
Developer Guide
Access Manager 4.2

May 2016

Legal Notice

For information about NetIQ legal notices, disclaimers, warranties, export and other use restrictions, U.S. Government
restricted rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

© 2015 NetIQ Corporation. All Rights Reserved.

For information about NetIQ trademarks, see https://www.netiq.com/company/legal/. All third-party trademarks are the
property of their respective owners.

https://www.netiq.com/company/legal/
https://www.netiq.com/company/legal/

Contents
About NetIQ Corporation 5
About this Book and the Library 7

1 Getting Started 9

1.1 Development Overview . 9
1.1.1 SDK Components . 10

1.2 Selecting an Integrated Development Environment . 10

2 Identity Server Authentication API 11

2.1 Prerequisites . 11
2.2 Understanding the Authentication Class . 11

2.2.1 Authentication Class Components. 11
2.2.2 How the Authentication Class Operates . 12

2.3 Creating an Authentication Class. 13
2.3.1 Project Requirements . 13
2.3.2 doAuthenticate Method . 13
2.3.3 Authentication Methods . 14
2.3.4 Class Property Methods . 15
2.3.5 Status Methods . 18
2.3.6 User Information Methods . 19
2.3.7 CallbackAuthentication Method . 21
2.3.8 Other Methods . 21

2.4 Understanding the Authentication Class Example . 21
2.4.1 Extending the Base Authentication Class . 22
2.4.2 Implementing the doAuthenticate Method . 22
2.4.3 Prompting for Credentials . 22
2.4.4 Verifying Credentials . 22
2.4.5 PasswordClass Example Code . 23

2.5 Localizing the Prompts in Your Authentication Class . 27
2.5.1 Creating a Properties File . 27
2.5.2 Creating a Resource Class . 28
2.5.3 Creating or Modifying a JSP Page. 28

2.6 Deploying Your Authentication Class . 29

3 LDAP Server Plug-In 33

3.1 Prerequisites . 33
3.2 Creating the LDAP Plug-In. 33
3.3 eDirectory Plug-In . 35
3.4 Installing and Configuring the LDAP Plug-In . 39
3.5 Troubleshooting . 40

4 The Policy Extension API 41

4.1 Getting Started . 41
4.1.1 Prerequisites . 41
4.1.2 Types of Policy Extensions . 42
4.1.3 How the Policy Engine Interacts with an Extension . 42

4.2 Common Elements and Tasks . 46
Contents 3

4 NetI
4.2.1 Implementing Common Elements . 46
4.2.2 Initializing the Factory Object. 47
4.2.3 Retrieving Information from the Identity Server User Store . 48
4.2.4 Implementing the Extension Interface . 49

4.3 Creating an Extension . 55
4.3.1 Creating a Context Data Extension . 56
4.3.2 Creating a Condition Extension . 60
4.3.3 Creating an Action Extension . 63

4.4 Installing and Configuring an Extension. 65
4.4.1 Installing the Extension on the Administration Console . 65
4.4.2 Distributing a Policy Extension to Access Manager Devices. 67
4.4.3 Distributing the Extension to Customers . 67

4.5 Sample Codes . 68
4.5.1 Data Extension for External Attribute Source Policy . 68
4.5.2 Template Policy Extensions . 68
4.5.3 LDAP Group Data Element . 69
4.5.4 PasswordClass . 69

5 Custom Rule in Risk-Based Authentication 71

5.1 Prerequisites . 71
5.2 Understanding the Rule Class . 71

5.2.1 Rules of Risk Authentication . 71
5.3 Creating a Custom Rule Class. 72
5.4 Understanding the Custom Rule Class Example . 74
5.5 Deploying Your Custom Rule Class . 79
5.6 Understanding Custom attributes in History SQL Database . 81

5.6.1 Custom Rule example . 82
5.7 Custom Geo Location Data Provider Integration . 82

5.7.1 Prerequisites . 82
5.7.2 Understanding the Geo Location Provider interface . 83
5.7.3 Creating a Custom Geo Location Provider Class . 83
5.7.4 Understanding the Custom Geo Location Provider Class Example 83
5.7.5 5.7.5 Deploying Your Custom Geo Location Provider Class . 84

A Revisions 87
Q Access Manager 4.2 Developer Guide

About NetIQ Corporation

We are a global, enterprise software company, with a focus on the three persistent challenges in your
environment: Change, complexity and risk—and how we can help you control them.

Our Viewpoint
Adapting to change and managing complexity and risk are nothing new

In fact, of all the challenges you face, these are perhaps the most prominent variables that deny
you the control you need to securely measure, monitor, and manage your physical, virtual, and
cloud computing environments.

Enabling critical business services, better and faster

We believe that providing as much control as possible to IT organizations is the only way to
enable timelier and cost effective delivery of services. Persistent pressures like change and
complexity will only continue to increase as organizations continue to change and the
technologies needed to manage them become inherently more complex.

Our Philosophy
Selling intelligent solutions, not just software

In order to provide reliable control, we first make sure we understand the real-world scenarios in
which IT organizations like yours operate — day in and day out. That's the only way we can
develop practical, intelligent IT solutions that successfully yield proven, measurable results. And
that's so much more rewarding than simply selling software.

Driving your success is our passion

We place your success at the heart of how we do business. From product inception to
deployment, we understand that you need IT solutions that work well and integrate seamlessly
with your existing investments; you need ongoing support and training post-deployment; and you
need someone that is truly easy to work with — for a change. Ultimately, when you succeed, we
all succeed.

Our Solutions
 Identity & Access Governance

 Access Management

 Security Management

 Systems & Application Management

 Workload Management

 Service Management
About NetIQ Corporation 5

Contacting Sales Support
For questions about products, pricing, and capabilities, contact your local partner. If you cannot
contact your partner, contact our Sales Support team.

Contacting Technical Support
For specific product issues, contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. If you have suggestions for
improvements, click Add Comment at the bottom of any page in the HTML versions of the
documentation posted at www.netiq.com/documentation. You can also email Documentation-
Feedback@netiq.com. We value your input and look forward to hearing from you.

Contacting the Online User Community
Qmunity, the NetIQ online community, is a collaborative network connecting you to your peers and
NetIQ experts. By providing more immediate information, useful links to helpful resources, and
access to NetIQ experts, Qmunity helps ensure you are mastering the knowledge you need to realize
the full potential of IT investments upon which you rely. For more information, visit http://
community.netiq.com.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 1-888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
6 NetIQ Access Manager 4.2 Developer Guide

http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
http://www.netiq.com/support/contactinfo.asp
mailto:support@netiq.com
http://www.netiq.com/support
http://www.netiq.com/documentation
mailto:Documentation-Feedback@netiq.com
mailto:Documentation-Feedback@netiq.com
http://community.netiq.com
http://community.netiq.com

About this Book and the Library

This document explains how to incorporate various security management features of NetIQ Access
Manager with your proprietary applications. Unlike many software development kits (SDKs) that rely
on application programming interfaces to expose application functionality, this component primarily
leverages how Access Manager extends existing Liberty Alliance, OASIS, SAML, and other
specifications in defining and exchanging user identities.

This document will be updated as new functionality is released for developers to enhance the
capabilities of Access Manager with your own applications and Web services.

Intended Audience
The audience for this documentation includes advanced network security software engineers and
experienced network administrators who understand the Liberty Alliance, Java* development, and
secure networking issues to enforce the security requirements the Liberty Alliance.

Specifically, you should have advanced understanding of Internet protocols such as:

 Extensible Markup Language (XML)

 Simple Object Access Protocol (SOAP)

 Security Assertion Markup Language (SAML)

 Public Key Infrastructure (PKI) digital signature concepts and Internet security

 Secure Socket Layer/Transport Layer Security (SSL/TSL)

 Hypertext Transfer Protocol (HTTP and HTTPS)

 Uniform Resource Identifiers (URIs)

 Domain Name System (DNS)

 Web Services Description Language (WSDL)

Other Information in the Library
The library provides the following information resources:

 NetIQ Access Manager Appliance 4.2 Administration Guide

 NetIQ Access Manager Appliance 4.2 Installation and Upgrade Guide

 NetIQ Access Manager 4.2 Best Practices Guide

 Performance and Sizing Guidelines
About this Book and the Library 7

https://www.netiq.com/documentation/netiqaccessmanager4/resources/performance_sizing/performance_sizing.pdf

8 NetIQ Access Manager 4.2 Developer Guide

1 1Getting Started

NetIQ Access Manager provides a component-based framework for building secure federated
identity network applications based on Liberty Alliance project standards. This framework is designed
to help developers make a rapid transition into Liberty’s architecture.

The Liberty components enable the convenience of single sign-on and secure business-to-employee,
business-to-customer, and business-to-business relationships across a variety of applications within
a trusted Web services model. All components are standards-based and designed for maximum
interoperability.

This section explains how to get started with the Access Manager SDK and contains the following
topics:

 Section 1.1, “Development Overview,” on page 9

 Section 1.2, “Selecting an Integrated Development Environment,” on page 10

1.1 Development Overview
This SDK describes how to design a flexible and expandable access management system to enable
your applications to interact with the identity management capabilities of Access Manager, including
federation, provisioning, and the secure delivery of identity information (user name and password,
and X.509 certificates) to client-based applications.

The SDK is designed for those who want to develop new applications or integrate existing
applications with the standards-based security architecture of Access Manager. It allows NetIQ
partners and third-party developers to do the following:

 Leverage the identity management and policy capabilities of the product.

 Provide access to various product features, including:

 Liberty-based federated identity

 Secure credential exchange

 User provisioning services

 Authentication and authorization methods and policies

 SAML assertion generation and processing

NOTE: To coordinate the development of Liberty-enabled access management applications within
the NetIQ industry framework, contact namsdk@netiq.com.
Getting Started 9

1.1.1 SDK Components

The Access Manager developer components are included in the Access Manager Developer Kit.
However, the complete Access Manager package, including the install, is not included in the NDK.
For complete current product information, see the NetIQ Access Manager Product Site.

The SDK does not include the JAR files required from the product to compile your extension. You
need access to an Access Manager installation to obtain these files. For an evaluation version, see
Novell Downloads and search for Access Manager.

