
NetIQ® Identity Manager™

Manual Task Service Driver
Implementation Guide

February 2018

Legal Notice

For information about NetIQ trademarks, see https://www.netiq.com/company/legal/.

Copyright (C) 2018 NetIQ Corporation. All rights reserved.

https://www.netiq.com/company/legal/

Contents
About this Book and the Library 7
About NetIQ Corporation 9

1 Understanding the Manual Task Service Driver 11
Modes of Operation . 11

Example: Subscriber Channel E-Mail, Publisher Channel Web Server Response 12
Example: Subscriber Channel E-Mail, No Publisher Channel Response . 12

How E-Mail Messages and Web Pages Are Created by the Manual Task Service Driver 12
Templates . 13
Replacement Tokens. 15
Replacement Data . 15
Template Action Elements. 16
Subscriber Channel E-Mail . 16
Publisher Channel Web Server. 17

2 Installing Driver Files 19

3 Creating a New Driver Object 21
Creating the Driver Object in Designer . 21

Importing the Driver Configuration File . 21
Configuring the Driver Object . 22
Deploying the Driver Object . 22
Starting the Driver . 23

Activating the Driver . 23

4 Upgrading an Existing Driver 25
Supported Upgrade Paths . 25
What’s New in Version 4.0.0.1 . 25
Upgrading the Driver . 25

. .Upgrading the
Installed
Packages . 25
Applying the Driver Patch. 26

5 Managing the Driver 29

6 Troubleshooting 31
Troubleshooting Driver Processes . 31

A Driver Settings, Policies, and Templates 33
Driver Settings . 33

DN of the Document Base . 34
Document Directory . 34
Use HTTP Server (true|false). 34
Contents 3

HTTP IP Address or Host Name . 34
HTTP Port . 35
Name of KMO . 35
Name of Keystore File . 35
Keystore Password . 35
Name of Certificate (key alias) . 35
Certificate Password (key password) . 35

Subscriber Settings. 36
SMTP Server . 36
SMTP Account Name. 36
Default “From” Address . 36
Additional Handlers . 36

Publisher Settings . 36
Additional Servlets . 36

Subscriber Channel Policies . 37
Blocking Commands from Reaching the Subscriber Channel . 37
Generating E-Mail Messages. 38

Subscriber Channel E-Mail Templates . 38
Publisher Channel Policies . 39
Publisher Channel Web Page Templates . 39
Publisher Channel XDS Templates . 40
Trace Settings . 40

B Replacement Data 43
Data Security . 43
XML Elements. 44

<replacement-data> . 44
<item> . 45
<url-data>. 47
<url-query>. 48

C Automatic Replacement Data Items 49
Subscriber Channel Automatic Replacement Data. 49
Publisher Channel Automatic Replacement Data . 49

D Template Action Elements 51
<form:input> . 51
<form:if-item-exists> . 52
<form:if-multiple-items> . 52
<form:if-single-item> . 52
<form:menu>. 53

E <mail> Element 55
<mail> . 55
<to>. 55
<cc> . 55
<bcc> . 56
<from>. 56
<reply-to> . 56
<subject> . 56
<message> . 56
<stylesheet> . 57
4

<template> . 57
<filename> . 57
<replacement-data> . 57
<resource> . 57
<attachment> . 57

F Data Flow Scenario for a New Employee 59
Subscriber Channel Configuration . 59
Publisher Channel Configuration . 59
Description of Data Flow. 60

G Custom Element Handlers for the Subscriber Channel 71
Constructing URLs for Use with the Publisher Channel Web Server . 71
Constructing Message Documents by Using Stylesheets and Template Documents. 72
SampleCommandHandler.java . 72

Compiling the SampleCommandHandler Class. 72
Trying the SampleCommandHandler Class . 72

H Custom Servlets for the Publisher Channel 73
Using the Publisher Channel . 73
Authentication . 73
SampleServlet.java . 73

Compiling the SampleServlet Class. 74
Trying the SampleServlet Class . 74
5

6

About this Book and the Library

The Identity Manager Driver for Active Directory Implementation Guide provides information about
configuring and using the Manual Task Service driver for NetIQ Identity Manager.

Intended Audience
This book provides information for individuals responsible for understanding administration concepts
and implementing a secure, distributed administration model.

Other Information in the Library
For more information about the library for Identity Manager, see the following resources:

Identity Manager documentation website (https://www.netiq.com/documentation/identity-
manager-47/)
Identity Manager drivers documentation website (https://www.netiq.com/documentation/identity-
manager-47-drivers/)
About this Book and the Library 7

https://www.netiq.com/documentation/identity-manager-47-drivers/
https://www.netiq.com/documentation/identity-manager-47/

8 About this Book and the Library

About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in your
environment: Change, complexity and risk—and how we can help you control them.

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster
We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios in
which IT organizations like yours operate—day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion
We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and you
need someone that is truly easy to work with—for a change. Ultimately, when you succeed, we
all succeed.

Our Solutions
Identity & Access Governance
Access Management
Security Management
Systems & Application Management
Workload Management
Service Management
About NetIQ Corporation 9

Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. The documentation for this product is
available on the NetIQ Web site in HTML and PDF formats on a page that does not require you to log
in. If you have suggestions for documentation improvements, click Add Comment at the bottom of
any page in the HTML version of the documentation posted at www.netiq.com/documentation. You
can also email Documentation-Feedback@netiq.com. We value your input and look forward to
hearing from you.

Contacting the Online User Community
NetIQ Communities, the NetIQ online community, is a collaborative network connecting you to your
peers and NetIQ experts. By providing more immediate information, useful links to helpful resources,
and access to NetIQ experts, NetIQ Communities helps ensure you are mastering the knowledge you
need to realize the full potential of IT investments upon which you rely. For more information, visit
community.netiq.com.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
10 About NetIQ Corporation

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com

1 1Understanding the Manual Task Service
Driver

The Manual Task Service driver is designed to notify one or more users that a data event has
occurred and whether any action is required on the users’ part. In an employee provisioning scenario,
the data event might be the creation of a new User object and the user action might include assigning
an office number by entering data into eDirectory or by entering data in an application. Other
scenarios include notifying an administrator that a new user object has been created or notifying an
administrator that a user has changed data on an object.

This section contains information about how the driver works.

“Modes of Operation” on page 11
“How E-Mail Messages and Web Pages Are Created by the Manual Task Service Driver” on
page 12
“Templates” on page 13
“Replacement Tokens” on page 15
“Replacement Data” on page 15
“Template Action Elements” on page 16
“Subscriber Channel E-Mail” on page 16
“Publisher Channel Web Server” on page 17

Modes of Operation
Two primary modes of operation are supported:

Direct Request for Data: An e-mail message is sent requesting that a user enter data into
eDirectory (possibly for consumption by another application). The e-mail recipient responds to
the message by clicking a URL in the message. The URL points to the Web server running in the
Publisher channel of the Manual Task Service driver. The user then interacts with dynamic Web
pages generated by the Web server to authenticate to eDirectory and to enter the requested
data.
Event Notification: An e-mail message is sent to a user without involving the Publisher
channel. The e-mail message might simply be notification that something occurred in eDirectory,
or it might be a request for data through a method other than the Publisher channel's Web
server, such as Novell iManager, another application, or a custom interface.

The following sections provide examples for each of these modes:

“Example: Subscriber Channel E-Mail, Publisher Channel Web Server Response” on page 12
“Example: Subscriber Channel E-Mail, No Publisher Channel Response” on page 12
Understanding the Manual Task Service Driver 11

Example: Subscriber Channel E-Mail, Publisher Channel
Web Server Response
The following is an employee provisioning example scenario in which a new employee's manager
assigns the employee a room number:

1. A new User object is created in eDirectory (for example, by the Identity Manager driver for the
company's HR system).

2. The Manual Task Service driver Subscriber channel sends an SMTP message to the user's
manager and to the manager's assistant. The SMTP message contains a URL that refers to the
Publisher channel Web server. The URL also contains data items identifying the user and
identifying those authorized to submit the requested data.

3. The manager or the manager's assistant clicks the URL in the e-mail message to display an
HTML form in a Web browser. The manager or assistant then does the following:

Selects the DN for his or her eDirectory User object to identify who is responding to the e-
mail message.
Enters his or her eDirectory password.
Enters the room number for the new employee.
Clicks the Submit button.

4. The room number for the new employee is submitted to eDirectory via the Manual Task Service
driver Publisher channel.

Example: Subscriber Channel E-Mail, No Publisher Channel
Response
The following is an example scenario in which a new employee's manager assigns the employee a
computer in an asset management system:

1. A new User object is created in eDirectory by the Identity Manager driver for the company's HR
system.

2. The Manual Task Service driver Subscriber channel sends an SMTP message to the user's
manager and to the manager's assistant. The SMTP message contains instructions for entering
data into the asset management system.

3. The manager or assistant enters data into the asset management system.
4. (Optional) The computer identification data is brought into eDirectory via an Identity Manager

driver for the asset management system.

How E-Mail Messages and Web Pages Are Created by
the Manual Task Service Driver

E-mail messages, HTML Web pages, and XDS documents can all be considered documents. The
Manual Task Service driver creates documents dynamically, based on information supplied to the
driver.

Templates are XML documents that contain the boilerplate or fixed portions of a document together
with replacement tokens that indicate where the dynamic, or replacement, portions of the constructed
document appear.
12 Understanding the Manual Task Service Driver

Both the Subscriber channel and the Publisher channel of the Manual Task Service driver use
templates to create documents. The Subscriber channel creates e-mail messages and the Publisher
channel creates Web pages and XDS documents.

The dynamic portion of a document is supplied via replacement data. Replacement data on the
Subscriber channel is supplied by the Subscriber channel policies, such as the Command
Transformation policy. Replacement data on the Publisher channel is supplied by HTTP data to the
Web server (both URL data and HTTP POST data). The Manual Task Service driver can
automatically supply certain data known to the Manual Task Service driver, such as the Web server
address.

The templates are processed by XSLT style sheets. These template-processing style sheets are
separate from style sheets used as policies in the Subscriber or Publisher channels.

The replacement data is supplied as a parameter to the XSLT style sheet. The output of the style
sheet processing is an XML, HTML, or text document that is used as the body of an e-mail message,
as a Web page, or as a submission to Identity Manager on the Publisher channel.

Replacement data is passed from the Subscriber channel to the Publisher channel via a URL in the e-
mail message. The URL contains a query portion that contains the replacement data items.

The Manual Task Service driver ships with predefined style sheets sufficient to process templates in
order to create e-mail documents, HTML documents, and XDS documents. Other custom style
sheets can be written to provide additional processing options.

An advanced method of creating documents is also available, which uses only an XSLT style sheet
and replacement data. No template is involved. However, this guide assumes the template method is
used because the template method is easier to configure and maintain without XSLT programming
knowledge.

Templates
Templates are XML documents that are processed by a style sheet in order to generate an output
document. The output document can be XML, HTML, or plain text (or anything else that can be
generated through XSLT).

Templates are used in the Manual Task Service driver to generate e-mail message text on the
Subscriber channel, and to generate dynamic Web pages and XDS documents on the Publisher
channel.

Templates contain text, elements, and replacement tokens. Replacement tokens are replaced in the
output document by data supplied to the style sheet processing the template.

Several examples of templates for various purposes follow. In the examples, the replacement tokens
are the character strings that are between two $ characters.

Templates can also contain action elements. Action elements are control elements interpreted by the
template-processing style sheet. Action elements are described in Appendix D, “Template Action
Elements,” on page 51.

The following example template is used to generate an HTML e-mail message body:
Understanding the Manual Task Service Driver 13

<html xmlns:form="http://www.novell.com/dirxml/manualtask/form">
<head></head>
<body>
Dear $manager$,<p/>
<p>
This message is to inform you that your new employee $given-name$ $surname$
has been hired.
<p>
You need to assign a room number for this individual. Click Here</
a> to do this.
</p>
<p>
Thank you,

HR Department
</p>
</body>
</html>

The following example template is used to generate a plain text e-mail message body:

<form:text xmlns:form="http://www.novell.com/dirxml/manualtask/form">
Dear $manager$,

This message is to inform you that your new employee $given-name$ $surname$ has been
hired.

You need to assign a room number for this individual. Use the following link to do
this:

url

Thank you,

The HR Department

</form:text>

The <form:text> element is required because templates must be XML documents. The
<form:text> element is stripped as part of the template processing.

