
Advanced Authentication 6.4
Device Service Installation Guide

July 2022

Legal Notices
Copyright 2014 - 2023 Open Text

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Open Text shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.

For additional information, such as certification-related notices and trademarks, see https://www.microfocus.com/en-us/
legal (https://www.microfocus.com/en-us/legal).
2

https://www.microfocus.com/en-us/legal
https://www.microfocus.com/en-us/legal

Contents
About this Book 5

1 System Requirements 7
Supported Card Readers and Cards . 8
Supported Devices for PKI . 8
Supported Fingerprint Readers . 9

Fingerprint . 9
Windows Hello. 11

Supported Devices for FIDO2. 11

2 Installing and Upgrading Device Service 13
Obtaining the Device Service Installer. 13
Installing and Upgrading Device Service on Windows . 13
Installing Device Service on Linux . 14

Installing Device Service on Ubuntu and Debian (deb package) . 14
Installing Device Service on openSUSE and SUSE . 15
Installing Device Service on Fedora, CentOS, RHEL. 16

Upgrading Device Service on Linux . 16
Installing Device Service on Mac . 16

3 Configuring Device Service 19
Apple Touch ID . 19

Configuring the Apple Touch ID . 19
Card Settings . 20

Configuring the Card Settings . 20
Configuring the Virtual Machine for Working of the RF IDeas Readers . 22

Device Authentication Setting . 22
Facial Recognition . 23
Fingerprint Settings. 24

Configuring Multiple Fingerprint Reader Modes . 25
Configuring the Fingerprint Settings . 26

PKI Settings . 27
Configuring the PKI Device . 27
Configuring e-Token PRO. 29
Configuring the YubiKey PKI . 29
Configuring OpenSC. 31
Configuring Gemalto Smart Card with Advanced Authentication . 32
Identifying and Selecting the PKI Device . 34

Performing Bulk Replacement of Configuration File . 34
Configuring the Security Settings. 35
Configuring the TLS Version . 36
Contents 3

4 Con
4 Uninstalling Device Service 37
Uninstalling Device Service on Windows . 37

Uninstalling Device Service through Setup Wizard . 37
Uninstalling Device Service through Control Panel. 37

Uninstalling Device Service on Linux . 37
Uninstalling Device Service on Ubuntu and Debian (deb package). 37
Uninstalling Device Service on openSUSE, CentOS, RHEL, and Fedora . 38

Uninstalling Device Service on Mac. 38
Uninstalling Device Service with dmg File . 38
Uninstalling Device Service without dmg File . 38

5 Troubleshooting 39
Debugging Logs . 39

Debugging Logs on Linux. 39
Debugging Logs on Mac OS. 40
Debugging Logs on Windows . 41

Generic Issues . 42
Card Related Issues . 42

RF Ideas does not work in Mac OS Catalina . 43
FIDO U2F Related Issues. 43
Fingerprint Related Issues . 43

Mismatch Error After Migrating from Advanced Authentication 5.6 to 6.0 . 44
The Nitgen Device Hangs If Disconnected and Reconnected to a Workstation 44

PKI Related Issues . 45
Issue with YubiKey PKI . 45
Unable to Import a Certificate to the YubiKey Token . 45

Bluetooth Issues . 46
Microsoft Edge Related Issues . 46

Users Unable to Test the Enrolled Authenticators on the Microsoft Edge Browser. 46
Firefox Related Issues . 46

Users Unable to Enroll the Card and FIDO U2F Methods on the Firefox Browser 46

6 Developer Information 47
Card Plug-in . 47
FIDO U2F Plug-in . 49
Fingerprint Plug-in . 51
PKI Plug-in . 52

POST Methods . 53
GET Methods . 55

Bluetooth Plug-in . 57
tents

About this Book

The Device Service Installation guide has been designed for users and describes the system
requirements and installation procedure for Device Service. With Device Service you can use
compliant devices, such as fingerprint readers, contact and contact-less cards, PKI smart cards,
crypto sticks, and FIDO U2F tokens for enrollment on the Advanced Authentication Self-Service
portal and for further authentication.

Intended Audience
This book provides information for individuals responsible for understanding administration
concepts and implementing a secure, distributed administration model.
About this Book 5

6 About this Book

1 1System Requirements

The following table provides information about the supported platforms for the Advanced
Authentication Device Service:

Device Service for Windows supports the Card and PKI redirection to Remote Desktop and Citrix
terminal sessions. You must install the Device Service on the terminal server to perform the
redirection.

Device Service also supports virtual channel and you must install the Device Service on the both the
terminal client and terminal server.

NOTE: Local administrator privileges for Windows and root privileges for Mac OS and Linux are
required for installing and removing the Device Service.

For system requirements of Device Service, see Device Service.

NOTE: Advanced Authentication Device Service supports only Bluetooth. The Bluetooth eSec is not
supported. It is not recommended to use the Bluetooth feature on VMware virtual machines
because a false authentication might happen when Bluetooth device is disabled or it is out of range.

The Bluetooth method is not available from the Advanced Authentication 6.4 Service Pack 1 release.

For more information about the supported devices, see the following sections:

 Supported Card Readers and Cards
 Supported Devices for PKI
 Supported Fingerprint Readers
 Supported Devices for FIDO2

Microsoft Windows Apple MacOS X Linux

Card plug-in x x x

Face plug-in x x x

FIDO U2F plug-in x x x

Fingerprint plug-in x

PKI plug-in x x x

Bluetooth x x x

Windows Hello plug-in x

Apple Touch ID x
System Requirements 7

Supported Card Readers and Cards
Advanced Authentication stores the serial number of a card during enrollment and validates serial
number later during the authentication.

The following table lists the supported card readers, smart cards, and unsupported card readers for
Device Service:

Table 1-1

Supported Devices for PKI
Advanced Authentication supports the certificate-based PKCS#11 contact smart cards and USB
tokens (crypto sticks).

Device Service supports the following devices for PKI:

 Aladdin eToken PRO 32k/72k with SafeNet Authentication Client 9

Device Detail

Contactless card readers  ACS ACR122
 Broadcom Corp Contactless SmartCard
 Elatec RFID TWN3
 HID OMNIKEY CardMan 5x25
 HID OMNIKEY 5326
 HID OMNIKEY 5x2x
 LEGIC LE-762-1N

This device is supported on Microsoft Windows with Microsoft Visual C++
2010 SP1 Redistributable Package installed and requires installation with
specific parameters and disabling of other card plug-ins. The device is
supported only when the parameter card.smarfidManualMode is set
to true.

 LEGIC LM3000
This device is supported on Microsoft Windows with Microsoft Visual C++
2010 SP1 Redistributable Package installed and requires installation with
specific parameters and disabling of other card plug-ins.

 RF IDeas pcProx series
 NXP PR533

Contactless smart cards  HID iClass series
 HID Prox series
 MIFARE Classic 1K/4K, Ultra Light, Ultra Light C, Plus
 MIFARE DESFIRE 0.6, MIFARE DESFIRE EV1, MIFARE SE, DESFire

Unsupported reader LEGIC AIR ID series
8 System Requirements

 ruToken
 SafeNet Authentication eToken on the Mac OS.

To use PKI, specify a PKCS#11 module for your PKI device. For more information, see PKI Settings.

Ensure that the following requirements are met while using the used certificates:

1. Certificate must contain the Authority Information Access (AIA) and Certificate Revocation List
(CRL) link to check the revocation status.

2. Certificate must contain a key pair: public and private key in the x509 format. The PKI service
does not detect the certificates that do not comply with the requirements (are hidden during
enrollment).

NOTE: The cards Cosmo polIC 64K V5.2 and Cyberflex Access 64K V1 SM 2.1 support the certificate-
based enrollment only (key pair mode is not supported).

To enable the use of SafeNet Authentication eToken device (PKI) on Mac OS, perform the following
steps:

1 Install the latest Device Service on Mac OS.
2 Install the SafenetAuthenticationclient9.1.2.0.dmg package.

You can download SafeNet Authentication Client from Knowldege Symantec (https://
knowledge.digicert.com/generalinformation/INFO1982.html) website.

3 Run the following commands to restart the Device Service:
1. sudo launchctl unload /Library/LaunchDaemons/

com.netiq.deviceservice.plist
2. sudo launchctl load /Library/LaunchDaemons/

com.netiq.deviceservice.plist
4 Connect the SafeNet Authentication eToken (PKI) to Mac OS workstation.

Supported Fingerprint Readers
Device Service supports the following methods that allow use of fingerprint readers:

 Fingerprint
 Windows Hello

Fingerprint
Fingerprint method supports the readers that has the capability of returning the fingerprint image
beyond the boundaries of the chip.

Ensure that the system meets the following requirements for the WBF compliant readers:

 A reader must be visible in Device Manager > Biometric devices.
 The Windows Biometric Service must be active and set to Automatic in services.msc.
System Requirements 9

https://knowledge.digicert.com/generalinformation/INFO1982.html

 The following policies must be enabled in gpedit.msc > Computer Configuration > Administrative
Templates > Windows Components > Biometrics.
 Allow to use of biometrics
 Allow users to log on using biometrics
 Allow domain users to log on using biometrics

The following table lists all the fingerprint readers that are supported and unsupported with respect
to the Fingerprint method:

To use fingerprint readers, you must configure some parameters manually. For more information,
see Fingerprint Settings.

NOTE: You might face issues with matching the fingerprint while using the swipe readers. This is
because of low quality sensors.

Supported Readers Unsupported Readers

Lumidigm readers NOTE: Fingerprint method does not support
the readers that store the fingerprint and
match fingerprints on a chip.

Digital Persona readers SecuGen Hamster IV (HFDU04)

NEXT Biometrics NB-3010-UL SecuGen Hamster (HFDU02R)

Precise Biometrics 100 X with AuthenTec AES2501B Synaptics WBDI

Zvetco Verifi P2500 with AuthenTec AES2550 Futronic FS80, FS88

Zvetco Verifi P5100 Synaptics VFS7552

Zvetco Verifi P5200 with TouchChip Fingerprint
Coprocessor

Microsoft Surface Pro type cover with the
Fingerprint ID

Zvetco Verifi P6000

Synaptic FP Sensors (WBF) (VID=138A, PID=0011)

Synaptic FP Sensors (WBF) (VID=138A, PID=0017)

Validity Sensor (VFS495) (VID=138A, PID=003F)

Validity Sensors (WBF) (VID=138A, PID=0050)

SecuGen Hamster Plus (HSDU03P)

Green Bit DactyScan84c (Linux RHEL kernel 3.x.x)

Nitgen eNBioScan-C1 (Linux RHEL kernel 3.x.x)
10 System Requirements

Windows Hello
The modern fingerprint readers do not return the fingerprint image outside the chip. However, store
and match the images on the chip. Windows Hello method supports all the fingerprint readers and
facial recognition devices that Microsoft Windows support. Microsoft Windows does not
synchronize the fingerprints and faces between devices. Therefore, users can authenticate only on
the devices where they enroll.