1.2 Selecting an Integrated Development Environment
The Java applications can be developed on a number of open source IDEs such as Eclipse* and
NetBeans*.
10 NetIQ Access Manager 4.2 Developer Guide

https://www.netiq.com/documentation/access-manager-developer-documentation/sampledocs/
https://www.netiq.com/products/access-manager/
http://download.novell.com/index.jsp

2 2Identity Server Authentication API

This section provides details about how to create a custom authentication class for the Identity
Server. The API presented here allows developers to leverage their own authentication mechanisms
within the Access Manager architecture. The following topics are covered:

 Section 2.1, “Prerequisites,” on page 11

 Section 2.2, “Understanding the Authentication Class,” on page 11

 Section 2.3, “Creating an Authentication Class,” on page 13

 Section 2.4, “Understanding the Authentication Class Example,” on page 21

 Section 2.5, “Localizing the Prompts in Your Authentication Class,” on page 27

 Section 2.6, “Deploying Your Authentication Class,” on page 29

2.1 Prerequisites
 Access Manager.

 Your development environment requires the same installation as outlined in the NetIQ Access
Manager Appliance 4.2 Installation and Upgrade Guide.

 Copy the nidp.jar and NAMCommon.jar files in the following directory of your Identity Server to
your development project:

 On Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 On Windows: C:\Program Files (x86)\Novell\Tomcat\webapps\nidp\WEB-INF\lib

2.2 Understanding the Authentication Class
Before developing an authentication class, review the following concepts:

 Section 2.2.1, “Authentication Class Components,” on page 11

 Section 2.2.2, “How the Authentication Class Operates,” on page 12

2.2.1 Authentication Class Components

The Identity Server is the central authentication and identity access point for all services performed
by Access Manager. The Identity Server supports numerous ways for users to authenticate. These
include name/password, RADIUS token-based authentication, and X.509 digital certificates.

For more detailed information about the Identity Server and its relation to other Access Manager
components, see “Creating Authentication Classes” in the NetIQ Access Manager Appliance 4.2
Administration Guide.
Identity Server Authentication API 11

The configuration and interaction of the following entities defines how authentication takes place
within Identity Server:

 User Stores: The LDAP directory that stores the user credentials. Access Manager can be
configured to use the following directories: eDirectory™, Active Directory*, or Sun One*. Users
set up their user stores when creating the Identity Server configuration.

 Authentication Classes: The code (a Java class) that implements a particular authentication
type (name/password, RADIUS, and X.509) or means of obtaining credentials. This is what you
create with this API.

 Authentication Methods: Pairs an authentication class with one or more user stores, primarily
to identify authenticated users. Authentication methods also can be designed to identify entities
other than end users.

 Authentication Contracts: The basic unit of authentication within Identity Server. Contracts are
identified by a unique uniform resource identifier (URI) that can be used by Access Gateways
and agents to protect resources. Contracts are comprised of one or more authentication
methods used to uniquely identify a user.

Figure 2-1 illustrates the components of a contract:

Figure 2-1 Local Authentication Components

2.2.2 How the Authentication Class Operates

Figure 2-2 illustrates an example of how an authentication class is used to authenticate to an Identity
Server. It uses a single user store located on an LDAP server to verify name and password
credentials.

Figure 2-2 How the Authentication Class Handles a User Request.

1. A user initializes an authentication request from a browser.

2. The request causes the default authentication class to execute. This class defines what
credentials are required for authentication, and it returns a response prompting the user for the
required credentials (that is, username, password, x509 certificate, etc.). The user enters the
credentials.

3. The class obtains the credentials, then passes them to the user store for verification and
validation.

4. If credentials are valid, the user store returns the user’s DN (or other information specified by the
method) and allows user access. If the information is not valid, access is denied.

Class Method ContractUser Stores

URI
12 NetIQ Access Manager 4.2 Developer Guide

The authentication API also enables you to implement more complex authentication using X.509
certificates, data generated by token devices, biometric data, or other data you specify. In such
instances, you must specify the outside resources that contain the credential stores that are
configured to validate the required user credentials.

2.3 Creating an Authentication Class
The Identity Server architecture provides a programming interface that allows you to create a custom
authentication class that can be plugged in to the Access Manager system. Custom authentication
classes can define additional ways of obtaining and validating end-user credentials. You use the
Access Manager Administration Console to identify your custom classes and specify any needed
initialization properties. Custom classes must be configured to be in the class path of the Identity
Server.

The following sections explain project requirements and the methods available for creating a custom
class:

 Section 2.3.1, “Project Requirements,” on page 13

 Section 2.3.2, “doAuthenticate Method,” on page 13

 Section 2.3.3, “Authentication Methods,” on page 14

 Section 2.3.4, “Class Property Methods,” on page 15

 Section 2.3.5, “Status Methods,” on page 18

 Section 2.3.6, “User Information Methods,” on page 19

 Section 2.3.7, “CallbackAuthentication Method,” on page 21

 Section 2.3.8, “Other Methods,” on page 21

For the Javadoc associated with these methods, see LocalAuthenticationClass.

2.3.1 Project Requirements

The project used to create the custom class must include the nidp.jar file shipped with Access
Manager. This JAR file is located here:

 Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 WIndows: C:\Program Files (x86)\Novell\Tomcat\webapps\nidp\WEB-INF\lib

2.3.2 doAuthenticate Method

A customized authentication class must extend the abstract class
com.novell.nidp.authentication.local.LocalAuthenticationClass, which is found in
nidp.jar. The base class contains a single required constructor. Your custom class must implement
one of two methods, either doAuthenticate(), which is preferred, or authenticate(), which was used in
previous releases of this SDK.

The doAuthenticate() method is new in Access Manager 3.0 SP3. Previous releases used the
authenticate() method. The older method is still supported, but new classes created for SP3 and later
should use the doAuthenticate() method because it performs additional Novell SecretStore® checks.
SecretStore now supports a security flag that locks the SecretStore when secrets are modified. The
doAuthenticate() method performs checks to determine the state of the SecretStore. If it is locked, it
prompts the user to supply the passphrase that can be used to unlock the SecretStore. If you use the
Identity Server Authentication API 13

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html

older authenticate() method and the SecretStore is locked, no indication of this state is returned. The
SecretStore remains locked, and Access Manager cannot retrieve the secrets for policies or
applications that require them.

The Identity Server calls the doAuthenticate() method during its interaction with the class. Multiple
calls to authenticate often are made to collect the necessary authentication credentials. The method
returns a value indicating any of the following authentication states:

When the doAuthenticate() method succeeds, it needs to return AUTHENTICATED. It can succeed
only when it obtains a single NIDPPrincipal object from a user store using the credentials obtained to
verify the principal. After credentials are obtained, each user store is searched to locate a user
identified by the credentials. Each user store is searched until one of the follow conditions is met:

 Successful authentication: Indicates that a single user/object is located.

 Unsuccessful authentication with an error: Indicates that more than one user/object is
located.

2.3.3 Authentication Methods

When implementing the doAuthenticate method(), you can use the following methods to retrieve and
manage authentication credentials:

Constant Description

HANDLED_REQUEST The request has been handled and a response provided.
Further processing or information is needed to complete
authentication. Typically, this value is returned when a page is
returned to query for credentials.

SHOW_JSP Further information is needed to complete authentication.
Typically, this value is returned when a page is returned to
query for credentials.

NOT_AUTHENTICATED The authentication failed.

AUTHENTICATED The authentication succeeded in identifying a single
NIDPPrincipal object (user).

CANCEL The authentication process was canceled. This typically occurs
only during authentication after a request from a service
provider.

PWD_EXPIRING Although authentication is successful, a user’s password is
about to expire. This condition causes a redirection to the
expired password servlet if one is defined on the authentication
contract.

PWD_EXPIRED Authentication is unsuccessful, because the user’s password
is expired. This condition causes a redirection to the expired
password servlet if one is defined on the authentication
contract.

Method Description

authenticateWithPassword() Takes a user ID and password as its arguments. The method succeeds if
a user with the given ID and password is located.

See authenticateWithPassword
14 NetIQ Access Manager 4.2 Developer Guide

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#authenticateWithPassword(java.lang.String, java.lang.String)

2.3.4 Class Property Methods

Typically, classes have properties assigned to them. The installed Identity Server authentication
classes have associated properties. Because these classes and their properties are known, the
Administration Console displays configuration pages for their required properties. For information
about these properties, see “Creating Authentication Classes” in the NetIQ Access Manager
Appliance 4.2 Administration Guide.

When you deploy your class, the Administration Console has a generic page that allows the
administrator to configure property key name and value pairs. As you are creating your class, you
need to create a key name and value pair for each configuration item that you want input from the
administrator. For example, if you want to allow the administrator to use a different JSP* page for the
login form, you can create a key name of JSP with an expected value of filename. You would use the
getProperty() method to obtain the value of the JSP key name. If the method returns null, you would
have your code use your default JSP page. You need to document any key names that you create
and the type of value that it requires, and make this information available to the administrator.

authenticateWithQuery() Takes a string in the form of an LDAP query and a password as its as its
arguments. It succeeds if the query result locates a single user with the
associated password.

See authenticateWithQuery

findPrincipals() Locates the users in a directory that match the specified user ID. The
method does not do any password verification. It returns an array of
NIDPPrincipal objects that result from the search.

See findPrincipals

findPrincipalsByQuery() Locates the users in a directory that match the specified LDAP query. The
method does not do any password verification. It returns an array of
NIDPPrincipal objects that match the query.

See findPrincipalsByQuery

getCredentials() Gets the list of credentials used to authenticate the user or principal. The
Identity Server uses this method to obtain the credentials verified by an
authentication class for possible later use with an Identity Injection policy.
An authentication class does not typically call this method.

See getCredentials

addCredential() Adds a credential used for authentication to a user or principal. This
method is called by a class so that the Identity Server can call the
getCredentials() method.

See addCredential

addLDAPCredentials() Adds an LDAP credential, other than the password, to a user or principal.

See addLDAPCredentials

clearCredentials() Clears the credentials of the user or principal.

See clearCredentials

Method Description
Identity Server Authentication API 15

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#authenticateWithQuery(java.lang.String, java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#findPrincipals(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#findPrincipalsByQuery(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getCredentials()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#addCredential(WSCQToken, XMLBase)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#addLDAPCredentials()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#clearCredentials()

The class property methods return all values as strings, but you can manipulate the string value as
required by your code. For example, if your key name requires a number and the administrator
configures the key name with a letter value, you need to decide how to handle such an error (continue
and use a default value or throw an exception). As a minimum, the error should be logged, so that the
administrator can discover the cause of the configuration problem.

The following methods are available for retrieving information about configuration properties.

