
Contents
Using the Authentication
Filter Tool in NetIQ®
CloudAccess
Technical Reference
November 2015

This document provides information about using the
Authentication Filter tool for NetIQ CloudAccess to make
session-based changes to the identity information for an
authenticated user.

The CloudAccess single sign-on login is designed to authenticate
a user against an identity source and to share this authentication
with other protected applications. The authentication process
does not provide extended functions to add, remove, or manage
a user’s identity information for the session. To address this
need, CloudAccess provides the Authentication Filter tool.

The Authentication Filter integrates with the CloudAccess single
sign-on process. After the user logs in, the filter intercepts the
authentication process and sends the user’s identity information
from the identity source to your custom authentication scripts.
You can add, remove, or set values for supported identity
attributes. You can also set a cookie. You can interact with the
user to gather input for those changes. After all of the encoded
rules and associations are complete, CloudAccess stores the
modified identity information in the session cache for the web
services and applications.

The Authentication Filter tool is compatible with the ExtAPI library
and the ExtUI library. It works with multiple scripting languages
including PHP, Java, and Perl.
Using an Authentication
Filter 2
How the Authentication
Filter Works 2
Creating Custom Scripts 3
Configuring the
Authentication Filter 6
Examples 7

2

Legal Notice
For information about NetIQ legal notices, disclaimers, warranties, export and other use restrictions, U.S. Government
restricted rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

Copyright © 2015 NetIQ Corporation. All Rights Reserved.

For information about NetIQ trademarks, see https://www.netiq.com/company/legal/. All third-party trademarks are the
property of their respective owners.

Using an Authentication Filter
NetIQ CloudAccess uses information in identity sources to authenticate users. It retrieves identity
attributes for an authenticated user, and shares that information with web services and applications
during the user’s session. In some cases, this identity information might be insufficient to access all of
your protected resources. Some applications might require confidential user information. Others might
require information that only the user can provide. Still others might require special settings for identity
attributes. You also might want to remove unneeded identity attributes for a user’s session to reduce
the amount of information injected in query strings, headers, and assertions.

The Authentication Filter allows you to interrupt the login process to modify an authenticated user’s
identity attributes for a session. You create external filter scripts that retrieve confidential identity
information from a variety of back-end databases, to collect private information from the user, or to
modify the attributes and their values based on authentication logic that you apply against the user’s
identity attributes. You can gather information that is needed by one or any combination of the protected
web services or applications that use session-based protocols. During the session, the appliance sends
the user’s modified identity attributes to destination web services or applications instead of the
attributes it retrieved from the user’s identity source.

To use the filter effectively, you must understand the type of identity information needed to access your
protected web services and applications. For example, a medical service provider might need a user’s
medicare insurance ID. A travel application might need a user’s passport number or VISA number. A
social website might need a user’s loyalty account number.

You should determine whether the information is available in your identity source, if it is available from
other enterprise databases, or if can be derived from information therein. For example, the following
sensitive data is typically not found in an identity source, but might be stored in an enterprise database:
Social Security Numbers; national ID numbers; passport numbers; VISA permit data; state driver's
license number or non-driver identification number; credit card number, debit card number, or other
financial account number; loyalty account numbers, and protected health information. If the information
is not present, or you cannot access the databases for this purpose, you can create a user interaction
script to gather the information directly from the user.

By using the Authentication Filter, you can customize a user’s identity attributes for a session without
disturbing the attributes and values stored in your identity source. It gives you the flexibility to support a
variety of web services and applications, including your in-house or custom protected resources.

How the Authentication Filter Works
The Authentication Filter integrates with the CloudAccess single sign-on process. It allows you to
modify an authenticated user’s identity information as part of the login process, and then uses that
modified information for the life of the session as the user accesses web services and applications.

