses these objects to “script” the HTML page, adding
interactivity. Similarly, Operations Center exposes an object to the scripting environment to allow a
script author to interact with Operations Center elements.

Introduction

9

http://www.webreference.com/javascript/reference/ECMA-262/E262-3.pdf
http://www.webreference.com/javascript/reference/ECMA-262/E262-3.pdf
http://www.webreference.com/javascript/reference/ECMA-262/E262-3.pdf

1.3 Learning JavaScript

This guide assumes you are familiar with JavaScript and its use in an embedding application. The
O'Reilly JavaScript book is a good start, but please note that the information about browsers in this
and most other JavaScript books is not relevant to NOC Script. This topic covers using JavaScript to
leverage building dynamic Web pages, which is only marginally related to NOC Script as to hosting a
JavaScript environment inside an application.

The latest O'Reilly book information, JavaScript: The Definitive Guide (http://www.oreillynet.com/cs/
catalog/view/au/156?x-t=book.view) by David Flanagan, can be found at http://www.oreilly.com (http:/
/www.oreilly.com).

10 Operations Center Scripting Guide

http://www.oreillynet.com/cs/catalog/view/au/156?x-t=book.view
http://www.oreilly.com

2.1

Creating and Debugging Scripts

Scripts can be used with various features in Operations Center, including automations and
algorithms. Operations Center ships with a library of default scripts. Scripts can be customized to suit
your needs and new scripts can be added to the Script Library.

+ Section 2.1, “Adding a Script to the Script Library,” on page 11

+ Section 2.2, “Using the Script Debugger,” on page 13

¢ Section 2.3, “Additional Options for Running the Script Debugger,” on page 15

For more information about default scripts that ship with the Script Library, see Appendix A, “The
Script Library,” on page 85.

Adding a Script to the Script Library

The Script Library allows scripts to be edited and reused among various product features, including
automations and algorithms. A script can be added to the Script Library simply by saving it to the /
OperationsCenter install path/database/scripts directory. It then surfaces automatically as
an option when scripts are defined or selected.

Operations Center no longer supports scripts that were written using interfaces that existed prior to
the publication of interfaces based on the Extensible Services effort in the 3.1 release.

The browser provides a simple way to create and debug new scripts and save them to the Script
Library.

To create a script:

1 In the Explorer pane, expand Administration > Automation.
2 Right-click the Scripts element and select Properties to open the Status property page.
3 In the left pane, expand Administration.
4 Right-click Scripts and select Properties.
The Properties dialog box opens.
5 Type a name for the script in the Scripts text box.

Creating and Debugging Scripts 11

6 Type the script text in the Script Editor text box.

Text can be copied and pasted into this window from the Operations Center Script Debugger or
another text editor. See Section 2.2, “Using the Script Debugger,” on page 13.

& Properties for Scripts = | B |

—

Scripts=Scripts/Automation=Automationfroot=Administration

G Status Available Scripts:
.@ Comments examplesjticket.fs -
213 Administration Seript Editor:

~B ’ -~
i [g Access Control 77
" @ performance e

// THIS WORK 15 SUBJECT IO U.S. RND INTERNATICNAL COFYRIGHT LAWS |~
// DISTRIBUTED, DISCLOSED, ADRPTED, PERFORMED, DISPLAYED, COLLECTED,
// ERICR k\‘RIIIEN CONSENT. USE OR EXPLOITATION OF THIS WORK WITHOUT I
/f PERPETRATOR TO CRIMINAL AND CIVIL LIRBILITY.

Copyright (c) 2010 Howell, Inc. A1l Rights Reserwved.

/f WOVELL FROVIDES THE WORK "RS IS,"™ WITHOUI ANY EXPRESS OR IMPLIED
// IMPLIED WARRENTIES OF MERCHANTABILITY, FITNESS FOR I PRRTICULAR [
// THE AUTHORS OF THE WORK, AND THE OWNERS OF COPYRIGHT IN THE WORK
// DRMAGES, OR OTHER LIABILITY, WHETHER IN RN RCTION OF CONTRACT, TIC
ff OR IN CONNWECTICON WITH THE WORK OR THE USE OR OTHER DEALINGS IN Tt

FELLEETEELLFEE IO ELETLTE P TS L TTITE T E LS ETIT I iiiiiriiie
/# Operation definitions to add to an element: (paste into Operatior
"

/{ [Enter Trouble Ticket]

/# description=Trouble Ticket...

/f context=element 57
< | i b

7 Click Syntax to display one of the following messages:

+ |f the syntax of the newly created script is correct, the message indicates The script has
no syntax errors.

+ If the script contains syntax errors, a message similar to the following displays. All errors
found by the syntax checker display in this message, with line and column numbers to help
locate the syntax error.

For example:

r 3
Novell® Operations Center Iéj

l-'/ \'-l Formula detected a syntax error in the script you have supplied.

..\.. ./..
The error message is:

SynkaxErrar: syntax errar {Script; line 71)

8 To evaluate the script, use the Operations Center Script Debugger.
For more information, see Section 2.2, “Using the Script Debugger,” on page 13.

Operations Center Scripting Guide

9 Click Apply.

The new script is saved to the /OperationsCenter install path/database/scripts
directory and can be accessed from anywhere that scripts are accepted.

10 Click New to clear the Script Editor and create another script.

2.2 Using the Script Debugger

The Operations Center Script Debugger can be used to develop and test scripts. This section
describes accessing the Operations Center Script Debugger from the Scripts tab as a continuation
from the previous steps in Section 2.1, “Adding a Script to the Script Library,” on page 11. See
Section 2.3, “Additional Options for Running the Script Debugger,” on page 15 for other ways to
access the debugger.

Figure 2-1 The Debugger Window Showing Three Commands on the Evaluate Tab

® FormulaScript Debugger =HICE X
File Edit Debug Window Options
Break Go Step Into Step Owver Step Out
loginfs |:‘:' C@ ‘:&
42 E>respc:nse.set5tatus{ responae.SC_OK) o
43 response.setContentType { "text/html™);
44
45 // Determine if we should prompt for a login, or process a login.
46
47 wvar uri = request.getParameter('uri'):
43 [
49 if (uri == null) =
50 uri = request.getRequestURI() + '2' + reguest.getQueryString();
51
52 if (session != null)
53 servlet.logout { request);
54
55 if (request.getParameter("username”) == null ||
56 request.getParameter("password”) == null)
57 I
58 promptForlogin{ "');
59 1 -
4 n L2
Context: :'servleisﬂogin.fs', line 42 - -
% url http//reasonf0:/download/DownloadServlet?client=true
Name Value s user
[#-__proto__ [object global] o user=admin/users=Users/security=Security/root=Administration |=
[+]--appFrame com.mosol. Formula, Client.ui. ElementPraop. ., [~ % passwcrdl 1
[+-applet com.mosol,util.gui. Appletl auncher [panel. .. npassword” is not defined
[#-appletContext com.mosol.util.gui. AppletLauncher [panel... | _ N m
this | Locals Watch | Evaluate
[Thread: Thread[AWT-EventQueue-0,6,main]
.

Script code displays in the debugger with numbered lines for identification and navigation.

Table 2-1 provides an overview and description of debugger features.

Table 2-1 Debugger Features

Debugger Feature Description

Variable Display Shows all the variables that are “in scope” for the current object. Even if your script
declares local variables by using the var keyword, the debugger displays them as
global variables if they are declared at the global scope. There is no way to declare
a local variable at the global scope.

Creating and Debugging Scripts 13

221

Debugger Feature Description

Evaluate Tab Type a command to execute and evaluate. Figure 2-1 shows how three variables

were executed by the user: a URL, user account, and password.

The following topics cover debugging scripts using the debugger:

+ Section 2.2.1, “Debugging a Script Using the Debugger,” on page 14
+ Section 2.2.2, “Automatically Running Debugger Scripts,” on page 14

Debugging a Script Using the Debugger

To debug a script using the debugger:

1 From the Scripts tab, select Debugger.

The Debugger opens and displays the script.

When a script loads, select to step through the script code using one of the following toolbar
buttons:

Step Into: If the current line of execution involves a function invocation, traces the invocation
into that function.

Step Over: If the current line of execution involves a function invocation, traces the invocation
over that function, returning execution control to the Debugger after that function has completed.

Step Out: If the current line of execution is inside a function invocation, traces the invocation out
that function, after it has completed.

To set a breakpoint to pause the script, click the left margin on the desired line of code.
A breakpoint symbol displays.
Click again to remove the breakpoint.

5 Click the Go button to evaluate the script.

The Operations Center Script Debugger evaluates the script syntax and errors display in a dialog
box.

6 Click File > Exit to close the debugger.

2.2.2 Automatically Running Debugger Scripts

To run the debugger automatically for a specific script or to open the debugger for all scripts at
runtime, click the Options menu from the Debugger console and select one of the following options:
+ Never: Sets the debugger to never open automatically when a script runs.
+ All Scripts: Automatically opens the debugger for every script at runtime.
+ Prompt on Each Script: Prompts to open the debugger for every script at runtime.
+ Specific Script: Opens the Debugger only for the specified scripts.

14 Operations Center Scripting Guide

2.3 Additional Options for Running the Script
Debugger

The following sections cover additional options for running the script debugger:

¢ Section 2.3.1, “Running the Debugger from the Command Line,” on page 15
+ Section 2.3.2, “Adding Settings in Property Files to Run Scripts in the Debugger,” on page 15
+ Section 2.3.3, “Instrumenting a Script for Debugging,” on page 16

2.3.1 Running the Debugger from the Command Line

From the command line, run the £script command from /OperationsCenter install path/
database/scripts to launch the debugger. Table 2-2 describes debug command options.

Table 2-2 Debug Commands

Command Result
fscript -debug Launches the debugger
Fscript -debug -f scriptname.fs Opens a script from the /

OperationsCenter install path/database/
scripts directory in the debugger.

2.3.2 Adding Settings in Property Files to Run Scripts in the
Debugger

The debugger can be set up to open all scripts run within the environment.
To update property files for the debugger:

1 For server-side script debugging, do the following:
la Add the following properties to the Formula.custom.properties file:
Script.debug=true
1b Restart Operations Center.

1c Launch the Operations Center console and open the debugger. All scripts open in the
debugger as they are run.

Note that only scripts run on that Operations Center server will open.
2 For client-side script debugging, do the following:
2a Add the following properties to the applet params.xml file:
<param name="Script.debug" value="true"/>

2b Relaunch the Operations Center console and open the debugger. All scripts open in the
debugger as they are run.

Creating and Debugging Scripts

15

2.3.3 Instrumenting a Script for Debugging

Adding a debug comment to a script can be used to automatically launch the debugger when the
script executes. Be sure to remember to remove a // edebug on comment before sending the script
to production. Table 2-3 lists the debug comment options.

Table 2-3 Debug Comments for Script Files

Comment Code Result
/I @debug on The debugger launches when the script runs.
/I @debug off The debugger does not launch when the script runs.

16 Operations Center Scripting Guide

3.1

3.2

3.3

Scripting Conventions

NOC Script uses common syntax and methods, similar to those used by other scripting languages.

+ Section 3.1, “Property Syntax,” on page 17

+ Section 3.2, “Loop Syntax,” on page 17

+ Section 3.3, “Declaring Objects,” on page 17

+ Section 3.4, “Declaring Arrays,” on page 18

+ Section 3.5, “Implementing a Java Interface,” on page 18

+ Section 3.6, “Exception Handling: try/catch/throw,” on page 18

Property Syntax

NOC Script objects generally have a set of associative properties tied to them. Access these
properties by name using the dot (.) notation:

writeln(formula.Elements.name)

In addition to this syntax, access properties by using array notation:

writeln(alarm['class'])

This is useful because sometimes, as in the previous example, a property name might be a reserved
word for the language or might be a property name with an invalid character, such as a colon (:) or a
space.

Loop Syntax

The scripting language supports looping over the properties of an object by using the following
syntax:

for(var p in alarm.properties)
writeln(p + '=' + alarm[p])

Declaring Objects

Use one of the following methods to declare a new object in the scripting environment:
+ Declare an object and assign it properties:
var obj = new Object ()
obj.foo('bar')

obj.num('45")
obj.printit = function() { writeln('foo=' + this.foo + ', num=' + this.num) }

Scripting Conventions 17

18

3.4

3.5

3.6

+ Alternatively, declare an object with properties:
var obj =

foo: 'bar',
num: 45,
printit: function() {writeln('foo=' + this.foo + ', num=' + this.num) }

Declaring Arrays

Declare arrays using one of the following methods:
+ Declare an array and assign individual entries for values:

var arr = new Array()

arr[0] = 'a'
arr[l] = 'b!'
arr[2] = 'c'

+ Declare an array with values:
var arr = ['a', 'b', 'c¢']
To extend an array, use the following convention:

arr[arr.length] = anotherValue

Implementing a Java Interface

Scripts written in NOC Script can implement a Java* interface, because the environment is hosted
under Java. This uses a special syntax, similar to Java “inner class” declarations, and similar to the
object declaration syntax introduced above. An example:

var runnable = new java.lang.Runnable ()
run: function()

writeln('Yep, running on a thread, all right!')

}

var thread = new java.lang.Thread(runnable)
thread.start ()

Exception Handling: try/catch/throw

Like Java, NOC Script contains a mechanism to catch exceptions thrown by a block of code. Unlike
Java, however, exceptions are not declared by type. A single catch clause catches the thrown
exceptions:

try

{

if (somethingBadHappened)
throw 'get outta here!'

catch(Exception)

writeln('Exception was thrown: ' + Exception)

}

To catch a specific exception, use the following exception catch syntax:

Operations Center Scripting Guide

try
// Open our file.
var f = new java.io.FileInputStream('somefile.txt')
/]

catch(IOException if (IOException instanceof java.io.IOException))

writeln('I/O exception was thrown: ' + IOException)

Scripting Conventions 19

20 Operations Center Scripting Guide

4.1

4.2

The NOC Script Object Model

The convention of populating a scripting engine with application-specific extensions is not unique to
Operations Center. In standard Internet browsers, a gateway or application-defined object is found in
the browser’s navigator object. This object holds methods and properties that a script can use when it
is run from a Web page. Similarly, the actual Web page’s document object model, or DOM, is
exposed in the browser’s document object.

Operations Center adopts this convention, and exposes an object within the scripting engine that can
interact with Operations Center.

In addition, Operations Center elements, alarms, and other objects are dynamically exposed to the
scripting engine to allow a script author to access properties, events, and methods of Operations
Center objects themselves.

¢ Section 4.1, “The Formula Object,” on page 21

¢ Section 4.2, “Top-Level Elements in Hierarchy Structure,” on page 21

+ Section 4.3, “Session Functions (formula.login),” on page 22

+ Section 4.4, “Logging Functions (formula.log),” on page 22

¢ Section 4.5, “Utility Functions (formula.util),” on page 23

¢ Section 4.6, “Condition Functions (formula.conditions),” on page 31

+ Section 4.7, “Navigating Relationships (formula.relations),” on page 33

+ Section 4.8, “formula.commands,” on page 33

The Formula Object

The Formula object appears in all scripts run within Operations Center. This object is a top-level
placeholder object that can interact with Operations Center. From this object, you can locate
elements, manage sessions, log messages to log files, and perform a host of other scripting actions.

Top-Level Elements in Hierarchy Structure

Top-level elements are exposed within the object, which can navigate and interact with Operations
Centers’s objects within its namespace.

The elements in Table 4-1 on page 22 are considered top-level and are always present. If a session is
associated with a running script, access to these elements (and all contained elements) is restricted
according to the access control policies set on the elements themselves. Scripts adhere to the same
protocol as the Operations Center console software.

The NOC Script Object Model 21

Table 4-1 The Top-Level Elements in the Operations Center Hierarchy

Top-Level Element Name Description

Enterprise This is the root element in Operations Center. It is the topmost element
within Operations Center and every object has the Enterprise element as its
ultimate ancestor.