Method Description

getProperty() Obtains specific properties needed by an authentication class. Property
values are specified when configuring the authentication class in the
Administration Console.

See getProperty

getBooleanProperty() Returns a Boolean value for the specified property and sets a default
value if value cannot be found.

See getBooleanProperty

getType() Identifies one of the authentication types known to the Identity Server.
The value returned by this method is used primarily when a service
provider initiates an authentication request by asking for a specific
authentication type.

When such a request is made, a check of all executed contracts is made.
If a contract has executed a method by using a class that defines the
particular type, the authentication succeeds. See “Supported
Authentication Class Types” on page 17 for a list of supported types.

See getType

getProvisionURL() Gets the URL to call to provision a user and returns the URL to redirect to
for user provisioning, or Null if it is not available.

See getProvisionURL

getReturnURL() Returns the URL that any user interactions should post data back to, or
Null if it is not available.

See getReturnUrl

mustPersist() Indicates whether the class must persist for interaction with the user
during the entire authentication session. If this is the case, returns True.
For more information about persistence, see “Class Persistence” on
page 18.

See mustPersist

isFirstInstance() Determines if this authentication class instance is the first instance after
the system was started or was reconfigured. Returns True if it is the first
instance.

See isFirstInstance

isCancelAppropriate() Determines if the option to cancel an authentication is appropriate for this
instance.

See isCancelAppropriate
16 NetIQ Access Manager 4.2 Developer Guide

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getProperty(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getBooleanProperty(java.lang.String, boolean)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getType()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getProvisionURL()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getReturnURL()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#mustPersist()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isFirstInstance()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isCancelAppropriate()

Supported Authentication Class Types

When you create an authentication class, you must specify an authentication type. An authentication
type is required, because some service providers request contracts, not by URI, but by authentication
type. The Identity Server can reply to such a request with all the contracts that fit the requested
authentication type.

The Identity Server supports the following types of authentication classes:

isDefinesUser() Determines if the authentication class instance needs to identify a user. If
so, returns True.

For more information, see the Identifies User option in “Configuring
Authentication Methods” in the NetIQ Access Manager Appliance 4.2
Administration Guide.

See also isDefinesUser.

isUserIdentification() Determines if this authentication class instance is the result of an
assertion being returned to an unauthenticated session. The request for
authentication is the result of an assertion from an identity provider, and it
is necessary to identify the user for the purpose of completing the
federation process.

See isUserIdentification.

isFirstCallAfterPrevMethod() Defines the sequence of the authentication process after a method is
called and determines if this authentication class instance is the result of
an assertion being returned to an unauthenticated session.

This is useful to determine if an authentication class begins execution
immediately after the successful completion of another class. This
enables a class to know if credentials were actually used by the previous
class.

See isFirstCallAfterPrevMethod.

isPendingAuthnRequest() Determines whether there is a pending authentication request from a
Service Provider. Returns True if there is a pending request, otherwise,
returns False.

See isPendingAuthnRequest.

getAuthnRequest() Gets the request that might have caused this authentication class to be
invoked.

See getAuthnRequest

Constant Description

AuthnConstants.BASIC Specifies a basic authentication over HTTP. It uses the login
page of the browser to prompt the user for a name and a
password.

AuthnConstants.PASSWORD Specifies a form-based authentication using a name and
password over HTTP.

Method Description
Identity Server Authentication API 17

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isDefinesUser()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isUserIdentification()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isFirstCallAfterPrevMethod()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isPendingAuthnRequest()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getAuthnRequest()

Class Persistence

Persistence of a class is session based. A session is created when a user is prompted to provide
credentials for a contract. Each method of a contract gets executed in the order defined in the
contract. When a method executes, it creates an instance of the class. The class can persist between
requests for credentials if necessary. If keeping state is not required by the class, then it does not
need to persist. By default, classes persist. If this is not the desired behavior, use the mustPersist()
method to return False.

If the class is configured to persist, the instance of the class persists as long as the doAuthenticate()
or authenticate() method of the class returns HANDLED_REQUEST. When this method returns any
other value, the instance of the class is removed. For a list of possible return values, see
Section 2.3.2, “doAuthenticate Method,” on page 13.

2.3.5 Status Methods

The following methods allow you to set status information about the authentication instance, to
retrieve status information about the instance, to set and get error messages, and to log messages.

AuthnConstants.PROTECTED_BASIC Specifies a basic authentication over HTTPS. It uses the
login page of the browser to prompt the user for a name and
a password.

AuthnConstants.PROTECTED_PASSWORD Specifies a form-based authentication using a name and
password over HTTPS.

AuthnConstants.X509 Specifies authentication using an X.509 certificate.

AuthnConstants.TOKEN Specifies a token-based authentication type.

AuthnConstants.SMARTCARD Specifies a smart-card-based authentication method.

AuthnConstants.SMARTCARDPKI Specifies a multiple authentication method using a smart
card.

AuthnConstants.OTHER Default. Used for all other types not defined above.

Constant Description

Method Description

setFailure() Sets a failure state for the current authentication instance.

See setFailure

isFailure() Indicates whether or not the authentication failed. Returns True if
authentication failed, otherwise, returns False.

See isFailure

setUserErrorMsg() Sets the error message to be displayed to an end user.

See setUserErrorMsg

getUserErrorMsg() Gets the error message that will be displayed to the end user.

See getUserErrorMsg
18 NetIQ Access Manager 4.2 Developer Guide

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setFailure()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isFailure()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setUserErrorMsg(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getUserErroMsg()

Authentication Error Messages

The following error messages have been defined for the LocalAuthenticationClass and are returned:

2.3.6 User Information Methods

The following methods allow you to set the identity of who has been authenticated and to set values
for any associated attributes. If the instance is persistent, you can retrieve this same information.
User authorities are the LDAP servers that the Identity Server has been configured to use for verifying
authentication credentials. The principal user authority is the LDAP server that was used to verify the
user’s credentials.

getLogMsg() Gets the message for the associated error ID. This method is used
primarily by the Identity Server to obtain the credentials verified by an
authentication class.

See getLogMsg

setErrorMsg() Sets the error message to be seen by the end user, as well as the error
message to be put into the log file.

See setErrorMsg.

See “Authentication Error Messages” on page 19.

setErrorMsg() Sets the error message to be seen by the end user, as well as the error
message with a parameter to be put into the log file.

See setErrorMsg.

See “Authentication Error Messages” on page 19.

Value Error Message Description

LOG_INCORRECT_PASSWORD The password entered does not match any of those authorized in the
specified user stores.

LOG_INTRUDER_DETECTION (eDirectory only) The user account is locked because of intruder
detection.

LOG_RESTRICTED_ACCOUNT (eDirectory only) This account has restricted access and the user is
attempting to access it during a time period when the account has been
configured to deny access.

LOG_DISABLED_ACCOUNT The account requested is disabled.

LOG_BAD_CONNECTION The authentication channel is unable to communicate the user request.

Method Description

Method Description

getPrincipal() Gets the principal authenticated by this class. This value is Null if the
authentication class is set to not define a user or if the authentication fails. This
method is used primarily by the Identity Server to obtain the credentials verified
by an authentication class.

See getPrincipal
Identity Server Authentication API 19

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getLogMsg()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setErrorMsg(java.lang.String, java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setErrorMsg(java.lang.String, java.lang.String, java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getPrincipal()

getPrincipalAttributes() Gets the attributes for the principal that has been authenticated.

See getPrincipalAttributes

getPrincipalUserAuthority() Gets the user authority for the identified principal, assuming that m_Principal
has been set.

See getPrincipalUserAuthority

getUserAuthorityCount() Gets the number of searchable user authorities.

See getUserAuthorityCount

getUserAuthority() Gets a specific user authority. The getUserAuthorityCount() method returns the
index range.

See getUserAuthority

setPrincipal() Sets the principal to be authenticated by this class.

See setPrincipal

setPrincipalAttributes() Sets attributes for a principal that has been authenticated.

See setPrincipalAttributes

setSessionProperties() Sets user session properties that can used later by other custom authentication
classes as well as risk-based authentication rules.

With the following code snippet, you can set session properties using custom
authentication class:

 // Create a new HashMap

HashMap<String, Object> map = new HashMap<String, Object>();

map.put("Name", "InuputName");

map.put("ExternalEmail", "email@email.com");

// Call the API to set the Map

setSessionProperties(map);

getSessionProperties() Gets user session properties that were previously set by other custom
authentication classes.

With the following code snippet, you can set session properties using custom
authentication class:

// Create a new HashMap

HashMap<String, Object> map = new HashMap<String, Object>();

// Get the session properties from session

map = getSessionProperties();

String email = (String)map.get("ExernalEmail");

Method Description
20 NetIQ Access Manager 4.2 Developer Guide

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getPrincipalAttributes%28java.lang.String%5b%5d%29
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getPrincipalUserAuthority%28%29
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getUserAuthorityCount%28%29
http://developer.novell.com/documentation/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getUserAuthority%28int%29
http://developer.novell.com/documentation/nacm/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setPrincipal%28NIDPPrincipal%29
http://developer.novell.com/documentation/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setPrincipalAttributes%28java.lang.String%5b%5d,%20java.lang.String%5b%5d%29

2.3.7 CallbackAuthentication Method

To use a custom authentication class in the WS-Trust/STS authentication, implement the
com.novell.nidp.authentication.local.CallbackAuthentication interface in the
authentication class.

To perform the STS authentication, you need to implement the cbAuthenticate method in the
authentication class.

For a sample implementation of cbAuthenticate, see Section 2.4.5, “PasswordClass Example
Code,” on page 23.

2.3.8 Other Methods

The following tables lists other useful methods:

2.4 Understanding the Authentication Class Example
This section demonstrates how a password authentication class might be implemented by using the
PasswordClass. All authentication classes are derived from the LocalAuthenticationClass, so you
need to understand the key methods within it:

 Section 2.4.1, “Extending the Base Authentication Class,” on page 22

 Section 2.4.2, “Implementing the doAuthenticate Method,” on page 22

 Section 2.4.3, “Prompting for Credentials,” on page 22

 Section 2.4.4, “Verifying Credentials,” on page 22

 Section 2.4.5, “PasswordClass Example Code,” on page 23

Method Description

showError() Causes an error JSP to be executed to display an error message.

See showError

showJSP() Forwards execution to a specific JSP.

See showJSP

escapeName() Escapes characters typed by the user.

See escapeName

initializeRequest() Initializes the authentication class with the current request/response.

Normally, this method is called only by the Identity Server when it
initializes the authentication class with the current request/response.

