
Developer Guide
Advanced Authentication
Version 5.3

Legal Notices

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government
rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

Copyright © 2016 NetIQ Corporation, a Micro Focus company. All Rights Reserved.

https://www.netiq.com/company/legal/

Contents
About NetIQ Corporation 5
About this Book 7

1 Advanced Authentication Overview 9
1.1 About Advanced Authentication . 9
1.2 Advanced Authentication Server Appliance Functionality . 9
1.3 Architecture . 9

1.3.1 Basic Architecture . 10
1.3.2 Enterprise Architecture . 10
1.3.3 Enterprise Architecture with Load Balancer. 11
1.3.4 How to Configure Load Balancer for Advanced Authentication Cluster 12

1.4 Terms . 15
1.4.1 Authentication Method . 15
1.4.2 Authentication Chain . 15
1.4.3 Authentication Event. 15

2 About the API 17
2.1 Logon Process . 17
2.2 Enrollment Process . 19

3 API Documentation 21
3.1 Localization . 21
3.2 Working With Endpoints . 22

3.2.1 About Endpoints. 22
3.2.2 Create Endpoint . 22
3.2.3 Delete Endpoint . 23

3.3 Working With Endpoint Sessions . 24
3.3.1 About Endpoint Sessions. 24
3.3.2 Create Endpoint Session . 25
3.3.3 Read Information About Endpoint Sessions . 26
3.3.4 Delete Endpoint Session . 27

3.4 Provide Authentication . 28
3.4.1 About Login Process . 28
3.4.2 Provide Simple Authentication Using One Method In A Chain . 31
3.4.3 Provide Chained Authentication . 36
3.4.4 1:N Authentication . 40
3.4.5 Read Available Chains. 40
3.4.6 Priority of the Authentication Chains . 42
3.4.7 Delete Logon Process . 42

3.5 Working With Users . 43
3.5.1 About Users . 43
3.5.2 Getting Information About User . 43

3.6 Working With User's Data . 44
3.6.1 About User's Data . 44
3.6.2 Read User's Data. 44
3.6.3 Modifying User's Data . 45
3.6.4 Delete User's Data. 46

3.7 Working With Login Sessions. 47
Contents 3

4 Adv
3.7.1 About Login Sessions . 47
3.7.2 Read Information About Login Sessions . 47
3.7.3 Delete Login Sessions . 48

3.8 Working With Enrollment . 49
3.8.1 About Enroll Process . 49
3.8.2 Start Enroll Process . 50
3.8.3 Providing Data Into Enroll Process . 51
3.8.4 Delete Enroll Process . 53

3.9 Working With User's Templates . 54
3.9.1 About User's Templates . 54
3.9.2 Get User's Templates. 54
3.9.3 Create User's Templates From Enroll Session . 55
3.9.4 Assign User's Template To Another User . 56
3.9.5 Updating User's Template . 57
3.9.6 Delete User's Template . 58

3.10 Working With Authentication Methods . 59
3.10.1 Card Authentication Method . 59
3.10.2 Email Authentication Method . 63
3.10.3 Emergency Password Authentication Method . 66
3.10.4 FIDO U2F Authentication Method . 69
3.10.5 Fingerprint Authentication Method. 75
3.10.6 HOTP Authentication Method . 78
3.10.7 LDAP Password Authentication Method . 81
3.10.8 Password Authentication Method . 84
3.10.9 RADIUS Authentication Method . 87
3.10.10 Security Questions Authentication Method . 90
3.10.11 Smartphone Authentication Method . 94
3.10.12 SMS Authentication Method . 100
3.10.13 TOTP Authentication Method. 102
3.10.14 Voice Call Authentication Method . 106
3.10.15 NotarisID Authentication Method . 110
3.10.16 PKI Authentication Method . 113

3.11 Errors . 117
3.12 Troubleshooting . 118

4 Usage of Device Services 119
4.1 Card Plug-in . 119
4.2 FIDO U2F Plug-in. 120
4.3 Fingerprint Plug-in . 121
4.4 PKI Plug-in . 121
anced Authentication

About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in your
environment: Change, complexity and risk—and how we can help you control them.

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster
We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios in
which IT organizations like yours operate—day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion
We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and you
need someone that is truly easy to work with—for a change. Ultimately, when you succeed, we
all succeed.

Our Solutions
Identity & Access Governance
Access Management
Security Management
Systems & Application Management
Workload Management
Service Management
About NetIQ Corporation 5

Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. The documentation for this product is
available on the NetIQ Web site in HTML and PDF formats on a page that does not require you to log
in. If you have suggestions for documentation improvements, click Add Comment at the bottom of
any page in the HTML version of the documentation posted at www.netiq.com/documentation. You
can also email Documentation-Feedback@netiq.com. We value your input and look forward to
hearing from you.

Contacting the Online User Community
NetIQ Communities, the NetIQ online community, is a collaborative network connecting you to your
peers and NetIQ experts. By providing more immediate information, useful links to helpful resources,
and access to NetIQ experts, NetIQ Communities helps ensure you are mastering the knowledge you
need to realize the full potential of IT investments upon which you rely. For more information, visit
community.netiq.com.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
6 Advanced Authentication

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com

About this Book

This document describes the HTTP REST API for Advanced Authentication Server v5.2. The
document is intended for developers and contains information on how to integrate strong
authentication into the applications.

Intended Audience
This book provides information for individuals responsible for understanding administration concepts
and implementing a secure, distributed administration model.
About this Book 7

8 Advanced Authentication

1 1 Advanced Authentication Overview

In this chapter:

About Advanced Authentication
Advanced Authentication Server Appliance Functionality
Architecture
Terms

1.1 About Advanced Authentication
Advanced AuthenticationTM is a software solution that enhances the standard user authentication
process by providing an opportunity to logon with various types of authenticators.

Why choose Advanced AuthenticationTM?

Advanced AuthenticationTM...

...makes the authentication process easy and secure (no complex passwords, “secret words”,
etc.)
...prevents unauthorized use of your computer
...protects you from fraud, phishing and similar illegal actions online
...can be used to provide secure access to your office

1.2 Advanced Authentication Server Appliance
Functionality
Benefits of using Advanced Authentication Server appliance are evident. Advanced Authentication
Server appliance...

...is cross-platform

...contains an inbuilt RADIUS server

...supports integration with Advanced Authentication Access Manager

...does not require scheme extending

...provides administrators with a capability of editing the configured settings through web-based
Advanced Authentication Administrative Portal

1.3 Architecture
In this chapter:

Basic Architecture
Advanced Authentication Overview 9

Enterprise Architecture
Enterprise Architecture with Load Balancer

1.3.1 Basic Architecture
The basic architecture of the Advanced Authentication is simple and requires only one Advanced
Authentication Server. You can use it for testing and proof of concepts.

Advanced Authentication Server is connected to a Directory that can be an Active Directory Domain
Services, NetIQ eDirectory, Active Directory Lightweight Directory Service or other compliant LDAP
directories. An Event Endpoint can be Windows, Linux or Mac OS X machine, NetIQ Access
Manager, NetIQ CloudAccess, or RADIUS Client to authenticate through the RADIUS Server that is
built-in the Advanced Authentication Server. For a complete list of supported events, see“Configuring
Events” in the Advanced Authentication Server Administration Guide.

1.3.2 Enterprise Architecture
The Enterprise architecture of the Advanced Authentication contains sites that can be created for
different geographical locations. For example, the following illustration displays two Advanced
Authentication sites. Site A is the first site created for headquarters in New York. Site A’s first
Advanced Authentication Server contains the Global Master and Registrar roles. This server
contains a master database and it can be used to register new sites and servers.

Site B is created for the office in London and it contains the identical structure. The master server in
another site has DB Master role. DB Masters interacts with the Global Master.

DB Server provides a DB Slave database that is used for backup and fail-over. You can create a
maximum of two DB Slave Servers per site that can be DB Server 1 and DB Server 2. When the DB
Master is unavailable, the DB Slave node responds to the database requests. When the DB Master
becomes available again, the DB Slave node synchronizes with the DB Master and the DB Master
becomes the primary point of contact for database requests again.

Endpoints can interact with every server that contain a database.
10 Advanced Authentication

https://www.netiq.com/documentation/advanced-authentication-53/pdfdoc/server-administrator-guide/server-administrator-guide.pdf#ConfiguringEvent
https://www.netiq.com/documentation/advanced-authentication-53/pdfdoc/server-administrator-guide/server-administrator-guide.pdf#ConfiguringEvent
https://www.netiq.com/documentation/advanced-authentication-53/pdfdoc/server-administrator-guide/server-administrator-guide.pdf#bookinfo

1.3.3 Enterprise Architecture with Load Balancer
The Enterprise architecture with Load balancer contains a more complicated architecture in
comparison with the Enterprise Architecture. The architecture contains the following components:

Web Servers: Web Server does not contain a database. It responds to the authentication
requests and connects to the DB Master database. You need more Web Servers to serve more
workload. There is no limitation for Web Servers.
Load Balancer: It provides an ability to serve authentication requests from the External
Endpoints. Load Balancer is a third-party component. It is located in DMZ and can be
configured to interact with all the Advanced Authentication Servers.
Advanced Authentication Overview 11

1.3.4 How to Configure Load Balancer for Advanced
Authentication Cluster
Load balancer can be installed and configured via third party software. Below is an example of how to
install and configure nginx as load balancer on Ubuntu 14.

Target configuration:

Hostname IP address Role Operation System

Domain controller win-dc 192.168.1.42 AD DS, DNS Windows Server 2008
R2

NAAF 5.1 master naafmaster 192.168.1.43 NAAF Master server NAAF 5.1.2
12 Advanced Authentication

Before starting the configuration, please make sure that the following requirements are fulfilled:

Repository is configured in Advanced Authentication appliance.
Both Advanced Authentication servers are installed and configured as Master and Slave.
Appropriate entries are added to DNS.
Ubuntu 14 is installed.

To configure Load Balancer for Advanced Authentication cluster, it is required to install nginx on
Ubuntu 14 and configure it.

Installing nginx on Ubuntu 14
To install nginx on Ubuntu 14, follow the steps:

1. Open the following source list:
sudo nano /etc/apt/sources.list

2. Add necessary entries:
deb http://nginx.org/packages/ubuntu/ trusty nginx

deb-src http://nginx.org/packages/ubuntu/ trusty nginx

3. Update repository and install nginx:
apt-get update
apt-get install nginx

4. Start nginx and make sure that web server is working:
sudo service nginx restart

5. Open your browser and go to web server http://192.168.1.40 or http://loadbalancer.

Configuring nginx
The following load balancing mechanisms/methods are supported in nginx:

round-robin - requests to the application servers that are distributed in a round-robin fashion
least-connected - next request assigned to the server with the least number of active
connections
ip-hash - a hash-function that is used to determine what server should be selected for the next
request (based on the client’s IP address)

This article describes only round-robin configuration. To configure nginx, follow the steps:

1. Backup original configuration file: sudo cp /etc/nginx/nginx.conf /etc/nginx/
nginx.conf_original.

2. Open the nginx.conf file and replace with following:

NAAF 5.1 slave naafslave 192.168.1.41 NAAF Slave server NAAF 5.1.2

Load balancer loadbalancer 192.168.1.40 Nginx load balancer Ubuntu 14

Hostname IP address Role Operation System
Advanced Authentication Overview 13

user nginx;
error_log /var/log/nginx/error.log warn; # error log location
pid /var/run/nginx.pid; # process id file
limit number of open sockets. Debian default max is 1024, ensure nginx not
open all the sockets.
worker_processes 1;
events {
worker_connections 900; # 512 is default
}
worker_processes auto; # ssl needs CPU
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
access_log /var/log/nginx/access.log main; # access log location
sendfile on;
keepalive default is 75
keepalive_timeout 10;
gzip on;
gzip_static on;
gzip_comp_level 5;
gzip_disable msie6;
gzip_min_length 1000;
gzip_proxied expired no-cache no-store private auth;
gzip_vary on;
gzip_types text/plain text/css application/json application/javascript
text/xml application/xml application/rss+xml application/atom+xml;
ssl_certificate /etc/nginx/cert.pem;
ssl_certificate_key /etc/nginx/cert.pem;
ssl_session_cache shared:SSL:2m; # 1m stores 4000 sessions, default expire 5
min
ssl_protocols TLSv1 TLSv1.1 TLSv1.2; # disable TLSv3 - POODLE vulnerability
resolver 192.168.1.42 valid=300s ipv6=off; # ip address of DNS
resolver_timeout 10s;
upstream web {
#server naafmaster.company.local:443 resolve;
#server naafslave.company.local:443 resolve;
server 192.168.1.43:443;
server 192.168.1.41:443;
}
server {
#listen 80;
listen 443 ssl;
location / {
proxy_pass https://web;
proxy_set_header HOST $host;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
}
}

3. Copy certificate from any Advanced Authentication server in cluster from the directory /etc/nginx/
cert.pem to the same directory on load balancer.

4. Go to https://loadbalancer/admin page and make sure that connection was redirected to
Advanced Authentication cluster.

IMPORTANT: Nginx can be installed and configured on any Linux supported by nginx.

Additional information on nginx configuration can be found at http://nginx.org/en/docs/.
14 Advanced Authentication

http://nginx.org/en/docs/

1.4 Terms
In this chapter:

Authentication Method
Authentication Chain
Authentication Event

1.4.1 Authentication Method
Authentication Method verifies the identity of someone who wants to access data, resources, or
applications. Validating that identity establishes a trust relationship for further interactions.

1.4.2 Authentication Chain
Authentication Chain is a combination of authentication methods. User needs to pass all methods in
order to be successfully authenticated. E.g., if you create a chain which has LDAP Password and
SMS in it, the user will first need to enter his/her LDAP Password. If the password is correct, the
system will send SMS with an One-Time-Password to the mobile of the user. The user needs to enter
the correct OTP in order to be authenticated.

It is possible to create any chain. So for high secure environments it is possible to assign multiple
methods to one chain to achieve better security.

Authentication can consist of 3 different factors. These are:

Something you know: password, PIN, security questions
Something you have: smartcard, token, telephone
Something you are: biometrics like fingerprint or iris

Multi-Factor or Strong Authentication is when 2 out of the 3 factors are used. A password with a
token, or a smartcard with a fingerprint are considered to be multi-factor authentication. A password
and a PIN is not consideed to be multi-factor as they are in the same area.

Authentication chains are linked to user groups in your repositories. So only a certain group can be
allowed to use the specific authentication chain.

1.4.3 Authentication Event
Authentication Event is triggered by an external device or application which needs to perform
authentication. It can be triggered by a RADIUS Client (Citrix Netscaler, Cisco VPN, Juniper VPN,
etc) or API request. Each event can be configured with one or more authentication chains which will
provide user with a capability to authenticate.

Within the Advanced Authentication framework, an authentication event is configured in the Events
section. It is possible to enable or disable an event, and to add method-chains to the event. With
specific events it is possible to assign clients to the event.
Advanced Authentication Overview 15

16 Advanced Authentication

2 2About the API

The current API version is 1.0. Since API is based on REST principles, it is easy to write and test
applications. The browser can be used to access URLs. Any HTTP client in any programming
language can be also used to interact with the API.

API accepts and responds with JSON objects.

Base URL
The Base URL of the REST API is

https://authserver.example.com/api/v1/

Replace authserver.example.com by hostname of your appliance.

Use the HTTPS protocol for more security with interaction with server’s REST API. The
authentication server can return security information, e.g. Domain passwords. Note that some
network libraries can block self-signed SSL certificate.

Main Processes
The Authentication Server has two main processes:

Logon Process
Enrollment Process.

2.1 Logon Process
The logon process provides authentication and authorization, the enrollment process stores
authentication information for new authentication methods. For enrollment, you should be
authenticated before. The following picture describes the logon process.
About the API 17

Figure 2-1 Picture 1 - Logon process

The logon process includes several steps:

1. Create endpoint session – Endpoints are devices which connect to the server. A valid endpoint
session is needed in order to communicate with the server. This is a sub process. For more
information, check the Working With Endpoint Sessions chapter.

2. Do authentication – The user can perform the actual authentication after creating the endpoint
session. Authentication is a sub process. For more information, check the Provide Authentication
chapter.

3. Working with user's data – Information about a user like password or any other credential can
be stored in the user data container and can be accessed after a successful authentication. For
more information, check the Working With User's Data chapter. It is also possible to start an
enrollment after successfully authenticating the user.

4. Delete login session – After authentication the login session should be deleted. For more
information, check the Delete Login Sessions chapter.
18 Advanced Authentication

5. Does another user want to authenticate? - after the login session is deleted, the system will
wait for another user. If a new user wants to login, the process will be started from the second
step because the endpoint is already created.

6. Delete endpoint session - the logon process will delete endpoint session at the end. For more
information, check the Delete Endpoint Session chapter.

2.2 Enrollment Process
The following chart describes the enrollment process.

Figure 2-2 Picture 2. Enrollment process.

Enrollment process contains several steps.

1. Start enrollment process - this step is the primary one in the enrollment process. For more
information, check the Start Enroll Process chapter.

2. Collect enroll data - when the enrollment process is started, the user’s credentials will be
collected. For more information, check the Providing Data Into Enroll Process chapter.

3. If this is a new enrollment the enrollment data will be saved. If the user already has an enrollment
for this specific method the enrollment data will be updated:

Create new user authentication template - For more information, check the Create User's
Templates From Enroll Session chapter.
Update user authentication template - For more information, check the Updating User's
Template chapter.

4. Stop enrollment process - after collecting enrollment data, enrollment process should be
stopped. For more information, check the Delete Enroll Process chapter.

The Working With Enrollment chapter contains information of the enrollment process.

The Working With User's Templates chapter describes users’ templates .
About the API 19

20 Advanced Authentication

3 3API Documentation

3.1 Localization
The appliance is supported in different languages and help users with their troubles and problems.

If you want to use the localized messages, specify locale in you requests. For this, use a special
parameter.

For GET request add this parameter as a URL parameter, for POST, PUT and PATCH add this parameter
as a JSON parameter in request body. If for some reasons, you couldn't change a request URI or body,
you could specify a cookie with the parameter name and value and server will automatically read it
and change locale, or you could add the header "Accept-Language" with locale value in your request.

There are the list of supported locales

If you could not find your locale in table above, you could use a messages identifier for your custom
localization. In responses you could find this parameter with identifier of message.

This parameter could be used for additional messaging too, but do not use this parameter for
checking status of an authentication process or other statuses, for this kind of checking API has
special parameters.

On requests and response in examples below all messages in default English locale, message
identifier was removed.

Parameter Name Parameter Description

LOCALE The locale for messages in responses from server, you
could use it in different formats: languages with
territory, for example, en_US, nl_NL, or ru-RU, fr-FR,
or just languages, for example, ru, nl, fr.

Locale Locale Value Language

Parameter Name Parameter Description

msgid The identifier of the message for message
customization.
API Documentation 21

3.2 Working With Endpoints
3.2.1 About Endpoints

The appliance provide user’s authentication in different places, ex. Microsoft Windows, Apple MacOS
X or other custom applications and systems. The final destination of user’s authentication is endpoint.
The endpoint could be a physical workstation or an application. The endpoints are combined in the
events, the event is a logical separation for the endpoints. The Windows logon and Mac OS logon are
different events, each event could had some set of the endpoints, and endpoints are Mac or Windows
workstations. System has the following standard events.

Table 3-1 Supported Events List

3.2.2 Create Endpoint
For creating endpoint, you could use the following resource with URI:

/endpoints

Resource provided by HTTP POST and has these parameters as JSON-object.

Table 3-2 URI Parameters for creating endpoint.

Event name Event identifier Description

Windows logon WINDOWS Event for log on in Microsoft Windows, used for
authentication on Windows based operation system.

Template management TEMPLATES Template (authenticator) management event, this event
is used for the enrollment process, collecting
authentication data and updating user’s template.

Endpoint management ENDPOINTS Endpoint management event, for management endpoints
use this event.

NAM NAM Event for Advanced Authentication Access Manager.

NCA NCA Event for Advanced Authentication Cloud Access.

Admin user interface ADMIN The event for logon into Advanced Authentication
Administrative Portal.

Radius Server RADIUS The event for logon by RADIUS server.

Helpdesk HELPDESK The event for logon into Advanced Authentication
Helpdesk Portal.

MacOS logon MACOS The event for log on in Apple MacOS.

URI parameter name Description

name A name for the new endpoint.

typ A type identifier of the new endpoint.

desc A description of the new endpoint
22 Advanced Authentication

The appliance supports this list of the endpoints types:

Table 3-3 Supported endpoint types

The resource returns a JSON-object, which contain the identifier and the secret of the created
endpoint.

Table 3-4 Object with created endpoint.

Example
The following example demonstrates how to create a new endpoint.

HTTP POST
https://authserver.example.com/api/v1/endpoints
equest
{
"name":"nam.company.local",
"typ":3,
"desc":"NAM endpoint"
}
Response
{
"id":"885f71c85b8711e5b507000c2951aca4",
"secret":"Mxy4NJLHEGYicviRqrPqdaxRo0RAQtYn"
}

3.2.3 Delete Endpoint
For deleting endpoint, you could use the following resource with URI:

/endpoints/{endpoint_id}?secret={endpoint_secret}

Resource is provided by HTTP DELETE. It has the following parameters.

Type value Type identifier Description

TYP_UNKNOWN 1 The unknown type for the endpoint, use this value if
you couldn’t use other identifier.

TYP_WINDOWS_CLIENT 2 The identifier for the Windows Clients.

TYP_NAM 3 The identifier for the Advanced Authentication Access
Manager.

TYP_MACOS_CLIENT 4 The identifier for the Mac OS Clients.

TYP_LINUX_CLIENT 5 The identifier for the Linux Clients.

TYP_NCA 6 The identifier for the Advanced Authentication
CloudAccess.

TYP_RADIUS 7 The identifier for the RADIUS client.

Parameter name Description

id The identifier of the created endpoint.

secret The secret of the created endpoint.
API Documentation 23

Resource does not return any data. If the deletion is successful, the HTTP 200 status will be returned.

Example

Endpoint with identifier “42424242424242424242424242424242” and secret “1234567890” will be
deleted in the following example.

HTTP DELETE

https://authserver.example.com/api/v1/endpoints/
42424242424242424242424242424242?secret=1234567890

Response

HTTP 200

3.3 Working With Endpoint Sessions
3.3.1 About Endpoint Sessions

Endpoint is any logical or physical unit which interacts with the authentication server. E.g., client
computer, tablet device, smartphone, any software or system is an endpoint. Endpoint should create
endpoint session on the server to start working. The appliance use endpoints’ sessions for checking
what PC wants to get access, the appliance supports endpoint’s white lists for events, also the
appliance can check the owner for an endpoint. The whitelist for events can restrict access to the
endpoints, for example, if a workstation (as endpoint) is not added to the whitelist for the Windows or
Mac OS event, the workstation cannot use advanced authentication. Each endpoint has an identifier
and secret. Secret is a security value that is used for generating endpoint security hash. Security
hash is used to start endpoint session. The algorithm for generating the secret hash is represented on
the following picture.

URI Parameter Name Parameter Description

endpoint_id Endpoint identifier. Identifier of endpoint for deleting.

secret The secret of the endpoint for deleting
24 Advanced Authentication

Figure 3-1 Algorithm for generating the secret hash

After SHA-256 function, you should transform result to a HEX-value string. All parameters are string.
All concatenation functions are string concatenation functions. The salt should be generated on the
client side. It is advised to use a strong algorithm for generating the salt.

The following example shows how to generate secret hash.

Endpoint id = 42424242424242424242424242424242
Salt = e26eaecba7cbe186c08469f6ddbf6f6c0321651b53f80d8eb2c3b0d4e1c19c4c
Endpoint secret = 12345678
Middle result = e53e75ec3d48171abff1e4d2f0a5066e64fdbe11a4d3fd7c45810d7d93c26956 =
SHA256(endpoint id + salt)
Result 3b5dac383282df6936f9350a01ad079096f777f5c44eda8e0c2e66bfc443ee26 =
SHA256(endpoint secret + middle result)

The endpoint identifier and endpoint secret need to be very secure. This information should be kept in
a secure place and parameters should be changed every time the information is compromised.

Endpoints can work with the server and provide user authentication after the endpoint session
creation. The endpoint session has a lifetime, after this, the endpoint session will be deleted and the
session will need to be renewed. All users can work with one endpoint session on one endpoint.

3.3.2 Create Endpoint Session
To create the endpoint session, use the following resource with URI:

/endpoints/{endpoint_id}/sessions
API Documentation 25

Resource is provided by HTTP POST. It has the following parameter.

