
NetIQ® Identity Manager
Driver for Java Messaging Service

Implementation Guide
October 2019

Legal Notices
For information about NetIQ trademarks, see https://www.netiq.com/company/legal/.

Copyright (C) 2019 NetIQ Corporation. All rights reserved.
2

https://www.netiq.com/company/legal/

Contents
About this Book and the Library 5
About NetIQ Corporation 7

1 Understanding the JMS Driver 9
Supported JMS Vendors and Versions. 9
Key Terminology . 9
JMS Messaging Models . 10

Point-to-Point Messaging . 10
Publish/Subscribe Messaging . 11

JMS Messages . 11
Message Structure. 11
Message Types . 12

How Subscriber and Publisher Channels Work. 13
Subscriber Channel . 13
Publisher Channel . 14

Support for Standard Driver Features . 14
Local Platforms. 15
Remote Platforms . 15
Entitlements. 15
Password Synchronization Support . 15
Information Synchronized. 15

Additional Resources . 15

2 Installing the Driver Files 17

3 Creating a New Driver Object 19
Creating the Driver in Designer . 19

Importing the Current Driver Packages . 19
Installing the Driver Packages . 20
Configuring the Driver . 21
Deploying the Driver . 21
Starting the Driver . 22

Activating the Driver . 22
Adding Packages to an Existing Driver. 23

4 Configuring Messaging Vendors 25
Installing IBM MQ . 25

Placing Prerequisite Jar Files and Scripts . 25
Creating a Server-Connection Channel and Queues. 27
Starting the Publish/Subscriber Broker . 27
Installing System Queues Necessary for Publish/Subscribe . 27
Creating a User Account . 27
Setting Up JMS for IBM MQ 8.x and 9.x. 28

Installing on JBoss Messaging . 31
Contents 3

4 Con
Installing on SonicMQ. 32
Locating Prerequisite Jar Files. 32
Running Scripts to Configure the Messaging System . 33

Installing on TIBCO EMS . 33
Locating Prerequisite Client Jar Files . 33
Running Scripts to Configure the Messaging System . 34

5 Upgrading an Existing Driver 37
Supported Upgrade Paths . 37
What’s New in Version 4.0.0 . 37
Upgrade Procedure. 37

Applying the Driver Patch . 38

6 Managing the Driver 41

7 Troubleshooting 43
The Driver Fails to Reconnect to WebMQ if Restarted . 43

A Driver Properties 45
Driver Configuration . 45

Driver Module . 45
Driver Object Password . 46
Authentication . 46
Startup Option . 47
Driver Parameters . 47
ECMAScript. 54
Global Configurations . 54

Global Configuration Values. 54

B Trace Levels 57
tents

About this Book and the Library

The Identity Manager Driver for JMS Implementation Guide explains how to install and configure the
Identity Manager Driver for Java Messaging Service (JMS).

Intended Audience
This book provides information for individuals responsible for understanding administration
concepts and implementing a secure, distributed administration model.

Other Information in the Library
For more information about the library for Identity Manager, see the following resources:

 Identity Manager documentation website (https://www.netiq.com/documentation/identity-
manager-48/)

 Identity Manager drivers documentation website (https://www.netiq.com/documentation/
identity-manager-48-drivers/)
About this Book and the Library 5

https://www.netiq.com/documentation/identity-manager-48/
https://www.netiq.com/documentation/identity-manager-48-drivers/

6 About this Book and the Library

About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in
your environment: Change, complexity, and risk—and how we can help you control them.

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster
We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios
in which IT organizations like yours operate—day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion
We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and
you need someone that is truly easy to work with—for a change. Ultimately, when you succeed,
we all succeed.

Our Solutions
 Identity & Access Governance
 Access Management
 Security Management
 Systems & Application Management
 Workload Management
 Service Management
About NetIQ Corporation 7

Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. The documentation for this product is
available on the NetIQ Web site in HTML and PDF formats on a page that does not require you to log
in. If you have suggestions for documentation improvements, click Add Comment at the bottom of
any page in the HTML version of the documentation posted at www.netiq.com/documentation. You
can also email Documentation-Feedback@netiq.com. We value your input and look forward to
hearing from you.

Contacting the Online User Community
NetIQ Communities, the NetIQ online community, is a collaborative network connecting you to your
peers and NetIQ experts. By providing more immediate information, useful links to helpful
resources, and access to NetIQ experts, NetIQ Communities helps ensure you are mastering the
knowledge you need to realize the full potential of IT investments upon which you rely. For more
information, visit community.netiq.com.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
8 About NetIQ Corporation

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com

1 1Understanding the JMS Driver

The Identity Manager Driver for Java Messaging Service (JMS), hereafter referred to as the JMS
driver or simply the driver, provides Identity Manager integration with various applications that are
used for messaging. The driver is JMS-generic and does not target any specific application or
messaging provider. It supports all versions of the JMS API defined by Sun Microsystems.

The following sections introduce concepts you should understand before using the driver:

 “Supported JMS Vendors and Versions” on page 9
 “Key Terminology” on page 9
 “JMS Messaging Models” on page 10
 “JMS Messages” on page 11
 “How Subscriber and Publisher Channels Work” on page 13
 “Support for Standard Driver Features” on page 14
 “Additional Resources” on page 15

Supported JMS Vendors and Versions
The driver supports the following vendors and versions:

 JBossMQ v4.2.2
 JBoss Messaging 1.3.0, JBoss Messaging 1.4.6, and Messaging 2.4.0
 IBM WebSphere MQ v8.x and MQ v9.x
 SonicMQ v7.x, and Sonic 8.5
 TIBCO EMS v4, v5, and v8.0

The driver uses two main specifications of JMS, 1.0.2b and 1.1.

Key Terminology
The following terms are used throughout this document:

 JMS: Java Messaging Service. The driver uses two main specifications of JMS, 1.0.2b and 1.1.
 JNDI: Java Naming and Directory Interface. JNDI is used to look up, connect, and authenticate to

message brokers.
 Message Broker: The server that handles message interchange between messaging clients.
 Messaging Client: Messaging clients produce and consume messages. The driver is a messaging

client, and so are third-party applications.
 Destination: The abstract term for a topic or a queue.
Understanding the JMS Driver 9

 Session: A per-thread connection. Each thread creates one or more sessions from a connection
to communicate with the message broker.

 Persistence: Persistence guarantees that a message is delivered only once; this can be
controlled on a per-message basis. Message brokers usually support persistent storage via an
underlying database. This is sometimes referred to as stable storage.

 Durability: The message broker stores messages for a message receiver when the receiver is
inactive or disconnected.

 Acknowledgement: When transactions are not being used, a client acknowledges receipt of a
message to the message broker in CLIENT_ACKNOWLEDGE mode. In this mode, the client must
explicitly acknowledge receipt of one or more messages by committing the current transaction.
By rolling back the current transaction, all received messages are re-delivered (or set to retry, in
Identity Manager terminology.)

JMS Messaging Models
The driver supports two messaging models: Point-to-Point messaging and Publish/Subscribe
messaging.

 “Point-to-Point Messaging” on page 10
 “Publish/Subscribe Messaging” on page 11

The JMS API also uses abstract names. To better understand how these abstract names correspond
to model terminology, see the table below.

Point-to-Point Messaging
Point-to-Point messaging is used when one client needs to send a message to another client. As
illustrated in Figure 1-1, Client 1 is the sender and Client 2 is the receiver. The queue receives
messages, while the message broker receives any acknowledgements.

In Point-to-Point messaging there is a one-to-one relationship between senders and receivers. You
configure durability on the broker side.

Figure 1-1 Point-to-Point Messaging

Abstract Terminology Point-to-Point Terminology Publish/Subscribe Terminology

Destination Queue Topic

Sender (or Producer) Sender Publisher

Receiver (or Consumer) Receiver Subscriber

Client 1

MSG

Queue
Client 2

Sends

MSG

Consumes

Acknowledges
10 Understanding the JMS Driver

Publish/Subscribe Messaging
Publish/Subscribe messaging is used when multiple applications need to receive the same messages.
Multiple publishers can send messages to a topic, and all subscribers to that topic receive all the
messages sent to that topic. This model is useful when a group of applications want to notify each
other of a particular event.Publish/Subscribe messaging allows for one-to-many or many-to-many
implementations. Durability is configured on either the client side or the broker side.

Figure 1-2 Publish/Subscribe Messaging

JMS Messages
The following sections contain information about JMS message structures and message types, as
well as examples for each.

 “Message Structure” on page 11
 “Message Types” on page 12

Message Structure
JMS messages consist of metadata (comprised of headers and properties) and message data (a
body). In order to make message metadata accessible to policy processing, messages sent to the
driver can be wrapped in an envelope, and messages received by the driver and sent to the Identity
Manager engine are also wrapped in an envelope. All message envelope elements and special
attributes must have a namespace prefix bound to urn:idm:jms. For consistency, the namespace
prefix jms is used throughout this document. The root message envelope element jms:message must
be a child of the XDS input/output elements.

