

Directory and Resource
Administrator

REST Services Technical Reference

June 2021

2

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions,
U.S. Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

© Copyright 2007-2021 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

http://www.microfocus.com/about/legal/
http://www.microfocus.com/about/legal/

Contents 3

Contents
1 Contents .. 3

2 About this Reference .. 5

3 Understanding the DRA REST Endpoints and APIs .. 7

Authentication ... 7

4 Working with the .NET Interfaces ... 8

Configuring the REST Client ... 8
HTTP Verb ... 8

Headers ... 8

URI... 8

Payload .. 9

Searching for DRA Objects (Enumeration) .. 15

Container Enumeration ... 15

Understanding the JSON Configuration... 19

Object Property Maps ... 19

Default Properties Lists ... 20

5 Working with Virtual Attributes .. 21

Sending Virtual Attributes in a Payload.. 21

6 Appendix A – REST Endpoint Examples ... 23

Create .. 23
Create Using friendlyName Attribute ... 23

Create Using Name + friendlyParentPath Attribute .. 23

Create Using distinguishedName Attribute .. 23

Create Using canonicalName Attribute ... 24

Create Missing Required Input .. 24

Delete ... 25

Get ... 25

Basic .. 25

Requesting Specific Attributes .. 25

Get a List of Groups in a Specific Domain ... 26

Update .. 27

4 Contents

Basic .. 27

Update Office 365 Properties .. 28

Enable (enable and disable) ... 29

Unlock and Reset Password ... 29

Enable Email .. 30

DisableEmail .. 30
Search (Enumeration) ... 31

Searching for a Specific Object Type in a Specific Domain.. 31

Search Across All Domains and All Object Types ... 34

Search Using an LDAP Query .. 38

Search with a Filter for Virtual Attributes ... 39

About this Reference 5

About this Reference
The DRA REST Services Technical Reference provides information about the REST endpoint URIs, the payload
contents for each URI, and the response returned to the client.

Intended Audience
This guide provides information for application developers to integrate their applications with DRA.

Additional Documentation
This guide is part of the Directory and Resource Administrator documentation set. For the most recent version of
this guide and other DRA documentation resources, visit the DRA Documentation website
(https://www.netiq.com/documentation/directory-and-resource-administrator/).

Contact Information
We want to hear your comments and suggestions about this book and the other documentation included with
this product. You can use the comment on this topic link at the bottom of each page of the online
documentation, or send an email to Documentation-Feedback@microfocus.com.

For specific product issues, contact Micro Focus Customer Care at https://www.microfocus.com/ support-
and-services/.

https://www.netiq.com/documentation/directory-and-resource-administrator/index.html
https://www.netiq.com/documentation/directory-and-resource-administrator
http://www.netiq.com/documentation/directory-and-resource-administrator/
mailto:Documentation-Feedback@microfocus.com
https://www.microfocus.com/support-and-services/
https://www.microfocus.com/support-and-services/
https://www.microfocus.com/support-and-services/

6 About this Reference

Understanding the DRA REST Endpoints and APIs 7

Understanding the DRA REST Endpoints and APIs
You can develop a client for making DRA requests using .NET managed code or using PowerShell. Either approach
provides an easy way to integrate your existing application with DRA.

The DRA REST endpoints allow any REST-enabled client to automate Active Directory administration tasks using
DRA. Using the credentials of a DRA administrator, the REST client can perform administration tasks across
multiple domains and forests from a single client. The DRA server enforces the DRA delegation of powers to ensure
that the client can only perform tasks for which the user has privileges defined.

All requests and responses are formatted as JSON documents and sent to the DRA REST Service via HTTP over SSL.
Any client that can handle JSON-formatted data and make HTTP requests can use the DRA REST endpoints.

Authentication
The following users can be used for any REST request:

• Client user: The user making the request. The user can authenticate to IIS through basic authentication,
Windows integration, or by providing a signed certificate.

o Basic Authentication: The request header must contain the client user’s credentials. The base
endpoint address must be https://localhost:8755/.

o Windows Integration: The base endpoint address must be
https://localhost:8755/console.

o Certificate-based Authentication: The request must include a client certificate that is installed in
the local store on the client. The client certificate must be signed by an authority that is trusted
by the DRA REST Server. The base endpoint address must be
https://localhost:8755/certificate.

• DRA Administrator: The DRA Administrator is delegated DRA powers to perform the requested
operation. If the DRA Administrator is not the same as the client user, the REST request must include the
DRA Administrator’s credentials.

https://localhost:8755/console
https://localhost:8755/certificate

8 Working with the .NET Interfaces

Working with the .NET Interfaces
You can connect to the DRA REST Service by sending an HTTPS request to the server where the service is running.
The endpoint is selected based on the URI. The JSON-formatted payload provides additional information for the
request such as the DRA administrator credentials, the DRA server to use (default is the local server), and
additional details about the request.

Most requests will require a payload that describes the object you are working with. See Appendix A for some
sample payloads. You can get a list of all implemented payloads in your browser by using the following URL on a
server with DRA REST Extensions installed: https://localhost:8755/Console/help.

There are several tools you can use for exploring REST interfaces. Any of the tools will work for connecting with the
DRA REST endpoints, provided you configure the request with the correct HTTP verb, URI, headers, and payload.

Configuring the REST Client
Use the information in this section to configure the REST Client.

HTTP Verb
All requests to perform DRA operations will be sent using HTTP POST. The request will usually include a payload
that specifies additional information such as the DRA Admin credentials, a specific DRA server to where the
operation should be performed, and properties of the target of the request.

There is one request that uses HTTP GET. This request only verifies the state of the REST Service, it does not
perform a DRA operation.

Headers
Each request requires the following two headers:

• Authorization: Header containing the credentials of the user making the request. (Note: The DRA
assistant administration user can be a different user. See Connection Parameters.)

• Content-Type: application/json

URI
The client connects to the DRA REST Service by naming the computer and port in the URI. For example:

https://MyServer:port

Where Specifies

MyServer The name of the computer running the DRA REST Service.

port The REST Service Port entered during installation. The default is 8755. To
verify the port number, open the file NetIQ.DRA.RestService.exe.config in
the DRA installation folder. In
<system.serviceModel><services><service><host><baseAddresses>
you can see the port number in the <add baseAddresses> element for
localhost.