Table 3-5 URI parameters for creating endpoint session.

Resource accept JSON-object with these parameters.

Table 3-6 Parameters for creating endpoint session.

The resource returns JSON-object with the following endpoint session identifier.

Table 3-7 JSON-object with created endpoint session.

Example
Endpoint with identifier “42424242424242424242424242424242” creates endpoint session. Endpoint
has already generated salt and endpoint secret hash.

HTTP POST
https://authserver.example.com/api/v1/endpoints/42424242424242424242424242424242/
sessions
Request
{
"salt":"2615c070937935246c6a91df70a8eb672b21d842a225621c9797a83bedf00a7b",
"endpoint_secret_hash":"38d55fb7a899dcef6cbec053df8f7673cb05068b9ee9d6a23ee759232b
25cf4e",
"session_data":{}
}
Response
{
"endpoint_session_id":"IRx7UXwenytMn5B7fgRSH4k1s6PAAs0I"
}

3.3.3 Read Information About Endpoint Sessions
To read information about endpoint session, use the following resource with URI:

/endpoints/{endpoint_id}/sessions/
{session_id}?salt={salt}&endpoint_secret_hash={endpoint_secret_hash}

Resource is provided by HTTP GET. It has the following parameters.

URI Parameter Description

endpoint_id Endpoint identifier. Identifier of endpoint that creates endpoint session.

Parameter name Description

salt Client generated salt. This salt is used in secret hash generated algorithm.

endpoint_secret_hash Generated secret hash by algorithm.

session_data Any session data. This is a JSON-object with any parameters and structure.

Parameter name Parameter description

endpoint_session_id Endpoint session identifier. This is an identifier of the created endpoint
session. It should be used for other methods.
26 Advanced Authentication

Table 3-8 URI parameters for reading information about endpoint session.

Resource returns JSON-object which contains the following information about endpoint session.

Table 3-9 JSON-object with information about endpoint session.

Example
We read the endpoint session information for endpoint with identifier
“42424242424242424242424242424242”. Session identifier is
”T2Fv3FOvWojyBOZBlsik1d9RBDjDr9Rq”. Endpoint has already prepared secret hash and salt.

HTTP GET
https://authserver.example.com/api/v1/endpoints/42424242424242424242424242424242/
sessions/
T2Fv3FOvWojyBOZBlsik1d9RBDjDr9Rq?salt=279bc0da2a9da8afcfda50c2bc3f418218354020d73c
00a6a088dea704ece3f9&endpoint_secret_hash=bfe7b1e1cad57525a9695f39eb5cff4d4dd7a42e
039122c732adb151d097835c
Response
{
"sid":"T2Fv3FOvWojyBOZBlsik1d9RBDjDr9Rq",
"endpoint_id":"42424242424242424242424242424242",
"session_data":null
}

3.3.4 Delete Endpoint Session
To delete an endpoint session, use the following resource with URI:

/endpoints/{endpoint_id}/sessions/
{session_id}?salt={salt}&endpoint_secret_hash={endpoint_secret_hash}

Resource is provided by HTTP DELETE. It has the following parameters.

URI parameter name Description

endpoint_id Endpoint identifier. Identifier of endpoint which session will be read.

session_id Session identifier. Identifier of endpoint session for reading.

salt Salt It is used for generated endpoint secret hash

endpoint_secret_hash Endpoint secret hash.

Parameter name Description

sid Endpoint session identifier, identifier of endpoint session

endpoint_id Endpoint identifier

session_data Session data, this data can be added on creating session, this is any JSON-object
with any structure.
API Documentation 27

Table 3-10 URI parameters for deleting endpoint session.

Resource does not return any data. If the deletion is successful, the HTTP 200 status will be returned.

Example
Endpoint with identifier “42424242424242424242424242424242” deletes session with identifier
“9Ml1ByqdIsCr3re5C0aivXR6ap20fNW8”.

HTTP
DELETE
https://authserver.example.com/api/v1/endpoints/42424242424242424242424242424242/
sessions/
9Ml1ByqdIsCr3re5C0aivXR6ap20fNW8?salt=4b470b4ee96630ced049a78d6488ee127b9d419f4635
30c63f3e1ee27226f721&endpoint_secret_hash=c2bf7b8288aa55de22baa9d077150d83b3460d59
51a57d6e7ccf2a01f61bc9ec
Response
HTTP 200

3.4 Provide Authentication
3.4.1 About Login Process

The server provides strong user authentication by using the chain-login concept. Each chain is a
challenge-response login. The following chart describes chain logic. To get a successful
authentication, the entire chain should be completed. A chain can consist of one or several
authentication method(s).

URI parameter name Description

endpoint_id Endpoint identifier. Identifier of endpoint which session will be deleted.

session_id Session identifier. Identifier of endpoint session to be deteled.

salt Salt It is used for generated endpoint secret hash.

endpoint_secret_hash Endpoint secret hash.
28 Advanced Authentication

Figure 3-2 Chain logic.

The user should start the logon process and pass all authentication methods. If all of them are
successful, the user will login. If not, he/she will fail and should start the logon process once again.

API has the following standard responses for authentication status description.

Table 3-11 Response statuses.

Status name Status value Description

OK OK This status is used to describe success result of logon process. Server has
created the login session.

More data MORE_DATA This status is used to indicate that authentication method requests for
additional data for authentication. Each authentication method requests
different data.

Next NEXT This status indicate that current method finished, you should check
completed_methods parameter from server response to be sure that current
method was really finished.

Failed FAILED This status is used for unsuccessful result of logon process description. It
indicates that the logon process should be started once again.
API Documentation 29

For additional information the server also returns the authentication reasons, the server has standard
reasons for all authentication methods and specific reasons for each authentication method. Please
check authentication method description for more information about supported authentication
reasons.

Table 3-12 Common authentication reasons

Once the chain is completed, user’s data associated with event can be accessed. Event is the logical
final destination for login process. Each event is a security point of the system and the login process
provides authentication and authorization to this event. Organizations can create their own login
chains with different authentication method. Currently the following authentication methods are
supported.

Table 3-13 Authentication methods.

Reason value Description

METHOD_COMPLETED The authentication method was completed

METHOD_NOT_NEEDED The authentication method not needed. The event
does not work with this method

METHOD_RETRY The authentication method was retried

ENDPOINT_DISABLED The endpoint is disabled

ENDPOINT_NO_ACCESS The endpoint has no access

CHAIN_DISABLED The authentication chain is disabled

CHAIN_COMPLETED The authentication chain was completed

PROCESS_STARTED The authentication process was started

PROCESS_NOT_FOUND_OR_EXPIRED The authentication process was not found or process
is expired, you should start a new logon process

USER_LOCKED User is locked

Authentication method
name

Authentication
method identifier

Description

LDAP password LDAP_PASSWORD:1 Authentication by LDAP password, system uses
different LDAP users repository and provide
authentication by LDAP password, check the LDAP
Password Authentication Method chapter

One-time password based
on hash algorithm

HOTP:1 Authentication by OTP with hash algorithm, check the
HOTP Authentication Method chapter

One-time password based
on time algorithm

TOTP:1 Authentication by OTP with time based algorithm, check
the TOTP Authentication Method chapter

One-time password sending
by e-mail

EMAIL_OTP:1 Authentication by OTP sending by e-mail, check the
Email Authentication Method chapter

One time password sending
by SMS

SMS_OTP:1 Authentication by OTP sending by SMS, check the SMS
Authentication Method chapter

RADIUS password RADIUS:1 Authentication by RADIUS server, check the RADIUS
Authentication Method chapter
30 Advanced Authentication

Combining different authentication methods into authentication chains provides strong protection for
different applications.

Before you start the logon process, you should create an endpoint session. The endpoint is the final
destination for the login process. E.g., a client PC is an endpoint. One endpoint session can provide
many logon processes. Endpoint session should be created once and used for all logon processes.
For more information on endpoint session, check the Create Endpoint Session chapter.

3.4.2 Provide Simple Authentication Using One Method In A
Chain
API has two resources for providing login:

for starting the login session
for providing data to the authentication provider

This chapter describes how to provide a simple logon with one authentication method in the chain.

To start the logon process, the request should be sent to the following resource with URI:

/logon

Resource is provided by HTTP POST. It accepts JSON-object which describes the new logon
process.

Security question SECQUEST:1 Authentication by security question, check the Security
Questions Authentication Method chapter

Smartphone authentication SMARTPHONE:1 Authentication by smartphone application, check the
Smartphone Authentication Method chapter

Virtual password PASSWORD:1 Authentication by password assign to user, check the
Password Authentication Method chapter

Voice call VOICE:1 Authentication by voice call, check the Voice Call
Authentication Method chapter

Cards CARD:1 Authentication by cards, check the Card Authentication
Method chapter

FIDO U2F U2F:1 Authentication by FIDO U2F tokens, check the FIDO
U2F Authentication Method chapter

Emergency password EMERG_PASSWORD:
1

Authentication by emergency password, check the
Emergency Password Authentication Method chapter

NotarisID NOTARIS_ID:1 Authentication by NorarisID, see the “NotarisID
authentication method” capter.

PKI PKI:1 The authentication by PKI (Public key infrastructure),
see the “PKI authentication method” chapter.

Authentication method
name

Authentication
method identifier

Description
API Documentation 31

Table 3-14 Parameters for staring new login process.

Table 3-15 Created login session.

Chains JSON-object has these parameters.

Parameter name Description

endpoint_session_id Endpoint session identifier. Identifier of endpoint which creates logon session.

method_id Authentication method identifier. Identifier of method from authentication methods list
that is supported by the server. This parameter defines which method will be used for
authentication. To view the list of the supported methods, check the Authentication
methods..

user_name User name for login. User name should be provided in format repo_name/user_name,
where repo_name is user’s repository name from server, user_name is user name.

event Event identifier. Event from list of events supported by server.

is_1N The boolean flag identify is authentication will be 1:N or not, if true, that authentication
will be 1:N, if false – not 1:N

unit_id The unit identifier, use this value with is_1N flag, if you use this parameter you should
not provide user name for the authentication

Parameter name Description

chains JSON-object, which describe available chains for login.

completed_methods JSON-array, which contain list of completed authentication methods
supported by the server.

current_method Current authentication method, which is used for authentication.

msg Message about process, contains more information about authentication
process or about errors.

logon_process_id Logon process identifier, identifier of current logon process, this identifier is
constant in the authentication process and is used in next steps.

plugins JSON-array, that contain list of available plugins.

status Current status of logon process, check the Response statuses. for more
information.

event_name The event name for started logon process

reason The authentication reasons, please check the Common authentication
reasons

event_data_id The event data identifier for started logon process
32 Advanced Authentication

Table 3-16 Chain JSON-object.

After starting the logon process, authentication data for the current authentication method in the chain
should be sent. To send authentication data, use the following resource with URI:

/logon/{logon_process_id}/do_logon

Resource is provided by HTTP POST. It has the following parameters.

Table 3-17 URI parameters for sending authentication data.

Resource accepts data as JSON-object with these parameters.

Table 3-18 Parameters for providing authentication data.

Resource return JSON-object with data of authentication result.

Table 3-19 JSON-object with authentication result.

Parameter name Description

methods JSON-array of authentication methods represented into chain. All of these
methods should be successful for login.

is_trusted Boolean flag which determinate is it trusted chain or not.

name Name of authentication chain.

image_name The image name for this chain

apply_for_ep_owner This is a boolean flag, if true – this is an authentication chain for the endpoints
owner and this chain will have priority over other chains

position The position of this chain in an authentication chains list

is_enabled The boolean flag, if it true chain is enabled, if false – disabled

short_name The short name of the chain

URI parameter name Description

logon_process_id Logon process identifier. Identifier of started logon process.

Parameter name Description

response JSON-object with authentication data for method. This object is different for
all authentication methods.

endpoint_session_id Endpoint session identifier. Identifier of endpoint, which works with logon
session.

Parameter name Description

chains JSON-object, which describes available chains for login, check the Table 3-16.
Chain JSON-object for more information.

current_method Current authentication method, which is used for authentication.
API Documentation 33

Each authentication method has a different number of challenge-response steps, check method
description for more information.

Example
On the following example, user “JSmith” from repository “COMPANY” tries to login to the NAM
endpoint with session identifier “46kGFB3MUUebkcqosO9t4pVAVURsCMyz”.

logon_process_id Logon process identifier, identifier of current logon process, this identifier is
constant in the authentication process and is used in next steps.

completed_methods JSON-array, which contains list of completed authentication methods
supported by server.

status Current status of logon process. Check the About Login Process for more
information.

repo_id Repository identifier, server identifier of users’ repository.

user_name User name.

user_id User server identifier.

msg Message about process, contains more information about authentication
process or about errors.

login_session_id Login session identifier, identifier of success authentication session.

plugins JSON-array, that contain list of available plugins.

reason The authentication reasons, please check the Common authentication reasons

event_name The event name

repo_obj_id The identifier of the repository object

user_sid The user’s SID

user_name The user name, e.g. COMPANY\JSmith

user_mobile_phone The user’s mobile phone if it presents.

user_dn The user FQDN-name

event_data_id The event data identifier

user_sid_hex The user’s SID as hex-string

user_email The user’s email if it presents

user_cn The user canonical domain name

data_id The data identifier

user_name_netbios The user’s NETBIOS name, if user came from Active Directory

user_upn The user principal name, if user came from Active Directory

Parameter name Description
34 Advanced Authentication

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"LDAP_PASSWORD:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"46kGFB3MUUebkcqosO9t4pVAVURsCMyz"
}
Response
{
"plugins": [],
"event_name":"NAM",
"msg":"Process started",
"status":"MORE_DATA",
"reason":"PROCESS_STARTED",
"current_method":"LDAP_PASSWORD:1",
"completed_methods":[],
"chains":[
{
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":null,
"image_name":"default",
"name":"LDAP password",
"position":0,
"methods":["LDAP_PASSWORD:1"],
"short_name": ""
}],
"logon_process_id":"zGjcx3Kbh3scIbTXXCefo1lR86BZ5V0k",
"event_data_id":"OSLogon"
}
HTTP POST
https://authserver.example.com/api/v1/logon/zGjcx3Kbh3scIbTXXCefo1lR86BZ5V0k/
do_logon
Request
{
"response":
{
"answer":"123"
},
"endpoint_session_id":"46kGFB3MUUebkcqosO9t4pVAVURsCMyz"
}
Response
{
"msg":"Welcome!",
"user_mobile_phone":"+16086783619",
"event_name":"NAM",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"user_email":"jsmith@company.com",
"user_name": "COMPANY\\JSmith",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"completed_methods":["LDAP_PASSWORD:1"],
"chains":[
{
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":null,
"image_name":"default",
"name":"LDAP password",
"position":0,
"methods":["LDAP_PASSWORD:1"],
"short_name": ""
}],
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
API Documentation 35

"user_name_netbios":"COMPANY\\JSmith",
"user_cn":"JSmith",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"login_session_id":"BF7xjPVyO9wSqFj9UY0II1qzsemfcVqD",
"plugins":["LdapRules"],
"data_id":"OSLogon",
"status":"OK",
"reason":"CHAIN_COMPLETED",
"current_method":"LDAP_PASSWORD:1",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"logon_process_id":"zGjcx3Kbh3scIbTXXCefo1lR86BZ5V0k",
"event_data_id":"OSLogon",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450"
}

3.4.3 Provide Chained Authentication
Chained authentication is like a simple authentication, it uses from the same logic as the simple
authentication process and has the same JSON-object and other parameters. The differences are in
step count, chained authentication combines many authentication methods and all of them should be
passed successfully.

The logic of the chained authentication is displayed on the following chart. In this login, you should
start next authentication method until you get successful or unsuccessful result. When the logon
process is started, it will be required to choose authentication method and provide data for this
authentication method at first iteration of logon process.
36 Advanced Authentication

Figure 3-3 Picture 5. Chained authentication.

API for chained login has an additional resource for starting next authentication method, this resource
has the following URI:

/logon/{logon_process_id}/next

Resource is provided by HTTP POST. It has the following URI parameter.

Table 3-20 URI parameters for starting next authentication method.

Resource accepts JSON-object which contains information about the next authentication method.

URI Parameter name Description

logon_process_id Logon process identifier, identifier of started logon process.
API Documentation 37

Table 3-21 Parameters for starting next authentication method.

Resource return JSON-object equal to JSON-object returned form resource for starting logon
process, check the Created login session. for more information. Other requests to resources used for
chained login described in the same chapter.

Example
In the following example, user with username “JSmith” from users’ repository “COMPANY”, tries to
logon from endpoint with session identifier “LTcnApseCzyFQCnDbxdid3rEvkgWk2f2”, user use chain
with LDAP password and counter based one-time password, user authenticates to the NAM event.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"LDAP_PASSWORD:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"LTcnApseCzyFQCnDbxdid3rEvkgWk2f2"
}
Response
{
"event_name":"NAM",
"reason":"PROCESS_STARTED",
"completed_methods":[],
"chains":[
{
"position":0,
"methods":["LDAP_PASSWORD:1", "HOTP:1"],
"is_enabled":true,
"name":"Password & HOTP",
"image_name":"default",
"apply_for_ep_owner":false,
"short_name":"",
"is_trusted":null
}],
"current_method":"LDAP_PASSWORD:1",
"status":"MORE_DATA",
"event_data_id":"OSLogon",
"plugins":[],
"msg":"Process started",
"logon_process_id":"cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB"
}
HTTP POST
https://authserver.example.com/api/v1/logon/cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB/
do_logon
Request
{
"response":
{
"answer":"P@$sW0rd"
},
"endpoint_session_id":"LTcnApseCzyFQCnDbxdid3rEvkgWk2f2"
}
Response

Parameter name Description

endpoint_session_id Endpoint session identifier. Identifier of endpoint, which will create logon session,
check the Create Endpoint Session chapter for more information.

method_id Authentication method identifier. Identifier of next method from authentication methods
list that is supported by server. This parameter defines which method will be used for
authentication, check Authentication methods. for more information.
38 Advanced Authentication

{
"event_name":"NAM",
"user_email":"jsmith@company.com",
"user_dn":"CN=John Smith,CN=Users,DC=company,DC=local",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-1602",
"user_upn":"JSmith@company.local",
"user_id":"395e14fc65ec11e58f04000c2951aca4",
"plugins":["LdapRules"],
"repo_id":"cd2ce1fa65eb11e58f04000c2951aca4",
"completed_methods":["LDAP_PASSWORD:1"],
"msg":"Continue with next login method",
"user_name_netbios":"COMPANY\\JSmith",
"reason":"METHOD_COMPLETED",
"repo_obj_id":"373bf00f9421394ab36c69f9d82283e4",
"chains":[
{
"position":0,
"methods":["LDAP_PASSWORD:1", "HOTP:1"],
"is_enabled":true,
"name":"Password & HOTP",
"image_name":"default",
"apply_for_ep_owner":false,
"short_name":"",
"is_trusted":null
}],
"current_method":"LDAP_PASSWORD:1",
"status":"NEXT",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768420600",
"event_data_id":"OSLogon",
"user_cn":"John Smith",
"logon_process_id":"cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB",
"user_name":"COMPANY\\John Smith"
}
HTTP POST
https://authserver.example.com/api/v1/logon/cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB/next
Request
{
"method_id":"HOTP:1",
"endpoint_session_id":"LTcnApseCzyFQCnDbxdid3rEvkgWk2f2"
}
Response
{
"event_name":"NAM",
"reason":"PROCESS_STARTED",
"completed_methods":["LDAP_PASSWORD:1"],
"chains":[
{
"position":0,
"methods":["LDAP_PASSWORD:1", "HOTP:1"],
"is_enabled":true,
"name":"Password & HOTP",
"image_name":"default",
"apply_for_ep_owner":false,
"short_name": "",
"is_trusted":null
}],
"current_method":"HOTP:1",
"status":"MORE_DATA",
"event_data_id":"OSLogon",
"plugins":[],
"msg":"Process started",
"logon_process_id":"cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB"
}
HTTP POST
https://authserver.example.com/api/v1/logon/cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB/
do_logon
Request
{
"response":
{

API Documentation 39

"answer":"150522"
},
"endpoint_session_id":"LTcnApseCzyFQCnDbxdid3rEvkgWk2f2"
}
Response
{
"event_name":"NAM",
"user_email":"jsmith@company.com",
"user_dn":"CN=John Smith,CN=Users,DC=company,DC=local",
"plugins":["LdapRules"],
"repo_id":"cd2ce1fa65eb11e58f04000c2951aca4",
"msg":"Welcome!",
"logon_process_id":"cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB",
"reason":"CHAIN_COMPLETED",
"repo_obj_id":"373bf00f9421394ab36c69f9d82283e4",
"user_cn":"John Smith",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-1602",
"event_data_id":"OSLogon",
"user_id":"395e14fc65ec11e58f04000c2951aca4",
"user_upn":"JSmith@company.local",
"login_session_id":"NjHg8gVLMwYI84BDzlgFxNn5HI53ioI2",
"user_name_netbios":"COMPANY\\JSmith",
"completed_methods":["LDAP_PASSWORD:1", "HOTP:1"],
"chains":[
{
"position":0,
"methods":["LDAP_PASSWORD:1", "HOTP:1"],
"is_enabled":true,
"name":"Password & HOTP",
"image_name":"default",
"apply_for_ep_owner":false,
"short_name":"",
"is_trusted":null
}],
"current_method":"HOTP:1",
"status":"OK",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768420600",
"data_id":"OSLogon",
"user_name":"COMPANY\\John Smith"
}

3.4.4 1:N Authentication
The 1:N authentication could contain one or more chains and it equals non 1:N authentication. For
starting 1:N authentication you should at first provide the unit identifier and set the 1:N flag to true and
you should exclude user name from first request. The 1:N logon process is absolutely the same as
non 1:N logon process, provide authentication data to the method and work with methods as you
work with non 1:N logon process.

3.4.5 Read Available Chains
Before you start the logon process, you should get available authentication chains for this endpoint
and user. The API has the following resource for this with URI.

/logon/
chains?user_name={user_name}&event={event}&endpoint_session_id={endpoint_session_i
d}

Resource provided by HTTP GET and has these parameters.
40 Advanced Authentication

Table 3-22 Parameters for getting available chains.

Resource return JSON-object, which contain list of available chains.

Table 3-23 Object with available chains.

Example
On the following example, endpoint with session “2NC69uuu0r63fYpqamMSJfYEVjIkSsbv” tries to
get all trusted chains available for NAM event.

HTTP GET
https://authserver.example.com/api/v1/logon/
chains?event=NAM&endpoint_session_id=2NC69uuu0r63fYpqamMSJfYEVjIkSsbv&is_trusted=t
rue
Response
{
"chains":[
{
"methods":["LDAP_PASSWORD:1", "RADIUS:1"],
"is_trusted":true,
"name":"RADIUS and LDAP",
"position":0,
"is_enabled":true,
"image_name":"default",
"apply_for_ep_owner":false,
"short_name":""
},
{
"methods":["LDAP_PASSWORD:1", "TOTP:1"],
"is_trusted":true,
"name":"TOTP and LDAP",
"position":1,
"is_enabled":true,
"image_name":"default",

URI parameter name Description

user_name User name, this parameter is optional, if you use this parameter, server return chain
only for this user, if not – chains for all users.

event Event identifier from server supported events list. Check “Supported events list” for
getting events list.

endpoint_session_id Endpoint session identifier, identifier of endpoint session, which want to get the
chains. Check the Create Endpoint Session chapter for more information.

Parameter name Description

chains Chain, this parameter using for wrapping of chains JSON-object array, chain object
described in Chain JSON-object., check for more information about chain object.
API Documentation 41

"apply_for_ep_owner":false,
"short_name":""
},
{
"methods":["LDAP_PASSWORD:1", "HOTP:1"],
"is_trusted":true,
"name":"HOTP and LDAP",
"position":2,
"is_enabled":true,
"image_name":"default",
"apply_for_ep_owner":false,
"short_name":""
}]
}

3.4.6 Priority of the Authentication Chains
The administrator of the Advanced Authentication appliance can manage the authentication chains
priority and appliance will return chains in defined priority. You should use chain as it returned from
the appliance. The chain which is highest on the priority list should be used first. For example, event
has chain with LDAP authentication and chain with LDAP authentication and authentication by
smartphone, and chain with LDAP authentication is higher, in this case for success authentication
user should do LDAP authentication, it will be enough, but user also could add smartphone
authentication after LDAP as additional authentication, appliance will allow this. If user not enroll
method appliance will not return chains with this method. Same logic appears if the user could not
use some of the method, for example, user have not phone number in user’s repository.