Elements Adapter-produced elements, organized per adapter, display under the
Elements element tree.

Services Locations and Service Models hierarchies display under the Services
element tree.

Administration Administrative elements display under the Administration element tree.
These elements include adapters, the server object, sessions, access
control, operation definitions, and automation.

4.3 Session Functions (formula.login)

The session functions log in to Operations Center, or they cancel or close a session:

+ Section 4.3.1, “login(),” on page 22
+ Section 4.3.2, “logout(),” on page 22

43.1 login()

The login() function logs in to Operations Center. This function takes three arguments:

+ The Operations Center server’s host and port (Web) and protocol (the default is http.)
+ The user name and the password for the session.
+ Atimeout, in seconds, to wait for establishing the connection.

This function returns either a valid session element or a string or exception if an error occurs. For
example:

var session = formula.login('localhost', 80, 'http', 'admin', 'formula', 60)

43.2 logout()

The logout() function cancels or closes a session obtained from the login() function. For example:

formula.logout (session)

4.4 Logging Functions (formula.log)

+ Section 4.4.1, “log,” on page 23
+ Section 4.4.2, “logCategory,” on page 23
+ Section 4.4.3, “Creating a New Log Instance,” on page 23

22 Operations Center Scripting Guide

441

4.4.2

443

4.5

log

The log object contained under the formula object is a gateway for the logging activities of the
Operations Center server or client, depending on which one invokes the script:

+ If on the client, log messages are written to the Client's java console output.

+ If on the server, the log messages are handled by the server's log4j implementation. For more
information regarding server trace logs and log settings, see the Operations Center Server
Configuration Guide.

Four methods that can log messages:

+ debug(): Send a debug message to the log.

+ info(): Send an informational message to the log.
+ warn(): Send a warning message to the log.

+ error(): Send an error message to the log.

For example:

formula.log.info('An informational message')
formula.log.error('An error happened')

logCategory

The logCategory of a script contains the name of the logging category that produces messages for
the script. This property can be obtained or set.

To change or switch the logging category of a script, simply set this variable to another string. For
example:

formula.logCategory = 'Script.MyScript'
formula.log.warn('Something bad might have just happened')

Creating a New Log Instance

It might be necessary to create a separate log instance than the one provided for a script. To do this,
call the getCategory() method on the log object:

formula.log.getInstance(‘Another.Category')
Use a period to separate categories. For example:

var otherlog = formula.log.getInstance('Script.Other')
otherlog.info('Now logging to another log category')

Utility Functions (formula.util)

The formula.util object contains a number of helper or utility functions that scripts can use. In many
cases, an analog or similar facility exists within JavaScript* itself.
+ Section 4.5.1, “String searchAndReplace (String s, String needle, String haystack),” on page 24
+ Section 4.5.2, “String encodeURL (String url),” on page 25
+ Section 4.5.3, “String decodeURL (String url),” on page 25
¢ Section 4.5.4, “String encodeXML (String s),” on page 25

The NOC Script Object Model 23

https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo

451

Section 4.5.5, “String[] breakOnTokens (String s, String tok),” on page 25
Section 4.5.6, “String[] breakOnCommas (String s),” on page 26

Section 4.5.7, “InputStream captureOutputStream (String commandLine, String [] environment)
throws an Exception,” on page 26

Section 4.5.8, “InputStream captureOutputStream (String commandLine) throws an Exception,”
on page 26

Section 4.5.9, “String captureOutputString (String commandLine, String [] environment) throws
an Exception,” on page 26

Section 4.5.10, “String captureOutputString (String commandLine) throws an Exception,” on
page 26

Section 4.5.11, “String escapeRegExp (String regexp),” on page 27

Section 4.5.12, “void copyStream (InputStream input, OutputStream output) throws an
IOException,” on page 27

Section 4.5.13, “byte[] toByteArray (InputStream input) throws an IOException,” on page 27
Section 4.5.14, “String nameToFile (String name),” on page 28

Section 4.5.15, “void center (java.awt.Window w),” on page 28

Section 4.5.16, “Object makeRemote(Object obj) throws JavaScriptException,” on page 28
Section 4.5.17, “void notify (Object signal),” on page 29

Section 4.5.18, “void notifyAll (Object signal),” on page 29

Section 4.5.19, “void wait (Object signal, long timeout),” on page 29

Section 4.5.20, “void page (pagerid, message, host, port),” on page 29

Section 4.5.21, “user,” on page 29

Section 4.5.22, “class UString,” on page 29

Section 4.5.23, “class ORB,” on page 30

Section 4.5.24, “class Postemsg,” on page 30

Section 4.5.25, “class TelnetFrame,” on page 30

Section 4.5.26, “class ViewBuilder,” on page 31

String searchAndReplace (String s, String needle, String
haystack)

Replace an instance of one string within String s with another string.

JavaScript defines a replace function for any string that can be used similarly. For example:

var s = 'bill me'
writeln (formula.util.searchAndReplace(s, 'me', 'you'))

24 Operations Center Scripting Guide

452 String encodeURL (String url)

It is possible to URL-encode a string to allow transmission as text. Operations Center distinguished
names are components of URL-encoded strings.

JavaScript defines an encodeURL function that takes any string that can be used similarly. For

example:

try {

var baseDName = 'element.dname' // Assumes element in-scope

var className = 'Router:Cisco’

var dname = formula.util.encodeURL(className) + '=' + formula.util.encodeURL (

name) + '/' + baseDName

453 String decodeURL (String url)

It is possible to URL-decode a string to allow transmission as text. Operations Center distinguished
names are components of URL-encoded strings.

JavaScript defines a decodeURL function that takes any string that can be used similarly. For
example:

js> var s = 'String to encode: @#$%"&*!

js> var encoded = formula.util.encodeURL(s)
js> encoded
String+to+encode%3A+%40%23%24%25%5E%26*

js> formula.util.decodeURL(encoded)

String to encode: @#$%"&*

js>

454 String encodeXML (String s)

It is possible to encode a string as allowed within an XML document. For example, XML documents
cannot contain the & (ampersand) character. This function turns the & string into the string &
which is suitable for an XML document fragment. For example:

js> var s = 'String to encode: &<>"'
js> formula.util.encodeXML(s)
String to encode: &<>"
js>

455 String[] breakOnTokens (String s, String tok)

The breakOnTokens function subdivides one string and returns an array of strings. The tok parameter
is a string representing the break pattern. For example:

js> s = 'one|two|three'

one|two|three

js> a = formula.util.breakOnTokens(s, '|')
[Ljava.lang.String;@152c4d9

js> al0]

one

js> alll

two

js>

The NOC Script Object Model 25

4

26

4.5.6

4.5.7

45.8

459

.10

String[] breakOnCommas (String s)

The breakOnCommas function subdivides a string using the comma character as the token. For
example:

js> s = 'one,two, three'

one, two, three

js> a = formula.util.breakOnCommas(s)

[Ljava.lang.String;@f99ff5

js> alll

two

InputStream captureOutputStream (String commandLine,
String [] environment) throws an Exception

This function uses the supplied command line to execute the supplied program and return the output
as a java.io.InputStream. It provides an environment array for supplying environment variables to the
program when it runs. For example:

var stream = formula.util.captureOutputStream('cmd /c echo %F00%', ['foo=bar'])
writeln(new java.lang.String(formula.util.toByteArray(stream)))

InputStream captureOutputStream (String commandLine)
throws an Exception

This function uses the supplied command line to execute the supplied program and return the output
as a java.io.lnputStream. For example:

var stream = formula.util.captureOutputStream('cmd /c echo $FO0%')
writeln(new java.lang.String(formula.util.toByteArray(stream)))

String captureOutputString (String commandLine, String []
environment) throws an Exception
This function uses the supplied command line to execute the supplied program and return the output

as a string. It provides an environment array for supplying environment variables to the program
when it runs. For example:

js> var s = formula.util.captureOutputString('cmd /c echo %$FO0%', ['foo=bar' 1)
js> s
bar

String captureOutputString (String commandLine) throws
an Exception

This function uses the supplied command line to execute the supplied program and return the output
as a string. For example:

js> var s = formula.util.captureOutputString('cmd /c echo %FO0%')
js> s
$FO0%

Operations Center Scripting Guide

45.11

4.5.12

4.5.13

String escapeRegEXxp (String regexp)

Regular expressions contain matching criteria, such as the period (.) and asterisk (*) characters. This
function replaces these regular expression characters with escaped (\) string sequences to enable a
literal match. For example:

js> s = 'dir *.*!

dir *.+*

js> t = formula.util.escapeRegExp(s)
dir *\.*

void copyStream (InputStream input, OutputStream output)
throws an IOException

This function copies one java.io.InputStream to an instance of a java.io.OutputStream. This function
can throw a java.io.lOException, so place appropriate try/catch directives around its use. For
example:

js> input = new java.io.FileInputStream('C:\\Config.Sys')
java.ilo.FileInputStream@2d9c06

js> output = new java.io.FileOutputStream('C:\\Config.Sys.Copy')
java.ilo.FileOutputStream@7b6889

js> formula.util.copyStream(input, output)

js> input.close ()

js> output.close()

byte[] toByteArray (InputStream input) throws an
|IOException

This function returns the contents of a java.io.InputStream as a byte array. A byte array can be a
constructor argument to java.lang.String, so it is possible to use this function in combination to return
the contents of a stream as a string. This function can throw a java.io.lOException, so place
appropriate try/catch directives around its use. For example:

js> input = new java.io.FileInputStream('D://OperationsCenter install path/
database//Adapters.ini')

java.io.FileInputStream@99681b

js> ba = formula.util.toByteArray(input)

[B@l8ledf4

js> s = new java.lang.String(ba)

[Tivoli T/EC(r) on reason, iv]
AdapterInstanceId=3
ElementsTimeout=300
EventConsoleName=@Formula
AcknowlegeAvailable=true

SeedFile=

SyncClass=TEC_Sync
AlarmColumns=Status,Class,Description
AckAffectsCondition=true
Script.onInitialized=
SeverityMapping=Fatal=Critical;Critical=Critical;Minor=Minor;Warning=Major;Harmles
s=Informational ; Unknown=Unknown
ClosedAlarmsTimeout=0
SuppressionTime=1800

The NOC Script Object Model 27

4.5.14

4.5.15

4.5.16

CloseAvailable=true

HostsToMine=reason

TecORBPort=1576

Script.onStarted=
HierarchyFile=examples/TecHierarchy.xml
EventListenPort=54321

Script.onStopped=

StylesheetFile=
Class=com.mosol.Adapter.TEC.Adapter
MaxAlarms=500

WTDumperCommand=wtdumper -o DESC -dw "status<='20' AND severity>='20'"
SuppressAvailable=true

MiningLimit=2000

startOnStartup=£false

String nameToFile (String name)

This function uses the candidate file name to change the string contents to an allowed file system
compatible string. For example:

js> s = 'Make A Good File For This: $"* () !@#$'
Make A Good File For This: $"*() !@#s

js> formula.util.nameToFile(s)
Make A Good File For This %%+ ()!e#$

js>

void center (java.awt.Window w)

This function centers the supplied java.awt.* resource (window or derivative) on the screen. For
example:

js> £ = new java.awt.Frame('My Frame')
java.awt.Frame [frame0,0,0,0x0,invalid, hidden, layout=java.awt .BorderLayout, title=My
Frame, resizable,normal]
js> f.setSize(600, 400)
js> formula.util.center(f)
js> f.setVisible(true)
js> f.addWindowListener (new java.awt.event.WindowAdapter () {
windowClosing: function(evt) { f.setVisible(false) } })

Close this window by clicking the Close button in the title bar frame after it displays. This example
also shows how to add a java/awt window listener by using the inner class analog in JavaScript.

Object makeRemote(Object obj) throws
JavaScriptException

This function manufactures a remote proxy for the supplied JavaScript object, suitable for sending to
a remote target. Scripting uses this between client and server scripts to send callback and other
remote reference code that can be accessed remotely. For example:

js> callback =
callme: function() { writeln('Thanks for calling') }
[object Object]

js> remoted = formula.util.makeRemote(callback)
js>

28 Operations Center Scripting Guide

4.5.17

45.18

4.5.19

4.5.20

4521

4.5.22

void notify (Object signal)

JavaScript does not contain the concept of Java synchronization. Use this function to allow the
standard notify method for any supplied object. For example:

var o = new java.lang.Object ()
formula.util.notify(o)

void notifyAll (Object signal)

JavaScript does not contain the concept of Java synchronization. Use this function to allow the
standard notifyAll method for any supplied object. For example:

var o = new java.lang.Object ()
formula.util.notifyAll(o)

void wait (Object signal, long timeout)

JavaScript does not contain the concept of Java synchronization. Use this function to allow the
standard notify method for any supplied object. The timeout is the wait time in milliseconds. Set it to —
1 to indicate an infinite wait. For example:

var o = new java.lang.Object ()
formula.util.wait(o , -1)

void page (pagerid, message, host, port)

This function sends an alphanumeric page to an SNPP (Simple Network Paging Protocol) paging
gateway. Required arguments are pagerid and message. The host and port are the destination
targets of the SNPP gateway. For more information about SNPP, go to http://www.snpp.info (http://
www.snpp.info). For example:

formula.util.page(3331122, 'Can you help me?', 'pagegw.net',6 444)

user

This is a property containing the name of the user who executes the script. For example:

writeln(formula.util.user)

class UString

UString is a helper class that obtains a unique string cached in a string pool. The getString()
method obtains the string. Only one copy of the string exists in memory if this method is called. For
example:

general = formula.util.UString.getString('general')
class = formula.util.UString.getString('class')

The NOC Script Object Model 29

http://www.snpp.info

4.5.23

4.5.24

4.5.25

class ORB

The ORB class is the utility class that wraps the CORBA ORB concept into a CORBA-portable
abstraction. This generally is not used in scripts, except to stringify and destringify remote object
references. These are standard methods of the CORBA binding for Java as defined by the OMG. For
example:

s = formula.util.ORB.init () .object to string(session)
writeln(s)

class Postemsg

The Postemsg class sends a message to a Tivoli* T/EC RIM. Construct the class with the argument
signature (String serverName, String cls, String adapter).

An instance of the Postemsg class has properties that can be set or retrieved:

+ serverName: The name of the server to send the message.
+ message: The message to send.

+ severity: The severity of the message.

+ tecClass: The T/EC message class.

+ adapter: The T/EC adapter string.

+ port; The known port for the RIM message listener.

An instance of the Postemsg class that is set for sending goes to the RIM using the sendMessage ()
method. For example:

var postemsg = new formula.util.Postemsg('gasun', ‘LogFile Base', 'Formula')
postemsg.severity = 'HARMLESS'
postemsg.sendMessage ('Something bad has happened; please check')

class TelnetFrame

The TelnetFrame class opens a telnet session directly to network management systems, where
supported. The Administration > Server > Console Definitions > Default element uses the following
code to define a Console menu option for applicable NMS elements.

var consoleFrame = formula.util.TelnetFrame () ;
var params = java.util.Hashtable() ;
params.put ("targetName", element.getName());
params.put ("address", host.toString());
params.put ("port", port.toString());

params.put ("targetIcon", element.getLabel().getIcon());
consoleFrame.setParams (params) ;
consoleFrame;

30 Operations Center Scripting Guide

4.5.26

4.6

class ViewBuilder

The ViewBuilder class allows an XML document that conforms to the Operations Center views DTD
to be processed through the Operations Center console View generator gateway within Operations
Center. The only methods of significance to an instance of this class are:

+ buildFromFile(java.lang.String): Process the supplied argument as a file name to the
ViewBuilder gateway.

+ buildFromReader(java.io.Reader:) Process the supplied argument as a character stream to
the ViewBuilder gateway.

For example:
try

var vb = new formula.util.ViewBuilder ()
vb.buildFromFile ('/myviewbuilder.xml')

catch(Exception)

formula.log.error('Could not build from view builder: ' + Exception)

Condition Functions (formula.conditions)

Operations Center element conditions and alarm severities have assigned values. Table 4-2 lists the
default values.