Client 1

MSG
Client 2

Publishes

MSG

Subscribes

Delivers

Client 3MSG

Subscribes

Delivers

Topic
Understanding the JMS Driver 11

Example JMS Message Envelope
<jms:message xmlns:jms="urn:idm:jms">
<jms:headers>
 <!-- standard JMS headers start with "JMS" -->
 <!-- client-assignable headers -->
 <jms:header jms:name="JMSDeliveryMode"/>
 <jms:header jms:name="JMSExpiration"/>
 <jms:header jms:name="JMSPriority"/
 <jms:header jms:name="JMSReplyTo"/>
 <jms:header jms:name="JMSCorrelationID"/>
 <jms:header jms:name="JMSType"/>
 </jms:headers>
 <jms:properties>
 <!-- standard JMS properties start with "JMSX" -->
 <jms:property jms:name="JMSXUserID"/>
 <jms:property jms:name="JMSXAppID"/>
 <jms:property jms:name="JMSXProducerTXID"/>
 <jms:property jms:name="JMSXConsumerTXID"/>
 <jms:property jms:name="JMSXRcvTimestamp"/>
 <jms:property jms:name="JMSXDeliveryCount"/>
 <jms:property jms:name="JMSXState"/>
 <jms:property jms:name="JMSXGroupID"/>
 <jms:property jms:name="JMSXGroupSeq"/>
 <!-- provider-specific properties start with "JMS_" -->
 <!-- application-specific properties start with anything else -->
 </jms:properties>
 <jms:body/>
</jms:message>

Message Types
Message type refers to how a message is sent, not necessarily what its content is. For example, a text
message can be sent as text or bytes. The driver supports both text and bytes messages.

Example Text Message
<jms:message xmlns:jms="urn:idm:jms">
 <jms:properties>
 <!-- send message as text -->
 <jms:property name="Novell_IDM_MessageType">text</jms:property>
 </jms:properties>
 <jms:body>content</jms:body>
</jms:message>

Example Bytes Message
<jms:message xmlns:jms="urn:idm:jms">
 <jms:properties>
 <!-- send message as bytes -->
 <jms:property name="Novell_IDM_MessageType">bytes</jms:property>
 </jms:properties>
 <jms:body>content</jms:body>
</jms:message>
12 Understanding the JMS Driver

How Subscriber and Publisher Channels Work
The following sections contain information about how the Subscriber and Publisher channels work
with the JMS driver. This driver functions differently than traditional Identity Manager drivers, so it’s
important to review this information.

 “Subscriber Channel” on page 13
 “Publisher Channel” on page 14

Subscriber Channel
The Subscriber channel is capable of sending messages to (and optionally receiving messages from)
multiple destinations on a single broker. Multi-broker support is not yet implemented. As a side
effect of sending a JMS message, the Subscriber channel can receive a response within a specified
timeout interval. Message routing and RPC (Remote Procedure Call) emulation are achieved via
three special attributes: jms:send-to, jms:receive-from and jms:receive-timeout.

Example Special Attributes
<jms:message xmlns:jms="urn:idm:jms"
 jms:send-to="queueA"
 jms:receive-from="queueB"
 jms:receive-timeout-seconds="10"/>
These attributes can be used on a jms:message envelope tag or any XDS command that is a child of
input/output elements. The destination names used in these parameters can either be the JNDI
(Java Naming and Directory Interface) name or the unique Identity Manager identifier assigned to
the destination in the driver configuration. By default, the Subscriber sends messages to the first-
defined send destination and does not wait for a message response (meaning that the message
receipt is assumed to be asynchronous).

By using a JMS message envelope, it is possible to override headers/properties or add vendor-
specific properties or application properties.
Understanding the JMS Driver 13

<jms:message xmlns:jms="urn:idm:jms">
 <jms:headers>
 <!-- override standard headers -->
 <jms:header jms:name="JMSType">type</jms:header>
 <jms:header jms:name="JMSCorrelationID">blah</jms:header>
 <jms:header jms:name="JMSDeliveryMode">non-persistent</jms:header>
 <jms:header jms:name="JMSExpiration">10000</jms:header>
 <jms:header jms:name="JMSPriority">9</jms:header>
 <jms:header jms:name="JMSReplyTo">A</jms:header>
 </jms:headers>
 <jms:properties>
 <!-- add/override vendor-specific properties -->
 <jms:property jms:name="JMS_IBM_Format">MQSTR</jms:property>
 <!-- add/override application properties -->
 <jms:property jms:name="Novell_IDM_MessageType">bytes</jms:property>
 <jms:property jms:name="Novell_IDM_ContentType">xml</jms:property>
 <jms:property jms:name="Novell_IDM_CharEncoding">UTF-8</jms:property>
 </jms:properties>
 <jms:body>text</jms:body>
</jms:message>

Publisher Channel
The Publisher channel is essentially a Subscriber channel (you can send messages to a broker as a
side effect of publishing messages—including heartbeat documents—and wait for a response) with
the added ability to periodically monitor specified destinations to receive messages for publication.

You can configure the Publisher channel to monitor an unlimited number of destinations on a single
message broker bounded only by certain practical considerations. Having too many monitored
destinations can significantly slow down rendering of driver parameters in Identity Console or
Designer, as currently implemented. Having too many destinations can result in decreased
performance because all destinations are being monitored by a single thread. Furthermore, there is
a finite amount of space available for storing a driver's configuration (64 KB).

The Publisher channel polls each monitored destination in a round-robin fashion, starting with the
first declared destination. A polling cycle ends when all monitored destinations fail to return
messages, at which time the Publisher sleeps for the specified polling interval until it's time to start a
new polling cycle.

The Publisher channel receives messages in a synchronous fashion as opposed to an asynchronous
one. The main reason for this is to prevent client overrun—when the message broker feeds
messages to the driver faster than it can process them—that can lead to memory exhaustion.

Support for Standard Driver Features
The following sections provide information about how the JMS driver supports these standard driver
features:

 “Local Platforms” on page 15
 “Remote Platforms” on page 15
 “Entitlements” on page 15
14 Understanding the JMS Driver

 “Password Synchronization Support” on page 15
 “Information Synchronized” on page 15

Local Platforms
A local installation is an installation of the driver on the same server as the Identity Manager engine,
Identity Vault, and JMS vendor application. Both systems that the driver needs to communicate with
(Identity Manager engine and JMS) are local to the driver.

The JMS driver can be installed on the same operating systems that are supported by the Identity
Manager server. For information about the operating systems supported by the Identity Manager
server, see “Planning Your Installation ” in the NetIQ Identity Manager Setup Guide for Linux or
“Planning Your Installation ” in the NetIQ Identity Manager Setup Guide for Windows.

Remote Platforms
The JMS driver can use the Remote Loader service. The Remote Loader service for the JMS driver
can be installed on any of the Identity Manager supported platforms.

For more information about installing the Remote Loader services, see Configuring the Remote
Loader and Drivers in the NetIQ Identity Manager Setup Guide for Linux or Configuring the Remote
Loader and Drivers in the NetIQ Identity Manager Setup Guide for Windows.

Entitlements
The JMS driver does not have Entitlement functionality defined in its basic configuration files. The
driver does support entitlements, if there are policies created for the driver to consume.

Password Synchronization Support
The basic configuration files for the JMS driver do not include policies for synchronizing passwords.

Information Synchronized
The JMS driver synchronizes any messaging format you want. By default, the driver is set up with a
Loopback driver configuration.

Additional Resources
For more information about JMS and messaging models, see the following Web sites:

 Sun’s Developer Network FAQ on the JMS API (http://java.sun.com/products/jms/faq.html)
 Getting Started with JMS (http://java.sun.com/developer/technicalArticles/Ecommerce/jms/

index.html)
 JMS Tutorial (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html)
 JMS Specifications (1.0.2b and 1.1) (http://java.sun.com/products/jms/docs.html)
Understanding the JMS Driver 15

http://java.sun.com/products/jms/faq.html
http://java.sun.com/developer/technicalArticles/Ecommerce/jms/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/products/jms/docs.html
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#planninganidentitymanagerinstallation
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#planninganidentitymanagerinstallation
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configuringremoteloaderanddrivers
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configuringremoteloaderanddrivers
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

16 Understanding the JMS Driver

2 2Installing the Driver Files

By default, the JMS driver files are installed on the Identity Manager server at the same time as the
Identity Manager engine. The installation program extends the Identity Vault’s schema and installs
both the driver shim and the driver configuration files. It does not create the driver in the Identity
Vault (see Chapter 3, “Creating a New Driver Object,” on page 19) or upgrade an existing driver’s
configuration (see Chapter 5, “Upgrading an Existing Driver,” on page 37).

You don’t need to install the Identity Manager engine on this same machine. Using a Remote Loader,
you can separate the engine and the driver shim, allowing you to balance the load on different
machines or accommodate corporate directives.

The installation scenario you select determines how the driver shim is installed. If you choose to
install the driver shim on the same machine as Identity Manager (where Identity Manager engine
and Identity Vault are located), Identity Manager calls the driver shim directly. If you choose to install
the driver shim on another machine, you must use the Remote Loader.

You can install the driver in one of the following ways:

 On a local machine: Install the JMS driver files on the Identity Manager server and connect to
the JMS server by using the JMS PROVIDER URL (Connection Properties). See Installing Identity
Manager in the NetIQ Identity Manager Setup Guide for Linux or Installing the Identity Vault in
the NetIQ Identity Manager Setup Guide for Windows.