3.4.7 Delete Logon Process
You can delete the logon process, you can use the following resource with URI

/logon/{logon_process_id}?endpoint_session_id={endpoint_session_id}

Resource provided by HTTP DELETE and has these URI parameters.

Table 3-24 URI parameters for deleting logon process.

The resource does not return any data, if deleting was successful the method return HTTP 200
status.

Example
On the following example, endpoint with session identifier
“Sm7hACXcyvfl4ApoQ17g5QntE0q1ZW1K” deletes logon process with identifier
“wLlxiBUCDDiTRJtL0xJPOeZpWfNcWfoH”.

HTTP DELETE
https://authserver.example.com/api/v1/logon/
wLlxiBUCDDiTRJtL0xJPOeZpWfNcWfoH?endpoint_session_id=Sm7hACXcyvfl4ApoQ17g5QntE0q1Z
W1K
Response
HTTP 200

URI parameter name Description

logon_process_id Logon process identifier, identifier of process for deleting.

endpoint_session_id Endpoint session identifier, identifier of endpoint session, which wants to delete the
login process. Check the Create Endpoint Session chapter for more information.
42 Advanced Authentication

3.5 Working With Users
3.5.1 About Users

Appliance can provide information about stored users; you can get information about all users from all
repository. You can not get this information only about one user, not as users’ list. This information
available only for full administrators.

3.5.2 Getting Information About User
To get user information use the resource with URI:

/users?user_name={user_name}&login_session_id={login_session_id}

The resource has URI parameters

Table 3-25 The parameter for get information about user

The resource will return JSON object with user information.

Table 3-26 The object with information about user

Example
On the following example, administrator with login session identifier
“cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB” will try to get information about user JSmith from
COMPANY repository.

URI parameter Description

user_name The user name, appliance will return information about this user

login_session_id The login session identifier, the identifier of login session for user with
administrative role

Parameter name Description

id The user identifier

repo_id The repository identifier

obj_id The user identifier in repository

repo_name The repository name

loginame The user name in repository

user_name The user name with repository, repo\user_name
API Documentation 43

HTTP GET
https://authserver.example.com/api/v1/
users?user_name=COMPANY\JSmith&login_session_id=cdlsXhjaEHOaPiwTlOck5p0xGaqgkNJB
Response
{
"repo_id":"cd2ce1fa65eb11e58f04000c2951aca4",
"obj_id":"373bf00f9421394ab36c69f9d82283e4",
"id":"395e14fc65ec11e58f04000c2951aca4",
"user_name":"COMPANY\\John Smith",
"loginame":"JSmith",
"repo_name":"COMPANY",
}

3.6 Working With User's Data
3.6.1 About User's Data

Users’ data – data that is stored for a specific event for a user. After logon, you can get access to the
user’s data. Users’ data is a JSON-object with a custom structure and parameter names. Each event
has different users’ data, check event’s description for more information.

Appliance supports this list of users’ data storage.

Table 3-27 The list of users’ data storage

3.6.2 Read User's Data
For reading user’s data use resource with URI

/users/{user_id}/data/{data_id}/
{data_parameter}?login_session_id={login_session_id}

Resource provided by HTTP GET and has these parameters.

Table 3-28 URI parameters for reading user’s data.

Resource return user’s data as JSON-object, each event has different data format, check description
for more information.

Data storage identifier Description

OSLogon The data storage for operation systems logon processes and information

PasswordStore The data storage for user’s passwords

URI parameter name Description

user_id User identifier, identifier of user, which wants to get assigned application data.

data_id The data storage identifier, identifier of the storage which data will be read.

data_parameter User’s data parameter, optional parameter. If you use this parameter, resource
return only this parameter from user’s data.

login_session_id Login session identifier, identifier of user login session. Check the Provide
Authentication chapter for more information.
44 Advanced Authentication

Table 3-29 JSON-object for user’s data.

Example
On the following examples, user with identifier “6f4db9228c2711e4bb4100155d62a8b3” with login
session identifier “cHIIvvAS4KteAG6MnVzJXx1I7TjVtnxP” gets data for storage “OSLogon” and then
get only “test1” parameter from application data.

HTTP GET
https://authserver.example.com/api/v1/users/6f4db9228c2711e4bb4100155d62a8b3/data/
OSLogon?login_session_id=cHIIvvAS4KteAG6MnVzJXx1I7TjVtnxP
Response
{
"data":
{
"test1":"value 1",
"test3": "value 3",
"test2": "value 2"
}
}
HTTP GET
https://authserver.example.com/api/v1/users/6f4db9228c2711e4bb4100155d62a8b3/data/
OSLogon/test1?login_session_id=cHIIvvAS4KteAG6MnVzJXx1I7TjVtnxP
Response
{
"data":
{
"test1":"value 1"
}
}

3.6.3 Modifying User's Data
For modifying user’s data use resource with URI.

/users/{user_id}/data/{data_id}

Resource provided by HTTP PATCH and has these parameters.

Table 3-30 URI parameters for modifying user’s data.

Resource accept JSON-object with user’s data.

Parameter name Description

data Container for application data JSON-object, if method uses application data
parameter, then this container will contain only application data parameter.

URI parameter name Description

user_id User identifier, method will add application data to this user.

data_id The data storage identifier, resource will add data for this storage, user
should be logged on to this event.
API Documentation 45

Table 3-31 Parameters for modifying user’s data.

Resource does not returns any data, if the method is successful then it will return HTTP 200 status.

This resource has a flexible behavior, resource can update or modify data, for example, if user has no
data, then resource add data for user for this event, if user has some data, then resource update
parameters represented in request, add new parameters, if these parameters are not represented
into current user’s data, and delete parameters, which set to null into request.

Example
On the following example, user with identifier “6f4db9228c2711e4bb4100155d62a8b3” and login
session with identifier “BFldNh3rLx39gjmun65gwJpLETjGF5fO” add user’s data to storage
“OSLogon”.

HTTP PATCH
https://authserver.example.com/api/v1/users/6f4db9228c2711e4bb4100155d62a8b3/data/
OSLogon
Request
{
"data":
{
"test1":"value 1",
"test2":"value 2",
"test3":"value 3"
},
"login_session_id":"BFldNh3rLx39gjmun65gwJpLETjGF5fO"
}
Response
HTTP 200

3.6.4 Delete User's Data
For deleting user’s data use resource with URI

/users/{user_id}/data/{data_id}/
{data_parameter}?login_session_id={login_session_id}

Resource provided by HTTP DELETE and has these parameters.

Table 3-32 URI parameters for deleting user’s data.

Parameter name Description

data User’s data container, this parameter contains all user’s data, each event has
different data format, check description for more information.

login_session_id Login session identifier, identifier of user login session.

URI parameter name Description

user_id User identifier, identifier of user, which wants to delete application data.

data_id The data storage identifier, identifier of storage where data will be deleted.

data_parameter User’s data parameter, optional parameter. If you use this parameter, resource
deletes only this parameter from user’s data. If you do not use this parameter,
resource deletes all application data.

login_session_id Login session identifier, identifier of user login session.
46 Advanced Authentication

Resource does not return data, if method was success, then return HTTP 200 status.

Example
On the following example, user with identifier “6f4db9228c2711e4bb4100155d62a8b3” with login
session identifier “H0u1NPOpPs6foZonfAxoRRDxgTsSYuVM” deletes data parameter “test1” for
storage “OSLogon” and then deletes all data for “OSLogon”.

HTTP
DELETE
https://authserver.example.com/api/v1/users/6f4db9228c2711e4bb4100155d62a8b3/data/
OSLogon/test1?login_session_id=H0u1NPOpPs6foZonfAxoRRDxgTsSYuVM
Response
HTTP 200
HTTP DELETE
https://authserver.example.com/api/v1/users/6f4db9228c2711e4bb4100155d62a8b3/data/
OSLogon?login_session_id=H0u1NPOpPs6foZonfAxoRRDxgTsSYuVM
Response
HTTP 200

3.7 Working With Login Sessions
3.7.1 About Login Sessions

After a user logon, the system creates a login session, to access protected information from the
server use this session. For example, reading event data requires a login session identifier. The API
allows reading the login session information and deleting the session.

3.7.2 Read Information About Login Sessions
For reading information about login session use resource with URI

/logon/sessions/{logon_session_id}?endpoint_session_id={endpoint_session_id}

Resource provided by HTTP GET and has these parameters.

Table 3-33 URI parameters for reading information about login session.

Resource returns JSON-object, which contain information about login session.

Table 3-34 JSON-object with information about login session.

URI parameter name Description

logon_session_id Logon session identifier, identifier of session for reading.

endpoint_session_id Endpoint session identifier, identifier of endpoint session.

Parameter name Description

event_name Event name, name of event, which linked to this logon session.

repo_id Users’ repository identifier, identifier of users’ repository which used for user logon.

user_id User identifier, identifier of user which create this logon session.
API Documentation 47

Example
On the following example, we try to get information about the session with identifier
“9hGUd3xuKE6VX0I8bVMWNeX1zNm0QfNd” from endpoint with session identifier
“Wpeg2ek8IvsNF1hFZTXqYjPYvhCdUsZd”.

HTTP GET
https://authserver.example.com/api/v1/logon/sessions/
9hGUd3xuKE6VX0I8bVMWNeX1zNm0QfNd?endpoint_session_id=Wpeg2ek8IvsNF1hFZTXqYjPYvhCdU
sZd
Response
{
"event_name":"NAM",
"repo_id":"6e0b696e8c2711e4bd9600155d62a8b3",
"user_id":"6f4db9228c2711e4bb4100155d62a8b3",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"sid":"9hGUd3xuKE6VX0I8bVMWNeX1zNm0QfNd",
"user_name":"COMPANY\\JSmith",
"data_id":"OSLogon"
}

3.7.3 Delete Login Sessions
For deleting login session use resource with URI

/logon/sessions/{logon_session_id}?endpoint_session_id={endpoint_session_id}

Resource provided by HTTP DELETE and has these parameters.

Table 3-35 URI parameters for deleting login session.

Method does not return any data, if the method was success method return HTTP 200 status.

Example
On the following example we will delete the logon session with identifier
“4Keuv7THWdSMR1H7mPc34O4mGoxTP0TP” with endpoint session identifier
“Ex3hqCoF5A2ARWGv221AmPtEkWQDUi0U”.

repo_obj_id For later usage.

sid Logon session identifier.

user_name User name, user name who create logon session.

data_id Event data’s identifier, identifier of event which creates this session.

Parameter name Description

URI parameter name Description

logon_session_id Logon session identifier, identifier of session for deleting.

endpoint_session_id Endpoint session identifier, identifier of endpoint session.
48 Advanced Authentication

HTTP
DELETE
https://authserver.example.com/api/v1/logon/sessions/
4Keuv7THWdSMR1H7mPc34O4mGoxTP0TP?endpoint_session_id=Ex3hqCoF5A2ARWGv221AmPtEkWQDU
i0U
Response
HTTP 200

3.8 Working With Enrollment
3.8.1 About Enroll Process

The enrollment process collects information for creating of user templates. User templates can be
created by several steps with the enroll process. The enroll process is wizard to user templates. Each
user can create user templates into enroll process, administrator can assign enroll process results to
another users. For starting the enrollment process the user should be authenticated in the
“TemplatesManagement” event. Enroll process can be described by the following chart; it has several
steps for collection information from user and saving the user template.
API Documentation 49

Figure 3-4 Detailed enrollment process chart.

3.8.2 Start Enroll Process
For starting enroll process you should make request to create process to resource with URI:

/enroll

Resource provided by HTTP POST and accepted JSON object with this parameters:

Table 3-36 Parameters for starting enroll process.

Parameter name Description

login_session_id Login session identifier, user should be logged to “TemplatesManagement” for
creating enroll process.

method_id Authentication method identifier. Identifier of method form authentication methods
list that supports by server.
50 Advanced Authentication

Resource returns enroll process identifier, it is represented as JSON object with this parameter.

Table 3-37 JSON-object for started enroll process.

Example
On the following example user with login session identifier “Iz4awDMiRYcZh55SYt8awBz3Fcl1vikJ”
starts the enroll process for the security question authentication method.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"SECQUEST:1",
"login_session_id":"Iz4awDMiRYcZh55SYt8awBz3Fcl1vikJ"
}
Response
{
"enroll_process_id":"WqQd4TwxPCz7q1tAKrWGzCtajg7Iav14"
}

3.8.3 Providing Data Into Enroll Process
You should provide data into enroll process after this process is started. Resource for providing data
has URI:

enroll/{enroll_process_id}/do_enroll

Resource provided by HTTP POST and has this parameter.

Table 3-38 URI parameter for providing data into enroll process.

Resource accepts JSON object.

Table 3-39 Parameter for providing data into enroll process.

Resource returns the result for accepting the enroll data. Result can be different for each
authentication method, for more information check description for authentication methods, but all
responses contain some parameters which are the same for all authentication methods.

Parameter name Description

enroll_process_id Enroll process identifier, this identifier will be used in next enroll process step.

URI parameter Description

enroll_process_id Enroll process identifier, identifier of current enroll process. Start enroll process to
get this identifier.

Parameter name Description

login_session_id Login session identifier, user should be logged to “TemplatesManagement” for
providing enroll data.

response Object with specific data for method. Data varies for each authentication method.
Check method description for more information.
API Documentation 51

Table 3-40 JSON-object with result for accepting the enroll data.

Enroll process has the following status

Table 3-41 Enroll process status.

Each enroll process is one or more steps for collecting all necessary data for the authentication
method, each authentication method has a different number of steps and data, for more information
see authentication method description.

Example
On the following example we provide data for security question authentication method, this method
has two steps: first step is getting security question list from server, second step is providing answers
for each security question. On example we have enroll process with identifier
“WqQd4TwxPCz7q1tAKrWGzCtajg7Iav14”, user logged to “TemplatesManagement” application with
session identifier “7Ge4BCGDLKPyG5b6Mp7PBcKUsQouhpdX”. On the first step, we will get
security question list.

Parameter name Description

method_id Authentication method identifier. Identifier of method from authentication methods
list that is supported by the server. This parameter shows which authentication
method currently works with enroll data.

status Current status of enroll process, see status description for more information.

msg Message from enroll process, this parameter is used for providing more information
about enroll process.

reason The detailed status of the enrollment process, please check authentication method
description for more information.

Status name Description

OK This status indicates that the enroll process has collected all necessary data and you
can create or update the user template.

MORE_DATA This status indicates that enroll process is waiting for more data from user, you should
provide specific data to enroll process, for more information about data see description
of authentication methods.

FAILED This status indicate that the enroll process failed, for more information check message
parameter from response. With this status you should start enroll process again.
52 Advanced Authentication

HTTP POST
https://authserver.example.com/api/v1/enroll/WqQd4TwxPCz7q1tAKrWGzCtajg7Iav14/
do_enroll
Request
{
"response":{},
"login_session_id":"7Ge4BCGDLKPyG5b6Mp7PBcKUsQouhpdX"
}
Response
{
"questions":
{
"1":"What is your dog name?",
"0": "What is your favorite song?"
},
"method_id":"SECQUEST:1",
"msg":"Waiting for answers...",
"status":"MORE_DATA",
"reason":"SECQUEST_WAITING_ANSWERS"
}

We got question and servers change status to “MORE_DATA”, this means that the server is waiting
for the answers to the questions. Now we will send answers, it will be the second step.

HTTP POST
https://authserver.example.com/api/v1/enroll/WqQd4TwxPCz7q1tAKrWGzCtajg7Iav14/
do_enroll
Request
{
"response":
{
"answers":
{
"1":"Spotty",
"0":"Yesterday"
}
},
"login_session_id":"7Ge4BCGDLKPyG5b6Mp7PBcKUsQouhpdX"
}
Response
{
"method_id":"SECQUEST:1",
"status":"OK",
"msg":"",
"reason":""
}

After the second step server accepted our data and return status “OK” it means that enrollment was
successful.

3.8.4 Delete Enroll Process
You can stop enroll process by resource with URI:

/enroll/{enroll_process_id}?login_session_id={login_session_id}

Resource provided by HTTP DELETE and has these URI parameters.

Table 3-42 URI parameters for stop enroll process.

URI parameter name Description

enroll_process_id Enroll process identifier, identifier of enroll process, which will be stop.
API Documentation 53

This resource does not return any data, if deleting enroll session was successful method return HTTP
200 status.

Example
On the following example a user with login session, identifier
“4T1WEpCKumaIonjDBhoXbWkHhGg5Tk7Z” deletes enroll process with identifier
“AfAXRqxrI1K2jgeJzrarD0NxllhpY9UW”.

HTTP DELETE
https://authserver.example.com/api/v1/enroll/
AfAXRqxrI1K2jgeJzrarD0NxllhpY9UW?login_session_id=4T1WEpCKumaIonjDBhoXbWkHhGg5Tk7Z
Response
HTTP 200

3.9 Working With User's Templates
3.9.1 About User's Templates

The user's templates contain authentication information associated with users. Each template is
linked to a user and to an authentication method. When users try to logon using a specific
authentication method, the server finds the associated user template and provide authentication.
Users cannot use authentication methods without associated user templates. The Enrollment
process creates user templates, check the Working With Enrollment chapter for more information.
Each authentication method stores different information in the templates. The Authentication method
can update a user’s template in the authentication process, also users or administrator can change
templates manually, a user can edit only his own templates.

The API provide resources for working with user’s templates: creating, updating, reading and
deleting.

3.9.2 Get User's Templates
This resource provide reading user templates. Resource has URI:

/users/{user_id}/templates?login_session_id={login_session_id}

Resource provided by HTTP GET.

Table 3-43 URI parameters for get user’s template.

login_session_id Login session identifier, user should be logged to “TemplatesManagement” for
deleting enroll process.

URI parameter name Description

URI parameter name Description

user_id User identifier, this identifier will be used for getting associated user
templates. Administrator can use any user identifier, user should use only his
own identifier.

login_session_id Login session identifier, user’s login session identifier used for checking user
access. User should be logged to “TemplatesManagement” for getting access
to user template.
54 Advanced Authentication

Resource return list of user templates. List present as array of JSON object.

Table 3-44 JSON-object with user templates.

Example
On the following example a user with identifier “958ca11a7fa511e4b6ab00155d62a8b3” and session
identifier “TBsifFiE4UJCyMnIyTkmY21kFctSxdwe” gets his own list of two user templates:

HTTP GET
https://authserver.example.com/api/v1/users/958ca11a7fa511e4b6ab00155d62a8b3/
templates?login_session_id=TBsifFiE4UJCyMnIyTkmY21kFctSxdwe
Response
{
"templates":[
{
"id":"958ca11b7fa511e4a32200155d62a8b3",
"method_id":"LDAP_PASSWORD:1",
"is_enrolled":true,
"method_title":"LDAP password",
"comment": "LDAP password template"
},
{
"id":"959165a47fa511e4bd1500155d62a8b3",
"method_id":"HOTP:1",
"is_enrolled":true,
"method_title":"HOTP",
"comment": "OATH HTOP template"}
]
}

3.9.3 Create User's Templates From Enroll Session
After a successful enroll process, you can assign enrolled data to the user template. This is provided
by resource with URI:

/users/{user_id}/templates

Resource provided by HTTP POST and has this parameter:

Table 3-45 URI parameter for assigning enrolled data.

Parameter name Description

templates This parameter is used for wrapping array of JSON object with user templates.

id Identifier of user template.

method_id Identifier of authentication method

is_enrolled Boolean flag, when flag is true, then the template is enrolled and can be used for
authentication, if flag is false, than the template is not enrolled and cannot be
used for authentication.

method_title Authentication method title

comment Comment for user template

URI parameter name Description

user_id User identifier, identifier user who will be assign to new template.
API Documentation 55

An administrator can assign enrolled data and create user templates for any user.

Resource accept JSON-object with these parameters:

Table 3-46 Parameters for assigning enrolled data.

Resource return JSON-object with identifier of new user template.

Table 3-47 JSON-object for new user template.

Example
On the following example, a user with identifier “e08c6b48810611e4b79300155d62a8b3” and login
session identifier “33ebFAQBW1e1kTkKVzIRz5rf5dhv4OoE” creates a user template with enroll
process identifier “nrXwfyy0l4QcXxYZNebzjs33rqS9UkG5”.

HTTP POST
https://authserver.example.com/api/v1/users/e08c6b48810611e4b79300155d62a8b3/
templates
Request
{
"enroll_process_id":"nrXwfyy0l4QcXxYZNebzjs33rqS9UkG5",
"comment":"Authentication template comment",
"login_session_id":"33ebFAQBW1e1kTkKVzIRz5rf5dhv4OoE"
}
Response
{
"auth_t_id":"9df84602842f11e4817e00155d62a8b3"
}

3.9.4 Assign User's Template To Another User
You can assign created user template to another user. This way a user can impersonate another user
using his own authentication method. An example would be a user having 2 accounts, an admin
account and a normal user account. He will only enroll authentication methods for his normal user
account but will link his methods to his admin account. Now he can logon using the username of the
admin account and the method of the normal account and this will be logged in the audit log.

Another use case would be group accounts where multiple users are linked too.

To link a template to another user use the resource with URI:

/users/{user_id}/templates

Resource provided by HTTP POST and has this parameter:

URI parameter Description

enroll_process_id Enroll process identifier, identifier of success enroll process, method will use data
from this enroll process.

login_session_id Login session identifier, user should be logged to “TemplatesManagement” for
creating user template.

comment Comment for created user template.

Parameter name Description

auth_t_id Authentication template identifier, identifier of created user template
56 Advanced Authentication

Table 3-48 URI parameter for assign user template to another user.

Resource accept JSON-object with these parameters:

Table 3-49 Parameters for assign user template to another user.

Resource return JSON-object with identifier of user’s template.

Table 3-50 JSON-object for assigned template.

This resource just links the user template to another user, new user can’t modify template, user can
only read assigned template.

Example
On the following example, user with login session “sC7PfOjvHt7OMgIccEHjK7b9XGlGNSoj” assign
template with identifier “ba3cf01e845311e4841900155d62a8b3” to user with identifier
“76cc2a62845411e4bd6c00155d62a8b3”.

HTTP POST
https://authserver.example.com/api/v1/users/76cc2a62845411e4bd6c00155d62a8b3/
templates
Request
{
"auth_t_id":"ba3cf01e845311e4841900155d62a8b3",
"login_session_id":"sC7PfOjvHt7OMgIccEHjK7b9XGlGNSoj"}
Response
{ "auth_t_id":"ba3cf01e845311e4841900155d62a8b3" }

3.9.5 Updating User's Template
You can update existing user template, this is provided by resource with URI:

/users/{user_id}/templates/{auth_template_id}

Resource provided by HTTP PUT and has this parameter:

URI parameter name Description

user_id User identifier, identifier user who will be assign to template.

Parameter name Description

auth_t_id Authentication user template identifier, identifier of user template which will be
assign to another user.

login_session_id Login session identifier, user should be logged to “TemplatesManagement” for
creating user template.

Parameter name Description

auth_t_id Authentication template identifier, identifier of user template
API Documentation 57

Table 3-51 URI parameter for updating user template.

Administrator can update user template for all users, other users can update own templates.

Resource accept JSON-object with these parameters:

Table 3-52 Parameters for updating user template.

You can use one or both parameters for method, if you use enroll process identifier for method you
will change user’s template authentication data. When an template is updated all linked users will
need to use the updated template

Resource does not return data, if operation was success method returns HTTP 200 status.

Example
On the following example, user with identifier “e08c6b48810611e4b79300155d62a8b3” update user
template with identifier “ba3cf01e845311e4841900155d62a8b3” with new enrolled data form enroll
process with identifier “l4rh0HvzJxNFBaO9d7PC4Uyq9YRc8EMY”.

HTTP PUT
https://authserver.example.com/api/v1/users/e08c6b48810611e4b79300155d62a8b3/
templates/ba3cf01e845311e4841900155d62a8b3
Request
{
"enroll_process_id":"l4rh0HvzJxNFBaO9d7PC4Uyq9YRc8EMY",
"comment":"Updated comment",
"login_session_id":"86oe9ebDvJ08UJvlG0O14ZARm3wIYNTB"
}
Response
HTTP 200

3.9.6 Delete User's Template
This resource provide deleting of user templates. Resource has URI

/users/{user_id}/templates/{template_id}?login_session_id={login_session_id}

Resource providing by HTTP DELETE and has this parameters:

URI parameter name Description

user_id User identifier, identifier user which template will be update.

auth_template_id Authentication template identifier, identifier of template which will be update.

Parameter name Description

enroll_process_id Enroll process identifier, identifier of success enroll process, method will use data from
this enroll process for updating data in current user template.

login_session_id Login session identifier, user should be logged to “TemplatesManagement” for
changing user template.

comment New comment for user template.
58 Advanced Authentication

Table 3-53 URI parameters for deleting user template.