Before you enable the filter, you must encode custom authentication logic that accepts an authenticated
user’s identity information, and modifies it for use in the user’s current session. In the filter
configuration, you specify the URL of your external program, as well as the Basic Authentication
credentials to access the file, if required.
Technical Reference

https://www.netiq.com/company/legal/
https://www.netiq.com/company/legal/

To begin a session, the user logs in as usual by providing credentials on the CloudAccess login page.
Typically, the user provides a user name and password, or an email address and password, depending
on the requirements of the user’s identity source. If you configure additional CloudAccess security
measures for authentication, the user must also successfully complete them. For example, you might
configure CloudAccess to require two-factor authentication (such as time-based one-time password), or
to issue a Google reCAPTCHA challenge.

After the user logs in successfully to CloudAccess, the Authentication Filter intercepts the session and
sends the user’s identity information from the identity source to the URL for the program that runs your
custom authentication logic.

Your ExtAPI script uses the ExtAPI library commands to manipulate the user’s identity information
against the authentication logic that you encode, according to your business needs. You can add,
remove, or set values for supported identity attributes. You can also set a cookie. The changes apply
only for the user’s current session. For example, you might set an attribute that allows the user to
interact as a secure but anonymous user during the session.

If a change requires user input, you can redirect the session to another URL with an ExtUI script that
uses the ExtUI library commands to interact with the user, and then return to CloudAccess. This allows
you to collect identity information to use for the session. For example, if the user logs in with a LinkedIn
identity, you can collect the user’s loyalty award program account number for that identity. The
Authentication Filter checks the user’s input against your ExtAPI script to ensure that it completes all of
its encoded rules and associations.

When the external authentication process is complete, the script returns information to the
Authentication Filter about the modified identity attributes for the session, as well as the HTTP return
status. The filter stores the user’s session-based identity information in memory; it does not save the
changes to the user’s identity source. When the filter tasks are complete, the authentication process
returns control to the user’s browser.

When the user accesses SaaS web services and applications, CloudAccess uses the modified identity
information to establish connections with them. CloudAccess deletes the user’s modified identity
information from memory when the user’s session ends.

Creating Custom Scripts
To use the Authentication Filter tool, you must create custom scripts that execute extended
authentication logic against the authenticated user’s identity information. Use the information in this
section as a guide for encoding the actions to meet your business needs.

“ExtAPI Script” on page 3
“Redirect and ExtUI Scripts” on page 4
“Supported Scripting Languages” on page 4
“Supported Identity Attributes” on page 4
“JSON Requests and Responses” on page 5
“Return Values” on page 5

ExtAPI Script
To use the Authentication Filter tool, you must create a script that uses the ExtAPI library commands to
add, remove, or set values for supported identity attributes. You create an authentication script, such as
index.php, and store it on the ExtAPI server. For example:

http://extapi_server_dns/extapi/index.php
Using the Authentication Filter Tool in NetIQ® CloudAccess 3

4

When all encoded rules and associations are complete, the script returns the HTTP 200 OK response
to CloudAccess.

For more information, see “Example: Setting Values and Removing Identity Attributes” on page 7 and
“Example: ExtAPI Script” on page 11.

Redirect and ExtUI Scripts
If a change requires user input, you can redirect the session to another URL with a script that uses the
ExtUI library commands to interact with the user, and then return to CloudAccess. The Authentication
Filter automatically checks the input against your ExtAPI script to ensure that it completes all of its
encoded rules and associations.

Create a redirect script, such as redir.php, and store it on the ExtAPI server. For example:

http://extapi_server_dns/extapi/redir.php

For more information, see “Example: Adding and Removing Identity Attributes with User Interaction” on
page 8 and “Example: Redirect Script” on page 11.

Create a user interaction script, such as user-input.php, and store it on the ExtUI server. For
example:

http://extui_server_dns/extui/user-input.php

Supported Scripting Languages
The Authentication Filter is compatible with many scripting languages, including PHP, Java, and Perl.