The following template is used to generate an HTML form used as a Web page for entering data:

<html xmlns:form="http://www.novell.com/dirxml/manualtask/form">
<head>
<title>Enter room number for $subject-name$</title>
</head>
<body>
 <link href="novdocmain.css" rel="style sheet" type="text/css"/>

 <form class="myform" METHOD="POST" ACTION="$url-base$/process_template.xsl">
 <table cellpadding="5" cellspacing="10" border="1" align="center">
 <tr><td>
 <input TYPE="hidden" name="template" value="post_form.xml"/>
 <input TYPE="hidden" name="subject-name" value="$subject-name$"/>
 <input TYPE="hidden" name="association" value="$association$"/>
 <input TYPE="hidden" name="response-style sheet"
value="process_template.xsl"/>
 <input TYPE="hidden" name="response-template" value="post_response.xml"/>
 <input TYPE="hidden" name="auth-style sheet"
value="process_template.xsl"/>
 <input TYPE="hidden" name="auth-template" value="auth_response.xml"/>
14 Understanding the Manual Task Service Driver

 <input TYPE="hidden" name="protected-data" value="$protected-data$"/>
 You are:

 <form:if-single-item name="responder-dn">
 <input TYPE="hidden" name="responder-dn" value="$responder-dn$"/>
 $responder-dn$
 </form:if-single-item> <form:if-multiple-items name="responder-dn">
<form:menu name="responder-dn"/> </form:if-multiple-items>
 </td></tr>
 <tr><td>
 Enter your password:

<input name="password" TYPE="password" SIZE="20" MAXLENGTH="40"/>
 </td></tr>
 <tr><td>
 Enter room number for $subject-name$:

 <input TYPE="text" NAME="room-number" SIZE="20" MAXLENGTH="20"
value="$query:roomNumber$"/>
 </td></tr>
 <tr><td>
 <input TYPE="submit" value="Submit"/> <input TYPE="reset" value="Clear"/>
 </td></tr>
 </table>
 </form>
 </body>
</html>

The following template is used to generate an XDS document:

<nds>
 <input>
 <modify class-name="User" src-dn="not-applicable">
 <association>$association$</association>
 <modify-attr attr-name="roomNumber">
 <remove-all-values/>
 <add-value>
 <value>$room-number$</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

Replacement Tokens
The items delimited by $ in the above example templates are replacement tokens. For example,
$manager$ is replaced by the manager's actual name.

Replacement tokens can appear either in text or in XML attribute values (note the href value on the
<a> element in the first example above).

Replacement Data
Replacement data consists of strings that take the place of replacement tokens in the output
document generated from a template. Replacement data is either supplied by Subscriber channel
data, Publisher channel HTTP data, or it is supplied automatically by the driver. An additional type of
replacement data is data retrieved from eDirectory via Identity Manager (query data). Replacement
data is more fully described in Appendix B, “Replacement Data,” on page 43.
Understanding the Manual Task Service Driver 15

Subscriber channel data: Subscriber channel replacement data is of two types. The first type is
used as replacement values for replacement tokens in templates for creating e-mail messages. The
second type is placed in the query portion of a URL so that the data is available for use on the
Publisher channel when the URL is submitted to the Publisher's Web server.

HTTP data: Replacement data is supplied to the Publisher channel Web server as URL query string
data, HTTP POST data, or both.

Automatic data: The Manual Task Service driver supplies automatic data. Automatic data items are
described in Appendix C, “Automatic Replacement Data Items,” on page 49.

Query data: Replacement tokens that start with query: are considered to be requests to obtain
current data from eDirectory. The portion of the token that follows query: is the name of an eDirectory
object attribute. The object to query is specified by one of the replacement data items association,
src-dn, or src-entry-id. The items are considered in the order presented in the preceding
sentence.

Template Action Elements
Action elements are namespace-qualified elements in the template that are used for simple logic
control or that are used to create HTML elements for HTML forms. The namespace used to qualify
the elements is http://www.novell.com/dirxml/manualtask/form. In this document and in the sample
templates supplied with the Manual Task Service driver, the prefix used is form.

Action elements are described in detail in Appendix D, “Template Action Elements,” on page 51.

Subscriber Channel E-Mail
The Subscriber channel of the Manual Task Service driver is designed to send e-mail messages. To
accomplish this, the driver supports a custom XML element named <mail>. Policies on the
Subscriber channel construct a <mail> element in response to some eDirectory event, such as the
creation of a user. An example <mail> element appears below:

<mail src-dn="\PERIN-TAO\novell\Provo\Joe">
 <to>JStanley@novell.com</to>
 <cc>carol@novell.com</cc>
 <reply-to>HR@novell.com</reply-to>
 <subject>Room Assignment Needed for: Joe the Intern</subject>
 <message mime-type="text/html">
 <stylesheet>process_template.xsl</stylesheet>
 <template>html_msg_template.xml</template>
 <replacement-data>
 <item name="manager">JStanley</item>
 <item name="given-name">Joe</item>
 <item name="surname">The Intern</item>
 <url-data>
 <item name="file">process_template.xsl</item>
 <url-query>
 <item name="template">form_template.xml</item>
 <item name="responder-dn" protect="yes">\PERIN-TAO\big-org\phb</item>
 <item name="responder-dn" protect="yes">\PERIN-TAO\big-org\carol</item>
 <item name="subject-name">Joe The Intern</item>
 </url-query>
 </url-data>
 </replacement-data>
 <resource cid="css-1">novdocmain.css</resource>
16 Understanding the Manual Task Service Driver

 </message>
 <message mime-type="text/plain">
 <stylesheet>process_text_template.xsl</stylesheet>
 <template>txt_msg_template.xml</template>
 <replacement-data>
 <item name="manager">JStanley</item>
 <item name="given-name">Joe</item>
 <item name="surname">The Intern</item>
 <url-data>
 <item name="file">process_template.xsl</item>
 <url-query>
 <item name="template">form_template.xml</item>
 <item name="responder-dn" protect="yes">\PERIN-TAO\big-org\phb</item>
 <item name="responder-dn" protect="yes">\PERIN-TAO\big-org\carol</item>
 <item name="subject-name">Joe The Intern</item>
 </url-query>
 </url-data>
 </replacement-data>
 </message>
 <attachment>HR.gif</attachment>
</mail>

The Subscriber channel of the Manual Task Service driver uses the information contained in the
<mail> element to construct an SMTP e-mail message. A URL can be constructed and inserted into
the e-mail message through which the e-mail recipient can respond to the e-mail message. The URL
can point to the Publisher channel Web server or it can point to some other Web server.

The <mail> element and its content are described in detail in Appendix E, “<mail> Element,” on
page 55.

Publisher Channel Web Server
The Publisher channel of the Manual Task Service driver runs a Web server configured so that users
can enter data into eDirectory through a Web browser. The Web server is designed to work in
conjunction with e-mail messages sent from the Subscriber channel of the Manual Task Service
driver.

The Publisher channel Web server can serve static files and dynamic content. Examples of static files
are .css style sheets, images, etc. Examples of dynamic content are Web pages that change based
on the replacement data contained in the URL or HTTP POST data.

The Publisher channel Web server is normally configured to allow a user to enter data into eDirectory
in response to an e-mail that was sent by the Subscriber channel. A typical user interaction with the
Web server is as follows:

1. The user uses a Web browser to submit the URL from the e-mail message to the Web server.
The URL specifies the style sheet, template, and replacement data used to create a dynamic
Web page (typically containing an HTML form).

2. The Web server creates an HTML page by processing the template with the style sheet and
replacement data. The HTML page is returned to the user’s Web browser as the resource
referred to by the URL.

3. The browser displays the HTML page and the user enters the requested information.
4. The browser sends an HTTP POST request containing the entered information as well as other

information that originated from the e-mail URL. The DN of the user responding to the e-mail and
the user’s password must be in the POST data.
Understanding the Manual Task Service Driver 17

5. The Web server uses the user’s DN and password to authenticate. If the authentication fails,
then a Web page containing a failure message is returned as the result of the POST request.
The failure message can be constructed by using a style sheet and template specified in the
POST data. If authentication succeeds, processing continues.

6. The Web server constructs an XDS document by using a style sheet and template specified in
the POST data. The XDS document is submitted to Identity Manager on the Publisher channel.

7. The result of the XDS document submission, together with a style sheet and template specified
in the POST data, is used to construct a Web page indicating to the user the result of the data
submission. This Web page is sent to the browser as the result of the POST request.
18 Understanding the Manual Task Service Driver

2 2Installing Driver Files

By default, the Manual Task Service driver files are installed on the Metadirectory server at the same
time as the Metadirectory engine. The installation program extends the Identity Vault’s schema and
installs both the driver shim and the driver configuration files. It does not create the driver in the
Identity Vault (see Chapter 3, “Creating a New Driver Object,” on page 21) or upgrade an existing
driver’s configuration (see Chapter 4, “Upgrading an Existing Driver,” on page 25)

If you performed a custom installation and did not install the driver on the Metadirectory server, you
have two options:

Install the files on the Metadirectory server, using the instructions in “Implementation Checklist”
in the NetIQ Identity Manager Setup Guide for Linux or “Implementation Checklist” in the NetIQ
Identity Manager Setup Guide for Windows.
Install the Remote Loader (required to run the driver on a non-Metadirectory server) and the
driver files on a non-Metadirectory server where you want to run the driver. See Configuring the
Remote Loader and Drivers in the NetIQ Identity Manager Setup Guide for Linux or Configuring
the Remote Loader and Drivers in the NetIQ Identity Manager Setup Guide for Windows.
Installing Driver Files 19

https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_linux/setup_linux.pdf#implementationchecklist
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_windows/setup_windows.pdf#b16vp2mz
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_windows/setup_windows.pdf#front
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_linux/setup_linux.pdf#configuringremoteloaderanddrivers
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_linux/setup_linux.pdf#configuringremoteloaderanddrivers
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_linux/setup_linux.pdf#front
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_windows/setup_windows.pdf#b18xta1v
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/setup_windows/setup_windows.pdf#front

20 Installing Driver Files

3 3Creating a New Driver Object

After the Manual Task Service driver files are installed on the server where you want to run the driver
(see Chapter 2, “Installing Driver Files,” on page 19), you can create the driver in the Identity Vault.
You do so by importing the driver configuration file and then modifying the driver configuration to suit
your environment.

The driver provides four basic driver configuration files:

Access Request
Cellphone Request
Room Number Request
Welcome E-mail

The configuration files include the filters and policies needed to implement each scenario. If you have
a different scenario you want to implement, you should select the basic configuration that most
closely resembles your desired scenario and modify it as needed.

The following sections provide instructions for creating a new driver:

“Creating the Driver Object in Designer” on page 21
“Activating the Driver” on page 23

Creating the Driver Object in Designer
You create the Manual Task Service driver object by importing the driver’s basic configuration file and
then modifying the configuration to suit your environment. After you create and configure the driver,
you need to deploy it to the Identity Vault and start it.

“Importing the Driver Configuration File” on page 21
“Configuring the Driver Object” on page 22
“Deploying the Driver Object” on page 22
“Starting the Driver” on page 23

Importing the Driver Configuration File
1 In Designer, open your project.
2 In the Modeler, right-click the driver set where you want to create the driver, then select New >

Driver to display the Driver Configuration Wizard.
3 In the Driver Configuration list, select the desired Manual Task Driver configuration file (Access

Request, Cellphone Request, Room Number Request, or Welcome Email), then click Run.
The configuration files include the filters and policies needed to implement each scenario. If you
have a different scenario you want to implement, you should select the basic configuration that
most closely resembles your desired scenario and modify it as needed.

4 On the Import Information Requested page, fill in the following fields:
Driver Name: Specify a name that is unique within the driver set.
Creating a New Driver Object 21

Driver is Local/Remote: Select Local if this driver will run on the Metadirectory server without
using the Remote Loader service. Select Remote if you want the driver to use the Remote
Loader service, either locally on the Metadirectory server or remotely on another server.

5 (Conditional) If you chose to run the driver remotely, click Next, then fill in the fields listed below.
Otherwise, skip to Step 6.
Remote Host Name and Port: Specify the host name or IP address of the server where the
driver’s Remote Loader service is running.
Driver Password: Specify the driver object password that is defined in the Remote Loader
service. The Remote Loader requires this password to authenticate to the Metadirectory server.
Remote Password: Specify the Remote Loader’s password (as defined on the Remote Loader
service). The Metadirectory engine (or Remote Loader shim) requires this password to
authenticate to the Remote Loader

6 Click Next to import the driver configuration.
At this point, the driver is created from the basic configuration file. To ensure that the driver
works the way you want it to for your environment, you must review and modify (if necessary) the
driver’s default configuration settings.

7 To review or modify the default configuration settings, click Configure, then continue with the
next section, Configuring the Driver Object.
or
To skip the configuration settings at this time, click Close. When you are ready to configure the
settings, continue with the next section, Configuring the Driver Object.

Configuring the Driver Object
There are many settings, policies, and templates that you use to configure and optimize the driver
object. The ones you use depend on what you are trying to accomplish with the driver.

The driver settings, policies, and templates are explained in Appendix A, “Driver Settings, Policies,
and Templates,” on page 33.

After you configure the driver, it must by deployed. Continue with the next section, Deploying the
Driver Object.

Deploying the Driver Object
After the driver object is created in Designer, it must be deployed into the Identity Vault.

1 In Designer, open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Live > Deploy.
3 If you are authenticated to the Identity Vault, skip to Step 5; otherwise, specify the following

information:
Host: Specify the IP address or DNS name of the server hosting the Identity Vault.
Username: Specify the DN of the user object used to authenticate to the Identity Vault.
Password: Specify the user’s password.

4 Click OK.
5 Read the deployment summary, then click Deploy.
6 Read the message, then click OK.
7 Click Define Security Equivalence to assign rights to the driver.
22 Creating a New Driver Object

The driver requires rights to objects within the Identity Vault and to the input and output
directories on the server. The Admin user object is most often used to supply these rights.
However, you might want to create a DriversUser (for example) and assign security equivalence
to that user. Whatever rights that the driver needs to have on the server, the DriversUser object
must have the same security rights.
7a Click Add, then browse to and select the object with the correct rights.
7b Click OK twice.

For more information about defining a Security Equivalent User in objects for drivers in the
Identity Vault, see “Establishing a Security Equivalent User” in the Identity Manager Security
Guide.

8 Click Exclude Administrative Roles to exclude users that should not be synchronized.
You should exclude any administrative User objects (for example, Admin and DriversUser) from
synchronization.
8a Click Add, then browse to and select the user object you want to exclude.
8b Click OK.
8c Repeat Step 8a and Step 8b for each object you want to exclude.
8d Click OK.