Working with the .NET Interfaces 9

After the port, the URI names “dra” as the target. There are different types of requests:

Enumeration dra/domains/{domain.name}/{objectType}s/get to list objects in a domain

dra/domains/get to list domains

Create dra/domains/{domain.name}/{objectType}s/post

Other Actions dra/domains/{domain.name}/{objectType}s/{verb}

Where Specifies

domain.name The full domain name using dot notation. For example, mydomain.corp

objectType The class of the Active Directory object, such as, “computer”. The object
type is always plural. For example, computers.

verb The HTTP verb. Options are:

Get: retrieves information about existing objects

Post: creates a new object

Put: updates an existing object

Delete: removes an existing object

Payload
For most requests, you will include a payload in the form of a JSON document with additional information to
complete the request. Payload contents may contain one or more of the following:

• Class objects that supply properties related to a create or update operation.
• Object identifier strings that name an existing object for get, update or delete operations.
• Connection parameters that specify a specific DRA server and/or the credentials for a DRA admin who

should perform the request.
• Attributes object that lists the desired properties to return for an enumeration operation.
• EnumerationOptions that control the amount of data returned to the client.

The text in the JSON document is parsed by the REST endpoint according to known names for objects and
properties. When writing the JSON document, take care to match the object and property names found in the
DRARestConfiguration.json file. If the name is misspelt or the case is incorrect, the item may be ignored by
the endpoint or it may cause the DRA Server to return an error.

Class Objects

The name of the class object identifies the type of object for the request such as computer. Object names are case
sensitive. The object members describe the attributes you want the DRA server to associate with the object you
are creating or updating.

When creating new objects, the object class must at least contain a name and the full path to the object. You can
provide this information using the following attributes:

10 Working with the .NET Interfaces

Attributes Sample Payload

name and friendlyParentPath "user": {

 "description": my user description",

 "name": "user123",

 "friendlyParentPath": "mydomain.corp/ouRoot/oux/ouy"

 }

distinguishedName "user": {

 "description": my user description",

"distinguishedName": "cn=user123,ou=ouRoot,ou=oux,
ou=ouy,dc=mydomain,dc=corp "

 }

friendlyName or
canonicalName

"user": {

 "description": my user description",

"friendlyName": "mydomain.corp/ouRoot/oux/ouy/user123"

 }

Where possible, the endpoint will supply a default value for an attribute, if DRA requires it. For example, the
samAccountName attribute is not required by REST, but it is required in DRA. If the samAccountName attribute is
not supplied, the REST endpoint will set the attribute to match the object name (with a trailing $ for computers).

The list of attributes included in the class object will depend on the action and the object type. Typically, the
properties have the same name as the AD attribute. Property names are case-sensitive. Examples of properties
that the client might specify:

• name: the internal name of the object
• samAccountName: the AD sAMAccountName
• description: object description
• displayName: the user-friendly name in AD
• distinguishedName: the full DN in AD
• isDisabled: to set the enabled state of the item

See Understanding The JSON Configuration for the list of properties defined for each object. See Appendix A for
object class examples for each operation.

Object Identifier

When performing an operation on an existing object, the payload must contain an object identifier that names the
existing object. The object identifier name is always the object class plus “Identifier”. For example,
computerIdentifier, userIdentifier, or azureGroupIdentifier (Azure object).

Working with the .NET Interfaces 11

The REST endpoint supports identifying an object using these formats:

Format Example

Name "computerIdentifier":"object05"

Distinguished Name "userIdentifier":"CN=User22,OU=myOU,DC=MYDOM,DC=corp"

Distinguised Name
(Azure object)

“azureUserIdentifier”:”CN=ObjectGUID,AZ=TenentGUID”

When using the simple name, the object name must be unique within the domain. The REST endpoint will attempt
to resolve the simple name to the full distinguished name by making a call to the DRA server. If more than one
object of that class is found in the domain having the same name, the request will fail.

The examples in Appendix A will generally show only one format. However, any format shown above can be used.

Connection Parameters

If the request should go to a particular DRA server, or if the REST client user does not have the DRA admin
privileges to perform the request, you will need to populate the connectionParameters object. You can specify
either a specific DRA server or credentials for the DRA admin user or both.

The connectionParameters object has the following attributes:

Attribute Description

username The full username of the DRA admin.

password The password for the DRA admin.

Example:

{

 "connectionParameters": {

 "draServerNameAndPort": "DRASERVER27:11192",

 "userName": "mydomain\\someUser",

 "password": "$secure1 $"

 }

}

Attributes List

Each object type has a default list of properties to return for a Get request. The same default list is applied
whether you Get information about a particular object or you request a list of objects. For any Get request, you
can override the default list by adding the attributes object to the payload.

The format of the attributes object is:

{"attributes":["property1", "property2","property3"]}

12 Working with the .NET Interfaces

You can see the default list of properties returned for each object type in the file
DRARestConfiguration.json in the installation folder. Look for the JSON object having a name like
[objectType]GetInfoDefaultProperties.

Enumeration Options

When you search DRA for a list of objects, you can provide information such as where to search and how many
objects to return at one time. When the returned list is very large, you can specify options to process the results in
sections.

The enumerationOptions object has the following attributes. All attributes are optional.

Attribute Description

containerDistinguishedName The distinguished name of the starting container for enumeration. If a
container is not specified then the domain in the URI is used as the
container and if there is no domain in the URI then the module=accounts
special container is searched (basically the container that corresponds to
the 'All My Managed Objects' node in the win32 console).

multiMatch This attribute is similar to “Ambigous Name Resolution” for Active
Directory. It is used with a filtered search based on multiple attributes and
returns results that match any of those attributes using “begins with”
criteria, such as name, display name, first name, and last name attributes.

includeChildContainers true or false. Default is false.

enforceServerLimit true or false. Default is true.

objectsPerResponse The number of objects to return at a time. Default is 250.

resumeString When the number of objects matching the enumeration filter exceeds the
objectsPerResponse value, the server returns the resumeString attribute in
the response. To get the next “page” of objects, specify the resumeString
provided in the previous response.

isManagedContainerEnum true or false. Default is false. When true, causes the request to run a
Managed Container enumeration. For more information, see Container
Enumeration.

ldapEnumerationOptions
-- or --
pagedEnumerationOptions

Sets parameters to control the behaviour of an LDAP or paged search
request. The options are listed below.