See initializeRequest.
Identity Server Authentication API 21

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#showError(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#showJSP(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#escapeName(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#initializeRequest(HttpServletRequest, HttpServletResponse, NIDPSession, boolean, java.lang.String)
http://developer.novell.com/documentation/samplecode/nacm32_sample/

2.4.1 Extending the Base Authentication Class

Authentication classes extend the base class LocalAuthenticationClass as shown on lines 11 and 12
of “PasswordClass Example Code” on page 23. The LocalAuthenticationClass has a single
constructor that must be called as shown in lines 20 - 23. The Identity Server uses this constructor to
pass the necessary properties and user store information defined in the Administration Console to the
class.

The LocalAuthenticationClass defines a single abstract method, doAuthenticate(), which must be
implemented by new classes. During user authentication, the Identity Server creates an instance of
an authentication class and calls the authenticate() method, which in turn calls the doAuthenticate()
method. By default, the class instance remains persistent, allowing the state to be preserved between
requests/responses while credentials are obtained. If persistence is not needed, the mustPersist()
method can be overloaded to return False so new instances of the class are created upon each call to
the authenticate() method.

2.4.2 Implementing the doAuthenticate Method

Lines 43 - 65 in the PasswordClass Example Code show how the doAuthenticate() method is used.
Return values from this method indicate to the Identity Server that the class has succeeded or failed
to authenticate a user or that additional user credentials are required and must be obtained.

The call to the isFirstCallAfterPrevMethod() method on line 49 determines if the call to the class is
following a successful authentication by another class executed by a method. If that is the case, any
credentials provided for the previous class most likely are not valid for this class and should not be
tested for (line 52). In this example, the handlePostedData() method is called to obtain and validate a
username and password entered by a user.

2.4.3 Prompting for Credentials

When lines are encountered in the PasswordClass Example Code, it has been determined that a
page needs to be returned through the execution of a JSP to enable credentials to be prompted for
and returned. Tests are made to determine if provisioning should be enabled, and if a Cancel button
and federated providers should be displayed. The return value of HANDLED_REQUEST or
SHOW_JSP indicates that the class has responded to the request and requires more information to
proceed.

2.4.4 Verifying Credentials

The handlePostedData() method does much of the important work of this example (lines 74 - 114 in
the PasswordClass Example Code). Lines 81 - 100 attempt to obtain the credentials.

Line 86 provides an example of obtaining a class property configured by an administrator. In this
case, a query can be defined by the administrator that can be used to look up a user instead of using
the username and password. If the query is used, the authenticateWithQuery method is called at line
88. If a query is not available, the authenticateWithPassword() method is called at line 98.

If the credentials correctly identify the user, the value AUTHENTICATED is returned. If they fail to
identify the user, NOT_AUTHENTICATED is returned.

When eDirectory is the user store and a password has either expired or is expiring, the return values
PWD_EXPIRED and PWD_EXPIRING can be returned respectively. See lines 102 - 108.

Line 111 demonstrates how an attribute is used to set an error message that is displayed to the user
by calling the method getUserErrorMsg().
22 NetIQ Access Manager 4.2 Developer Guide

2.4.5 PasswordClass Example Code

package com.novell.nidp.authentication.local;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Properties;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.eclipse.higgins.sts.api.ISecurityInformation;
import org.eclipse.higgins.sts.api.IUsernameToken;

import com.novell.nidp.NIDPConstants;
import com.novell.nidp.NIDPException;
import com.novell.nidp.NIDPPrincipal;
import com.novell.nidp.NIDPSession;
import com.novell.nidp.NIDPSessionData;
import com.novell.nidp.authentication.AuthnConstants;
import com.novell.nidp.common.authority.PasswordExpiredException;
import com.novell.nidp.common.authority.PasswordExpiringException;
import com.novell.nidp.common.authority.UserAuthority;
import com.novell.nidp.common.protocol.AuthnRequest;
import com.novell.nidp.liberty.wsc.cache.WSCCacheEntry;
import com.novell.nidp.logging.NIDPLog;
import com.novell.nidp.saml.SAMLAuthMethods;
import com.novell.security.sso.SecretStore;
import com.sun.xml.wss.impl.callback.UsernameCallback;

public class PasswordClass extends LocalAuthenticationClass implements
STSAuthenticationClass, CallbackAuthentication {
 private String m_Error;

 // for NRL
 LocalAuthenticationClass basicClass = null;

 /**
 * Constructor for form based authentication
 *
 * @param props
 * Properties associated with the implementing class
 * @param uStores
 * List of ordered user stores to authenticate against
 */
 public PasswordClass(Properties props, ArrayList<UserAuthority> uStores) {
 super(props, uStores);
 // for NRL
 if (m_LECP)
 basicClass = new BasicClass(props, uStores);
 }

 /**
 * Get the authentication type this class implements
 *
 * @return returns the authentication type represented by this class
 */
Identity Server Authentication API 23

 public String getType() {
 return AuthnConstants.PASSWORD;
 }

 public void initializeRequest(HttpServletRequest request, HttpServletResponse
response, NIDPSession session, NIDPSessionData data, boolean following, String url)
{
 super.initializeRequest(request, response, session, data, following, url);
 if (basicClass != null)
 basicClass.initializeRequest(request, response, session, data,
following, url);
 }

 /**
 * Perform form based authentication. This method gets called on each
 * response during authentication process
 *
 * @return returns the status of the authentication process which is one of
 * AUTHENTICATED, NOT_AUTHENTICATED, CANCELLED, HANDLED_REQUEST,
 * PWD_EXPIRING, PWD_EXPIRED
 */
 protected int doAuthenticate() {
 // If this is the first time the class is called following another
 // method
 // we want to display the form that will get the credentials. This
 // method
 // prevents a previous form from providing data to the next form if any
 // parameter names end up being the same
 if (!isFirstCallAfterPrevMethod()) {
 // This wasnt first time method was called, so see if data can be
 // processed
 int status = handlePostedData();
 if (status != NOT_AUTHENTICATED)
 return status;
 }

 String jsp = getProperty(AuthnConstants.PROPERTY_JSP);
 if (jsp == null || jsp.length() == 0)
 jsp = NIDPConstants.JSP_LOGIN;

 m_PageToShow = new PageToShow(jsp);
 m_PageToShow.addAttribute(NIDPConstants.ATTR_URL, (getReturnURL() != null ?
getReturnURL() : m_Request.getRequestURL().toString()));
 if (getAuthnRequest() != null && getAuthnRequest().getTarget() != null)
 m_PageToShow.addAttribute("target", getAuthnRequest().getTarget());

 String username = m_Request.getParameter(NIDPConstants.PARM_USERID);
 if (username != null) // user name is already present
 m_PageToShow.addAttribute("username", username);

 // If we are displaying in the credential window and the error has not
 // been displayed yet, go ahead and show it. This can happened when
 // the wrong credentials as posted from a third party site
 String option = m_Request.getParameter("option");
 if (option != null && option.equals("credential") && m_Error != null) {
 m_PageToShow.addAttribute(NIDPConstants.ATTR_LOGIN_ERROR, m_Error);
 m_Error = null;
 }

 return SHOW_JSP;
24 NetIQ Access Manager 4.2 Developer Guide

 }

 protected int doAuthenticateNRL() {
 /*
 * Presently NRL always gets the credentials passed in the Basic header
 * over Liberty LECP So, invoking basic class todo the processing
 */
 int status = basicClass.doAuthenticate();
 if (basicClass.getPrincipal() != null) {
 this.setPrincipal(basicClass.getPrincipal());
 this.m_Credentials = basicClass.getCredentials();
 } else {
 this.m_ExpiredPrincipal = basicClass.getExpiredPrincipal();
 this.setErrorMsg(basicClass.getUserErrorMsg(), basicClass.getLogMsg());
 setFailure();
 this.m_PasswordException = basicClass.getPasswordException();
 }
 return status;
 }

 /**
 * Get and process the data that is posted from the form
 *
 * @return returns the status of the authentication process which is one of
 * AUTHENTICATED, NOT_AUTHENTICATED, CANCELLED, HANDLED_REQUEST,
 * PWD_EXPIRING, PWD_EXPIRED
 */
 private int handlePostedData() {
 // Look for a name and password
 String id = m_Request.getParameter(NIDPConstants.PARM_USERID);
 String password = m_Request.getParameter(NIDPConstants.PARM_PASSWORD);

 setUserId(id);

 // Check to see if admin has setup for a custom query
 String ldapQuery = checkForQuery();

 try {
 // using admin defined attributes for query
 if (ldapQuery != null) {
 if (authenticateWithQuery(ldapQuery, password))
 return AUTHENTICATED;
 }

 // If using default of name and password
 else {
 if (id == null || id.length() == 0)
 return NOT_AUTHENTICATED;

 if (authenticateWithPassword(id, password))
 return AUTHENTICATED;
 }
 } catch (PasswordExpiringException pe) {
 return PWD_EXPIRING;
 } catch (PasswordExpiredException pe) {
 return PWD_EXPIRED;
 }

 m_Error = getUserErrorMsg();
 return NOT_AUTHENTICATED;
Identity Server Authentication API 25

 }

 public NIDPPrincipal handleSTSAuthentication(ISecurityInformation
securityInformation) {
 IUsernameToken usernameToken = (IUsernameToken)
securityInformation.getFirst(IUsernameToken.class);

 if (null != usernameToken) {
 try {
 if (authenticateWithPassword(usernameToken.getUsername(),
usernameToken.getPassword()))
 return getPrincipal();
 } catch (PasswordExpiringException pe) {
 return getPrincipal();
 } catch (PasswordExpiredException pe) {
 }
 }
 return null;
 }

 @Override
 public NIDPPrincipal cbAuthenticate(CallbackHandler cbHandler) {
 PasswordValidationCallback pwdCallback = new PasswordValidationCallback();
 Callback[] callbacks = new Callback[] { pwdCallback };

 NIDPPrincipal principal = null;
 try {
 cbHandler.handle(callbacks);
 if (pwdCallback.getUsername() != null) {

 String query = getProperty(AuthnConstants.PROPERTY_QUERY);
 String ldapQuery = null;
 boolean status = false;
 if (query != null)
 {
 ldapQuery = getLDAPQueryString(query,pwdCallback.getUsername());
 if (authenticateWithQuery(ldapQuery,pwdCallback.getPassword()))
 status = true;
 }
 else if (authenticateWithPassword(pwdCallback.getUsername(),
pwdCallback.getPassword()))
 status = true;

 if (status == true) {
 principal = getPrincipal();
 principal.setAuthMethod(SAMLAuthMethods.PASSWORD);
 return principal;
 }
 }

 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (UnsupportedCallbackException e) {
26 NetIQ Access Manager 4.2 Developer Guide

 if(NIDPLog.isLoggableWSTrustFine())
 NIDPLog.logWSTrustFine("The caller doesn't support password
callback: " + e.getMessage());
 } catch (PasswordExpiredException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (PasswordExpiringException e) {
 principal = getPrincipal();
 principal.setAuthMethod(SAMLAuthMethods.PASSWORD);
 return principal;
 }
 return null;
 }
}

2.5 Localizing the Prompts in Your Authentication
Class
You need to create a JSP page for displaying the login prompts. When doing so, you might want to
allow the prompts to be displayed in multiple languages.