9 Click OK.

Starting the Driver
When a driver is created, it is stopped by default. To make the driver work, you must start the driver
and cause events to occur. Identity Manager is an event-driven system, so after the driver is started,
it won’t do anything until an event occurs.

To start the driver:

1 In Designer, open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Live > Start Driver.

For information about management tasks with the driver, see Chapter 5, “Managing the Driver,” on
page 29.

Activating the Driver
The Identity Manager driver for Manual Task does not need a separate activation. If you create the
driver in a driver set where you have already activated the Identity Manager server and service
drivers, the driver inherits the activation from the driver set.

If you create the driver in a driver set that has not been previously activated, the driver will run in the
evaluation mode for 90 days. You must activate the driver during the evaluation period; otherwise, the
driver will be disabled. If you try to run the driver, the trace displays an error message indicating that
you need to reactivate the driver to use it. For information on activation, refer to Activating Identity
Manager in the NetIQ Identity Manager Overview and Planning Guide.
Creating a New Driver Object 23

https://www.netiq.com/documentation/identity-manager-47/pdfdoc/idm_overview_planning/idm_overview_planning.pdf#activatingidentitymanager
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/idm_overview_planning/idm_overview_planning.pdf#activatingidentitymanager
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/idm_overview_planning/idm_overview_planning.pdf#frontoverviewandplanning
https://www.netiq.com/documentation/idm402/idm_security/?page=/documentation/idm402/idm_security/data/front.html
https://www.netiq.com/documentation/idm402/idm_security/?page=/documentation/idm402/idm_security/data/front.html

24 Creating a New Driver Object

4 4Upgrading an Existing Driver

The following sections provide information to help you upgrade an existing driver to version 4.5:

“Supported Upgrade Paths” on page 25
“What’s New in Version 4.0.0.1” on page 25
“Upgrading the Driver” on page 25

Supported Upgrade Paths
You can upgrade from any 3.x version of the Manual Task Service driver. Upgrading a pre-3.x version
of the driver directly to version 4.0 or later is not supported.

What’s New in Version 4.0.0.1
This version of the driver does not include any new features.

Upgrading the Driver
The driver upgrade process involves upgrading the installed driver packages and updating the driver
files.

This section provides general instructions for updating a driver. For information about updating the
driver to a specific version, search for that driver patch in the NetIQ Patch Finder Download Page and
follow the instructions from the Readme file accompanying the driver patch release.

“Upgrading the Installed Packages” on page 25
“Applying the Driver Patch” on page 26

Upgrading the Installed Packages
1 Download the latest available packages.

To configure Designer to automatically read the package updates when a new version of a
package is available, click Windows > Preferences > NetIQ > Package Manager > Online
Updates in Designer. However, if you need to add a custom package to the Package Catalog,
you can import the package .jar file.

2 Upgrade the installed packages.
2a Open the project containing the driver.
2b Right-click the driver for which you want to upgrade an installed package, then click Driver >

Properties.
2c Click Packages.

If there is a newer version of a package, there is check mark displayed in the Upgrades
column.
Upgrading an Existing Driver 25

http://download.novell.com/patch/finder/#bu=novell&bu=netiq&bu=suse&familyId=7365&productId=45026&dateRange=&startDate=&endDate=&priority=&architecture=&keywords=&xf=7365

2d Click Select Operation for the package that indicates there is an upgrade available.
2e From the drop-down list, click Upgrade.
2f Select the version that you want to upgrade to, then click OK.

NOTE: Designer lists all versions available for upgrade.

2g Click Apply.
2h (Conditional) Fill in the fields with appropriate information to upgrade the package, then click

Next.
Depending on which package you selected to upgrade, you must fill in the required
information to upgrade the package.

2i Read the summary of the packages that will be installed, then click Finish.
2j Review the upgraded package, then click OK to close the Package Management page.

For detailed information, see the Upgrading Installed Packages in NetIQ Designer for
Identity Manager Administration Guide.

Applying the Driver Patch
The driver patch updates the driver files. You can install the patch as a root or non-root user.

“Prerequisites” on page 26
“Applying the Patch as a Root User” on page 26
“Applying the Patch as a Non-Root User” on page 27

Prerequisites
Before installing the patch, complete the following steps:

1 Take a back-up of the current driver configuration.
2 (Conditional) If the driver is running with the Identity Manager engine, stop the Identity Vault and

the driver instance.
3 (Conditional) If the driver is running with a Remote Loader instance, stop the Remote Loader

instance and the driver instance.
4 In a browser, navigate to the NetIQ Patch Finder Download Page.
5 Under Patches, click Search Patches.
6 Specify Identity Manager nn Manual Task Driver nn in the search box.
7 Download and unzip the contents of the patch file to a temporary location on your server.

For example, IDM45_MT_4001.tar.gz.

Applying the Patch as a Root User
In a root installation, the driver patch installs the driver files RPMs in the default locations on Linux.
On Windows, you need to manually copy the files to the default locations.

1 Ensure that you have completed the prerequisites for installing the patch. For more information,
see “Prerequisites” on page 26.

2 On the server where you want run the patch, log in as root.
26 Upgrading an Existing Driver

https://www.netiq.com/documentation/identity-manager-47/pdfdoc/designer_admin/designer_admin.pdf#packmanupgrade
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/designer_admin/designer_admin.pdf#bookinfo
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/designer_admin/designer_admin.pdf#bookinfo
http://download.novell.com/patch/finder/#bu=novell&bu=netiq&bu=suse&familyId=7365&productId=45026&dateRange=&startDate=&endDate=&priority=&architecture=&keywords=&xf=7365

3 Depending on your platform, perform one of the following actions:
Linux: Run the following command in a terminal window:
rpm -Uvh <Driver Patch File Temporary Location>/linux/novell-DXMLmtask.rpm

For example, rpm -U <IDM45_MT_4001.tar.gz>novell-DXMLmtask.rpm
Windows: Navigate to the <Extracted Driver Patch File Temporary
Location>\windows folder and copy the following files to your driver installation folder:

ManualTaskServiceBase.jar

ManualTaskServiceShim.jar
For example, <IdentityManager installation>\NDS\lib or <IdentityManager
installation>\RemoteLoader\<architecture>\lib.

4 (Conditional) If the driver is running locally, start the Identity Vault and the driver instance.
5 (Conditional) If the driver is running with a Remote Loader instance, start the Remote Loader

and the driver instance.

Applying the Patch as a Non-Root User
1 Verify that <non-root eDirectory location>/rpm directory exists and contains the file,

_db.000.
The _db.000 file is created during a non-root installation of the Identity Manager engine.
Absence of this file might indicate that Identity Manager is not properly installed. Reinstall
Identity Manager to correctly place the file in the directory.

2 To set the root directory to non-root eDirectory location, enter the following command in the
command prompt:

ROOTDIR=<non-root eDirectory location>

This will set the environmental variables to the directory where eDirectory is installed as a non-
root user.

3 To install the driver files, enter the following command:

rpm --dbpath $ROOTDIR/rpm -Uvh --relocate=/usr=$ROOTDIR/opt/novell/eDirectory
--relocate=/etc=$ROOTDIR/etc --relocate=/opt/novell/eDirectory=$ROOTDIR/opt/
novell/eDirectory --relocate=/opt/novell/dirxml=$ROOTDIR/opt/novell/dirxml --
relocate=/var=$ROOTDIR/var --badreloc --nodeps --replacefiles <rpm-location>

For example, to install the Manual Task driver RPM, use this command:

rpm --dbpath $ROOTDIR/rpm -Uvh --relocate=/usr=$ROOTDIR/opt/novell/eDirectory
--relocate=/etc=$ROOTDIR/etc --relocate=/opt/novell/eDirectory=$ROOTDIR/opt/
novell/eDirectory --relocate=/opt/novell/dirxml=$ROOTDIR/opt/novell/dirxml --
relocate=/var=$ROOTDIR/var --badreloc --nodeps --replacefiles /home/user/
novell-DXMLmtask.rpm
Upgrading an Existing Driver 27

28 Upgrading an Existing Driver

5 5Managing the Driver

As you work with the Manual Task Service driver, there are a variety of management tasks you might
need to perform, including the following:

Starting and stopping the driver
Viewing driver version information
Using Named Passwords to securely store passwords associated with the driver
Monitoring the driver’s health status
Backing up the driver
Inspecting the driver’s cache files
Viewing the driver’s statistics
Using the DirXML Command Line utility to perform management tasks through scripts
Securing the driver and its information

Because these tasks, as well as several others, are common to all Identity Manager drivers, they are
included in one reference, the NetIQ Identity Manager Driver Administration Guide.
Managing the Driver 29

https://www.netiq.com/documentation/identity-manager-47/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

30 Managing the Driver

6 6Troubleshooting

“Troubleshooting Driver Processes” on page 31

Troubleshooting Driver Processes
Viewing driver processes is necessary to analyze unexpected behavior. To view the driver processing
events, use DSTrace. You should only use it during testing and troubleshooting the driver. Running
DSTrace while the drivers are in production increases the utilization on the Identity Manager server
and can cause events to process very slowly. For more information, see “Viewing Identity Manager
Processes” in the NetIQ Identity Manager Driver Administration Guide.
Troubleshooting 31

https://www.netiq.com/documentation/identity-manager-47/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/driver_admin/driver_admin.pdf#b1rc1vm
https://www.netiq.com/documentation/identity-manager-47/pdfdoc/driver_admin/driver_admin.pdf#Bktitle

32 Troubleshooting

A ADriver Settings, Policies, and
Templates

Configuring the Manual Task Service driver usually consists of configuring two separate but related
subsystems: the Subscriber channel policies and e-mail templates, and the Publisher channel Web
server templates and policies.

In addition, driver configuration settings such as the SMTP server name and Web server port number
must be configured.

“Driver Settings” on page 33
“Subscriber Settings” on page 36
“Publisher Settings” on page 36
“Subscriber Channel Policies” on page 37
“Subscriber Channel E-Mail Templates” on page 38
“Publisher Channel Policies” on page 39
“Publisher Channel Web Page Templates” on page 39
“Publisher Channel XDS Templates” on page 40
“Trace Settings” on page 40

Driver Settings
This section describes the Driver Configuration parameters.

Many of these parameters are actually for the Publisher channel Web server. They appear in the
Driver Settings area because the Manual Task Service driver Subscriber channel also needs access
to them.

“DN of the Document Base” on page 34
“Document Directory” on page 34
“Use HTTP Server (true|false)” on page 34
“HTTP IP Address or Host Name” on page 34
“HTTP Port” on page 35
“Name of KMO” on page 35
“Name of Keystore File” on page 35
“Keystore Password” on page 35
“Name of Certificate (key alias)” on page 35
“Certificate Password (key password)” on page 35
Driver Settings, Policies, and Templates 33

DN of the Document Base
This parameter is an eDirectory DN of a container object. The Manual Task Service driver can load
XML documents (including XSLT style sheets) from eDirectory as well as from disk. If XML
documents should be loaded from eDirectory, this parameter identifies the root container from which
documents are loaded.

Documents loaded from eDirectory reside in the attribute value of an eDirectory object. If unspecified,
the attribute is XmlData. The attribute can be specified by appending a # character followed by the
attribute name to the name of the object containing the document.

For example, suppose that the document base DN is specified to be novell\Manual Task Documents
and that there is a container under Manual Task Documents named templates.

If a DirXML-Style Sheet object named e-mail _template resides under the templates directory, then
the following resource identifiers can be used to refer to the XML document: templates/e-mail
_template or templates/e-mail _template#XmlData.

The resource identifiers can be supplied as replacement data, URL data, or HTTP POST data. For
example, the following element might appear under a <message> element on the Subscriber channel:

<template>templates/e-mail _template#XmlData</template>

Document Directory
This parameter identifies a file system directory that is used as the base directory for locating
resources such as templates, XSLT style sheets, and other file resources served by the Publisher
channel Web server. Example values are:

Use HTTP Server (true|false)
This parameter indicates whether the Publisher channel should run a Web server or not. Set the
parameter to True if the Web server should run, or False if the Web server should not run.

If the Manual Task Service driver is only used for sending e-mail with no response URL, or with a URL
that points to another application, then the HTTP server should not run, to save system resources.

HTTP IP Address or Host Name
This parameter allows you to specify which multiple, local IP addresses the Publisher channel Web
server should us to listen for HTTP requests.

Leaving the HTTP IP address or hostname parameter value blank causes the Publisher channel Web
server to listen on the default IP address. For servers with a single IP address, this is sufficient.
Placing a dot-notation IP address as the parameter value causes the Publisher channel Web server
to listen for HTTP requests on the address specified.

The value specified for HTTP IP address or hostname is used by the Subscriber channel mail handler
to construct URLs if the hostname or address is not specified in the mail command element. If the
Use HTTP server parameter is set to False, the HTTP IP address or hostname can be used to specify
the address or name of a Web server to use in constructing URLs for mail messages.

Windows c:\Novell\Nds\mt_files

UNIX /usr/lib/dirxml/rules/manualtask/mt_files
34 Driver Settings, Policies, and Templates

HTTP Port
This parameter is an integer value indicating which TCP port the Publisher channel Web server
should listen on for incoming requests. If this value is not specified, the port number defaults to 80 or
443, depending on whether or not SSL is being used for the Web server connections.

If the Manual Task Service driver is running on the Identity Manager server (that is, it is not being run
under the Remote Loader on a remote machine) then the HTTP port should be set to something other
than 80 or 443. This is because iMonitor or another process typically uses ports 80 and 443.