Supported Devices for FIDO2
The following table includes the supported card readers and USB device for the FIDO2 method:

Device Detail

Contactless card readers  HID OMNIKEY 5021 CL
 HID OMNIKEY 5022 CL

USB FEITIAN ePass FIDO NFC Plus
System Requirements 11

12 System Requirements

2 2Installing and Upgrading Device Service

Before installing Device Service, ensure that you close all the web browsers. The installation
procedure varies for different operating systems.

NOTE: You can find the Device Service component in the Advanced Authentication appliance
distributive package.

To install and upgrade the Device Service based on the platform, see the following sections:

 “Obtaining the Device Service Installer” on page 13
 “Installing and Upgrading Device Service on Windows” on page 13
 “Installing Device Service on Linux” on page 14
 “Upgrading Device Service on Linux” on page 16
 “Installing Device Service on Mac” on page 16

NOTE: After installing or upgrading the web browser, ensure to reinstall the Device Service.

WARNING: During the upgrade of Device Service on Apple Mac OS X and Linux, the configuration file
is overwritten with a default one. Ensure that you have a copy of the file and put it back to the folder
after the Device Service upgrade.

Obtaining the Device Service Installer
1 Log in to the Software Licenses and Download Portal (https://sld.microfocus.com/).

The Terms and Conditions pop-up appears.
2 Click I Accept.
3 Search for your account with Search Account and click Downloads icon .
4 Select the following on Softwares Downloads page:

 Advanced Authentication from Product.
 Advanced Authentication Clients per Managed Identity SW E-LTU from Product Name.
 Any preferred version from Version.

5 Select AdvancedAuthClients-<version>.zip from the available list and click Download
against the file.

Installing and Upgrading Device Service on Windows
1 Obtain the naaf-deviceservice-x86-release-<version>.msi from Software Licenses

and Downloads Portal (https://sld.microfocus.com/).
Installing and Upgrading Device Service 13

https://sld.microfocus.com/
https://sld.microfocus.com/
https://sld.microfocus.com/

For more information about how to download the installer, see Obtaining the Device Service
Installer.

2 Run naaf-deviceservice-x86-release-<version>.msi.

IMPORTANT: For LEGIC readers, run the following command to install Device Service:
msiexec /i naaf-deviceservice-x86-release-<version>.msi TOKEN="XXX"
KEY="YYY"
where:
 XXX is token value (HEX <= 12 byte)
 YYY is 3Des Key (HEX 16 byte)

Device Service does not detect the LEGIC reader if keep the TOKEN/KEY parameter empty or
specify invalid commands.

3 Click Next.
4 Accept the Licence Agreement and click Next.
5 Click Next to install on default folder or click Change to select different folder.
6 Click Install.
7 Click Finish.

NOTE: To upgrade Device Service on a Windows workstation that has a McAfee virus protection
software installed, ensure to disable the McAfee protection. For more information about how
to disable McAfee protection temporarily, see McAfee Support Community and Knowledge
Center (https://www.mcafee.com/support/).

Installing Device Service on Linux
IMPORTANT: To use Device Service for FIDO U2F tokens, you must allow the FIDO U2F usage on
Linux. For more information, see yubico FAQ.

First, obtain the Device Service installer for your Linux distribution from Software Licenses and
Downloads Portal (https://sld.microfocus.com/).

For more information about how to download the installer, see Obtaining the Device Service
Installer.

You can install Device Service on Linux, based on your Linux distribution:

 “Installing Device Service on Ubuntu and Debian (deb package)” on page 14
 “Installing Device Service on openSUSE and SUSE” on page 15
 “Installing Device Service on Fedora, CentOS, RHEL” on page 16

Installing Device Service on Ubuntu and Debian (deb package)
Before installing the Device Service on Ubuntu and Debian, ensure to install the following necessary
components:
14 Installing and Upgrading Device Service

https://community.mcafee.com/thread/46879?tstart=0
https://www.mcafee.com/support/
https://www.mcafee.com/support/
https://www.yubico.com/faq/enable-u2f-linux/
https://sld.microfocus.com/
https://sld.microfocus.com/

NOTE: Before installing Device Service on Debian 10, switch to root account. Run the following
command to switch to root account:

su -l
Set the root path and edit /root/.bashrc with the root privileges to add the following line:

export PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
Run all commands to install all components and Device Service on Debian 10 without the prefix
sudo.

 For Card and PKI plug-in: Run the following command to install libnss3-tools component:

sudo apt-get install libnss3-tools
 For HID OMNIKEY reader: Run the following command to install pcscd component:
sudo apt-get install pcscd

 For Bluetooth plug-in: Run the following command to install bluez component:
sudo apt-get install bluez

Run the following command to install the Device Service on Ubuntu and Debian:

sudo dpkg -i naaf-deviceservice-debian-linux64-release-<version>.deb

Installing Device Service on openSUSE and SUSE
Before installing the Device Service on openSUSE and SUSE, ensure to install the following necessary
components:

 For Card and PKI plug-in: Run the following command to install libpcsclite1 and nss-
tools component:

sudo zypper install libpcsclite1 sudo zypper install mozilla-nss-tools
 For RF IDeas card reader: Install the libudev.so.0 library manually. Run the following

command to link the libudev.so.1 to libudev.so.0:
sudo ln -s <location_of_libudev1>libudev.so.1
<location_of_libudev1>libudev.so.0

 For Bluetooth plug-in: Run the following command to install bluez component:
sudo zypper install bluez

Run the following command to install the Device Service on openSUSE and SUSE:

sudo rpm -i naaf-deviceservice-opensuse-linux64-release-<version>.rpm

NOTE: While installing the Device Service on SUSE operating system, there may be dependency
issues related to the pcsc-lite package. Therefore, you must install the required package with
zypper install pcsc-lite and initiate the Device Service installation again.
Installing and Upgrading Device Service 15

Installing Device Service on Fedora, CentOS, RHEL
Before installing the Device Service on Fedora, CentOS, and RHEL, ensure to install the following
necessary components:

 For Card and PKI plug-in: Run the following command to install nss-tools component:

sudo yum install nss-tools
 For RF IDeas card reader: Install the libudev.so.0 library manually. Run the following

command to link the libudev.so.1 to libudev.so.0:
sudo ln -s <location_of_libudev1>libudev.so.1
<location_of_libudev1>libudev.so.0

 For Bluetooth plug-in: Run the following command to install bluez component:
sudo yum install bluez

Run the following command to install the Device Service on Fedora, CentoOS, and RHEL:

sudo rpm -Uvh naaf-deviceservice-centos-linux64-release-<version>.rpm
Run the following command to install the Device Service on Fedora, CentoOS, and RHEL without any
dependencies:

sudo rpm -i --nodeps naaf-deviceservice-centos-linux64-
release<version>.rpm

NOTE: While installing the Device Service on CentOS or RHEL operating system, there may be
dependency issues related to the pcsc-lite package. Therefore, you must install the required
package with yum install pcsc-lite and initiate the Device Service installation again.

Upgrading Device Service on Linux
Device service upgrades are not directly supported on Linux. To upgrade Device Service on Linux,
perform the following steps:

1 Uninstall Device Service on Linux. Follow the procedure in the section “Uninstalling Device
Service on Linux” on page 37.

2 Install the Device Service on Linux. Follow the procedure in the section “Installing Device
Service on Linux” on page 14.

Installing Device Service on Mac
1 Obtain the naaf-deviceservice-macos-release-<version>.dmg from Software

Licenses and Downloads Portal (https://sld.microfocus.com/).
For more information about how to download the installer, see Obtaining the Device Service
Installer.

2 Double click the file naaf-deviceservice-macos-release-<version>.dmg.
3 The naaf-deviceservice.pkg and uninstall files are displayed.
16 Installing and Upgrading Device Service

https://sld.microfocus.com/
https://sld.microfocus.com/

4 Double click the file naaf-deviceservice.pkg.
5 Click Continue.
6 Read and accept the license agreement.
7 Select the disk where you want to install Device Service and click Continue.
8 Click Install.

A prompt to specify the local administrator credentials is displayed.
9 Specify User name and Password.

10 Click Install Software.
While installing the Device Service in Mac OS Catalina, the user is prompted with a
message "DeviceServiceTool" would like to receive keystrokes from any
application. If you use the RF Ideas reader, click Open System Preferences and grant access
to this application in Security & Privacy - Privacy preferences. If you don't use RF Ideas reader,
click Deny.
Installing and Upgrading Device Service 17

18 Installing and Upgrading Device Service

3 3Configuring Device Service

After installing the Device Service, you must configure few parameters in the configuration file of
Device Service to enable the use of devices on your workstation.

WARNING: During the upgrade of Device Service on Apple Mac OS X and Linux, the configuration file
is overwritten with the default settings. Ensure that you have a copy of the file and replace the file
after the upgrade.

NOTE: In the host.ports parameter, the supported ports are 8440, 8441, and 8442.

This chapter contains the following configurations:

 “Apple Touch ID” on page 19
 “Card Settings” on page 20
 “Device Authentication Setting” on page 22
 “Facial Recognition” on page 23
 “Fingerprint Settings” on page 24
 “PKI Settings” on page 27
 “Performing Bulk Replacement of Configuration File” on page 34
 “Configuring the Security Settings” on page 35
 “Configuring the TLS Version” on page 36

Apple Touch ID
This section contains Configuring the Apple Touch ID:

Configuring the Apple Touch ID
You can configure Apple Touch ID timeout by performing the following steps:

1 Open /Library/Application\Support/NetIQ/DeviceService.app/Contents/
Resources/config.properties.

2 Set the parameter touchid.timeout (Default value is 30).
For example, if you want to set the timeout value to 10 seconds, set touchid.timeout to 10.

3 Save the changes.
4 Restart the operating system.
Configuring Device Service 19

Card Settings
Advanced Authentication supports the Microsoft policy Interactive logon: Smart card removal
behavior, which allows you to select an action on a card event. You can configure it to perform a
force log off or lock a user session when a user presents card to the reader.

This section contains the following configurations:

 “Configuring the Card Settings” on page 20
 “Configuring the Virtual Machine for Working of the RF IDeas Readers” on page 22

Configuring the Card Settings
To use LEGIC LM3000 or LEGIC LE-762-1N readers, you must disable the other card plug-ins to avoid
conflicts.To do this, perform the following steps:

NOTE: The LEGIC and RF IDeas readers are not supported on Linux and Mac operating systems.

1 Open the following configuration file for respective OS
 In Microsoft Windows, open C:\ProgramData\NetIQ\Device
Service\config.properties.

 In Linux, open /opt/NetIQ/Device Service/config.properties.
 In Apple Mac OS X, open /Library/Application\ Support/NetIQ/
DeviceService.app/Contents/Resources/config.properties.

2 Set the preferred parameters based on the card reader:

Parameter Description

card.omnikeyEnabled Used for the omnikey type of readers. The default value is true. Set
the value to false to disable the usage of the device.

card.rfideasEnabled Used for the RF IDeas readers. The default value is false. Set the
value to true to enable the usage of the device.

card.rfideas.productType Used for RF IDeas readers.

The possible values are prox, sonar, or swipe, or all. You can
combine them as prox;sonar;swipe.