Table 4-2 Default Values for Element Condition and Alarm Severities

Condition/Severity Numeric Value

CRITICAL 1
MAJOR

MINOR

UNKNOWN

2
3
0
INFORMATIONAL 4
OK 5

6

UNMANAGED/INITIAL

Using NOC Script you can retrieve and set conditions and severities. The following two sections
describe functions related to element condition and alarm severities:

+ Section 4.6.1, “conditions,” on page 32

+ Section 4.6.2, “severities,” on page 32

The NOC Script Object Model 31

4.6.1 conditions

Operations Center elements allow for the retrieval and setting of their conditions. This property of the
object exists as an associative array of conditions that can access the actual condition value used by
Operations Center.

In the following example, we list all available conditions on elements in no specific order:

js> for(var p in formula.conditions)
writeln(p)

CRITICAL
MINOR
USAGE_BUSY

9
INFORMATIONAL
USAGE_IDLE

OK

MAJOR
USAGE_ACTIVE

Both numeric and textual lookups can be performed using formula.conditions. For example:

js> formula.conditions.OK
OK

js> formula.conditions.MAJOR
MAJOR

js> formula.conditions[3]
MINOR

js>

46.2 severities

Operations Center’s alarms allow for the retrieval and setting of severity. This property of the formula
object exists as an associative array of severities which can be used to access the actual severity
value used by Operations Center. The following example shows both numeric and textual lookups:

js> writeln(formula.severities.MINOR)
MINOR

js> writeln(formula.severities[3])
MINOR

js> writeln(formula.severities.OK)
OK

js>

32 Operations Center Scripting Guide

4.7

4.8

Navigating Relationships (formula.relations)

Operations Center elements allow for the navigation of relationships. This property of the object
exists as an associative array of relations which can access the actual relation value used by
Operations Center.

Values:
+ NAM: The name or storage relationship. This is the primary relationship used by distinguished
names.
+ ORG: The organization or business view relationship.
+ MAP: The location relationship (similar to ORG).

For example:

js> writeln(formula.relations.NAM)
NAM

js> writeln(formula.relations([1l])

ORG

js> writeln(formula.relations.ORG)
ORG

js>

formula.commands

The formula.commands element allows access to the server-side plug-in features of Operations
Center, known as commands.

For example, to initialize the Suppression subsystem command:
if(! state.suppression)

{

state.suppression = formula.commands.Suppression(null)
state.suppression.setOperationMatch('dnamematch:.*')

The NOC Script Object Model

33

34 Operations Center Scripting Guide

5.1

5.2

Element Functions

There are various mechanisms available to a script writer to interact with, query, and change

Operations Center elements. Operations Center elements are exposed to the scripting engine in a

way that allows access to properties, operations, and hierarchy in the system.

+ Section 5.1, “Understanding Distinguished Names,” on page 35

+ Section 5.2, “Understanding Element Standard Properties,” on page 35
+ Section 5.3, “Traversing the Element Hierarchy,” on page 36

+ Section 5.4, “Browsing for Elements Function (formula.gui),” on page 38
+ Section 5.5, “Element Properties and the Properties Object,” on page 39
+ Section 5.6, “Getting and Setting Properties,” on page 39

+ Section 5.7, “Accessing Custom Properties,” on page 40

+ Section 5.8, “Performing Operations with Menu Options,” on page 40

+ Section 5.9, “Printing Operations for Elements,” on page 41

¢ Section 5.10, “Client-Side Methods,” on page 41

¢ Section 5.11, “Server-Side Methods,” on page 42

Understanding Distinguished Names

Each Operations Center element has a unique distinguished name, or dname, consisting of its path in

the hierarchy and the individual ID (usually a name) and class components of each container in the
hierarchy. Dnames are read from right to left, from least specific to most specific, unlike the well-

known pattern of file system paths.

Distinguished names are persistent. After an element has a dname, it always retains that dname,

even if the Operations Center server restarts.

Distinguished names have the individual textual portions of their components encoded in a URL
format, so they can be transmitted over HTTP and other textual mediums. For example:

var theAdmin = formula.Root.findElement ('root=Administration')
var theSessions = formula.Root.findElement ('sessions=Sessions/
formulaServer=Server/root=Administration')

Understanding Element Standard Properties

Table 5-1 lists the standard properties available for elements.

Table 5-1 Standard Properties and Descriptions

Property Description
dname The distinguished name of the element.
name The name of the element.

Element Functions

35

36

Property Description

id A system-wide unique identifier for the element, in integer format. This is not a persistent
identifier, so it is expected to change if the Operations Center system is restarted.

condition The condition of the element.
lastUpdate The date/time of the last change to the element.
alarms The alarms (if any) for this element.

5.3 Traversing the Element Hierarchy

Each Operations Center element contains location information concerning its own position in the
element hierarchy, as well as relationships with other elements in the hierarchy.

¢ Section 5.3.1, “Children Property,” on page 36

+ Section 5.3.2, “Relationships Property,” on page 36

+ Section 5.3.3, “Parent Property,” on page 36

¢ Section 5.3.4, “Walk Function,” on page 37

+ Section 5.3.5, “Hierarchy Utilities,” on page 37

5.3.1 Children Property

The children property is an array of elements contained within the target element. If it is empty, its
length is zero. For example:

// Print the name of each of the elements in the ‘Elements' root.

for(var 1 = 0 ; 1 < formula.Elements.children.length; ++i)
writeln(formula.Elements.children([i] .name)

5.3.2 Relationships Property

The relationships property is an array of elements of which the target element is a member, such as
business views. If it is empty, its length is zero. For example:

// Lookup the relationships of this element (assuming it is in scope)
for(var i = 0 ; 1 < element.relationships.length; ++i)
writeln(element.relationships[i] .name)

5.3.3 Parent Property

The parent of the element exists within the naming relationship (NAM). The element has only one
parent, and always has a parent, unless it is the topmost root element (Enterprise), or has been
destroyed. For example:

writeln(‘The parent of ' + element + ' is ' + element.parent)

Operations Center Scripting Guide

534

5.3.5

Walk Function

The walk function can visit all the children within a given element, including the entire tree. To use this
function, pass another function as an argument. This passed function is “visited” along the entire tree.
For example:

function visitor(child)

writeln('Visited element: ' + child)

formula.Root.walk(visitor)

An alternate way to visit each node is to pass a NOC Script object that contains a
visit function.

Example:

var visitor =

count: O,
visit: function (child)

visitor.count++

}

formula.Root.walk (visitor)
writeln('The visitor saw ' + visitor.count + ' elements')

Hierarchy Utilities

+ “Lookup by FindElement()” on page 37
+ “Lookup by Relative Sub-Property” on page 37

Lookup by FindElement()

The findElement function can find a hierarchy-relative element within a given element. To find an
element within the entire Operations Center element tree, use Root.findElement. For example:

var sessionsElement = formula.Root.findElement ('sessions=Sessions/
formulaServer=Server/root=Administration')
writeln(sessionsElement)

Lookup by Relative Sub-Property

Access elements contained within the tree of another element as pseudo-properties of the element.
For example:

var sessionsElement = formula.Administration.findElement ('sessions=Sessions/
formulaServer=Server')

writeln('There are: ' + sessionsElement.children.length + ' sessions logged into
Formula')

This example finds the Sessions element, which is a child of the Operations Center Server element,
and prints the count of the number of children in this element. Each session logged into Operations
Center is represented by an element inside the Sessions element, so this accurately displays the
number of sessions logged into Operations Center.

Element Functions 37

38

0.4

Browsing for Elements Function (formula.gui)

The following methods are used to browse and select elements from the Elements hierarchy. These
are entry points to the BrowseForElementDialog class that enable bringing up the element dname
browser.

+ formula.gui.browseForDNames(Component parent, String multiSelect)

+ formula.gui.browseForDNames(Component parent, String rootDName, String multiSelect)

+ formula.gui.browseForDNames(Component parent, String rootDName, String title, String label,

String multiSelect)

Each version returns a java.util.Vector of java.lang.String for each DName selected in the browser.

Create a client operation that uses a script containing this function, such as the example shown
below. Fire the operation. If you select one or more elements in the browser, the operation shows a
pop-up listing the selected elements’ dnames.

The operation allows supplying a title and label prompt for the element browser. Otherwise, click OK
in this initial pop-up dialog box to use the browser defaults.

var promptDialog = formula.gui.PromptDialog (appFrame, "Test Prompt Dialog Driver",
["Title", "Label"], [false, false 1)

var title = null
var label = null
if (promptDialog.process() == true)

title = promptDialog.getInputText (0) ;
label = promptDialog.getInputText (1) ;
var dnamesVector

if (title != null && label != null && title.length() > 0 && label.length() > 0)
dnamesVector = formula.gui.browseForDNames (appFrame, "root=Elements", title,
label, true)
else
dnamesVector = formula.gui.browseForDNames (appFrame, "root=Elements", true)
if (dnamesVector.size() > 0)

var dnames s

for (var i = 0; 1 < dnamesVector.size();
dnames = dnames + dnamesVector.elementAt (i
info (dnames)

i++4)
) + "\1’1"

Operations Center Scripting Guide

5.5 Element Properties and the Properties Object

5.6

A Operations Center element has a number of functions associated with it, in addition to the
properties that are exposed from either the underlying management system or Operations Center
itself. To access a list of properties published by the underlying data source, use the properties
property of the element. For example:

js> var serverElement = formula.Administration.findElement('formulaServer=Server'
)
writeln('Server properties:')
for(var p in serverElement.properties)
writeln(' '+ p+ ': ' + serverElement [p])
Server properties:
Object Heap Used Memory (KB): 6684
Adapters: 42
Auditable:
Formula Server Start Timestamp: 11/13/2002 at 10:37 PM EST
Condition: OK
Algorithm:
Total Alarms: O
Formula Server Has Been Up For: 0 Days 0 Hours 12 Minutes 8 Seconds
Element: formulaServer=Server/root=Administration
Object Heap Free Memory (KB): 4068
Algorithm Parameters:
Total Element Classes: 121
Object Heap Allocated Memory (KB): 10860
Last Reported: Wed Nov 13 22:37:45 GMT-0500 (EST) 2002
Sessions: 1
Total Elements: 353
js>

Getting and Setting Properties

To get any property set by the underlying management system, use either the dot notation
element.property or the array notation element[property]. The array notation might be necessary if the
property name itself is a reserved word of JavaScript, such as class, in, or function. For example:

js> var serverElement = formula.Administration.findElement('formulaServer=Server'

)

js> writeln('Memory in use by Formula: ' + serverElement['Object Heap Used Memory
(KB)'] + 'KB')

Memory in use by Formula: 7464KB

js>

IMPORTANT: Assigning a property to an element exposed in the scripting engine might result in an
actual transaction against a managed resource.

To set a property, assign a value to the right-hand portion of an assignment operation. The following
example shows the two ways to denote property accessors: one using dot (.) notation and one using
array notation ([]).

Element Functions 39

40

5.7

5.8

5.8.1

For example:

// Warning, this sets an arbitrary organization to have new contact information;
// DO NOT use on a production system!
if (formula.Organizations.children.length > 0)

var someOrg = formula.Organizations.children[0]
writeln('Updating: ' + someOrg)

someOrg['Contact'] = 'Acme Support'
someOrg.Company = 'Acme Corporation'
someOrg.Email = 'support@acme.com'

}

else
writeln('You have no organizations to set properties')

Accessing Custom Properties

It is possible to search for custom properties assigned to metamodel classes. Use the getattr ()
command.

The attr name requires the prefix metamodel.class. For example, assume there is a Service Model
element named metamodel.class.SVG_Drawing. Use getattr () to search the Service Model
element for an attribute named metamodel.class.SVG_Drawing or SVG_Drawing.

element.getAttr('metamodel.class. [AttrName]')

If the attribute is found in the Service Model element, it returns the attribute. If the attribute is not
found, it searches the metamodel class of the element. If the attribute is found in the class element, it
returns the attribute.

Performing Operations with Menu Options

A script can perform operations defined as a menu option for a Operations Center element by using
the operation command name.

¢ Section 5.8.1, “Using the Perform Method,” on page 40

¢ Section 5.8.2, “Using Customized Operations,” on page 41
+ Section 5.8.3, “Loading Another Script,” on page 41

+ Section 5.8.4, “Using Hidden Operations,” on page 41

Using the Perform Method

The perform method takes a session as its first argument, followed by the command name of the
operation to perform. An optional parameter for the function is an array of any length, if the operation
supports it.

perform(session, operationName, /* array */ alarms, /* array */ params)
Example:

js> // Find the "users" group.

js> var users = formula.Administration.findElement ('group=users/groups=Groups/
security=Security')

js> // Tell the group to force off all sessions.

js> var result = users.perform(session, 'Connect|ForceOff', 1, [1)

js> writeln(result)

Warning. You are not able to logout your own session.

There were no sessions active with the given account users
js>

Operations Center Scripting Guide

5.8.2

5.8.3

5.8.4

5.9

5.10

Using Customized Operations

If an operation is defined for an element (it is displayed in the user interface), you can invoke it
programmatically via a script. For example:

// Assume there is an operation named ‘Cut Ticket' on the alarms

// of the first (and only) adapter element, and that there are valid
// alarms on this adapter.

var someAdapterElement = formula.Elements.children(O0]

var alarms = someAdapterElement.alarms

someAdapterElement .perform(session, 'Cut Ticket', [alarms([0] 1, [])

This script performs three actions:

1. Locates a top-level adapter element; it assumes there is at least one.
2. Obtains the alarms for this element; it assumes there is at least one.
3. Performs the Cut Ticket operation on this alarm, through the element. It passes only one alarm.

Loading Another Script

If the only intent is to load another script with the operation, use the @ function. For example:
@login.fs

However, to load the script from within a script, it is necessary to use the load function. For example:
formula.log.info("loading") ;

load('test.fs');
formula.log.info("done");

Using Hidden Operations

To specify an operation for an element that is not visible in the user interface, but is usable from
scripts, set the “hidden” property of the operation.

Printing Operations for Elements

The following script prints the operation name and command for a selected element. If the command
is blank, then the command is the same as the name. It works as a client script only.

//@debug on
formula.log.info ("Printing operations for " + element.dname) ;
var ops = element.operations;
for(i=0; i < ops.length; i++) {
formula.log.info(ops[i] .name + "|" + ops[i].command) ;

Client-Side Methods

Client-side methods can display various windows for an element. These methods are available in the
Operations Center console only. For example:

var element = formula.Root
element.showAlarms ()

Table 5-2 describes client-side methods.

Element Functions 41

Table 5-2 Client-Side Methods for Displaying Element Windows

Method Description

showAlarms() Display the Alarms window for this element.
hideAlarms() Hide the Alarms window for this element.
showConsole() Display the Console window for this element.
hideConsole() Hide the Console window for this element.
showProperties() Display the property pages for this element.
hideProperties() Hide the property pages for this element.
showPerformance() Display the Performance window for this element.
hidePerformance() Hide the Performance window for this element.

5.11 Server-Side Methods

A script that executes on the Operations Center server can interact with the session that invoked it, if
it is an operation script. Some interesting functions are available to allow for interaction with the
session:

invokeScript (name, script, values[], names([])

This causes invocation of a script on the client machine to which the session refers.

Table 5-3 lists server-side methods.

Table 5-3 Server-Side Methods

Method Description

name The name of the script.

script The actual script content to execute.

values An array of object values to pass to the script.

names The names of the values to pass to the script. Ensure these are valid JavaScript identifier

names and that there is exactly one entry for each entry in the values array.

5.11.1 sendMessage (message)

This function sends a message to the session.

5.11.2 monitorProcess (name, command)

This function causes the session to start monitoring the output of a process which executes on the
server.

42 Operations Center Scripting Guide

6.1

Alarm Functions

Various mechanisms are available to create, interact with, query, and change Operations Center
alarms, which are attached to Operations Center elements. An alarm has a number of functions
associated with it, in addition to the properties that are exposed from either the underlying
management system or Operations Center itself.