Only one of these options should be used in a request. If both options are
present, the server will use the containerEnumerationOptions parameter.

The pagedEnumerationsOptions has the following attributes. All attributes are optional. To determine if you want
to use a paged or container enumeration request, see Search Operation Types.

Working with the .NET Interfaces 13

Attribute Description

sortHint Tells the server which property to use for ordering the results. If this is not
specified, the server will choose the order.

startRow Specify this parameter when the number of objects matching the
enumeration filter exceeds the objectsPerResponse value and you want
the results to contain data from somewhere other than the beginning. Use
this parameter with resumeString to request more results from a search.
See Paged Enumeration for more information.

For example:

{

 "enumerationOptions": {

 "objectsPerResponse": 5,

 "includeChildContainers": true,

 "resumeString": "CN=Accounting-DG, OU=Accounting,OU=My Product
Preview,DC=MYDOMAIN,DC=CORP"

 }

}

The ldapEnumerationOptions has the following attributes.

Attribute Description

vaQueryString Optional. Specifies search criteria for virtual attributes. The format of this
string is the format sent by the console when making a request. It is not
LADP-format.

For example, this is an OR query that checks the value of VA01 and VA02:

<VAQUERY>
<OR>
 <USER>
 <ATTRIBUTE>VA01</ATTRIBUTE>
 <CONDITION>STARTS-WITH</CONDITION>
 <VALUE>Z</VALUE>
 </USER>
 <USER>
 <ATTRIBUTE>VA02</ATTRIBUTE>
 <CONDITION>STARTS-WITH</CONDITION>
 <VALUE>Q</VALUE>
 </USER>
</OR>
</VAQUERY>

Valid conditions are:

ENDS-WITH

IS

14 Working with the .NET Interfaces

Attribute Description

IS-NOT

STARTS-WITH

PRESENT

The virtual attribute query string is a continuation of the LDAP query
string. The OR AND statements are added to the LDAP query filter.

startRow Optional. Default is 0.

Specify this parameter when the number of objects matching the
enumeration filter exceeds the objectsPerResponse value and you want
the results to contain data from somewhere other than the beginning. Use
this parameter with resumeString to request more results from a search.

See the Enumeration section of Appendix A for more enumeration examples.

List All DRA Servers:

This request will return all available DRA servers for the domain.

URI https: //myDRAserver:8755/dra/domains/MyDomain.corp/draservers/get

Payload None

Response {

 "draServers": [{

 "name": "HOUDVDR202.MYDOMAIN.CORP",

 "machine": "HOUDVDR200.MYDOMAIN.CORP",

 "mmsId": "{87023C1A-3066-4954-B104-6F2617AC5E22}",

 "version": "8.70.0",

 "type": "Primary",

 "forest": "MYDOMAIN.CORP",

 "site": "Default-First-Site-Name",

 "domain": "MYDOMAIN.CORP",

 "restServicePort": 8755,

 }]

}

Other Examples

See Appendix A for a detailed list of examples.

Working with the .NET Interfaces 15

Searching for DRA Objects (Enumeration)
The DRA REST extensions have several endpoints that allow you to query the DRA server for a list of objects
matching the filter criteria. You can search for specific object types within a domain, or you can search across all
object types in all the domains managed by DRA. In either case, the endpoint request will return the results in an
array of objects. If the results include multiple object types, each object type will be in a separate array.

When searching, the DRA server will always honor the delegation rules. The results will only contain the objects
over which the requesting user has been granted at least view property powers. For more information about
setting the credentials of the requesting user see Authentication.

There are two types of enumeration: container and LDAP. The container enumeration allows you to filter using
DRA object properties. The LDAP enumeration allows you to filter by specifying an LDAP query string.

Container Enumeration
The container enumeration endpoints are:

• dra/domains/{domain fqdn}/{object type}/get

This endpoint allows you to search for a single type of object within a single domain. When using this
endpoint, you can filter on the object type named in the URI. The results will only contain objects of the
type named in the URI.

• dra/managedObjects/get

This endpoint allows you to search across all managed domains for any of the supported object types. This
endpoint accepts filters for multiple object types. The results will contain several object arrays: one for
each type of object managed by DRA.

Container Enumeration Payload

The payload for an enumeration request defines the filters for the search as well as the contents and format of the
search results. When results exceed the maximum number of objects you want to process at one time, there are
options to request the next set of data. In this way, you can process all the objects found by your search, even if
the results contain thousands of objects.

The payload can include any of the following objects:

Enumeration Options Optional. Specifies parameters such as the path to search. When not
specified, the search will be done on the root container.

Generally, you will want to specify at least the containerDistinguishedName
parameter. See Enumeration Options for a list of options you can specify.

Object Filters Optional. When none specified, all objects are returned.

Filters are specified by using the same class structure and properties as you
use for creating and updating objects managed by DRA. For example, when
you want to search for users, you would specify the filter using the
properties of the User object.

The JSON object names in the payload follow the pattern of object type
plus AndFilter or OrFilter. For example: userAndFilter, computerOrFilter.

16 Working with the .NET Interfaces

Objects supporting And Or filters are computer, contact, domain, group,
and user. Or filters are available for performing a search of
EquipmentResourceMailbox and RoomResourceMailbox objects.

Technical Note: When the search includes any filter for a Resource Mailbox
object, then the results will be limited to Resource Mailboxes. Other filters
are ignored by the server.

You specify whether the search should return objects that match any of the
criteria using an OR filter. You specify that the search should only return
objects matching all the criteria using an AndFilter.

Attributes Optional. Specifies the list of fields you want to be returned in the results.
See Attributes List for more information.

Connection Parameters Optional. Specifies the name of the DRA server that should perform the
search and the DRA Admin whose credentials should be used for checking
powers over the objects returned. If not specified, the search will be
performed on the local machine using the credentials of the user making
the request. See Connection Parameters for more information.

Container Enumeration Filters

DRA supports the following filtering values:

* (asterisk) Matches any number of characters. Can be used anywhere in the property.