Name of KMO
If it is not blank, this parameter is the name of an eDirectory Key Material Object that contains the
server certificate and key used for SSL by the Publisher channel Web server.

Setting this parameter causes the Publisher channel Web server to use SSL for servicing HTTP
requests.

This parameter takes precedence over any Java keystore parameters (see “Name of Keystore File”
on page 35.)

Using SSL is recommended for security reasons because eDirectory passwords are passed in HTTP
POST data when using the Publisher channel Web server.

Name of Keystore File
This parameter, together with the Keystore password, Name of certificate (key alias), and Certificate
password (key password), is used to specify a Java keystore file that contains a certificate and key
used for SSL by the Publisher channel Web server.

Setting this parameter causes the Publisher channel Web server to use SSL for servicing HTTP
requests.

If the Name of KMO parameter is set, this parameter and its associated parameters are ignored.

Using SSL is recommended for security reasons because eDirectory passwords are passed in HTTP
POST data when using the Publisher channel Web server.

Keystore Password
This parameter specifies the password for the Java keystore file specified with the Name of keystore
file parameter.

Name of Certificate (key alias)
This parameter specifies the name of the certificate to use in the Java keystore file specified with the
Name of keystore file parameter.

Certificate Password (key password)
This parameter specifies the password for the certificate specified using the Name of certificate (key
alias) parameter.
Driver Settings, Policies, and Templates 35

Subscriber Settings
“SMTP Server” on page 36
“SMTP Account Name” on page 36
“Default “From” Address” on page 36
“Additional Handlers” on page 36

SMTP Server
This parameter specifies the name of the SMTP server that the Subscriber channel uses to send e-
mail messages.

SMTP Account Name
If the SMTP server specified by using the SMTP server parameter requires authentication, this
parameter specifies the account name to use for authentication. The password used is the
Application password associated with the driver Authentication parameters.

Default “From” Address
If specified, this is an e-mail address used in the SMTP from field for e-mail messages sent by the
Subscriber channel. If this is not specified, then the <mail> elements sent to the Subscriber must
contain a <from> element.

A <from> element under <mail> elements sent to the Subscriber overrides this parameter.

Additional Handlers
If specified, this is a whitespace-separated list of Java class names. Each class name is a custom
class that implements the com.novell.nds.dirxml.driver.manualtask.CommandHandler interface and
handles a custom XDS element. The handler for <mail> is a built-in handler.

Additional information about custom handlers is available in Appendix G, “Custom Element Handlers
for the Subscriber Channel,” on page 71.

Publisher Settings
This section describes settings for the Publisher channel.

“Additional Servlets” on page 36

Additional Servlets
If non-blank, this is a whitespace-separated list of Java class names. Each class name is a custom
class that extends javax.servlet.http.HttpServer. Custom servlets can be used to extend the
functionality of the Publisher channel Web server.

Additional information about custom servlets is available in Appendix H, “Custom Servlets for the
Publisher Channel,” on page 73.
36 Driver Settings, Policies, and Templates

Subscriber Channel Policies
The configuration of the Subscriber channel policies depends on what a particular installation wants
to accomplish with the Manual Task Service driver. However, there are certain guidelines that might
be helpful.

In general, the best place to construct a <mail> element to send to the Subscriber is in the Command
Transformation policy. The reason for this is that most Metadirectory engine processing has been
completed by the time commands reach the Command Transformation policy. This means that
Create policies have been processed for Add events (allowing vetoing of Add events for objects that
don't have all the attributes necessary for constructing the e-mail, for example). This also means that
Modify events for objects without associations have already been converted to Add events.

The XSLT style sheet that constructs the e-mail message might or might not need to query eDirectory
for additional information.

For example, if the e-mail message is simply a welcome message to a new employee, the Add
command can contain all the information necessary: Given Name, Surname, and Internet E-mail
Address. This is accomplished by specifying in the Create policy that Given Name, Surname, and
Internet E-mail Address are required attributes. This ensures that only add commands that contain
the necessary information can reach the Command Transformation.

However, if the e-mail message is a message to the manager of an employee, the style sheet needs
to query eDirectory. The manager DN can be obtained from the Add event for the employee's User
object, but a query must be made to obtain the manager's e-mail address because that information is
an attribute of the manager's User object.

In addition, if e-mail notifications are being generated as the result of Modify commands for objects
that are associated with the driver, queries must be made to obtain information not contained in the
modify command.

“Blocking Commands from Reaching the Subscriber Channel” on page 37
“Generating E-Mail Messages” on page 38

Blocking Commands from Reaching the Subscriber
Channel
If e-mail messages are to be generated from events other than Add events, the Add events must be
allowed to reach the Subscriber channel for those objects that are to be monitored. Allowing Add
events to reach the Subscriber channel results in a generated association value being returned to
Identity Manager from the Subscriber channel.

It is important that eDirectory objects to be monitored by the Manual Task Service driver policies have
an association for the Manual Task Service driver. Only objects that have an association have Delete,
Rename, and Move events reported to the driver. In addition, Modify events on objects that do not
have an association are converted to Add events after the Subscriber channel event transformation.

All other commands (Modify, Move, Rename, and Delete) should be blocked by the Command
Transformation policy and prevented from reaching the Subscriber channel. The Subscriber channel
handles only Add commands and Mail commands. Other commands result in the Subscriber channel
returning an error.
Driver Settings, Policies, and Templates 37

Generating E-Mail Messages
E-mail messages are sent by the Subscriber in response to receiving a <mail> element that
describes the e-mail message to be sent. See Appendix E, “<mail> Element,” on page 55 for a
description of the <mail> element and its content.

E-mail messages can be generated in response to any Identity Manager event (Add, Modify,
Rename, Move, Delete).

The replacement data that is supplied with the <message> element children of a <mail> element
depends on two primary factors:

The template used to generate the message body. Replacement items to be used by the e-mail
template appear as children of the <replacement-data> element.
The information needed by the Web page templates on the Publisher channel if the e-mail is to
result in a response on the Publisher channel. Replacement items to be used by the Web page
templates appear as children of the <url-query> element, which is a child of <url-data>,
which in turn is a child of <replacement-data>.

If the e-mail message contains a URL that points to the Publisher channel Web server and is used to
solicit information from a user, the replacement data must contain at least one responder-dn item.
The values of the responder-dn items must be the DNs of the User objects of the users to which the
message is being sent.

If a query replacement token (see Section B, “Replacement Data,” on page 43) is used in the
template, then the replacement data for the <message> element must contain an item named src-dn,
src-entry-id, or association with the appropriate value. An association item can only be used if the
eDirectory object to be queried already has an association for the Manual Task Service driver. The
association generated by the Subscriber for unassociated objects cannot be used because it hasn't
been written to the eDirectory object when the query takes place.

The <message> element can specify the MIME type of the message body. If the MIME type is
specified but a style sheet is not specified (that is, there is no <stylesheet> element child of
<message>), one of two default style sheet names is used. If the MIME type is text/plain, the default
style sheet name is process_text_template.xsl. If the MIME type is anything other than text/plain,
the default style sheet name is process_template.xsl.

Subscriber Channel E-Mail Templates
E-mail templates are XML documents containing boilerplate and replacement tokens. E-mail
templates are used to generate e-mail message body text. See “Templates” on page 13 for general
information about templates.

The replacement tokens used in an e-mail template dictate the <item> elements that must be
supplied as children of the <replacement-data> element that is constructed by the Subscriber
channel policy that constructs the <mail> element. For example, if the e-mail template has the
replacement token $employee-name$, there must be an <item name="employee-name"> element in
the replacement data for the <message> element. If the employee name item is not present, the
resulting e-mail message body has no text in the location occupied by the replacement token in the
template.

E-mail templates can be used to generate message bodies that are plain text, HTML, or XML.
38 Driver Settings, Policies, and Templates

If an e-mail template generates a plain text message, it must be processed by a style sheet that
specifies plain text as its output type. If the style sheet does not specify plain text as its output type,
undesirable XML escaping occurs. The default Manual Task Service driver style sheet,
process_text_template.xsl, is normally used for processing templates that result in plain text.

Publisher Channel Policies
In most implementations of the Manual Task Service driver, no Publisher channel policies are
needed. This is because is it possible to construct the Web page and XDS templates so they result in
exactly the XDS required and the XDS doesn’t need additional processing by policies.

If policies are required, they are very specific to an installation.

Publisher Channel Web Page Templates
Web page templates are XML documents containing boilerplate and replacement tokens. Web page
templates are used to generate Web page documents (typically HTML documents). See “Templates”
on page 13 for general information about templates.

Replacement tokens in Web page templates dictate what replacement data is supplied as URL query
data on the Subscriber channel. Replacement data on the Publisher channel is obtained from the
URL query string for HTTP GET requests and from the URL query string and the POST data for
HTTP POST requests.

As an example of the flow of replacement data from the Subscriber channel to the e-mail message
and then to the Publisher channel Web server, consider the following scenario:

The Manual Task Service driver is configured so that a new employee's manager is asked to assign a
room number to the new employee. The trigger for the e-mail to the manager is the <add> command
for a new User object that is processed by the Subscriber channel Command Transformation policy.

When the manager clicks a URL in the e-mail message, a Web page is displayed in the manager's
Web browser. The Web page must indicate for whom the manager is entering a room number.

To accomplish this, the <url-query> element on the Subscriber channel contains a replacement
data item that identifies the new user by name:

<item name="subject-name">Joe the Intern</item>

This causes the URL query string to contain (among other things) “subject-
name=Joe%20the%20Intern”. The “%20” is a URL-encoded space.

The manager's Web browser submits the URL to the Publisher channel Web server when the
manager clicks the URL in the e-mail message. The Web server constructs a replacement data item
named subject-name with the value Joe the Intern.

The Web page template also specified by the URL contains a replacement token $subject-name$.
When the Web page template is processed by the style sheet to construct the Web page, the
replacement token is replaced by Joe the Intern, which customizes the Web page for the employee
whose User object creation caused the e-mail to be sent.

For additional information on a complete Subscriber-channel-to-Publisher-channel transaction, see
Appendix F, “Data Flow Scenario for a New Employee,” on page 59.
Driver Settings, Policies, and Templates 39

Publisher Channel XDS Templates
XDS templates are XML documents containing boilerplate and replacement tokens. XDS templates
are used to generate XDS documents that are submitted to Identity Manager on the Manual Task
Service driver's Publisher channel. See “Templates” on page 13 for general information about
templates.

Replacement tokens in XDS templates dictate some of the replacement data that is supplied to the
Web server as data in an HTTP POST request.

For example, consider the following XDS template:

<nds>
 <input>
 <modify class-name="User" src-dn="not-applicable">
 <association>$association$</association>
 <modify-attr attr-name="roomNumber">
 <remove-all-values/>
 <add-value>
 <value>$room-number$</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

The replacement tokens in the template dictate that the HTTP POST data must supply an association
value and a room-number value.

Normally, the association value would originate in the Subscriber channel. The Subscriber channel e-
mail would place association=value in the query string of the URL that is placed in the e-mail
message. The Web page template used to generate the Web page when the URL is submitted to the
Web server would typically place the association value in a hidden INPUT element:

<INPUT TYPE="hidden" NAME="association" VALUE="$association$"/>

Placing the association value as a hidden INPUT element causes the “association=value” pair to be
submitted as part of the HTTP POST data.

The room-number value is entered in the Web page by using an INPUT element similar to the
following:

<input TYPE="text" NAME="room-number" SIZE="20" MAXLENGTH="20"/>

If the manager enters 1234 and clicks Submit, the Web browser sends “room-number=1234” as part
of the HTTP POST data.

The Web server then generates an <item name="association"> replacement data item and an
<item name="room-number"> replacement data item that are used when processing the XDS
template.

The XDS document is generated by processing the XDS template with the style sheet specified in the
POST data, then the XDS document is submitted to Identity Manager on the Manual Task Service
driver's Publisher channel.

Trace Settings
The Manual Task Service driver outputs messages with various trace levels:
40 Driver Settings, Policies, and Templates

Level Trace Message Description

0 No trace messages

1 Single-line messages tracing basic operation

2 No additional messages (The Metadirectory engine traces XML documents at this level
and above)

3 No additional messages

4 Messages relating to document construction from templates and style sheets

5 Replacement data documents traced
Driver Settings, Policies, and Templates 41

42 Driver Settings, Policies, and Templates

B BReplacement Data

Replacement data is used with XML documents used as templates to construct e-mail messages,
Web pages, and XDS documents. The actual replacement is accomplished by processing the
template document with an XSLT style sheet that performs the replacement as part of constructing
the output document.

Replacement data is supplied to the Manual Task Service driver through different mechanisms on the
Subscriber and Publisher channels.

Subscriber Channel

Replacement data is supplied as part of the <mail> element.
Part of the supplied replacement data can be URL data. If URL data is supplied, it is processed
and completed and replaced by automatic data items (see Appendix C, “Automatic Replacement
Data Items,” on page 49).
If the <mail> element specifies that an association value should be constructed (that is, the
<mail> element has a src-dn attribute), an automatic data item named “association” is added to
the replacement data.

Publisher Channel

Replacement data is supplied in the HTTP URL data and HTTP POST data.
Automatic URL replacement data items are added to the replacement data before it is used in
template processing.

Replacement data is presented during template processing as an XML document. The replacement
data document is passed to the style sheet processing the template as a parameter named
replacement-data. If no template is used, the XML document is processed directly by the style sheet.