The default value is prox.

card.rfideas.deviceType The possible values are usb, serial, or tcp, or all. You cannot
combine them. The default value is usb.

card.forceVirtualChannels Used for RF IDeas readers to work in a terminal session.

If you set card.forceVirtualChannels to true, the Device
Service uses its own mechanism for card redirection through the
virtual channels. You must install the Device Service on both the
terminal server and terminal client.

The default value is false.
20 Configuring Device Service

https://technet.microsoft.com/en-us/library/cc776917(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc776917(v=ws.10).aspx

NOTE: When any of the listed reader is not in use, it is required to set the respective parameter
to false for better performance. If all parameters are set to true, then the Device Service
might not detect the specific device necessary for authentication.

3 Save the changes.
4 Restart the Device Service.

card.smarfidEnabled Used for the smarfid type of readers. The default value is false. Set
the value to true to enable the usage of the device.

card.smarfidManualMode Used for the smarfid card behavior.

If you set card.smarfidManualMode to false or when the
parameter is not available in the config.properties file, the
reader’s LED is in blue (read mode) by default and starts to blink
when you place a card on the reader.

If you set card.smarfidManualMode to true, the reader’s LED
is in green (ready mode) by default and does not blink when you
place a card on the reader. The reader blinks only if you are in the
Login or Unlock screen and Windows Client requests to place a card.

You must disable the 1:N functionality to disable auto-waiting of a
card for the Login or Unlock screen. For more information about how
to disable 1:N, see Disabling 1:N.

You must disable the Interactive logon: Smart card removal
behavior policy to disable the auto-waiting of a card when a user is
logged in. For more information about how to disable Smart card
removal behavior policy, see the Microsoft documentation.

You can use the feature only for LEGIC readers.

card.smarfidManualBeepEnabl
ed

Used for generating beeps from a supported LEGIC reader when you
put a card on it.

The default value of the parameter is false and the beeps are
muted. Set card.smarfidManualBeepEnabled to true for
this.

You can use this option only when the manual mode is enabled
(card.smarfidManualMode=true).

card.isCardIdGenerated The feature can be used only for LEGIC readers.

Used to generate a new card identifier during enrollment. and during
each enrollment, the card identifier is not changed. The default value
is false.

card.desfireEnabled Used for the desfire type of readers. The default value is true. Set
the value to false to disable the usage of the device.

Parameter Description
Configuring Device Service 21

https://technet.microsoft.com/en-us/library/jj852235(v=ws.11).aspx

Configuring the Virtual Machine for Working of the RF IDeas
Readers
You must perform the following configuration steps to ensure that the RF IDeas reader work with the
VMware Mac virtual machine.

1 Add the following lines to the .vmx file of the virtual machine.

usb.generic.allowHID=true
usb.generic.allowLastHID=true

2 Open /Library/Application\ Support/NetIQ/DeviceService.app/Contents/
Resources/config.properties.

You must perform the following configuration steps to ensure that the RF IDeas reader work with the
VMware Windows virtual machine.

1 Add the following lines to the .vmx file of the virtual machine.

usb.generic.allowHID=true
usb.generic.allowLastHID=true
If the above does not achieve the redirection, go to step 2.

2 Go to the following url: https://knowledgebase.rfideas.com/how-to-connect-my-usb-reader-in-
a-virtual-session-when-using-vmware/ (https://knowledgebase.rfideas.com/how-to-connect-
my-usb-reader-in-a-virtual-session-when-using-vmware/).
The VID (Vendor ID) and PID (Product ID) of the connected reader found in the Device Manager
are generally listed as: VID_0C27&PID_3BFA. To ensure the VID and PID are included in the
list, add the following to the registry:
[HKEY_LOCAL_MACHINE\SOFTWARE\VMware, Inc.\VMwareVDM\USB]
AllowHardwareIDs=[REG_MULTI_SZ]"VID_0C27&PID_3BFA"

3 Set the following in the configuration file C:\ProgramData\NetIQ\Device
Servie\config.properties
card.rfideasEnabled:true

Device Authentication Setting
The Trusted Platform Module (TPM) is a crypto-processor available in Windows workstation to
achieve actions, such as generating, storing, and limiting the use of cryptographic keys. During the
Device Authentication method enrollment, a key pair is generated and stored in the TPM chip. The
stored key pair is verified to authenticate users.

By default, the TPM is enabled in Windows workstation. However, in some Windows workstation
TPM chip is not available then you can store the generated key pair in the Local Security Authority
(LSA) and encrypt the same using PIN.

To disable the TPM chip and allow Device Authentication enrollment in the generate key pair mode
perform the following:

1 Open the configuration file C:\ProgramData\NetIQ\Device
Service\config.properties.
22 Configuring Device Service

https://knowledgebase.rfideas.com/how-to-connect-my-usb-reader-in-a-virtual-session-when-using-vmware/
https://knowledgebase.rfideas.com/how-to-connect-my-usb-reader-in-a-virtual-session-when-using-vmware/

If the file does not exist, create a new file.
2 Specify deviceAuth.tpmEnabled: false.

The default value is True.
3 Save the configuration.
4 Restart the operating system.

NOTE: This setting is not required in Device Service for Linux and Mac because the TPM mode is not
supported on these platforms. However, the non-TPM mode always used on these platforms.

Facial Recognition
When the user authenticates through Facial Recognition method, Advanced Authentication can use
blink detection to differentiate live face and photos. You can configure Device Service to enable blink
detection. So, the user needs to blink several times, depending on the service settings to get
authenticated.

1 Open the following configuration file for respective OS
 In Microsoft Windows, open C:\ProgramData\NetIQ\Device
Service\config.properties.

 In Linux, open /opt/NetIQ/DeviceService/config.properties.
 In Apple Mac OS X, open /Library/Application\ Support/NetIQ/
DeviceService.app/Contents/Resources/config.properties.

2 Specify the following parameters:

Parameter Description

video.checkByBlinking Set this parameter to True to enable blink detection.

video.blinkThreshold To specify the eye aspect ratio.

The Eye Aspect Ratio is an estimate of the eye opening state. Eye ratio
below the specified value will be counted as a blink. The default value
is 0.2.

 The eye aspect ration of closed eye is between 0.08 - 0.2 and eye
aspect ration of open eye is between 0.2 up to 0.32.

video.blinkFrames To specify the number of consequent frames with the ratio below the
threshold.

If the eye ratio is below the threshold within the given number of
consequent frames, that counted as one blink. The default value is 2.

If the blink frame value is 2, make sure the eye aspect ratio in 2
consequent frames is lesser than the value specified in the blink
threshold.

video.blinkCount To specify the number of blinks needed to authenticate.
Configuring Device Service 23

3 Save the changes.
4 Restart Device Service.

Fingerprint Settings
The following table describes the fingerprint modes that must be configured while using a specific
fingerprint reader. Using the parameter fingerprint.mode, you can either configure a single or
multiple fingerprint readers mode.

video.deviceId Specify the value to select the camera. The default value is 0.

If you set the parameter to 0, the Device Service picks the default
camera.

If you set the parameter to 1, the Device Service selects the secondary
camera. If you set the parameter to 2, the Device Service selects the
third camera and so on if you have many.

Parameter Description

Mode Parameter Description

fingerprint.mode: 1 To use the WBF API mode. In this mode, Advanced Authentication works
with a processed fingerprint reader in Windows Biometric Framework API.

fingerprint.mode: 2 To use the WBF Direct mode. In this mode, Advanced Authentication works
directly with a device driver.

NOTE: Some WBF compliant readers may work only in the WBF Direct
mode, for example, the NEXT Biometrics readers. You can download the
NEXT Biometrics driver from the link.

fingerprint.mode: 3 To use the Lumidigm mode. You must install the Lumidigm Driver. You can
download the driver from the HID Global website. Some devices require
that the Lumidigm Device Service is installed.

fingerprint.mode: 4 To use the DigitalPersona mode. You must install the DigitalPersona U.are.U
RTE. You can download it from the DigitalPersona website.

NOTE: For compatibility between DigitalPersona RTE v3.x and old device
like DigitalPersona U.are.U 4500 install the RTE 3.2 and later version
without Digital Persona authentication service. During the setup, select
Custom setup and then remove the authentication service feature.
24 Configuring Device Service

https://msdn.microsoft.com/en-us/library/windows/desktop/dd401507
http://nextbiometrics.com/
https://support.nextbiometrics.com/home
http://www.hidglobal.com/drivers
http://devportal.digitalpersona.com/

Configuring Multiple Fingerprint Reader Modes
Device Service supports multiple fingerprint reader modes. You can configure multiple modes in one
of the following ways:

 Specify numeric values assigned to each mode.

For example: fingerprint.mode: 1,2,3 to use WBF API, WBF Direct, and Lumidigm modes.
 Specify the mode names.

For example: fingerprint.mode: WbfDirect,DigitalPersona to use WBF Direct and DigitalPersona
modes.

 Specify the combination of numeric value and mode name.
For example: fingerprint.mode:1,WbfDirect,3 to use WBF API, WBF Direct, and Lumidigm
modes.

fingerprint.mode: 5 To use the Green Bit DactyScan84c (multi-finger reader) reader. This mode is
supported only on Linux RHEL kernel 3.x.x.

Prerequisites:

Before using the Green Bit DactyScan84c reader, you must install the
eNBioScan-C1 Drivers. Ensure to save the following SO files to the /lib64
path of Linux workstation:

 Nitgen eNBioScan-C1: libfp_device.so,
libfp_device.so.1.0.0, libFPLib.so,
libFPLib.so.6.0.1.9, libNBioBSPISO4JNI.so,
libNBioBSPJNI.so, libNBioBSP.so,
libNExportRawToISO.so, libvhm.so, libvhm.so.6.1.4.4.

 Green Bit DactyScan84c: libAN2K_LIB.so, libBozorth.so,
libDID20IP.so, libDID20.so, libDS40u.so, libDS84C.so,
libDS84t.so, libDSBeep.so, libGBFINIMG.so,
libGBFIR.so, libGBImgTran.so, libGBJPEG.so,
libGBMSAPI.so, libGBNFIQ2.so, libGBNFIQ.so,
libLfsConv.so, libLfs.so, libMC517.so, libMS527.so,
libMS527t.so, libopencv_core.so,
libopencv_imgproc.so, libopencv_ml.so, libqsqlite.so,
libqtaudio_alsa.so, libqtmedia_pulse.so, libqxcb.so,
libusb1.0.20gb.so, libVsRoll.so, libWSQPack.so.

fingerprint.mode: 6 To use the eNBioScan-C1 reader. You must install the eNBioScan-C1 Drivers.
This mode is supported only on Linux RHEL kernel 3.x.x.

fingerprint.wsqBitrate This Wavelet Scalar Quantization (WSQ) algorithm based parameter
determines the amount of compression.

The 2.25 value yields around 5:1 compression and the 0.75 value yields
around 15:1 compression. The default value is 2.25.

NOTE: As the service uses NBIS library, only Device Service for Windows
supports the parameter.

Mode Parameter Description
Configuring Device Service 25

NOTE: The fingerprint.mode: auto is the default mode which enables Lumidigm,
DigitalPersona, and WbfDirect modes.