XXX* equates to ‘begins with’

*XXX equates to ‘ends with’

XX*YY equates to ‘contains’

(number sign) Matches a single numeric digit. Can be used anywhere in the property. You
can use multiple number sign characters to mask multiple numeric digits.
For example:

matches any 3-digit number (001, 987, etc.)

? (question mark) Matches a single non-numeric character, including special characters. You
can use multiple question marks to mask multiple characters. For example:

??? matches any 3 non-numeric characters (abc, ZZZ, etc.)

You can use the filter values together in a single filter. Matches are not case-sensitive. Here are some examples
showing how you would specify some filters in the payload. The examples show the JSON-formatted filter for one
field.

"location":"HOU-7##*" Searches for objects whose Location field begin with the literal value HOU-
7, followed by two numeric digits, followed by any characters. The
character searches are not case-sensitive. So, the above filters would return
locations that began with HOU, Hou, hou, and so on.

Matches: HOU-722 xx yy

Working with the .NET Interfaces 17

Does not match: HOU-7A22

"managedBy":"*george*" Searches for objects whose managedBy field contain ‘george’.

Matches: CN=Hernandez, George,DC=MyDomain,DC=corp

"employeeId":"??9*" Searches for objects whose employeeID field start with two characters
followed by the number 9 and ending with any number of characters.

Matches: ZZ987345 or AB9-ZZZ

Does not match: 00987345

For each object type, you can supply a filter that tells the search to match all the specified filters (AndFilter) or any
of the specified filters (OrFilter). When you use the domain/object specific endpoint, the payload can contain
filters for the object type named in the URI. If you use the managedObjects endpoint, you can supply filters for
each type of object you want returned in the results.

Any object returned from the search will match all the filter criteria. For example:

userAndFilter "location":"HOU-7##*"

userOrFilter "managedBy":"*George*","department":"*sales*"

userOrFilter "multiMatch":"adm*"

Returns all user objects in the specified path whose location matches the AndFilter AND whose managedBy field
contains George OR whose department contains ‘sales’ OR who has one or more multi-match attributes that begin
with the first three letters a d m.

NOTE: Each filter includes the class of the object in the filter name. (E.g., userAndFilter will only match objects of
type User.) When you supply multiple filters, all filters will be applied to the entire result set. This means that if
you are searching across multiple object types in one request, you should use OrFilters. If you specify two
AndFilters for different object types, the result set will be empty: any object can only match one class.

Container Enumeration Search Types

The type of search operation you request depends on what the application you are writing will do with the results.
The managedObjects/get endpoint supports three types of searches:

• Container Enumeration: Searches for all objects in the current container and child containers, if
specified. The results are returned in object arrays; there is one array for each object type. You would
iterate over the results by using the ResumeString parameter. The ResumeString contains the search path
to the last item in the current result set. This search would be used for automation tasks where you would
perform further processing on the objects returned from the search.

• Managed Container Enumeration: An EnumerationOption flag that returns objects matching the filters
and all child containers. Does not search child containers, even if includeChildContainers is true. This
search could be used to populate a tree structure. This type of search is requested by setting the
isManagedContainerEnum flag. Otherwise, it is the same as a ContainerEnumeration.

• Paged Enumeration: Performs a Container Enumeration search and returns a list of rows. Using the
startRow and cachId parameters, you can request data from a specific place in the results. This type of
search would be used in a user interface where you want to present the search results as pages and allow
the user to scroll up and down.

18 Working with the .NET Interfaces

Container Enumeration

A Container Enumeration search is the default type of search. You can explicitly request a Container Enumeration
search by specifying the containerEnumerationOptions object in the payload.

The search results will contain two attributes that you will need to iterate over multiple pages of results:
totalNumberOfObjects and resumeString. If resumeString is empty, then there are no more results to process for
this search request. If there is a value in resumeString, resend the same request with the resumeString attribute
set. Results are only processed once, going forward in the list each time.

The following table shows the sequence of payload and response JSON that demonstrates how to control the
result set and iterate over multiple pages of results. Only the JSON that is needed to demonstrate the flow of data
is shown.

Request Server Response

"enumerationOptions": {

 "containerDistinguishedName":
"OU=Accounting,DC=MYDOMAIN,DC=CORP",

 "resumeString": ""

}

{

 ...

 "resumeString": "CN=Accounting-
DG,OU=Accounting,DC=MYDOMAIN,DC=CORP",

 "totalNumberOfObjects": 294,

 "numberOfRowsReturned": 250,

 "isSearchFinished": false

}

Paged Enumeration

A Paged Enumeration request performs the search the same as the Container Enumeration. However, the result
set has a different set of attributes for retrieving multi-paged results. The paged enumeration allows you to
retrieve the results multiple times, starting at different places in the result set. This is designed for displaying data
in a graphical user interface.

Here is how you could use the Paged Enumeration options to present data to the user:

• In each request, set the objectsPerResponse attribute to the number of rows you want to display at one
time.

• Use the totalNumberOfObjects attribute in the response to calculate the number of pages.
• When the user chooses a different page for viewing, calculate the row number that is needed and set the

startRow attribute to that number.

The following table shows the sequence of payload and response JSON that demonstrates how to control the
result set and iterate over multiple pages of results. Only the JSON that is needed to demonstrate the flow of data
is shown.

Request Server Response

(Initial request)

"enumerationOptions": {

 "containerDistinguishedName":
"OU=Accounting,DC=MYDOMAIN,DC=CORP",

 "objectsPerResponse": 15,

{

 ...

 "resumeString": "{214A15E1-44D4-460D-
9CC4-D8CA04EFDE6E}",

 "totalNumberOfObjects": 294,

Working with the .NET Interfaces 19

 "resumeString": "",

 "pagedEnumerationOptions ": {

 "startRow": 1,

 "cacheId": ""

 }

}

 "numberOfRowsReturned": 15,

 "isSearchFinished": false

}

(2nd request)

"enumerationOptions": {

 "containerDistinguishedName":
"OU=Accounting,DC=MYDOMAIN,DC=CORP",

 "objectsPerResponse": 15,

 "resumeString": "{214A15E1-44D4-
460D-9CC4-D8CA04EFDE6E}",

 "pagedEnumerationOptions ": {

 "startRow": 31

 }

}

Retrieves page 3

Understanding the JSON Configuration
The REST Extensions installation folder contains a file called DRARestConfiguration.json. This file contains
several JSON objects that are loaded by the REST Service during startup. The JSON describes all the supported
object types and their properties.