Administrator can delete any user templates, other users can delete only their own templates.

This method doesn’t return any data, if deleting was successful method returns HTTP 200 status, if
an error occurs, method returns error description.

Example
On the following example, user with the user identifier “e08c6b48810611e4b79300155d62a8b3” and
login session identifier “GsnGHDvqOiEdPR3KUhKqy2kZq7l4RCcC” tries to delete his own template
with identifier “9df84602842f11e4817e00155d62a8b3”.

HTTP DELETE
https://authserver.example.com/api/v1/users/e08c6b48810611e4b79300155d62a8b3/
templates/
9df84602842f11e4817e00155d62a8b3?login_session_id=GsnGHDvqOiEdPR3KUhKqy2kZq7l4RCcC
Response
HTTP 200

3.10 Working With Authentication Methods
The chapter will describe the authentication and the enrollment processes for each authentication
method provided by appliance.

Before authentication, you should start a logon process and then provide data required by the
authentication method. The data differs from method to method. For getting more information about
authentication process, please check the Provide Authentication chapter.

For the enrollment, you should be authenticated at the appliance and have a login session identifier,
then you should start enrollment process and provide the enrollment data, the enrollment data is
different from method to method. If a method has optional parameter and default value was not
present in parameter’s description, that means – appliance will use default values from the
authentication method’s policy. For more information about enrollment process, please check the
Working With Enrollment chapter.

3.10.1 Card Authentication Method
The card authentication method provide users’ authentication by card. At the moment the method
could work with the contactless cards (UID) and the certificate-based (PKI) cards. The card
authentication method could be used as a single method in the authentication chain or as a part of the
authentication chain.

URI parameter name Description

user_id User identifier, identifier of user which template will be deleted.

template_id Template identifier, identifier of template for deleting.

login_session_id Login session identifier, user’s login session identifier used for checking user
access. User should be logged to “TemplatesManagement” for getting access
to user template deleting.
API Documentation 59

Authentication
For the authentication, you should create a logon process with the card authentication method or
continue with the card authentication method in case, when the authentication chain has more than
one authentication methods. You should provide a JSON container with card’s data by POST request.
This authentication method supports 1:N logon and you could start a logon process without user
name, you can define the card UID in unit_id parameter on a logon process creation. If you will use a
chain with many authentication methods, you should get card identifier before you start 1:N logon
process, and you should provide a card identifier at second time if your chain has the card
authentication method. This method also work in non 1:N logon.

Table 3-54 The authentication data for the card authentication method

Resource will return a JSON-object with information about current state of the authentication.

Example
On the following example, the user JSmith from the COMPANY repository will try to authenticate with
this own PKI-based smartcard, user already has an endpoint session with the identifier
“P7p3JJuenqo0SnyJ4HnbRbbJIqDhtt0u”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"CARD:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"P7p3JJuenqo0SnyJ4HnbRbbJIqDhtt0u"
}
Response
{
"current_method":"CARD:1",
"chains":[
{
"name":"Smartcard",
"methods":["CARD:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position": 0,
"is_enabled":true,
"is_trusted":true,
"short_name": ""
}],
"completed_methods":[],
"msg": "Process started",
"logon_process_id":"t9HZES2DFD6vDjhA3wNtizyjAuqMTrwi",
"plugins":[],
"event_data_id":"OSLogon",
"event_name":"NAM",
"status":"MORE_DATA",
"reason":"PROCESS_STARTED"
}
HTTP POST
https://authserver.example.com/api/v1/logon/t9HZES2DFD6vDjhA3wNtizyjAuqMTrwi/
do_logon

Parameter name Parameter value

card_uid The card's UID

card_cert The hex-string with certificate in DER format, optional parameter used for PKI-
based smartcards
60 Advanced Authentication

Request
{
"response":
{
"card_uid":"0e00000000005c9e1e3a2d7532c30e00000046",
"card_cert":"3082070d308204f5a0030201020213460000000ec332752d3a1e9e5c00000000000e3
00d06092a864886f70d01010d0500304531133011060a0992268993f22c6401191603636f6d3118301
6060a0992268993f22c64011916086175746861736173311430120603550403130b617574686173617
32d6361301e170d3135303930383135353432365a170d3136303930373135353432365a30818131133
011060a0992268993f22c6401191603636f6d31183016060a0992268993f22c6401191608617574686
17361733111300f060355040b13084141415573657273311730150603550403130e446d69747279204
76f6c756265763124302206092a864886f70d010901161564676f6c756265764061757468617361732
e636f6d30819f300d06092a864886f70d010101050003818d0030818902818100df8ebdf44a7e6dd1e
4c64c2b2a96865c42410f73504f90b73836d31f4942beb44957af89d503f09c5c0fc9e3b44e96b3bd2
dbdd7235e63090e23051f657c575c18c22a3edebb3264b6d7cabc28eebc7227156c1b5c795c959587a
5a82afb22849125af3f2699030de7c2fe44cbb75097c2d123561360d9bc993073088db1b03d0203010
001a382033b30820337301706092b0601040182371402040a1e080055007300650072301d0603551d0
e041604144d18c67db47d1e4cd23f273864d8412d6f0493a9300e0603551d0f0101ff0404030205a03
01f0603551d230418301680148876d728949259f5462a224099af4cd41bc973523081fb0603551d1f0
481f33081f03081eda081eaa081e78681b26c6461703a2f2f2f434e3d61757468617361732d63612c4
34e3d4141415244532c434e3d4344502c434e3d5075626c69632532304b65792532305365727669636
5732c434e3d53657276696365732c434e3d436f6e66696775726174696f6e2c44433d6175746861736
1732c44433d636f6d3f63657274696669636174655265766f636174696f6e4c6973743f626173653f6
f626a656374436c6173733d63524c446973747269627574696f6e506f696e748630687474703a2f2f6
465762e61757468617361732e636f6d2f43657274446174612f61757468617361732d63612e63726c3
082011206082b0601050507010104820104308201003081ab06082b0601050507300286819e6c64617
03a2f2f2f434e3d61757468617361732d63612c434e3d4149412c434e3d5075626c69632532304b657
925323053657276696365732c434e3d53657276696365732c434e3d436f6e66696775726174696f6e2
c44433d61757468617361732c44433d636f6d3f634143657274696669636174653f626173653f6f626
a656374436c6173733d63657274696669636174696f6e417574686f72697479305006082b060105050
730028644687474703a2f2f6465762e61757468617361732e636f6d2f43657274446174612f4141415
244532e61757468617361732e636f6d5f61757468617361732d63612e63727430290603551d2504223
020060a2b0601040182370a030406082b0601050507030406082b0601050507030230470603551d110
440303ea025060a2b060104018237140203a0170c1564676f6c756265764061757468617361732e636
f6d811564676f6c756265764061757468617361732e636f6d304406092a864886f70d01090f0437303
5300e06082a864886f70d030202020080300e06082a864886f70d030402020080300706052b0e03020
7300a06082a864886f70d0307300d06092a864886f70d01010d0500038202010056fd6f97f650c150f
3116a838f1ccf6856532e4dfe8d60a662804d120fe6ae116ed8ce76445da7375f75b6ee7827a6d5f33
011401edbda3262b6689fdda820ee66b5c3c0584424b249716682c45a4ffd6ff34e650f52061e59527
ea44fe624e86057a384f70d7393af19ec282435d3859fbe60c2ed4114df963a92e4df97e906da74ff6
082edfca0ae18b6610915890c4983d84f49ddc899ed2e46f007841d88f775236dc3b7ff0d0de3ddc98
0ebc0cf2cb5cf80b59f8d409d4a3d161704db4a2a6a69a15ef953564c24fea005b68a59056abf5dd33
4b50375e17c84f9bf8f6e81428d50f6b63c0d101f433412871142de893376103c277a0f1b4c68c3ae0
87fcbff3c1feed85289f156c6c092176a885fce5320d14cee1b696a1d65fc6b0a84b4bb068fc93388a
173824f2c6f9af0fb509670405d56e4ecfbace31f4095bc63d0c13df1487eb60ebd3276014374e35d6
be4b0e8149e7495cefb8a9b0e1425226211e676882b48893aec8b24895e6b2f96f8bf34ca715df0435
e94a3562940c08cfedf2ac2a966cdd104197fc37391d0fa9d5cacd39931d1b55641d58e2dde8029b36
3c7d494cb9d88c4d55ee408954752f112095a3f04adc6cfd9fdb7fa23e9d33d3d1c84e539b93fa3939
daa696a70da203307de5923156380c9a827c1d63ca4ca9d0114fa243fe48d6a13b9b50555fd1dcba27
3327398e9f665a945a73559"
},
"endpoint_session_id":"P7p3JJuenqo0SnyJ4HnbRbbJIqDhtt0u"
}
Response
{
"event_data_id":"OSLogon",
"user_mobile_phone":"+16086783619",
"msg":"Welcome!",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"data_id":"OSLogon",
"user_email":"jsmith@company.com",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"chains":[
{
"name":"Smartcard",
"methods":["CARD:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position": 0,
"is_enabled":true,
API Documentation 61

"is_trusted":true,
"short_name": ""
}],
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_cn":"JSmith",
"completed_methods":["CARD:1"],
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"logon_process_id":"t9HZES2DFD6vDjhA3wNtizyjAuqMTrwi ",
"current_method":"CARD:1",
"user_name":"COMPANY\\JSmith",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"login_session_id":"DirIO8s41TbT1lm7Dh5BNfK6gRTHhXTl",
"event_name":"NAM",
"status":"OK",
"user_name_netbios":"COMPANY\\JSmith",
"plugins":["LdapRules"],
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"reason": "CHAIN_COMPLETED"
}

Enrollment
For the enrollment, the card authentication method you should start an enrollment process and
provide an enrollment data as a JSON container.

Table 3-55 The enrollment data for the card authentication method

Resource will return a JSON object with status of the enrollment process.

Example
On the following example, the user JSmith from the COMPANY repository will try to enroll the
smartcard authentication method for PKI-based smartcard, user has a login session with the identifier
“mDclxFuBrCNAHddXazdAeu06bsxlyfqY”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"CARD:1",
"login_session_id":"mDclxFuBrCNAHddXazdAeu06bsxlyfqY"
}
Response
{
"enroll_process_id":"23AEHu4uoISJBZ3KEjUo3Y7s2MN7MQe2"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/23AEHu4uoISJBZ3KEjUo3Y7s2MN7MQe2 /
do_enroll
Request
{
"response":
{
"card_uid":"0e00000000005c9e1e3a2d7532c30e00000046",
"card_cert":"3082070d308204f5a0030201020213460000000ec332752d3a1e9e5c00000000000e3
00d06092a864886f70d01010d0500304531133011060a0992268993f22c6401191603636f6d3118301
6060a0992268993f22c64011916086175746861736173311430120603550403130b617574686173617

Parameter name Parameter value

card_uid The card's UID

card_cert The hex-string with certificate in DER format, optional parameter used for PKI-
based smartcards
62 Advanced Authentication

32d6361301e170d3135303930383135353432365a170d3136303930373135353432365a30818131133
011060a0992268993f22c6401191603636f6d31183016060a0992268993f22c6401191608617574686
17361733111300f060355040b13084141415573657273311730150603550403130e446d69747279204
76f6c756265763124302206092a864886f70d010901161564676f6c756265764061757468617361732
e636f6d30819f300d06092a864886f70d010101050003818d0030818902818100df8ebdf44a7e6dd1e
4c64c2b2a96865c42410f73504f90b73836d31f4942beb44957af89d503f09c5c0fc9e3b44e96b3bd2
dbdd7235e63090e23051f657c575c18c22a3edebb3264b6d7cabc28eebc7227156c1b5c795c959587a
5a82afb22849125af3f2699030de7c2fe44cbb75097c2d123561360d9bc993073088db1b03d0203010
001a382033b30820337301706092b0601040182371402040a1e080055007300650072301d0603551d0
e041604144d18c67db47d1e4cd23f273864d8412d6f0493a9300e0603551d0f0101ff0404030205a03
01f0603551d230418301680148876d728949259f5462a224099af4cd41bc973523081fb0603551d1f0
481f33081f03081eda081eaa081e78681b26c6461703a2f2f2f434e3d61757468617361732d63612c4
34e3d4141415244532c434e3d4344502c434e3d5075626c69632532304b65792532305365727669636
5732c434e3d53657276696365732c434e3d436f6e66696775726174696f6e2c44433d6175746861736
1732c44433d636f6d3f63657274696669636174655265766f636174696f6e4c6973743f626173653f6
f626a656374436c6173733d63524c446973747269627574696f6e506f696e748630687474703a2f2f6
465762e61757468617361732e636f6d2f43657274446174612f61757468617361732d63612e63726c3
082011206082b0601050507010104820104308201003081ab06082b0601050507300286819e6c64617
03a2f2f2f434e3d61757468617361732d63612c434e3d4149412c434e3d5075626c69632532304b657
925323053657276696365732c434e3d53657276696365732c434e3d436f6e66696775726174696f6e2
c44433d61757468617361732c44433d636f6d3f634143657274696669636174653f626173653f6f626
a656374436c6173733d63657274696669636174696f6e417574686f72697479305006082b060105050
730028644687474703a2f2f6465762e61757468617361732e636f6d2f43657274446174612f4141415
244532e61757468617361732e636f6d5f61757468617361732d63612e63727430290603551d2504223
020060a2b0601040182370a030406082b0601050507030406082b0601050507030230470603551d110
440303ea025060a2b060104018237140203a0170c1564676f6c756265764061757468617361732e636
f6d811564676f6c756265764061757468617361732e636f6d304406092a864886f70d01090f0437303
5300e06082a864886f70d030202020080300e06082a864886f70d030402020080300706052b0e03020
7300a06082a864886f70d0307300d06092a864886f70d01010d0500038202010056fd6f97f650c150f
3116a838f1ccf6856532e4dfe8d60a662804d120fe6ae116ed8ce76445da7375f75b6ee7827a6d5f33
011401edbda3262b6689fdda820ee66b5c3c0584424b249716682c45a4ffd6ff34e650f52061e59527
ea44fe624e86057a384f70d7393af19ec282435d3859fbe60c2ed4114df963a92e4df97e906da74ff6
082edfca0ae18b6610915890c4983d84f49ddc899ed2e46f007841d88f775236dc3b7ff0d0de3ddc98
0ebc0cf2cb5cf80b59f8d409d4a3d161704db4a2a6a69a15ef953564c24fea005b68a59056abf5dd33
4b50375e17c84f9bf8f6e81428d50f6b63c0d101f433412871142de893376103c277a0f1b4c68c3ae0
87fcbff3c1feed85289f156c6c092176a885fce5320d14cee1b696a1d65fc6b0a84b4bb068fc93388a
173824f2c6f9af0fb509670405d56e4ecfbace31f4095bc63d0c13df1487eb60ebd3276014374e35d6
be4b0e8149e7495cefb8a9b0e1425226211e676882b48893aec8b24895e6b2f96f8bf34ca715df0435
e94a3562940c08cfedf2ac2a966cdd104197fc37391d0fa9d5cacd39931d1b55641d58e2dde8029b36
3c7d494cb9d88c4d55ee408954752f112095a3f04adc6cfd9fdb7fa23e9d33d3d1c84e539b93fa3939
daa696a70da203307de5923156380c9a827c1d63ca4ca9d0114fa243fe48d6a13b9b50555fd1dcba27
3327398e9f665a945a73559"
},
"login_session_id":"mDclxFuBrCNAHddXazdAeu06bsxlyfqY"
}
Response
{
"reason":"",
"msg":"",
"status":"OK",
"method_id":"CARD:1"
}

3.10.2 Email Authentication Method
The email one-time password authentication method provide authentication by one-time password
that will send to user’s email. The appliance use an email address from LDAP repository, if user have
not email address in repository, he could not use this authentication method. The email one-time
password authentication method could be used as a single method in the authentication chain or as a
part of the authentication chain.
API Documentation 63

Authentication
For the authentication, you should create a logon process with the email one-time password
authentication method or continue with the email one-time password authentication method in case,
when the authentication chain has more than one authentication methods. You should provide a
JSON container with user’s one-time password by POST request. This method have two step for
authentication, on first step you should send empty data for sending email with one-time password to
user, on second step you should provide one-time password.

Table 3-56 The authentication data for the email authentication method

Resource will return a JSON-object with information about current state of the authentication.

The email one-time password authentication method supports the list of the authentication reasons.

Table 3-57 The email method’s authentication reasons

Example
On the following example, the user JSmith from the COMPANY repository will try to authenticate by
the email one-time password authentication method, user already has an endpoint session with the
identifier “P1npGvMizbs4HiFsiLX5h3FquTB5tfJj”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"EMAIL_OTP:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"P1npGvMizbs4HiFsiLX5h3FquTB5tfJj"
}
Response
{
"reason":"PROCESS_STARTED",
"current_method":"EMAIL_OTP:1",
"msg":"Process started",
"chains":[
{
"is_trusted":true,
"is_enabled":true,

Parameter name Description

answer This parameter contain user’s one-time password

Reason value Description

OTP_CANNOT_SEND The appliance cannot send by email one-time password

OTP_TOO_MANY_SENT The appliance was sent too many one-time passwords

OTP_WAITING_PASSWORD The authentication method waiting for one-time password

OTP_NO_PASSWORD The password provided for the authentication was empty

OTP_PASSWORD_EXPIRED The one-time password was expired

OTP_WRONG_PASSWORD The one-time password was wrong

OTP_TOO_MANY_REQUESTS The appliance got too many requests
64 Advanced Authentication

"short_name":"",
"position":0,
"methods":["EMAIL_OTP:1"],
"name":"Email",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"event_data_id":"OSLogon",
"status":"MORE_DATA",
"plugins":[],
"logon_process_id":"Imyr6xEyKTsVCuvj0s2dRz6j6rtCqfFK",
"completed_methods":[],
"event_name":"NAM"
}
HTTP POST
https://authserver.example.com/api/v1/logon/Imyr6xEyKTsVCuvj0s2dRz6j6rtCqfFK/
do_logon
Request
{
"response":{},
"endpoint_session_id":"P1npGvMizbs4HiFsiLX5h3FquTB5tfJj"
}
Response
{
"reason":"OTP_WAITING_PASSWORD",
"current_method":"EMAIL_OTP:1",
"msg":"OTP password sent, please enter",
"chains":[
{
"is_trusted":true,
"is_enabled":true,
"short_name":"",
"position":0,
"methods":["EMAIL_OTP:1"],
"name":"Email",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"event_data_id":"OSLogon",
"status":"MORE_DATA",
"plugins":[],
"logon_process_id":"Imyr6xEyKTsVCuvj0s2dRz6j6rtCqfFK",
"completed_methods":[],
"event_name": "NAM"
}
HTTP POST
https://authserver.example.com/api/v1/logon/Imyr6xEyKTsVCuvj0s2dRz6j6rtCqfFK/
do_logon
Request
{
"response":
{
"answer":"12348765"
},
"endpoint_session_id":"P1npGvMizbs4HiFsiLX5h3FquTB5tfJj"
}
Response
{
"reason":"CHAIN_COMPLETED",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"event_name":"NAM",
"chains":[
{
"is_trusted":true,
"is_enabled":true,
"short_name":"",
"position":0,
"methods":["EMAIL_OTP:1"],
"name":"Email",
"apply_for_ep_owner":false,
API Documentation 65

"image_name":"default"
}],
"data_id":"OSLogon",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"msg":"Welcome!",
"plugins":["LdapRules"],
"user_name":"COMPANY\\JSmith",
"user_email":"jsmith@company.com",
"current_method":"EMAIL_PASSWORD:1",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"status":"OK",
"logon_process_id":"Imyr6xEyKTsVCuvj0s2dRz6j6rtCqfFK",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"login_session_id":"ugn5m5Hm9ow5ejuvBUz7SQi3SWazoHS8",
"user_mobile_phone":"+16086783619",
"event_data_id":"OSLogon",
"completed_methods":["EMAIL_PASSWORD:1"],
"user_name_netbios":"COMPANY\\JSmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"user_cn":"JSmith"
}

Enrollment
The email one-time password authentication method could not be enrolled, this method based on the
user’s LDAP attribute and all users from repository with email addresses could authenticate by this
method.

3.10.3 Emergency Password Authentication Method
The emergency password authentication method is a method for the authentication by password with
lifetime and usage counter. This method created for cases, when user should be authorized, but user
could not use other method (smartphone or SMS authentication). The emergency password
authentication method could be used as a single method in the authentication chain or as a part of the
authentication chain.

Authentication
For the authentication, you should create a logon process with the emergency password
authentication method or continue with the emergency password authentication method in case,
when the authentication chain has more than one authentication methods. You should provide a
JSON container with user’s emergency password by POST request.

Table 3-58 The authentication data for the emergency password authentication method

Resource will return a JSON-object with information about current state of the authentication.

The password authentication method supports the list of the authentication reasons.

Parameter name Description

answer This parameter contain user’s emergency password
66 Advanced Authentication

Table 3-59 The emergency password method’s authentication reasons.

Example
On the following example, the user JSmith form the COMPANY repository will try to authenticate by
the emergency password, user has an endpoint session with the identifier
“zQ9YQ1Txpax09iRBBTQJN71tSDgsMiuA”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"EMERG_PASSWORD:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"zQ9YQ1Txpax09iRBBTQJN71tSDgsMiuA"
}
Response
{
"reason":"PROCESS_STARTED",
"current_method":"EMERG_PASSWORD:1",
"msg":"Process started",
"chains":[
{
"is_trusted":null,
"is_enabled":true,
"short_name":"",
"position": 0,
"methods":["EMERG_PASSWORD:1"],
"name": "Emergency password",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"event_data_id":"OSLogon",
"status":"MORE_DATA",
"plugins":[],
"logon_process_id":"ULMzchEGWNPnutRROYDM18p24tTvQh2g",
"completed_methods":[],
"event_name":"NAM"
}
HTTP POST
https://authserver.example.com/api/v1/logon/ULMzchEGWNPnutRROYDM18p24tTvQh2g/
do_logon
Request
{
"response":
{
"answer":"emgP@ssw0rD"
},
"endpoint_session_id":"zQ9YQ1Txpax09iRBBTQJN71tSDgsMiuA"
}
Response
{
"reason":"CHAIN_COMPLETED",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"event_name":"NAM",
"chains":[
{

Reason value Description

EMERG_PASSWORD_EXPIRED The emergency password was expired

EMERG_PASSWORD_INEFFECTIVE The emergency password was ineffective

EMERG_PASSWORD_EXHAUSTED The maximum login count was exhausted
API Documentation 67

"is_trusted":null,
"is_enabled":true,
"short_name":"",
"position": 0,
"methods":["EMERG_PASSWORD:1"],
"name": "Emergency password",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"data_id":"OSLogon",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"msg":"Welcome (CHAP)!",
"plugins":["LdapRules"],
"user_name":"COMPANY\\JSmith",
"user_email":"jsmith@company.com",
"current_method":"EMERG_PASSWORD:1",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"status":"OK",
"logon_process_id":"ULMzchEGWNPnutRROYDM18p24tTvQh2g",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"login_session_id":"6XFwPdePJ6y0pq9dBWFIcyerTVH2yMRJ",
"user_mobile_phone":"+16086783619",
"event_data_id":"OSLogon",
"completed_methods":["EMERG_PASSWORD:1"],
"user_name_netbios":"COMPANY\\JSmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"user_cn":"JSmith"
}

Enrollment
For the enrollment, the emergency password authentication method you should start an enrollment
process and provide an enrollment data as JSON container.

Table 3-60 The enrollment data for the emergency password method

Resource will return a JSON object with status of the enrollment process.

The emergency password authentication method supports this set of the enrollment reasons.