+ Section 6.1, “Creating Alarms,” on page 43

+ Section 6.2, “Getting and Setting Alarm Properties,” on page 44

+ Section 6.3, “Getting the Element Associated with the Alarm,” on page 44

+ Section 6.4, “Modifying Alarm Content,” on page 45

+ Section 6.5, “Developing Automation Scripts for Alarms,” on page 45

Creating Alarms

Create an alarm for some of the supported adapters by using the createAlarm() method. The
adapter must be a child of an event adapter. Following are some adapters that support the
createAlarm() method:

+ BMC Software Event Manager

+ IBM Micromuse Netcool

+ |BM Tivoli Enterprise Console (T/EC)

+ |IBM Tivoli Enterprise Console (T/EC)+

* Script

¢ Universal
Alarms are associated with a specific integration (adapter) and the properties vary according to the

adapter. After getting a reference to the adapter from any element generated by the adapter under
the Elements hierarchy, use this method to create an alarm against the adapter. The format is:

adapter.createAlarm("Formula", Flds, Vals, null);
Where,

¢ Formula: The class of the alarm.
¢ Flds: An array of alarm fields.
+ Vals: An array that matches Flds and contains the alarm values.

*

null: The last parameter is always null.

Alarm Functions 43

For example:

var mgrElement =

formula.Root.findElement ("script=Adapter%3A+NOC+-+Universal+Adapter/
root=Elementsg") ;

var adapter = mgrElement.adapter;

formula.log.info ("Adapter: " + adapter);
var fields = ["Summary","Class", "Severity"];
var Vals = ["AlarmStorm detected for Class EMOS", "EMOS","Critical"];

adapter.createAlarm("EMOS", fields, Vals, null);

6.2 Getting and Setting Alarm Properties

To access a list of properties or fields published by the underlying data source to the alarm, use the
properties property of the alarm. For example:

// Print out all the alarm's of the elements tree

var al = element.alarms;
formula.log.info("Alarm count: " + al.length);
for (var i = 0; i < al.length; ++1i) {
formula.log.info('Alarm properties of: ' + al[il])
for (var p in all[i] .properties)
formula.log.info(' "+ p o+ ': '+ allil [p])

}

To get any property set by the underlying management system, use either the dot notation
alarm.property or the array notation alarm[property]. The array notation might be necessary if the
property name itself is a reserved word of JavaScript, such as “class”, “in”, or “function.” For example:

var alarm = formula.Elements.alarms[0] // Assume at least one!
writeln('Alarm: ' + alarm + ' is attached to ' + alarm.element)

To set a property, assign a value to the right-hand portion of an assignment operation. The two ways
to denote property accessors are using dot (.) notation and using array notation ([]). Assigning a
property to an alarm exposed in Operations Center scripting engine might result in an actual
transaction against a managed resource.

An example:

// Warning, this adds some random field values to a random alarm
// DO NOT use on a production system!

try
var alarm = formula.Elements.alarms[0] // Assume at least one!
alarm.foo = 'bar'
alarm['class'] = 'Zinger'

catch(Exception)

formula.log.warn('Could not modify alarm: ' + Exception)

6.3 Getting the Element Associated with the Alarm

The alarms[x][element] can be used to access the element associated with an alarm.

44 Operations Center Scripting Guide

6.4

6.5

Modifying Alarm Content

Alarms cannot always be modified within Operations Center. Some management systems do not
support modifying alarm content. Therefore, when setting properties for an alarm, always use a try/
catch block, in case the alarm modification is not supported.

Developing Automation Scripts for Alarms

The Automation feature in Operations Center allows users to define actions that are triggered by
activities or condition changes that occur in the network. The feature is explained in Defining and
Managing Automation Events in the Operations Center Server Configuration Guide. One of the
automation actions is running a script.

For example, the following script instructs Operations Center to audit the actions performed against
alarms.

/// AuditActions.fs

writeln("Auditing Actions Against Alarms...");

// Filename that the Actions should be logged too
var fpAudActionFile = "../logs/ActionAudit.log";

// Variable to hold the auditing output
var str = "" + '\n';

// Build the current date and time
var RightNow = new Date() ;

str += RightNow.getDate() + "-

str += RightNow.getDay () + "-

str += RightNow.getFullYear() + " ";
str += RightNow.getHours() + ":";
str += RightNow.getMinutes() + ":";
str += RightNow.getSeconds () ;

// Tag the Action to a person
str += ' User "' + user + '" ran the command "' + command + '" against alarm:\n';

// Grab the top level alarm information
for(var i = 0; i < alarms.length; ++i)

str += 'Alarm: ' + alarms[i] .getID() + ', element: ' +
alarms[i] .getElement () .getDName () ;
// Grab the actual alarm... if you issued a "Delete" it might be gone already

for(p in alarms([i] .properties)
str += '\n\t' + p + " = " + alarms[i] [p];

}

// Open the logging file
var writer = new java.io.PrintWriter(new java.io.FileOutputStream(
fpAudActionFile, true));

// Write the string we built to the file
writer.println(str);

// Close the file
writer.close() ;

// EOF() AuditActions.fs

Alarm Functions

45

https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#automation
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#automation

46

To implement this script:
1 Copy the script file (in the previous example, it is AuditActions.fs) to /
OperationsCenter install path/database/scripts/util.

2 Create an action under the Automation Server element that runs a script from the library, and
point to util/AuditActions.fs.

3 Create an automation server item that is hooked at a level (Enterprise, Elements, Adapter, and
so on) that is linked to An Alarm operation was performed.

4 Select the action defined in Step 2 and apply it.
5 Close, clear, and acknowledge an alarm.

6 View the /OperationsCenter install path/logs directory to locate the ActionAudit.log
file.

The variables available during script execution depend on the event that triggered that script. Table 6-
1 lists the global variables associated with alarm events.

Table 6-1 Global Variables for Alarm Events

Event Variable

Alarm created alarm

Alarm deleted list (integer list of IDs)
Alarm updated alarm

Alarm operation performed Alarms

Operations Center Scripting Guide

7 User Functions

7.1

1.2

Various mechanisms are available to interact with, and query Operations Center user accounts. User
information is exposed to the scripting engine in a way that allows access to properties.

A script can create and delete users, as well as assign them to groups. Refer to the examples in this
section.

¢ Section 7.1, “Introduction,” on page 47

+ Section 7.2, “Getting and Setting Properties,” on page 47

+ Section 7.3, “Setting Properties for LDAP Users,” on page 48
+ Section 7.4, “Managing Users,” on page 48

Introduction

A Operations Center user has a number of functions associated with it, in addition to the properties
that Operations Center exposes. For example:

// get user's full name

var userName = user.fullName

To access a list of properties or fields for the user, use the properties property
of the user. However, here is a short list of what is available for the User
object:

user.name

user.fullName

user.email

user.phone

user.fax

Getting and Setting Properties

To obtain any property for the user, use either the dot notation user.property or the array notation
user[property]. For example:

try

formula.log.info ('Attempting to update user info')
var uid = '321665949'
// Find the user.
var userElement = formula.Root.findElement('user=' +
formula.util.encodeURL(uid) +
' /users=Users/security=Security/root=Administration’')
var aUser = userElement.user;
aUser.fullName('Joe Thomas')
aUser.email ('joe@acme.com')
aUser.phone('888-555-1212")
aUser.pager('800-555-1212")

catch(Exception)

formula.log.warn('Could not modify user: ' + Exception)

User Functions 47

48

7.3

1.4

74.1

Setting Properties for LDAP Users

If users are imported using LDAP, the following properties can be set:

+ LDAP.authentication
+ LDAP.dname

+ LDAP.protocol

¢ LDAP.url

+ LDAP.urlalternate

To access these properties in a script, or to create these properties for users who were manually
created, use the following functions:

+ element.user.setProperty("LDAP.url", "Idap://host");

+ element.user.setProperty("LDAP.url.alternate”, "ldap://host");

+ element.user.setProperty("LDAP.authentication”, "valuel");

+ element.user.setProperty("LDAP.protocol”, "value2");

+ element.user.setProperty("LDAP.dname", "full query for the user usually the cn");

Managing Users

Use a script to perform the following user access functions:
+ Create, find, or delete users
+ Create or find groups
The following sections describe user and group script functions and changing group membership:

¢ Section 7.4.1, “Understanding Script Functions,” on page 48
¢ Section 7.4.2, “Changing a User’s Group Membership,” on page 50

Understanding Script Functions

The following sample script shows how to perform these functions. Read the comments to
understand the purpose of each function.

// @debug off

// Locate the groups and users elements.

var groups = formula.Root.findElement ('groups=Groups/security=Security
root=Administration')

var users = formula.Root.findElement ('users=Users/security=Security/
root=Administration')

// Do we have the testGroup? If not, create the new group.
try

formula.log.info('Finding group testGroup')
formula.Root.findElement ('group=testGroup/groups=Groups/security=Security/
root=Administration')

catch(missing)

formula.log.info('Group testGroup missing; creating...')
groups.perform(session, 'LifeCycle|Create', [], [

Operations Center Scripting Guide

'testGroup', // Group name
'Test group description', // Group description
1) // Group membership (comma-delimited
list)

}

// Delete some users.

var userNames = ['jim', 'anne',6 'lisa', 'neil', 'john']
for(var 1 = 0; 1 < userNames.length; ++i)
try

// Find the user.
formula.log.info('Finding user ' + userNames[i])
var user = formula.Root.findElement ('user=' + formula.util.encodeURL (

userNames[i]) + '/users=Users/security=Security/root=Administration')
formula.log.info('Deleting user')
user.perform(session, 'LifeCycle|Delete', 1, 11)

?atch(missing)
}
}

// Create some users.
for(var 1 = 0; 1 < userNames.length; ++i)

try

// Find the user.

formula.log.info('Finding user ' + userNames[i])

formula.Root.findElement ('user=' + formula.util.encodeURL(userNames[i]) +
' /users=Users/security=Security/root=Administration')

formula.log.info('Found existing user ' + userNames[i])

catch(missing)

// Create the user.
var memberOf = 'testGroup' + (((i %2) ==1) ? ',users' : '') // Test
for group membership
formula.log.info('User ' + userNames[i] + ' missing; creating with groups:
+ memberOf + '...')
users.perform(session, 'LifeCycle|Create', [1, I
userNames [1i], // User name
'password', // Password
" // Full name
" // email
" // phone
" // fax
Y // pager
//

berOf Group membership (comma-delimited list)

v3--~

} "
}

// Now, set the user's profile to one we know (guest).

var guest = formula.Root.findElement ('user=guest/users=Users/security=Security/
root=Administration')

if (guest)

User Functions 49

var guestProfile = guest.profile
formula.log.info('Setting profile to guest profile: ' + guestProfile)

for(var i = 0; i < userNames.length; ++i)
formula.log.info('Updating profile for user ' + userNames[i])
var user = formula.Root.findElement ('user=' + formula.util.encodeURL (

userNames[i]) + '/users=Users/security=Security/root=Administration')
user.profile = guestProfile

}

formula.log.info('Done')

7.4.2 Changing a User’s Group Membership

To change a user’s group membership, use the following function and replace ‘groupl, group2’ with
actual group names:

user.perform(session, 'LifeCycle|SetGroupNames', [], ['groupl,group2'])
For example:
var tech = 'jim'

var user = formula.Root.findElement ('user=' + formula.util.encodeURL(tech)
+ '/users=Users/security=Security/root=Administration')
user.perform(session, 'LifeCycle|SetGroupNames', [], ['groupl,group2'])

50 Operations Center Scripting Guide

Using the State Variable to Cache and
Store Information

In situations when a script runs multiple times on a Operations Center server or console, it is
advantageous to cache or store information that subsequent invocations of the script can use. Use
the Operations Center state variable to store and share data among scripts.

The state variable is by default an empty object. Its unique feature is having only one value in the
entire process. It is shared across invocations of scripts and between scripts running on different
threads in the same process. For this reason, it is possible to place variables on the state object that
are used elsewhere.

For example, assume that a script must open a file and write some data to it. Later, run the script
again, which means opening and closing the file again. Use the state variable to cache the value of
the stream that the script opens, and then reuse the stream during another invocation of the script.
For example:

if(! state.fileStream)

state.fileStream = new java.io.PrintWriter(new java.io.OutputStreamWriter (new
java.io.FileOutputStream('/output', true)))
state.fileStream.println('Some more data right now: ' + new java.util.Date())
state.fileStream.flush()

The convention on line 1 checks for the presence of the fileStream value in the state variable. If it is
not found, fileStream is opened. Whether it is initially opened or reused from the state variable, the
script simply writes data to the stream, then flushes it.

If the script places many variables in the state variable, consider placing them in an object held by the
state variable:

if(! state.mystuff)

{

state.mystuff = new Object ()
state.mystuff.fileStream = new java.io.FileInputStream('/output')
state.mystuff.iterations 0

state.mystuff.iterations++

Using the State Variable to Cache and Store Information 51

52 Operations Center Scripting Guide

9.1

Miscellaneous Scripting Functions

The following sections describe various scripting functions that are available:

+ Section 9.1, “Script Functions to Set Root Cause,” on page 53

+ Section 9.2, “Scripting Functions in Automation Tasks,” on page 54
¢ Section 9.3, “Remotely Calling One Script from Another,” on page 57
+ Section 9.4, “Accessing Metamodel Properties,” on page 58

+ Section 9.5, “SCM and Scripting,” on page 58

+ Section 9.6, “Miscellaneous Scripting Functions,” on page 64

Script Functions to Set Root Cause

If a script sets the conditionState object state and result, it should also set the root cause information
indicating why the condition was set to a specific value as shown in the following declaration.

conditionState.setState() as FINISHED and conditionState.setResult (
resultingCondition, reason) ;

Set the root cause information by using the following method:

conditionState.getRootCause () .setContributorsReasonWhere (contributors, reason,
where) ;

Table 9-1 defines the parameters used to set the root cause information.

Table 9-1 Parameters Used to Set Root Cause

Parameter Description

Elementimpl[] contributors Specifies the elements that caused the element to have a specific condition.
For example, contributors can be all critical children of the element. Set this
to null if no other elements contribute.

String reason Text description of the reason why the element has a specific condition. For
example, “I have CRITICAL children elements.”

String where A text description of where the condition was set. For example, “Script
MakeACondition.” Set it to null to automatically fill in by using the algorithm
name.

For customized algorithms to support root cause and show impact, set root cause information that
indicates why the condition was set to a particular value.

Miscellaneous Scripting Functions 53

54

9.2

9.2.1

9.2.2

Scripting Functions in Automation Tasks

Automation events can trigger an alert when a network event occurs that might require intervention.
Scripting capabilities are available to define more complex actions. Defining and Managing
Automation Events in the Operations Center Server Configuration Guide describes the automation
features.

¢ Section 9.2.1, “Accessing SLA Information,” on page 54

¢ Section 9.2.2, “Using Event Variables,” on page 54

+ Section 9.2.3, “Sample Code,” on page 55

Accessing SLA Information

Table 9-2 lists the objects that are available when defining a script action for an SLA objective breach.
It is possible to mine Agreement Name, Reason, Compliance, etc., from these objects:

Table 9-2 Obijects for Accessing SLA Information

Object Description

objectiveContext This context provides information about the defined
objective/offer.

computeContext This real-time context provides information about the
real time objective/offer instances.

var ObjectiveName = objectiveContext.getObjectiveType () .getName ()

var SLAName = objectiveContext.getOfferDefinition() .getName ()

var reason = computeContext.getObjectiveInstance () .getReason/()

var ObjectiveHealth = computeContext.getObjectivelnstance () .getHealth()

In the following sample script, messages display in the formula trace file when an objective breach
occurs:

formula.log.info("SLA = " + objectiveContext.getOfferDefinition() .getName/())
formula.log.info("Objective = " + objectiveContext.getObjectiveType () .getName ())
formula.log.info("Obj Health = " +
computeContext.getObjectiveInstance () .getHealth()) ;

formula.log.info("Objective Breach Reason = " +

computeContext.getObjectiveInstance () .getReason()) ;

Using Event Variables

All script-based automations have an event variable that represents the event that triggers the
automation. Table 9-3 describes event variable fields.