Configuring the Fingerprint Settings
1 Open the configuration file based on your platform:

 Microsoft Windows: C:\ProgramData\NetIQ\Device
Service\config.properties.

 Linux: /opt/NetIQ/Device Service/config.properties.
 Apple Mac OS X: Fingerprint readers are not supported.

2 Specify the following parameters:
 fingerprint.multifingerDevice to configure the type of fingerprint device in use.

Set fingerprint.multifingerDevice: false (default value) to use single finger
readers such as Lumidigm, DigitalPersona, and so on.
Set fingerprint.multifingerDevice: true to use the Green Bit DactyScan84c
multi-finger reader.

 fingerprint.mode to configure fingerprint reader mode.
Set fingerprint.mode: 3 to use the Lumidigm reader mode only.
Set fingerprint.mode: 1,WbfDirect,3 to use more than one reader modes, WBF
API, WBF Direct, and Lumidigm.
For example, to enable three single finger readers: Lumidigm, DigitalPersona, and
WbfDirect, the parameters must be configured as follows:
fingerprint.mode: auto
To use a multi-finger device, the parameters must be configured as follows:
fingerprint.multifingerDevice: true
fingerprint.mode: 5

3 (Optional) Specify the following parameter to set the capture inactive time in seconds:
fingerprint.captureTimeout: 15

NOTE: The parameters are case-sensitive.

4 (Optional) Specify the following parameter to enable the DigitalPersona readers to work with
the other services along with Device Service:
fingerprint.dp.cooperativeMode=true
The default value is true. You can set the value to false to stop the DigitalPersona with the
other services.

5 Save the changes.
6 Restart the Device Service.
26 Configuring Device Service

NOTE: The parameter fingerprint.isoSupported: true (default value is true) enables
Device Service to extract ISO from raw image that is received when a user scans fingerprints during
authentication. This parameter helps to remove this additional step on the server and improves the
authentication speed.

If you set the parameter as false, Device Service sends a raw image to the Advanced
Authentication server and the server extracts ISO to match the fingerprints with a stored
authenticator. This may cause performance issues in environments where hundreds of users
perform fingerprint authentication at the same time.

PKI Settings
This section contains the following configurations:

 Configuring the PKI Device
 Configuring e-Token PRO
 Configuring the YubiKey PKI
 Configuring OpenSC
 Configuring Gemalto Smart Card with Advanced Authentication

Configuring the PKI Device
To use PKI, you must specify a PKCS#11 module for your PKI device. To do this, perform the following
steps:

1 Open the configuration file based on the operating system:
 Microsoft Windows: C:\ProgramData\NetIQ\Device
Service\config.properties.

 Linux: /opt/NetIQ/Device Service/config.properties.
 Apple Mac OS X: /Library/Application\ Support/NetIQ/DeviceService.app/
Contents/Resources/config.properties.

2 Remove the hash sign(#) before vendorModule to remove any comments from the
parameter.

3 Set the vendor module specific dll file name to the parameter.
pki.vendorModule: <filename>.dll
For example, pki.vendorModule: rtPKCS11.dll.

NOTE: You can specify more than one PKCS#11 library with semicolon in the format:
pki.vendorModule: eToken.dll;rtPKCS11.dll
If a vendor module is not located in the system32 directory, use \\ to specify the path. If there
are any spaces in the path, ensure not to replace the space with \\ in the path.
For example, pki.vendorModule: C:\\Program
Files\\ActivIdentity\\ActivClient\\acpkcs211.dll.
Configuring Device Service 27

NOTE: If you have specified some pki.vendorModule separated by a semicolon, you must
specify the same number of values for the parameter pki.blockingMode.
For example, pki.blockingMode: true;false.

PKI plug-in of the Device Service supports the automatic mode, where a few known vendor
modules are auto-detected. You must specify: pki.vendorModule: auto.

4 (Optional) Specify the additional parameters:

Table 3-1

Method Syntax Description

Hash pki.hashMethod:
SHA256

The default value is SHA256 and you can specify this
value, if a parameter is not presented. The following
methods are also supported: SHA224, SHA384,
SHA512. To set the methods, ensure that the PKCS#11
module supports the required hash method.

Padding pki.padding: PKCS#1 The default value is PKCS#1 and you can specify this value,
if a parameter is not presented.The following options are
also supported: PSS, OAEP.

Key size pki.modulusBits: 2048 The default value is 2048 bit. For example, eToken PRO
32k does not support it and you need to set 1024 to use
it.

Blocking mode pki.detectionMode=ven
dor

The pki.detectionMode parameter is used to detect and
monitor the token connected to your system. It is set to
vendor by default. OpenSC does not support the 'waiting
for card' mechanism, and it requires to change the option
to system. Most of the vendors module work
appropriately in the default mode.

NOTE: If you specify more than one library in
pki.vendorModule, you must specify all the libraries
in pki.detectionMode separating by a semicolon
(library1;library2). If you specify only one library in
pki.detectionMode, that value will be ignored, and
the default values will be used

Initiating library pki.reinitRequired=fa
lse

This parameter is used to configure whether the PKI
service reloads the PKCS#11 library after every operation,
such as getting certificates, generating key pairs, and so
on. It is set to false by default. For some OpenSC
libraries, you need to set this parameter to true.

NOTE: If you specify more than one library in "it's
recommended to use, you must specify all the libraries in
pki.reinitRequired separated by a semicolon
(library1;library2). If you specify only one library in
pki.reinitRequired, that value will be ignored, and
the default values will be used
28 Configuring Device Service

NOTE: If you specify the pki.vendorModule: auto and pki.blockingMode parameters,
the pki.blockingMode parameter does not overwrite a blocking mode that is pre-defined
for an auto-detectable vendor module.

5 Save the changes.
6 Restart the Device Service.

Configuring e-Token PRO
1 Navigate to one of the following paths and open the configuration file based on the operating

system:
 Microsoft Windows: C:\ProgramData\NetIQ\Device
Service\config.properties.

 Linux: /opt/NetIQ/Device Service/config.properties.
 Apple Mac OS X: /Library/Application\ Support/NetIQ/DeviceService.app/
Contents/Resources/config.properties.

2 Remove the hash sign(#) before vendorModule to remove any comments from the parameter.
3 Set the vendor module specific dll file name to the parameter based on the operating system:

 Microsoft Windows:
 pki.vendorModule: eToken.dll
 pki.blockingMode: true

 Linux:
 pki.vendorModule: /usr/lib/libeTPkcs11.so
 pki.blockingMode: true

 Mac OS X:
 pki.vendorModule: libeTPkcs11.dylib
 pki.blockingMode: true

4 Save the changes.
5 Restart the Device Service.

Configuring the YubiKey PKI
Before configuring the YubiKey PKI, ensure to download the Yubico PIV (https://
developers.yubico.com/yubico-piv-tool/Releases/) tools. You can unpack the zip file and navigate to
bin directory.

To configure the PIV compliant Yubikey for public key authentication with OpenSC through PKCS11,
perform the following steps:

1 Open the configuration file based on the operating system:
 Microsoft Windows: C:\ProgramData\NetIQ\Device
Service\config.properties.
Configuring Device Service 29

https://developers.yubico.com/yubico-piv-tool/Releases/

 Linux: /opt/NetIQ/Device Service/config.properties.
 Apple Mac OS X: /Library/Application\ Support/NetIQ/DeviceService.app/
Contents/Resources/config.properties.

2 Add hash symbol (#) as a prefix to the existing parameters that start with pki to set the
parameter as a comment.
For example:
 #pki.vendorModule=auto
 #pki.forceVirtualChannels=false

3 Add the following parameter specific to the operating system:
 Microsoft Windows:

 pki.vendorModule=libykcs11-1.dll
 pki.blockingMode=false

 Linux:
 pki.vendorModule=/usr/local/lib/libykcs11.so
 pki.blockingMode=false

 Mac OS X:
 pki.vendorModule=/usr/lib/Libykcs11.1.dylib
 pki.blockingMode=false

4 Save the changes.
5 Perform one of following based on the operating system:

 Microsoft Windows: Open the Services app and restart the Device Service.
 Linux: Run the following commands:
sudo service deviceservice stop
sudo service deviceservice start

 Mac OS X: Run the following commands:
sudo launchctl unload /Library/LaunchDaemons/
com.netiq.deviceservice.plist
sudo launchctl load /Library/LaunchDaemons/
com.netiq.deviceservice.plist

IMPORTANT: The YubiKey PKCS module supports only the Generate a key pair mode and does
not work with the existing certificates on the PKI token or smart card.

NOTE: If you are not able to enroll the PKI method using YubiKey PKI or import a certificate to
YubiKey token, see to resolve these issues.

NOTE: Sometimes the vendor specific module may stop working on Mac OS.
 Some certificates may not be accessible through the vendor specific module. The issue

with certificate may display an error message Operation failed exception. This
issue occurs when the vendor module does not retrieve the certificate body for some
certificates.
30 Configuring Device Service

Configuring OpenSC
OpenSC is a third party software that provides a set of libraries and utilities to work with different
PKCS#11 tokens and cards. OpenSC implements the standard APIs to smart cards and tokens if these
devices do not have the vendor specific PKCS module.

Before configuring the OpenSC on any PKCS#11 based tokens and cards, ensure that the following
requirements are met:

 Download and install OpenSC (https://github.com/OpenSC/OpenSC/releases/).

NOTE: For Microsoft Windows, you must install and use a 32bit version of OpenSC.

 Import a certificate to the token or card.

To configure token for public key authentication with OpenSC through PKCS11, perform the
following steps:

1 Open the OpenSC configuration file based on the operating system:
 Microsoft Windows: c:\Program Files (x86)\OpenSC
Project\OpenSC\opensc.conf

 Linux: /usr/local/etc/opensc.conf
 Apple Mac OS X: /Library/OpenSC/etc/opensc.conf

2 Remove the hash symbol from following parameter to uncomment:
pin_cache_ignore_user_consent = true;
You can also see the following comments in the configuration file:
Older PKCS#11 applications not supporting CKA_ALWAYS_AUTHENTICATE
may need to set this to get signatures to work with some cards.
Default: false

3 Open the configuration file based on the operating system:
 Microsoft Windows: C:\ProgramData\NetIQ\Device
Service\config.properties

 Linux: /opt/NetIQ/Device Service/config.properties
 Apple Mac OS X: /Library/Application\ Support/NetIQ/DeviceService.app/
Contents/Resources/config.properties.

4 Add the following parameters specific to the operating system:
 Microsoft Windows:

 pki.vendorModule=C:\\Program Files (x86)\\OpenSC
Project\\OpenSC\\pkcs11\\opensc-pkcs11.dll

 pki.blockingMode=false
 Linux:

 pki.vendorModule=/usr/local/lib/opensc-pkcs11.so
 pki.blockingMode=false
Configuring Device Service 31

https://github.com/OpenSC/OpenSC/releases/

 Mac OS X:
 pki.vendorModule=/Library/OpenSC/lib/opensc-pkcs11.so
 pki.blockingMode=false

5 Save the changes.
6 Perform one of following based on the operating system:

 Microsoft Windows: Open the Services app and restart the Device Service.
 Linux: Run the following commands:
sudo service deviceservice stop
sudo service deviceservice start

 Mac OS X: Run the following commands:
sudo launchctl unload /Library/LaunchDaemons/
com.netiq.deviceservice.plist
sudo launchctl load /Library/LaunchDaemons/
com.netiq.deviceservice.plist

IMPORTANT: While using OpenSC, the Generate a key pair mode is not supported for Yubikeys
and allows to work with the certificates that are existing on the PKI token or smart card.