Parameter name Description

password The new emergency password value

confirmation The confirmation of the new emergency password value, if password will not
equals to the confirmation – enrollment will fail.

max_logon_count The maximum login count, method will be disabled, when maximum count will
reach.

start_date The start date, from that date emergency password authentication method will
begin work. Value should be a string with date. This is an optional parameter.

end_date The end date, from that date emergency password authentication method will
stop work. Value should be a string with date. This is an optional parameter.
68 Advanced Authentication

Table 3-61 The emergency password method’s enrollment reasons

Example
On the following example, the user JSmith from the COMPANY repository will enroll the password
authentication method, user has a login session with the identifier
“wQabBzcnJTBqOqTdClHJTtrkpHFUzg40”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"EMERG_PASSWORD:1",
"login_session_id":"wQabBzcnJTBqOqTdClHJTtrkpHFUzg40"
}
Response
{
"enroll_process_id":"j7wpbJRTJ3LHIhSFSn2UWAEnTA15ldTK"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/j7wpbJRTJ3LHIhSFSn2UWAEnTA15ldTK/
do_enroll
Request
{
"response":
{
"password":"new_EmgP@$sw0rd",
"confirmation":"new_EmgP@$sw0rd",
"max_logon_count":5
},
"login_session_id":"wQabBzcnJTBqOqTdClHJTtrkpHFUzg40"
}
Response
{
"reason":"",
"msg":"",
"status":"OK",
"method_id":"EMERG_PASSWORD:1"
}

3.10.4 FIDO U2F Authentication Method
The FIDO U2F authentication method provide authentication by FIDO U2F standard, please check
this standard description. The FIDO U2F authentication method should always be used together with
a second factor like a Password or PIN.

Reason value Description

PASSWORD_BAD_CONFIRMATION The emergency password and the confirmation is not equals

PASSWORD_EMPTY The provided emergency password or confirmation was empty

PASSWORD_UNCHANGED The provided emergency password is equals to the current
password

PASSWORD_TOO_SHORT The provided emergency password is too small, please check
password length in the policy values

PASSWORD_TOO_SIMPLE The provided emergency password is too simple, user should use
a stronger password
API Documentation 69

Authentication
For the authentication, you should create a logon process with the FIDO U2F authentication method
or continue with the FIDO U2F authentication method in case, when the authentication chain has
more than one authentication methods. The FIDO U2F authentication method has two-step
authentication process: on first step you should provide the application identifier and get the sign
request from the appliance, on second step you should generate the sign response by FIDO U2F
device and send it to the appliance.

Table 3-62 The authentication data for the FIDO U2F authentication method

Resource will return a JSON-object with information about current state of the authentication and the
sign request.

Table 3-63 The response for the FIDO U2F authentication method

The FIDO U2F authentication method supports the list of the authentication reasons.

Table 3-64 The FIDO U2F method’s authentication reasons

Example
On the following example, the user JSmith from the COMPANY repository will try to authentication
with the FIDO U2F authentication method, user already has an endpoint session with the identifier
“eSFakgjm0o7eCb0hlUTVf1jzf2uGs9Y9”.

Parameter name Description

appId The application identifier for login

signResponse The sign response from the FIDO U2F device, this is JSON container, check FIDO
U2F description for more information

Response parameter name Description

signRequests The JSON container for an array of the sign requests from the appliance.
Each sign request is JSON container.

Reason value Description

U2F_ALL_TOKENS_COMPROMISED The all tokens assigned to user was compromised

U2F_NO_TOKENS The uses has not any assigned tokens.

U2F_WAITING_AUTH_RESPONSE The FIDO U2F authentication method wait for the authentication
request with the sign response data
70 Advanced Authentication

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"U2F:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"eSFakgjm0o7eCb0hlUTVf1jzf2uGs9Y9"
}
Response
{
"event_data_id":"OSLogon",
"current_method":"U2F:1",
"completed_methods":[],
"plugins":[],
"status":"MORE_DATA",
"logon_process_id":"kytfmodEy4QmcMKgEb9cuGpLpNv9ooYp",
"chains":[
{
"image_name":"default",
"position":0,
"name":"FIDO U2F",
"short_name":"",
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":true,
"methods":["U2F:1"]
}],
"reason":"PROCESS_STARTED",
"event_name":"NAM",
"msg":"Process started"
}
HTTP POST
https://authserver.example.com/api/v1/logon/kytfmodEy4QmcMKgEb9cuGpLpNv9ooYp/
do_logon
Request
{
"response":
{
"appId":"https://demo.yubico.com"
},
"endpoint_session_id":"eSFakgjm0o7eCb0hlUTVf1jzf2uGs9Y9"
}
Response
{
"event_data_id":"OSLogon",
"current_method":"U2F:1",
"completed_methods":[],
"plugins":[],
"status":"MORE_DATA",
"logon_process_id":"kytfmodEy4QmcMKgEb9cuGpLpNv9ooYp",
"chains":[
{
"image_name":"default",
"position":0,
"name":"FIDO U2F",
"short_name":"",
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":true,
"methods":["U2F:1"]
}],
"reason":"U2F_WAITING_AUTH_RESPONSE",
"event_name":"NAM",
"method_id":"U2F:1",
"msg":"Waiting authentication response",
"signRequests":[
{
"appId":"https://demo.yubico.com",
"challenge":"aU1A3-GQkcYDmgH78bGeO55dXN4fEyeTHGObhRr8GgI",
API Documentation 71

"keyHandle":"qF5EfdOTSEK4kP3hlEd_Q2SD4kOYs6K9qZJR5Ve9EloEs6ns36GHG-
jGUKFD4JLMwOqsLsRnsipa-XsBzfF6Ow",
"version":"U2F_V2"
}],
}
HTTP POST
https://authserver.example.com/api/v1/logon/kytfmodEy4QmcMKgEb9cuGpLpNv9ooYp/
do_logon
Request
{
"response":
{
"signResponse":
{
"clientData":"eyJ0eXAiOiJuYXZpZ2F0b3IuaWQuZ2V0QXNzZXJ0aW9uIiwiY2hhbGxlbmdlIjoiZXYw
d3dLR3l5bV9YamdZZkExd2tNT3Y4bGpsOHphS0F5WGdBV3gyUW91OCIsIm9yaWdpbiI6Imh0dHBzOi8vZG
Vtby55dWJpY28uY29tIiwiY2lkX3B1YmtleSI6IiJ9",
"keyHandle":"qF5EfdOTSEK4kP3hlEd_Q2SD4kOYs6K9qZJR5Ve9EloEs6ns36GHG-
jGUKFD4JLMwOqsLsRnsipa-XsBzfF6Ow",
"signatureData":"AQAAAKowRAIgFrmzsrUHiUw2ixt20cXLjBRDo7-
UoqWqZlNsFcXZL4ECIH45ALRE86ijsKPv_r3zmzhoE34N3NqzgvRJ1f49C1UA"
}
},
"endpoint_session_id":"eSFakgjm0o7eCb0hlUTVf1jzf2uGs9Y9"
}
Response
{
"user_name_netbios":"COMPANY\\JSmith",
"event_data_id":"OSLogon",
"login_session_id":"dkQsnIAMsCxQrcJP9AgIB2tSCkDDZQML",
"user_name":"COMPANY\\JSmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"data_id":"OSLogon",
"user_cn":"JSmith",
"current_method":"U2F:1",
"status":"OK",
"chains":[
{
"image_name":"default",
"position":0,
"name":"FIDO U2F",
"short_name":"",
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":true,
"methods":["U2F:1"]
}],
"reason":"CHAIN_COMPLETED",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_mobile_phone":"+16086783619",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"logon_process_id":"kytfmodEy4QmcMKgEb9cuGpLpNv9ooYp",
"event_name":"NAM",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"completed_methods":["U2F:1"],
"plugins":["LdapRules"],
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"user_email":"jsmith@company.com",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"method_id":"U2F:1",
"msg":"Welcome!"
}

72 Advanced Authentication

Enrollment
For the enrollment, the FIDO U2F authentication method you should start enrollment process and
provide enrollment data. The FIDO U2F authentication method has two enrollment step: on first step
you should get the registration request from the appliance, on second step you should provide the
registration response from the device.

Table 3-65 The enrollment data for the FIDO U2F authentication method on first step

Table 3-66 The enrollment data for the FIDO U2F authentication method on second step

Resource will return a JSON object with status of the enrollment process.

Table 3-67 The enrollment response for the FIDO U2F authentication method

For more information about registration request, please check FIDO U2F documentation.

The FIDO U2F authentication method supports this set of the enrollment reasons.

Table 3-68 The FIDO U2F method’s enrollment reasons

Parameter name Description

userId The identifier of the enrolling user, you could skip this parameter if you will use
“userName”.

userName The user name of the enrolling user, you could skip this parameter if you will use
“userId”.

appId The application identifier, for more information about the application identifier please
check FIDO U2F documentation.

Parameter name Description

registerResponse The registration response generated by device, this is JSON container. For more
information about registration response, please check FIDO U2F documentation.

Enrollment parameter Description

registerRequests The registration request generated by the appliance, this is array of a JSON
containers. The parameter will return only for new devices.

signRequests The sign requests from the appliance, if user already has enrolled device the
appliance will return the sign request and user could just validate it by device,
this is array of a JSON containers.

Reason value Description

U2F_WAITING_REG_RESPONSE The FIDO U2F authentication method waiting for the registration
response

U2F_NOT_ATTESTED The FIDO U2F authentication method was not attested, you should
upload your token manufacturer attestation certificate.
API Documentation 73

Example
On the following example, the user JSmith from the COMPANY repository will try to enroll the FIDO
U2F authentication method by his token, user already has a login session with the identifier
“WXogCpZcHlsGsmmYiXkcxbg1qJMHJ4eD”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"U2F:1",
"login_session_id":"WXogCpZcHlsGsmmYiXkcxbg1qJMHJ4eD"
}
Response
{
"enroll_process_id":"hn0k1pTx1T6MQwOIbhBPUlLIopROig4Q"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/hn0k1pTx1T6MQwOIbhBPUlLIopROig4Q/
do_enroll
Request
{
"response":
{
"userName":"COMPANY\\JSmith",
"appId":"https://demo.yubico.com"
},
"login_session_id":"WXogCpZcHlsGsmmYiXkcxbg1qJMHJ4eD"
}
Response
{
"signRequests":[],
"registerRequests":[
{
"appId":"https://demo.yubico.com",
"challenge":"Ij3TTvLi3H-oWNA18BDeIp_p1zN5bkzPipjQeuIbntQ",
"version":"U2F_V2"
}],
"msg":"Waiting register response ",
"reason":"U2F_WAITING_REG_RESPONSE",
"method_id":"U2F:1",
"status":"MORE_DATA"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/hn0k1pTx1T6MQwOIbhBPUlLIopROig4Q /
do_enroll
Request
{
"response":
{
"registerResponse":
{
"clientData":"eyJ0eXAiOiJuYXZpZ2F0b3IuaWQuZmluaXNoRW5yb2xsbWVudCIsImNoYWxsZW5nZSI6
IjFNX2hrbkxka0Ixb1hySFQxWUZqSHA5NDRpT2w4N2kwd1B5UUV0MW5DYzQiLCJvcmlnaW4iOiJodHRwcz
ovL2RlbW8ueXViaWNvLmNvbSIsImNpZF9wdWJrZXkiOiIifQ",
"registrationData":"BQQ_jNAqemWkTfI9uL4CVo3eQSNIMe66u-
pasr8BMuu9maA764C7jDPqXMUWhw8_4tDxeUbM72VJH5fssT6F2vT5QKheRH3Tk0hCuJD94ZRHf0Nkg-
JDmLOivamSUeVXvRJaBLOp7N-hhxvoxlChQ-
CSzMDqrC7EZ7IqWvl7Ac3xejswggIcMIIBBqADAgECAgRyWMLqMAsGCSqGSIb3DQEBCzAuMSwwKgYDVQQD
EyNZdWJpY28gVTJGIFJvb3QgQ0EgU2VyaWFsIDQ1NzIwMDYzMTAgFw0xNDA4MDEwMDAwMDBaGA8yMDUwMD
kwNDAwMDAwMFowKzEpMCcGA1UEAwwgWXViaWNvIFUyRiBFRSBTZXJpYWwgMTQ4MDMzMjE1NzgwWTATBgcq
hkjOPQIBBggqhkjOPQMBBwNCAASisDmTIlQxnUH6SFTVfKGN62nMmz5Nga45nzI-
gRZDme8qlRRnPRV87L-
18LzHiQhT7lXPPxogZvTVE5uTizELoxIwEDAOBgorBgEEAYLECgECBAAwCwYJKoZIhvcNAQELA4IBAQG8z
Br5C3uVeBjVVaQzcWpgFqztyzEyw0EPNmFkEGwj2SqwbF0cLLaSmtQhSKoqOvOuU4k6aqFAyukyZZMVPZK
qAP0Vh0sCMpRMzpDvEZjO3v6gh5Z8bIDmtQAJ5B2nnILyVpc7DA7taj3dUrZzNMD8v-
bYjKdTsZJ_QzQstsewIPkoFOIRRtqta0iwkEFiX_cwR11IF-
USGcQHKUBoMX65JP9nY6DzQ3XHplOD3bHUOHsCi2MqBZU-
74 Advanced Authentication

1fKOrQJpNP0w8cBQpSk_hsVTm7UiGW_FGrxrIKXfpGfCGICKDxCMfuWKIshu0HjP0pEhowAX1Ls1pie2So
K3-VEhYtkOFRLqMEUCIFnX5ZcO8ZWOKyF6R-
tAse3rYdzwFBq4LZzEeXUwn6oMAiEAwNuC4mkjobmeyilaLM4twOAicm-R_x_YKzcQcXIx5cU"
}
},
"login_session_id":"WXogCpZcHlsGsmmYiXkcxbg1qJMHJ4eD"
}
Response
{
"reason":"",
"msg":"Enroll complete",
"status":"OK",
"method_id":"U2F:1"
}

3.10.5 Fingerprint Authentication Method
The fingerprint authentication method provide users’ authentication by a fingerprint. The fingerprint
authentication method could be used as a single method in the authentication chain or as a part of the
authentication chain.

Authentication
For the authentication, you should create a logon process with the fingerprint authentication method
or continue with the fingerprint authentication method in case, when the authentication chain has
more than one authentication methods. This method accepts fingerprint data from user.

Table 3-69 The authentication data for the fingerprint authentication method

Table 3-70 The capture container

If you will work with ISO/IEC 19794-2:2005 standard, response to the appliance should contain only
“ISO” parameter without others. You should use only image or ISO format, not both. Better
authentication for fingerprint provided by ISO format, image of fingerprint could contain errors for
many reasons, ISO format could avoid this problems. For generating fingerprint in ISO format, check
your hardware vendor documentation.

Parameter name Description

capture The capture container with user’s finger data

Parameter name Description

captureStatus The one of the capture status

Width The width of the fingerprint image in pixels

Height The height of the fingerprint image in pixels

Dpi The dot per inch of the fingerprint image

BitsPerPixel The bits per pixel (usually 8 bits)

BytesPerLine The bytes per one line in image (include align)

Image The fingerprint image encoded using base-64 in gray scale

 ISO The data of fingerprint in ISO/IEC 19794-2:2005 format
API Documentation 75

Table 3-71 The capture statuses list

Example
On the following example, the user JSmith for the COMPANY repository will try to authenticate by the
fingerprint authentication method, user already has an endpoint session with the identifier
“7XrFFQB28O6pod8Y5ElCs4K75TYBAffy”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"FINGER:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"7XrFFQB28O6pod8Y5ElCs4K75TYBAffy"
}
Response
{
"current_method":"FINGER:1",
"chains":[
{
"name":"Fingerprint",
"methods":["FINGER:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position": 0,
"is_enabled":true,
"is_trusted":true,
"short_name": ""
}],
"completed_methods":[],
"msg": "Process started",
"logon_process_id":"wZFkJ6kTvrbohSH6o5X5swGvZXDMoCQW",
"plugins":[],
"event_data_id":"OSLogon",
"event_name":"NAM",
"status":"MORE_DATA",
"reason":"PROCESS_STARTED"
}
HTTP POST
https://authserver.example.com/api/v1/logon/wZFkJ6kTvrbohSH6o5X5swGvZXDMoCQW/
do_logon
Request
{
"response":
{
"capture":
{
"BitsPerPixel":8,
"BytesPerLine":300,
"Dpi":500,
"Height":300,
"Image":"The base64 encoded image",
"Width":300,
"captureStatus":"Ok"

Status value Status description

Ok The capture was successful

Timeout The capture got timeout

Error The capture got error

NoReader There is no reader for the capture
76 Advanced Authentication

}
},
"endpoint_session_id":"7XrFFQB28O6pod8Y5ElCs4K75TYBAffy"
}
Response
{
"event_data_id":"OSLogon",
"user_mobile_phone":"+16086783619",
"msg":"Welcome!",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"data_id":"OSLogon",
"user_email":"jsmith@company.com",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"chains":[
{
"name":"Fingerprint",
"methods":["FINGER:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position": 0,
"is_enabled":true,
"is_trusted":true,
"short_name": ""
}],
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_cn":"JSmith",
"completed_methods":["FINGER:1"],
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"logon_process_id":"wZFkJ6kTvrbohSH6o5X5swGvZXDMoCQW",
"current_method":"RADIUS:1",
"user_name":"COMPANY\\JSmith",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"login_session_id":"LN8WNzoregyveYy69igAAKA77p3GC0RB",
"event_name":"NAM",
"status":"OK",
"user_name_netbios":"COMPANY\\JSmith",
"plugins":["LdapRules"],
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"reason": "CHAIN_COMPLETED"
}

Enrollment
For the enrollment, the fingerprint authentication method you should start an enrollment process and
provide the enrollment data as a JSON container. The enrollment data has same structure and
names as authentication data

Example
On the following example, the user JSmith from the COMPANY repository will enroll the fingerprint
authentication method, user has a login session with identifier the
“wQabBzcnJTBqOqTdClHJTtrkpHFUzg40”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"FINGER:1",
"login_session_id":"wQabBzcnJTBqOqTdClHJTtrkpHFUzg40"
}
Response
{
"enroll_process_id":"lHpM6G8Z8DiHBw0iFoAK8LfCMDxIu9hk"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/lHpM6G8Z8DiHBw0iFoAK8LfCMDxIu9hk/
do_enroll
API Documentation 77

Request
{
"response":
{
"capture":
{
"BitsPerPixel":8,
"BytesPerLine":300,
"Dpi":500,
"Height":300,
"Image":"The base64 encoded image",
"Width":300,
"captureStatus":"Ok"
}
},
"login_session_id":"wQabBzcnJTBqOqTdClHJTtrkpHFUzg40"
}
Response
{
"reason":"",
"msg":"",
"status":"OK",
"method_id":"FINGER:1"
}

3.10.6 HOTP Authentication Method
The OATH HOTP authentication method provide user authentication by counter based one-time
password. This method can be used as a single method in the authentication chain or as a part of the
authentication chain..

Authentication
For the authentication, you should create a logon process with the HOTP authentication method or
continue with the HOTP authentication method as next authentication method in case, when the
chain has more than one methods. You should provide a JSON object, which contain user’s counter
based one-time password, by POST request.

Table 3-72 The authentication data for the HOTP authentication method

Resource will return a JSON-object with information about current state of the authentication.

The HOTP authentication method supports the set of authentication reasons.

Table 3-73 The HOTP method’s authentication reasons.

Parameter name Description

answer This parameter contain user’s counter based one-time password

Reason value Description

HOTP_PASSWORD_WRONG The counter based one-time password providing on authentication was
wrong

HOTP_PASSWORD_UNDEFINED The counter based one-time password is undefined for user.
78 Advanced Authentication

Example
On the following example, we provide HOTP authentication for the user JSmith from the COMPANY
repository, user already create endpoint session with the identifier
“5IUw6BzZEZ30d5AurQJbp7R9KLWhcHoC”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"HOTP:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"5IUw6BzZEZ30d5AurQJbp7R9KLWhcHoC"
}
Response
{
"event_name":"NAM",
"completed_methods":[],
"reason":"PROCESS_STARTED",
"event_data_id":"OSLogon",
"msg":"Process started",
"logon_process_id":"xYKEgMYGntELKvbD3KvfmNfvI8EljNLR",
"plugins": [],
"status": "MORE_DATA",
"current_method":"HOTP:1",
"chains":[
{
"name":"Counter based one time password",
"apply_for_ep_owner":false,
"is_enabled":true,
"is_trusted":true,
"short_name":"",
"image_name":"default",
"position":0,
"methods": ["HOTP:1"]
}]
}
HTTP POST
https://authserver.example.com/api/v1/logon/xYKEgMYGntELKvbD3KvfmNfvI8EljNLR/
do_logon
Request
{
"response":
{
"answer":"573854"
},
"endpoint_session_id":"5IUw6BzZEZ30d5AurQJbp7R9KLWhcHoC"
}
Response
{
"reason":"CHAIN_COMPLETED",
"msg": "Welcome!",
"event_name":"NAM",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_name":"COMPANY\\JSmith",
"user_mobile_phone":"+16086783619",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"event_data_id":"OSLogon",
"user_name_netbios":"COMPANY\\Jsmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"logon_process_id":"xYKEgMYGntELKvbD3KvfmNfvI8EljNLR",
"status":"OK",
"current_method":"HOTP:1",
"chains":[
{
"name":"Counter based one time password",
"apply_for_ep_owner":false,
API Documentation 79

"is_enabled":true,
"is_trusted":true,
"short_name":"",
"image_name":"default",
"position":0,
"methods": ["HOTP:1"]
}],
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"user_email":"jsmith@company.com",
"completed_methods":["HOTP:1"],
"login_session_id":"1yljtKNxC37kZcMDTND7PrDPDjJ6Kv4D",
"user_cn":"JSmith",
"plugins":["LdapRules"],
"data_id":"OSLogon",
"user_id":"ab2b845652d311e5a19a000c2951aca4"
}

Enrollment
For the enrollment, the counter based one-time password authentication method you should start an
enrollment process and provide the enrollment data as JSON container. You can enroll method with a
counter or with a three consecutive generated passwords for case when user does not know a
counter value.

Table 3-74 The HOTP method enrollment’s data.

Table 3-75 The HOTP one-time password’s formats.

Resource will return a JSON object with status of the enrollment process.

The HOTP authentication method supports this list of the enrollment reasons.

Parameter name Description

secret The secret for password generation, it should be a hex string with length more than 6
characters.

counter The counter for password generation. This is optional parameter with default value 1.

otp_format The password format from supporting password format list, this is optional parameter

hash The name of hashing algorithm, this is optional parameter. List of the hashing algorithm
provided in Python library hashlib.algorithms_guaranteed

token_public_id The Yubikey token public identifier, this is optional parameter. You should use it when
you work with Yubikey hardware tokens.

hotp1 The 1st counter based one-time password, for enrollment without counter value

hotp2 The 2nd counter based one-time password, for enrollment without counter value

hotp3 The 3rd counter based one-time password, for enrollment without counter value

One-time password format Description

dec4 4 decimal digits

dec6 6 decimal digits

dec7 7 decimal digits

dec8 8 decimal digits
80 Advanced Authentication

Table 3-76 The HOTP method’s enrollment reasons.

Example
On the following example, the user JSmith from the COMPANY repository will try to enroll the HOTP
method, user already have a login session with the identifier
“sz1bs8hCMNr2JOfDZJIhsCbAYwM2lHzN”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"HOTP:1",
"login_session_id":"sz1bs8hCMNr2JOfDZJIhsCbAYwM2lHzN"
}
Response
{
"enroll_process_id":"bweoSmHkB3FP17IOES4GtlReCmBxAEop"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/bweoSmHkB3FP17IOES4GtlReCmBxAEop/
do_enroll
Request
{
"response":
{
"secret":"12345678901234567890",
"counter":"0"
},
"login_session_id":"sz1bs8hCMNr2JOfDZJIhsCbAYwM2lHzN"
}
Response
{
"status":"OK",
"method_id":"HOTP:1",
"msg": "",
"reason": ""
}

3.10.7 LDAP Password Authentication Method
The LDAP password authentication method provide user authentication by LDAP password from
internal or external user’s repository. This method could be used as a single method in the
authentication chain or as a part of the authentication chain.

Authentication
For the authentication, you should create a logon process with the LDAP password authentication
method or continue with the LDAP password as next authentication method in case, when the chain
has more than one method. You should provide a JSON object, which contain user’s password, by
POST request.

Enrollment reason value Description

CANT_FIND_COUNTER Method could not find a counter from the provided passwords list.
API Documentation 81

Table 3-77 The authentication data for the LDAP password authentication method.

Resource will return JSON-object with information about current state of the authentication.

LDAP password authentication method supports list of authentication reasons.

Table 3-78 The LDAP method’s authentication reasons.

Example
On the following example, we provide LDAP password authentication for the user JSmith from the
COMPANY repository, user already create endpoint session with the identifier
“46kGFB3MUUebkcqosO9t4pVAVURsCMyz”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"LDAP_PASSWORD:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"46kGFB3MUUebkcqosO9t4pVAVURsCMyz"
}
Response
{
"plugins": [],
"event_name":"NAM",
"msg":"Process started",
"status":"MORE_DATA",
"reason":"PROCESS_STARTED",
"current_method":"LDAP_PASSWORD:1",
"completed_methods":[],
"chains":[
{
"is_enabled":true,

Parameter name Description

answer This parameter contain user’s LDAP password

Reason value Description

LDAP_PASSWORD_UNDEFINED The LDAP password undefined for user.