Table 9-3 Event Variable Fields

Field Description
sourceEvent The name of the triggered automation event.
eventCondition The current event condition.

Operations Center Scripting Guide

https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#automation
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#automation

9.2.3

Field

Description

priorCondition

eventType

element

createTime

The event condition before the automation event occurred.
The type of automation filter that triggered the event:
+ EventType_ConditionChange
+ EventType_AlarmAdded
+ EventType_AlarmRemoved
+ EventType_AlarmOperationPerformed
+ EventType_ElementOperationPerformed
+ EventType_AlarmChange
The element to which the triggered automation action is assigned.

The time the automation event occurred,

Sample Code

The following sample code shows the fields documented in Table 9-3 on page 54:

package com.mosol.Formula.Automation;

import
import
import

java.util.EventObject;
com.mosol.ORB.Formula.ElementCondition;
com.mosol.util.StringMap;

public class AutomationEvent extends EventObject

public
public
public
public
public
public
public
public
public

static
static
static
static
static
static

public

{

this(what, automation,

public

String what = null ;
Automation automation = null;
EventObject sourceEvent = null ;

ElementCondition eventCondition null ;

ElementCondition priorCondition

null;

AutomationElement element = null ;

StringMap eventDataObjects = new StringMap() ;
int eventType =
long createTime

public
public
public
public
public
public

final
final
final
final
final
final

int
int
int
int
int
int

AutomationEvent (

0 ;
= System.currentTimeMillis () ;

EventType ConditionChange = 1 ;

EventType AlarmAdded = 2 ;

EventType AlarmRemoved = 3 ;

EventType AlarmOperationPerformed = 4 ;
EventType ElementOperationPerformed = 5 ;
EventType AlarmChange = 6;

String what,

Automation automation,

EventObject sourceEvent,
ElementCondition eventCondition,
AutomationElement element,

int eventType)

element,

sourceEvent, eventCondition,

AutomationEvent (String what,

Automation automation,
EventObject sourceEvent,
ElementCondition eventCondition,

Miscellaneous Scripting Functions

eventType, null

55

ElementCondition priorCondition,
AutomationElement element,
int eventType)

this(what, automation, sourceEvent, eventCondition, priorCondition, element,
eventType, null);

public AutomationEvent (String what,
Automation automation,
EventObject sourceEvent,
ElementCondition eventCondition,
AutomationElement element,
int eventType,
String eventDataName,
Object eventData)

this(what, automation, sourceEvent, eventCondition, element, eventType, null
)i

eventDataObjects.put (eventDataName, eventData);

public AutomationEvent (String what,
Automation automation,
EventObject sourceEvent,
ElementCondition eventCondition,
AutomationElement element,
int eventType,
StringMap eventDataObjects)

this(what, automation, sourceEvent, eventCondition, null, element, eventType,
eventDataObjects) ;

public AutomationEvent (String what,
Automation automation,
EventObject sourceEvent,
ElementCondition eventCondition,
ElementCondition priorCondition,
AutomationElement element,
int eventType,
StringMap eventDataObjects)

super (sourceEvent.getSource()) ;
this.what = what ;

this.automation = automation ;
this.sourceEvent = sourceEvent ;
this.eventCondition = eventCondition ;

this.priorCondition = priorCondition ;

this.element = element ;

this.eventType = eventType ;

if (eventDataObjects != null)
this.eventDataObjects = eventDataObjects ;

}

public Object getEventObject (String key)

return eventDataObjects.get (key);

56 Operations Center Scripting Guide

9.3 Remotely Calling One Script from Another

It is possible to remotely make calls from a client script to a server script and vice-versa. This requires
sending a prompt script that causes the recipient to execute the script via a remote proxy. The
following example script defines a variable named callback and sends a prompt script to the client.
The result is executing this script through a remote proxy.

N NN

/ Operation definitions to add to an element: (paste into Operations.ini)

// [Enter Trouble Ticket]

// description=Trouble Ticket...

// context=element

// target=dname:root=Elements

// permission=manage

// type=serverscript

// operation=// @debug off \nload("examples/ticket.fs");

// Set our log category
formula.setLogCategory("Ticket")

// Log startup
formula.log.info("Starting trouble ticket script")

// Create our object which will be the "callback" from the client
// Note: this is standard javascript syntax for creating an object with named
properties/values
var callback =
setTicketInfo: function(reason)

// We'll log what the user did, to simulate connecting to the ticketing

system.
formula.log.info("User created trouble ticket:")
formula.log.info(" Element: " + element)
formula.log.info(" Reason: " + reason)

// Let's notify the user that we did what was asked.
session.sendMessage ('Trouble ticket created for ' + element + '.
Content:\n\n' + reason)

cancel: function()

formula.log.info("User cancelled trouble ticket creation")
session.sendMessage ('Trouble ticket cancelled for ' + element + '.')

}

// We're going to send this callback and a prompt script to the client, which will
// then cause execution to this script through remote proxy.

var clientTicketScript = "\
// @opt -1 \
// @debug off \
var result = prompt ('Enter trouble ticket information for ' + elementName +

I:l’ \
'"Trouble Ticket') \
if(! result) \
callback.cancel () \
else \

callback.setTicketInfo(result)\

/7

Miscellaneous Scripting Functions 57

58

// Now, send the dialog script to the user who invoked this script

//

// Note: this script is sent to variables, called "callback" and "elementName"
// The callback is wrapped via a remote proxy using the
formula.util.makeRemote ()

// function. The element name is simply the element name of the element
// the user initiated this ticket for.

//

formula.log.info("Sending dialog script to client")

session.invokeScript ('Enter Trouble Ticket',
clientTicketScript,
[formula.util.makeRemote(callback), element.name],
['callback', 'elementName'])

formula.log.info("Done!")

9.4 Accessing Metamodel Properties

To look up metamodel-related properties for elements, use a script that queries the supported
attribute IDs. Table 9-4 lists the metamodel attributes.

Table 9-4 Metamodel Attributes

Attribute Returns

metamodelPageNames Metamodel page names for an element.

metamodellnvalidatedAttrs State of the metamodel properties validation.

metamodellnvalidatedAttrs.Page State of the metamodel properties validation given page name.

metamodellnvalidatedAttrIDs Invalidated attr IDs of the metamodel properties.

metamodellnvalidatedAttrIDs.Page Invalidated attr IDs of the metamodel properties given page
name.

metamodelPageAttrIDs Attr IDs of the metamodel properties.

metamodelPageAttrIDs.Page Attr IDs of the metamodel properties given page name.

9.5 SCM and Scripting

The Service Configuration Manager (SCM) imports data from external sources and generates new
element hierarchies in the Operations Center console. A large part of the import preparation involves
mapping imported data. This section assumes familiarity with SCM functionality. Read “Using the
Service Configuration Manager”in the Operations Center Service Modeling Guide for more
information.

When using SCM, most sites perform these two actions:

+ First Stage: Relate services to applications.
+ Second Stage: Relate applications to hosts.

When beginning to relate applications to hosts, the following mapping usually occurs:

Host A Host A (OV) Host A (Patrol) Host A (Remedy)

Operations Center Scripting Guide

https://www.netiq.com/documentation/operations-center/pdfdoc/service_modeling/service_modeling.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/service_modeling/service_modeling.pdf#bscm
https://www.netiq.com/documentation/operations-center/pdfdoc/service_modeling/service_modeling.pdf#bscm

9.5.1

However, this format is not optimal for most users. They want to see the children of Host A (ov),
Host A (Patrol), Host A (Remedy).Use dynamic matching to do this:

["\x2F] *=${name} . *
Join rules can be written using regular expression and Apache Velocity (http://velocity.apache.org).
When trying to join things with spaces, use this main concept:

Sclass=Sname

Use the form:

${formula.util.encodeURL ($class) }=${formula.util.encodeURL ($name) }

Main packages for BCSM are in com.mosol.Formula.ViewBuilder Also see
com.mosol.Formula.commands.ViewBuilder.java.

Some scripting applications involving SCM include scheduling SCM jobs, building core views and
generating elements.

¢ Section 9.5.1, “Scheduling a SCM Job by Using a Script,” on page 59

+ Section 9.5.2, “Scheduling Multiple SCM Jobs by Using a Script,” on page 60
+ Section 9.5.3, “Generating Elements by Using a Script,” on page 61

+ Section 9.5.4, “Building Core Views,” on page 62

Scheduling a SCM Job by Using a Script

The following script example shows running a SCM job.

NOTE: Do not run SCM jobs in parallel unless you know for certain that the SCM jobs do not affect

the same elements. To be safe, use a script that runs the SCM jobs in a specific sequence, as shown

in Section 9.5.2, “Scheduling Multiple SCM Jobs by Using a Script,” on page 60.

var logger = Packages.org.apache.log4j.Logger.getLogger ("BSCM copy script");
function buildbscm (viewDName)

var viewElement = null;
try {
viewElement = formula.Root.findElement (viewDName) ;
} catch(Exception) {
formula.log.error("ERROR - caught exception while finding view " +
viewDName + ": " + Exception);
return false;

if(viewElement == null) ({
formula.log.error ("ERROR - view " + viewDName + " not found");
return false;

try {
var ret = viewElement.perform(session, "ViewBuilder|Run", [1, []);

} catch(Exception) {
return false;

}

logger.info('Build bscm: start ---------------------- ") ;
buildbscm('org=elements bscm/root=Organizations') ;
logger.info('Build bscm: end ---------------------- ") ;

Miscellaneous Scripting Functions

59

http://velocity.apache.org

60

9.5.2

Scheduling Multiple SCM Jobs by Using a Script

The following script example shows the kicking off of SCM jobs in a specific sequence in order to
remove the risk of them conflicting with each other. This is important unless you know for certain that
the SCM definitions do not affect any of the same elements or hierarchies.

This script uses a "dnames" array to define the elements containing

the SCM job definitions. Instead of using the schedule in the SCM job,
it uses the "Administration > Jobs" Time Management to run the SCM jobs
in the order you specify.

Edit the dnames variables to specify the specific dnames in the order you
require them to be built.

For more advanced functionality (ie; requires more scripting), you can turn on
adapters just before a job runs, interrogate the adapter to see if it is done
"starting". Once it is done, you can kick off the SCM job and when complete,
you can stop the adapter.

NN ~~ SN
NN ~o~ NN

formula.log.info("Starting build of SCM jobs...");

var dnames = new Array ()

dnames [0] = "Application=Application+A+thru+C/layout organic=my+Applications/
root=Generational+Models/root=Services"
dnames[1] = "SCM job name using DName"

// Add dname instances above as necessary.

/* no changes required below here */
/* function to kick of SCM jobs based on the dnames above */

function buildView(viewDName)
var viewElement = null;
// find the element based on the dname
try {
viewElement = formula.Root.findElement (viewDName) ;

} catch(Exception) ({

formula.log.error("ERROR - caught exception while finding view " +
viewDname + ": " + Exception);

return false;

// if element can't be found, issue an error to log file
if (viewElement == null)

formula.log.error ("ERROR - view " + viewDName + " not found");
return false;

//if the element is found, kick of SCM job via the perform() method.
try {
var ret = viewElement.perform(session, "ViewBuilder|Run", [, 11);

} catch(Exception) {

Operations Center Scripting Guide

9.5.3

return false;

}

/* for loop to run through each dname and kick off SCM job */

for(var i=0; i<dnames.length; i++)

{

formula.log.info("Starting SCM job for: " + dnames[i]);
buildview(dnames[i]);

formula.log.info("Finished running all SCM jobs");

Generating Elements by Using a Script

The scripts used to generate elements vary, but it is important to add the following line to the end of
the script, or else all elements generated by the script are removed at the end of the SCM job.

bscm.addGeneratedElement (postScriptGeneratedElement)

For example:

// Example 'Post Element Generation Script' to build element trees under generated
elements that look like:

// gen container=Versions/router=NetRouter+One/gen container=Installed+Routers/
[generated element]

// Create an element tree.

var isSourceChild = true; // Make children contribute condition.

var routerName = 'NetRouter One'; // Will need to URL encode this for spaces or
other special characters.

var childl = createChildElement (element /* the generated element */,
'gen_container=Installed+Routers', isSourceChild);

var child2 = createChildElement (childl, 'router=' + formula.util.encodeURL (
routerName), isSourceChild);

var child3 = createChildElement (child2, 'gen container=Versions', isSourceChild);

// Function to create and return a child on a parent.
function createChildElement (parentElement, childKey , isSourceChild)
// Get the child (or create it if it does not exist).
var child = server.getElement (childKey + '/' + parentElement.dname) ;
if (isSourceChild) {
// This child should contribute condition to the parent.
bscm.addStaticMatches (parentElement, [child], false /*
displaySourceElementsAsChildren */) ;

// Prevent SCM from removing the element.
bscm.addGeneratedElement (child) ;

// Return the element.

return child;

Miscellaneous Scripting Functions 61

954

Building Core Views

//

// This script initiates the build of core views in the following order:
// Production Views --> Common Views --> GRNs

// Production Views --> Common Views --> Sybase Hosts

// Production Views --> Common Views --> Consolidated Host List

//
load ("custom/msAdapterUtils.fs");
var errHdr = "MONITOR_ FAILED TO BUILD VIEW: ";
function buildCoreViews ()
var adapterList = new Array();
var runtimeAlarmDName;
var viewDName;

var viewObject;
var status;

formula.log.info ("\n\n*****xxxxxxx*xx*x*x*x Building Production Views --> _Common
Views --> GRNs: STARTED") ;

runtimeAlarmDName = "EBI-Element=Adapter+Runtime+Information/
DEF_ESP _APPS2=AD ESP APPS2/root=Elements";

adapterList [0] = new MSAdapterObject ("AD ESP APPS2", runtimeAlarmDName,
RUN_COMPLETED, ADAPTER_ STARTED, false);

adapterList [1] = new MSAdapterObject (NETCOOL ADAPTER NAME, "", "',

NETCOOL_ADAPTER STARTED, false);

viewDName = "org=GRNs/org= Common+Views/org=Production+Views/
root=0Organizations";
viewObject = new MSViewObject (viewDName, adapterList) ;

status = viewObject.buildView() ;
if (status == false)

formula.log.error(errHdr + "core view " + viewDName + " build failed,
aborting the entire view build process")
return false;

formula.log.info ("\n*****kkkkkxxxx*x*x*x Building Production Views --> _Common
Views --> GRNs: COMPLETED\n") ;

formula.log.info("Sleeping for 10 seconds before starting next view build...");

java.lang.Thread.sleep(10000);

formula.log.info ("\n\n***xxxxxxxxxxxxx*x Building Production Views --> _Common
Views --> Sybase Hosts: STARTED") ;

runtimeAlarmDName = "EBI-Element=Adapter+Runtime+Information/
DEF_ESP_SYBASE INFRA-AD ESP SYBASE INFRA/root=Elements";

adapterList.length=0;

adapterList [0] = new MSAdapterObject ("AD ESP SYBASE INFRA", runtimeAlarmDName,
RUN_COMPLETED, ADAPTER_STARTED, true);

adapterList [1] = new MSAdapterObject (NETCOOL ADAPTER NAME, "", "',
NETCOOL_ADAPTER STARTED, false);

viewDName = "org=Sybase+Hosts/org=_ Common+Views/org=Production+Views/
root=Organizations";
viewObject = new MSViewObject (viewDName, adapterList) ;

status = viewObject.buildView() ;
if (status == false)

formula.log.error(errHdr + "core view " + viewDName + " build failed,
aborting the entire view build process")
return false;