To enable the text so that it can be displayed in multiple languages, you need to do the following:

 Section 2.5.1, “Creating a Properties File,” on page 27

 Section 2.5.2, “Creating a Resource Class,” on page 28

 Section 2.5.3, “Creating or Modifying a JSP Page,” on page 28

2.5.1 Creating a Properties File

You need to create a list of the strings to be displayed when prompting users for login credentials and
reacting to their input. You need to create a string constant for each string and place the string
constant and string in a properties file. The following properties file contains some sample string
constants for a few of the prompts that your JSP page might need.

LOGIN=Login
USERNAME_PROMPT=Username:
CONTACT_ADMINISTRATOR_PROMPT=Contact your system administrator.
SAMPLE_AUTH_FAILED_MSG=Authentication Failed.
CONTINUE_PROMPT=Continue
CONTINUE_TITLE=Continue
LOGIN_ERROR_PROMPT=Authentication Error.

The name for this properties file needs to end with the Java defined constants for each language. For
the English version for use in the United States, the file would end with en_US.properties, for
example, SampleResources_en_US.properties. The base portion of the name (in this example,
SampleResources) stays the same for all languages.

You need to create such a file, with the appropriately translated strings and name, for each language
you want to support.
Identity Server Authentication API 27

2.5.2 Creating a Resource Class

You need to extend the com.novell.nidp.resource.NIDPResDesc class with a resource class that
knows how to call your properties files and retrieve the strings. The following sample code extends
the NIDPResDesc class with a class called SampleResDesc, defines the base name for the properties
file (SampleResources), and defines a string constant for each string in the properties file.

#############need a package name line #####################
import com.novell.nidp.resource.NIDPResDesc;

public class SampleResDesc extends NIDPResDesc
{
 private static final String SAMPLE_BUNDLE_BASENAME =
 "SampleResources";
 private static final String KEYS_PREFIX = "";

 // Names of localized strings and messages
 public static final String LOGIN = "LOGIN";
 public static final String USERNAME_PROMPT = "USERNAME_PROMPT";
 public static final String CONTACT_ADMINISTRATOR_PROMPT =
 "CONTACT_ADMINISTRATOR_PROMPT";
 public static final String SAMPLE_AUTH_FAILED_MSG =
 "SAMPLE_AUTH_FAILED_MSG";
 public static final String CONTINUE_PROMPT = "CONTINUE_PROMPT";
 public static final String CONTINUE_TITLE = "CONTINUE_TITLE";
 public static final String LOGIN_ERROR_PROMPT = "LOGIN_ERROR_PROMPT";

 private static SampleResDesc m_instance = null;

 private SampleResDesc()
 {
 super(SAMPLE_BUNDLE_BASENAME, KEYS_PREFIX);
 }

 public static SampleResDesc getInstance()
 {
 if (null == m_instance)
 {
 m_instance = new SampleResDesc();|
 }
 return m_instance;
 }

}

2.5.3 Creating or Modifying a JSP Page

The JSP page generates the prompts for user credentials by calling your extended resource class to
retrieve the strings. The following snippet of a JSP page gets the local language code, and then calls
the extended resource class (SampleResDesc) to display the string for the string constant
USERNAME_PROMPT.
28 NetIQ Access Manager 4.2 Developer Guide

.

.

.
<%@ page import="com.novell.nidp.*" %>
<%@ page import="com.novell.nidp.resource.*" %>
<%
 Locale locale = request.getLocale();
 String strLanguageCode = locale.getLanguage();
 String strLanguageCodeLowercase = strLanguageCode.toLowerCase();
 NIDPResource sampleResource = NIDPResourceManager.getInstance()
 .get(SampleResDesc.getInstance(), locale);
%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//<%=strLanguageCode%>">
<html lang="<%=strLanguageCode%>">
.
.
.
<table>
 <tr>
 <td>
 <label style="width: 100px"><%= sampleResource.
 getString(SampleResDesc.USERNAME_PROMPT) %></label>
 </td>
 <td width="100%">
 <input id="My_User_ID" type="text" class="smalltext"
 name="My_User_ID" size="30">
 <input alt="<%=sampleResource.getString0
 (SampleResDesc.LOGIN)%>"
 border="0" name="loginButton"
 src="<%=request.getContextPath() %>/images/
 <%=strLanguageCodeLowercase%>/
 btnlogin_<%=strLanguageCodeLowercase%>.gif"
 type="image" value="Login"
 onclick="mySubmit()">
.
.
.

For your authentication class, this JSP snippet needs to be extended to include the prompts for the
other authentication credentials your class requires. As you add prompts to the JSP page, these
constants need to be added to your resource class and properties files.

The name of this JSP page needs to correspond to the page you call in your authentication class.
See lines 109 - 111 in the sample class (Section 2.4.5, “PasswordClass Example Code,” on page 23).

When you create the jar file for your authentication class, the properties files and the Java resource
file need to be included. The JSP page for your authentication class needs to be copied to the /opt/
novell/nids/lib/webapp/jsp directory of the Identity Server.

2.6 Deploying Your Authentication Class
1 Create a jar file for your authentication class and any associated classes.

2 Copy the jar file to the following location in the Identity Server:

 Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 Windows: C:\Program Files (x86)\Novell\Tomcat\webapps\nidp\WEB-INF\lib
Identity Server Authentication API 29

If the Identity Server is in a cluster, the file needs to be copied to all members of the cluster.

3 (Conditional) If you created a custom JSP page for your authentication class, copy it to the
/opt/novell/nids/lib/webapp/jsp directory of the Identity Server.

If the Identity Server is in a cluster, the file needs to be copied to all members of the cluster.

4 In the Administration Console, click Access Manager > Identity Servers > Edit > Local >
Classes.

5 From this page, click New.

6 Fill in the following fields:

Display name: Specify a name that the Administration Console can use to identity this class.

Java class: For a new class, select Other. This allows you to specify the path name of your
Java class.

Java class path: Specify the name of your Java class.

7 Click Next, and specify any needed properties of your class.

This is dependent upon your class. You need to specify properties only if your class requires
them.

This information is returned to your class in the props parameter when your class is called.

8 Click Finish.

9 To configure a method for your class, click Methods > New, and select your class for the Class
field.

When you configure a method, you specify which user stores can be used for authentication.
This information is returned to your class in the uStores parameter when your class is called.

For more information, see “Configuring Authentication Methods” in the NetIQ Access Manager
Appliance 4.2 Administration Guide.

10 Click Finish.
30 NetIQ Access Manager 4.2 Developer Guide

11 To configure a contract for your class, click Contracts > New, and move your class to be a value
in the Methods list.

For more information, see “Configuring Authentication Contracts” in the NetIQ Access Manager
Appliance 4.2 Administration Guide.

12 (Optional) Default contracts can be specified for each authentication type that might be required
by a service provider. These contracts are executed when a request for a specific authentication
type comes from a service provider.

For more information, see“Supported Authentication Class Types” on page 17 and “Specifying
Authentication Defaults” in the NetIQ Access Manager Appliance 4.2 Administration Guide.

13 Click Finish > OK.

14 On the Identity Servers page, click Update.

15 Update any associated devices (Access Gateways, SSL VPN servers, or J2EE* Agents) that are
using this Identity Server configuration.
Identity Server Authentication API 31

32 NetIQ Access Manager 4.2 Developer Guide

3 3LDAP Server Plug-In

An LDAP Server plug-in module is a Java class that allows an unsupported LDAP server to be used
with Access Manager 3.0 SP4 or above. The three supported LDAP servers are eDirectory™, Active
Directory, and Sun ONE. Any other directory types require an LDAP Server plug-in.

3.1 Prerequisites
To develop an LDAP server plug-in:

 Meet all system requirements of the Identity Servers and Access Gateways. See the NetIQ
Access Manager Appliance 4.2 Installation and Upgrade Guide.

 Install and configure all components of Access Manager. For detailed installation and
configuration information, see the NetIQ Access Manager Appliance 4.2 Installation and
Upgrade Guide and “Setting Up a Basic Access Manager Appliance Configuration” in the NetIQ
Access Manager Appliance 4.2 Administration Guide.

 Have an integrated Java development environment.

 Copy the NAMCommon.jar file in the following directory of your Identity Server to your
development project:

 Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 Windows: C:\Program Files (x86)\Novell\Tomcat\webapps\nidp\WEB-INF\lib

3.2 Creating the LDAP Plug-In
The project used to create the plug-in must include the NAMCommon.jar file shipped with Access
Manager. This JAR file is located in the following directory:

 Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 Windows: C:\Program Files (x86)\Novell\Tomcat\webapps\nidp\WEB-INF\lib

To create an LDAP Server plug-in, you need to create a public class that extends the abstract the
com.novell.nam.common.ldap.jndi.LDAPStorePlugin class.

In your public class, you need to implement the following methods:

Method Description

getDirectoryName() Needs to return the name you want displayed for your directory type.
For eDirectory, this method returns “Novell eDirectory” for this string.

getGUIDAttributeName() Needs to return the name of the globally unique ID attribute that
uniquely identifies all objects in this type of directory. For eDirectory,
this is the GUID attribute.

getMemberAttributeName() Needs to return the name of the attribute that is used to identity an
object as a member of a group. For eDirectory, this is the member
attribute.
LDAP Server Plug-In 33

The following methods can be implemented, and might be required for your LDAP directory:

For details about the LDAPStorePlugin class and methods, see the Javadoc API Reference.