Configuring Gemalto Smart Card with Advanced Authentication
This section provides the configuration information of the following Gemalto smart cards:

 IDPrime .NET Smart cards
 SafeNet eToken 51x0

To configure the Advanced Authentication with Gemalto smart card, perform the following
configuration tasks:

 “Installing the SafeNet Authentication Client 10” on page 32
 “Generating the Customized MSI file” on page 33
 “Configuring PKCS Path in the Device Service” on page 33

Installing the SafeNet Authentication Client 10
1 Download the SafeNet Authentication Client 10.
2 Navigate to the Customization Package folder and execute the SACCustomizationPackage-
10.0.msi file.
The SafeNet Authentication Client Customization Package Installation wizard is displayed.

3 Click Next.
4 Read and accept the license agreement.
5 Click Next.
6 Click Change to select a different destination folder or install the Customization Tool’s into the

default folder:
32 Configuring Device Service

C:\Program Files\SafeNet\Authentication\
7 Click Install.
8 Click Finish.

Generating the Customized MSI file
1 Click Start and navigate to Programs > SafeNet > SACAdmin > SAC Customization Tool.
2 Select Features to install in the left pane.
3 Select IDGo 800 Compatible Mode from the list.
4 Click Actions > Generate MSI.
5 Specify the file name and save files in the preferred folder.

The generated msi files are as follows:
 <file name>msi-x32-10.0
 <file name>msi-x64-10.0

6 Install the msi file according to the bits of your operating system.
The Installation wizard is displayed.

7 Follow the installation steps and click Finish.

NOTE: Ensure that the file IDPrimePKCS11.dll is available in one of the following paths:
 C:\Program Files (x86)\Gemalto\IDGo 800 PKCS#11
 C:\Program Files\Gemalto\IDGo 800 PKCS#11

Configuring PKCS Path in the Device Service
1 Install NetIQ Advanced Authentication Device Service.
2 Navigate to C:\ProgramData\NetIQ\Device Service\config.properties.
3 Set the pki.vendorModule to the customized PKCS file path as follows:
pki.vendorModule= C:\\Program Files (x86)\\Gemalto\\IDGo 800
PKCS#11\\IDPrimePKCS11.dll.

NOTE: Do not use a 64 bit library file (IDPrimePKCS1164.dll).

4 Save and Restart Device Service.

NOTE: If you have SafeNet Authentication Client (SAC) version v8.x, set the pki.vendorModule to
auto. The SAC uses eToken.dll library for IDPrime cards.
Configuring Device Service 33

Identifying and Selecting the PKI Device
To enable the Device Service to identify and select the right PKI devices, you can configure the PKI
module with library name that helps the Device Service to detect the respective device and get the
inputs.

1 Navigate to one of the following paths and open the configuration file based on the operating
system:
 Microsoft Windows: C:\ProgramData\NetIQ\Device
Service\config.properties

 Linux: /opt/NetIQ/Device Service/config.properties
 Apple Mac OS X: /Library/Application\ Support/NetIQ/DeviceService.app/
Contents/Resources/config.properties

2 Set the following details of the device:
 pki.manufacturerID.<pki_lib_name>
 pki.model.<pki_lib_name>

The <pki_lib_name> is the library name and get from the configured
pki.vendorModule
For example, pki.vendorModule=bit4ipki.dll
pki.manufacturerID.bit4ipki for IDEMIA

3 Save the changes.
4 Restart the Device Service.

Performing Bulk Replacement of Configuration File
With the Microsoft Group Policy Management Console (GPMC), you can update or customize the
parameters of the configuration file in multiple machines of a domain by replacing the configuration
file. To replace the configuration file in all machines within a domain, perform the following steps:

1 Create a configuration file config.properties with the preferred parameters.
2 Copy this configuration file to a network folder.
3 Open Group Policy Management console.
4 Right-click the domain name and select Create GPO in this domain, and Link it here.
5 Specify a name for the Group Policy Object and click OK.

You can use the name to update the configuration file.
6 Right-click the created GPO and click Edit.
7 Click Computer Configuration > Preferences > Windows Settings.
8 Right-click Files and select New > File.
9 Change Action to Replace.

10 In Source file(s) specify the path of the configuration file located on the network folder.
11 In Destination File, specify the path: C:\ProgramData\NetIQ\Device

Service\config.properties.
34 Configuring Device Service

12 Clear all the Attributes options.
13 Click OK.
14 Create a group in the domain with computers on which you want to replace the Device Service

configuration file.
15 In the Security Filtering section of the Group Policy Management console, for the used GPO

remove the Authenticated Users.
16 Click Add and select the created group.
17 Click Delegation.
18 Right-click the added group and select Edit settings, delete, modify security.
19 Run gpupdate /force on the computer where you will replace the configuration file or wait till

the policy is applied automatically.

Configuring the Security Settings
To secure the user information that is stored in the digital certificates of PKI authenticator and other
authentication methods supported by Device Service, you can control and process the HTTPS
requests from a preferred domain. With this approach, you can grant the access to secured
resources only for the requests from the Advanced Authentication server and deny access for any
requests from an unidentified domain. With the security settings, you can also avoid the cross-origin
HTTPS request and click-jacking vulnerabilities.

To configure the security settings for the Device Service, perform the following steps:

1 Open the configuration file based on the operating system:
 Microsoft Windows: C:\ProgramData\NetIQ\Device
Service\config.properties

 Linux: /opt/NetIQ/Device Service/config.properties
 Apple Mac OS X: /Library/Application\ Support/NetIQ/DeviceService.app/
Contents/Resources/config.properties.

2 Specify the following parameters:
 host.accessControlOrigin=<origin>.

Where, <origin> is secured domain. Default value is asterisk symbol (*). With the default
value, the HTTPS request from any origin can access the secured resource. This may be
vulnerable and cause issues to the secured resource.
For example, set the parameter as host.accessControlOrigin=https://
myexample.company.com then the HTTPS requests from specified origin can only access
the digital certificates list.

 host.xFrameOptions=allow-from <domain URL>.
X-Frame-Options header that you can set using host.xFrameoptions parameter are not
supported on the browsers, Google Chrome and Safari.
Where, <origin> is secured domain.
For example, host.xFrameOptions=allow-from https://sample.company.com.
This allows the PKI related pages to be loaded in a frame only on the specified origin or
domain.
Configuring Device Service 35

 host.contentSecurityPolicy=frame-ancestors 'none'
To prevent embedding a page using <frame> or <iframe>, you can set the frame-
ancestor to none (empty). This parameter prevents Cross Site Scripting (XSS)
vulnerabilities.

3 Save the changes.
4 Restart the Device Service.

Configuring the TLS Version
You can configure the TLS version that the network library of the Device Service uses for establishing
HTTPS connection with the Advanced Authentication server. The default version is TLSv1.3.

To configure the TLS version, perform the following steps:

1 Open the configuration file:
C:\ProgramData\NetIQ\Device Service\config.properties
If the file does not exist, create a new file.

2 Specify tlsversion: value. The values are defined as follows:
 TLSv1.3: Default and strongly recommended value.
 All: Network library will choose the TLS version automatically.

NOTE: If you set invalid or unknown value for the tlsVersion parameter, then the default
value TLSv1.3 is set automatically.

3 Save the changes.
4 Restart the Device Service.
36 Configuring Device Service

4 4Uninstalling Device Service

To uninstall the Device Service based on the platform, see the following sections:

 “Uninstalling Device Service on Windows” on page 37
 “Uninstalling Device Service on Linux” on page 37
 “Uninstalling Device Service on Mac” on page 38

Uninstalling Device Service on Windows
You can uninstall Device Service in one of the following ways:

 Uninstalling Device Service through Setup Wizard
 Uninstalling Device Service through Control Panel

Uninstalling Device Service through Setup Wizard
1 Run naaf-deviceservice-x86-release-<version>.msi.
2 Click Next.
3 Select Remove and click Next.
4 Click Remove to confirm the deletion.

Uninstalling Device Service through Control Panel
To uninstall Device Service through Control Panel, perform the following to your Windows operating
system:

1 From the Start menu, navigate to Apps > Control Panel > Programs > Programs and Features.
2 Select NetIQ Device Service and click Uninstall.

Uninstalling Device Service on Linux
You can uninstall Device Service on Linux, based on your Linux distribution:

 “Uninstalling Device Service on Ubuntu and Debian (deb package)” on page 37
 “Uninstalling Device Service on openSUSE, CentOS, RHEL, and Fedora” on page 38

Uninstalling Device Service on Ubuntu and Debian (deb package)
Run the following command to remove Device Service:

sudo dpkg --purge naaf-deviceservice-<version>.x86_64
Uninstalling Device Service 37

Uninstalling Device Service on openSUSE, CentOS, RHEL, and
Fedora
Run the following command to remove Device Service:

rpm -e naaf-deviceservice-<version>.x86_64

Uninstalling Device Service on Mac
Following are the ways to uninstall Device Service in Mac:

 “Uninstalling Device Service with dmg File” on page 38
 “Uninstalling Device Service without dmg File” on page 38

Uninstalling Device Service with dmg File
Perform the following steps to uninstall Device Service:

1 Double click the file naaf-deviceservice-macos-release-<version>.dmg.
The naaf-deviceservice.pkg and uninstall files are displayed.

2 Click the uninstall file.
3 Specify the local administrator credentials.

Uninstalling Device Service without dmg File
Perform the following steps to uninstall Device Service:

1 Navigate to /Library/Application Support/NetIQ.
2 Click the uninstall file.
3 Specify the local administrator credentials.
38 Uninstalling Device Service

5 5Troubleshooting

This chapter contains the following sections on troubleshooting:

 “Debugging Logs” on page 39
 “Generic Issues” on page 42
 “Card Related Issues” on page 42
 “FIDO U2F Related Issues” on page 43
 “Fingerprint Related Issues” on page 43
 “PKI Related Issues” on page 45
 “Bluetooth Issues” on page 46
 “Microsoft Edge Related Issues” on page 46
 “Firefox Related Issues” on page 46

Debugging Logs
This section describes procedure to collect the logs for Device Service on the following platforms:

 “Debugging Logs on Linux” on page 39
 “Debugging Logs on Mac OS” on page 40
 “Debugging Logs on Windows” on page 41

Debugging Logs on Linux
On Linux, to enable the logs for the Device Service, perform the following steps:

1 Create a text file config.properties file in the /opt/NetIQ/Logging/ path.
2 Add a string to the file: logEnabled=True that ends with a line break.
3 Save the changes.
4 Create a folder Logs in the /opt/NetIQ/Logging/ path.
5 Run the following command in the terminal to stop the service:

 sudo service deviceservice stop
6 Run the following command to start the service:
sudo service deviceservice start

The generated logs are stored in the /opt/NetIQ/Logging/Logs path.
Troubleshooting 39

Debugging Logs on Mac OS
On Mac OS, you can collect the logs for Advanced Authentication Mac OS X Client and Device Service
in one of the following ways:

 “Using the Diagnostic Tool” on page 40
 “Manual” on page 40

NOTE: You can find the Diagnostic Tool component in the Advanced Authentication appliance
distributive package.