62 Operations Center Scripting Guide

formula.log.info ("\n*******kkkxx*xx*x*x*x Building Production Views --> _Common
Views --> Sybase Hosts: COMPLETED\n") ;

formula.log.info("Sleeping for 10 seconds before starting next view build...");

java.lang.Thread.sleep(10000);

formula.log.info ("\n\n***xxxxxxxxxxxxx*x Building Production Views --> _Common
Views --> Consolidated Host List: STARTED") ;

runtimeAlarmDName = "EBI-Element=Adapter+Runtime+Information/
DEF_ESP CHL3=AD ESP CHL3/root=Elements";
adapterList.length=0;

adapterList [0] = new MSAdapterObject ("AD ESP CHL3", runtimeAlarmDName,
RUN_COMPLETED, ADAPTER_STARTED, true);
adapterList [1] = new MSAdapterObject (NETCOOL ADAPTER NAME, "",6 "',

NETCOOL_ADAPTER_STARTED, false);

viewDName = "org=Consolidated+Host+List/org=_Common+Views/
org=Production+Views/root=0Organizations";
viewObject = new MSViewObject (viewDName, adapterList);

status = viewObject.buildvView() ;
if (status == false)

formula.log.error(errHdr + "core view " + viewDName + " build failed,
aborting the entire view build process")
return false;

formula.log.info ("\n***xxxxxxxxxxxxx*x Building Production Views --> _Common
Views --> Consolidated Host List: COMPLETED\n") ;

formula.log.info("Sleeping for 10 seconds before starting next view build...");

java.lang.Thread.sleep(10000);

return true;

var server = formula.Administration.findElement ('formulaServer=Server') ;
// pause updates to Elements.ini
server.perform(session, 'Element|PausePersistence', [1, [true]);

var result = buildCoreViews () ;

formula.log.info("Triggering a FULL GC if possible...");
java.lang.System.gc () ;

// resume updates to Elements.ini
server.perform(session, 'Element|PausePersistence', [1, [false]);

if (result)

formula.log.info("Core view builds are done, wait for 3 minutes before
starting state view builds.");

java.lang.Thread.sleep(180000);

var stateViewDName = "Job=Build+State+Views/jobs=Jobs/
timeManagement=Time+Management/root=Administration";

var jobElement = formula.Root.findElement (stateViewDName) ;

if (jobElement.isJobRunning())

formula.log.info("State View refresh job is already running.")

else

try {
formula.log.info("Enabling job...");

Miscellaneous Scripting Functions

I

I

63

64

jobElement .perform(session, 'Enable', [], []);
} catch(exception) {

formula.log.info ("Caught exception when enabling job: " + exception);
try {

formula.log.info("Starting job...");

jobElement .perform(session, 'Run', []1, []);
} catch(exception)

formula.log.error(errHdr + "Caught exception when starting job: " +

exception) ;

}

9.6 Miscellaneous Scripting Functions

Table 9-5 provides an overview of various scripting functions:

Table 9-5 Scripting Functions

Function

Description

info(message)

alert(message)

confirm(message)

prompt(prompt|prompts,
title, multiline|multilines)

fload(scriptName)

Displays a message dialog box with an informational icon. This is part of the
standard browser JavaScript extensions, so it is familiar to those who have already
used JavaScript.

Displays a message dialog box with a warning/error icon. This is part of the
standard browser JavaScript extensions, so it is familiar to those who have already
used JavaScript.

Displays a message dialog box with a question icon, with Yes/No button choices.
This is part of the standard browser JavaScript extensions, so it is familiar to those
who have already used JavaScript.

This function returns True if the user clicks the Yes button.

Similar to confirm(), this prompts the user for information. The prompt argument is
a label for a text field where the user enters information. Optionally, the first
argument can be an array of strings, which sets up multiple input values.

The title is optional, and denotes the title of the dialog box to display.

The final variable is also optional, and denotes whether or not the prompt text
fields are multiple lines or single line (True/False).

The return value is either the string the user entered, or null/undefined. If there are
multiple prompts used, it is an array of strings.

Examples:

var result = prompt('Enter some information', 'Formula')
print ('You entered: ' + result)

var results = prompt(['Enter 1', 'Enter 2'], 'Formula', [

true, false])

Loads a script from the script repository. The script repository is in the formula
database/scripts directory. For example:

load('util/login') // Loads the login utility.

login ()

Operations Center Scripting Guide

Function

Description

@

writeln/write
in/out/err

Args

Loads a script from the script repository. The script repository is in the formula
database/scripts directory. Use it when loading the script is the only command
being issued and it is not embedded within a script. For example, when creating a
custom menu operation or loading a script when an adapter starts
(Script.onStarted in adapter properties). For example:

@/login.fs // Loads the login utility.
Write output to standard output. Similar to the standard JavaScript print function.
Standard input, output, and error streams, exposed as variables.

The arguments to the script, as an array of strings. If the script is a command line
script, these are the arguments the user entered for the script. If the script is an
operation, and the user was prompted for data, this is the data the user entered.

Miscellaneous Scripting Functions

65

66 Operations Center Scripting Guide

10.1

Command Line Scripting: The fscript
Utility

Use the Operations Center scripting command line environment named fscript to interactively
execute or batch-execute script commands. Ensure that the /OperationsCenter install path/
bin directory is in the system path to run these examples.

+ Section 10.1, “Starting fscript,” on page 67

+ Section 10.2, “Invoking a Script by File Name,” on page 68

+ Section 10.3, “Invoking a Script by Module Name,” on page 69

+ Section 10.4, “Invoking a Script with Arguments,” on page 69

+ Section 10.5, “Using the Interactive Option,” on page 70

+ Section 10.6, “Exiting fscript,” on page 70

Starting fscript

To start the fscript utility, enter £script at the system command line:

$ fscript
js>

Interactively enter script commands at this prompt. Table 10-1 the additional functions that are
available to assist with interactive scripts.

Table 10-1 Interactive Script Functions

Script Function Description

list(obj) List each normal property of the object.

listAll(obj) List all properties of the object, even hidden ones.
describe(obj) Print debugging or declaration of the object.

quit() Exit the fscript environment.

Command Line Scripting: The fscript Utility

67

10.2 Invoking a Script by File Name

To use the fscript utility to batch-execute a script, invoke the £script command using the -£
parameter:

$ fscript -f /OperationsCenter install path/database/scripts/util/adapters.fs

Enter web server host [reason]

Enter web server port [80]

Enter your Formula(r) account userid : admin
Enter your Formula (r) account password : formula

Adapters:

CIC on ga2sun0: stopped

Eve (tm) on reason: stopped

Formula (r) on hiro (unsecured): stopped
Formula (r) on yt: stopped

IT Masters MasterCell (tm) on rufus: stopped
Icon Library: stopped

Max on rufus: stopped

NetIQ on gaintel3: stopped

NetView(r) on gasunl: stopped
NetView(r) on taz: stopped

10 Netcool (r) on twee: stopped

11 OVO on fishhead: stopped

12 OpenView on bogey: stopped

13 OpenView on fishbowl: stopped

14 OpenView on gasun: stopped

15 PATROL(r) on bogey: stopped

WoOoJaUTd WNREO

)
16 PATROL(r) on fishbowl: stopped
17 PATROL(r) on hiro: stopped
18 PATROL(r) on gaintelO: stopped
19 PATROL(r) on gasun: stopped
20 PATROL(r) on reason: stopped
21 PATROL(r) on twee: stopped

22 PEM on raven: stopped
23 SPECTRUM(r) on twee: stopped
24 Script 3DNS: stopped

25 Script Test 1: stopped
26 Script Test 2: stopped
27 Script Test 3: stopped
28 Script Test 4: stopped
29 Script Test 5: stopped
30 Script Test 6: stopped
31 Script Test 7: stopped
32 Script Test 8: stopped
33 Script Test 9: stopped

34 Script(tm): stopped

35 T/EC(r)+ on gaintell: stopped

36 T/EC(r)+ on rubberneck: stopped

37 TNG on gant: stopped

38 Tivoli T/EC(r) on reason, i: Ready for T/EC events
39 Tivoli T/EC(r) on reason, ii: stopped

40 Tivoli T/EC(r) on reason, iii: stopped

41 Tivoli T/EC(r) on reason, iv: stopped

42 US:EVE:PROD: stopped

Adapter:

68 Operations Center Scripting Guide

10.3

10.4

Invoking a Script by Module Name

To execute a script in the script repository (located under /OperationsCenter install path/
database/scripts), enter the module name with the -m parameter:

fscript -m util/forceoff

Usage:
forceoff [username | Group:groupname username:sessionid] [message]

Examples:
forceoff joeuser
forceoff Group:users

forceoff admin:42 "Your session was terminated so we can perform system
maintenance."

Invoking a Script with Arguments

Invoking a script many times requires supplying arguments to parameterize the script.

To send arguments to the script (the arguments appear as the args array variable), use the -a
parameter, followed by arguments to be supplied to the script:

fscript -m util/forceoff -A admin

Enter web server host [reason]

Enter web server port [80]

Enter your Formula (r) account userid : admin
Enter your Formula(r) account password : formula
Found target element: Default Administrator (admin)
Result of forceoff operation:

Warning. You are not able to logout your own session.

There were no sessions active with the given account admin

Command Line Scripting: The fscript Utility

69

10.5 Using the Interactive Option

To run a script and then return control to the fscript prompt, use the interactive option (-1):
fscript -m util/formula -1

Enter web server host [reason]
Enter web server port [80]
Enter your Formula(r) account userid : admin
Enter your Formula (r) account password : formula
js> list(formula.Administration['formulaServer=Server'] .properties)
[object Object]:

Object Heap Used Memory (KB)

Adapters

Auditable

Formula Server Start Timestamp

Condition

Algorithm

Total Alarms

Formula Server Has Been Up For

Element

Object Heap Free Memory (KB)

Algorithm Parameters

Total Element Classes

Object Heap Allocated Memory (KB)

Last Reported

Sessions

Total Elements
js>

10.6 Exiting fscript

The quit () method is used to exit fscript with an optional exit code. It is available in all fscript
invocations regardless of whether it is interactive or not.

Pass a numeric value to the method to control the exit code of the fscript call. If script does not
provide an exit code, the fscript exit code defaults to 0. In the case of an unhandled exception, the exit
code is -1.

To exit the fscript prompt, issue quit () as a command:

js> quit (exitCode)
#

Where, exitCode is an optional exit code.

70 Operations Center Scripting Guide

1 Usage Scenarios

This section presents several usage scenarios for scripting. They vary from database connectivity, to
interacting with a user, to creating sophisticated user interfaces:
¢ Section 11.1, “Use Case: Opening a Connection to a JDBC Database,” on page 71

¢ Section 11.2, “Use Case: Gathering Information from the User for Script Invocation on a Server,”
on page 72

+ Section 11.3, “Use Case: Invoking a Server-Side Script from a Client Script,” on page 74
+ Section 11.4, “Use Case: Creating User Interface Scripts with Java and JFC/Swing,” on page 75

¢ Section 11.5, “Use Case: Running an External Process,” on page 83

11.1 Use Case: Opening a Connection to a JDBC
Database

In general, NOC Script can call any Java-based library. There are two ways to access a Java
package:

+ Use the full package name when accessing Java classes and interfaces.
¢ Use the importPackage () mechanism in JavaScript.

The following example shows how to open a connection to a JDBC* database (in this case a
Microsoft* SQL Server* database) using full package names:

try

java.lang.Class.forName('com.inet.tds.TdsDriver') // Get the driver into
memory .

var props = new java.util.Properties()

props.setProperty('user', 'formula')

props.setProperty('password', 'sesame')

var url = 'jdbc:inetdae:gaintel0:1433"

var conn = java.sqgl.DriverManager.getConnection(url, props)

catch(Exception)

writeln('Could not get connection: ' + Exception)
The following example shows how to use importPackage:
importPackage(java.sql)

importPackage (java.util)
importPackage (java.lang)

Usage Scenarios 71

try

Class.forName('com.inet.tds.TdsDriver') // Get the driver into memory.
var props = new Properties|()

props.setProperty('user', 'formula')

props.setProperty('password', 'sesame')

var url = 'jdbc:inetdae:gaintel0:1433"

var conn = DriverManager.getConnection(url, props)

catch(Exception)

writeln('Could not get connection: ' + Exception)

11.2 Use Case: Gathering Information from the User for
Script Invocation on a Server

In many cases, before an operation executed by a server script can perform an action, it is necessary
to gather information by interacting with the user. NOC Script fully supports this type of interaction by:

+ Allowing a server-side script to send a script to the client session that invoked it
+ Gathering information from the user

+ |ssuing a “call back” to the server script, supplying the user input to the originating server-side
script

Consider the example where a trouble ticket is created for an element that has an outage. The user
must supply information to “cut” the ticket, such as a summary of the problem, before the server-side
script logic can create a trouble ticket.

A simple prompt() invocation suffices for gathering the summary information from the user. However,
invoking the script on the client side raises the issue of applying to the information some logic on the
server, which might be the only connectivity resource that can interact with the trouble ticket system.
Thus, it might be better to originate the script on the server side. (There is another way to solve this
problem, as shown in Section 11.3, “Use Case: Invoking a Server-Side Script from a Client Script,” on
page 74.)

The following example, illustrated in detail, describes how to create a server-side script to resolve the
problem:

+ Section 11.2.1, “Configuring the Script,” on page 72

¢ Section 11.2.2, “Script File Content,” on page 73
+ Section 11.2.3, “Notes About the Script,” on page 74

11.2.1 Configuring the Script

To configure this script, copy the following operations.ini section to the operations.ini file that
resides in the /OperationsCenter install path/database/shadowed directory:

[Enter Trouble Ticket]
description=Trouble Ticket...
context=element
target=dname:root=Elements
permission=manage
type=serverscript
operation=@examples/ticket

72 Operations Center Scripting Guide

11.2.2

This operation denotes a right-click menu command that can be invoked on any element that resides
in the Elements top-level tree in Operations Center. It is a server-side script, which simply delegates
invocation to a script named ticket that resides in the /OperationsCenter install path/
database/scripts/examples directory.

Script File Content

The following is the contents of the ticket script file:

N N N

// Operation definitions to add to an element: (paste into Operations.ini)
//

// [Enter Trouble Ticket]

// description=Trouble Ticket...

// context=element

// target=dname:root=Elements

// permission=manage

// type=serverscript

// operation=// @debug off \nload("examples/ticket");

//

formula.log.info("Here!")

// Set our log category
formula.setLogCategory("Ticket")

// Log startup
formula.log.info("Starting trouble ticket script")

// Create our object which will be the "callback" from the client

// Note: this is standard javascript syntax for creating an object with named
properties/values

var callback =

setTicketInfo: function(reason)

// We'll log what the user did, to simulate connecting to the ticketing
system.

formula.log.info("User created trouble ticket:")

formula.log.info(" Element: " + element)

formula.log.info(" Reason: " + reason)

// Let's notify the user that we did what was asked.
session.sendMessage('Trouble ticket created for ' + element + '.
Content:\n\n' + reason)

cancel: function()

formula.log.info("User cancelled trouble ticket creation")
session.sendMessage('Trouble ticket cancelled for ' + element + '.')

}

// We're going to send this callback and a prompt script to the client, which will
// then cause execution to this script through remote proxy.

var clientTicketScript = "\
// @opt -1 \
// @debug off \
var result = prompt('Enter trouble ticket information for ' + elementName +

BERPIAN
'"Trouble Ticket') \
if (! result) \
callback.cancel () \
else \

callback.setTicketInfo(result)\

Usage Scenarios 73

1

74

1.2.3

11.3

n

//

// Now, send the dialog script to the user who invoked this script

// Note: this script is sent to variables, called "callback" and "elementName"

// The callback is wrapped via a remote proxy using the
formula.util.makeRemote ()

// function. The element name is simply the element name of the element
// the user initiated this ticket for.

//

formula.log.info("Sending dialog script to client")

session.invokeScript ('Enter Trouble Ticket',
clientTicketScript,
[formula.util.makeRemote(callback), element.name],
['callback', 'elementName'])

formula.log.info("Done!")