Object Property Maps
The object property name maps make the association between the property names sent from the DRA REST client
and the names expected by the DRA server. In many cases, client property names are more user-friendly. The
property name maps cannot be changed or edited.

The baseObjectPropertyNameMap describes properties common to all the supported objects. For each supported
object, you will find a corresponding [objectType]ObjectPropertyNameMap that describes properties unique to
that object. To determine all the properties available for an object, consider both the
baseObjectPropertyNameMap and the object-specific Property Name Map. The entries in the object map look like
this:

"contactPropertyNameMap": [{

 "draPropertyName": "l",

 "clientPropertyName": "city"

 }, {

 "draPropertyName": "company",

 "clientPropertyName": "company"

 }

 ...

20 Working with the .NET Interfaces

The REST client should specify the values named on the "clientPropertyName" side of the map.

Default Properties Lists
The DRA REST feature is installed with a default list of attributes to return when performing a query to gather
information about one or more objects. You can modify this default list to meet the needs of your environment.

To modify this list, create a backup of the file DRARestConfiguration.json in the installation folder. Then, edit the
original file. The default attributes for each object type are listed in the PropertiesToGet field. Change the list and
save the document. Changes take effect the next time that the REST service is restarted.

If the edits result in invalid JSON, the NetIQ DRA REST Service will stop.

Working with Virtual Attributes 21

Working with Virtual Attributes
You can set the value for existing virtual attributes from your REST client by specifying the values in the
“additionalAttributes” object. Both the PowerShell Extensions and REST Endpoints will pass the value of a supplied
virtual attribute to the server.

NOTE: If the virtual attribute is configured to require a value, the create request coming from the REST Extensions
will not validate that requirement. If the virtual attribute is not included in a create request, the object will be
created with an empty virtual attribute value.

Sending Virtual Attributes in a Payload
After you define a virtual attribute and associate it with a class, you can set the value for the virtual attributes by
sending it in a special payload object called “additionalAttributes”. This object is a collection of keys and values.
The key is the name of the property on the DRA server. For example, if you defined a virtual attribute called
“OfficeBuilding” and associated it with computers, you could create the computer and set the value using a
payload like this:

{

 "computer": {

 "description": "computer for testing",

 "distinguishedName": "CN=TESTCREATE25,OU=someOU,DC=MyDomain,DC=corp",

 "additionalAttributes": {

 "OfficeBuilding": "Downtown",

 "A_Multi_Value": ["Value1", "Value2"],

 "An_Integer_Value": 47,

 }

 }

}

Notice that “additionalAttributes” uses curly braces to wrap the values. The example also shows how to format a
multi-valued attribute and an integer.

22 Working with Virtual Attributes

Appendix A – REST Endpoint Examples 23

Appendix A – REST Endpoint Examples
This appendix provides just a few examples of how to use DRA REST extensions on endpoints to execute actions in
Active Directory, such as creating, updating deleting, and searching for objects. For detailed comprehensive Help of
the DRA REST Extensions SDK, see the DRA REST Services Guide on the DRA Documentation site.

Create
The examples below demonstrate payload options for creating a computer:

Create Using friendlyName Attribute

URI /dra/domains/MyDomain.corp/computers/post

Payload {

 "computer": {

 "description": "my 05 favorite computer",

 "friendlyName": "MyDomain.corp/Sharon/TESTCREATE03"

 }

}

Response {"errors":[]}

Create Using Name + friendlyParentPath Attribute

URI /dra/domains/MyDomain.corp/computers/post

Payload {

 "computer": {

 "name": "TESTCREATE09",

 "description": "my 09 favorite computer",

 "friendlyParentPath": "MyDomain.corp/Sharon"

 }

}

Response {"errors":[]}

Create Using distinguishedName Attribute

URI dra/domains/MyDomain.corp/computers/post

Payload {

https://www.netiq.com/documentation/directory-and-resource-administrator/

24 Appendix A – REST Endpoint Examples

 "computer": {

 "description": "my distinguished 07 computer",

 "distinguishedName": "CN=TESTCREATE07,OU=Sharon,DC=MyDomain,DC=corp"

 }

}

Response {"errors":[]}

Create Using canonicalName Attribute

URI /dra/domains/MyDomain.corp/computers/post

Payload {

 "computer": {

 "description": "my 05 favorite computer",

 "canonicalName": "MyDomain.corp/Sharon/TESTCREATE03"

 }

}

Response {"errors":[]}

Create Missing Required Input

URI /dra/domains/MyDomain.corp/computers/post

Payload {

 "computer": {

 "name": "TESTCREATE03",

 "description": "my favorite computer"

 }

}

Response {

 "errors": [{

 "message": " The request to create a computer is not valid. You must provide a name and a
path to the container where it should be created.",

 "suggestion": " Provide one of: distinguishedName, friendlyName, or both name and
friendlyParentPath.",

 "stacktrace": ""

 }]

Appendix A – REST Endpoint Examples 25

}

Delete
The example below demonstrates deleting a contact:

URI dra/domains/MyDomain.corp/contacts/delete

Payload {

 "contactIdentifier": "Contact001"

}

Response {"errors":[]}

Get
The examples below demonstratde payload options for “group” get operations:

Basic

URI

dra/domains/MyDomain.corp/groups/get

Payload {

 "groupIdentifier": "DRA Admins"

}

Response {

 "group": {

 "additionalAttributes": {},

 "class": "Group",

 "distinguishedName": "CN=DRA Admins,CN=Users,DC=MYDOMAIN,DC=CORP",

 "sAMAccountName": "DRA Admins"

 },

 "errors": []

}

Requesting Specific Attributes

URI dra/domains/MyDomain.corp/groups/get

Payload {

26 Appendix A – REST Endpoint Examples

 "groupIdentifier": "CN=Sales-SU,OU=Sales,DC=MYDOMAIN,DC=CORP",

 "attributes": [

 "samAccountName",

 "distinguishedName",

 "description",

 "mail",

 "hideFromAddressLists"

]

}

Response {

 "group": {

 "mail": "Sales-SU_0009@MYDOMAIN.CORP",

 "hideFromAddressLists": true,

 "additionalAttributes": {},

 "description": "Description of: Sales-SU_0009",

 "class": "Group",

 "distinguishedName": " CN=Sales-SU,OU=Sales,DC=MYDOMAIN,DC=CORP ",

 "sAMAccountName": "Sales-SU_0009"

 },

 "errors": []

}

NOTE:

When listing specific attributes, you can specify “members” to get a list of the members of the group. You can
specify “memberOf” to get a list of the groups to which this group belongs. The request returns the results from a
single query, without recursion.