“Data Security” on page 43
“XML Elements” on page 44

Data Security
Data items are passed from the Subscriber channel to the Publisher channel via a URL contained in
the e-mail sent by the Subscriber channel. Changing certain data items in the URL represents a
security threat. For example, if the responder-dn values in the URL supplied by the Subscriber
channel in the URL are replaced by another user's DN in the URL submitted to the Publisher channel
Web server, it would allow an unauthorized user to change data in eDirectory.

To ensure that the data in the submitted URL is the same as the data originally supplied by the
Subscriber channel, protected data is provided. Protected data is data that cannot be changed for
security reasons. This data varies by configuration but always includes the responder-dn data items,
and data items corresponding to any eDirectory objects whose values are to be changed.
Replacement Data 43

Data items are protected by encrypting the original values and placing the encrypted values into a
URL query string. When the Publisher Web server receives the encrypted values, the Publisher
decrypts the values and uses them to compare the unencrypted data items that are supplied by an
HTTP GET or POST request.

If an instance of a data item appears in the encrypted data, then an unencrypted data item value must
match one of the encrypted data item values. If the unencrypted data item value does not match one
of the encrypted data item values, then the HTTP request is rejected by the Publisher channel Web
server.

In addition, any HTTP POST request that does not contain protected data is rejected.

Example
In an HTTP POST request, the Publisher channel Web server uses the unencrypted POST data
named responder-dn to check the password supplied by the POST data. This is done to authenticate
the responding user against the user's eDirectory object.

Suppose the Subscriber channel <url-query> element content specifies two data items as follows:

<item name="responder-dn" protect="yes">\PERIN-TAO\novell\phb</item>

<item name="responder-dn" protect="yes">\PERIN-TAO\novell\carol</item>

The URL generated by the Subscriber channel will contain both responder-dn values in the protected
data.

Suppose a malicious user obtains the URL that is generated and sent in an e-mail message. The
malicious user uses the URL to obtain the HTML form that allows users to change data for an
eDirectory object.

In the HTTP POST request that is submitted to the Web server, the malicious user uses his
eDirectory DN (responder-dn=\PERIN-TAO\novell\wally) as the unencrypted responder-dn value.
The malicious user also submits his own password in the POST data so that the authentication that
the Web server performs will succeed.

However, when the Publisher channel Web server receives the HTTP POST data, it fails to find
“\PERIN-TAO\novell\wally” in the encrypted protected data and rejects the POST request.

XML Elements
The elements that make up a replacement data document are described below. If no XML attributes
are described for an element, then none are allowed.

“<replacement-data>” on page 44
“<item>” on page 45
“<url-data>” on page 47
“<url-query>” on page 48

<replacement-data>
The <replacement-data> element can appear in the following locations:

1. As a child of the <message> element under a Subscriber channel <mail> element.
44 Replacement Data

The Manual Task Service driver processes the supplied <replacement-data> element into a
standalone <replacement-data> element for use in template processing. The following
processing occurs:

a. If an association value is created for the enclosing <mail> element, an <item
name="association"> element is added to the replacement data. The value of the created
element is the association value that is returned to Identity Manager.

b. If the <replacement-data> element has a <url-data> element child, then the <url-data>
element is replaced by several <item> elements that contain constructed URL data. See
<url-data> and <url-query>.

2. As the standalone top-level element of a replacement data document used when constructing a
document using a style sheet on either the Subscriber or the Publisher channels.

<item>
The <item> element can be a child of the <replacement-data> element, the <url-data> element, or
the <url-query> element. The content of the <item> element is the text used in the substitution of
replacement tokens in templates. <item> elements are always named by using the name attribute.

<item> attributes
name: The value of the name attribute specifies the name by which this data item is referenced by
replacement tokens. For example, if the value of the name attribute is manager, then the replacement
token $manager$ is replaced by the value contained by <item name="manager"> element. The name
attribute is required.

protect: For <item> elements that are children of <url-query> elements, the protect attribute
specifies whether the item is added to the protected data section of the URL query string (see <url-
query>. If the protect attribute is present, it must have the value yes.

Predefined <item> names
Certain <item> elements have predefined meanings to either the Subscriber channel, the Publisher
channel, or both channels.

template: The Publisher channel treats the value of the template item as the name of the template
document to use in generating the response to an HTTP GET request.

When <item name="template"> appears as a child of the <url-query> element on the Subscriber
channel, the value is placed into the URL query data to specify to the Publisher channel Web server
the name of the template document to use when responding to the HTTP GET request.

responder-dn: The Publisher channel uses the value of the responder-dn item in HTTP POST data
as the DN of the eDirectory object against which the password supplied in the HTTP POST data is
validated.

The Web server rejects any HTTP POST request that does not contain a responder-dn value and a
password value. In addition, if the HTTP POST data does not contain a protected-data item, then the
request is rejected.

The Subscriber channel supplies one or more <item name="responder-dn" protect="yes">
elements under the <url-query> element. Because the responder-dn items are used for user
authentication, the items must be protected.
Replacement Data 45

password: Supplied to the Publisher channel Web server via HTTP POST data. The item content is
the password, which is validated against the eDirectory object specified by the responder-dn item in
the POST data. The password item is normally entered in the HTML form used to generate the HTTP
POST request.

Example:

<INPUT TYPE= "password" NAME="password" SIZE="20" MAXLENGTH="40"/>

response-template: Supplied to the Web server via HTTP POST data. Used to generate the Web
page used as the response to the POST. The response-template item is normally specified by using a
hidden INPUT element in the HTML form used to generate the HTTP POST request.

Example:

<INPUT TYPE="hidden" NAME="response-template" VALUE="post_form.xml"/>

response-stylesheet: Supplied to the Web server via HTTP POST data. Used to generate the Web
page used as the response to the POST. The response-stylesheet item is normally specified by using
a hidden INPUT element in the HTML form used to generate the HTTP POST request.

Example:

<INPUT TYPE="hidden" NAME="response-stylesheet" VALUE="process_template.xsl"/>

auth-template: Supplied to the Web server via HTTP POST data. Used to generate the Web page
that is used as the response to the POST if authentication of the user fails. The auth-template item is
normally specified by using a hidden INPUT element in the HTML form used to generate the HTTP
POST request.

Example:

<INPUT TYPE="hidden" NAME="auth-template" VALUE="auth_response.xml"/>

auth-stylesheet: Supplied to the Web server via HTTP POST data. Used to generate the Web page
that is used as the response to the POST if authentication of the user fails. The auth-template item is
normally specified by using a hidden INPUT element in the HTML form used to generate the HTTP
POST request.

Example:

<INPUT TYPE="hidden" NAME="auth-stylesheet" VALUE="process_template.xsl"/>

protected-data: The protected-data item contains the encrypted data constructed by the Subscriber
channel. On the Subscriber channel, the protected data item is an automatically supplied item.

On the Publisher channel, the protected-data item is obtained from the URL query string for an HTTP
GET request and is obtained from the POST data for an HTTP POST request.

The protected data item is typically passed from the HTTP GET request into the Web page used to
generate the HTTP POST via a replacement token in the template used to construct the response to
the HTTP GET.

Example:

<INPUT TYPE="hidden" NAME="protected-data" VALUE="$protected-data$"/>
46 Replacement Data

<url-data>
The <url-data> element is a child of the <replacement-data> element found under the <message>
element on the Subscriber channel. It contains <item> elements used to construct the URL and
related data items that are supplied to the template used in constructing the e-mail message. It also
contains the <url-query> element.

For the purposes of the Manual Task Service driver, URLs consist of five parts:

1. A scheme such as http, https, or ftp.
2. A host such as www.netiq.com or 192.168.0.1.
3. A port number. This is a colon followed by a decimal integer. For example, :80 or :8180.
4. A file or resource specifier. This is typically a filename and can include path information. For

example, stylesheets/process_template.xsl.
5. A query string. This is a collection of name-value pairs, separated by & characters. For example,

template=form_template.xml&protected-data=AabABJKEL=

Predefined <item> Names Under <url-data>
<item> elements under the <url-data> element are ignored unless they are one of the following. All
of them are optional.

file: Specifies the file portion of the URL. If used with the Publisher channel Web server, the file item
specifies the style sheet to use to construct the initial HTML page returned in response to the URL. If
used with a server other than the Publisher channel Web server, the file item specifies the name of
the resource that the URL refers to.

If the file item does not appear, the URL file portion defaults to process_template.xsl.

scheme: Optional item found under the <url-data> element. If present, it specifies the scheme
portion of the URL (such as http or ftp). The scheme item is typically used only if the URL points at a
server other than the Publisher's Web server.

If the scheme item does not appear, the URL scheme defaults to either http or https, depending on
the configuration of the Publisher channel Web server.

host: Optional item found under the <url-data> element. If present, specifies the host portion of the
URL. The host item is typically used only if the URL were to point at a server other than the
Publisher's Web server.

If the host item does not appear, the URL host defaults to the IP address of the server on which the
Manual Task Service driver is running (that is, the IP address of the Publisher channel Web server).

port: Optional item found under the <url-data> element. If present, specifies the port portion of the
URL. The port item is typically used only if the URL points at a server other than the Publisher's Web
server.

If the port item does not appear, the URL port defaults to the port on which the Publisher channel Web
server is running.
Replacement Data 47

<url-query>
The <url-query> element is a child of the <url-data> element. It contains <item> elements that are
used to construct the query portion of the URL used in the e-mail message.

Each item that appears as a child of the <url-query> element is placed in the query string in the
form name="value" where name is the value of the <item> element's name attribute and value is the
string content of the <item> element.

Item elements that appear under <url-query> can have a protect attribute with the value “yes.” If this
is the case, the item names and values are encrypted and placed within a generated name-value pair
in the URL query string. The name of the generated value is protected-data. The value is the Base64-
encoded and encrypted name-value pair or pairs for multivalued attributes.

Protecting data ensures that the data cannot be changed when the URL is submitted to the Publisher
channel Web server. For example, the responder-dn data items need to be protected to ensure that
only those users authorized to respond to the e-mail message are able to change eDirectory data.

If the URL generated is to be used with the Publisher channel Web server, the <url-query> element
must contain at least one <item name="responder-dn" protect="yes"> element or the Web
server rejects the eventual HTTP POST request.
48 Replacement Data

C CAutomatic Replacement Data Items

The Manual Task Service driver automatically supplies certain replacement data item elements.

“Subscriber Channel Automatic Replacement Data” on page 49
“Publisher Channel Automatic Replacement Data” on page 49

Subscriber Channel Automatic Replacement Data
The following data items are added automatically to replacement-data documents during processing
by the Subscriber channel:

association: An <item name="association"> element is added to the replacement-data document
if the <mail> element has an <association> element child, or if the Subscriber returns an <add-
association> element. The content of the <item> element is the association value for the eDirectory
object that is associated with the e-mail message being processed. The association value might not
yet be written to the eDirectory object; therefore, the association value cannot be used in queries.

url: The content of the <item> element is the complete URL to be used in the e-mail message. On
the Subscriber channel, the url item is created from the following items found under the <url-data>
element: scheme, host, port, file, and the items underneath the <url-query> element. If scheme,
host, or port are not found, then default values are used. The default values are determined from the
configuration of the Publisher channel Web server.

url-base: The content of the <item> element is the portion of the generated URL not including the
resource identifier (file) and not including the query string.

url-query: The content of the <item> element is a URL query string generated from <item> elements
underneath the <url-query> element.

url-file: The content of the <item> element is the resource identifier for the URL.

protected-data: The content of the <item> element is an encrypted form of name-value pairs
obtained from <item> elements under the <url-query> element. Only <item> elements whose
protect attribute is set to “yes” are added to the protected data value. See “Data Security” on page 43.

Publisher Channel Automatic Replacement Data
The following data items are automatically added to replacement-data documents during processing
by the Publisher channel Web server:

post-status: An <item name="post-status"> element is created and added to the replacement-
data document by the Publisher channel Web server during the processing of an HTTP POST
request. An HTTP POST request to the Web server is a request to submit an XDS document to
Identity Manager. Identity Manager returns a status document as the result of the XDS submission.
The content of the <item name="post-status"> element is the value of the level attribute of the
<status> element that is returned by Identity Manager as the result of the submission to Identity
Manager.

The post-status item is typically used in the construction of the Web page that is returned as the result
of the HTTP POST request.
Automatic Replacement Data Items 49

post-status-message: An <item name="post-status-message"> element is created and added to
the replacement-data document by the Publisher channel Web server during the processing of an
HTTP POST request. An HTTP POST request to the Web server is a request to submit an XDS
document to Identity Manager. Identity Manager returns a status document as the result of the XDS
submission. The content of the <item name="post-status-message"> element is the content of
the<status> element that is returned by Identity Manager as the result of the submission to Identity
Manager. The post-status-message item is created only if the <status> element returned by Identity
Manager has content.

The post-status-message item is typically used in the construction of the Web page that is returned
as the result of the HTTP POST request.

url: An <item name="url"> element is created and added to the replacement-data document by the
Publisher channel Web server during processing of HTTP GET and HTTP POST requests. The
<item> element is added before using the replacement-data document to construct any documents.
The URL scheme, host, and port are determined by the Web server configuration.

url-base: An <item name="url-base"> is created and added to the replacement data document by
the Publisher channel Web server during processing of HTTP GET and HTTP POST request. The
<item> element is added before using the replacement-data document to construct any documents.
The content of the url-base <item> element on the Publisher channel is the same as the url <item>
element.
50 Automatic Replacement Data Items

D DTemplate Action Elements

Action elements are namespace-qualified elements in a template document that are used for simple
logic control or are used to create HTML elements for HTML forms. The namespace used to qualify
the elements is http://www.novell.com/dirxml/manualtask/form. In this document and in the sample
templates supplied with the Manual Task Service driver the prefix used is form.