Notes About the Script

Several notes about this script:

+ The script declares a “callback” object in JavaScript with two properties that are functions which
either: 1) accept the data entered by the user or 2) cancel the operation.

+ The actual client script is embedded as a textual string in this script. See this declaration in the
section that declares the value of clientTicketScript. If the client-side script is large, remove it
from this script and place it in the repository. Refer to the script using only a load() statement or
the @ symbol notation.

+ The script to execute against the session is invoked using the invokeScript method, which takes
the parameters of the script name, the script itself, and optional parameters to send to the script.
These are exposed as variables when the session executes the script.

+ Prepare the value of the callback variable for remote invocation using the
formula.util. makeRemote() function, which turns a JavaScript object into an entity that can be
remote, suitable for distributed function invocations.

+ The client-side script calls the callback variable remotely, which results in sending data back to
the originating server-side script, or calling the cancel method.

+ Both callback functions send a message to the originating session, displaying a message to the
user about what happened.

Use Case: Invoking a Server-Side Script from a
Client Script

Sometimes a client-side script needs to invoke a script that normally runs on the Operations Center
server. In this scenario, the client might or might not need to pass information to the server-side
script.

To invoke a script that normally runs on the Operations Center server:

+ Create an operation and assign it to an element in the Operations Center Administration user
interface. Consider making this script hidden, because it might not be useful to call unless
programmatic input is supplied. This can be done by modifying the operations.ini and adding
hidden=true to the script.

+ The client-side script can then find the element that has the operation defined, hard-coding the
element dname to look up the element, if necessary. The perform() method is then called on this
element, passing the appropriate parameters.

Operations Center Scripting Guide

11.4

A few examples:

// Find the "server" element.
var server = formula.Administration.findElement ('formulaServer=Server')

// Acknowledge an alarm.
element.perform(session, ‘Ack’, [alarm], [])

In the above example, Ack is the operation name, the first [] argument is an array of alarms, and the
second [] argument would pass operation arguments if they were required.

// Call custom script-based operation to do something interesting for us.
server.perform(session, 'Do That', [], ['One Argument', 'Another Argument'])

In this last example, Do That is the operation name, the first [1 argument is an array of alarms which
we left as an empty array since this is not an alarm-based operation, and lastly the second []
argument are optional operation arguments that are passed as a string array. The arguments appear
in the target operation as the predefined script variable args, where args [0] and args [1]
correspond to One Argument and Another Argument.

Use Case: Creating User Interface Scripts with
Java and JFC/Swing

Use JavaScript to create sophisticated Java user interfaces in JFC/Swing. There is a caveat:
declarations are always untyped, so do not declare variables. For example:

+ Do not do this:

Packages.javax.swing.JButton button = new Packages.javax.swing.JButton("OK")
+ Instead, do this:

var button = new Packages.javax.swing.JButton("OK")

Listeners added to GUI components use a slightly different syntax.

There are no GUI designers for JFC/Swing as embedded within JavaScript. However, some GUI
designers, such as NetBeans*, work well with JavaScript.

In fact, JavaScript is so adept at creating JFC/Swing user interfaces that Operations Center creates
many user interfaces in JavaScript, because it allows dynamically generated code for management-
system-specific tasks.

To minimize confusion, Operations Center has attempted to make its JavaScript appear unlike Java,
using single-quote (') strings, and no semicolons in JavaScript statements. However, there is nothing
wrong with making your code look exactly like Java. For example:

new java.awt.Frame("A Frame Window") ;

This code compiles in Java and works in JavaScript, with no modifications.

+ Section 11.4.1, “Syntax for Bean-Listener Patterns,” on page 76
¢ Section 11.4.2, “Utilizing NetBeans,” on page 76

Usage Scenarios 75

11.4.1

11.4.2

Syntax for Bean-Listener Patterns

Those familiar with JFC/Swing have probably seen or used inner-class declarations for setting up a
listener to a component. JavaScript supports a similar declarative syntax for creating listeners to JFC/
Swing and AWT components.

An example in Java:

final frame = new java.awt.Frame("A Frame Window");
frame.addWindowListener

(

new java.awt.event.WindowAdapter ()
public void windowClosing(java.awt.event.WindowEvent evt)

frame.setVisible(false);

}
)i

The same example in JavaScript:
var frame = new java.awt.Frame("A Frame Window");

frame.addWindowListener

(

new java.awt.event.WindowAdapter ()
windowClosing: function(evt)

frame.setVisible(false);

)

Note the similarity with Java: there is still a declaration of an inner class, derived from
java.awt.event.WindowAdapter(). However, the declaration uses inline notation of a property of the
JavaScript object, namely the windowClosing property, which is itself a function taking one argument.

You can manufacture similar listeners for any JFC/Swing or AWT component that allows for listener
registration. However, options are not limited to these interfaces. It is possible to create inner class
declarations for almost anything that can be done in Java.

Utilizing NetBeans

NetBeans is an open source project found at http://www.netbeans.org (http://www.netbeans.org),
where it can be freely downloaded.

An attractive feature of NetBeans is creating user interfaces with the GUI design tool. Copy or paste
these interfaces into a JavaScript script with little or no modifications. As long as the interactivity
portion of the user interface design is left out of the NetBeans form, it is possible to create user
interfaces for use in NOC Script.

76 Operations Center Scripting Guide

http://www.netbeans.org

As an example:

1 Consider the following form declaration, taken directly from a user interface create in NetBeans.
This user interface is the Change Password dialog in Operations Center:

/*

ChangePasswordDialog.java

* o

* Created on September 6, 2000, 12:01 PM
*/

package proto;
/**
*

* @author kwester
* @version
*/

public class ChangePasswordDialog extends javax.swing.JDialog {

/** Creates new form ChangePasswordDialog */

public ChangePasswordDialog(java.awt.Frame parent,boolean modal) ({
super (parent, modal) ;
initComponents () ;
pack ();

/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is

* always regenerated by the FormEditor.
*/
private void initComponents()//GEN-BEGIN:initComponents

java.awt.GridBagConstraints gridBagConstraints;

clientPanel = new javax.swing.JPanel () ;

buttonPanel = new javax.swing.JPanel () ;

OKButton = new javax.swing.JButton() ;

CancelButton = new javax.swing.JButton() ;
specifylabel = new javax.swing.JLabel () ;
oldPasswordLabel = new javax.swing.JLabel();
oldPasswordField new javax.swing.JPasswordField() ;
newPasswordLabel new javax.swing.JLabel () ;
newPasswordField = new javax.swing.JPasswordField() ;
newPasswordAgainlLabel = new javax.swing.JLabel () ;
newPasswordAgainField = new javax.swing.JPasswordField() ;

clientPanel.setlLayout (new java.awt.GridBagLayout()) ;
buttonPanel.setLayout (new java.awt.GridLayout (1, 2, 4, 4));

OKButton.setText ("OK") ;
buttonPanel .add (OKButton) ;

CancelButton.setText ("Cancel") ;
buttonPanel.add (CancelButton) ;

gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 0;

gridBagConstraints.gridy = 7;

gridBagConstraints.gridwidth = java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.ipadx = 30;

gridBagConstraints.anchor = java.awt.GridBagConstraints.EAST;
gridBagConstraints.weightx = 1.0;

gridBagConstraints.insets = new java.awt.Insets(24, 0, 8, 8);
clientPanel.add (buttonPanel, gridBagConstraints) ;

Usage Scenarios 77

specifylabel.setText ("Enter new password:") ;
gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 0;

gridBagConstraints.gridy = 0;

gridBagConstraints.gridwidth = 4;

gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.anchor = java.awt.GridBagConstraints.WEST;
gridBagConstraints.insets = new java.awt.Insets(8, 8, 24, 8);
clientPanel.add (specifyLabel, gridBagConstraints) ;

oldPasswordLabel.setText ("0ld password:") ;

oldPasswordLabel.setHorizontalAlignment (javax.swing.SwingConstants.RIGHT) ;
gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 1;
gridBagConstraints.anchor = java.awt.GridBagConstraints.EAST;
gridBagConstraints.insets = new java.awt.Insets(4, 24, 0, 8);
clientPanel.add (oldPasswordLabel, gridBagConstraints) ;

gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 1;

gridBagConstraints.gridy = 1;

gridBagConstraints.gridwidth = 2;
gridBagConstraints.gridheight = 2;

gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.ipadx = 80;

gridBagConstraints.ipady = 4;

gridBagConstraints.weightx = 1.0; gridBagConstraints.insets = new
java.awt.Insets (4, 0, 0, 24);
clientPanel.add (oldPasswordField, gridBagConstraints) ;

newPasswordLabel . setText ("New password:") ;

newPasswordLabel . setHorizontalAlignment (javax.swing.SwingConstants.RIGHT) ;
gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 3;
gridBagConstraints.anchor = java.awt.GridBagConstraints.EAST;
gridBagConstraints.insets = new java.awt.Insets(4, 24, 0, 8);
clientPanel.add (newPasswordLabel, gridBagConstraints) ;

gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 1;

gridBagConstraints.gridy = 3;

gridBagConstraints.gridwidth = 2;
gridBagConstraints.gridheight = 2;

gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.ipadx = 80;
gridBagConstraints.ipady = 4;
gridBagConstraints.weightx = 1.0;
gridBagConstraints.insets = new java.awt.Insets(4, 0
clientPanel.add (newPasswordField, gridBagConstraints

. 0, 24);
)
newPasswordAgainLabel.setText ("New password (again):");

newPasswordAgainLabel .setHorizontalAlignment (javax.swing.SwingConstants.RIGHT)
gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 5;
gridBagConstraints.anchor = java.awt.GridBagConstraints.EAST;
gridBagConstraints.insets = new java.awt.Insets(4, 24, 0, 8);
clientPanel.add (newPasswordAgainLabel, gridBagConstraints) ;

gridBagConstraints = new java.awt.GridBagConstraints() ;

gridBagConstraints.gridx = 1;
gridBagConstraints.gridy = 5;

78 Operations Center Scripting Guide

gridBagConstraints.gridwidth = 2;
gridBagConstraints.gridheight = 2;
gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;

gridBagConstraints. ipadx
gridBagConstraints.ipady
gridBagConstraints.weightx

1.0;

gridBagConstraints.insets = new java.awt.Insets(4, O,
clientPanel.add (newPasswordAgainField, gridBagConstraints) ;

getContentPane () .add (clientPanel,

}//GEN-END: initComponents

/** Closes the dialog */

/**
* @param args the command line arguments
*/
public static void main (String args[]) {

new ChangePasswordDialog

(new javax.swing.JFrame ()

0, 24);

java.awt.BorderLayout .CENTER) ;

, true).show ();

// Variables declaration - do not modify//GEN-BEGIN:variables
JPanel buttonPanel;

private
private
private
private
private
private
private
private
private
private
private

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.

// End of variables

}

JButton OKButton;

JLabel newPasswordLabel;

JLabel specifylLabel;
JPasswordField newPasswordField;
JLabel newPasswordAgainLabel;
JButton CancelButton;
JPasswordField newPasswordAgainField;
JPanel clientPanel;

JLabel oldPasswordLabel;
JPasswordField oldPasswordField;
declaration//GEN-END:variables

2 Copy or paste the section of code highlighted in bold into a NOC Script script with only no

modifications. This enables taking a script, which results in assembling the clientPanel variable

in the script, and adding it to the content pane of a JDialog:

// Create an owner frame.
frame = new javax.swing.JFrame('Hidden'

)

// Create a dialog that holds the clientPanel.
dialog = new javax.swing.JDialog(frame,
dialog.getContentPane () .add(clientPanel)
dialog.pack ()
formula.util.center(dialog)

'Change Password',

true)

3 Place the following line at the top of the script, to declare the javax variable:

javax = Packages.javax

Usage Scenarios

79

4 After creating the dialog, create a few listeners to components of the dialog, to ensure interaction
with the user:

// Add a window listener to automatically close.
dialog.addWindowListener

(

new java.awt.event.WindowAdapter ()
windowClosing: function(evt)

dialog.setVisible(false)

}
)

// Add an OK listener.
OKButton.addActionListener
(

new java.awt.event.ActionListener ()
actionPerformed: function(evt)

info('You pressed OK')

}
)

// Add a Cancel listener.
CancelButton.addActionListener

(

new java.awt.event.ActionListener ()
actionPerformed: function(evt)

alert ('You pressed Cancel')

}
)

5 The resulting script:

// Forward declaration of "javax", since it isn't a predefined package name for
Js
javax = Packages.javax

// BEGIN PASTE FROM NETBEANS

clientPanel = new javax.swing.JPanel () ;

buttonPanel = new javax.swing.JPanel () ;

OKButton = new javax.swing.JButton() ;

CancelButton = new javax.swing.JButton() ;
specifylabel = new javax.swing.JLabel () ;
oldPasswordLabel = new javax.swing.JLabel();
oldPasswordField new javax.swing.JPasswordField() ;
newPasswordLabel new javax.swing.JLabel () ;
newPasswordField = new javax.swing.JPasswordField() ;
newPasswordAgainlLabel = new javax.swing.JLabel () ;
newPasswordAgainField = new javax.swing.JPasswordField() ;

clientPanel.setlLayout (new java.awt.GridBagLayout()) ;
buttonPanel.setlLayout (new java.awt.GridLayout (1, 2, 4, 4));

OKButton.setText ("OK") ;
buttonPanel.add (OKButton) ;

CancelButton.setText ("Cancel") ;
buttonPanel.add (CancelButton) ;

80 Operations Center Scripting Guide

gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 0;

gridBagConstraints.gridy = 7;

gridBagConstraints.gridwidth = java.awt.GridBagConstraints.REMAINDER;
gridBagConstraints.ipadx = 30;

gridBagConstraints.anchor = java.awt.GridBagConstraints.EAST;
gridBagConstraints.weightx = 1.0;

gridBagConstraints.insets = new java.awt.Insets (24, 0, 8, 8);
clientPanel.add (buttonPanel, gridBagConstraints) ;

specifylLabel.setText ("Enter new password:") ;
gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 0;

gridBagConstraints.gridy = 0;

gridBagConstraints.gridwidth = 4;

gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.anchor = java.awt.GridBagConstraints.WEST;
gridBagConstraints.insets = new java.awt.Insets(8, 8, 24, 8);
clientPanel.add (specifylLabel, gridBagConstraints) ;

oldPasswordLabel.setText ("Old password:");

oldPasswordLabel.setHorizontalAlignment (javax.swing.SwingConstants.RIGHT) ;
gridBagConstraints = new java.awt.GridBagConstraints () ;
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy 1;
gridBagConstraints.anchor = java.awt.GridBagConstraints.EAST;

newPasswordLabel . setHorizontalAlignment (javax.swing.SwingConstants.RIGHT) ;

gridBagConstraints

.insets = new java.awt.Insets (4, 24, 0, 8);

clientPanel.add (oldPasswordLabel, gridBagConstraints);

gridBagConstraints
gridBagConstraints
gridBagConstraints
gridBagConstraints
gridBagConstraints

gridBagConstraints.
gridBagConstraints.
gridBagConstraints.

gridBagConstraints

gridBagConstraints.
clientPanel.add (oldPasswordField, gridBagConstraint

= new java.awt.GridBagConstraints() ;

.gridx = 1;

.gridy = 1;

.gridwidth = 2;

.gridheight = 2;

fill = java.awt.GridBagConstraints.BOTH;

ipadx = 80;

ipady = 4;

.weightx = 1.0;

insets = new java.awt.Insets (4, 0, 0, 24);
s);

newPasswordLabel . setText ("New password:") ;

gridBagConstraints
gridBagConstraints
gridBagConstraints
gridBagConstraints
gridBagConstraints

= new java.awt.GridBagConstraints() ;
.gridx = 0;

.gridy = 3;