Get a List of Groups in a Specific Domain

URI dra/domains/MyDomain.corp/groups/get

Payload {

 "enumerationOptions": {

 "containerDistinguishedName": "OU=SomeDept,DC=MYDOMAIN,DC=CORP"

 }

}

Appendix A – REST Endpoint Examples 27

Response {

 "groups": [{

 "additionalAttributes": {},

 "description": "some description",

 "class": "Group",

 "friendlyName": " GROUP05",

 "friendlyPath": "MYDOMAIN.CORP/Sharon/GROUP05",

 "isManaged": true,

 "distinguishedName": "CN=GROUP05,OU=SomeDept,

 DC = MYDOMAIN,

 DC = CORP ",

 },

 Etc.

],

 "resumeString": "",

 "totalNumberOfObjects": 12,

 "errors": []

}

This example gets all groups in the path Domain\SomeDept. The default container for the domain/groups/get
request is the domain root.

Update
The examples below demonstrate payload options for updating a user:

Basic

URI dra/domains/MyDomain.corp/users/put

Payload {

 "userIdentifier": "user05",

 "user": {

 "description": "modified description QQQ",

 "isDisabled": "true"

 }

}

Response {"errors":[]}

28 Appendix A – REST Endpoint Examples

Update Office 365 Properties

URI dra/domains/MyDomain.corp/users/put

Payload {

 "userIdentifier": "CN=Alfred O365-2,OU=Tax,DC=MyDomain,DC=CORP",

 "user": {

 "office365FullAccessAdd": [

 "CN=A AAATest,OU=Tax,DC=MyDomain,DC=CORP",

 "CN=Jim Bob-1,OU=Tax,DC=MyDomain,DC=CORP"

],

 "office365FullAccessRemove": [

 "CN=AAA-Alfred Don1,OU=Tax,DC=MyDomain,DC=CORP",

 "CN=AATestCase6,OU=Tax,DC=MyDomain,DC=CORP"

],

 "office365SendAsAdd": [

 "CN=Ron Jackson,OU=Tax,DC=MyDomain,DC=CORP",

 "CN=Eric Jones,OU=Tax,DC=MyDomain,DC=CORP"

],

 "office365SendAsRemove": [

 "CN=A AAATest,OU=Tax,DC=MyDomain,DC=CORP",

 "CN=Jim Bob-1,OU=Tax,DC=MyDomain,DC=CORP"

],

 "office365SendOnBehalfAdd": [

 "CN=AAA-Alfred Don1,OU=Tax,DC=MyDomain,DC=CORP",

 "CN=AATestCase6,OU=Tax,DC=MyDomain,DC=CORP"

],

 "office365SendOnBehalfRemove": [

 "CN=Ron Jackson,OU=Tax,DC=MyDomain,DC=CORP",

 "CN=Eric Jones,OU=Tax,DC=MyDomain,DC=CORP"

]

 }

}

Response {

 "user": {

Appendix A – REST Endpoint Examples 29

 "class": "User",

 "distinguishedName": "CN=AlfredO365-2,OU=Tax,DC=MyDomain,DC=CORP",

 "additionalAttributes": {},

 "draServerAndPort": "MYDRASERVER:11192",

 "errors": []

 }

}

Enable (enable and disable)

URI dra/domains/MyDomain.corp/users/disable/put

dra/domains/MyDomain.corp/users/enable/put

Payload {

 "userIdentifier": "user12"

}

Response {"errors":[]}

Unlock and Reset Password
These two options use the same DRA operation. In the REST code, we translate the endpoint location to the
correct DRA parameters.

URI dra/domains/MyDomain.corp/users/unlock/put

Payload {

 "userIdentifier": "user12"

}

Response {

 "user": {

 "additionalAttributes": {},

 "class": "User"

 },

 "errors": []

}

URI dra/domains/MyDomain.corp/users/resetpassword/put

30 Appendix A – REST Endpoint Examples

Payload {

 "userIdentifier": "user12"

}

Response {

 "user": {

 "userPassword": "T9KBGhq~z",

 "additionalAttributes": {},

 "class": "User"

 },

 "errors": []

}

The password is generated by the DRA server and returned to the client. If userPassword is passed in the payload,
then that value is used, and no password is returned to the client.

Enable Email

URI dra/domains/MyDomain.corp/users/enableemail/put

Payload {

 "userIdentifier": "user05",

 "user": {

 "legacyExchangeDn": "/o=First/ou=Exchange Administrative Group
(FYDIBOHF23SPDLT)/cn=Recipients/cn=User05",

 "mailNickname": "User05",

 "emailAddress": "user05email@mydomain.corp"

 }

}

Response {"errors":[]}

NOTE: When the mailNickname is not provided, the alias will be generated by the DRA server to be compliant with
the configured alias naming policy. If the client supplies a mailNickname attribute that is out of compliance, the
request will fail.

DisableEmail

URI dra/domains/MyDomain.corp/users/disableemail/put

Payload {

Appendix A – REST Endpoint Examples 31

 "userIdentifier": "user05"

}

Response {"errors":[]}

Search (Enumeration)
The examples below demonstrate options payload and non-payload options when searching for objects:

Searching for a Specific Object Type in a Specific Domain

Default Search – No Payload

URI dra/domains/MyDomain.corp/computers/get

Payload {}

Response {

 "computers": [{

 "trustedForDelegation": false,

 "groupMembershipCount": 1,

 "additionalAttributes": {},

 "isDisabled": false,

 "class": "Computer",

 "friendlyPath": "MYDOMAIN.CORP/Computers/HOUDVDR152",

 "isManaged": true,

 "distinguishedName": "CN=HOUDVDR152,CN=Computers,DC=MYDOMAIN,DC=CORP",

 "sAMAccountName": "HOUDVDR152$",

 "displayName": "HOUDVDR152$"

 },

 Etc.