LDAP_PASSWORD_WRONG LDAP password provided on authentication was wrong

LDAP_PASSWORD_ACCOUNT_RESTRICTION LDAP account has restrictions

LDAP_PASSWORD_INVALID_LOGON_HOURS User used invalid logon hours

LDAP_PASSWORD_INVALID_WORKSTATION User used for logon invalid workstation

LDAP_PASSWORD_EXPIRED LDAP password expired

LDAP_PASSWORD_ACCOUNT_DISABLED LDAP account disabled

LDAP_PASSWORD_TOO_MANY_CONTEXT_IDS Appliance has too many IDS context

LDAP_PASSWORD_ACCOUNT_EXPIRED LDAP account expired

LDAP_PASSWORD_MUST_CHANGE User must change password

LDAP_PASSWORD_ACCOUNT_LOCKED_OUT LDAP account locked out
82 Advanced Authentication

"apply_for_ep_owner":false,
"is_trusted":null,
"image_name":"default",
"name":"LDAP password",
"position":0,
"methods":["LDAP_PASSWORD:1"],
"short_name": ""
}],
"logon_process_id":"zGjcx3Kbh3scIbTXXCefo1lR86BZ5V0k",
"event_data_id":"OSLogon"
}
HTTP POST
https://authserver.example.com/api/v1/logon/zGjcx3Kbh3scIbTXXCefo1lR86BZ5V0k/
do_logon
Request
{
"response":
{
"answer":"123"
},
"endpoint_session_id":"46kGFB3MUUebkcqosO9t4pVAVURsCMyz"
}
Response
{
"msg":"Welcome!",
"user_mobile_phone":"+16086783619",
"event_name":"NAM",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"user_email":"jsmith@company.com",
"user_name": "COMPANY\\JSmith",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"completed_methods":["LDAP_PASSWORD:1"],
"chains":[
{
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":null,
"image_name":"default",
"name":"LDAP password",
"position":0,
"methods":["LDAP_PASSWORD:1"],
"short_name": ""
}],
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_name_netbios":"COMPANY\\JSmith",
"user_cn":"JSmith",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"login_session_id":"BF7xjPVyO9wSqFj9UY0II1qzsemfcVqD",
"plugins":["LdapRules"],
"data_id":"OSLogon",
"status":"OK",
"reason":"CHAIN_COMPLETED",
"current_method":"LDAP_PASSWORD:1",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"logon_process_id":"zGjcx3Kbh3scIbTXXCefo1lR86BZ5V0k",
"event_data_id":"OSLogon",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450"
}

Enrollment
The LDAP password authentication method does not support enrollment – all user’s password
provided by LDAP server.
API Documentation 83

3.10.8 Password Authentication Method
The password authentication method provide authentication by password for users, this password is
not LDAP user’s password, and it is a virtual password stored in the appliance, which user can enroll.
The password authentication method could be used as a single method in the authentication chain or
as a part of the authentication chain.

Authentication
For the authentication, you should create a logon process with the password authentication method
or continue with the password authentication method in case, when the authentication chain has
more than one authentication methods. You should provide a JSON container with user’s password
by POST request.

Table 3-79 The authentication data for the password authentication method.

Resource will return a JSON-object with information about current state of the authentication.

The password authentication method supports the list of the authentication reasons.

Table 3-80 The password method’s authentication reasons

Example
On the following example, the user JSmith from the COMPANY repository will try to authenticate by
the password method, user has an endpoint session with the identifier
“TksW8P1T8nTee3LX2ZgAUCHEUPVCKOYC”.

POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"PASSWORD:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"TksW8P1T8nTee3LX2ZgAUCHEUPVCKOYC"
}
Response
{
"reason":"PROCESS_STARTED",
"current_method":"PASSWORD:1",
"msg":"Process started",
"chains":[
{
"is_trusted":null,
"is_enabled":true,
"short_name":"",

Parameter name Description

answer This parameter contain user’s password

Reason value Description

PASSWORD_UNDEFINED The password undefined for user

PASSWORD_EXPIRED The password was expired

PASSWORD_WRONG The password provided at authentication was wrong
84 Advanced Authentication

"position":0,
"methods":["PASSWORD:1"],
"name":"Password",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"event_data_id":"OSLogon",
"status":"MORE_DATA",
"plugins":[],
"logon_process_id":"jzZ5qMd9b4drh5chgcLk1KgHxtHh67Yo",
"completed_methods":[],
"event_name": "NAM"
}
HTTP POST
https://authserver.example.com/api/v1/logon/jzZ5qMd9b4drh5chgcLk1KgHxtHh67Yo/
do_logon
Request
{
"response":
{
"answer":"P@$sw0rd"
},
"endpoint_session_id":"TksW8P1T8nTee3LX2ZgAUCHEUPVCKOYC"
}
Response
{
"reason":"CHAIN_COMPLETED",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"event_name":"NAM",
"chains":[
{
"is_trusted":null,
"is_enabled":true,
"short_name":"",
"position":0,
"methods":["PASSWORD:1"],
"name":"Password",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"data_id":"OSLogon",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"msg":"Welcome (CHAP)!",
"plugins":["LdapRules"],
"user_name":"COMPANY\\JSmith",
"user_email":"jsmith@company.com",
"current_method":"PASSWORD:1",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"status":"OK",
"logon_process_id":"jzZ5qMd9b4drh5chgcLk1KgHxtHh67Yo",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"login_session_id":"qgsrzukT8D2MjRq9exBcys0OaQnJcBUt",
"user_mobile_phone":"+16086783619",
"event_data_id":"OSLogon",
"completed_methods":["PASSWORD:1"],
"user_name_netbios":"COMPANY\\JSmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"user_cn": "JSmith"
}

Enrollment
For the enrollment, the password authentication method you should start enrollment process and
provide an enrollment data as a JSON container.
API Documentation 85

Table 3-81 The enrollment data for the password authentication method

Resource will return a JSON object with status of the enrollment process.

The password authentication method supports this set of the enrollment reasons.

Table 3-82 The password method’s enrollment reasons

Example
On the following example, the user JSmith from the COMPANY repository will enroll the password
authentication method, user has a login session with the identifier
“QI98qz5PJazhpcFgI6HRbLeIGVSFOAOt”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"PASSWORD:1",
"login_session_id":"QI98qz5PJazhpcFgI6HRbLeIGVSFOAOt"
}
Response
{
"enroll_process_id":"SsKV3uOyJDskhqI6nUuqW0XYo4dJCtcP"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/SsKV3uOyJDskhqI6nUuqW0XYo4dJCtcP/
do_enroll
Request
{

Parameter name Description

password The new password value

confirmation The confirmation of the new password value, if password will not equals to the
confirmation – enrollment will fail.

Reason value Description

PASSWORD_BAD_CONFIRMATION The password and the confirmation is not equals

PASSWORD_EMPTY The provided password or confirmation was empty

PASSWORD_UNCHANGED The provided password is equals to the current password

PASSWORD_TOO_SHORT The provided password is too small, please check password
length in the policy values

PASSWORD_TOO_SIMPLE The provided password is too simple, user should use a stronger
password
86 Advanced Authentication

"response":
{
"password":"new_P@$sw0rd",
"confirmation":"new_P@$sw0rd"
},
"login_session_id":"QI98qz5PJazhpcFgI6HRbLeIGVSFOAOt"
}
Response
{
"reason":"",
"msg":"",
"status":"OK",
"method_id":"PASSWORD:1"
}

3.10.9 RADIUS Authentication Method
The RADIUS authentication method provide users’ authentication by password on external RADIUS
server. The RADIUS authentication method could be used as a single method in the authentication
chain or as a part of the authentication chain.

Authentication
For the authentication, you should create a logon process with the RADIUS authentication method or
continue with the RADIUS authentication method in case, when the authentication chain has more
than one authentication methods. You should provide a JSON container with the user’s RADIUS
password by POST request.

Table 3-83 The authentication data for the RADIUS authentication method

Resource will return a JSON-object with information about current state of the authentication.

The RADIUS authentication method supports the set of the authentication reasons.

Table 3-84 The RADIUS method’s authentication reasons

Example
On the following example, the user JSmith from the COMPANY repository will try to authenticate with
the RADIUS authentication method, user already has an endpoint session with the identifier
“7XrFFQB28O6pod8Y5ElCs4K75TYBAffy”.

Parameter name Description

answer This parameter contain user’s RADIUS password

Reason value Description

RADIUS_WRONG_PASSWORD The RADIUS password provided for the authentication was wrong.
API Documentation 87

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"RADIUS:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"7XrFFQB28O6pod8Y5ElCs4K75TYBAffy"
}
Response
{
"current_method":"RADIUS:1",
"chains":[
{
"name":"Radius Client",
"methods":["RADIUS:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position": 0,
"is_enabled":true,
"is_trusted":true,
"short_name": ""
}],
"completed_methods":[],
"msg": "Process started",
"logon_process_id":"wZFkJ6kTvrbohSH6o5X5swGvZXDMoCQW",
"plugins":[],
"event_data_id":"OSLogon",
"event_name":"NAM",
"status":"MORE_DATA",
"reason":"PROCESS_STARTED"
}
HTTP POST
https://authserver.example.com/api/v1/logon/wZFkJ6kTvrbohSH6o5X5swGvZXDMoCQW/
do_logon
Request
{
"response":
{
"answer":"Str0nG_P@$WorD"
},
"endpoint_session_id":"7XrFFQB28O6pod8Y5ElCs4K75TYBAffy"
}
Response
{
"event_data_id":"OSLogon",
"user_mobile_phone":"+16086783619",
"msg":"Welcome!",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"data_id":"OSLogon",
"user_email":"jsmith@company.com",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"chains":[
{
"name":"Radius Client",
"methods":["RADIUS:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position": 0,
"is_enabled":true,
"is_trusted":true,
"short_name": ""
}],
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_cn":"JSmith",
88 Advanced Authentication

"completed_methods":["RADIUS:1"],
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"logon_process_id":"wZFkJ6kTvrbohSH6o5X5swGvZXDMoCQW",
"current_method":"RADIUS:1",
"user_name":"COMPANY\\JSmith",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"login_session_id":"LN8WNzoregyveYy69igAAKA77p3GC0RB",
"event_name":"NAM",
"status":"OK",
"user_name_netbios":"COMPANY\\JSmith",
"plugins":["LdapRules"],
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"reason": "CHAIN_COMPLETED"
}

Enrollment
For enrollment, RADIUS authentication method you should start an enrollment process and provide
by POST request enrollment data as a JSON container.

Table 3-85 The enrollment data for the RADIUS authentication method

Resource will return a JSON object with status of the enrollment process.

Example
On the following example, the user JSmith from the COMPANY repository will enroll the RADIUS
authentication method, user has a login session with the identifier
“HJ6OZ6wBtfGAyEWTlO1BeGJOSOU5zwi3”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"RADIUS:1",
"login_session_id":"HJ6OZ6wBtfGAyEWTlO1BeGJOSOU5zwi3"
}
Response
{
"enroll_process_id":"FIOgJueuovKsGYrgHB6AKWO7cWXHFd6u"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/FIOgJueuovKsGYrgHB6AKWO7cWXHFd6u/
do_enroll
Request

Parameter name Description

user_name The user name that will be used for RADIUS authentication. This is optional
parameter

send_reponame The boolean flag – send or not repository name with user name, if it true – result
will be “repo\username”, if false – “username”. Optional parameter
API Documentation 89

{
"response":
{
"user_name":"johnsmith"
},
"login_session_id":"HJ6OZ6wBtfGAyEWTlO1BeGJOSOU5zwi3"
}
Response
{
"method_id":"RADIUS:1",
"status":"OK",
"msg": "",
"reason": ""
}

3.10.10 Security Questions Authentication Method
The security questions authentication method provide users’ authentication by set of answers for a
question. The security questions authentication method could be used as a single method in the
authentication chain or as a part of the authentication chain.

Authentication
For the authentication, you should create a logon process with the security questions authentication
method or continue with the security questions authentication method in case, when the
authentication chain has more than one authentication methods. You should provide a JSON
container with the user’s answers by POST request. Method has two step for the authentication, on
first step you should make an empty request for getting list of the security question from the
appliance, on second step you should provide the user’s answers. The answer is a JSON-container
with security question identifier and user’s answer.

Table 3-86 The authentication data for the security question authentication method

Resource will return a JSON-object with information about current state of the authentication.

The security questions authentication method supports the list of the authentication reasons.

Table 3-87 The security question method’s authentication reasons

Example
On the following example, the user JSmith form the COMPANY repository will try to authenticate by
the security question authentication method, user already has an endpoint session with the identifier
“nVVcBJ8GacuBfT7ur3tUKG2k54I6016T”.

Parameter name Description

answer This parameter contain the set of user’s answers to the security questions. Each
answer is a JSON object with “question identifier” and “user’s answer”.

Reason value Description

SECQUEST_WRONG_ANSWERS The answers provided at the authentication was wrong

SECQUEST_WAITING_ANSWERS The security questions authentication method wait for user’s
answers.
90 Advanced Authentication

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"SECQUEST:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"nVVcBJ8GacuBfT7ur3tUKG2k54I6016T"
}
Response
{
"current_method":"SECQUEST:1",
"chains":[
{
"name":"Security Questions",
"methods":["SECQUEST:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position":0,
"is_enabled":true,
"is_trusted":true,
"short_name":""
}],
"completed_methods":[],
"msg":"Process started",
"logon_process_id":"rqakRSR1pTxLsfxQy6UQRGXZBF4jLZC3",
"plugins":[],
"event_data_id":"OSLogon",
"event_name": "NAM",
"status":"MORE_DATA",
"reason":"PROCESS_STARTED"
}
HTTP POST
https://authserver.example.com/api/v1/logon/rqakRSR1pTxLsfxQy6UQRGXZBF4jLZC3/
do_logon
Request
{
"response":{},
"endpoint_session_id":"nVVcBJ8GacuBfT7ur3tUKG2k54I6016T"
}
Response
{
"current_method":"SECQUEST:1",
"event_data_id":"OSLogon",
"msg":"Waiting for answers...",
"event_name":"NAM",
"completed_methods":[],
"chains":[
{
"name":"Security Questions",
"methods":["SECQUEST:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position":0,
"is_enabled":true,
"is_trusted":true,
"short_name":""
}],
"questions":
{
"0":"What is your dog name?",
"1":"What is your favorite band name?"
},
"status":"MORE_DATA",
"logon_process_id":"rqakRSR1pTxLsfxQy6UQRGXZBF4jLZC3",
"plugins":[],
"method_id":"SECQUEST:1",
"reason":"SECQUEST_WAITING_ANSWERS"
}
HTTP POST
API Documentation 91

https://authserver.example.com/api/v1/logon/rqakRSR1pTxLsfxQy6UQRGXZBF4jLZC3/
do_logon
Request
{
"response":
{
"answers":
{
"0":"Spotty",
"1":"The Beatles"
}
},
"endpoint_session_id":"nVVcBJ8GacuBfT7ur3tUKG2k54I6016T"
}
Response
{
"event_data_id":"OSLogon",
"user_mobile_phone":"+16086783619",
"msg":"Welcome!",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"data_id":"OSLogon",
"user_email":"jsmith@company.com",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"chains":[
{
"name":"Security Questions",
"methods":["SECQUEST:1"],
"image_name":"default",
"apply_for_ep_owner":false,
"position":0,
"is_enabled":true,
"is_trusted":true,
"short_name":""
}],
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_cn":"JSmith",
"completed_methods":["SECQUEST:1"],
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"logon_process_id":"rqakRSR1pTxLsfxQy6UQRGXZBF4jLZC3",
"current_method":"SECQUEST:1",
"user_name":"COMPANY\\JSmith",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"login_session_id":"C0rAfRFyPCALSK36eSXf56q7rQgmhle6",
"event_name":"NAM",
"status":"OK",
"user_name_netbios":"COMPANY\\JSmith",
"plugins":["LdapRules"],
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"reason":"CHAIN_COMPLETED"
}

Enrollment
For the enrollment , the security questions authentication method you should start an enrollment
process and provide an enrollment data as a JSON container. The security question authentication
method has two step on enrollment process: on first step you should make an empty response for
getting set of the security questions, on second step you should provide the user’s answers.

Table 3-88 The enrollment data for the security question authentication method

Parameter name Description

answers The set of the answers for the security questions, this is a JSON object with
question identifier as key and answer as the value.
92 Advanced Authentication

Resource will return a JSON object with status of the enrollment process.

The security questions authentication method supports this set of the enrollment reasons.

Example
On the following example, the user JSmith from the COMPANY repository will try to enroll the security
questions authentication method, user has a login session with the identifier
“Lfz8BRaSBoGuYI8sVbCBp4bZEtEXL04h”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"SECQUEST:1",
"login_session_id":"Lfz8BRaSBoGuYI8sVbCBp4bZEtEXL04h"
}
Response
{
"enroll_process_id":"DVqM8pH4FC8cBgUG6wKvMlljU6Lhpi6d"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/DVqM8pH4FC8cBgUG6wKvMlljU6Lhpi6d/
do_enroll
Request
{
"response":{},
"login_session_id":"Lfz8BRaSBoGuYI8sVbCBp4bZEtEXL04h"
}
Response
{
"method_id":"SECQUEST:1",
"questions":
{
"0":"What is your dog name?",
"1":"What is your favorite band name?"
},
"status":"MORE_DATA",
"msg":"Waiting for answers...",
"reason":"SECQUEST_WAITING_ANSWERS"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/DVqM8pH4FC8cBgUG6wKvMlljU6Lhpi6d/
do_enroll
Request
{
"response":
{
"answers":

Reason value Description

SECQUEST_WAITING_ANSWERS The security question authentication method waiting for user’s
answers set for enrollment.
API Documentation 93

{
"0":"Spotty",
"1":"The Beatles"
}
},
"login_session_id":"Lfz8BRaSBoGuYI8sVbCBp4bZEtEXL04h"
}
Response
{
"method_id":"SECQUEST:1",
"status":"OK",
"msg":"",
"reason":""
}

3.10.11 Smartphone Authentication Method
The smartphone authentication method provide users’ authentication by their smartphone with
special application (for iOS, Android). This method has two ways for the authentication: online and
offline. For the online authentication users authenticate by application – accept or reject the
authentication for their smartphone application. For the offline authentication users authenticate by
application generated one-time password, this way provide authentication for cases without
connection to the appliance. The smartphone authentication method could be used as a single
method in the authentication chain or as a part of the authentication chain.

Authentication
For the authentication, you should create a logon process with the smartphone authentication method
or continue with the smartphone authentication method in case, when the authentication chain has
more than one authentication methods. You should provide an empty response for starting and
checking status of the online authentication, or provide a JSON container with application generated
one-time password for the offline authentication.

Table 3-89 The authentication data for the smartphone authentication method

Resource will return a JSON-object with information about current state of the authentication.

The smartphone authentication method supports the list of the authentication reasons.

Parameter name Description

otp The application generated one-time password for the offline authentication by
smartphone authentication method.
94 Advanced Authentication

Table 3-90 The smartphone method’s authentication reasons.

Example
On the following example, the user JSmith from the COMPANY repository will try to authenticate by
the smartphone authentication method, he will use his smartphone with installed authentication
application. User already has an endpoint session with the identifier
“JTx5s5DW4HDCLvUfRG8W426etdgQ34uu”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"SMARTPHONE:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"JTx5s5DW4HDCLvUfRG8W426etdgQ34uu"
}
Response
{
"event_data_id":"OSLogon",
"current_method":"SMARTPHONE:1",
"completed_methods":[],
"plugins":[],
"status":"MORE_DATA",
"logon_process_id":"FSo7XFgzZU2X7186rQyUgac8KEajSwHP",
"chains":[
{
"image_name":"default",
"position":0,
"name":"Smartphone",
"short_name":"",
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":true,
"methods":["SMARTPHONE:1"]
}],
"reason":"PROCESS_STARTED",
"event_name":"NAM",
"msg":"Process started"
}
With next request, the appliance will send the authentication request to the user's
smartphone.
HTTP POST
https://authserver.example.com/api/v1/logon/FSo7XFgzZU2X7186rQyUgac8KEajSwHP/
do_logon

Reason value Reason description

SMARTPHONE_SAME_TOTP The application generated one-time password provided for
the authentication was same that last time

SMARTPHONE_WRONG_TOTP The application generated one-time password provided for
the authentication was wrong.

SMARTPHONE_AUTH_CONFIRM_TIMEOUT The time for the authentication confirmation was out

SMARTPHONE_AUTH_REJECTED The authentication was rejected from the smartphone
application

SMARTPHONE_LOGON_IN_PROGRESS The authentication by the smartphone authentication method
in process

SMARTPHONE_WAITING_DATA The smartphone authentication method wait for the
authentication data from the user.
API Documentation 95

Request
{
"response":{},
"endpoint_session_id":"JTx5s5DW4HDCLvUfRG8W426etdgQ34uu"
}
Response
{
"event_data_id":"OSLogon",
"current_method":"SMARTPHONE:1",
"completed_methods":[],
"plugins":[],
"status":"MORE_DATA",
"logon_process_id":"FSo7XFgzZU2X7186rQyUgac8KEajSwHP",
"chains":[
{
"image_name":"default",
"position":0,
"name":"Smartphone",
"short_name":"",
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":true,
"methods":["SMARTPHONE:1"]
}],
"reason":"SMARTPHONE_WAITING_DATA",
"event_name":"NAM",
"method_id":"SMARTPHONE:1",
"msg":"Waiting for smartphone data..."
}
The user accepted the authentication request and status was changed.
HTTP POST
https://authserver.example.com/api/v1/logon/FSo7XFgzZU2X7186rQyUgac8KEajSwHP/
do_logon
Request
{
"response":{},
"endpoint_session_id":"JTx5s5DW4HDCLvUfRG8W426etdgQ34uu"
}
Response
{
"user_name_netbios":"COMPANY\\JSmith",
"event_data_id":"OSLogon",
"login_session_id":"tbKNRLZnEPLeWRA53LRA3dPJ6fuYmT31",
"user_name":"COMPANY\\JSmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"data_id":"OSLogon",
"user_cn":"JSmith",
"current_method":"SMARTPHONE:1",
"status":"OK",
"chains":[
{
"image_name":"default",
"position":0,
"name":"Smartphone",
"short_name":"",
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":true,
"methods":["SMARTPHONE:1"]
}],
"reason":"CHAIN_COMPLETED",
96 Advanced Authentication

"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_mobile_phone":"+16086783619",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"logon_process_id":"FSo7XFgzZU2X7186rQyUgac8KEajSwHP",
"event_name":"NAM",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"completed_methods":["SMARTPHONE:1"],
"plugins":["LdapRules"],
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"user_email":"jsmith@company.com",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"method_id":"SMARTPHONE:1",
"msg":"Auth accepted"
}

On the following example, the user JSmith from the COMPANY repository will try to authenticate by
the smartphone authentication method with offline authentication and the application generated one-
time password.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"SMARTPHONE:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"JTx5s5DW4HDCLvUfRG8W426etdgQ34uu"
}
Response
{
"event_data_id":"OSLogon",
"current_method":"SMARTPHONE:1",
"completed_methods":[],
"plugins":[],
"status":"MORE_DATA",
"logon_process_id":"9JoA6EPM7AFAh3WoK6kO2TIGQXc308qM",
"chains":[
{
"image_name":"default",
"position":0,
"name":"Smartphone",
"short_name":"",
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":true,
"methods":["SMARTPHONE:1"]
}],
"reason":"PROCESS_STARTED",
"event_name":"NAM",
"msg":"Process started"
}
HTTP POST
https://authserver.example.com/api/v1/logon/9JoA6EPM7AFAh3WoK6kO2TIGQXc308qM/
do_logon
Request
{
"response":
{
"totp":"263965"
},
"endpoint_session_id":"JTx5s5DW4HDCLvUfRG8W426etdgQ34uu"
}
Response
{
"user_name_netbios":"COMPANY\\JSmith",
"event_data_id":"OSLogon",
"login_session_id":"xGTHxdOd4FbKT5EyWQvtA4CGHSfdXawf",
"user_name":"COMPANY\\JSmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
API Documentation 97

"data_id":"OSLogon",
"user_cn":"JSmith",
"current_method":"SMARTPHONE:1",
"status":"OK",
"chains":[
{
"image_name":"default",
"position":0,
"name":"Smartphone",
"short_name":"",
"is_enabled":true,
"apply_for_ep_owner":false,
"is_trusted":true,
"methods":["SMARTPHONE:1"]
}],
"reason":"CHAIN_COMPLETED",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_mobile_phone":"+16086783619",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"logon_process_id":"9JoA6EPM7AFAh3WoK6kO2TIGQXc308qM",
"event_name":"NAM",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"completed_methods":["SMARTPHONE:1"],
"plugins":["LdapRules"],
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"user_email":"jsmith@company.com",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"method_id":"SMARTPHONE:1",
"msg":"Auth accepted"
}

Enrollment
For the enrollment, the smartphone authentication method you should start an enrollment process
and provide an enrollment data by the smartphone application. For starting you should sent empty
response by POST and send empty response for getting an enrollment status.