Any action element not specifically covered in this section is stripped from the output document by the
template-processing style sheet (unless the style sheet is customized). This behavior allows, for
example, the use of a form:text element to enclose the data for a plain text e-mail message, thereby
making the template valid XML.

“<form:input>” on page 51
“<form:if-item-exists>” on page 52
“<form:if-multiple-items>” on page 52
“<form:if-single-item>” on page 52
“<form:menu>” on page 53

<form:input>
The <form:input> element is used to generate one or more HTML INPUT elements based on the
presence of one or more replacement data items. The number of INPUT elements created
corresponds with the number of replacement data items with the name specified by the
<form:input> element's name attribute.

Attributes
Name: Specifies the name of the replacement data items that are used to create the INPUT
elements. The attribute value is used as the value of the name attribute of the created INPUT
elements.

type or TYPE: Specifies the value of the type attribute of the created INPUT elements.

value: If the value attribute's value is equal to “yes,” then a value attribute is added to the created
INPUT elements whose value is the string value of the replacement data item. If the value attribute's
value is other than “yes,” the content of the created INPUT elements is set to the string value of the
replacement data item.

Example
<form:input name="responder-dn" TYPE="hidden" value="yes"/>

creates one or more INPUT elements similar to

<INPUT name="responder-dn" TYPE="hidden" value="\PERIN-TAO\novell\phb"/>
Template Action Elements 51

<form:if-item-exists>
The <form:if-item-exists> element is used to conditionally insert data into the output document.
The content of <form:if-item-exists> is processed only if the specified item appears in the
replacement data.

Attributes
Name: Specifies the name of the replacement data item. If one or more examples of the replacement
data item exist, then the contents of the <form:if-item-exists> element are processed.

Example
<form:if-item-exists name="post-status-message">
 <tr>
 <td>
 Status message was: $post-status-message$
 </td>
 </tr>
</form:if-item-exists>

This example inserts a row into an HTML table only if there is a replacement data item named post-
status-message.

<form:if-multiple-items>
The <form:if-multiple-items> element is used to conditionally insert data into the output
document. The content of <form:if-multiple-items> is processed only if the specified item appears
more than once in the replacement data.

Attributes
name: Specifies the name of the replacement data item. If more than one example of the
replacement data item exists, then the content of the <form:if-multiple-items> is processed.

Example
<form:if-multiple-items name="responder-dn">
 <form:menu name="responder-dn"/>
</form:if-multiple-items>

This example builds an HTML SELECT element (see <form:menu>) if there is more than one
replacement data item with the name responder-dn.

<form:if-single-item>
The <form:if-single-item> element is used to conditionally insert data into the output document.
The content of <form:if- single -item> is processed only if the specified item appears exactly
once in the replacement data.

Attributes
name: Specifies the name of the replacement data item. If the named item appears exactly once in
the replacement data, then the content of the <form:if-single-item> element is processed.
52 Template Action Elements

Example
<form:if-single-item name="responder-dn">
 <input TYPE="hidden" name="responder-dn" value="$responder-dn$"/>
 $responder-dn$
</form:if-single-item>

This example inserts an HTML INPUT element and some replacement text into the output document
if there is exactly one replacement data item named “responder-dn” in the replacement data.

<form:menu>
The <form:menu> element is used to generate an HTML SELECT element with one or more OPTION
element children. The first OPTION element child is marked as selected.

Attributes
name: Specifies the name of the replacement data item. If the named item appears in the
replacement data, then an HTML SELECT element is created in the output document. An HTML
OPTION element is created as a child of the SELECT element for each instance of the replacement
data item in the replacement data.

Example
<form:menu name="responder-dn"/>

This example results in HTML elements similar to the following:

<SELECT name="responder-dn">
 <OPTION selected>\PERIN-TAO\big-org\php</OPTION>
 <OPTION>\PERIN-TAO\big-org\carol</OPTION>
</SELECT>
Template Action Elements 53

54 Template Action Elements

E E<mail> Element

The <mail> element and its content are described in detail in this section. If no attributes are listed for
an element, then that element has no attributes defined.

“<mail>” on page 55
“<to>” on page 55
“<cc>” on page 55
“<bcc>” on page 56
“<from>” on page 56
“<reply-to>” on page 56
“<subject>” on page 56
“<message>” on page 56
“<stylesheet>” on page 57
“<template>” on page 57
“<filename>” on page 57
“<replacement-data>” on page 57
“<resource>” on page 57
“<attachment>” on page 57

<mail>
The <mail> element and its content describe the data necessary to construct an SMTP message.

<mail> attributes
src-dn: Contains the DN value of the eDirectory object that is triggering the e-mail. Required if the
object's data is to be modified via the Publisher channel's Web server in response to the e-mail.

<to>
The <to> element is a child of the <mail> element. One or more <to> elements contain the e-mail
addresses of the primary recipients of the SMTP message. At least one <to> element is required.
Each <to> element must contain only a single e-mail address.

<cc>
The <cc> element is a child of the <mail> element. Zero or more <cc> elements contain the e-mail
addresses of the CC recipients of the SMTP message. No <cc> element is required. Each <cc>
element must contain only a single e-mail address.
<mail> Element 55

<bcc>
The <bcc> element is a child of the <mail> element. Zero or more <bcc> elements contain the e-mail
addresses of BCC recipients of the SMTP message. No <bcc> element is required. Each <bcc>
element must contain only a single e-mail address.

<from>
The <from> element is a child of the <mail> element. The <from> element contains the e-mail
address of the sender of the e-mail . The <from> element is not required. If the<from> element is not
present, then the default from address supplied as part of the Manual Task Service driver parameters
is used.

<reply-to>
The <reply-to> element is a child of the <mail> element. The <reply-to> element contains the e-
mail address of the entity to which replies to the SMTP message will be addressed. The <reply-to>
element is not required.

<subject>
The <subject> element is a child of the <mail> element. Its string content is used to set the SMTP
subject field. The <subject> element is not required but is recommended, for obvious reasons.

<message>
The <message> element is a child of the<mail> element. Its content is used to construct a message
body for the SMTP message. At least one <message> element is required. Multiple <message>
elements can be supplied when constructing an SMTP message with alternative representations of
the message body (such as plain text and HTML, or English and another language).

<message> attributes
mime-type: Optionally specifies the MIME type of the message body constructed by the <message>
element (such as text/plain or text/html). If the mime-type attribute is not present, the driver attempts
to automatically discover the MIME type.

E-mail clients can use the MIME type when an SMTP message has alternative representations in
order to choose the best representation to display.

language: Optionally specifies the language of the message body constructed by the <message>
element. The value should follow the SMTP specification. If the language attribute is not present, no
default is supplied.

E-mail clients can use the language specification when an SMTP message has alternative
representations in order to choose the best representation to display.
56 <mail> Element

<stylesheet>
The <stylesheet> element is a child of the <message> element. The content of the <stylesheet>
element is the name of an XSLT style sheet used to construct the message body. If the
<stylesheet> element is not present, then process_template.xsl is used as the style sheet.

<template>
The <template> element is a child of the <message> element. The content of the <template>
element is the name of an XML document used to construct the message body. If the <template>
element is not present, then the replacement data document is processed by the message style
sheet to construct the message body.

<filename>
The <filename> element is a child of the <attachment> element. The content of the <filename>
element is a filename. The filename value is used to assign a filename to a constructed attachment.

<replacement-data>
The <replacement-data> element is a child of the <message> element. Its content is used either as
a parameter to the style sheet processing the message template, or in the absence of a template, it is
processed directly by the message style sheet. The contents of the <replacement-data> element
are described in Appendix B, “Replacement Data,” on page 43 and Appendix C, “Automatic
Replacement Data Items,” on page 49.

<resource>
The <resource> element is a child of the<message> element. Its content is treated as the name of a
file to be incorporated into the SMTP message a resource for the message body. For example, a
.css style sheet for an HTML message body could be supplied as a resource.

<resource> attributes
cid: Specifies the content ID used to refer to the resource in URLs in the message body. For
example, if a .css style sheet is the resource, then the cid value might be css-1. In the HTML
message body, the following element can be used to refer to the .css style sheet:

<link href="cid:css-1" rel="style sheet" type="text/css">

<attachment>
The <attachment> element is a child of the <mail> element. It can have the same content as
<message>, or it can have a filename as content. Zero or more <attachment> elements can appear
as children of the <mail> element.
<mail> Element 57

<attachment> attributes
mime-type: Optionally specifies the MIME type of the attachment. If the mime-type attribute is not
present, the driver attempts to automatically discover the MIME type.

language: Optionally specifies the language of the attachment. If the language attribute is not
present, no default is supplied.
58 <mail> Element

F FData Flow Scenario for a New
Employee

This section gives a step-by-step examination of the data flow in an example situation when hiring a
new employee causes an e-mail message to be sent to the employee's manager. The e-mail
message requests that the manager use a URL in the message to enter a room number value for the
employee.

The configuration of the Manual Task Service driver is as follows for the example scenario.

“Subscriber Channel Configuration” on page 59
“Publisher Channel Configuration” on page 59
“Description of Data Flow” on page 60

Subscriber Channel Configuration
Filter
Class: User

Attributes: Given Name, manager, Surname

Policies
Create policy: Requires Given Name, manager, and Surname attributes.

Command Transformation policy: Converts the <add> into the <mail> element.

Publisher Channel Configuration
Filter
Class: User

Attributes: roomNumber

Policies
None.
Data Flow Scenario for a New Employee 59

Description of Data Flow
In the following list, the most important data items that flow through the process are responder-dn and
association. The responder-dn item is used to authenticate the user by entering data through the Web
server. The association item identifies the eDirectory object whose data is to be changed.

1. The company hires a new employee. The new employee's data is entered into the company's
Human Resource (HR) system.

2. The Identity Manager driver for the HR system creates a new User object in eDirectory. User
attributes include Given Name, Surname, and manager.

3. The following <add> event for the new User object is submitted to the Manual Task Service driver
Subscriber channel:

<nds dtdversion="1.1" ndsversion="8.6">
 <input>
 <add class-name="User" src-dn="\PERIN-TAO\novell\Provo\Joe" src-entry-
id="281002" timestamp="1023314433#2">
 <add-attr attr-name="Surname">
 <value type="string">the Intern</value>
 <add-attr>
 <add-attr attr-name="Given Name">
 <value type="string">Joe</value>
 <add-attr>
 <add-attr attr-name="manager">
 <value type="dn">\PERIN-TAO\novell\Provo\phb</value>
 <add-attr>
 </add>
 </input>
</nds>

a. The Subscriber Command Transformation policy uses the manager DN value to issue a
query to eDirectory for the manager's e-mail address and the manager's assistant's DN.

b. If the manager has an assistant, the Subscriber Command Transformation issues a query to
eDirectory for the assistant's e-mail address.

c. The Subscriber Command Transformation constructs a <mail> element and replaces the
<add> command element with the <mail> element.

<nds dtdversion="1.1" ndsversion="8.6">
 <input>
 <mail src-dn="\PERIN-TAO\novell\Provo\Joe">
 <to>phb@company.com</to>
 <cc>carol@company.com</cc>
 <bcc>HR@company.com</bcc>
 <reply-to>HR@company.com</reply-to>
 <subject>Room Assignment Needed for: Joe the Intern</subject>
 <message mime-type="text/html">
 <stylesheet>process_template.xsl</stylesheet>
 <template>html_msg_template.xml</template>
 <replacement-data>
 <item name="manager">JStanley</item>
 <item name="given-name">Joe</item>
 <item name="surname">the Intern</item>
 <url-data>
60 Data Flow Scenario for a New Employee

 <item name="file">process_template.xsl</item>
 <url-query>
 <item name="template">form_template.xml</item> <item
name="responder-dn" protect="yes">\PERIN-TAO\novell\Provo\phb</item>
<item name="responder-dn" protect="yes">\PERIN-TAO\novell\Provo\carol</item>
<item name="subject-name">Joe the Intern</item>
 </url-query>
 </url-data>
 </replacement-data>
 <resource cid="css-1">novdocmain.css</resource>
 </message>
 </mail>
 </input>
</nds>

d. The Manual Task Service driver Subscriber receives the <mail> element from Identity
Manager.

e. The Subscriber generates an association value because the <mail> element has a src-dn
attribute.

f. The Subscriber constructs a replacement data document from the data in the <mail>
element for use in constructing the e-mail message. The URL has various data items in the
query portion (that portion of the URL that follows the ‘?' character and is in bold). The
Publisher channel Web server uses these data items when the URL is submitted to the Web
server as an HTTP GET request.