],

 "errors": []

}

** computers can be replaced with contacts, domains, draservers, dynamicdistributiongroups,
equipmentresourcemailboxes, groups, ous, resourcemailboxes, roomresourcemailboxes, or users. The returned
attributes in the response depend on the specified object type. This default search looks in the root of the
specified domain and does not search for any child containers. The search returns the first 250 objects found. The
properties in the response are the default properties for that object type.

32 Appendix A – REST Endpoint Examples

List all Objects in a Category in a Specific Container

URI dra/domains/MyDomain.corp/computers/get

Payload {

 "enumerationOptions": {

 "includeChildContainers": true,

 "containerDistinguishedName": "OU=My ou,DC=mydom,DC=corp"

 }

}

Response {

 "computers": [{

 "trustedForDelegation": false,

 "groupMembershipCount": 1,

 "additionalAttributes": {},

 "isDisabled": false,

 "class": "Computer",

 "friendlyPath": "MYDOMAIN.CORP/Computers/HOUDVDR152",

 "isManaged": true,

 "distinguishedName": "CN=HOUDVDR152,CN=Computers,DC=MYDOMAIN,DC=CORP",

 "sAMAccountName": "HOUDVDR152$",

 "displayName": "HOUDVDR152$"

 },

 Etc.

],

 "resumeString": "xxxxxxxx",

 "totalNumberOfObjects": 322,

 "errors": []

}

The includeChildContainers attribute is optional and defaults to false. To specify a particular container, provide the
containerDistinguishedName attribute. This example returns the first 250 computers found in the “My OU”
container. To request the remaining objects, send the query again with a ‘containerEnumerationOptions’ object
that specifies the resume string "xxxxxxxx". See Paging Examples an example.

List all Objects and Request Non-default Attributes

URI dra/domains/MyDomain.corp/computers/get

Appendix A – REST Endpoint Examples 33

Payload {

 "attributes": [

 "accountThatCanAddComputerToDomain",

 "description",

 "displayName",

 "distinguishedName"

]

}

Response {

 "computers": [{

 "trustedForDelegation": false,

 "additionalAttributes": {},

 "class": "Computer",

 "distinguishedName": "CN=HOUDVDR152,CN=Computers,DC=MYDOMAIN,DC=CORP",

 "displayName": "HOUDVDR152$"

 },

 Etc.

],

 "resumeString": "xxxxxxxx",

 "totalNumberOfObjects": 322,

 "errors": []

}

Search Using Filter, Enumeration Options and Non-Default Attributes

URI dra/domains/MyDomain.corp/users/get

Payload {

 "userAndFilter": {

 "distinguishedName": "*Wilson*"

 },

 "enumerationOptions": {

 "includeChildContainers": true,

 "containerDistinguishedName": "OU=My ou,DC=mydom,DC=corp"

 },

34 Appendix A – REST Endpoint Examples

 "attributes": ["description", "displayName", "distinguishedName"]

}

Response {

 "users": [{

 "additionalAttributes": {},

 "class": "User",

 "distinguishedName": "CN=George Wilson,OU=Sales,DC=MYDOMAIN,DC=CORP",

 "displayName": "George Wilson",

 "description": "Sales Associate"

 },

 Etc.

],

 "resumeString": "",

 "totalNumberOfObjects": 18,

 "errors": []

}

This payload searches for users whose distinguished name contains ‘Wilson’. The search will look in the OU ‘My
OU’ and its children. The results will have 3 attributes: description, displayName and distinguishedName. This
combination of JSON objects is what you will want to submit for many requests.

Search Across All Domains and All Object Types

Default Search – No Payload

URI dra/managedObjects/get

Payload None

Response {

 "computers": [],

 "contacts": [],

 "domains": [{

 "additionalAttributes": {},

 "class": "Domain"

 }],

 "groups": [],

 "ous": [],

Appendix A – REST Endpoint Examples 35

 "users": [],

 "resumeString": "",

 "totalNumberOfObjects": 1,

 "numberOfRowsReturned": 1,

 "isSearchFinished": true,

 "errors": []

}

As you can see, the default search across all domains and object types does not return any useful data. This search
looks in the DRA root container and it will not search into any of the domains. Therefore, the results will probably
be a set of empty object arrays.

Search for One Type of Object

URI dra/managedObjects/get

Payload {

 "userAndFilter": {

 "distinguishedName": "*Wilson*"

 },

 "enumerationOptions": {

 "includeChildContainers": true,

 "containerDistinguishedName": "OU=Sales,DC=mydom,DC=corp"

 },

 "attributes": ["description", "displayName", "distinguishedName"]

}

Response {

 "builtinContainers": [],

 "computers": [],

 "contacts": [],

 "containers": [],

 "domains": [],

 "groups": [],

 "ous": [],

 "users": [{

 "additionalAttributes": {},

 "class": "User",

36 Appendix A – REST Endpoint Examples

 "distinguishedName": "CN=George Wilson,OU=Sales,DC=MYDOMAIN,DC=CORP",

 "displayName": "George Wilson",

 "description": "Sales Associate"

 }, {

 "additionalAttributes": {},

 "class": "User",

 "distinguishedName": "CN=Peter Wilson,OU=Sales,OU=USA,DC=MYDOMAIN,DC=CORP",

 "displayName": "George Wilson",

 "description": "Sales Associate"

 }, {

 "additionalAttributes": {},

 "class": "User",

 "distinguishedName": "CN= Wilson Jones,OU=Sales,OU=EMEA,DC=MYDOMAIN,DC=CORP",

 "displayName": "George Wilson",

 "description": "Sales Associate"

 }],

 "resumeString": "",

 "totalNumberOfObjects": 3,

 "numberOfRowsReturned": 3,

 "isSearchFinished": true,

 "errors": []

}

This search looks for users having ‘Wilson’ in the distinguished name. The search includes the container ‘my ou’
and all its children. Each object matching the result will contain 3 properties listed in the payload’s attributes
object.