.anchor = java.awt.GridBagConstraints.EAST;
.insets = new java.awt.Insets(4, 24, 0, 8);

clientPanel.add (newPasswordLabel, gridBagConstraints);

gridBagConstraints
gridBagConstraints
gridBagConstraints
gridBagConstraints
gridBagConstraints

gridBagConstraints.
gridBagConstraints.
gridBagConstraints.

gridBagConstraints

gridBagConstraints.
clientPanel.add (newPasswordField, gridBagConstraint

= new java.awt.GridBagConstraints() ;
.gridx = 1;
.gridy = 3;

.gridwidth = 2;

.gridheight = 2;

fill = java.awt.GridBagConstraints.BOTH;

ipadx = 80;

ipady = 4;

.weightx = 1.0;

insets = new java.awt.Insets (4, 0, 0, 24);
s);

newPasswordAgainLabel.setText ("New password (again):");

newPasswordAgainLabel . setHorizontalAlignment (javax.swing.SwingConstants.RIGHT)

I

gridBagConstraints
gridBagConstraints

= new java.awt.GridBagConstraints() ;
.gridx = 0;

Usage Scenarios

81

gridBagConstraints.gridy = 5;

gridBagConstraints.anchor = java.awt.GridBagConstraints.EAST;
gridBagConstraints.insets = new java.awt.Insets(4, 24, 0, 8);
clientPanel.add (newPasswordAgainlabel, gridBagConstraints) ;

gridBagConstraints = new java.awt.GridBagConstraints() ;
gridBagConstraints.gridx = 1;

gridBagConstraints.gridy = 5;

gridBagConstraints.gridwidth = 2;
gridBagConstraints.gridheight = 2;

gridBagConstraints.fill = java.awt.GridBagConstraints.BOTH;
gridBagConstraints.ipadx = 80;

gridBagConstraints.ipady = 4;

gridBagConstraints.weightx = 1.0;

gridBagConstraints.insets = new java.awt.Insets(4, 0, 0, 24);
clientPanel.add (newPasswordAgainField, gridBagConstraints) ;

// END PASTE FROM NETBEANS

// Create an owner frame.
frame = new javax.swing.JFrame('Hidden')

// Create a dialog that holds the clientPanel.

dialog = new javax.swing.JDialog(frame, 'Change Password', true)
dialog.getContentPane () .add(clientPanel)

dialog.pack()

formula.util.center(dialog)

// Add a window listener to automatically close.
dialog.addWindowListener

(

new java.awt.event.WindowAdapter ()
windowClosing: function(evt)

dialog.setVisible(false)

}
)

// Add an OK listener.
OKButton.addActionListener
(

new java.awt.event.ActionListener ()

actionPerformed: function(evt)

info('You pressed OK')

}
)

// Add a Cancel listener.
CancelButton.addActionListener

(
new java.awt.event.ActionListener ()

actionPerformed: function(evt)

alert ('You pressed Cancel')

}
)

// Show the dialog
dialog.setVisible(true)

82 Operations Center Scripting Guide

11.5 Use Case: Running an External Process

If you need to invoke an external command, you must use the server.executeExternalProcess
method. For example, you might want to create an Operations Center script to invoke a command
line interface to send an automated email.

To invoke an external command:
1 In the Configuration Manager, set up the daemon services by turning on the Daemon Shell
Service Security, Daemon Shell Service Port, and Daemon Shell Service ACL.
2 Ensure that . ./logs/daemon. trc contains a message similar to the following:

2016-05-15 12:17:39,782 INFO Daemon.Shell.Service - Susccessfully started
service on port 1555 using security level unsecured

3 Create a server side operation called Ping Test Script:

var result = server.executeExternalProcess(['ping', '<host>'], ['PATH',
'<path to the ping command>']l); formula.log.info(
result.getOutputAsSingleString()) ;

4 Run the operation and check for the ping output in . . /logs/formula.trc.

5 Create the desired operation.

The server object has two methods available for calling processes externally: ProcessResult

executeExternalProcess (String command[], String systemVars[]) and ProcessResult
executeExternalProcess (String host, int port, String command[], String
systemVars[]).

Commands must be passed as an array of strings, delimited by blanks. For example:

var command = ['ping', 'turkey'l];
var command = ['ping', '-a', 'turkey'l;
executeExternalProcess(['ping', '-a', 'turkey'l, [1);

Environment variables are optional, but always pass an empty array. For example:

var env = ['PATH', '/usr/local/bin'l];

var env = ['PATH', '/usr/local/bin:/usr/bin'];

var env = ['PATH', '/usr/local/bin:/usr/bin', 'LD LIBRARY PATH', '/usr/lib'l];
executeExternalProcess(['ping', '-a', 'turkey']l, ['PATH', '/usr/local/bin:/usr/

bin', 'LD LIBRARY PATH', '/usr/lib'l]);

The processResult method returns the value for any call to the executeExternal Process method.
For example:

String [] getErrors();

String getErrorsAsSingleString() ;
String[] getOutput () ;

String getOutputAsSingleString() ;
boolean hasErrors () ;

boolean hasOutput () ;

int returnCode () ;

Usage Scenarios 83

84 Operations Center Scripting Guide

The Script Library

A number of scripts are provided in the /OperationsCenter install path/database/scripts
directory. Table A-1 describes the functions of these scripts. See Chapter 2, “Creating and Debugging
Scripts,” on page 11 for information about customizing scripts or adding your own to the Script Library.

Table A-1 Default Scripts Provided in the Script Library

Script Name

Function

/commands/suppress.fs

/commands/impactreport.fs

/examples/jfcexample.fs

/examples/ticket.fs

/idbc/select.fs

/mail/Action_MailElementAnd
Alarminformation.fs

/mail/Action_MailElementinformation.fs
/mail/mail.fs
/mail/mailalarminfo.fs

/mail/mailelement.fs

/pager/Action_PageElement.fs

/servlets/dump.fs

/servlets/login.fs

/servlets/navigator.fs

[tests/array.fs

ltests/createorgs.fs

Configures the Suppression/Acknowledgement command for an
adapter. For details on this command, see Configuring Suppression
and Acknowledgement in the Operations Center Server
Configuration Guide.

A starting point script example that requires configuration and
customizing. Creates a new log category and logs a message for
every alarm that impacts the selected service model and for each
impacted element. Elements reported on can be filtered by specifying
a class filter.

Example of creating user interface scripts with JFC/Swing.

Adds a command on the element operations menu to create a trouble
ticket. See Section 11.2, “Use Case: Gathering Information from the
User for Script Invocation on a Server,” on page 72 for details.

Makes a simple connection and gets a list of tables in the database.

Used in an automation action that e-mails element and alarm
information.

Used in an automation action that e-mails element information.
Companion script supporting automation mail actions.
Companion script supporting alarm information capture and mailing.

Companion script supporting element information capture and
mailing.

Used in an automation action to send element information via a
paging gateway.

Generates dynamic and static content for a Web browser.

Stores some of the login logic used to access Operations Center.
Used with the dump.fs script.

Contains information used to navigate objects in the system. Used
with the dump.fs script.

Creates sample array.

Creates organizations dynamically while the Operations Center
server is running.

The Script Library

85

https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#blcheco
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#blcheco

86

Script Name

Function

ltests/elementfun.fs

ltests/elementproperties.fs
ltests/frame.fs

ftests/hello.fs
ftests/runtimeerror.fs
[ltests/syntaxerror.fs
/util/Action_PostAlarmToTec.fs
/util/Action_PostToTec.fs

/util/adapters.fs

/util/exportacls.fs
[util/f2thelp.fs

/util/fastmatch.fs

[util/forceoff.fs

[util/formula.fs

/util/image2go.fs
/util/importacls.fs

/util/login.fs

[util/orb.fs

/util/orgs.fs

Performs a number of element functions:

+ Simple comparison function for string values.
+ Simple function to write an element.

+ Get a simple element by traversal.

+ Get a complex element by chaining lookup.
+ Find an element.

+ Get a simple organization.

+ Perform some simple property lookups.
Display element properties.
Creates a frame.
Adds the word “Hello” as an element menu command.
Creates sample run time error.
Creates sample syntax error.
Used in an automation action to post alarm information to T/EC.
Used in an automation action to post an event message to T/EC.

A utility to interactively query and manage Operations Center
adapters.

Exports the access manager to XML.
Start/stop/status the named f2f adapter on the named server.

A utility to match a given named regular expression with cached
compilation for repetitive matching.

A utility to terminate Operations Center sessions for a user or group
of users.

Loads and logs in to Operations Center.

Imports an image file and converts it to the Operations Center GO
format.

Imports the access manager to XML.

Starts the browser without showing the main user interface, and
allows for command line interaction with the Operations Center
server.

Initializes the ORB.

Enables dynamic organization manipulation. Creates a hew
organization element within Operations Center, modifies an existing
organization or deletes an organization.

Operations Center Scripting Guide

Script Name

Function

Jutil/pause_op.fs

/util/pauseStop_op.fs

/util/showimpacted.fs

/util/syscheck.fs

/util/syscheckstop.fs
/util/testorgs.fs

{util/urlhelp.fs

Jutil/viewbuilderExporter.fs

{util/wall.fs

/utiltemplate/login.fs

Executes a pop-up a window in the browser which states YOU ARE
IN PAUSE MODE after the Alarms view window has been in Pause
mode for an amount of time that exceeds the preset period.

Put both the pause_op and pauseStop_op scripts into the operations
store in Operations Center and insert them as client scripts against
the Enterprise object. Refer to the comment block at the top of
pause_op.fs for more information.

Removes the pause_op.fs objects and stops the alarm pause
monitoring.

Measures memory in Operations Center and outputs to the
formula.trc file.

Stops the syscheck function.
Demonstrates how to use orgs.fs.

Obtains the contents of a given URL string, opens the stream and
pulls data from it. Prints what was obtained from the stream and
closes the stream.

Exports the organizations at and below the active element.

This script places the output into the /

OperationsCenter install path/bin directory. The file name
is viewbuilderout .xml. This script places a CSV output file also
into the /OperationsCenter install path/bin directory as
viewbuilderout.csv.

A utility to send a message to a user or group of users from
Operations Center.

Starts the browser without displaying the main user interface and
allows for command line interaction with the Operations Center
server.

The Script Library

87

88 Operations Center Scripting Guide

	Operations Center Scripting Guide
	About This Guide
	1 Introduction
	1.1 About NOC Script
	1.2 NOC Script, JavaScript, and ECMAScript
	1.3 Learning JavaScript

	2 Creating and Debugging Scripts
	2.1 Adding a Script to the Script Library
	2.2 Using the Script Debugger
	2.2.1 Debugging a Script Using the Debugger
	2.2.2 Automatically Running Debugger Scripts

	2.3 Additional Options for Running the Script Debugger
	2.3.1 Running the Debugger from the Command Line
	2.3.2 Adding Settings in Property Files to Run Scripts in the Debugger
	2.3.3 Instrumenting a Script for Debugging

	3 Scripting Conventions
	3.1 Property Syntax
	3.2 Loop Syntax
	3.3 Declaring Objects
	3.4 Declaring Arrays
	3.5 Implementing a Java Interface
	3.6 Exception Handling: try/catch/throw

	4 The NOC Script Object Model
	4.1 The Formula Object
	4.2 Top-Level Elements in Hierarchy Structure
	4.3 Session Functions (formula.login)
	4.3.1 login()
	4.3.2 logout()

	4.4 Logging Functions (formula.log)
	4.4.1 log
	4.4.2 logCategory
	4.4.3 Creating a New Log Instance

	4.5 Utility Functions (formula.util)
	4.5.1 String searchAndReplace (String s, String needle, String haystack)
	4.5.2 String encodeURL (String url)
	4.5.3 String decodeURL (String url)
	4.5.4 String encodeXML (String s)
	4.5.5 String[] breakOnTokens (String s, String tok)
	4.5.6 String[] breakOnCommas (String s)
	4.5.7 InputStream captureOutputStream (String commandLine, String [] environment) throws an Exception
	4.5.8 InputStream captureOutputStream (String commandLine) throws an Exception
	4.5.9 String captureOutputString (String commandLine, String [] environment) throws an Exception
	4.5.10 String captureOutputString (String commandLine) throws an Exception
	4.5.11 String escapeRegExp (String regexp)
	4.5.12 void copyStream (InputStream input, OutputStream output) throws an IOException
	4.5.13 byte[] toByteArray (InputStream input) throws an IOException
	4.5.14 String nameToFile (String name)
	4.5.15 void center (java.awt.Window w)
	4.5.16 Object makeRemote(Object obj) throws JavaScriptException
	4.5.17 void notify (Object signal)
	4.5.18 void notifyAll (Object signal)
	4.5.19 void wait (Object signal, long timeout)
	4.5.20 void page (pagerid, message, host, port)
	4.5.21 user
	4.5.22 class UString
	4.5.23 class ORB
	4.5.24 class Postemsg
	4.5.25 class TelnetFrame
	4.5.26 class ViewBuilder

	4.6 Condition Functions (formula.conditions)
	4.6.1 conditions
	4.6.2 severities

	4.7 Navigating Relationships (formula.relations)
	4.8 formula.commands

	5 Element Functions
	5.1 Understanding Distinguished Names
	5.2 Understanding Element Standard Properties
	5.3 Traversing the Element Hierarchy
	5.3.1 Children Property
	5.3.2 Relationships Property
	5.3.3 Parent Property
	5.3.4 Walk Function
	5.3.5 Hierarchy Utilities

	5.4 Browsing for Elements Function (formula.gui)
	5.5 Element Properties and the Properties Object
	5.6 Getting and Setting Properties
	5.7 Accessing Custom Properties
	5.8 Performing Operations with Menu Options
	5.8.1 Using the Perform Method
	5.8.2 Using Customized Operations
	5.8.3 Loading Another Script
	5.8.4 Using Hidden Operations

	5.9 Printing Operations for Elements
	5.10 Client-Side Methods
	5.11 Server-Side Methods
	5.11.1 sendMessage (message)
	5.11.2 monitorProcess (name, command)

	6 Alarm Functions
	6.1 Creating Alarms
	6.2 Getting and Setting Alarm Properties
	6.3 Getting the Element Associated with the Alarm
	6.4 Modifying Alarm Content
	6.5 Developing Automation Scripts for Alarms

	7 User Functions
	7.1 Introduction
	7.2 Getting and Setting Properties
	7.3 Setting Properties for LDAP Users
	7.4 Managing Users
	7.4.1 Understanding Script Functions
	7.4.2 Changing a User’s Group Membership

	8 Using the State Variable to Cache and Store Information
	9 Miscellaneous Scripting Functions
	9.1 Script Functions to Set Root Cause
	9.2 Scripting Functions in Automation Tasks
	9.2.1 Accessing SLA Information
	9.2.2 Using Event Variables
	9.2.3 Sample Code

	9.3 Remotely Calling One Script from Another
	9.4 Accessing Metamodel Properties
	9.5 SCM and Scripting
	9.5.1 Scheduling a SCM Job by Using a Script
	9.5.2 Scheduling Multiple SCM Jobs by Using a Script
	9.5.3 Generating Elements by Using a Script
	9.5.4 Building Core Views

	9.6 Miscellaneous Scripting Functions

	10 Command Line Scripting: The fscript Utility
	10.1 Starting fscript
	10.2 Invoking a Script by File Name
	10.3 Invoking a Script by Module Name
	10.4 Invoking a Script with Arguments
	10.5 Using the Interactive Option
	10.6 Exiting fscript

	11 Usage Scenarios
	11.1 Use Case: Opening a Connection to a JDBC Database
	11.2 Use Case: Gathering Information from the User for Script Invocation on a Server
	11.2.1 Configuring the Script
	11.2.2 Script File Content
	11.2.3 Notes About the Script

	11.3 Use Case: Invoking a Server-Side Script from a Client Script
	11.4 Use Case: Creating User Interface Scripts with Java and JFC/Swing
	11.4.1 Syntax for Bean-Listener Patterns
	11.4.2 Utilizing NetBeans

	11.5 Use Case: Running an External Process

	A The Script Library