Using the Diagnostic Tool
To collect the logs using the Diagnostic tool, perform the following steps:

1 Run the file DiagTool.app.
2 Click Enable.
3 Restart your system.
4 Reproduce the issue.
5 Run the file DiagTool.app.
6 Click Save in the Debug logs tab.

The logs file is saved in the logs-year-month-date-hour:minute:seconds.zip format
in the /tmp directory.
For example, logs file is saved as logs-2017-10-23-15:30:20.zip.

7 Click Save.

You can perform the following actions in the Debug logs tab:

 Disable to disable the logging.
 Refresh to update the logs list.
 Open to open any specific log.

 Clear All to delete the existing logs.

Manual
1 Create a text file config.properties in the directory /Library/Logs/NetIQ/.
2 Add a string to the file logEnabled=True that ends with a line break.
3 Create a directory named Logs in the path /Library/Logs/NetIQ/.
4 Restart the system.
5 Reproduce the issue.
6 Compress the logs located in the path /Library/Logs/NetIQ/Logs/ into a zip file.
7 Change logEnabled=True to logEnabled=False in the file /Library/Logs/NetIQ/
config.properties.
40 Troubleshooting

Debugging Logs on Windows
On Windows, you can collect the logs for Advanced Authentication Windows Client and Device
Service in one of the following ways:

 “Using a Diagnostic Tool” on page 41
 “Manual” on page 41

NOTE: You can find the Diagnostic Tool component in the Advanced Authentication appliance
distributive package.

Using a Diagnostic Tool
Before you use the Diagnositic tool, ensure that the following requirements are met as prerequisites:

 Microsoft .NET Framework 3.5 installed
 The DiagTool.exe file is available with the following files in the same directory:

 DiagTool.exe.config
 Ionic.Zip.dll
 JHSoftware.DNSClient.dll

To collect the logs using the Diagnostic tool, perform the following steps:

1 Run DiagTool.exe.
2 Click Clear All (if applicable) in the Debug logs tab.
3 Click Enable.
4 Restart the Windows system.
5 Reproduce your problem.
6 Run DiagTool.exe.
7 Click Save logs in the Debug logs tab.
8 Specify a file name and path.
9 Click Save to save the logs.

10 Click Disable to disable the logging.
11 Click Clear All.

Manual
If you do not have the Diagnostic tool, you can collect the logs using the following steps:

1. Create a text file C:\ProgramData\NetIQ\Logging\config.properties.
2. Add a string to the file: logEnabled=True that ends by a line break.
3. Create a directory: C:\ProgramData\NetIQ\Logging\Logs\.
4. Restart the system.
5. Reproduce your problem.
Troubleshooting 41

6. Compress the logs located in the path C:\ProgramData\NetIQ\Logging\Logs\ into a zip
package.

7. Change logEnabled=True to logEnabled=False in the file
C:\ProgramData\NetIQ\Logging\config.properties.

Generic Issues
Issue: After users install a new browser and try to enroll or test a method, an error message
Service is not available is displayed. This issue may occur for the services: Bluetooth, Card,
Fingerprint, PKI, and FIDO U2F.

Reason: The Device Service sets the certificates aside during installation. As the browser is installed
after the Device Service, the required certificates are inaccessible to the browser.

Workaround: Open a browser and access one of the following URLs based on the method to apply
the appropriate certificate:

 Buletooth: https://127.0.0.1:8440/api/v1/bluetooth/getdevices
 Card: https://127.0.0.1:8440/api/v1/card/getmessage?nowait
 Fingerprint: https://127.0.0.1:8442/api/v1/fingerprint/capture
 PKI: https://127.0.0.1:8440/api/v1/pki/getmessage?nowait
 FIDO U2F: https://127.0.0.1:8441/api/v1/fidou2f/abort

Card Related Issues
You can browse the following URL to troubleshoot the Card related issues:

https://127.0.0.1:8440/api/v1/card/getmessage?nowaitTo

The response is displayed in the following format:

{
result: [<status>],
cardid: <card id>,
readerid: <reader id>
}
The following are the different status that are displayed as response for the Card service:

 NO_READER: Indicates that the card service is unable to detect the connected card reader.
 READER_ON: Indicates that the card service detected the connected card reader.
 NO_CARD: Indicates that there is no card on the reader.
 CARD_ON: Indicates that a card is presented to the reader.

NOTE: The cardid parameter is used only with the CARD_ON and NO_CARD statuses.
42 Troubleshooting

RF Ideas does not work in Mac OS Catalina
1 Open the configuration file /Library/Application\ Support/NetIQ/
DeviceService.app/Contents/Resources/config.properties.

2 Set the parameter card.rfideasEnabled:true
3 Navigate to /Library/Application Support/NetIQ.
4 Click DeviceServiceTool.app.

You are prompted with a message "DeviceServiceTool" would like to receive
keystrokes from any application. Click Open System Preferences and grand access to
this application in Security & Privacy - Privacy preferences.

5 After adding the Device Service to Input Monitoring, run the following commands to restart the
Device Service.

1. sudo launchctl unload /Library/LaunchDaemons/
com.netiq.deviceservice.plist

2. sudo launchctl load /Library/LaunchDaemons/
com.netiq.deviceservice.plist

FIDO U2F Related Issues
You can browse the following URL to troubleshoot the FIDO U2F related issues:

https://127.0.0.1:8441/api/v1/fidou2f/abort
With the FIDO U2F token connected, the service returns following response:

{ "result":"ok" }

Fingerprint Related Issues
You can browse the following URL and place your finger on the reader to troubleshoot the
fingerprint related issues:

https://127.0.0.1:8442/api/v1/fingerprint/capture
The service returns the response in the following format:

{"BitsPerPixel":x,"BytesPerLine":xxx,"Dpi":xxx,"Height":xxx,"Image":"<finge
rprintdata>","Width":xxx,"captureStatus":"Ok"}.

For example:
{"BitsPerPixel":8,"BytesPerLine":256,"Dpi":508,"Height":360,"Image":"<finge
rprintdata>","Width":256,"captureStatus":"Ok"}.

The following table describes the different parameters of the response:
Troubleshooting 43

This section contains the following fingerprint issue:

 “Mismatch Error After Migrating from Advanced Authentication 5.6 to 6.0” on page 44
 “The Nitgen Device Hangs If Disconnected and Reconnected to a Workstation” on page 44

Mismatch Error After Migrating from Advanced Authentication
5.6 to 6.0
Issue: After migrating from Advanced Authentication 5.6 to 6.0, while authenticating with the
SecuGen Hamster Pro 20 fingerprint reader an error message Mismatch is displayed on Windows
operating system.

Workaround: Perform the following steps:

1 Open the configuration file C:\ProgramData\NetIQ\Device
Service\config.properties.

2 Add the parameter fingerprint.nbisEnabled=false.
The default value is true.

3 Save the changes.
4 Restart the Device Service.

The Nitgen Device Hangs If Disconnected and Reconnected to a
Workstation
Issue: While enrolling or authenticating with the Nitgen eNBioScan-C1 device if you disconnect the
device from a workstation and reconnect, the device hangs. Also, the workstation does not detect
the device.

Workaround: Restart the workstation after you reconnect the device.

Parameter Description

captureStatus Indicates status of capture. Possible values are:

 Ok
 Timeout
 Error
 NoReader

Width, Height Fingerprint image size (width and height) in pixels.

Dpi Dots per inch. This is used while matching the fingerprint.

BitsPerPixel Bits per pixel. Typically 6 bits.

BytesPerLine Bytes per line in image.

Image Fingerprint image encoded using the Base-64 format in gray scale.
44 Troubleshooting

PKI Related Issues
You can browse the following URL to troubleshoot the PKI related issues:

https://127.0.0.1:8440/api/v1/pki/getmessage?nowait
The PKI service returns one of the following as response:

 NO_READER indicates no reader is connected.
 NO_CARD if a card is not presented.
 CARD_ON if a card is presented.

This section contains the following PKI issues:

 “Issue with YubiKey PKI” on page 45
 “Unable to Import a Certificate to the YubiKey Token” on page 45

Issue with YubiKey PKI
Issue: When you connect the PKI token to your system and initiate enrollment on the Self-Service
portal, if an error message Unexpected service status: PLUGIN_NOT_INITTED is displayed.
This issue occurs due to the invalid dll path in the configuration file.

Workaround: Ensure valid path to the dll file is specified in the configuration file. You can search for
opensc-pkcs11.dll or libykcs11-1.dll in the C drive and specify the full path using \\ in
place of \.

You can plug the Yubikey token to your system and navigate to the URL https://
127.0.0.1:8441/api/v1/pki/getmessage?nowait to view the status of the token. The status
must display as CARD_ON.

When you import the certificate to the token, navigate to the URL https://127.0.0.1:8441/
api/v1/pki/getcertificates to view the certificate data.

If you are unable to enroll PKI using YubiKey token on the Self-Service portal then try to export the
logs to investigate the issue.

Unable to Import a Certificate to the YubiKey Token
Issue: When you try to import certificate to the YubiKey token using the yubico-piv-tool, an error
message Failed authentication with the application is displayed.

Workaround: You must reset PIN of the token in one of the following ways:

 Specify incorrect PIN three times consecutively and then reset the PIN (default PIN is 123456).
 Specify incorrect PUK code (default PUK code is 12345678) of the same length (for example,

87654321) then reset the PIN.

You can import the certificate to the YubiKey token after resetting the PIN.
Troubleshooting 45

Bluetooth Issues
To troubleshoot the Bluetooth related issues, navigate to the following URL:

https://127.0.0.1:8440/api/v1/bluetooth/getdevices

It returns a list of Bluetooth devices that are discovered.

For more information on Bluetooth, see Bluetooth Plug-in.

Microsoft Edge Related Issues
This section contains the issues related to Microsoft Edge browser.

Users Unable to Test the Enrolled Authenticators on the
Microsoft Edge Browser
Issue: When users try to test an enrolled authenticator on the Self-Service portal, an error message
Card service is unavailable is displayed.

Workaround: Perform the following steps to run Device Service on Microsoft Edge:

1 Open the command prompt with elevated privileges.
2 Run the following command:
CheckNetIsolation LoopbackExempt -a -
n="Microsoft.MicrosoftEdge_8wekyb3d8bbwe"

3 Open about:flags and ensure that the Allow localhost loopback option is enabled.

Firefox Related Issues
This section contains the issues related to the Firefox browser.

Users Unable to Enroll the Card and FIDO U2F Methods on the
Firefox Browser
Issue: On macOS, if users try to test the Card and U2F methods on the Self-Service portal using the
Firefox browser, an error message is displayed. This issue occurs when NetIQ certificate is not
available in the browser.