 On a remote machine, you can install in one of the following ways:
 You can install the Identity Vault, the Identity Manager engine, and the driver on a separate

computer from the JMS domain controller. This configuration leaves the domain controller
free of any Identity Manager software.

 Alternatively, you can install the Remote Loader and driver shim on the JMS domain
controller, but install the Identity Vault and the Identity Manager engine on a separate
server.

See the instructions Configuring the Remote Loader and Drivers in the NetIQ Identity Manager
Setup Guide for Linux or Configuring the Remote Loader and Drivers in the NetIQ Identity
Manager Setup Guide for Windows.
Installing the Driver Files 17

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#installidentitymanagerlinux
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#installidentitymanagerlinux
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#windowsinstallidentityvault
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configuringremoteloaderanddrivers
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front

18 Installing the Driver Files

3 3Creating a New Driver Object

After the JMS driver files are installed on the server where you want to run the driver (see Chapter 2,
“Installing the Driver Files,” on page 17) and you have configured the JMS system (see Chapter 4,
“Configuring Messaging Vendors,” on page 25), you can create the driver in the Identity Vault.

 “Creating the Driver in Designer” on page 19
 “Activating the Driver” on page 22
 “Adding Packages to an Existing Driver” on page 23

Creating the Driver in Designer
To create a JMS driver object, install the driver packages and then modify the configuration to suit
your environment. After you create and configure the driver, you need to deploy it to the Identity
Vault and start it.

 “Importing the Current Driver Packages” on page 19
 “Installing the Driver Packages” on page 20
 “Configuring the Driver” on page 21
 “Deploying the Driver” on page 21
 “Starting the Driver” on page 22

NOTE: To create drivers, you now need to use the new package management features provided in
Designer.

Importing the Current Driver Packages
The driver packages contain the items required to create a driver, such as policies, entitlements,
filters, and Schema Mapping policies. These packages are only available in Designer and can be
updated after they are initially installed. You must have the most current version of the packages in
the Package Catalog before you can create a new driver object.

To verify that you have the most recent version of the driver packages in the Package Catalog:

1 Open Designer.
2 In the toolbar, click Help > Check for Package Updates.
3 Click OK to update the packages

or
Click OK if the packages are up-to-date.

4 In the Outline view, right-click the Package Catalog.
5 Click Import Package.
Creating a New Driver Object 19

6 Select any JMS driver packages
or
Click Select All to import all of the packages displayed.
By default, only the base packages are displayed. Deselect Show Base Packages Only to display
all packages.

7 Click OK to import the selected packages, then click OK in the successfully imported packages
message.

8 After the current packages are imported, continue with “Installing the Driver Packages” on
page 20.

Installing the Driver Packages
After you have imported the current driver packages into the Package Catalog, you can install the
driver packages to create a new driver.

1 In Designer, open your project.
2 In the Modeler, right-click the driver set where you want to create the driver, then click New >

Driver.
3 Select JMS Base, then click Next.
4 Select the corresponding package for one of the supported JMS vendors.

The options are:
 JMS JBoss
 JMS SonicMQ
 JMS WebSphere
 JMS TIBCO
 Other

You can select only one package at a time. If you selected Other, then click Next. Otherwise,
specify the Broker URL for the JMS vendor you selected, then click Next. The URL usually
consists of a protocol (http), an IP address (255.255.255.255), and a port number (8080). For
example: jnp://172.17.2.16:1099.

5 On the Driver Information page, specify a name for the driver, then click Next.
6 Fill in the following fields for Remote Loader information:
20 Creating a New Driver Object

Connect To Remote Loader: Select Yes or No to determine if the driver will use the Remote
Loader. For more information, see Configuring the Remote Loader and Drivers in the NetIQ
Identity Manager Setup Guide for Linux or Configuring the Remote Loader and Drivers in the
NetIQ Identity Manager Setup Guide for Windows.
If you select No, skip to Step 7. If you select Yes, use the following information to complete the
configuration of the Remote Loader, then click Next:
Host Name: Specify the IP address or DNS name of the server where the Remote Loader is
installed and running.
Port: Specify the port number for this driver. Each driver connects to the Remote Loader on a
separate port. The default value is 8090.
Remote Loader Password: Specify a password to control access to the Remote Loader. It must
be the same password that is specified as the Remote Loader password on the Remote Loader.
Driver Password: Specify a password for the driver to authenticate to the Identity Manager
server. It must be the same password that is specified as the Driver Object Password on the
Remote Loader.

7 Review the summary of tasks that will be completed to create the driver, then click Finish.
8 After you have installed the driver, you must change the configuration for your environment.

Proceed to “Configuring the Driver” on page 21.

Configuring the Driver
After installing the driver packages, the driver will start. However, the basic configuration probably
does not meet the requirements for your environment. You should complete the following tasks to
configure the driver:

 Configure the driver parameters: There are many settings that can help you customize and
optimize the driver. The settings are divided into categories such as Driver Configuration, Engine
Control Values, and Global Configuration Values (GCVs). Although it is important for you to
understand all of the settings, your first priority should be to review the Driver Parameters
located on the Driver Configuration page.

 Configure the driver filter: Modify the driver filter to include the object classes and attributes
you want synchronized between the Identity Vault and the JMS vendor.

 Configure policies: Modify the policies on the Subscriber and Publisher channels. For
information about using policies, see the NetIQ Identity Manager - Using Designer to Create
Policies.

After completing the configuration tasks, continue with the next section, Deploying the Driver.

Deploying the Driver
After a driver is created in Designer, it must be deployed into the Identity Vault.

1 In Designer, open your project.
2 In the Modeler, right-click the driver icon or the driver line, then select Live > Deploy.
3 If you are authenticated to the Identity Vault, skip to Step 5; otherwise, specify the following

information:
Host: Specify the IP address or DNS name of the server hosting the Identity Vault.
Creating a New Driver Object 21

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#configuringremoteloaderanddrivers
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/policy_designer/policy_designer.pdf#usingdesignertocreatepolicies
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/policy_designer/policy_designer.pdf#usingdesignertocreatepolicies

Username: Specify the DN of the user object used to authenticate to the Identity Vault.
Password: Specify the user’s password.

4 Click OK.
5 Read the deployment summary, then click Deploy.
6 Read the message, then click OK.
7 Click Define Security Equivalence to assign rights to the driver.

The driver requires rights to objects within the Identity Vault and to the input and output
directories on the server. The Admin user object is most often used to supply these rights.
However, you might want to create a DriversUser (for example) and assign security equivalence
to that user.
7a Click Add, then browse to and select the object with the correct rights.
7b Click OK twice.

For more information about defining a Security Equivalent User in objects for drivers in the
Identity Vault, see “Establishing a Security Equivalent User” in the Identity Manager 4.5
Security Guide.

8 Click Exclude Administrative Roles to exclude users that should not be synchronized.
You should exclude any administrative User objects (for example, Admin and DriversUser) from
synchronization.
8a Click Add, then browse to and select the user object you want to exclude.
8b Click OK.
8c Repeat Step 8a and Step 8b for each object you want to exclude.
8d Click OK.

9 Click OK.

Starting the Driver
When a driver is created, it is stopped by default. To make the driver work, you must start the driver
and cause events to occur. Identity Manager is an event-driven system, so after the driver is started,
it won’t do anything until an event occurs.

To start the driver:

1 In Designer, open your project.
2 In the Modeler, right-click the driver icon or the driver line, then select Live > Start Driver.

For information about management tasks with the driver, see Chapter 6, “Managing the Driver,” on
page 41.

Activating the Driver
The JMS driver is part of the Identity Manager Integration Module for Messaging.

This integration module requires a separate activation. After purchasing the integration module, you
will receive activation details in your NetIQ Customer Center.
22 Creating a New Driver Object

https://www.netiq.com/documentation/idm402/idm_security/?page=/documentation/idm402/idm_security/data/front.html
https://www.netiq.com/documentation/idm402/idm_security/?page=/documentation/idm402/idm_security/data/front.html

If you create a new JMS driver in a driver set that already includes an activated driver from this
integration module, the new driver inherits the activation from the driver set.

If you create the driver in a driver set that has not been previously activated with this integration
module, the driver will run in the evaluation mode for 90 days. You must activate the driver with this
integration module during the evaluation period; otherwise, the driver will be disabled.

If driver activation has expired, the trace displays an error message indicating that you need to
reactivate the driver to use it. For information on activation, refer to Activating Identity Manager in
the NetIQ Identity Manager Overview and Planning Guide.

Adding Packages to an Existing Driver
You can add new functionality to an existing driver by adding new packages to an existing driver.

1 Right-click the driver, then click Properties.
2 Click Packages, then click the Add Packages icon .
3 Select the packages to install. If the list is empty, there are no available packages to install.
4 (Optional) Deselect the Show only applicable package versions option, if you want to see all

available packages for the driver, then click OK.
This option is only displayed on drivers. By default, only the packages that can be installed on
the selected driver are displayed.

5 Click Apply to install all of the packages listed with the Install operation.

6 (Conditional) Fill in the fields with appropriate information to install the package you selected
for the driver, then click Next.