The Authentication Filter uses a JSON POST to send the authenticated user’s identity information to
your custom authentication script. The script uses JSON to send the HTTP return status and the user’s
modified identity attributes to CloudAccess for the session.

Supported Identity Attributes
The Authentication Filter supports the following identity attributes. Attribute names are case sensitive.

ID (read only; cannot be modified)
UserName (read only; cannot be modified)
FirstName (read only; cannot be modified)
MiddleName

LastName (read only; cannot be modified)
FullName

PreferredName

GenerationalQualifier

Gender

Email

Phone

Photo

BirthDate

StreetAddress

City

State

ZipCode
Technical Reference

Country

Language

IdentityType

XCustom1

XCustom2

XCustom3

XCustom4

XCustom5

JSON Requests and Responses
The JSON request file contains the following configurable information:

Identity attributes
Actions to take (add, remove, set values)
(Conditional) If the authentication action requires user interaction, the redirect URL to the ExtUI
location
Return to the appliance
HTTP response code

For more information about the request format, see the “Example: JSON Request” on page 10.

The response file specifies the following:

The values to set for specified variables. You can modify values only for the identity attributes sent
in the request.

For more information about the response format, see the “Example: JSON Response” on page 11.

IMPORTANT: The ExtUI processes only information passed via the redirect location URI. The client
can view and modify any information that is passed in the URI. Therefore, it is imperative for the
security of the system that you encrypt the information so that only ExtAPI and ExtUI can decrypt it.

Return Values
The following HTTP response values are valid return codes. All other HTTP response codes result in a
failed authentication.

HTTP 200 OK
The request succeeded. CloudAccess processes the specified changes and returns to the user.

HTTP 301 Moved Permanently
When the response returns a 301 value with a valid Location header, CloudAccess processes the
changes and then directs the user’s browser to the new permanent URI. Any future references to
this resource should use the URI as well.

HTTP 302 Redirect
When the response returns a 302 value with a valid Location header, CloudAccess processes the
changes and then redirects the user’s browser to the specified location. The appliance does not
consider authentication to be complete unless the user’s browser is subsequently redirected to the
Location specified in the ReturnURL value from the original JSON request.
Using the Authentication Filter Tool in NetIQ® CloudAccess 5

6

Configuring the Authentication Filter
After you create your custom scripts, you must enable and configure the Authentication Filter tool in
CloudAccess. The enabled filter automatically runs on each node in a CloudAccess cluster.

Before you enable the Authentication Filter, ensure that your enterprise environment meets the
following requirements:

A CloudAccess appliance, installed and configured.
The Authentication Filter supports only applications and devices that use session-based protocols.
The filter stores the altered identity attributes and values in the session attribute cache.
The Authentication Filter does not support applications and devices that use sessionless protocols,
because there is no session attribute cache to store the altered identity attributes and values. For
example:

The OAuth protocol is a sessionless protocol. Thus, the Authentication Filter does not support
applications use the OAuth Service Provider connector.
Mobile devices use a token-based protocol, which reestablishes the session for each
transmission. Thus, there is no session attribute cache for mobile sessions, whether the
connector’s protocol is session-based or sessionless.

On the ExtAPI server, create a script that uses the ExtAPI library commands to apply session-
based authentication rules to an authenticated user’s identity information. The Authentication Filter
points to the URL for this file. The ExtAPI server is a web server that supports the programming
language for the script file you create.
If the session-based identity changes require user interaction:

On the ExtUI server, create a script that uses the ExtUI library commands to collect the user’s
session-based identity information, and return control to CloudAccess. The ExtAPI script
should redirect the authentication session to the URL for this file. The ExtUI server is a web
server that supports the programming language for the script file you create.
On the ExtAPI server, create a redirect file configured with the ExtUI script’s URL.

To enable the Authentication Filter:

1 Log in with an appliance administrator account to the CloudAccess administration console at
https://appliance_dns/appliance/index.html.