Workaround: Perform the following steps to run remove broken profile:

1 Delete the Firefox user profile.
2 Update Firefox.
3 Open Firefox and recreate a profile.
46 Troubleshooting

6 6Developer Information

The Device Service supports the open ports 8440, 8441, and 8442. It is recommended to use port
8440 as the other ports may be deprecated in the upcoming releases.

This chapter contains the developer information of the following plug-ins:

 “Card Plug-in” on page 47
 “FIDO U2F Plug-in” on page 49
 “Fingerprint Plug-in” on page 51
 “PKI Plug-in” on page 52
 “Bluetooth Plug-in” on page 57

Card Plug-in
You can browse the following URL to check the Card service:

https://127.0.0.1:8440/api/v1/card/getmessage?nowait
The response is displayed in the following format:

{
result: [<status>],
cardid: <card id>,
readerid: <reader id>
}
The following table describes the different status that the Card service displays as a response.

NOTE: The cardid parameter is used only with the CARD_ON and NO_CARD statuses.

The following table lists the GET methods and the respective response that the Card service returns.

Status Description

NO_READER The Card service has not detected the connected card reader

READER_ON The Card service has detected the connected card reader

NO_CARD There is no card on the reader

CARD_ON A card is presented to the reader
Developer Information 47

Method Response

https://127.0.0.1:8440/api/v1/card/
getmessage?nowait

Displays the current status of the reader and card
instantly.

Possible status values are:

 NO_READER
 NO_CARD
 CARD_ON

https://127.0.0.1:8440/api/v1/card/
getmessage?wait

Waits for the next action.

For example, tapping or removal of a card from the
reader.

NOTE: If you disconnect the reader with a card placed
on the reader, two messages NO_CARD and
NO_READER are displayed. But the first one will be
caught with getmessage?wait.

When you connect a reader with a card on, two
events READER_ON and CARD_ON take place. As a
result, READER_ON is displayed as response.

https://127.0.0.1:8440/api/v1/card/
getreaderon?nowait

Displays the current status of reader.

Possible status values are:

 READER_ON
 NO_READER

https://127.0.0.1:8440/api/v1/card/
getreaderon?wait

Displays READER_ON if the reader is connected or
waits till you connect the reader.

https://127.0.0.1:8440/api/v1/card/
getcardon?nowait

Displays the current status of card.

Possible status values:

 NO_READER
 NO_CARD
 CARD_ON

https://127.0.0.1:8440/api/v1/card/
getcardon?wait

Displays NO_READER if a reader is not connected or
waits till a card is presented on the reader.

NOTE: If a card is present on the reader, the service
waits for the next tap of the card.

https://127.0.0.1:8440/api/v1/card/
getcardoff?nowait&cardid=<cardid>

Possible status values:

 NO_READER
 NO_CARD
 CARD_ON

Use the cardid parameter to make the service wait
when a specific card is removed.
48 Developer Information

FIDO U2F Plug-in
You can browse the following URL to check the FIDO U2F service:

https://127.0.0.1:8441/api/v1/fidou2f/abort
When a FIDO U2F token is connected to the system, the service returns the following response:

{ "result":"ok" }

Methods
The following table lists the POST and GET methods and the respective response that the FIDO U2F
service returns.

https://127.0.0.1:8440/api/v1/card/
getcardoff?wait

Possible status values:

 NO_READER
 NO_CARD

If a card is present on the reader, the service waits till
the card is removed from the reader.

https://127.0.0.1:8440/api/
abort?cancel-cookie=xxx

All the wait methods support cancel-
cookie=xxx parameter.

For example, https://127.0.0.1:8440/api/
v1/card/getmessage?wait&cancel-
cookie=xxx. If you call abort with the cancel-
cookie, all the waiting methods with the specified
cookie are terminated.

Method Response

Method Syntax Description Response

sign https://
127.0.0.1:8441/api/
v1/fidou2f/sign

This POST method obtains an
identity assertion from the
connected U2F token and
performs the authentication

{
"signRequests":
[
{"challenge":"tRiTY3C8Ye
rfmH6IIlfoCZjs5CMkKUWDrN
hS7v5gCPQ",
"version":"U2F_V2,
"keyHandle":"knQD88Ue6ZT
6tyutHr8ipZaiTRV2uT9qzwG
qWjYo5HCwAiV5z2kc1vr08tW
bdOLQ4S-
ODg09vpp62P6owh4qmQ",
"appId":"https://
demo.yubico.com"
}
]
}

Developer Information 49

In case, if there is an issue with the token or configuration, error is displayed in the following format:

{ "errorCode"=1, "errorMessage"="Error Text"}
where:

 errorCode is an integer indicating the general error that occurred.
 errorMessage is additional text that provides details on the error.

The following table lists all the error codes of FIDO U2F service with description.

register https://
127.0.0.1:8441/api/
v1/fidou2f/register

This POST method registers a
U2F token for a user account

{
"registerRequests":
[
{"challenge":"tRiTY3C8Ye
rfmH6IIlfoCZjs5CMkKUWDrN
hS7v5gCPQ",
"version":"U2F_V2,
"appId":"https://
demo.yubico.com"
}
],
"signRequests":[]
}
signRequest can be empty, or
contain serial for the key handle
validation

{
"challenge":"tRiTY3C8Yer
fmH6IIlfoCZjs5CMkKUWDrNh
S7v5gCPQ",
"version":"U2F_V2,
"keyHandle":"knQD88Ue6ZT
6tyutHr8ipZaiTRV2uT9qzwG
qWjYo5HCwAiV5z2kc1vr08tW
bdOLQ4S-
ODg09vpp62P6owh4qmQ",
"appId":"https://
demo.yubico.com"
}

abort https://
127.0.0.1:8441/api/
v1/fidou2f/abort

This GET method terminates all
the pending operations

{ "result":"ok" }

Method Syntax Description Response
50 Developer Information

Fingerprint Plug-in
You can navigate to the following URL to check the WBF Capture Service and place the finger on the
reader while the URL is loading:

https://127.0.0.1:8442/api/v1/fingerprint/capture
The service returns the response in the following format:

{"BitsPerPixel":x,"BytesPerLine":xxx,"Dpi":xxx,"Height":xxx,"Image":"<finge
rprintdata>","Width":xxx,"captureStatus":"Ok"}.

For example:
{"BitsPerPixel":8,"BytesPerLine":256,"Dpi":508,"Height":360,"Image":"<finge
rprintdata>","Width":256,"captureStatus":"Ok"}.

The following table describes the different parameters of the response.

You can navigate to the following URL to check the multiple fingerprint reader and place the correct
fingers on the reader while the URL is loading:

Error Code Possible Cause

1 Token is not connected. Error message Please connect a U2F token.

2 Indicates bad request and the request cannot be processed. The navigated URL does not
match with app ID or HTTPS is not prefixed to the URL.

3 Indicates configuration is not supported.

4 Indicates the connected token is not eligible for this request or token is already registered. To
enable the registration process, specify signRequests in the body of register request.

5 Indicates timeout and no response from the token because the user did not touch the token
within the given time frame.

Parameter Description

captureStatus Indicates status of capture. Possible values are:

 Ok
 Timeout
 Error
 NoReader

Width, Height Fingerprint image size (width and height) in pixels.

Dpi Dots per inch. This is used while matching the fingerprint.

BitsPerPixel Bits per pixel. Typically 6 bits.

BytesPerLine Bytes per line in image.

Image Fingerprint image encoded using the Base-64 format in gray scale.
Developer Information 51

https://127.0.0.1:8442/api/vi/fingerprint/capture?index=<index_value>
The index_value can be one of the following:

 1 indicates four fingers of the left hand.
 2 indicates four fingers of the right hand.
 3 indicates two thumbs.

The service returns the response in the following format:

{"Finger":x,"Image":{"BitsPerPixel":x,"BytesPerLine":xxx,"Dpi":xxx,"Height
":xxx,"Image":"<fingerprintdata>","Width":xxx,"captureStatus":"Ok"}}
For example:

{"Finger":1,"Image":{"BitsPerPixel":8,"BytesPerLine":256,"Dpi":508,"Height
":360,"Image":"<fingerprintdata>","Width":256,"captureStatus":"Ok"}}
where the finger represents the finger ID. Possible values are:

 1 for the right thumb.
 2 for the left thumb.
 3 for the right index.
 4 for the left index.
 5 for the right middle.
 6 for the left middle.
 7 for the right ring.
 8 for the left ring.
 9 for the right little.
 10 for the left little.

PKI Plug-in
The following table lists all the parameters that the PKI plug-in supports.

Parameter Description

pki.vendorModule=<library-file-
name>.dll

To set the PKCS#11 implementation library that the
vendor module requires.

pki.hashMethod: SHA256 The default value is SHA256 and you can specify this
value, if a parameter is not presented. The following
methods are also supported: SHA224, SHA384,
SHA512. To set the methods, ensure that the PKCS#11
module supports the required hash method.

pki.padding: PKCS#1 The default value is PKCS#1 and you can specify this
value, if a parameter is not presented.The following
options are also supported: PSS, OAEP.
52 Developer Information

PKI plug-in uses the simulator API for a card or token detection and POST methods.

POST Methods
The following table lists the different POST methods of PKI service and the respective response that
the service returns.

pki.modulusBits: 2048 The default value is 2048 bit. For example, eToken PRO
32k does not support it so you need to set 1024 to use
it.

pki.blockingMode: true Detects and monitors the token connected to the
system. It is set to true by default. OpenSC does not
support the 'waiting for card' mechanism and it
requires to change the option to False. Most of the
vendors module work appropriately in the default
mode.

Method Syntax Description Response

getcertifi
cates

https://
127.0.0.1:8440/api/
v1/pki/
getcertificates

Retrieves all certificates from
the connected token.

{
"readerid"=0,
"certificates" : [
{
"keypairid":"9beb","cert
ificate":"30820371308202
daa00....0b90d7290a1a76b
0450264dd536d2cb057230f8
dbfa8cfda05"
}
]
}
where:

 keypairid indicates ID
of the key pair in the
certificate. Save this ID for
future logon operations.

 certificate indicates
certificate value in DER
format.

Parameter Description
Developer Information 53

generateke
ypair

https://
127.0.0.1:8440/api/
v1/pki/
generatekeypair-
POST method,
Request Body:
{"pin":"your_pin"}
Replace your_pin with
actual token PIN or leave it
empty if there is no PIN.

Generate a Public Key
Infrastructure (PKI) public
and private key pair for a
local digital certificate.

{

"readerid"=your_reader_i
d,
"keypairid":"6f4712e5545
44ac3",
"modulus":"a1709fb049c35
fdc6695193e9dd980c713c..
..91daaa9d2604eeeaad73d1
3b1",
"exponent":"010001"
}
where:

 keypairid indicates ID
of the key pair in the
certificate. Save this ID for
future logon operations.

 modulus
 exponent

signchalle
nge

https://
127.0.0.1:8440/api/
v1/pki/
signchallenge -
POST method,
Request Body:
{"challenge":"3128"
, "pin":"your_pin",
"keypairid":"9beb"
}
where:

 challenge is in hex-
string format

 pin is PIN of the
token

 keypairid is ID of
keypair from token.