7 Read the summary of the installation, then click Finish.
8 Click OK to close the Package Management page after you have reviewed the installed

packages.
Creating a New Driver Object 23

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/idm_overview_planning/idm_overview_planning.pdf#activatingidentitymanager
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/idm_overview_planning/idm_overview_planning.pdf#netiqidentitymanageroverviewandplanning

9 Repeat Step 1 through Step 8 for each driver where you want to add the new packages.
24 Creating a New Driver Object

4 4Configuring Messaging Vendors

The following sections provide information about configuring your JMS vendor to work with the JMS
driver:

 “Installing IBM MQ” on page 25
 “Installing on JBoss Messaging” on page 31
 “Installing on SonicMQ” on page 32
 “Installing on TIBCO EMS” on page 33

Installing IBM MQ
As part of installing IBM MQ for the driver, you should complete the following tasks consecutively.
These instructions are for Windows, but you can follow the same procedure for other platforms.

 “Placing Prerequisite Jar Files and Scripts” on page 25
 “Creating a Server-Connection Channel and Queues” on page 27
 “Starting the Publish/Subscriber Broker” on page 27
 “Installing System Queues Necessary for Publish/Subscribe” on page 27
 “Creating a User Account” on page 27
 “Setting Up JMS for IBM MQ 8.x and 9.x” on page 28

Placing Prerequisite Jar Files and Scripts
1 (Conditional) If you are using IBM Websphere version lesser than 8.x, delete the following jars

that are located at:
Linux: /opt/novell/eDirectory/lib/dirxml/classes
Windows: C:\Novell\NDS\lib
 com.ibm.mq.jar
 com.ibm.mq.jmqi.jar
 com.ibm.mqjms.jar
 connector.jar
 dhbcore.jar
 fscontext.jar
 jndi.jar
 com.ibm.mq.commonservices.jar
 com.ibm.mq.headers.jar

2 Locate and copy the following jar files from your messaging server.
Configuring Messaging Vendors 25

For example, <MQ_install_path>\java\lib
 com.ibm.mq.commonservices.jar
 com.ibm.mq.headers.jar
 com.ibm.mq.jar
 com.ibm.mq.jmqi.jar
 com.ibm.mqjms.jar
 fscontext.jar
 providerutil.jar

3 Download and copy javax-jms-api-2.0.jar from MVN Repository:
4 Paste the jar files that is mentioned in Step 2 and Step 3 to the Identity Manager server.

The following table identifies where to place jar files on an Identity Management server, by
platform.

5 Restart eDirectory.
6 Locate the installation script that is saved during the JMS driver installation. The following table

indicates the default directories where scripts are installed, by platform.

7 Copy the following scripts to your messaging server at <MQ_install_path>\java\bin.
 idm_jms_install.scp
 idm_jms_uninstall.scp
 idm_mq_install.mqsc
 idm_mq_uninstall.mqsc
 netiqsamplejms.prop
 vinstall.bat
 vuninstall.bat

8 (Conditional) If necessary, restart your eDirectory server.

Platform Directory Path

Windows Local installation: C:\Novell\IdentityManager\NDS\lib
Remote installation:
C:\Novell\IdentityManager\RemoteLoader\lib

Linux/UNIX Local installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8) or
opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Remote installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8) or
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Platform Directory Path

Windows C:\Novell\IdentityManager\NDS\DirXMLUtilities\jms\webmq
Linux\UNIX install-dir/lib/dirxml/rules/jms/webmq
26 Configuring Messaging Vendors

https://mvnrepository.com/artifact/javax.jms/javax.jms-api/2.0

Creating a Server-Connection Channel and Queues
1 From the command line, change directories to <MQ_HOME>\java\bin.
2 From the command line, execute the following command:
runmqsc QM < idm_mq_install.mqsc
This file is provided only as an example; you might need to customize the content.

3 Continue with “Starting the Publish/Subscriber Broker” on page 27.

Starting the Publish/Subscriber Broker
1 From the command line, execute the following command:
strmqbrk -m QM
You should see a message indicating that the broker is running.

2 Continue with “Installing System Queues Necessary for Publish/Subscribe” on page 27.

Installing System Queues Necessary for Publish/Subscribe
1 From the command line, execute the following command:
runmqsc QM < MQJMS_PSQ.mqsc
You should see some tracing, indicating successful queue creation.

NOTE: If you don’t enter this command, you might see the following error: “MQJMS1111: JMS
1.1 The required Queues/Publish Subscribe services are not set up {0}
error.”

2 Continue with “Creating a User Account” on page 27.

Creating a User Account
 “Creating a User” on page 27
 “Making the User a Member of the mqm Group” on page 28

Creating a User
1 Click Start > Programs > Administrative Tools > Computer Management.
2 Expand the Local Users and Groups subtree.
3 Right-click the Users folder, then select New User.
4 Specify a user name. The scripts referenced in these instructions assume idm.
5 Specify a password. The scripts referenced in these instructions assume novell.
6 Deselect the User must change password at next login check box.
7 Click the Create button.
8 Click the Close button.
9 Continue with “Making the User a Member of the mqm Group” on page 28.
Configuring Messaging Vendors 27

Making the User a Member of the mqm Group
1 Right-click the newly created user, then click Properties.
2 Select the Member Of tab.
3 Select the mqm group.
4 Click Add.
5 Click OK twice.
6 Continue with “Setting Up JMS for IBM MQ 8.x and 9.x” on page 28.

Setting Up JMS for IBM MQ 8.x and 9.x
1 On the MQ server, edit <MQ_install_path>\java\bin\JMSAdmin.config, and set the

value to the following:
INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/C:/JNDI-Directory

NOTE: Depending on your OS platform adjust the PROVIDER_URL to point to a valid file location
path on the MQ server.

2 Edit <MQ_install_path>\java\bin\JMSAdmin.bat file, and set the JAVA envionment
variable pointing to the correct location of the java executable under the jre folder set
JAVA="%MQ_JRE_PATH%\bin\java"

3 Edit <MQ_install_path>\java\bin\PSIVTRun.bat file, and set the JAVA envionment
variable pointing to the correct location of the java executable under the jre folder.

4 Edit netiqsamplejms.prop file, and set the values as follows:

Properties Key Purpose

IDM_LOCAL_USER_ACCOUNT_NAME A local windows user account will be created. This
account will be used by the NetIQ JMS connetor to
connect to MQ.

Example: IDM

IDM_LOCAL_USER_ACCOUNT_PWD Password for the local windows account.

Example: NetIQ123

IDM_QUEUE_MANAGER_NAME A queue manager is a program that provides
messaging services to applications that use the
Message Queue Interface to put and get messages
from the queue. This is the name of the Queue
Manager under which the IDM queues will be created
and controlled.

Example: IDM.QM
28 Configuring Messaging Vendors

IDM_LISTENER_NAME A listener is a WebSphere® MQ process that listens
for connections to the queue manager. Provide the
name for the listener that the above IDM queue
manager will be using.

Example: LISTENER.TCP

IDM_WEBMQ_HOST This is the hostname or IP address of the server
where MQ is running.

Example: webmq.lab.com or <IP address>

IDM_LISTENER_PORT This is the listener port where MQ server can accept
messages. The default port for MQ is 1414, however
each installation can be changed to listen on different
ports. Enter the port number that is relevant to your
installation.

Example: 1414

IDM_CHANNEL_NAME A channel is a communication link used by distributed
queue managers identified by a unique name.There

are two categories of channel in WebSphere® MQ:
 Message channels: which are unidirectional,

and transfer messages from one queue manager
to another.

 MQI channels: which are bidirectional, and
transfer MQI calls from a WebSphere MQ MQI
client to a
queue manager, and responses from a queue
manager to a WebSphere MQ client.

IDM integtration uses MQI channels. Provide a name
that IDM will use.

Example: CHANNEL.IDM.QM

IDM_DRV_QUEUE_NAME A WebSphere MQ queue is a named object on which
applications can put and get messages.Specify a
name that uniquely identifies the IDM queue where
IDM events are sent and received from.

Example: IDM.EVENTSQ

IDM_DRV_TOPIC_NAME A topic is the subject of the information that is
published in a publish/subscribe message. Specify a
unique TOPIC name that IDM can use to pub/sub
messages.

Example: IDM.EVENTSTOPIC

Properties Key Purpose
Configuring Messaging Vendors 29

5 In command prompt change location to <MQ_install_path>\java\bin\ and run
vinstall.bat to create the MQ/JMS objects that will be used by the NetIQ JMS connector.

6 Make sure the .bindings file resides in the correct location.
The .bindings file is generated during the IBM MQ configuration. When you run the
JMSAdmin.bat -v idm_jms_install.scp command, the .bindings file is generated
under the path specified in the JMSAdmin.config file.
If the driver, IBM MQ, Identity Manager engine, and Identity Vault are all on the same server,
make sure the .bindings file resides in the location specified by the PROVIDER_URL option for
the driver configuration (see PROVIDER_URL).
If the driver and IBM MQ are on one server and the Identity Manager engine and Identity Vault
are on another server (a Identity Manager server), copy the .bindings file to the Identity
Manager server and make sure the PROVIDER_URL includes the correct path to the file. If
multiple Identity Manager servers connect to the IBM MQ server, copy the .bindings file to
the PROVIDER_URL path on each Identity Manager server.

7 Copy .binding file from IBM MQ server location (Example: C:\JNDI-Directory) to Identity
Manager server. (Example: C:\JNDI-Directory).