Resource will return a data for a QR code; you should create a QR code and scan it by the
smartphone application. Users cannot start enrollment in offline mode.

Table 3-91 The enrollment response for the smartphone authentication method

Resource will return a JSON object with status of the enrollment process.

The smartphone authentication method supports this set of the enrollment reasons.

Table 3-92 The smartphone method’s enrollment reasons

Responce parameter name Description

qrdata The data for a QR code, you should user this parameter for the QR code
generation and then you should show this QR code to the user.

Reason value Reason description

SMARTPHONE_ENROLL_TIMEOUT The time for the enrollment was out.

SMARTPHONE_WAITING_DATA The smartphone authentication method waiting
enrollment data from the smartphone application.

SMARTPHONE_SCAN_QR The smartphone authentication method provide data
for the QR code.
98 Advanced Authentication

Example
On the following example, the user JSmith from the COMPANY repository will try to enroll the
smartphone authentication method by his smartphone application, user already has a login session
with the identifier “4ZqmTy05KmwJ2ZbejUGUM5XypdcUpD4F”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"SMARTPHONE:1",
"login_session_id":"4ZqmTy05KmwJ2ZbejUGUM5XypdcUpD4F"
}
Response
{
"enroll_process_id":"U8emvI9mnKXTbwCWBJQBzu6SQMbwx2X7"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/U8emvI9mnKXTbwCWBJQBzu6SQMbwx2X7/
do_enroll
Request
{
"response":{},
"login_session_id":"4ZqmTy05KmwJ2ZbejUGUM5XypdcUpD4F"
}
Response
{
"qrdata":"OOBDATAqhNL0wMaG/H64GoEFqqd3eJWmWkNI6JrDh+vRuo/mDvHJc/
PhnpS4iOtqMz9OLG1ItO++ccCPciDOAO6Fhicvux9eWocZ91oI5W82yy+X3eht/
V1JxGM2neihZVuxAol4nr5XhDUBXmx9PtLoUKl+HSncX9YUWkF/MbEX3XTlbvRtiXs/
AFJTkZDkYLgm8mRM2I3z5sht+ToVM+SE8UFTInjZjqgg3MxTY3VqZOYR1Jsf/
iC6dr+NJY1NdjAsP2ErEw8uBfR2AOX/Q/
+oCbYFuxZKRr0+SM46eCQhtcmktyClKlyZtpbHResPNAtkaRl6SD2zHbUe48nk/R922Il+w==",
"msg":"Scan this QR with smartphone app",
"reason":"SMARTPHONE_SCAN_QR",
"method_id":"SMARTPHONE:1",
"status":"MORE_DATA"
}
On this step user does not scan QR code yet
HTTP POST
https://authserver.example.com/api/v1/enroll/U8emvI9mnKXTbwCWBJQBzu6SQMbwx2X/
do_enroll
Request
{
"response":{},
"login_session_id":"4ZqmTy05KmwJ2ZbejUGUM5XypdcUpD4F"
}
Response
{
"msg":"Waiting for smartphone data...",
"reason":"SMARTPHONE_WAITING_DATA",
"method_id":"SMARTPHONE:1", "status": "MORE_DATA"
}
User successfully scanned a QR code and enrolled method
HTTP POST
https://authserver.example.com/api/v1/enroll/U8emvI9mnKXTbwCWBJQBzu6SQMbwx2X/
do_enroll
Request
{
"response":{},
"login_session_id":"4ZqmTy05KmwJ2ZbejUGUM5XypdcUpD4F"
}
Response
{
"reason":"",
"msg":"",
"status":"OK",
"method_id":"SMARTPHONE:1"
}

API Documentation 99

3.10.12 SMS Authentication Method
The SMS one-time password authentication method provide authentication by one-time password
that will send to the user’s phone in SMS. The appliance use a mobile phone numbers from LDAP
repository, if user have not a mobile phone number in repository, he could not use this authentication
method. The SMS one-time password authentication method could be used as a single method in the
authentication chain or as a part of the authentication chain.

Authentication
For the authentication, you should create a logon process with the SMS one-time password
authentication method or continue with the SMS one-time password authentication method in case,
when the authentication chain has more than one authentication methods. You should provide a
JSON container with the user’s one-time password by POST request. This method has two step for
authentication, on first step you should send empty data for sending SMS with one-time password to
an user’s phone, on second step you should provide an one-time password.

Table 3-93 The authentication data for the SMS authentication method

Resource will return a JSON-object with information about current state of the authentication.

The SMS one-time password authentication method supports the list of the authentication reasons.

Table 3-94 The SMS method’s authentication reasons.

Example
On the following example, the user JSmith from the COMPANY repository will try to authenticate by
the SMS one-time password authentication method, user already has an endpoint session with the
identifier “Uho2sBV9AgIBUObuxrZYvKxw7ZKs84fV”.

Parameter name Description

answer This parameter contain user’s one-time password

Reason value Description

OTP_CANNOT_SEND The appliance cannot send by SMS one-time password

OTP_TOO_MANY_SENT The appliance was sent too many one-time passwords

OTP_WAITING_PASSWORD The authentication method waiting for one-time password

OTP_NO_PASSWORD The password provided for the authentication was empty

OTP_PASSWORD_EXPIRED The one-time password was expired

OTP_WRONG_PASSWORD The one-time password was wrong

OTP_TOO_MANY_REQUESTS The appliance got too many requests
100 Advanced Authentication

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":" SMS_OTP:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"Uho2sBV9AgIBUObuxrZYvKxw7ZKs84fV"
}
Response
{
"reason":"PROCESS_STARTED",
"current_method":"SMS_OTP:1",
"msg":"Process started",
"chains":[
{
"is_trusted":true,
"is_enabled":true,
"short_name":"",
"position":0,
"methods":["SMS_OTP:1"],
"name":"SMS",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"event_data_id":"OSLogon",
"status":"MORE_DATA",
"plugins":[],
"logon_process_id":"RnWlothKg8kI4zO6pwMhsnT10PZ6dpSh",
"completed_methods":[],
"event_name":"NAM"
}
HTTP POST
https://authserver.example.com/api/v1/logon/RnWlothKg8kI4zO6pwMhsnT10PZ6dpSh/
do_logon
Request
{
"response":{},
"endpoint_session_id":"Uho2sBV9AgIBUObuxrZYvKxw7ZKs84fV"
}
Response
{
"reason":"OTP_WAITING_PASSWORD",
"current_method":"SMS_OTP:1",
"msg":"OTP password sent, please enter",
"chains":[
{
"is_trusted":true,
"is_enabled":true,
"short_name":"",
"position":0,
"methods":["SMS_OTP:1"],
"name":"SMS",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"event_data_id":"OSLogon",
"status":"MORE_DATA",
"plugins":[],
"logon_process_id":"RnWlothKg8kI4zO6pwMhsnT10PZ6dpSh",
"completed_methods":[],
"event_name": "NAM"
}
HTTP POST
https://authserver.example.com/api/v1/logon/RnWlothKg8kI4zO6pwMhsnT10PZ6dpSh/
do_logon
Request
{
"response":
{

API Documentation 101

"answer":"12345678"
},
"endpoint_session_id":"Uho2sBV9AgIBUObuxrZYvKxw7ZKs84fV"
}
Response
{
"reason":"CHAIN_COMPLETED",
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"event_name":"NAM",
"chains":[
{
"is_trusted":true,
"is_enabled":true,
"short_name":"",
"position":0,
"methods":["SMS_OTP:1"],
"name":"SMS",
"apply_for_ep_owner":false,
"image_name":"default"
}],
"data_id":"OSLogon",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"msg":"Welcome!",
"plugins":["LdapRules"],
"user_name":"COMPANY\\JSmith",
"user_email":"jsmith@company.com",
"current_method":"EMAIL_PASSWORD:1",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"status":"OK",
"logon_process_id":"RnWlothKg8kI4zO6pwMhsnT10PZ6dpSh",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"login_session_id":"nNSn6EepNQBk9hxD5X7lY3H064flsP1K",
"user_mobile_phone":"+16086783619",
"event_data_id":"OSLogon",
"completed_methods":["SMS_PASSWORD:1"],
"user_name_netbios":"COMPANY\\JSmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"user_cn":"JSmith"
}

Enrollment
The SMS one-time password authentication method could not be enrolled, this method based on
user’s LDAP attribute and all users from repository with mobile phone could authenticate by this
method.

3.10.13 TOTP Authentication Method
The OATH TOTP authentication method provide the users’ authentication by time based one-time
password, this otp can be generated by any OATH TOTP compliant token. This method can be used
as single method in an authentication chain or as a part of an authentication chain.

Authentication
For the authentication, you should create a logon process with the TOTP method or continue with the
TOTP as next authentication method in case, when the authentication chain has more than one
authentication method. You should provide a JSON container with the user’s time based one-time
password by POST request.
102 Advanced Authentication

Table 3-95 The authentication data for the TOTP authentication method

Resource will return a JSON-object with information about current state of the authentication.

The TOTP authentication method supports the list of the authentication reasons.

Table 3-96 The TOTP method’s authentication reasons

Example
On the following example, we provide authentication by the TOTP authentication method for the user
JSmith from the COMPANY repository, user already created an endpoint session with the identifier
“uaoVUar5v9hL3aRFFpAXCmhNTnpQg8L5”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"TOTP:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"uaoVUar5v9hL3aRFFpAXCmhNTnpQg8L5"
}
Response
{
"event_name":"NAM",
"completed_methods":[],
"reason":"PROCESS_STARTED",
"event_data_id":"OSLogon",
"msg":"Process started",
"logon_process_id": "5SkULTwh0CC6z4162wL7qGmBscJEUiM0", "plugins": [],
"status":"MORE_DATA",
"current_method":"TOTP:1",
"chains":[
{
"name":"Time based one time password",
"apply_for_ep_owner":false,
"is_enabled":true,
"is_trusted":true,
"short_name":"",
"image_name":"default",
"position":0,
"methods":["TOTP:1"]
}]
}
HTTP POST
https://authserver.example.com/api/v1/logon/5SkULTwh0CC6z4162wL7qGmBscJEUiM0/
do_logon
Request
{

Parameter name Description

answer This parameter contain the user’s time based one-time password

Reason value Description

TOTP_PASSWORD_UNDEFINED The time based one-time password undefined for user

TOTP_WAIT_MINUTE The time based one-time password was already used, please wait one
minute and try again

TOTP_PASSWORD_WRONG The time based one-time password provided at authentication was wrong
API Documentation 103

"response":
{
"answer":"604630"
},
"endpoint_session_id":"uaoVUar5v9hL3aRFFpAXCmhNTnpQg8L5"
}
Response:
{
"reason":"CHAIN_COMPLETED",
"msg":"Welcome!",
"event_name":"NAM",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"user_name":"COMPANY\\JSmith",
"user_mobile_phone":"+16086783619",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"event_data_id":"OSLogon",
"user_name_netbios":"COMPANY\\JSmith",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"logon_process_id":"5SkULTwh0CC6z4162wL7qGmBscJEUiM0",
"status":"OK",
"current_method":"TOTP:1",
"chains":[
{
"name":"Time based one time password",
"apply_for_ep_owner":false,
"is_enabled":true,
"is_trusted":true,
"short_name":"",
"image_name":"default",
"position":0,
"methods":["TOTP:1"]
}],
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"user_email":"jsmith@company.com",
"completed_methods":["TOTP:1"],
"login_session_id":"U0ubr6cq1UIsTJrzjrLLftC9Czpghq83",
"user_cn":"JSmith",
"plugins":["LdapRules"],
"data_id":"OSLogon",
"user_id":"ab2b845652d311e5a19a000c2951aca4"
}

Enrollment
For the enrollment, the time based one-time password authentication method you should start
enrollment process and provide enrollment data as a JSON container.
104 Advanced Authentication

Table 3-97 The enrollment data for the TOTP authentication method

Table 3-98 The one-time password’s formats

Resource will return a JSON object with status of the enrollment process.

The TOTP authentication method supports this set of the enrollment reasons.

Table 3-99 The TOTP method’s enrollment reasons.

Example
On the following example, the user JSmith from the COMPANY repository will enroll the time based
one-time password authentication method, user has a login session with the identifier
“JXjt1OLSRLcGeJ9G9Unt9HX4aq5lHYmB”.

Parameter name Description

secret The secret for one-time password generation, parameter could be a hex string or
a base32 string

is_base32_secret The boolean identifier, set it true, when secret is a base32 string. This is optional
parameter with default value – false.

period The period in seconds for generated password, this parameter determines lifetime
for one-time password. This is optional password with default value – 30 seconds.

otp_format The password format from supporting password format list, this is optional
parameter

hash The name of hashing algorithm, this is optional parameter. List of the hashing
algorithm provided in Python library hashlib.algorithms_guaranteed

One-time password format Description

dec4 4 decimal digits

dec6 6 decimal digits

dec7 7 decimal digits

dec8 8 decimal digits

Enrollment reason value Description

TOTP_SCAN_QR Method wait when QR code with secret will be scanned
API Documentation 105

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"TOTP:1",
"login_session_id":"JXjt1OLSRLcGeJ9G9Unt9HX4aq5lHYmB"
}
Response
{
"enroll_process_id":"rfiU0Xf6ghvV03HGiPvV0DV6fhHtYVTF"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/rfiU0Xf6ghvV03HGiPvV0DV6fhHtYVTF/
do_enroll
Request
{
"response":
{
"secret":"12345678901234567890",
"period":60
},
"login_session_id":"JXjt1OLSRLcGeJ9G9Unt9HX4aq5lHYmB"
}
Response
{
"reason":"",
"msg":"",
"status":"OK",
"method_id":"TOTP:1"
}

3.10.14 Voice Call Authentication Method
The voice call authentication method provide users’ authentication by a pin code inputted via phone.
The voice call authentication method could be used as a single method in the authentication chain or
as a part of the authentication chain.

Authentication
For the authentication, you should create a logon process with the voice call authentication method or
continue with the voice call authentication method in case, when the authentication chain has more
than one authentication methods. This method does not accept data from user. This method has two
steps: on first step you should make an empty POST request for starting calling to the user’s phone,
on next steps you should make an empty POST request for checking authentication status.

The voice call authentication method supports the list of the authentication reasons.

Table 3-100 The voice call method’s authentication reasons

Reason value Description

VOICE_PIN_NOT_VERIFIED The PIN code provided for the authentication was not verified

VOICE_CALL_IN_PROGRESS The voice call in progress

VOICE_PIN_EXPIRED The PIN code provided for the authentication was expired

VOICE_CANNOT_CALL The voice call authentication method cannot start call

VOICE_CALL_INITIATED The voice call authentication method was initiated
106 Advanced Authentication

Example
On the following example, the user JSmith from the COMPANY repository will try to authenticate by
the voice call authentication method, user already has an endpoint session with the identifier
“655WwK8qwGt8cJlhMe82o3HVJWFFi0ec”.

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
"method_id":"VOICE:1",
"user_name":"COMPANY\\JSmith",
"event":"NAM",
"endpoint_session_id":"655WwK8qwGt8cJlhMe82o3HVJWFFi0ec"
}
Response
{
"event_data_id":"OSLogon",
"event_name":"NAM",
"reason":"PROCESS_STARTED",
"chains":[
{
"is_enabled":true,
"image_name":"default",
"short_name":"",
"is_trusted":true,
"apply_for_ep_owner":false,
"methods":["VOICE:1"],
"name":"Voice call",
"position":0
}],
"logon_process_id":"FjVLwfybejy1brptN45p9uQvuVva5hA5",
"completed_methods":[],
"plugins":[],
"current_method":"VOICE:1",
"status":"MORE_DATA",
"msg":"Process started"
}
On this request we start calling
HTTP POST
https://authserver.example.com/api/v1/logon/FjVLwfybejy1brptN45p9uQvuVva5hA5/
do_logon
Request
{
"response":{},
"endpoint_session_id":"655WwK8qwGt8cJlhMe82o3HVJWFFi0ec"
}
Response
{
"event_data_id":"OSLogon",
"event_name":"NAM",
"reason":"VOICE_CALL_INITIATED",
"chains":[
{
"is_enabled":true,
"image_name":"default",
"short_name":"",
"is_trusted":true,
"apply_for_ep_owner":false,
"methods":["VOICE:1"],
"name":"Voice call",
"position":0
}],
"logon_process_id":"FjVLwfybejy1brptN45p9uQvuVva5hA5",
"completed_methods":[],
"plugins":[],
"current_method":"VOICE:1",
"status":"MORE_DATA",
"msg":"Call initiated"
API Documentation 107

}
HTTP POST
https://authserver.example.com/api/v1/logon/FjVLwfybejy1brptN45p9uQvuVva5hA5/
do_logon
Request
{
"response":{},
"endpoint_session_id":"655WwK8qwGt8cJlhMe82o3HVJWFFi0ec"
}

Response
{
"event_data_id":"OSLogon",
"event_name":"NAM",
"reason":"VOICE_CALL_IN_PROGRESS",
"chains":[
{
"is_enabled":true,
"image_name":"default",
"short_name":"",
"is_trusted":true,
"apply_for_ep_owner":false,
"methods":["VOICE:1"],
"name":"Voice call",
"position":0
}],
"logon_process_id":"FjVLwfybejy1brptN45p9uQvuVva5hA5",
"completed_methods":[],
"plugins":[],
"current_method":"VOICE:1",
"status":"MORE_DATA",
"msg":"Call in progress"
}

User entered a PIN code from the phone and authentication status changed

HTTP POST
https://authserver.example.com/api/v1/logon/FjVLwfybejy1brptN45p9uQvuVva5hA5/
do_logon
Request
{
"response":{},
"endpoint_session_id":"655WwK8qwGt8cJlhMe82o3HVJWFFi0ec"
}
Response
{
"current_method":"VOICE:1",
"user_cn":"JSmith",
"user_name_netbios":"COMPANY\\JSmith",
"user_dn":"CN=JSmith,CN=Users,DC=company,DC=com",
"reason":"CHAIN_COMPLETED",
"event_name":"NAM",
"user_email":"jsmith@company.com",
"msg":"Welcome!",
"user_name":"COMPANY\\JSmith",
"repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"data_id":"OSLogon",
"logon_process_id":"FjVLwfybejy1brptN45p9uQvuVva5hA5",
"repo_id":"d3fba00652d211e5a19a000c2951aca4",
"user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"status": "OK",
"event_data_id":"OSLogon",
"chains":[
{
"is_enabled":true,
"image_name":"default",
108 Advanced Authentication

"short_name":"",
"is_trusted":true,
"apply_for_ep_owner":false,
"methods":["VOICE:1"],
"name":"Voice call",
"position":0
}],
"user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"login_session_id":"znX7jRuvaZogxGpPW5zlGt77f4FsJSzL",
"completed_methods":["VOICE:1"],
"user_id":"ab2b845652d311e5a19a000c2951aca4",
"plugins":["LdapRules"],
"user_mobile_phone":"+16086783619"
}

Enrollment
For the enrollment, the voice call authentication method you should start an enrollment process and
provide the enrollment data as a JSON container.

Table 3-101 The enrollment data for the voice call authentication method

Resource will return JSON object with status of the enrollment process.

Example
On the following example, the user JSmith from the COMPANY repository will enroll the password
authentication method, user has a login session with identifier the
“PJHyEFQFTjt7fgHmW28avMnKFMHldiT7”.

HTTP POST
https://authserver.example.com/api/v1/enroll
Request
{
"method_id":"VOICE:1",
"login_session_id":"PJHyEFQFTjt7fgHmW28avMnKFMHldiT7"
}
Response
{
"enroll_process_id":"lHpM6G8Z8DiHBw0iFoAK8LfCMDxIu9hk"
}
HTTP POST
https://authserver.example.com/api/v1/enroll/lHpM6G8Z8DiHBw0iFoAK8LfCMDxIu9hk/
do_enroll
Request
{
"response":
{
"pin":"135978"
},
"login_session_id":"PJHyEFQFTjt7fgHmW28avMnKFMHldiT7"
}
Response
{
"reason":"",
"msg":"",
"status":"OK",
"method_id":"VOICE:1"
}

Parameter name Description

pin The PIN code for the user’s authentication
API Documentation 109

3.10.15 NotarisID Authentication Method
The NotarisID authentication method is a method for the authentication by Notaris identifier. The
NotarisID authentication method could be used as a single method in the authentication chain or as a
part of the authentication chain.

Authentication
For the authentication, you should create a logon process with the NotarisID authentication method or
continue with the NotarisID authentication method in case, when the authentication chain has more
than one authentication methods. When authentication will start, appliance create a request to the
NotarisID system with enrolled user’s Notaris Indentifier, for checking status of authentication in
NotarisID system, you should send an empty response to the appliance, the appliance will return
status of method authentication.

The NotarisID method supports the list of the authentication reasons.

Table 3-102 NotarisID method's authentication reasons.

Example

On next example, the user JSmith form the Advanced Authentication repository will try to authenticate
by the NotarisID, user has an endpoint session with the identifier
“zQ9YQ1Txpax09iRBBTQJN71tSDgsMiuA”.

HTTP POSThttps://authserver.example.com/api/v1/logon

Request

{

 "method_id":"NOTARIS_ID:1",

 "user_name":"AUTHASAS\\JSmith",

 "event":"NAM",

 "endpoint_session_id":"zQ9YQ1Txpax09iRBBTQJN71tSDgsMiuA"

}

Response

{

 "reason":"PROCESS_STARTED","current_method":"NOTARIS_ID:1","msg":"Process
started","chains":[

 {

Reason Value Reason Description

OK The authentication was successful.

WRONG_STATE The NotarisID system return a wrong state.

TOO_OFTEN_POLL The requests to the NotarisID system is too often.

WAITING_FOR_USER_ACCEPT The appliance wait for accepting authentication by
user in NotarisID system.

ERROR The authentication failed.
110 Advanced Authentication

 "is_trusted":null,

 "is_enabled":true,

 "short_name":"",

 "position": 0,

 "methods":["NOTARIS_ID:1"],

 "name": "NotarisID",

 "apply_for_ep_owner":false,

 "image_name":"default"

 }],

 "event_data_id":"OSLogon",

 "status":"MORE_DATA","plugins":[],
"logon_process_id":"ULMzchEGWNPnutRROYDM18p24tTvQh2g",

 "completed_methods":[],

 "event_name":"NAM"}

HTTP POSThttps://authserver.example.com/api/v1/logon/
ULMzchEGWNPnutRROYDM18p24tTvQh2g/do_logon

Request

{

 "response": {},

 "endpoint_session_id":"zQ9YQ1Txpax09iRBBTQJN71tSDgsMiuA"

}

Response

{

 "reason":"OK",

 "user_id":"ab2b845652d311e5a19a000c2951aca4",

 "event_name":"NAM",

 "chains":[

 {

 "is_trusted":null,

 "is_enabled":true,

 "short_name":"",

 "position": 0,"methods":["NOTARIS_ID:1"],

 "name": "NotarisID",

 "apply_for_ep_owner":false,

 "image_name":"default"

 }],
API Documentation 111

 "data_id":"OSLogon",

 "repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",

 "msg":"Welcome!",

 "plugins":["LdapRules"],

 "user_name":"AUTHASAS\\JSmith",

 "user_email":"jsmith@authasas.com",

 "current_method":"NOTARIS_ID:1",

 "user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",

 "status":"OK",

 "logon_process_id":"ULMzchEGWNPnutRROYDM18p24tTvQh2g",

 "user_dn":"CN=JSmith,CN=Users,DC=authasas,DC=com",

 "user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",

 "login_session_id":"6XFwPdePJ6y0pq9dBWFIcyerTVH2yMRJ",

 "user_mobile_phone":"+16086783619",

 "event_data_id":"OSLogon",

 "completed_methods":["NOTARIS_ID:1"],

 "user_name_netbios":"AUTHASAS\\JSmith",

 "repo_id":"d3fba00652d211e5a19a000c2951aca4",

 "user_cn":"JSmith"

}

Enrollment
For the enrollment, the NotarisID authentication method you should start an enrollment process and
provide an enrollment data as JSON container.