Enables the PKI plug-in to
sign the challenge from the
authentication server. User is
provided with an interface to
specify PIN and keypair ID.

If the challenge is successful,
signature of given challenge is
returned as response.

{

"readerid"=your_reader_i
d, "hash":"SHA1",
"padding":"PKCS#1",
"signature":"58ad84f3a9b
7244031aa55c0d0ad753b1a4
80ae709a37210d48....4931
30d7b11f128ea2be1fcc42d1
23bdb715a153974e992b16d0
22"
}
where:

 hash indicates hash
method that is used.

 padding indicates the
padding method that is
used.

 signature indicates
signature for given
challenge in hex format.

Method Syntax Description Response
54 Developer Information

if there is an issue with token or configuration, the above methods display error in the following
format:

{ "result":"ERROR_ID"}
The following table lists all the error IDs for the POST methods of PKI service with description.

GET Methods
You can browse the following URL to check the PKI service:

https://127.0.0.1:8440/api/v1/pki/getmessage?
The response is displayed in the following format:

{
result: [<status>],
cardid: <card id>,
readerid: <reader id>
}
The following table describes the different status that the PKI service displays as response.

verifychal
lenge

https://
127.0.0.1:8440/api/
v1/pki/
verifychallenge -
POST method,
Request Body
{"challenge":"3128"
, "pin":"your_pin",
"keypairid":"9beb",
"signature":"58ad84
f3a9b72....bdb715a1
53974e992b16d022" }

Verifies the PKI plug-in
challenge from the
authentication server. User is
provided with an interface to
specify PIN, keypair ID, and
signature.

Error ID Description

PLUGIN_NOT_INITTED A vendor module or library is not present, invalid, or not specified

METHOD_NOT_FOUND Method not found

NO_CARD No token or card is presented. Use wait methods to get an event

JSON_PARSE_FAILED Bad request

WRONG_PIN Incorrect PIN

GET_PRIVATE_KEY_FAILED Error while retrieving a private key from the token

OPERATION_FAILED general operation failure

Method Syntax Description Response
Developer Information 55

NOTE: The cardid parameter is used only with the CARD_ON and NO_CARD statuses.

The following table lists the different GET methods of the PKI service and the respective response
that the service returns.

Status Description

NO_READER The Card service has not detected the connected card reader or the reader is not
connected to the system

READER_ON The Card service has detected the connected card reader

NO_CARD A card is not inserted in the reader

CARD_ON A card is inserted in the reader

Method Response

https://127.0.0.1:8440/api/v1/pki/
getmessage?

Displays the current status of the reader and card
instantly.

Possible status values are:

 NO_READER
 NO_CARD
 CARD_ON

https://127.0.0.1:8440/api/v1/pki/
getmessage?wait

Waits for the next action.

For example, insertion or removal of a card from
the reader.

NOTE: If you disconnect the reader with a card
being inserted in reader, two messages NO_CARD
and NO_READER are displayed.

When you connect a reader with a card inserted,
two events READER_ON and CARD_ON take place.
As a result, READER_ON is displayed as a response.

https://127.0.0.1:8440/api/v1/pki/
getreaderon?nowait

Displays the current status of reader.

Possible status values are:

 READER_ON
 NO_READER

https://127.0.0.1:8440/api/v1/pki/
getreaderon?wait

Displays READER_ON if the reader is connected or
waits till you connect the reader.
56 Developer Information

Bluetooth Plug-in
The following table lists all the methods that the Bluetooth plug-in supports.

NOTE: Advanced Authentication Device Service supports only Bluetooth. The Bluetooth eSec is not
supported. It is not recommended to use the Bluetooth feature on VMware virtual machines
because a false authentication might happen when Bluetooth device is disabled or it is out of range.

The Bluetooth method is not available from the Advanced Authentication 6.4 Service Pack 1 release.

https://127.0.0.1:8440/api/v1/pki/
getcardon?nowait

Displays the current status of the card.

Possible status values:

 NO_READER
 NO_CARD
 CARD_ON

https://127.0.0.1:8440/api/v1/pki/
getcardon?wait

Displays NO_READER if a reader is not connected
or waits till a card is inserted in the reader.

NOTE: If a card is inserted in the reader, the service
waits till the card is removed and inserted again.

https://127.0.0.1:8440/api/v1/pki/
getcardoff?cardid=<cardid>

Possible status values:

 NO_READER
 NO_CARD
 CARD_ON

Use the cardid parameter to make the service
wait when a specific card is removed.

https://127.0.0.1:8440/api/v1/card/
getcardoff?wait

Possible status values:

 NO_READER
 NO_CARD

If a card is present on the reader, the service waits
till the card removed from the reader.

https://127.0.0.1:8440/api/
abort?cancel-cookie=xxx

All the wait methods support cancel-
cookie=xxx parameter.

For example, https://127.0.0.1:8440/
api/v1/pki/getmessage?wait&cancel-
cookie=xxx. If you call abort with the cancel-
cookie, all the waiting methods with the specified
cookie are terminated.

Method Response
Developer Information 57

Method Syntax Description Response

getdevic
es

https://
127.0.0.1:8440/
api/v1/
bluetooth/
getdevices

This GET method either
returns a JSON array of all
discovered Bluetooth
devices or an error code if
Bluetooth is turned off.

{
"devices":
[
{
"name":"MagicKeyboard","addres
s":"9cd746e1234","type":"perip
heral","hash":"9b67e2d07088a1f
0bd64bde8c44ab7cdc279463bd6d93
735ab778afda79d0bde"
},
{
"name":"MagicMouse","address":
"1abcd22dafae","type":"periphe
ral","hash":"dbf75830268ab5516
a0d658d28105761b6d6ec062a42317
a84b3a82e8e4d643f"},
{
"name":"Lex'siPhone","address"
:"40cd0150cf58","type":"phone"
,"hash":"ac904cc2e2626ca27eb7f
4100166e0ae07957da89a5a3aa52f0
a5d182b6ba42e"
}
]
}
where:

 name indicates the Bluetooth
device name.

 address indicates address of the
device

 type indicates device type. The
type can be one of the following:
 computer
 phone
 lan_access
 audio
 peripheral
 imaging
 unclassified
58 Developer Information

detectde
vice

https://
127.0.0.1:8440/
api/v1/
bluetooth/
detectdevice
Request Body
{"address":"[RSA
encoded
address]"}
where RSA encoded
address is address of
Bluetooth device
encoded with an RSA
public key (from
certificate) in the hex-
string format.

This POST method is used
to test the presence of
device with its address

If the device is in range, the service
returns:

{"result":"CONNECTED","addres
s":"40cd0150cf58"}
if the device is not within the range or
the Bluetooth is turned OFF on the
device, the service returns:

{"result":"DISCONNECTED"}
Following are the other possible result
values for this method:

 FAILED: Indicates general failure
 DECRYPT_FAILED: Indicates

failure while decoding
 INVALID_ADDRESS: Indicates

invalid address of the device
 hash: Indicates SHA256 hash of the

address
 BLUETOOTH_DISABLED: Indicates

Bluetooth is turned OFF.

getpubli
ckey

https://
127.0.0.1:8440/
api/v1/
bluetooth/
getpublickey

This GET method returns
the public certificate in the
PEM format. The Bluetooth
address is encoded with the
public key in that
certificate.

{"publicKey":"[PUBLIC_CERT]"}
where:

 PUBLIC_CERT indicates the public
certificate in the PEM format.

 publickey displays public key of
the device in the following format:

"-----BEGIN RSA PUBLIC KEY-
----\n"

"MIGHAoGBAKqGJxyB/
ZgrTEsfqmMdE4GRwGH+XOioOa0
EiQ8+HYcR8Pcg57j1Cc5k\n"

"D1TrGNKpayWUWW7YEsXvfSpc5
a5x9qwsEe06Iak5eP/
PcGNLUViLwy2CN9oy5mSM\n"

"Izpd607GNBUzEwWg0sIpm3FBE
vtFFDxBb7PzE9W4hE//
t0LQkGcTAgED\n"

"-----END RSA PUBLIC KEY---
--";

Method Syntax Description Response
Developer Information 59

60 Developer Information

	Advanced Authentication - Device Service
	About this Book
	Intended Audience

	1 System Requirements
	Supported Card Readers and Cards
	Supported Devices for PKI
	Supported Fingerprint Readers
	Fingerprint
	Windows Hello

	Supported Devices for FIDO2

	2 Installing and Upgrading Device Service
	Obtaining the Device Service Installer
	Installing and Upgrading Device Service on Windows
	Installing Device Service on Linux
	Installing Device Service on Ubuntu and Debian (deb package)
	Installing Device Service on openSUSE and SUSE
	Installing Device Service on Fedora, CentOS, RHEL

	Upgrading Device Service on Linux
	Installing Device Service on Mac

	3 Configuring Device Service
	Apple Touch ID
	Configuring the Apple Touch ID

	Card Settings
	Configuring the Card Settings
	Configuring the Virtual Machine for Working of the RF IDeas Readers

	Device Authentication Setting
	Facial Recognition
	Fingerprint Settings
	Configuring Multiple Fingerprint Reader Modes
	Configuring the Fingerprint Settings

	PKI Settings
	Configuring the PKI Device
	Configuring e-Token PRO
	Configuring the YubiKey PKI
	Configuring OpenSC
	Configuring Gemalto Smart Card with Advanced Authentication
	Identifying and Selecting the PKI Device

	Performing Bulk Replacement of Configuration File
	Configuring the Security Settings
	Configuring the TLS Version

	4 Uninstalling Device Service
	Uninstalling Device Service on Windows
	Uninstalling Device Service through Setup Wizard
	Uninstalling Device Service through Control Panel

	Uninstalling Device Service on Linux
	Uninstalling Device Service on Ubuntu and Debian (deb package)
	Uninstalling Device Service on openSUSE, CentOS, RHEL, and Fedora

	Uninstalling Device Service on Mac
	Uninstalling Device Service with dmg File
	Uninstalling Device Service without dmg File

	5 Troubleshooting
	Debugging Logs
	Debugging Logs on Linux
	Debugging Logs on Mac OS
	Debugging Logs on Windows

	Generic Issues
	Card Related Issues
	RF Ideas does not work in Mac OS Catalina

	FIDO U2F Related Issues
	Fingerprint Related Issues
	Mismatch Error After Migrating from Advanced Authentication 5.6 to 6.0
	The Nitgen Device Hangs If Disconnected and Reconnected to a Workstation

	PKI Related Issues
	Issue with YubiKey PKI
	Unable to Import a Certificate to the YubiKey Token

	Bluetooth Issues
	Microsoft Edge Related Issues
	Users Unable to Test the Enrolled Authenticators on the Microsoft Edge Browser

	Firefox Related Issues
	Users Unable to Enroll the Card and FIDO U2F Methods on the Firefox Browser

	6 Developer Information
	Card Plug-in
	FIDO U2F Plug-in
	Fingerprint Plug-in
	PKI Plug-in
	POST Methods
	GET Methods

	Bluetooth Plug-in