IDM_DRV_TOPIC_STRING A publisher creates a message, labels it with a topic
string that best fits the subject of the publication and
then publishers it. To receive publications, a
subscriber creates a subscription with a pattern
matching topic string to select publication topics.

Example: IDM.TOPICSTR

IDM_JNDI_PROVIDER_URL Sun engineered JNDI like JMS in that there is an API
that MQ clients/apps use and an SPI or Service
Provider Interface that is used by something called a
“registry”. Although JNDI can be implemented in
LDAP, one of the base implementations that Sun
provided right out of the box was to use the local
filesystem as the registry. JNDI uses the .bindings file
as the "registry" and it holds all the administered
object definitions.

The objects in the .bindings file are represented in
Name/Type/Value triplets. Each .bindings file
typically has many objects. Each object has many
attributes. Each attribute has a name, a value and the
type of variable that holds the value. IBM provides
the JMSAdmin tool to generate and read the
.bindings file. But a valid file system location should
be made availble for the JMSAdmin tool where it can
create the .bindings file.

Example: C:\JNDI-Directory

Properties Key Purpose
30 Configuring Messaging Vendors

Installing on JBoss Messaging
As part of installing JBoss for the driver, you should copy the jar files as indicated below. The
instructions assume that JBoss already has the default queues and topics available. For information
on installing and configuring JBoss Messaging, refer to the JBoss User Guide (http://www.jboss.org/
file-access/default/members/jbossmessaging/freezone/docs/userguide-1.3.0.GA/html/index.html).

1 On your messaging server, locate the jar files depending on your JBoss version:
For JBoss 4: Locate the following files:
 concurrent.jar
 connector.jar
 javaassist.jar
 jboss-aop-jdk50.jar
 jboss-aop-jdk50-client.jar
 jboss-common-client.jar
 jboss-messaging.jar
 jboss-messaging-client.jar
 jboss-remoting.jar
 jboss-system-client.jar
 jnp-client.jar
 trove.jar

For JBoss 6.2: Locate the following files:
 hornetq-core-client-2.3.3.final.jar
 hornetq-core.jar
 hornetq-jboss-as-integration-2.2.9.as7.final.jar
 jboss-client

NOTE: hornetq 2.4(latest)
Before using this jar, ensure you go through the known issue that exists with it in the JBoss
Developer page (https://issues.jboss.org/browse/HORNETQ-1317).

2 Copy the jar files to the Identity Manager server.
The following table identifies where to place jar files on an Identity Management server, by
platform.
Configuring Messaging Vendors 31

http://www.jboss.org/file-access/default/members/jbossmessaging/freezone/docs/userguide-1.3.0.GA/html/index.html
https://issues.jboss.org/browse/HORNETQ-1317
https://issues.jboss.org/browse/HORNETQ-1317

3 If necessary, restart your eDirectory server.

Installing on SonicMQ
As part of installing SonicMQ for the driver, you should complete the following tasks consecutively.
These instructions are for Linux, but you can follow the same procedure for other platforms.

 “Locating Prerequisite Jar Files” on page 32
 “Running Scripts to Configure the Messaging System” on page 33

Locating Prerequisite Jar Files
1 On your messaging server, locate the following jar files:

 mfcontext.jar
 sonic_ASPI.jar
 sonic_Channel.jar
 sonic_Client.jar
 sonic_Crypto.jar
 sonic_Selector.jar
 sonic_SF.jar
 sonic_SSL.jar
 sonic_XA.jar
 sonic_XMessage.jar

2 Copy the jar files to the Identity Manager server.
The following table identifies where to place jar files on an Identity Management server, by
platform.

Platform Directory Path

Windows Local installation: novell\NDS\lib
Remote installation: novell\RemoteLoader\lib

Linux/UNIX Local installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8) or
opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Remote installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8)
or /opt/novell/eDirectory/lib/dirxml/classes (eDirectory
8.8)
32 Configuring Messaging Vendors

3 If necessary, restart your eDirectory server.
4 Continue with “Running Scripts to Configure the Messaging System” on page 33.

Running Scripts to Configure the Messaging System
Use the following instructions to locate and run the scripts to configure your message system.

1 Locate where you installed the installation script (idm_jms_install.cli) during the JMS
driver installation. The following table indicates the default directories where scripts are
installed, by platform.

2 Copy the script to your messaging server.
3 Follow the instructions provided in the script.

Installing on TIBCO EMS
As part of installing TIBCO for the driver, you should complete the following tasks consecutively.
These instructions are for Linux and Windows.

 “Locating Prerequisite Client Jar Files” on page 33
 “Running Scripts to Configure the Messaging System” on page 34

Locating Prerequisite Client Jar Files
1 On your messaging server, locate the following jar files:

 tibjms.jar
 tibcrypt.jar

2 The following table identifies where to place jar files on a TIBCO server, by platform:

Platform Directory Path

Windows Local installation: novell\NDS\lib
Remote installation: novell\RemoteLoader\lib

Linux/UNIX Local installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8) or
opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Remote installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8)
or /opt/novell/eDirectory/lib/dirxml/classes (eDirectory
8.8)

Platform Directory Path

Windows C:\Novell\IdentityManager\NDS\DirXMLUtilities\jms\so
nic

Linux\UNIX install-dir/lib/dirxml/rules/jms/sonic
Configuring Messaging Vendors 33

3 Copy the jar files to the Identity Manager server.
The following table identifies where to place jar files on an Identity Management server, by
platform:

4 If necessary, restart your eDirectory server.
5 Continue with “Running Scripts to Configure the Messaging System” on page 34.

Running Scripts to Configure the Messaging System
Use the following instructions to locate and run the scripts to configure your message system:

1 Locate where you installed the installation script (idm_jms_install.tib) during the driver
installation. The following table indicates the default directories where scripts are installed, by
platform:

2 Copy the idm_jms_install.tib and idm_jms_uninstall.tib scripts to your messaging
server. The following table indicates the location where you should copy the scripts to on your
messaging server, by platform.

Platform Directory Path

Windows C:tibco\ems\clients\java
Linux /opt/tibco/ems/clients/java

Platform Directory Path

Windows Local installation: novell\NDS\lib
Remote installation: novell\RemoteLoader\lib

Linux/UNIX Local installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8) or
opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Remote installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8)
or /opt/novell/eDirectory/lib/dirxml/classes (eDirectory
8.8)

Platform Directory Path

Windows C:\Novell\IdentityManager\NDS\DirXMLUtilities\jms\
tibco_ems

Linux\UNIX install-dir/lib/dirxml/rules/jms/tibco_ems

Platform Directory Path

Windows C:\tibco\ems\bin
Linux/UNIX /opt/tibco/ems/bin
34 Configuring Messaging Vendors

3 Update the IP address and port number of the connection factory in the
idm_jms_install.tib script.

4 Change directories on the messaging server to run the tibjmsadmin utility. The following table
indicates where the tibjmsadmin utility is installed, by platform.

5 To run the installation script, enter the following at the command line prompt:
>tibjmsadmin -script idm_jms_install.tib

Platform Directory Path

Windows C:\tibco\ems\bin
Linux/UNIX /opt/tibco/ems/bin
Configuring Messaging Vendors 35

36 Configuring Messaging Vendors

5 5Upgrading an Existing Driver

The following sections provide information to help you upgrade an existing driver to version 4.5:

 “Supported Upgrade Paths” on page 37
 “What’s New in Version 4.0.0” on page 37
 “Upgrade Procedure” on page 37

Supported Upgrade Paths
You can upgrade from any Identity Manager 3.5.x version of the JMS driver. Upgrading a pre-3.5.x
version of the driver directly to version 4.0 or later is not supported.

What’s New in Version 4.0.0
This version of the driver provides support for configuring Suite B communication between the
Remote Loader and the Identity Manager engine. For more information, see “Authentication” on
page 46. For more information about Suite B, see Suite B Cryptography.

Upgrade Procedure
The driver upgrade process involves updating the driver files and upgrading the installed driver
packages. However, there is no separate procedure for updating the driver shim. The driver shim is
updated with a new version of Identity Manager engine.

To upgrade the installed packages for the driver, perform the following actions in Designer:

1 Download the latest available packages.
To configure Designer to automatically read the package updates when a new version of a
package is available, click Windows > Preferences > NetIQ > Package Manager > Online Updates
in Designer. However, if you need to add a custom package to the Package Catalog, you can
import the package .jar file. For more information about creating custom packages, see
Developing Packages in NetIQ Identity Manager Driver Administration Guide.

2 Upgrade the installed packages.
2a Open the project containing the driver.
2b Right-click the driver for which you want to upgrade an installed package, then click Driver

> Properties.
2c Click Packages.

If there is a newer version of a package, there is check mark displayed in the Upgrades
column.

2d Click Select Operation for the package that indicates there is an upgrade available.
Upgrading an Existing Driver 37

http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/designer_admin/designer_admin.pdf#packmandevelop
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

2e From the drop-down list, click Upgrade.
2f Select the version that you want to upgrade to, then click OK.
2g Click Apply.
2h (Conditional) Fill in the fields with appropriate information to upgrade the package, then

clickNext.
2i Read the summary of the packages that will be installed, then click Finish.
2j Review the upgraded package, then click OK to close the Package Management page.