For an example plug-in that extends the LDAPStorePlugin class and implements the required
methods and some of the optional methods, see Section 3.3, “eDirectory Plug-In,” on page 35.

getUserClassName() Needs to return the name of the class that is used to create users. For
eDirectory, this is the User class.

getUserNameNamingAttrName() Needs to return the name of the attribute that is used to name users.
For eDirectory, this in the cn attribute.

preUserAccountCreation() Needs to return an attributes object that contains an array of attributes,
with each member contain the name of an attribute and its value. This
attributes object needs to contain all the attributes that are required to
create a user in the LDAP directory. This usually consists of the name
of the object class, the naming attribute, and a password. For
eDirectory, this also includes the sn attribute.

Method Description

postUserAccountCreation() Modifies a user’s attributes after the user has been created. Some
LDAP directories do not let you set a password until after the user
account has been created. The method contains a strCorrelationId
parameter that you can use to match the user with the user in the
preUserAccountCreation() method.

onCreateConnection() Allows the plug-in to check the connection creation parameters and
modify them, if needed. This method is called just before a connection
is created with the LDAP directory.

onCreateConnectionException() Allows you to customize the exception that is thrown when the process
to create an LDAP connection fails and throws an authentication
exception.

This method is overloaded and requires an AuthenticationException
parameter.

onCreateConnectionException() Allows you to customize the exception that is thrown when the process
to create an LDAP connection fails and throws a connection exception.

This method is overloaded and requires an
OperationNotSupportedException parameter.

Method Description
34 NetIQ Access Manager 4.2 Developer Guide

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nam/common/ldap/jndi/LDAPStorePlugin.html

3.3 eDirectory Plug-In
The following code is from the eDirectory plug-in:

package com.novell.nam.common.ldap.jndi;

import javax.naming.AuthenticationException;
import javax.naming.OperationNotSupportedException;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttributes;
import javax.naming.ldap.ExtendedRequest;
import javax.naming.ldap.ExtendedResponse;

import com.novell.nam.common.ldap.jndi.ext.GetEffectiveRightsRequest;
import com.novell.nam.common.ldap.jndi.ext.GetEffectiveRightsResponse;
import com.novell.nam.common.ldap.jndi.ext.NdsAttributeRights;
import com.novell.nam.common.ldap.jndi.ext.NdsEntryRights;
import com.novell.nam.common.ldap.jndi.ext.NdsRights;

public class LDAPStorePluginEDir extends LDAPStorePlugin
{
 public String getDirectoryName()
 {
 return "Novell eDirectory";
 }

 public String getGUIDAttributeName()
 {
 return "GUID";
 }

 public String getMemberAttributeName()
 {
 return "member";
 }

 public String getUserClassName()
 {
 return "User";
 }

 public String getUserNamingAttrName()
 {
 return "cn";
 }

 public Attributes preUserAccountCreation(String strCorrelationId, String name,
String password, String context)
 {
 Attributes attrs = new BasicAttributes();
 attrs.put(JNDIConstants.LDAP_ATTR_OBJECTCLASS,"User");
 attrs.put(JNDIConstants.LDAP_ATTR_CN,name);
 attrs.put(JNDIConstants.LDAP_ATTR_SN,"NAM Generated");
 attrs.put("userPassword",password);
 return attrs;
 }

 public void onCreateConnectionException(AuthenticationException ae)
 throws JNDIException
 {
LDAP Server Plug-In 35

 // Check the return message to see if we can interpret it.
 String strDetails = ae.getMessage();
 // Look for "Incorrect Password"
 int iIdxLdapErrorCode = strDetails.indexOf(" 49 ");
 int iIdxNDSErrorCode = strDetails.indexOf("(-669)");
 if ((-1 != iIdxLdapErrorCode) && (-1 != iIdxNDSErrorCode))
 {
 if (iIdxLdapErrorCode < iIdxNDSErrorCode)
 { // The user typed in an incorrect password
 throw new JNDIExceptionIncorrectPassword(ae,
ae.getLocalizedMessage());
 }
 }
 // Look for Expired Password
 iIdxLdapErrorCode = strDetails.indexOf(" 49 ");
 iIdxNDSErrorCode = strDetails.indexOf("(-222)");
 if ((-1 != iIdxLdapErrorCode) && (-1 != iIdxNDSErrorCode))
 {
 if (iIdxLdapErrorCode < iIdxNDSErrorCode)
 { // The password for this user account has expired.
 throw new JNDIExceptionExpiredPassword(ae, ae.getLocalizedMessage());
 }
 }
 }

 public void onCreateConnectionException(OperationNotSupportedException onse)
 throws JNDIException
 {
 // Check the return message to see if we can interpret it.
 String strDetails = onse.getMessage();
 // Look for "Incorrect Password"
 int iIdxLdapErrorCode = strDetails.indexOf(" 53 ");
 if (iIdxLdapErrorCode != -1)
 {
 int iIdxNDSErrorCode = strDetails.indexOf("(-220)");

 // Check for account disabled (or a restriction has disabled the
account)
 if (iIdxNDSErrorCode != -1 && iIdxLdapErrorCode < iIdxNDSErrorCode)
 throw new JNDIExceptionDisabledAccount(onse,
onse.getLocalizedMessage());

 // Check for intruder detection disablement
 iIdxNDSErrorCode = strDetails.indexOf("(-218)");
 if (iIdxNDSErrorCode != -1 && iIdxLdapErrorCode < iIdxNDSErrorCode)
 throw new JNDIExceptionRestrictedAccount(onse,
onse.getLocalizedMessage());

 // Check for intruder detection disablement
 iIdxNDSErrorCode = strDetails.indexOf("(-197)");
 if (iIdxNDSErrorCode != -1 && iIdxLdapErrorCode < iIdxNDSErrorCode)
 throw new JNDIExceptionIntruderDetection(onse,
onse.getLocalizedMessage());
 }
 }

 public boolean supportsEffectiveRightsRetrieval()
 {
 return true;
 }
36 NetIQ Access Manager 4.2 Developer Guide

 public ExtendedRequest getEntryEffectiveRightsExtendedRequest(String objectDN,
String trusteeDN)
 {
 return new GetEffectiveRightsRequest(objectDN, trusteeDN);
 }

 public int getEntryEffectiveRights(ExtendedResponse response)
 {
 if (response instanceof GetEffectiveRightsResponse)
 {
 NdsRights rights = ((GetEffectiveRightsResponse)response).getRights();
 return rights.getRights();
 }
 return 0;
 }

 public ExtendedRequest getAttributeEffectiveRightsExtendedRequest(String
objectDN, String trusteeDN)
{
 return new GetEffectiveRightsRequest(objectDN, trusteeDN,
NdsRights.ALL_ATTRIBUTES_RIGHTS);
}

public int getAttributeEffectiveRights(ExtendedResponse response)
{
 if (response instanceof GetEffectiveRightsResponse)
 {
 NdsRights rights = ((GetEffectiveRightsResponse)response).getRights();
 return rights.getRights();
 }
 return 0;
}

public boolean hasEntrySupervisorRights(int iEntryRights)
{
 return new NdsEntryRights(iEntryRights).hasSupervisor();
}

public boolean hasEntryBrowseRights(int iEntryRights)
{
 return new NdsEntryRights(iEntryRights).hasBrowse();
}

public boolean hasEntryRenameRights(int iEntryRights)
{
 return new NdsEntryRights(iEntryRights).hasRename();
}

public boolean hasEntryDeleteRights(int iEntryRights)
{
 return new NdsEntryRights(iEntryRights).hasDelete();
}

public boolean hasEntryAddRights(int iEntryRights)
{
 return new NdsEntryRights(iEntryRights).hasAdd();
}

public boolean hasAttributeCompareRights(int iAttributeRights)
LDAP Server Plug-In 37

{
 return new NdsAttributeRights(NdsRights.ALL_ATTRIBUTES_RIGHTS,
iAttributeRights).hasCompare();
}

public boolean hasAttributeReadRights(int iAttributeRights)
{
 return new NdsAttributeRights(NdsRights.ALL_ATTRIBUTES_RIGHTS,
iAttributeRights).hasRead();
}

public boolean hasAttributeWriteRights(int iAttributeRights)
{
 return new NdsAttributeRights(NdsRights.ALL_ATTRIBUTES_RIGHTS,
iAttributeRights).hasWrite();
}

public boolean hasAttributeSelfRights(int iAttributeRights)
{
 return new NdsAttributeRights(NdsRights.ALL_ATTRIBUTES_RIGHTS,
iAttributeRights).hasSelf();
}

public boolean hasAttributeSupervisorRights(int iAttributeRights)
{
 return new NdsAttributeRights(NdsRights.ALL_ATTRIBUTES_RIGHTS,
iAttributeRights).hasSupervisor();
}

public boolean hasObjectSearchRights(int iEntryRights, int iAttributeRights)
{
 NdsEntryRights entryRights = new NdsEntryRights(iEntryRights);
 NdsAttributeRights attributeRights = new
NdsAttributeRights(NdsRights.ALL_ATTRIBUTES_RIGHTS, iAttributeRights);
 if (entryRights.hasSupervisor())
 { // Supervisor entry rights are sufficient for doing a user search
 return true;
 }
 if (entryRights.hasBrowse())
 { // Browse entry rights plus supervisor/compare attribute rights are
sufficient for doing a user search
 if (attributeRights.hasSupervisor() || attributeRights.hasCompare())
 {
 return true;
 }
 }
 return false;
}

}

38 NetIQ Access Manager 4.2 Developer Guide

3.4 Installing and Configuring the LDAP Plug-In
After you have created your plug-in, you need to configure Access Manager to use it.

1 Copy the plug-in class file to the Identity Server:

1a Copy it to the following directory under the correct directory structure as per the class
package:

 Linux:

 If you want to use a LDAP-plugin class file: /opt/novell/nam/idp/webapps/
nidp/WEB-INF/classes

 If you want to use a LDAP-plugin class in a jar file: /opt/novell/nam/idp/
webapps/nidp/WEB-INF/lib

 Windows:

 If you want to use a LDAP-plugin class file: C:\Program Files
(x86)\Novell\Tomcat\webapps\nidp\WEB-INF\classes

 If you want to use a LDAP-plugin class in a jar file: C:\Program Files
(x86)\Novell\Tomcat\webapps\nidp\WEB-INF\lib

If your class package name is com.acme.ldap.plugin, you need to create the com, acme,
ldap, and plugin directories.

1b Repeat Step 1a for each Identity Server in the cluster.