2 Drag the Authentication Filter icon from the Tools palette and drop it in the Tools panel.
3 In the Tools panel, click the Authentication Filter icon, then click Configure.
4 In the Edit External Filter window, complete the following information:

Display name: Specify a name for the filter. This name appears on the main Admin page.
Connects to: Specify the URL to the script that you want to run during the user SSO login.
For example:

https://extapi_server_dns:port/path/extapi/index.php

Use HTTPS for secure SSL transfer of information. If you use an HTTP URL, information is not
secure.
Basic Auth User: (Optional) If login is required to access the URL, specify the user name to use in
the basic authentication header.
Basic Auth Password: (Conditional) If you specify a user name, specify the password for it.

5 Click OK to save and enable the filter settings.
6 On the Admin page, click Apply to activate the filter configuration.
Technical Reference

7 Wait while the service is activated across all nodes in the cluster. Do not attempt other
configuration actions until the activation completes successfully.
In the Appliances panel, a green gear icon spins on top of each node until the activation is
complete across all nodes in the cluster. In the Tools panel, a green status icon appears on the
lower-left corner of the service icon. A yellow status icon appears if the URL uses HTTP instead of
HTTPS because the traffic is not secure.

Examples
You can use the examples in this section to understand how the Authentication Filter interacts with your
custom scripts to modify the authenticated user’s identity information for a session.

“Example: Setting Values and Removing Identity Attributes” on page 7
“Example: Adding and Removing Identity Attributes with User Interaction” on page 8
“Example: JSON Request” on page 10
“Example: JSON Response” on page 11
“Example: ExtAPI Script” on page 11
“Example: Redirect Script” on page 11

Example: Setting Values and Removing Identity Attributes
Your custom authentication scripts can add, remove, or set values for the supported identity attributes.
Because the changes do not require user interaction, the user is unaware of the external authentication
tasks being performed. After the external authentication actions and associations complete
successfully, the user can access the SaaS web service or application. CloudAccess establishes the
session by sending the modified identity information. For an example of how to add identity attributes,
to set values for new or existing identity attributes, and to remove an identity attribute, see the
“Example: ExtAPI Script” on page 11.

Using the Authentication Filter to Add or Remove Identity Attributes

To prepare the Authentication Filter, do the following as an administrator user:

1. Create an authentication script, such as index.php, and store it on the ExtAPI server. For
example:

Client

Credentials

Appliance ExtAPI Server ExtUI Server Service Provider

Log in

Select appmark

Authenticate user

Start Authentication
Filter

HTTP 200
(Process changes,
then return control

 to the user)

Start session with SP Assertion

Run index.php

Add ATTR XCustom1
 XCustom2

Remove StreetAddress

Authorized
Appmarks

App choice

JSON-A

User ID

JSON-B
Using the Authentication Filter Tool in NetIQ® CloudAccess 7

8

http://extapi_server_dns/extapi/index.php

2. Enable the Authentication Filter tool in CloudAccess, and configure it to point to the target
authentication script.

The extended authentication process is as follows:

1. The user logs in to the CloudAccess login page with the single sign-on login credentials.
2. CloudAccess authenticates the user credentials against the identity source.
3. The Authentication Filter intercepts the authentication process and sends a JSON POST that

contains the user’s identity information to the URL of a custom authentication script on the ExtAPI
server.

4. The script sets values for the attributes XCustom1 and XCustom2, and removes the attribute
StreetAddress.

5. After all external authentication is complete, the authentication script returns a JSON response to
CloudAccess that contains an HTTP return status and the user’s modified identity attributes for the
session.

6. CloudAccess stores the modified identity information in memory; it does not store it in the user’s
identity source.

7. CloudAccess completes the authentication process and returns control to the user’s web browser.
8. For the life of this session, the modified identity attributes are available to service providers when

the user accesses a SaaS web service or application.