For detailed information, see “Upgrading the Identity Manager Drivers” in the NetIQ
Identity Manager Setup Guide for Linux or “Upgrading the Identity Manager Drivers” in the
NetIQ Identity Manager Setup Guide for Windows.

Applying the Driver Patch
The driver patch updates the driver files. You can install the patch as a root or non-root user.

Prerequisites
Before installing the patch, complete the following steps:

1 Take a back-up of the current driver configuration.
2 Stop the driver instance.
3 Stop the Identity Vault.
4 In a browser, navigate to the NetIQ Patch Finder Download Page.
5 Under Patches, click Search Patches.
6 Specify Identity Manager nn Bidirectional eDirectory Driver nn in the search box.
7 Download and unzip the contents of the patch file to a temporary location on your server.

Applying the Patch as a Root User
In a root installation, the driver patch installs the driver files in the default locations on Linux. On
Windows, you need to manually copy the files to the default locations.

1 Delete or move the existing files that match the files being copied.
2 Update the driver files:

 Linux: Open a command prompt and run the following command to upgrade the existing
RPM:
rpm -Uvh <Driver Patch File Temporary Location>/linux/novell-
DXMLjms.rpm

 Windows: Navigate to the <Driver Patch File Temporary Location>\windows
folder and copy the JMSShim.jar file to <IdentityManager
installation>\NDS\lib or <IdentityManager
installation>\RemoteLoader\<architecture>\lib folder.

3 (Conditional) If the driver is running locally, start the Identity Vault and the driver instance.
38 Upgrading an Existing Driver

http://download.novell.com/patch/finder/#bu=novell&bu=netiq&bu=suse&familyId=7365&productId=45026&dateRange=&startDate=&endDate=&priority=&architecture=&keywords=&xf=7365
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#upgradingdrivers
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#Front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_linux/setup_linux.pdf#Front
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#upgradedrivers
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/setup_windows/setup_windows.pdf#Front

For example, open a command prompt and run ndsmanage startall
4 (Conditional) If the driver is running with a Remote Loader instance, start the Remote Loader

instance and the driver instance.

Applying the Patch as a Non-Root User
1 Verify that <non-root eDirectory location>/rpm directory exists and contains the file,
_db.000.
The _db.000 file is created during a non-root installation of the Identity Manager engine.
Absence of this file in the directory might indicate that Identity Manager is not properly
installed and it might be necessary to re-install it to place the file in the directory.

2 To set the root directory to non-root eDirectory location, enter the following command in the
command prompt:

ROOTDIR=<non-root eDirectory location>
This will set the environmental variables to the directory where eDirectory is installed as a non-
root user.

3 To install the driver files, enter the following command:

rpm --dbpath $ROOTDIR/rpm -Uvh --relocate=/usr=$ROOTDIR/opt/novell/
eDirectory --relocate=/etc=$ROOTDIR/etc --relocate=/opt/novell/
eDirectory=$ROOTDIR/opt/novell/eDirectory --relocate=/opt/novell/
dirxml=$ROOTDIR/opt/novell/dirxml --relocate=/var=$ROOTDIR/var --
badreloc --nodeps --replacefiles <rpm-location>
For example, to install the JMS driver RPM, use this command:

rpm --dbpath $ROOTDIR/rpm -Uvh --relocate=/usr=$ROOTDIR/opt/novell/
eDirectory --relocate=/etc=$ROOTDIR/etc --relocate=/opt/novell/
eDirectory=$ROOTDIR/opt/novell/eDirectory --relocate=/opt/novell/
dirxml=$ROOTDIR/opt/novell/dirxml --relocate=/var=$ROOTDIR/var --
badreloc --nodeps --replacefiles /home/user/novell-DXMLjms.rpm
Upgrading an Existing Driver 39

40 Upgrading an Existing Driver

6 6Managing the Driver

As you work with the driver, there are a variety of management tasks you might need to perform,
including the following:

 Starting, stopping, and restarting the driver
 Viewing driver version information
 Using Named Passwords to securely store passwords associated with the driver
 Monitoring the driver’s health status
 Backing up the driver
 Inspecting the driver’s cache files
 Viewing the driver’s statistics
 Using the DirXML Command Line utility to perform management tasks through scripts
 Securing the driver and its information
 Synchronizing objects
 Migrating and resynchronizing data
 Activating the driver
 Upgrading an existing driver

Because these tasks, as well as several others, are common to all Identity Manager drivers, they are
included in one reference, the NetIQ Identity Manager Driver Administration Guide.
Managing the Driver 41

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

42 Managing the Driver

7 7Troubleshooting

Viewing driver processes is necessary to analyze unexpected behavior. To view the driver processing
events, use DSTrace. You should only use it during testing and troubleshooting the driver. Running
DSTrace while the drivers are in production increases the utilization on the Identity Manager server
and can cause events to process very slowly.

The driver supports the following six trace levels:

For information about configuring the driver to use DSTrace, see “Viewing Identity Manager
Processes” in the NetIQ Identity Manager Driver Administration Guide.

The Driver Fails to Reconnect to WebMQ if Restarted
The JMS driver fails to reconnect with the following exception when connecting to either Web MQ
7.1 or 7.5.

Exception in thread "JMSCCThreadPoolMaster"
java.lang.IllegalThreadStateException
at java.lang.ThreadGroup.addUnstarted(Unknown Source)
at java.lang.Thread.init(Unknown Source)
at java.lang.Thread.init(Unknown Source)
at java.lang.Thread.<init>(Unknown Source)
at
com.ibm.msg.client.commonservices.j2se.workqueue.WorkQueueManagerImpl
ementation$ThreadPoolWorker.<init>(WorkQueueManagerImplementation.java:950
)
at
com.ibm.msg.client.commonservices.j2se.workqueue.WorkQueueManagerImpl
ementation.createNewThread(WorkQueueManagerImplementation.java:496)
at
This issue is only observed with the latest third party Websphere JMS Client 7.5 and Websphere 7.1
jar files.

To workaround this issue, use the driver with Remote Loader.

Level Description

0 Minimal tracing such as JMS Driver version, Build Stamp, and XDS Library

1 Information on connection

2 Information on messages

3 Verbose information on the messages that are sent or received, and the GUIDs

4 Information on JNDI session, context, and connection

5 Information on the methods and its signatures
Troubleshooting 43

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

44 Troubleshooting

A ADriver Properties

This section provides information about the Driver Configuration and Global Configuration Values
properties for the JMS driver. These are the only unique properties for the JMS driver. All other
driver properties (Named Password, Engine Control Values, Log Level, and so forth) are common to
all drivers. Refer to “Driver Properties” in the NetIQ Identity Manager Driver Administration Guide
for information about the common properties.

 “Driver Configuration” on page 1
 “Global Configuration Values” on page 10

Driver Configuration
In Identity Console:

1 Click the IDM Administration tile.
2 Select the driver set that contains the driver whose properties you want to edit.
3 Click the driver icon to display the driver’s properties page.

In Designer:

1 Open a project in the Modeler, then right-click the driver line and click Properties > Driver
Configuration.

The Driver Configuration options are divided into the following sections:

 “Driver Module” on page 1
 “Driver Object Password” on page 2
 “Authentication” on page 2
 “Startup Option” on page 3
 “Driver Parameters” on page 3
 “ECMAScript” on page 10
 “Global Configurations” on page 10

Driver Module
The driver module changes the driver from running locally to running remotely or the reverse.

Java: Used to specify the name of the Java class that is instantiated for the shim component of the
driver. This class can be located in the classes directory as a class file, or in the lib directory as a
.jar file. If this option is selected, the driver is running locally.

The name of the Java class is:com.novell.idm.driver.jms.JMSDriverShim
Native: This option is not used with the driver.
Driver Properties 1

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b94pq23
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

Connect to Remote Loader: Used when the driver is connecting remotely to the connected system.
Designer includes two suboptions:

 Remote Loader Client Configuration for Documentation: Includes information on the Remote
Loader client configuration when Designer generates documentation for the JMS driver.

 Driver Object Password: Specifies a password for the Driver object. If you are using the Remote
Loader, you must enter a password on this page. Otherwise, the remote driver does not run.
The Remote Loader uses this password to authenticate itself to the remote driver shim.

Driver Object Password
Driver Object Password: Use this option to set a password for the driver object. If you are using the
Remote Loader, you must enter a password on this page or the remote driver does not run. This
password is used by the Remote Loader to authenticate itself to the remote driver shim.

Authentication
The Authentication section stores the information required to authenticate to the connected
system.

Authentication ID: Specify a user application ID. This ID is used to pass Identity Vault subscription
information to the application.

Example: Administrator
Authentication Context: Specify the IP address or name of the server the application shim should
communicate with.

Application Password: Specify the password for the user object listed in the Authentication ID field.

Remote Loader Connection Parameter: Used only if the driver is connecting to the application
through the Remote Loader.