Table 3-103 Enrollment data for the NotarisID method

Resource will return a JSON object with status of the enrollment process.

The NotarisID authentication method supports this set of the enrollment reasons.

Table 3-104 NotarisID method’s enrollment reasons

Example

Parameter Name Parameter Description

notaris_id The NotarisID identifier.

Reason Value Reason Description

NO_NOTARISID The identifier is not valid NotarisID identifier.
112 Advanced Authentication

On next example, the user JSmith from the Advanced Authentication repository will enroll the
NotarisID method, user has a login session with the identifier
“wQabBzcnJTBqOqTdClHJTtrkpHFUzg40”.

HTTP POST

https://authserver.example.com/api/v1/enroll

Request

{

 "method_id":"NOTARIS_ID:1",

 "login_session_id":"wQabBzcnJTBqOqTdClHJTtrkpHFUzg40"

}

Response

{

 "enroll_process_id":"j7wpbJRTJ3LHIhSFSn2UWAEnTA15ldTK"

}

HTTP POST

https://authserver.example.com/api/v1/enroll/j7wpbJRTJ3LHIhSFSn2UWAEnTA15ldTK/
do_enroll

Request

{

 "response":

 {

 "notaris_id":"CZA7GXTO@notarisid"

 },

 "login_session_id":"wQabBzcnJTBqOqTdClHJTtrkpHFUzg40"

}

Response

{

 "reason":"",

 "msg":"",

 "status":"OK",

 "method_id":"NOTARIS_ID:1"

}

3.10.16 PKI Authentication Method
The PKI authentication method is a method for the authentication by public key infrastructure, with
this method user have a private key on a smartcard and public key on appliance, user sign a
challenge from the appliance and appliance validate this request. The PKI authentication method
could be used as a single method in the authentication chain or as a part of the authentication chain.
API Documentation 113

Authentication
For the authentication, you should create a logon process with the PKI authentication method or
continue with the PKI authentication method in case, when the authentication chain has more than
one authentication methods. You should provide a JSON container with user’s PKI data by POST
request. The PKI method have a two steps, at first you should get a challenge from the appliance with
empty request, at second step you should provide signed challenge to the appliance for validation.

Table 3-105 The authentication data for the PKI authentication method for second step

Resource will return a JSON-object with information about current state of the authentication and the
signature on first step.

Table 3-106 The response parameter for PKI method.

The PKI authentication method supports the list of the authentication reasons.

Table 3-107

HTTP POST
https://authserver.example.com/api/v1/logon
Request
{
 "method_id":"PKI:1",
"user_name":"AUTHASAS\\JSmith",
 "event":"NAM",
"endpoint_session_id":"P7p3JJuenqo0SnyJ4HnbRbbJIqDhtt0u"
}
Response
{
"reason":"PROCESS_STARTED",
 "current_method":"PKI:1",
"msg":"Process started",
 "chains":[
{
 "is_trusted":null,
"is_enabled":true,

Parameter Name Parameter Description

signature The signature for validation.

padding The padding of the signature.

hash The name of the hash algorithm.

Parameter Name Parameter Description

challenge The challenge for signing.

Reason Value Reason Description

PKI_WAITING_AUTH_SIGN The appliance waiting for the authentication sign.

PKI_SIGN_VERIFICATION_FAILED The verification of the sign was failed.

PKI_CERT_VALIDATION_FAILED The validation of the certificate was failed.

PKI_WRONG_CARD The card is wrong.
114 Advanced Authentication

 "short_name":"",
"position": 0,
 "methods":["PKI:1"],
"name": "PKI",
 "apply_for_ep_owner":false,
"image_name":"default"
 }],
"event_data_id":"OSLogon",
 "status":"MORE_DATA",
"plugins":[],
 "logon_process_id":"t9HZES2DFD6vDjhA3wNtizyjAuqMTrwi",
"completed_methods":[],
 "event_name":"NAM"
}
HTTP POST
https://authserver.example.com/api/v1/logon/t9HZES2DFD6vDjhA3wNtizyjAuqMTrwi/
do_logon
Request
{
"response": {},
 "endpoint_session_id":"P7p3JJuenqo0SnyJ4HnbRbbJIqDhtt0u"
}
Response
{
 "reason":"PKI_WAITING_AUTH_SIGN",
"current_method":"PKI:1",
 "msg":"Process started",
"chains":[
 {
"is_trusted":null,
 "is_enabled":true,
"short_name":"",
 "position": 0,
"methods":["PKI:1"],
 "name": "PKI",
"apply_for_ep_owner":false,
 "image_name":"default"
}],
 "event_data_id":"OSLogon",
"status":"MORE_DATA",
 "plugins":[],
"logon_process_id":"t9HZES2DFD6vDjhA3wNtizyjAuqMTrwi",
 "completed_methods":[],
"event_name":"NAM",
 "challenge":"f81e9d6882aca80cbe97e291ee5771aba7cc13facb3c79a5ae924e788bc4f7d2"
}
HTTP POST
https://authserver.example.com/api/v1/logon/t9HZES2DFD6vDjhA3wNtizyjAuqMTrwi/
do_logon
Request
{
"response":
 {
"signature":"d84f3a9b7244031aa5....42d123bdb715a153974e992b16d02",
 "padding":"PKCS#1",
"hash":"SHA1"
 },
"endpoint_session_id":"P7p3JJuenqo0SnyJ4HnbRbbJIqDhtt0u"
}
Response
{
"reason":"CHAIN_COMPLETED",
 "user_id":"ab2b845652d311e5a19a000c2951aca4",
"event_name":"NAM",
 "chains":[
{
 "is_trusted":null,
"is_enabled":true,
 "short_name":"",
"position": 0,
API Documentation 115

 "methods":["PKI:1"],
"name": "PKI",
 "apply_for_ep_owner":false,
"image_name":"default"
 }],
"data_id":"OSLogon",
 "repo_obj_id":"2d3c89ccb3ea7b4dacbdfda13e26f450",
"msg":"Welcome!",
 "plugins":["LdapRules"],
"user_name":"AUTHASAS\\JSmith",
 "user_email":"jsmith@authasas.com",
"current_method":"PKI:1",
 "user_sid":"S-1-5-21-4279545561-3293806183-1755797738-500",
"status":"OK",
 "logon_process_id":"t9HZES2DFD6vDjhA3wNtizyjAuqMTrwi",
"user_dn":"CN=JSmith,CN=Users,DC=authasas,DC=com",
 "user_sid_hex":"010500000000000515000000d9ae14ff677e53c4ea58a768f40100",
"login_session_id":"6XFwPdePJ6y0pq9dBWFIcyerTVH2yMRJ",
 "user_mobile_phone":"+16086783619",
"event_data_id":"OSLogon",
 "completed_methods":["PKI:1"],
"user_name_netbios":"AUTHASAS\\JSmith",
 "repo_id":"d3fba00652d211e5a19a000c2951aca4",
"user_cn":"JSmith"
}

Enrollment
For the enrollment, the PKI authentication method you should start an enrollment process and
provide an enrollment data as JSON container.

Table 3-108 The enrollment data for the PKI method

Resource will return a JSON object with status of the enrollment process.

The PKI authentication method supports this set of the enrollment reasons.

Table 3-109 The emergency password method’s enrollment reasons

Example

On next example, the user JSmith from the Advanced Authentication repository will enroll the PKI
authentication method, user has a login session with the identifier
“WXogCpZcHlsGsmmYiXkcxbg1qJMHJ4eD”.

HTTP POST

https://authserver.example.com/api/v1/enroll

Request

Parameter Name Parameter Description

card_uid The card UID.

modulus The modulus for the sign.

exponent The exponent for the sign.

Reason Value Reason Description

PKI_CERT_VALIDATION_FAILED The validation of the certificate was failed.
116 Advanced Authentication

{

 "method_id":"EMERG_PASSWORD:1",

 "login_session_id":"WXogCpZcHlsGsmmYiXkcxbg1qJMHJ4eD"

}

Response

{

 "enroll_process_id":"hn0k1pTx1T6MQwOIbhBPUlLIopROig4Q"

}

HTTP POST

https://authserver.example.com/api/v1/enroll/hn0k1pTx1T6MQwOIbhBPUlLIopROig4Q/
do_enroll

Request

{

 "response":

 {

 "card_uid":"11223344",

 "modulus":"a49c35fdc669519e9d0c713c....91daaa9d2604eeeaad73d13b1",

 "exponent":"010001"

 },

 "login_session_id":"WXogCpZcHlsGsmmYiXkcxbg1qJMHJ4eD"

}

Response

{

 "reason":"",

 "msg":" Enrollment complete" ",

3.11 Errors
On error server, return JSON-object with error information.

Table 3-110 JSON-object for error.

Error object is JSON-object with parameters.

Parameter name Description

errors Array of errors JSON-objects. Each object contains information about error.

status Current status
API Documentation 117

Table 3-111 JSON-object with detailed information about error.

Example
The following example shows simple server error response.

{
"status":"error",
"errors":
[
{
"description":"You are logged to empty event.data_id. It is not for data",
"location":"server",
"name":"AuError"
}
]
}

3.12 Troubleshooting
Table 3-112 Errors’ codes and possible solution.

Parameter name Description

name Error name

location Location, where error occurs.

description Error full description.

HTTP status Solution

400 Error in API method, take error object from response to get more information.

404 API method not found on server.

434 Login session not found or expired, update logon session

434 Endpoint session not found or expired, update endpoint session.
118 Advanced Authentication

4 4Usage of Device Services

Currently the supported opened ports are {8440, 8441, 8442} but it is better to use 8440, as other
ports may be deprecated in the future releases.

4.1 Card Plug-in
To check the Card Service you may open the following URL: https://127.0.0.1:8440/api/v1/card/
getmessage?nowait.

The response format:

{
result: [<status>],
cardid: <card id>,
readerid: <reader id>
}

The following statuses are implemented:

NO_READER means that the Card service didn't detect a card reader connected,
READER_ON means that the Card service detected a card reader connected,
NO_CARD means that there is no card on the reader,
CARD_ON means that a card is presented to the reader.

NOTE: cardid is used only with CARD_ON and NO_CARD statuses.

Examples of commands:

https://127.0.0.1:8440/api/v1/card/getmessage?nowait - immediately returns a current status.
Possible values [NO_READER, NO_CARD, CARD_ON]
https://127.0.0.1:8440/api/v1/card/getmessage?wait - waits for a next event (e.g. card presented
or card removed)

NOTE: When you disconnect the reader with a card on, two messages will arrive: NO_CARD,
NO_READER. But the first one will be caught with getmessage?wait.When you plug in a reader
with a card on, there will be the two events: READER_ON, CARD_ON. And as a result
READER_ON will be returned.

https://127.0.0.1:8440/api/v1/card/getreaderon?nowait - immediately returns READER_ON if a
reader is attached and NO_READER otherwise.
https://127.0.0.1:8440/api/v1/card/getreaderon?wait - immediately returns READER_ON if a
reader is attached or waits till it's attached
https://127.0.0.1:8440/api/v1/card/getcardon?nowait - immediately returns NO_READER if a
reader isn't attached, NO_CARD if a card isn't presented or CARD_ON if a card is presented
https://127.0.0.1:8440/api/v1/card/getcardon?wait - immediately returns NO_READER if a
reader isn't attached or wait till the card will be presented on a reader.
Usage of Device Services 119

NOTE: It will wait the next tap of a card even if a card is already on a reader.

https://127.0.0.1:8440/api/v1/card/getcardoff?nowait&cardid=<cardid> - immediately returns
NO_READER if a reader isn't attached, NO_CARD if a card isn't presented on the reader or
CARD_ON if a card is presented on the reader. Use cardid to wait when a specific card is
removed.
https://127.0.0.1:8440/api/v1/card/getcardoff?wait - returns immediately with NO_READER if a
reader isn't attached. If there is no card presented on a reader, it returns NO_CARD immediately
else waits till the card is removed from the reader
https://127.0.0.1:8440/api/abort?cancel-cookie=xxx - all of the "wait" methods support cancel-
cookie=xxx parameter.E.g. https://127.0.0.1:8440/api/v1/card/getmessage?wait&cancel-
cookie=xxx.And by calling abort with a cancel-cookie, all waiting methods with the same
specfied cookie are terminated.

4.2 FIDO U2F Plug-in
To check the FIDO U2F Service you may open the following URL: https://127.0.0.1:8441/api/v1/
fidou2f/abort (https://127.0.0.1:8441/api/v1/fidou2f/abort)The service should return: { "result":"ok" }
when a FIDO U2F token is connected.

Available methods
FIDO U2F Service provides the following POST-methods:

https://127.0.0.1:8441/api/v1/fidou2f/sign - Performs the U2F Authenticate operation.

{
"signRequests":
[
{"challenge":"tRiTY3C8YerfmH6IIlfoCZjs5CMkKUWDrNhS7v5gCPQ",
"version":"U2F_V2,
"keyHandle":"knQD88Ue6ZT6tyutHr8ipZaiTRV2uT9qzwGqWjYo5HCwAiV5z2kc1vr08tWbdOLQ4S-
ODg09vpp62P6owh4qmQ",
"appId":"https://demo.yubico.com"
}
]
}

https://127.0.0.1:8441/api/v1/fidou2f/register - Performs the U2F Register operation.

{
"registerRequests":
[
{"challenge":"tRiTY3C8YerfmH6IIlfoCZjs5CMkKUWDrNhS7v5gCPQ",
"version":"U2F_V2,
"appId":"https://demo.yubico.com"
}
],
"signRequests":[]
}

signRequest can be empty, or contain serial of for the key handle validation

{
"challenge":"tRiTY3C8YerfmH6IIlfoCZjs5CMkKUWDrNhS7v5gCPQ",
"version":"U2F_V2,
"keyHandle":"knQD88Ue6ZT6tyutHr8ipZaiTRV2uT9qzwGqWjYo5HCwAiV5z2kc1vr08tWbdOLQ4S-
ODg09vpp62P6owh4qmQ",
"appId":"https://demo.yubico.com"
}

120 Advanced Authentication

https://127.0.0.1:8441/api/v1/fidou2f/abort
https://127.0.0.1:8441/api/v1/fidou2f/abort

In case of success both methods above returns JSON reply in the U2F specification format:

or an error:

{ "errorCode"=1, "errorMessage"="Error Text"}

where:

errorCode - error code

errorMessage - additional error text

errorCode description:

1. Device other error. If the token is missing, errorMessage contains "Please connect a U2F token."
2. Device bad request. The visited URL doesn't match the App ID or not using HTTPS
3. Configuration unsupported
4. Token is not registers - for authentication process or token already registered - for register

process, to enable this check, specify "signRequests" in the body of the register request).
5. Timeout - no answer from token. (if the user didn't press a button within a given timeout)

And the following GET-methods:

https://127.0.0.1:8441/api/v1/fidou2f/abort - Aborts all pending operations

4.3 Fingerprint Plug-in
To check the WBF Capture Service you may open the following URL: https://127.0.0.1:8442/api/v1/
fingerprint/capture. Present your finger on the reader while the URL is loading.

The following fields are included into the output:

captureStatus - can be 'Ok', 'Timeout', 'Error', 'NoReader'.
Width, Height - fingerprint image size (in pixels).
Dpi - dots per inch (used on matching side).
BitsPerPixel - bits per pixel (usually 8 bits).
BytesPerLine - bytes per one line in image (include align).
Image - fingerprint image encoded using base-64 in gray scale.

E.g.
{"BitsPerPixel":8,"BytesPerLine":256,"Dpi":508,"Height":360,"Image":"<fingerprintdata>","Width":256,
"captureStatus":"Ok"}.

4.4 PKI Plug-in
PKI plug-in supports the following options:

vendorModule=eTPKCS11.dll - PKCS#11 implementation library of a needed vendor.
hash=SHA1 or SHA224, SHA256 (this is a default value if not presented), SHA384, SHA512,
RIPEMD160.
padding=PKCS#1 (this is a default value if not presented) or PSS, OAEP.
Usage of Device Services 121

https://127.0.0.1:8442/api/v1/fingerprint/capture
https://127.0.0.1:8442/api/v1/fingerprint/capture

modulusBits=2048 - key size (this is a default value if not presented). E.g. eToken PRO 32k
doesn't support it and you need to set 1024 to use it.
blockingMode=True. The default value is True. OpenSC supports the 'waiting for card'
mechanism not completely and it requires to change the option to False. The most of vendors
should work fine with the default mode.

PKI plugin uses the simulatar API for card / token detection and two new POST methods pki/enroll,
pki/login:

Available methods:

Card service provides the following POST-methods

- https://127.0.0.1:8440/api/v1/pki/getcertificates - GET method to get all certificates
from a token

{ "readerid"=0, "certificates" : [{
"keypairid":"9beb","certificate":"30820371308202daa00....0b90d7290a1a76b0450264dd5
36d2cb057230f8dbfa8cfda05"}] }

slotid - slot ID

 keypairid - id of the key pair in the certificate. Save it and use later for future logon operations.

 certificate - certificate value in DER format.

- https://127.0.0.1:8440/api/v1/pki/generatekeypair- POST method, Request Body:
{"pin":"your_pin"}

// Replace with your token pin or empty if there is no pin

{ "readerid"=your_reader_id, "keypairid":"6f4712e554544ac3",
"modulus":"a1709fb049c35fdc6695193e9dd980c713c....91daaa9d2604eeeaad73d13b1",
"exponent":"010001"}

 keypairid - id of the key pair in the certificate. save it and use later for future logon operations.

 modulus - modulus

 exponent - big exponent

- https://127.0.0.1:8440/api/v1/pki/signchallenge - POST method, Request Body:
{"challenge":"3128", "pin":"your_pin", "keypairid":"9beb" }

challenge in hex-string format(even length, sice one byte is two hex symbols)

 pin - pin to the token

 keypairid - id of the keypair from token, you can get it from previous enroll operation

in case of success it returns signature for the given challenge in the hex format{
"readerid"=your_reader_id, "hash":"SHA1", "padding":"PKCS#1",
"signature":"58ad84f3a9b7244031aa55c0d0ad753b1a480ae709a37210d48....493130d7b11f12
8ea2be1fcc42d123bdb715a153974e992b16d022" }

hash - used hash method

padding - used padding

- https://127.0.0.1:8440/api/v1/pki/verifychallenge - POST method, Request Body
{"challenge":"3128", "pin":"your_pin", "keypairid":"9beb",
"signature":"58ad84f3a9b72....bdb715a153974e992b16d022" }
122 Advanced Authentication

in case of an error two methods above returns an error:

{ "errorCode"="ERROR_ID"}

Possible values of ERROR_ID:

 PLUGIN_NOT_INITTED - not initted library, etc. dll was not provided

 METHOD_NOT_FOUND - method not found

 NO_CARD - no token or no card are presented. Use wait methods to get an event.

 JSON_PARSE_FAILED - bad request body

 WRONG_PIN- Wrong PIN

 GET_PRIVATE_KEY_FAILED - error getting a private key from a token

 OPERATION_FAILED- general operation failure

- https://127.0.0.1:8440/api/v1/pki/getmessage?nowait - returns immediately the current
status. Possible values [NO_READER, NO_CARD, CARD_ON].

- https://127.0.0.1:8440/api/v1/pki/getmessage?wait - waits till the next event occurs.

NOTE: When you plug off the reader with a card on, two messages are displayed: NO_CARD,
NO_READER. But the first one will be catch with getmessage?wait.

When you plug in a reader with a card on, occures READER_ON, CARD_ON. And as a result READER_ON
will be returned.

- https://127.0.0.1:8440/api/v1/pki/getreaderon?nowait - returns immediately with
READER_ON if it's attached and NO_READER otherwise.

- https://127.0.0.1:8440/api/v1/pki/getreaderon?wait - returns immediately with
READER_ON if a reader is attached or waits till it's attached.

- https://127.0.0.1:8440/api/v1/pki/getcardon?nowait - returns immediately with
NO_READER if a reader isn't attached, NO_CARD if a card isn't inserted or CARD_ON if a card is
inserted.

- https://127.0.0.1:8440/api/v1/pki/getcardon?wait - returns immediately with
NO_READER if a reader isn't attached or wait till the card will be on a reader.

NOTE: It will wait the next tap of a card even if a card is already on a reader.

- https://127.0.0.1:8440/api/v1/pki/getcardoff?nowait&cardid=<cardid> - returns
immediately with NO_READER if a reader isn't attached, NO_CARD if a card isn't inserted or
CARD_ON

if a card is inserted. Use cardid to wait when a specific card is removed.

- https://127.0.0.1:8440/api/v1/card/getcardoff?wait - returns immediately with
NO_READER if a reader isn't attached. if there is no card on a reader return NO_CARD immediately
else waits till the card is removed from the reader

- https://127.0.0.1:8440/api/abort?cancel-cookie=xxx - all of the wait methods support
cancel-cookie=xxx parameter.

For example, https://127.0.0.1:8440/api/v1/card/getmessage?wait&cancel-cookie=xxx.
Usage of Device Services 123

And by calling abort with a cancel-cookie, all waiting methods with the same specfied cookie are
terminated.

Response format:

Response format

{

result: [NO_READER, READER_ON, NO_CARD, CARD_ON],

cardid: <card id>,

readerid: <reader id>

}

cardid is used only with CARD_ON, and NO_CARD result.
124 Advanced Authentication

	Advanced Authentication
	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	About this Book
	Intended Audience

	1 Advanced Authentication Overview
	1.1 About Advanced Authentication
	1.2 Advanced Authentication Server Appliance Functionality
	1.3 Architecture
	1.3.1 Basic Architecture
	1.3.2 Enterprise Architecture
	1.3.3 Enterprise Architecture with Load Balancer
	1.3.4 How to Configure Load Balancer for Advanced Authentication Cluster

	1.4 Terms
	1.4.1 Authentication Method
	1.4.2 Authentication Chain
	1.4.3 Authentication Event

	2 About the API
	2.1 Logon Process
	2.2 Enrollment Process

	3 API Documentation
	3.1 Localization
	3.2 Working With Endpoints
	3.2.1 About Endpoints
	3.2.2 Create Endpoint
	3.2.3 Delete Endpoint

	3.3 Working With Endpoint Sessions
	3.3.1 About Endpoint Sessions
	3.3.2 Create Endpoint Session
	3.3.3 Read Information About Endpoint Sessions
	3.3.4 Delete Endpoint Session

	3.4 Provide Authentication
	3.4.1 About Login Process
	3.4.2 Provide Simple Authentication Using One Method In A Chain
	3.4.3 Provide Chained Authentication
	3.4.4 1:N Authentication
	3.4.5 Read Available Chains
	3.4.6 Priority of the Authentication Chains
	3.4.7 Delete Logon Process

	3.5 Working With Users
	3.5.1 About Users
	3.5.2 Getting Information About User

	3.6 Working With User's Data
	3.6.1 About User's Data
	3.6.2 Read User's Data
	3.6.3 Modifying User's Data
	3.6.4 Delete User's Data

	3.7 Working With Login Sessions
	3.7.1 About Login Sessions
	3.7.2 Read Information About Login Sessions
	3.7.3 Delete Login Sessions

	3.8 Working With Enrollment
	3.8.1 About Enroll Process
	3.8.2 Start Enroll Process
	3.8.3 Providing Data Into Enroll Process
	3.8.4 Delete Enroll Process

	3.9 Working With User's Templates
	3.9.1 About User's Templates
	3.9.2 Get User's Templates
	3.9.3 Create User's Templates From Enroll Session
	3.9.4 Assign User's Template To Another User
	3.9.5 Updating User's Template
	3.9.6 Delete User's Template

	3.10 Working With Authentication Methods
	3.10.1 Card Authentication Method
	3.10.2 Email Authentication Method
	3.10.3 Emergency Password Authentication Method
	3.10.4 FIDO U2F Authentication Method
	3.10.5 Fingerprint Authentication Method
	3.10.6 HOTP Authentication Method
	3.10.7 LDAP Password Authentication Method
	3.10.8 Password Authentication Method
	3.10.9 RADIUS Authentication Method
	3.10.10 Security Questions Authentication Method
	3.10.11 Smartphone Authentication Method
	3.10.12 SMS Authentication Method
	3.10.13 TOTP Authentication Method
	3.10.14 Voice Call Authentication Method
	3.10.15 NotarisID Authentication Method
	3.10.16 PKI Authentication Method

	3.11 Errors
	3.12 Troubleshooting

	4 Usage of Device Services
	4.1 Card Plug-in
	4.2 FIDO U2F Plug-in
	4.3 Fingerprint Plug-in
	4.4 PKI Plug-in