Example: Adding and Removing Identity Attributes with User
Interaction
Your custom authentication scripts can require interaction with the user to gather input. The user is
aware only of the actions that gather the user’s input. After the external authentication actions and
associations complete successfully, the user can access the SaaS web service or application.
CloudAccess establishes the session by sending the modified identity information.

The following figure shows how you can extend the authentication process to manipulate identity
attributes for an authenticated user, and redirect control to another authentication script to perform
business-specific logic that requires user interaction. For an example of how to add identity attributes,
to set values for new or existing identity attributes, and to remove an identity attribute, see “Example:
Technical Reference

ExtAPI Script” on page 11. For an example redirect script, see “Example: Redirect Script” on page 11.

Using the Authentication Filter to Add or Remove Identity Attributes with User Interaction

To prepare the Authentication Filter, do the following as an administrator user:

1. Create an authentication script, such as index.php, and store it on the ExtAPI server. For
example:

http://extapi_server_dns/extapi/index.php

2. Create a redirect script, such as redir.php, and store it on the ExtAPI server. For example:

http://extapi_server_dns/extapi/redir.php

3. Create a user interaction script, such as user-input.php and store it on the ExtUI server. For
example:

http://extui_server_dns/extui/user-input.php

4. Enable the Authentication Filter tool in CloudAccess, and configure it to point to the target
authentication script.

The extended authentication process is as follows:

1. The user logs in to the CloudAccess login page with the single sign-on login credentials.
2. CloudAccess authenticates the user credentials against the identity source.
3. The Authentication Filter intercepts the authentication process and sends a JSON POST that

contains the user’s identity information to the URL of a custom authentication script on the ExtAPI
server.

Client

Credentials

Appliance ExtAPI Server ExtUI Server Service Provider

Log in

Select appmark

Authenticate user

Start Authentication
Filter

Do HTTP 302
(Process changes,

then redirect)

Start session with SP Assertion

Add ATTR XCustom1
 XCustom2

Remove StreetAddress

Redirect to ExtUI

 Run index.php

Redirect
URL

App choice

JSON-A

User ID

JSON-B

redir.php

Get ExtUI location

Interact with user

Do task

Return to the
appliance

Send current JSON Run index.php

Return status

JSON-C

JSON-D
Do HTTP 200

(No more changes;
return control to

the user)

Return
URL

Authorized
Appmarks
Using the Authentication Filter Tool in NetIQ® CloudAccess 9

10
4. The script sets values for the attributes XCustom1 and XCustom2, and removes the attribute
StreetAddress.

5. The authentication logic determines that an action requires user interaction, and redirects the
user’s browser to a specified URL on the ExtUI server.

6. The target ExtUI script uses ExtUI library commands to perform the required business-specific
logic to get information from the user, then returns to CloudAccess.

7. CloudAccess sends the current identity information with a JSON POST to the ExtAPI server to
ensure that all encoded associations are complete.

8. After all external authentication is complete, the authentication script returns a JSON response to
CloudAccess that contains an HTTP return status and the user’s modified identity attributes for the
session.

9. CloudAccess stores the modified identity information in memory; it does not store it in the user’s
identity source.

10. CloudAccess completes the authentication process and returns control to the user’s web browser.
11. For the life of this session, the modified identity attributes are available to service providers when

the user accesses a SaaS web service or application.

Example: JSON Request
In the following sample JSON request (JSON-A), the identity attributes specify the information for the
authenticated user. Only the specified attributes can be manipulated by the ExtAPI. All other values are
static information based on the session:

The target file URL
The DNS name of the appliance
The user’s web browser
The user’s ID GUID
The return URL for the user’s session