<replacement-data>
 <item name="manager">JStanley</item>
 <item name="given-name">Joe</item>
 <item name="surname">the Intern</item>
 <item name="template">form_template.xml</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\phb</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\carol</item>
 <item name="subject-name">Joe the Intern</item>
 <item name="association">1671b2:ee4246a561:-7fff:192.168.0.1</item>
 <item name="url-base">https://192.168.0.1:8180</item>
 <item name="url-file">process_template.xsl</item>
 <item name="protected-data">
rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA
1lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlw
YXJhbXNBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cH
VyAAJbQqzzF/gGCFTgAgAAeHAAAAAPMA0ECEIBRohGPjxEAgEKdXEAfgAEAAAA
uMSFqzHXwtMx8DkRCzkK1O46sEz1u51o3MDvHn+3+fE6SphHr3Hgjli4Jp3rUk
H7y6dXvcu7iq21Vs+9o6iZVzljTIJX/jjRrVZlR5JOuRNhk8JHFZ8FhgsmiIAH
/Fs61k4WmyEcmYfWmfqfBVeThr3Avwcim6ranS5Mm2U5i9Z/DBR13pIAobMpWY
kMaz4+G9e6oovBsiPdp6jSPzbFxcgALI2AMBh4hf9jnx7zOU9Uvd9qXtaE2rR0
AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
 <item name="url-query">template=form_template.xml&responder-
dn=%5CPERIN-TAO%5Cnovell%5Cprovo%5Cphb&responder-dn=%5CPERIN-
TAO%5Cnovell%5Cprovo%5Ccarol&subject-
name=Joe+the+Intern&association=1671b2%3Aee4246a561%3A-
7fff%3A192.168.0.1&protected-
data=rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmNvZ
GVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB%2BAAFMAAlwYXJhbXNBbGd0ABJMa
mF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB%2BAAJ4cHVyAAJbQqzzF%2FgGCFTgAgAAeHA
AAAAPMA0ECEIBRohGPjxEAgEKdXEAfgAEAAAAuMSFqzHXwtMx8DkRCzkK1O46sEz1u51o3MDvH
n%2B3%2BfE6SphHr3Hgjli4Jp3rUkH7y6dXvcu7iq21Vs%2B9o6iZVzljTIJX%2FjjRrVZlR5J
ouRNhk8JHFZ8FhgsmiIAH%2FFs61k4WmyEcmYfWmfqfBVeThr3Avwcim6ranS5Mm2U5i9Z%2FD
BR13pIAobMpWYkMaz4%2BG9e6oovBsiPdp6jSPzbFxcgALI2AMBh4hf9jnx7zOU9Uvd9qXtaE2
rR0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
Data Flow Scenario for a New Employee 61

 <item name="url">
https://192.168.0.1:8180/
process_template.xsl?template=form_template.xml&responder-dn=%5CPERIN-
TAO%5Cnovell%5CProvo%5Cphb&responder-dn=%5CPERIN-
TAO%5Cnovell%5Cprovo%5Ccarol&subject-
name=Joe+the+Intern&association=1671b2%3Aee4246a561%3A-
7fff%3A192.168.0.1&protected-
data=rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmNvZ
GVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB%2BAAFMAAlwYXJhbXNBbGd0ABJMa
mF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB%2BAAJ4cHVyAAJbQqzzF%2FgGCFTgAgAAeHA
AAAAPMA0ECEIBRohGPjxEAgEKdXEAfgAEAAAAuMSFqzHXwtMx8DkRCzkK1O46sEz1u51o3MDvH
n%2B3%2BfE6SphHr3Hgjli4Jp3rUkH7y6dXvcu7iq21Vs%2B9o6iZVzljTIJX%2FjjRrVZlR5J
ouRNhk8JHFZ8FhgsmiIAH%2FFs61k4WmyEcmYfWmfqfBVeThr3Avwcim6ranS5Mm2U5i9Z%2FD
BR13pIAobMpWYkMaz4%2BG9e6oovBsiPdp6jSPzbFxcgALI2AMBh4hf9jnx7zOU9Uvd9qXtaE2
rR0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREV
</item>
</replacement-data>

g. The Subscriber processes html_msg_template.xml with process_template.xsl. The
replacement data document is passed as a parameter to the style sheet. The
html_msg_template.xml document follows. The replacement tokens are replaced by the
value of the corresponding <item> elements in the replacement data document.

<html xmlns:form="http://www.novell.com/dirxml/manualtask/form">
 <head>
 </head>
 <body>
 <link href="cid:css-1" rel="style sheet" type="text/css"/>
 <p>
 Dear $manager$,
 </p>
 <p>
 This message is to inform you that your new employee $given-name$
$surname$ has been hired.
 </p>
 <p>
 Please assign a room number for this individual. Click Here to do this.
 </p>
 <p>
 Thank you,

 HR

 HR Department
 </p>
 </body>
</html>

The generated e-mail document follows. The replacement tokens have been replaced with
the values of the corresponding <item> elements from the replacement data document.
62 Data Flow Scenario for a New Employee

<html>
 <head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>
 <body>
 <link href="cid:css-1" rel="style sheet" type="text/css">
 <p>
 Dear J Stanley,
 </p>
 <p>
 This message is to inform you that your new employee Joe the Intern</
b> has been hired.
 </p>
 <p>
 Please assign a room number for this individual. Click <a href="https:/
/192.168.0.1:8180/
process_template.xsl?template=form_template.xml&responder-dn=%5CPERIN-
TAO%5Cnovell%5CProvo%5Cphb&responder-dn=%5CPERIN-
TAO%5Cnovell%5CProvo%5Ccarol&subject-
name=Joe+the+Intern&association=45f0e3%3Aee45e07709%3A-
7fff%3A192.168.0.1&protected-
data=rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmNvZ
GVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB%2BAAFMAAlwYXJhbXNBbGd0ABJMa
mF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB%2BAAJ4cHVyAAJbQqzzF%2FgGCFTgAgAAeHA
AAAAPMA0ECIr9Z1iG%2BO3BAgEKdXEAfgAEAAAAuMU%2FSoFRkebvh2d5SqalF91ttjRY5lyyW
5%2B%2FFIfOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY%2Bi4VoVjUSXS3a8
fiXB8moMdPtLJ%2FGyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL%2F
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0JVcnVV
yt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT">Here to do this.
 </p>
 <p>
 Thank you,

 HR

 HR Department
 </p>
 </body>
</html>

h. The SMTP e-mail message is sent to the manager and to the manager's assistant.
i. The Subscriber returns an XML document containing a <status> element and an <add-

association> element to Identity Manager.
4. The manager opens the e-mail message and clicks the Click here link.
5. The manager's Web browser submits the URL to the Publisher channel Web server as an HTTP

GET request.
a. The Web server constructs the following replacement data document. Most of the data

items come from the query portion of the URL. The exceptions are the automatically
generated items url and url-base.
Data Flow Scenario for a New Employee 63

<replacement-data>
 <item name="association">45f0e3:ee45e07709:-7fff:192.168.0.1</item>
 <item name="protected-
data">rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmNv
ZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbXNBbGd0ABJMam
F2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHVyAAJbQqzzF/
gGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG+O3BAgEKdXEAfgAEAAAAuMU/
SoFRkebvh2d5SqalF91ttjRY5lyyW5+/
FifOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY+i4VoVjUSXS3a8fiXB8moMd
PtLJ/GyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL/
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0JVcnVV
yt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
 <item name="template">form_template.xml</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\phb</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\carol</item>
 <item name="subject-name">Joe the Intern</item>
 <item name="url-base">https://192.168.0.1:8180</item>
 <item name="url">https://192.168.0.1:8180</item>
</replacement-data>

The Web server processes the form_templates.xml document with the
process_template.xsl style sheet. Replacement tokens and action elements are in bold.
Note that various data items are placed in hidden INPUT elements so that the data items
are passed to the Web server as part of the HTML POST data.
In addition, there is a $query:roomNumber$ replacement token, which retrieves the current
value of the employee's roomNumber attribute (if any).

<html xmlns:form="http://www.novell.com/dirxml/manualtask/form">
 <head>
 <title>Enter room number for $subject-name$</title>
 </head>
 <body>
 <link href="novdocmain.css" rel="style sheet" type="text/css"/>

 <form class="myform" METHOD="POST" ACTION="$url-base$/
process_template.xsl">
 <table cellpadding="5" cellspacing="10" border="1" align="center">
 <tr><td>
 <input TYPE="hidden" name="template" value="post_form.xml"/>
 <input TYPE="hidden" name="subject-name" value="$subject-name$"/>
 <input TYPE="hidden" name="association" value="$association$"/>
 <input TYPE="hidden" name="response-style sheet"
value="process_template.xsl"/>
 <input TYPE="hidden" name="response-template"
value="post_response.xml"/>
 <input TYPE="hidden" name="auth-style sheet"
value="process_template.xsl"/>
 <input TYPE="hidden" name="auth-template"
value="auth_response.xml"/>
 <input TYPE="hidden" name="protected-data" value="$protected-
data$"/>
 <form:if-single-item name="responder-dn">
 You are:

 <input TYPE="hidden" name="responder-dn" value="$responder-dn$"/
>
 $responder-dn$
 </form:if-single-item> <form:if-multiple-items
name="responder-dn">
 Indicate your identity:

 <form:menu name="responder-dn"/> </form:if-multiple-items>
64 Data Flow Scenario for a New Employee

 </td></tr>
 <tr><td>
 Enter your password:
<input name="password" TYPE="password"
SIZE="20" MAXLENGTH="40"/>
 </td></tr>
 <tr><td>
 Enter room number for $subject-name$:

 <input TYPE="text" NAME="room-number" SIZE="20" MAXLENGTH="20"
value="$query:roomNumber$"/>
 </td></tr>
 <tr><td>
 <input TYPE="submit" value="Submit"/> <input TYPE="reset"
value="Clear"/>
 </td></tr>
 </table>
 </form>
 </body>
</html>

The following HTML page is the result:

<html>
 <head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Enter room number for Joe the Intern</title>
 </head>
 <body>
 <link href="novdocmain.css" rel="style sheet" type="text/css">

<form class="myform" METHOD="POST" ACTION="https://192.168.0.1:8180/
process_template.xsl">
<table cellpadding="5" cellspacing="10" border="1" align="center">
<tr>
<td>
 <input TYPE="hidden" name="template" value="post_form.xml">
 <input TYPE="hidden" name="subject-name" value="Joe the Intern">
 <input TYPE="hidden" name="association" value="45f0e3:ee45e07709:-
7fff:192.168.0.1">
 <input TYPE="hidden" name="response-style sheet"
value="process_template.xsl">
 <input TYPE="hidden" name="response-template"
value="post_response.xml">
 <input TYPE="hidden" name="auth-style sheet"
value="process_template.xsl">
 <input TYPE="hidden" name="auth-template" value="auth_response.xml">
 <input TYPE="hidden" name="protected-data"
value="rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmN
vZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbXNBbGd0ABJMa
mF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHVyAAJbQqzzF/
gGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG+O3BAgEKdXEAfgAEAAAAuMU/
SoFRkebvh2d5SqalF91ttjRY5lyyW5+/
FIfOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY+i4VoVjUSXS3a8fiXB8moMd
PtLJ/GyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL/
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0JVcnVV
yt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT">
 Indicate your identity:

 <SELECT name="responder-dn">
 <OPTION selected>\PERIN-TAO\novell\Provo\phb</OPTION>
 <OPTION>\PERIN-TAO\novell\Provo\carol</OPTION>
 </SELECT>
Data Flow Scenario for a New Employee 65

</td>
</tr>
<tr>
<td>
 Enter your password:

 <input name="password" TYPE="password" SIZE="20" MAXLENGTH="40">
</td>
</tr>
<tr>
<td>
 Enter room number for Joe the Intern:

 <input TYPE="text" NAME="room-number" SIZE="20" MAXLENGTH="20"
value="">
</td>
</tr>
<tr>
<td>
 <input TYPE="submit" value="Submit"> <input TYPE="reset" value="Clear">
</td>
</tr>
</table>
</form>
</body>
</html>

b. The manager selects his or her eDirectory DN from the Web page menu, enters the
password, enters the room number for the new employee, and clicks Submit.

c. The Web browser submits an HTTP POST request to the Web server.
d. The Web server constructs the following replacement data document from the POST data.

Note the data that was in the various hidden <INPUT> elements.

<replacement-data>
 <item name="room-number">cubicle 1234</item>
 <item name="template">post_form.xml</item>
 <item name="response-template">post_response.xml</item>
 <item name="auth-template">auth_response.xml</item>
 <item name="association">45f0e3:ee45e07709:-7fff:192.168.0.1</item>
 <item name="password" is-sensitive="true"><!-content suppressed ?</item>
 <item name="protected-
data">rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmNv
ZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbXNBbGd0ABJMam
F2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHVyAAJbQqzzF/
gGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG+O3BAgEKdXEAfgAEAAAAuMU/
SoFRkebvh2d5SqalF91ttjRY5lyyW5+/
FifOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY+i4VoVjUSXS3a8fiXB8moMd
PtLJ/GyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL/
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0JVcnVV
yt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\phb</item>
 <item name="auth-style sheet">process_template.xsl</item>
 <item name="response-style sheet">process_template.xsl</item>
 <item name="subject-name">Joe the Intern</item>
 <item name="url-base">https://192.168.0.1:8180</item>
 <item name="url">https://192.168.0.1:8180</item>
</replacement-data>
66 Data Flow Scenario for a New Employee

e. The Web server verifies that the value of item responder-dn matches a responder-dn value
contained in the protected data. If the value does not match, the Web server aborts the
request. If the value does match, processing continues.

f. The Web server submits a <check-object-password> XDS request to Identity Manager on
the Publisher channel to authenticate the user submitting the HTTP POST request.

<nds dtdversion="1.0" ndsversion="8.6">
 <source>
 <product build="20020606_0824" instance="Manual Task Service Driver"
version="1.1a">DirXML Manual Task Service Driver</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <check-object-password dest-dn="\PERIN-TAO\novell\Provo\phb" event-
id="chkpwd">
 <password><!-- content suppressed --></password>
 </check-object-password>
 </input>
</nds>

g. Identity Manager returns <status level="success">. If Identity Manager returns other
than success, then the templates specified by the data item auth_template and the style
sheet specified by the data item auth_stylesheet are used to construct a Web page that is
returned as the result of the POST.

h. The Web server processes the post_form.xml template with the process_template.xsl
style sheet to generate an XDS document.