2 To associate an LDAP Server plug-in with the Custom1, Custom2, or Custom3 directory type,
modify the web.xml file on the Identity Server:

2a In a text editor, open the following file:

 Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/web.xml

 Windows: C:\Program Files (x86)\Novell\Tomcat\webapps\nidp\WEB-
INF\web.xml

2b Add an entry for the ladpStorePlugins context parameter. Your entry should look similar to
the following to associate the com.acme.plugin.Sample1Plugin with the Custom1 directory
type.

<context-param>
<param-name>ldapStorePlugins</param-name>
<param-value>custom1:com.acme.ldap.plugin.Sample1Plugin</param-value>
</context-param>

You can add up to three values, using the following format:

custom1:classname;custom2:classname;custom3:classname

2c Repeat Step 2a through Step 2b on each Identity Server in the cluster.

3 In the Administration Console, configure the Identity Server to use the new directory type for a
user store.

3a Click Access Manager > Identity Servers > Edit > Local.

3b Either select the name of a user store or click New.

3c For the Directory type, select the custom string you have configured in Step 2.
LDAP Server Plug-In 39

3d Complete one of the following:

 For a new user store, configure the other required values, then click Finish.

 For a modified user store, modify the other options to fit the new directory type, then
click OK.

3e Update the Identity Server.

4 (Optional) To verify that the new directory type is functioning correctly, log in to the user portal by
using the credentials of a user in the user store.

If you encounter any errors, see Section 3.5, “Troubleshooting,” on page 40.

3.5 Troubleshooting
If problems with LDAP Server plug-ins are detected, the following error messages are issued during
Access Manager initialization. To log these messages to the catalina.out file, set the application
component file logger to the warning level or higher.

 “300105029: Cannot load LDAP Store Plugin class: {0}. Error: {1}.” on page 40

 “300105030=Cannot instantiate LDAP Store Plugin class: {0}. Error: {1}.” on page 40

 “300105031=An unknown or unsupported user store directory type {0} was found for the user
store named {1}. Defaulting to eDirectory!” on page 40

300105029: Cannot load LDAP Store Plugin class: {0}. Error: {1}.

Cause: The java.lang.Class.forName() method failed to load the LDAP Store Plugin class.

Action: Verify that a valid Java class file is available in Access Manager's class path for the
referenced plug-in class file. Check the modifications you made to the web.xml file (see Step 2 on
page 39).

300105030=Cannot instantiate LDAP Store Plugin class: {0}. Error: {1}.

Cause: The java.lang.Class.newInstance() method failed to instantiate the LDAP Store Plug-in class.

Action: Verify that a valid Java class file is available in Access Manager's class path for the
referenced plug-in class file. Also, ensure that the LDAP Store Plug-in has a zero parameter
constructor.

300105031=An unknown or unsupported user store directory type {0} was found
for the user store named {1}. Defaulting to eDirectory!

Cause: A user store was configured with an unrecognized directory type. The configuration was
manually modified to include an invalid directory type specifier or the configuration has been
corrupted.

Action: Examine the supplied error detail and take applicable actions. If the directory type is wrong,
reconfigure the user store with the correct directory type. If the configuration is corrupted, delete the
user store configuration, then re-create it.
40 NetIQ Access Manager 4.2 Developer Guide

4 4The Policy Extension API

The policy extension API is a new feature that has been added to Access Manager 3.1. It allows you
to enhance the Access Manager policy engine so that an external module can perform the following
types of tasks:

 Evaluate a condition and return results that Access Manager can use to determine enforcement.

 Provide data from an external source that Access Manager can use to evaluate a condition or to
inject into an HTTP header.

 Provide actions that are performed when the policy conditions evaluate to True.

This section describes the basic characteristics of a policy extension, describes how to create the
three possible types of extensions, then explains how to install and use the extension in an Access
Manager policy.

 Section 4.1, “Getting Started,” on page 41

 Section 4.2, “Common Elements and Tasks,” on page 46

 Section 4.3, “Creating an Extension,” on page 55

 Section 4.4, “Installing and Configuring an Extension,” on page 65

 Section 4.5, “Sample Codes,” on page 68

4.1 Getting Started
The following sections explain the requirements for developing an extension and provide an overview
of the possible types of extensions and an overview of how the Access Manager policy engine
interacts with an extension.

 Section 4.1.1, “Prerequisites,” on page 41

 Section 4.1.2, “Types of Policy Extensions,” on page 42

 Section 4.1.3, “How the Policy Engine Interacts with an Extension,” on page 42

4.1.1 Prerequisites

 Access Manager 4.0 installed and configured. For detailed installation and configuration
information, see the NetIQ Access Manager Appliance 4.2 Installation and Upgrade Guide and
“Setting Up a Basic Access Manager Appliance Configuration” in the NetIQ Access Manager
Appliance 4.2 Administration Guide.

 A basic understanding of the Access Gateway Authorization policies and Access Gateway
Identity Injection policies. See Access Manager Policies in the NetIQ Access Manager Appliance
4.2 Administration Guide.

 An integrated Java development environment.

 Copy the nxpe.jar file from the following directory of your Access Manager device to your
development environment:

 Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib (for roles)

or
The Policy Extension API 41

/opt/novell/nam/mag/webapps/nesp/WEB-INF/lib (for other policies)

 Windows: C:\Program Files (x86)\Novell\Tomcat\webapps\nidp\WEB-INF\lib (for
roles)

or

C:\Program Files\Novell\Tomcat\webapps\nesp\WEB-INF\lib (for other
policies)

4.1.2 Types of Policy Extensions

You can use the policy extension API to create the following types of policy extensions:

 Action: This type of extension allows a new action to be added to the policy. When the policy is
evaluated and the conditions evaluate to true, the extension is called so that it can execute its
action. The action can be a permit, deny, or obligation action.

For example, when a user is denied access to an Access Gateway resource, the extension
generates a dynamic page that is displayed to the user and updates a database with the details
of the attempted access.

Actions extensions are used in Access Gateway Authorization policies.

 Condition: This type of extension allows a new condition to be added to the policy. When the
policy is evaluated, the extension is called to evaluate the condition and is responsible for
returning a True, False, or Error value for the condition.

For example, the Acme company requires historical sales records to be available via the
corporate intranet. Access to the records is granted according to regular procedures set up by
the accounting department. The accounting department manages the access rights in a
database that supports SQL. In order for Access Manager to take advantage of the access
granting process already in place in the accounting department, a condition extension is created
that queries the accounting access rights database and returns true, false, or error.

Condition extensions are used in Access Gateway Authorization policies and Identity Server
Role policies.

 Data: This type of extension retrieves data from an external source that can then be injected into
a policy and used as input for evaluating a condition or an action.

For example, suppose a policy needs to use the role assignments made in an Oracle* database
to determine whether a user is assigned an Access Manager role. The data extension could
retrieve the role assignments from the database and return them in a string object that could be
used by Access Manager in evaluating the condition for the Role policy.

Data extensions can be used in Access Gateway Authorization policies, Access Gateway
Identity Injection policies, Identity Server Role policies, External Attribute Source policies.

4.1.3 How the Policy Engine Interacts with an Extension

When the policy engine processes a policy, the first step is to configure the policy. The following
elements can be marked as external elements in the policy:

 Conditions

 Data elements

 Actions
42 NetIQ Access Manager 4.2 Developer Guide

As the policy engine is configuring the policy, it calls the extension when it encounters an external
element. The engine expects the extension to return an object that is specific to the type of extension,
unless an exception occurs. The object contains any data that the extension needs for processing,
and the object is returned to the policy engine with the data the engine needs to continue processing
the policy. For specific details, see the following:

 “How the Policy Engine Interacts with a Condition Extension” on page 43

 “How the Policy Engine Interacts with a Data Extension” on page 44

 “How the Policy Engine Interacts with an Action Extension” on page 45

How the Policy Engine Interacts with a Condition Extension

When the policy engine is processing a policy and encounters a condition marked as an extension,
the engine instantiates an object that must comply with the NxpeConditionFactory interface. The
engine then calls the getInstance method, and expects an NxpeCondition object from the extension
unless an NxpeException is thrown by the NxpeConditionFactory object.

This process is illustrated in the following code snippet:

public interface NxpeConditionFactory
{
 NxpeCondition getInstance()
 throws NxpeException;
} /* NxpeConditionFactory */

During the next part of the configuration phase, the policy engine calls the NxpeCondition.initialize
method, passing an NxpeParameterList object for the configuration parameters. The configuration
parameters are used to initialize the NxpeCondition object and are the parameters that the extension
needs for evaluating the condtion.The values for these configuration parameters are retrieved at
evaluation from the NxpeInformationContext object that is passed by the policy engine.

The initialize method is guaranteed to be called before any other method, followed by a method that
sets an ID for the condition.

 The following code snippet illustrates this process:

public interface NxpeCondition
{
 void initialize(
 NxpeParameterList configurationValues)
 throws NxpeException;

 NxpeResult evaluate(
 NxpeInformationContext informationContext,
 NxpeResponseContext responseContext)
 throws NxpeException;

 void setInterfaceId(
 String interfaceId)
 throws NxpeException;

}

The Policy Extension API 43

How the Policy Engine Interacts with a Data Extension

When the policy engine is processing a policy and encounters a data element marked as an
extension, the engine instantiates an object that must comply with the
NxpeContextDataElementFactory interface. The engine then calls the getInstance() method, passing
the name, enumerativeValue, and parameter as arguments, and expects the extension to return an
NxpeContextDataElement object unless the NxpeContextDataElementFactory object throws an
NxpeException.

The following code snippet illustrates this process:

public interface NxpeContextDataElementFactory
{
 NxpeContextDataElement getInstance(
 String name,
 int enumerativeValue,
 String parameter)
 throws NxpeException;

} /* NxpeContextDataElementFactory */

During the next part of the configuration phase, the policy engine calls the
NxpeContextDataElement.initialize() method, passing an NxpeParameterList object with
configureParameters. The configureParameters are used to initialize the NxpeContextDataElement
object and are the parameters required during policy evaluation. It is expected that the values for
these configureParameters are retrieved from the NxpeInformationContext object passed by the
policy engine.

The following code snippet illustrates this process:

public interface NxpeContextDataElement
{
 void initialize(
 NxpeParameterList configurationValues)
 throws NxpeException;

 String getName();

 int getEnumerativeValue();

 String getParameter();

 Object getValue(
 NxpeInformationContext informationContext,
 NxpeResponseContext responseContext)
 throws NxpeException;

} /* NxpeContextDataElement */

The policy engine calls the NxpeContextDataElement.intialize() method to initialize a component in
preparation for policy evaluation. Derived classes are required to implement this method. This
method is guaranteed to be called before any other method is called, because it is part of object
construction.