Request destination URL: http://extapi_server_dns/extapi/index.php

POSTed Data:{
 "API":{ "version":"0" },
 "Request":{
 "Host":"appliance_dns",
 "User-Agent":"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/33.0.1750.146 Safari/537.36"
 },
 "Session":{
 "ID":"448484815b1a417abf07b0a64d75961e-D5A1E4F8B4A0A1BD",
 "ReturnURL":"https://appliance_dns/osp/a/t1/auth/app/
login?acAuthCardId=user&sid=0"
 },
 "Identity":{
 "Principal-ID":"bis_EDIR_s1Vq9us-6a5828947d876047a4b86a5828947d87",
 "Attributes":{
 "UserName":"admin",
 "IdentityType":"EDIR",
 "LastName":"admin",
 "BirthDate":"Unavailable",
 "Email":"admin@acme-widgets.com",
 "FullName":"Admin admin",
 "Gender":"Unavailable",
 "ID":"6A5828947D876047A4B86A5828947D87",
 "FirstName":"Admin",
 }
 }
}

Technical Reference

Example: JSON Response
The JSON response can modify only the identity attributes. The following code sample shows the
portion of the JSON-B response that sets the values for XCustom1 and XCustom2. It sets XCustom1 to
value. It sets XCustom2 to two values: value2a and value2b.

{"Identity":
 {"Attributes":
 {"set":{
 "XCustom1":"value",
 "XCustom2":["value2a","value2b"]}
}}}

In addition to setting or removing existing attributes, the response should contain a valid HTTP
Response code. If the response returns an HTTP 200 OK response value, the appliance processes the
specified changes, and then returns with a successful authentication to grant the user access to the
authorized appmarks.

Example: ExtAPI Script
The following index.php script shows one way to use the ExtAPI library commands to perform the
authentication logic that is described in “Example: Setting Values and Removing Identity Attributes” on
page 7 and “Example: Adding and Removing Identity Attributes with User Interaction” on page 8.

<?php
 $retVal = "";
 $redirectLocation = "http://extapi_server_dns/extapi/redir.php";
 header('Content-type: application/json', true, 200);
 $rawJSON = file_get_contents("php://input");
 error_log("raw input: " . $rawJSON);
 $inVal = json_decode($rawJSON, TRUE);
 if (!isset($inVal['Identity']['Attributes']['XCustom1'])) {
 error_log("setting XCustom1 and XCustom2, redir to: ".$inVal['Session']['ReturnURL']);
 $retVal = json_encode(array("Identity" => array("Attributes" => array("set" =>
array("XCustom1" => "value", "XCustom2" => array("value2a", "value2b"), "XCustom3" => "1")))));
 header('Location: '.$redirectLocation.'?sendTo='.
urlencode($inVal['Session']['ReturnURL']), true, 302);
 } else if (!isset($inVal['Identity']['Attributes']['XCustom4'])) {
 error_log("setting XCustom4 and XCustom5, removing xCustom2");
 $retVal = json_encode(array("Identity" => array("Attributes" => array("set" =>
array("XCustom4" => "value4", "XCustom5" => "true"), "remove" => "XCustom2"))));
 }

 echo $retVal;
 error_log("returning: " . $retVal);
 die();
?>

Example: Redirect Script
The following redir.php script shows one way to specify the redirect control to the ExtUI script in
“Example: Adding and Removing Identity Attributes with User Interaction” on page 8.

<?php
 error_log("redirecting to: ".$_GET['sendTo']);
 header('Location: '.$_GET['sendTo'], TRUE, 302);
?>
Using the Authentication Filter Tool in NetIQ® CloudAccess 11

12
 Technical Reference

	Using the Authentication Filter Tool in NetIQ® CloudAccess
	Using an Authentication Filter
	How the Authentication Filter Works
	Creating Custom Scripts
	ExtAPI Script
	Redirect and ExtUI Scripts
	Supported Scripting Languages
	Supported Identity Attributes
	JSON Requests and Responses
	Return Values

	Configuring the Authentication Filter
	Examples
	Example: Setting Values and Removing Identity Attributes
	Example: Adding and Removing Identity Attributes with User Interaction
	Example: JSON Request
	Example: JSON Response
	Example: ExtAPI Script
	Example: Redirect Script