<nds>
 <input>
 <modify class-name="User" src-dn="not-applicable" event-id="wfmod">
 <association>$association$</association>
 <modify-attr attr-name="roomNumber">
 <remove-all-values/>
 <add-value>
 <value>$room-number$</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

i. The Publisher submits the created XDS document to Identity Manager.

<nds>
 <input>
 <modify class-name="User" src-dn="not-applicable" event-id="wfmod">
 <association>45f0e3:ee45e07709:-7fff:192.168.0.1</association>
 <modify-attr attr-name="roomNumber">
 <remove-all-values/>
 <add-value>
 <value>cubicle 1234</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

j. Identity Manager returns a result document.
Data Flow Scenario for a New Employee 67

<nds dtdversion="1.1" ndsversion="8.6">
 <source>
 <product version="2.0">Identity Manager</product>
 <contact>Novell, Inc.</contact>
 </source>
 <output>
 <status event-id="wfmod" level="success"></status>
 </output>
</nds>

k. The Web server adds the replacement data item post-status (and possibly the replacement
data item post-status-message) to the replacement data document.

<replacement-data>
 <item name="room-number">cubicle 1234</item>
 <item name="template">post_form.xml</item>
 <item name="response-template">post_response.xml</item>
 <item name="auth-template">auth_response.xml</item>
 <item name="association">45f0e3:ee45e07709:-7fff:192.168.0.1</item>
 <item name="password" is-sensitive="true"><!-content suppressed ?</item>
 <item name="protected-
data">rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmNv
ZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbXNBbGd0ABJMam
F2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHVyAAJbQqzzF/
gGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG+O3BAgEKdXEAfgAEAAAAuMU/
SoFRkebvh2d5SqalF91ttjRY5lyyW5+/
FifOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY+i4VoVjUSXS3a8fiXB8moMd
PtLJ/GyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL/
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0JVcnVV
yt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\phb</item>
 <item name="auth-style sheet">process_template.xsl</item>
 <item name="response-style sheet">process_template.xsl</item>
 <item name="subject-name">Joe the Intern</item>
 <item name="url-base">https://192.168.0.1:8180</item>
 <item name="url">https://192.168.0.1:8180</item>
 <status event-id="" level="success"></status>
 <item name="post-status">success</item>
</replacement-data>

l. The Web server processes the post_response.xml template with the
process_template.xsl style sheet.
68 Data Flow Scenario for a New Employee

<htm xmlns:form="http://www.novell.com/dirxml/manualtask/form">
 <head>
 <title>Result of post for $subject-name$</title>
 </head>
 <body>
 <link href="novdocmain.css" rel="style sheet" type="text/css"/>

 <table class="formtable" cellpadding="5" cellspacing="20" border="1"
align="center">
 <tr>
 <td>
 DirXML reported status = $post-status$
 </td>
 </tr>
<form:if-item-exists name="post-status-message">
 <tr>
 <td>
 Status message was: $post-status-message$
 </td>
 </tr>
</form:if-item-exists>
 </table>
 </body>
</html>

m. The resulting Web page is returned as the result of the HTTP POST. The second row of the
table is not present because the post-status-message referred to by the <form:if-item-
exists> element is not present in the replacement data document.

<html>
 <head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Result of post for Joe the Intern</title>
 </head>
 <body>
 <link href="novdocmain.css" rel="style sheet" type="text/css">

 <table class="formtable" cellpadding="5" cellspacing="20" border="1"
align="center">
 <tr>
 <td>
 DirXML reported status = success
 </td>
 </tr>
 </table>
 </body>
</html>
Data Flow Scenario for a New Employee 69

70 Data Flow Scenario for a New Employee

G GCustom Element Handlers for the
Subscriber Channel

The driver provides an extension mechanism for sending user notifications using methods other than
the Simplified Mail Transport Protocol (SMTP). For example, a customer might have a need to send
notifications using the Messaging Application Programming Interface (MAPI) rather than using SMTP.

To use a mechanism other than SMTP for sending notifications, you must write a Java class to handle
a custom XML element that is submitted on the driver's Subscriber channel.

The Java custom element handler must implement the
com.novell.nds.dirxml.driver.manualtask.CommandHandler Java interface. The name of the custom
element class is specified in the Additional Handlers item found in the Subscriber configuration
parameters.

When the Subscriber channel encounters a command element, it looks in its table of handlers. When
it finds a handler that reports that it handles the command element, the command element is passed
to the handler. The handler then performs any processing required.

There are two built-in command element handlers in the driver: a handler for <mail> elements and a
handler for <add> elements.

The custom command element definition is up to the author of the custom handler. A reasonable
place to start in designing the custom command element is the design of the <mail> element.

The custom elements are created by policies on the Subscriber channel in the same fashion that the
<mail> element is created.

The documentation for com.novell.nds.dirxml.driver.manualtask.CommandHandler and the
documentation for many utility and support classes are found in the javadocs that ship with the driver.
The javadocs are found in the file named manual_task_docs.zip in the distribution image.

“Constructing URLs for Use with the Publisher Channel Web Server” on page 71
“Constructing Message Documents by Using Stylesheets and Template Documents” on page 72
“SampleCommandHandler.java” on page 72

Constructing URLs for Use with the Publisher
Channel Web Server

To securely use the driver's Publisher channel Web server, it is necessary to use utility classes to
construct the URL that is to be included with a notification message. The
com.novell.nds.dirxml.driver.manualtask.URLData is designed for this task.

The sample code found in SampleCommandHandler.java illustrates this process.
Custom Element Handlers for the Subscriber Channel 71

Constructing Message Documents by Using
Stylesheets and Template Documents

It is convenient to use the same method to construct documents that the SMTP handler uses, which
is a combination of style sheets, template documents, and replacement data. To do this, you must
obtain the style sheets and template documents, and invoke the style sheet processor
programmatically.

The sample code found in SampleCommandHandler.java illustrates this process.

SampleCommandHandler.java
Source code for a sample custom command handler is included with the driver distribution. The
source code is found in the manual_task_docs.zip file in the distribution image.

The handler is implemented in the
com.novell.nds.dirxml.driver.manualtask.samples.SampleCommandHandler class.

The sample handler simply generates a document using style sheets and templates and writes the
resulting document to a file.

Compiling the SampleCommandHandler Class
You can use any Java 2 compiler to compile the SampleCommandHandler class. You must place
nxsl.jar, dirxml.jar, collections.jar, and ManualTaskServiceBase.jar in the Java compiler
classpath.

Trying the SampleCommandHandler Class
Start by importing the Room Number sample configuration for the driver.

Compile the SampleCommandHandler class and place the resulting class file in a .jar file. Place the
.jar file in the DirXML .jar file directory appropriate to the platform on which you are running the
driver.

Add the following XML element under the <subscriber-options> element found in the Driver
Parameters XML section of the driver properties:

<output-path display-name="Sample Output Path"></output-path>

Edit the Driver Parameters. In the item labeled Sample Output Path, place a path to a directory in
which the SampleCommandHandler will write its created documents. In the item labeled Additional
Handlers, add the string com.novell.nds.dirxml.driver.manualtask.samples.SampleCommandHandler.

Replace the Subscriber channel command transformation policy with CommandXform.xsl which is
found in the same directory as the SampleCommandHandler.java file.

Create a User object and add a manager reference to the User object. If the manager has an e-mail
address value, then a <sample> command element is sent to the Subscriber and the
SampleCommandHandler writes a file in the location you specified above.
72 Custom Element Handlers for the Subscriber Channel

H HCustom Servlets for the Publisher
Channel

The driver provides an extension mechanism through which additional functionality can be added to
the Publisher channel Web server. Custom servlets can be loaded by the Publisher by specifying the
name of the servlet classes in the Driver configuration item labeled Additional Servlets.

“Using the Publisher Channel” on page 73
“Authentication” on page 73
“SampleServlet.java” on page 73

Using the Publisher Channel
If a custom servlet needs to submit data to Identity Manager, the servlet must use the driver's
Publisher channel. The com.novell.nds.dirxml.driver.manualtask.ServletRegistrar and
com.novell.nds.dirxml.driver.manualtask.PublisherData classes are supplied to facilitate this. The
sample code found in SampleServlet.java illustrates this process.

Authentication
A custom servlet must authenticate users that are submitting information. The sample code found in
SampleServlet.java illustrates this process. However, the type of authentication performed using the
<check-object-password> element does not check eDirectory rights. Changes submitted on the
Publisher channel are allowed if the Driver object has rights to perform the changes, regardless of
whether the user submitting the changes has rights or not.

If you are using a URL generated by a command handler on the Subscriber channel, you must use
the com.novell.nds.dirxml.driver.manualtask.URLData class to validate the URL to ensure that the
responder-dn data item has not been tampered with. See the Javadocs for information on
accomplishing this.

SampleServlet.java
Source code for a sample servlet is included with the driver distribution. The source code is found in
the file manualtask_driver_docs.zip in the distribution image.

The servlet is implemented in the com.novell.nds.dirxml.driver.manualtask.samples.SampleServlet
class.

The sample servlet accepts an HTTP GET request for any resource ending in .sample. The query
string of the HTTP URL must contain a dest-dn item, an attr-name item, and a value item.

The servlet authenticates the user, then submits a modify request to Identity Manager via the driver's
Publisher channel.
Custom Servlets for the Publisher Channel 73

Compiling the SampleServlet Class
You can use any Java 2 compiler to compile the SampleServlet class. You must place nxsl.jar,
dirxml.jar, collections.jar, and ManualTaskServiceBase.jar in the Java compiler classpath.

Trying the SampleServlet Class
Start by importing the Room Number sample configuration for the driver.

Compile the SampleServlet class and place the resulting class file in a .jar file. Place the .jar file in
the DirXML .jar file directory appropriate to the platform on which you are running the driver.

Edit the Driver Parameters. In the item labeled Additional Servlets, add the string
com.novell.nds.dirxml.driver.manualtask.samples.SampleServlet.

Add Telephone Number to the Publisher channel filter.

Submit the following URL in a browser (assuming the browser is running on the same machine as the
driver):

https:localhost:8180/1.sample?dest-dn=username.container&attr-
name=Telephone%20Number&value=555-1212

Replace username.container with the DN of a user in your tree.
74 Custom Servlets for the Publisher Channel

	NetIQ Identity Manager Manual Task Service Driver Implementation Guide
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	1 Understanding the Manual Task Service Driver
	Modes of Operation
	Example: Subscriber Channel E-Mail, Publisher Channel Web Server Response
	Example: Subscriber Channel E-Mail, No Publisher Channel Response

	How E-Mail Messages and Web Pages Are Created by the Manual Task Service Driver
	Templates
	Replacement Tokens
	Replacement Data
	Template Action Elements
	Subscriber Channel E-Mail
	Publisher Channel Web Server

	2 Installing Driver Files
	3 Creating a New Driver Object
	Creating the Driver Object in Designer
	Importing the Driver Configuration File
	Configuring the Driver Object
	Deploying the Driver Object
	Starting the Driver

	Activating the Driver

	4 Upgrading an Existing Driver
	Supported Upgrade Paths
	What’s New in Version 4.0.0.1
	Upgrading the Driver
	Upgrading the Installed Packages
	Applying the Driver Patch

	5 Managing the Driver
	6 Troubleshooting
	Troubleshooting Driver Processes

	A Driver Settings, Policies, and Templates
	Driver Settings
	DN of the Document Base
	Document Directory
	Use HTTP Server (true|false)
	HTTP IP Address or Host Name
	HTTP Port
	Name of KMO
	Name of Keystore File
	Keystore Password
	Name of Certificate (key alias)
	Certificate Password (key password)

	Subscriber Settings
	SMTP Server
	SMTP Account Name
	Default “From” Address
	Additional Handlers

	Publisher Settings
	Additional Servlets

	Subscriber Channel Policies
	Blocking Commands from Reaching the Subscriber Channel
	Generating E-Mail Messages

	Subscriber Channel E-Mail Templates
	Publisher Channel Policies
	Publisher Channel Web Page Templates
	Publisher Channel XDS Templates
	Trace Settings

	B Replacement Data
	Data Security
	XML Elements
	<replacement-data>
	<item>
	<url-data>
	<url-query>

	C Automatic Replacement Data Items
	Subscriber Channel Automatic Replacement Data
	Publisher Channel Automatic Replacement Data

	D Template Action Elements
	<form:input>
	<form:if-item-exists>
	<form:if-multiple-items>
	<form:if-single-item>
	<form:menu>

	E <mail> Element
	<mail>
	<to>
	<cc>
	<bcc>
	<from>
	<reply-to>
	<subject>
	<message>
	<stylesheet>
	<template>
	<filename>
	<replacement-data>
	<resource>
	<attachment>

	F Data Flow Scenario for a New Employee
	Subscriber Channel Configuration
	Publisher Channel Configuration
	Description of Data Flow

	G Custom Element Handlers for the Subscriber Channel
	Constructing URLs for Use with the Publisher Channel Web Server
	Constructing Message Documents by Using Stylesheets and Template Documents
	SampleCommandHandler.java
	Compiling the SampleCommandHandler Class
	Trying the SampleCommandHandler Class

	H Custom Servlets for the Publisher Channel
	Using the Publisher Channel
	Authentication
	SampleServlet.java
	Compiling the SampleServlet Class
	Trying the SampleServlet Class