Search for Multiple Object Types

URI dra/managedObjects/get

Payload {

 "computerOrFilter": {

 "managedBy": "CN=Wilson Jones,OU=Sales,OU=EMEA,DC=MYDOMAIN,DC=CORP"

 },

 "groupOrFilter": {

 "managedBy": "CN=Wilson Jones,OU=Sales,OU=EMEA,DC=MYDOMAIN,DC=CORP"

 },

Appendix A – REST Endpoint Examples 37

 "ouOrFilter": {

 "managedBy": "CN=Wilson Jones,OU=Sales,OU=EMEA,DC=MYDOMAIN,DC=CORP"

 },

 "enumerationOptions": {

 "includeChildContainers": true

 },

 "attributes": ["distinguishedName"]

}

Response {

 "builtinContainers": [],

 "computers": [{

 "additionalAttributes": {},

 "class": "Computer",

 "distinguishedName": "CN=COMP123,OU=Computers,DC=MYDOMAIN,DC=CORP",

 },

 Etc.

],

 "contacts": [],

 "containers": [],

 "domains": [],

 "groups": [{

 "additionalAttributes": {},

 "class": "Group",

 "distinguishedName":
"CN=SomeGroup,OU=Sales,OU=Marketing,DC=MYDOMAIN,DC=CORP",

 },

 Etc.

],

 "ous": [{

 "additionalAttributes": {},

 "class": "OrganizationalUnit",

 "distinguishedName": "OU=Sales,DC=MYDOMAIN,DC=CORP",

 },

 Etc.

38 Appendix A – REST Endpoint Examples

],

 "users": [],

 "resumeString": "",

 "totalNumberOfObjects": 3,

 "numberOfRowsReturned": 3,

 "isSearchFinished": true,

 "errors": []

}

This search looks for computers, groups, and OUs having the managedBy field set to a specific distinguished name.
The enumeration options specify no specific container and that the search should search all children. Take care
when performing searches across all containers for multiple object types. See Performance Considerations for
more information. xxOrfilter can be prefixed by any of these object types: builtinContainer, computer, contact,
container, ddg, domain, equipmentMailbox, group, ou, roomMailbox, or user.

Search Using an LDAP Query

URI dra/ldapObjects/get

Payload {

 "enumerationOptions": {

 "includeChildContainers": true,

 "containerDistinguishedName": "cn=Users,DC=DRDOM610,DC=lab",

 "objectsPerResponse": "5",

 "ldapEnumerationOptions": {

 "ldapQueryString": "(&(objectClass=User)(!(email=*)))"

 }

 },

 "attributes": ["friendlyName",

 "distinguishedName",

 "mail",

 "title",

 "physicalDeliveryOfficeName",

 "userPrincipalName",

 "hasMailbox"

]

}

Response {

Appendix A – REST Endpoint Examples 39

 "builtinContainers": [],

 "computers": [],

 "contacts": [],

 "containers": [],

 "domains": [],

 "dynamicDistributionGroups": [],

 "groups": [],

 "ous": [],

 "users": [{

 "additionalAttributes": {},

 "class": "User",

 "distinguishedName": "OU=Sales,DC=MYDOMAIN,DC=CORP",

 },

 Etc.

],

 "resumeString": "",

 "totalNumberOfObjects": 3,

 "numberOfRowsReturned": 3,

 "isSearchFinished": true,

 "errors": []

}

Search with a Filter for Virtual Attributes

URI dra/ldapObjects/get

Payload {

 "enumerationOptions": {

 "includeChildContainers": true,

 "containerDistinguishedName": "cn=Users,DC=DRDOM610,DC=lab",

 "objectsPerResponse": "5",

 "ldapEnumerationOptions": {

 "ldapQueryString": "(&(objectClass=User)(!(email=*)))",

 "vaQueryString":
"<VAQUERY><OR><USER><ATTRIBUTE>VA01</ATTRIBUTE><CONDITION>IS</CONDITION><VALUE
>Z</VALUE></OR></VAQUERY>",

40 Appendix A – REST Endpoint Examples

 }

 },

 "attributes": ["friendlyName",

 "distinguishedName",

 "mail",

 "title",

 "physicalDeliveryOfficeName",

 "userPrincipalName",

 "hasMailbox"

]

}

Response {

 "builtinContainers": [],

 "computers": [],

 "contacts": [],

 "containers": [],

 "domains": [],

 "dynamicDistributionGroups": [],

 "groups": [],

 "ous": [],

 "users": [{

 "additionalAttributes": {},

 "class": "User",

 "distinguishedName": "OU=Sales,DC=MYDOMAIN,DC=CORP",

 },

 Etc.

],

 "resumeString": "",

 "totalNumberOfObjects": 3,

 "numberOfRowsReturned": 3,

 "isSearchFinished": true,

 "errors": []

}

Appendix A – REST Endpoint Examples 41

	Understanding the DRA REST Endpoints and APIs
	Authentication

	Working with the .NET Interfaces
	Configuring the REST Client
	HTTP Verb
	Headers
	URI
	Payload
	Class Objects
	Object Identifier
	Connection Parameters
	Attributes List
	Enumeration Options
	List All DRA Servers:
	Other Examples

	Searching for DRA Objects (Enumeration)
	Container Enumeration
	Container Enumeration Payload
	Container Enumeration Filters
	Container Enumeration Search Types
	Container Enumeration
	Paged Enumeration

	Understanding the JSON Configuration
	Object Property Maps
	Default Properties Lists

	Working with Virtual Attributes
	Sending Virtual Attributes in a Payload

	Appendix A – REST Endpoint Examples
	Create
	Create Using friendlyName Attribute
	Create Using Name + friendlyParentPath Attribute
	Create Using distinguishedName Attribute
	Create Using canonicalName Attribute
	Create Missing Required Input

	Delete
	Get
	Basic
	Requesting Specific Attributes
	Get a List of Groups in a Specific Domain

	Update
	Basic
	Update Office 365 Properties
	Enable (enable and disable)
	Unlock and Reset Password
	Enable Email
	DisableEmail

	Search (Enumeration)
	Searching for a Specific Object Type in a Specific Domain
	Default Search – No Payload
	List all Objects in a Category in a Specific Container
	List all Objects and Request Non-default Attributes
	Search Using Filter, Enumeration Options and Non-Default Attributes

	Search Across All Domains and All Object Types
	Default Search – No Payload
	Search for One Type of Object
	Search for Multiple Object Types

	Search Using an LDAP Query
	Search with a Filter for Virtual Attributes