In Identity Console, enter hostname=xxx.xxx.xxx.xxx port=xxxx secureprotocol=TLS
version enforceSuiteB=true/false kmo=certificatename.
 hostname specifies the IP address of the Remote Loader server.
 port specifies the TCP/IP port on which the Remote Loader listens for connections from the

remote interface shim. The default port for the Remote Loader is 8090.
 secureprotocol specifies the version of the TLS protocol that the Remote Loader uses to

connect to the Identity Manager engine. Identity Manager supports TLSv1, TLS v1_1, and
TLSv1_2 versions only.

 enforceSuiteB specifies whether the Remote Loader uses Suite B for communicating with
the Identity Manager engine. To use Suite B, specify enforceSuiteB=true. The
communication supports only TLS version 1.2 version. Communication is not established if the
connection has non-Suite B authentication algorithms.

 The kmo entry is optional. Use it only when an SSL connection exists between the Remote
Loader and the Identity Manager engine.
For example: hostname=10.0.0.1 port=8090 kmo=IDMCertificate
2 Driver Properties

Remote Loader Password: Used only if the driver is connecting to the application through the
Remote Loader. The password is used to control access to the Remote Loader instance. It must be
the same password specified during the configuration of the Remote Loader on the connected
system.

Cache limit (KB): Specify the maximum event cache file size (in KB). If it is set to zero, the file size is
unlimited. Click Unlimited to set the file size to unlimited in Designer

Startup Option
The Startup Option section allows you to set the driver state when the Identity Manager server is
started.

Auto start: The driver starts every time the Identity Manager server is started.

Manual: The driver does not start when the Identity Manager server is started. The driver must be
started through Designer or Identity Console.

Disabled: The driver has a cache file that stores all of the events. When the driver is set to Disabled,
this file is deleted and no new events are stored in the file until the driver state is changed to Manual
or Auto Start.

Do not automatically synchronize the driver: This option only applies if the driver is deployed and
was previously disabled. If this is not selected, the driver re-synchronizes the next time it is started.

Driver Parameters
The Driver Parameters section lets you configure the driver-specific parameters. When you change
driver parameters, you tune driver behavior to align with your network environment.

The parameters are presented by category:

 “Driver Options” on page 3
 “Subscriber Options” on page 5
 “Publisher Options” on page 8

Driver Options
Default JMS version: Specifies the API version this driver should use when communicating with
message brokers. If you are uncertain, 1.0.2 is the more widely adopted standard.

This setting is global for all message brokers.

Broker ID: Specifies an identifier for this broker by which it is known in the Identity Manager
namespace.The default value is WebSphere MQ 6. To use a value other than the default, you need to
specify it.

Show connected-related options: Displays connection-related parameters, such as JNDI connection
factory names and usernames or passwords. Select show to display the following options.

 Username: Specify the username to authenticate to the message broker.
 Password: Specify the password to authenticate to the message broker.
Driver Properties 3

After entering the password, you need to re-enter it for validation.
 Show queue connection factory options: Select show to display the queue connection factory

options.
 JNDI name: Specify the JNDI name of the connection factory used to create the

connections to the queues.
 Show topic connection factory options: Select show to display topic connection factory

options.
 JNDI name: Specify the JNDI name of the connection factory used to create connections to

the topics.
 Client ID: Specify the client ID used to create the durable topic subscriptions.

NOTE: Changing this value after durable subscriptions have been defined is not
recommended. If it is changed, the Publisher is unable to unsubscribe from existing topic
subscriptions unless the client ID is set to the same value the subscriptions were created
with.

Show standard JNDI context properties: Select show to display the standard JNDI context
properties for this message broker. These properties are primarily used to specify the URL,
username, and password used to connect to or authenticate with this broker.

 INITAL_CONTEXT_FACTORY: The name that uniquely identifies this JNDI context property.
 Value: Specify the name of the Java class used to create a JNDI context for this message broker.
 PROVIDER_URL: The name that uniquely identifies this JNDI context property. This contains

.binding.file. For example: C:\JNDI-Directory
 Value: Specify the URL of this message broker. A URL usually contains a protocol, an IP address,

and a port number.
 SECURITY_CREDENTIALS: The name that uniquely identifies this JNDI context property.
 Value: Specify the password used to authenticate to this message broker.
 SECURITY_PRINCIPAL: The name that uniquely identifies this JNDI context property.
 Value: Specify the username used to authenticate to this message broker.
 URL_PKG_PREFIXES: The name that uniquely identifies this JNDI context property.
 Value: Specify the value of this JNDI context property.
 Show remaining standard properties: Select show to display the remaining, less commonly

used standard JNDI context properties.
 APPLET: The name that uniquely identifies this JNDI context property.
 Value: Specify the name of the applet using used.
 AUTHORITATIVE: The name that uniquely identifies this JNDI context property.
 Value: The value of this JNDI context property.
 BATCHSIZE: The name that uniquely identifies this JNDI context property.
 Value: The value of this JNDI context property.
 DNS_URL: The name that uniquely identifies this JNDI context property.
 Value: The value of this JNDI context property.
 LANGUAGE: The name that uniquely identifies this JNDI context property.
4 Driver Properties

 Value: The value of this JNDI context property.
 OBJECT_FACTORIES: The name that uniquely identifies this JNDI context property.
 Value: The value of this JNDI context property.
 REFERRAL: The name that uniquely identifies this JNDI context property.
 Value: The value of this JNDI context property.
 SECURITY_AUTHENTICATION: The name that uniquely identifies this JNDI context

property.
 Value: The value of this JNDI context property.
 SECURITY_PROTOCOL: The name that uniquely identifies this JNDI context property.
 Value: The value of this JNDI context property.
 STATE_FACTORIES: The name that uniquely identifies this JNDI context property.
 Value: The value of this JNDI context property.

Show vendor-specific JNDI context properties: Select show to display the vendor-specific JNDI
context properties.

 Name: The name that uniquely identifies this JNDI context property.
 Value: Specify the value of this JNDI context property.

Subscriber Options
Disable subscriber: Select Yes to prevent this channel from sending messages to the JMS provider.

Show default message options: Select show to display the options that are global to all messages.

 Default message expiration (milliseconds): In milliseconds, specify how long messages should
live after they reach the destination. This setting is global for all sent messages.

 Default message priority: Select the priority of the message. The options are:
 0 (normal)
 1 (normal)
 2 (normal)
 3 (normal)
 4 (normal, default)
 5 (expedited)
 6 (expedited)
 7 (expedited)
 8 (expedited)
 9 (expedited)

Specifying expedited delivery can result in “out-of-order” message processing. This setting is
global for all sent messages.

 Default message type: Select the default message type as text or bytes. This setting is global for
all sent messages.
Driver Properties 5

 Show default destination options: Select show to display the parameters that show the
properties sent with the message.
Message properties can be used to prevent message loopback or to pass application-specific
information in messages. These properties are global for all sent messages.
 Name: Message property names beginning with “JMS” must match those defined by the

JMS specification or third-party providers.
Property names fall into three general categories:
 Standard JMS properties. They usually begin with JMS or JMSX.
 Provider-specific properties. They usually begin with JMS_.
 Application-specific. Anything else.

 Value: The value of the message property.

Show default destination options: Select show to display the options global to all destinations.

 Default destination type: Select whether all destinations are queues (default) or topics. This
setting is global for all destinations.

 Default omit message envelope: Select whether the JMS message envelope should be omitted
from received messages. This setting is global to all destinations.

 Default receive timeout (seconds): Select how long a channel should wait to receive a response
to a sent message. The default value is 10 seconds. Permitted values are no wait and 1-25. This
setting is global to all destinations.

 Default message filter: Select how the destinations filter receives the messages. The options
are:
 Receive all messages
 Receive messages from this instance
 Receive messages from this channel
 Receive messages from the other channel
 Block messages from this instance (default)
 Block messages from this channel
 Block messages from the other channel
 Specify a custom message selector

 Default message selector: If you select specify a custom message selector, specify a custom
message selector to filter received messages. Message selectors are like SQL WHERE clauses,
such as JMSCorrelationID LIKE '%01=whatever%'.
The % wildcard character can be used to disregard content before or after the part of a header
or property value you are interested in filtering on. When used in tandem with a message filter,
the message selector is appended to the end of the filter by using an AND operator.

Destination unique id: Specify the identifier for this destination by which it is known in the Identity
Manager namespace. This name is also the durable subscription name for topics. This value must be
unique per channel (Subscriber/Publisher).
6 Driver Properties

Show additional destination options: Select show to display additional options for this selected
destination.

 Destination JNDI name: Specify the identifier for this destination that is known in the JNDI
namespace. This might not be the name the destination is known by to the broker. This value
does not need to be unique.

 Destination type: Select whether the destination type is inherited, a topic, or a queue.
 Destination mode: Select whether the destination is used to send or receive messages.
 Message type: Select whether messages are sent as a text or as bytes.
 Show message properties: Select show to display message properties sent with messages.

Message properties can be used to prevent message loopback or pass provider or application-
specific information along with messages.
 Name: The message property names beginning with JMS must match those defined by the

JMS specification or third-party providers. Property names fall into three general
categories:
 Standard JMS properties. They usually begin with JMS or JMSX.
 Provider-specific properties. They begin with JMS_.
 Application-specific. Anything else.

 Value: Specify the value of the message property.

Destination unique id: Specify the identifier by which this destination is known in the Identity
Manager namespace. This name is also the durable subscription name for topics. This value must be
unique per channel (Subscriber/Publisher).

Show additional destination options: Select show to display additional options for this selected
destination.

 Destination JNDI name: Specify the identifier by which this destination is known in the JNDI
namespace. This might or might not be the name the destination is known by to the message
broker.

This value does not need to be unique.
 Destination type: Select whether the destination is inherited, a queue, or a topic.
 Destination mode: Select whether the destination is used to send or receive messages.
 Omit message envelope: Select whether the JMS message envelope is omitted from messages

received by this destination.
 Receive timeout (seconds): Select how long a channel should wait to receive a response to a

sent message. The default value is 10 seconds. Permitted values can range from 1-25.
 Message filter: Select how this destination filter receives messages. The options are:

 Receive all messages
 Receive messages from this instance
 Receive messages from this channel
 Receive messages from the other channel
 Block messages from this instance (default)
 Block messages from this channel
Driver Properties 7

 Block messages from the other channel
 Specify a custom message selector

 Message selector: If you selected specify a custom message selector, specify a custom message
selector to filter received messages. Message selectors are like SQL WHERE clauses, such as
JMSCorrelationID = whatever. When used in tandem with a message filter, the message selector
is appended to the end of the filter by using an AND operator.

Publisher Options
Disable publisher: Select Yes to prevent this channel from sending messages to the JMS provider.

Heartbeat interval (minutes): Specifies how many minutes of inactivity should elapse before this
channel sends a heartbeat document. In practice, more than the number of minutes specified can
elapse. That is, this parameter defines a lower bound.

Show default message options: Select show to display options global to all messages.

 Default message expiration (milliseconds): Specify how long the messages live after they reach
a destination. Specify the time duration in milliseconds. 0 means the message lives indefinitely.
This setting is global for all sent messages.

 Default message priority: Select the priority of the message. The options are:
 0 (normal)
 1 (normal)
 2 (normal)
 3 (normal)
 4 (normal, default)
 5 (expedited)
 6 (expedited)
 7 (expedited)
 8 (expedited)
 9 (expedited)

Specifying expedited delivery can result in “out-of-order” message processing. This setting is
global for all sent messages.

 Default message type: Select whether the messages type is text or bytes. This setting is global
for all sent messages.

 Show default message properties: Select show to display the parameter that specifies the
properties sent with messages.
Message properties can be used to prevent message loopback or pass application-specific
information in messages. These properties are global for all sent messages.
 Name: The message property names beginning with JMS must match those defined by the

JMS specification or third-party providers. Property names fall into three general
categories:
 Standard JMS properties. They usually begin with JMS or JMSX.
8 Driver Properties

 Provider-specific properties. They begin with JMS_.
 Application-specific. Anything else.

 Value: Specify the value of the message property.

Show default session options: Select show to display options that are global to all sessions.

 Default message acknowledgement threshold: Specify how many messages are received by a
monitored destination before an acknowledgement is sent to the broker.

Show default destination options: Select show to display options that are global to all destinations.

 Default destination type: Select whether the default destination type is a queue (default) or a
topic.

 Default omit message envelope: Select whether the JMS message envelope is omitted from
the received messages. This setting is global for all destinations.

 Default receive timeout (seconds): Select how long a channel waits to receive a response to a
sent message. The default value is 10 seconds. The permitted values range from 1-25 seconds.

 Default message filter: Select how the destination’s filter receives the messages. The options
are:
 Receive all messages
 Receive messages from this instance
 Receive messages from this channel
 Receive messages from the other channel
 Block messages from this instance (default)
 Block messages from this channel
 Block messages from the other channel
 Specify a custom message selector

 Default message selector: If you selected specify a custom message selector, specify a custom
message selector to filter received messages. Message selectors are like SQL WHERE clauses,
such as JMSCorrelationID LIKE '%01=whatever%'.
The % wildcard character is used to disregard content before or after the part of a header or
property value you are interested in filtering on. When used in tandem with a message filter,
the message selector is appended to the end of the filter by using an AND operator.

 Default polling interval (milliseconds): Specify how often the destinations are polled for new
messages (in milliseconds).

Destination unique id: Specify the identifier by which this destination is known in the Identity
Manager namespace. This name is also the durable subscription name for topics. This value must be
unique per channel (Subscriber/Publisher).

Show additional destination options: Select show to display parameters for this selected
destination.

 Destination JNDI name: Specify the identifier for this destination that is known in the JNDI
namespace. This might not be the name the destination is known by to the broker. This value
does not need to be unique.

 Destination type: Select whether the destination type is inherited, a topic, or a queue.
Driver Properties 9

 Destination mode: Select whether the destination is used to send or receive messages.
 Message type: Select whether messages are sent as a text or as bytes.
 Show message properties: Select show to display message properties sent with messages.

Message properties can be used to prevent message loopback or pass provider or application-
specific information along with messages.
 Name: The message property names beginning with JMS must match those defined by the

JMS specification or third-party providers. Property names fall into three general
categories:
 Standard JMS properties. They usually begin with JMS or JMSX.
 Provider-specific properties. They begin with JMS_.
 Application-specific. Anything else.

 Value: Specify the value of the message property.

ECMAScript
Displays an ordered list of ECMAScript resource files. The files contain extension functions for the
driver that Identity Manager loads when the driver starts. You can add additional files, remove
existing files, or change the order in which the files are executed.

Global Configurations
Displays an ordered list of Global Configuration objects. The objects contain extension GCV
definitions for the driver that Identity Manager loads when the driver is started. You can add or
remove the Global Configuration objects, and you can change the order in which the objects are
executed.

Global Configuration Values
Global configuration values (GCVs) are values that can be used by the driver to control functionality.
GCVs are defined on the driver or on the driver set. Driver set GCVs can be used by all drivers in the
driver set. Driver GCVs can be used only by the driver on which they are defined.

The JMS driver includes several GCVs that are created from driver parameters. When you modify the
driver parameters, the GCVs are updated; likewise, when you modify the GCVs, the driver
parameters are updated. These GCVs are created so that the driver parameter information can be
more easily used in the driver’s policies.

You can also add your own GCVs if you discover you need additional ones as you implement policies
in the driver.

To access the driver’s GCVs in Identity Console:

1 Click the IDM Administration tile.
2 Select the driver set that contains the driver whose properties you want to edit.
3 Locate the Delimited Text driver icon, then click the driver icon to display the driver’s properties

page.
4 Click Global Config Values drop down to display the GCV page.
10 Driver Properties

To access the driver’s GCVs in Designer:

1 Open a project in the Modeler.
2 Right-click the driver icon or line, then select Properties > Global Configuration Values.

or

To add a GCV to the driver set, right-click the driver set icon , then click Properties > GCVs.

Destination unique ID: Specifies the identifier by which this destination is known in the Identity
Manager namespace. This name is also the durable subscription name for topics.

This value must be unique per channel (Subscriber/Publisher).
Driver Properties 11

12 Driver Properties

B BTrace Levels

The driver supports the following trace levels:

For information about setting driver trace levels, see “Viewing Identity Manager Processes” in the
NetIQ Identity Manager Driver Administration Guide.

Level Description

0 Minimal tracing such as JMS Driver version, Build Stamp, and XDS Library

1 Information on connection

2 Information on messages

3 Verbose information on the messages that are sent or received, and the GUIDs

4 Information on JNDI session, context, and connection

5 Information on the methods and its signatures
Trace Levels 57

https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-48/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

58 Trace Levels

	NetIQ Identity Manager Driver for JMS Implementation Guide
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	1 Understanding the JMS Driver
	Supported JMS Vendors and Versions
	Key Terminology
	JMS Messaging Models
	Point-to-Point Messaging
	Publish/Subscribe Messaging

	JMS Messages
	Message Structure
	Message Types

	How Subscriber and Publisher Channels Work
	Subscriber Channel
	Publisher Channel

	Support for Standard Driver Features
	Local Platforms
	Remote Platforms
	Entitlements
	Password Synchronization Support
	Information Synchronized

	Additional Resources

	2 Installing the Driver Files
	3 Creating a New Driver Object
	Creating the Driver in Designer
	Importing the Current Driver Packages
	Installing the Driver Packages
	Configuring the Driver
	Deploying the Driver
	Starting the Driver

	Activating the Driver
	Adding Packages to an Existing Driver

	4 Configuring Messaging Vendors
	Installing IBM MQ
	Placing Prerequisite Jar Files and Scripts
	Creating a Server-Connection Channel and Queues
	Starting the Publish/Subscriber Broker
	Installing System Queues Necessary for Publish/Subscribe
	Creating a User Account
	Setting Up JMS for IBM MQ 8.x and 9.x

	Installing on JBoss Messaging
	Installing on SonicMQ
	Locating Prerequisite Jar Files
	Running Scripts to Configure the Messaging System

	Installing on TIBCO EMS
	Locating Prerequisite Client Jar Files
	Running Scripts to Configure the Messaging System

	5 Upgrading an Existing Driver
	Supported Upgrade Paths
	What’s New in Version 4.0.0
	Upgrade Procedure
	Applying the Driver Patch

	6 Managing the Driver
	7 Troubleshooting
	The Driver Fails to Reconnect to WebMQ if Restarted

	A Driver Properties
	Driver Configuration
	Driver Module
	Driver Object Password
	Authentication
	Startup Option
	Driver Parameters
	ECMAScript
	Global Configurations

	Global Configuration Values

	B Trace Levels