The configurationValues parameter contains a list of the configuration data required by the external
ContextDataElement handler. If the context data element wants to preserve configuration data, it
must maintain a reference to the configuration value parameters.
44 NetIQ Access Manager 4.2 Developer Guide

How the Policy Engine Interacts with an Action Extension

When the policy engine is processing a policy and encounters an action marked as an extension, the
engine instantiates an object that must comply with the NxpeActionFactory interface. The engine then
calls the getInstance() method, and expects the extension to return an NxpeAction object unless the
NxpeActionFactory object throws an NxpeException.

This process is illustrated in the following code snippet:

public interface NxpeActionFactory
{
 NxpeAction getInstance()
 throws NxpeException;

} /* NxpeActionFactory */

During the next part of the configuration phase, the policy engine calls the NxpeAction.initialize()
method, passing an NxpeParameterList object with the configureParameters. The
configureParameters are used to initialize the NxpeAction object. The configureParameters are those
parameters needed during NxpePolicy.evaluate(). It is expected that the values for these
configureParameters are retrieved from the NxpeInformationContext passed by the policy engine.

The following code snippet illustrates this process:

public interface NxpeAction
{
 void initialize(
 NxpeParameterList configurationValues)
 throws NxpeException;

The NxpeParameterList is a list of configuration data required by the external action extension. If the
action extension wants to preserve configuration data, the extension must maintain a reference to the
configuration value parameters.

The second method called is the setInterfaceId method, which sets up a value for trace evaluation.
The interfaceId parameter sets a unique sting value for the action. The following code snippet
illustrates this last step in the NxpeAction interface.

 void setInterfaceId(
 String interfaceId)
 throws NxpeException;

} /* NxpeAction */

The policy engine calls the doAction method to initiate the action. It has the following parameters:

 The informationCtx parameter contains the policy enforcement Point information context to
query for values

 The responseCtx is a reflection object for communicating detailed response information back to
the application. This is additional information and does not replace the need to place an action
completion status in the return value from this call.

This method returns an NxpeResult, which contains an error code, permit, deny, or obligation.
Derived classes are require to override this method to implement the supported action.

The following code snippet illustrates this process:
The Policy Extension API 45

 NxpeResult doAction(
 NxpeInformationContext informationCtx,
 NxpeResponseContext responseCtx)
 throws NxpeException;

4.2 Common Elements and Tasks
As you develop your extension, the extension needs to perform the following tasks:

 Section 4.2.1, “Implementing Common Elements,” on page 46

 Section 4.2.2, “Initializing the Factory Object,” on page 47

 Section 4.2.3, “Retrieving Information from the Identity Server User Store,” on page 48

 Section 4.2.4, “Implementing the Extension Interface,” on page 49

For information about the Extension API interfaces and class, see the Javadoc API Reference.

4.2.1 Implementing Common Elements

Each extension type has two interfaces:

 A factory interface that contains the method for initializing an extension object with data from the
engine that the extension can use to retrieve data from an external source or to evaluate a
condition or an action.

 An extension interface that contains the methods that need to be implemented for the specific
type of extension. For example, the NxpeCondition interface contains the method for evaluating
the condition and returning True, False, or Error.

All the extensions need to implement both interfaces for the extension type and use the NxpeResult
class for return codes and the NxpeException class for exceptions.

Return Codes in the NxpeResult Class

The NxpeResult class allows an extension to return the following values:

Return Code Extension Type Description

Cancel Reserved

ConditionFalse Condition The compared values do not match, so the condition
evaluation resolved to False.

ConditionTrue Condition The compared values match, so the condition
evaluation resolved to True.

ConditionUnknown Condition The values could not be compared, so the results are
unknown. This is comparable to the Result on
Condition Error option when creating a policy.

Deny Action A deny action was applied.

ErrorBadData Context Data The data cannot be parsed. This result can be returned
with the NxpeException class.

ErrorCodeComponent Reserved.
46 NetIQ Access Manager 4.2 Developer Guide

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/

Constructors in the NxpeException Class

The NxpeException class allows you to use a constructor that throws exceptions with the following
information:

 No information

 With a string message

 With a string message and a cause

 With a result from the NxpeResult class. See “Return Codes in the NxpeResult Class” on
page 46.

 With a cause and a result from the NxpeResult class

 With a string message and a result from the NxpeResult class

 With a string message, a cause, and a result from the NxpeResult class

4.2.2 Initializing the Factory Object

All extension types need to implement the factory interface for the extension type and initialize an
object specific to its type. The policy engine uses this object to send the parameter information about
the user making the request to the extension. The extension uses this object to return its results to the
policy engine.

The following code sample illustrates how to implement the factory interface. It uses the
NxpeContextDataElementFactory to create an LDAPGroupDataElement object.

ErrorConfigInitialization All The initialize method for the extension encountered an
error. This result can be returned with the
NxpeException class.

ErrorDataUnavailable Context Data The requested data is not available. This result can be
returned with the NxpeException class.

ErrorIllegalArgument All The informationContext object contains an unknown
parameter. This result can be returned with the
NxpeException class.

ErrorIllegalState Reserved

ErrorInterfaceUnavailable All The extension has not implemented one of the required
methods in the interface. This result can be returned
with the NxpeException class.

ErrorNoMemory Reserved

GeneralFailure All Unknown error. This result can be returned with the
NxpeException class.

NoAction Reserved for use by the policy engine.

Obligation Action An obligation action was performed.

Pending Reserved.

Permit Action A permit action was performed.

Success Reserved for use by the policy engine.

Return Code Extension Type Description
The Policy Extension API 47

1 package ContextDataElement;
2
3 import com.novell.nxpe.NxpeContextDataElement;
4 import com.novell.nxpe.NxpeContextDataElementFactory;
5 import com.novell.nxpe.NxpeException;
6
7 public final class LDAPGroupDataElementFactory implements
NxpeContextDataElementFactory
8 {
9 public LDAPGroupDataElementFactory()
10 {
11 }
12
13 public NxpeContextDataElement getInstance(
14 String strName,
15 int iEnumerativeValue,
16 String strParameter)
17 throws NxpeException
18 {
19 return (new LDAPGroupDataElement(strName, iEnumerativeValue,
strParameter));
20
21 }
22
23 } /* LDAPGroupDataElementFactory */

The package line needs to be replaced with the package line for your extension.

All extensions need the three import lines for the factory interface. The first two import lines vary with
the type of extension you are creating, but you need to import the factory interface and the extension
interface.

Lines 7 through 23 implement the factory interface that creates an LDAPGroupDataElement object.

The other factory interfaces are very similar and are as easy to implement.

4.2.3 Retrieving Information from the Identity Server User Store

All extensions need to access an external data store and retrieve information from it. You need to
know the type of data that your extension is going to retrieve, and then design how you are going to
retrieve it.

If the extension needs to establish a connection to the external data store and log in to retrieve
information, consider using one of the following methods:

 The extension can use the credentials that authenticated the user to the Identity Server to log in
as a user in the external data store. This method assumes that the user has the same
credentials in the Identity Server user store and the external data store.

 You can create an LDAP attribute in the Identity Server user store and store an X.509 certificate
that you can use to access the external data store.

 You can create configuration parameters that allow the administrator of the Administration
Console to enter a username and password for accessing the external data store. The password
is entered in clear text in the Administration Console, so this is not a secure method. To minimize
the security risk, you can create a special user in the external data store whose rights are
restricted to retrieving only the information required by the extension. If the retrieved information
is not sensitive, this simple solution might not present a security risk.
48 NetIQ Access Manager 4.2 Developer Guide

When you create configuration parameters, you need to provide documentation for the administrator
who installs the extension. Each configuration parameter requires a name, an ID, and a mapping to a
data item. You need to document these for the administrator.

The name and ID you create to fit your programing requirements. These must be mapped to a data
item available for the extension type.

NOTE: The data items are returned as strings, or as string arrays if they are multivalued.

Your external data store and the methods available for accessing its data determine whether any of
the data items are useful in making the connection to the external data store.

For the data items specific to an extension type, see the following:

 “Available Configuration Parameters for a Data Context Extension” on page 57

 “Available Configuration Parameters for a Condition Extension” on page 61

 “Available Configuration Parameters for an Action Extension” on page 64

4.2.4 Implementing the Extension Interface

All extensions need to perform the following tasks.

 “Task 1: Specifying the Required Import Files” on page 49

 “Task 2: Defining the Configuration Parameters” on page 50

 “Task 3: Retrieving Configuration Parameters before Policy Evaluation” on page 51

 “Task 4: Implementing the Extension Methods” on page 51

 “Task 5: Retrieving Configuration Parameters at Policy Evaluation” on page 52

 “Task 6: Connecting with the External Data Source” on page 53

 “Task 7: Returning from an Extension” on page 53

 “Task 8: Error Handling” on page 55

 “Task 9: Performing Extension-Specific Tasks” on page 55

Task 1: Specifying the Required Import Files

All extensions need a package line and the following import lines. The package line for the sample
needs to be replaced with the package line for your extension. The first import line needs to be
modified to import the interface for the extension type you are creating. The other import lines are
standard for all extensions.

package ContextDataElement;

import com.novell.nxpe.NxpeContextDataElement;
import com.novell.nxpe.NxpeException;
import com.novell.nxpe.NxpeInformationContext;
import com.novell.nxpe.NxpeParameter;
import com.novell.nxpe.NxpeParameterList;
import com.novell.nxpe.NxpeResponseContext;
import com.novell.nxpe.NxpeResult;

The NxpeExpection class contains the defined constructors for throwing exceptions. For more
information, see “Constructors in the NxpeException Class” on page 47.
The Policy Extension API 49

The NxpeInformationContext class contains methods that allow you to gather information about
extension evaluation.

The NxpeParameter class contains methods that allow you to retrieve information about a specific
configuration parameter.

The NxpeParamaterList class contains methods that allow you to retrieve information about the
configuration parameters you have defined for the extension.

The NxpeResponseContext class contains methods that allow you to configure the information that is
sent with the results, such as logging or trace entry.

The NxpeResult class contains the methods and constants to set the return value for the extension.
For more information, see “Return Codes in the NxpeResult Class” on page 46.

Task 2: Defining the Configuration Parameters

If your extension requires configuration parameters, you need to define them. The following code
snippet contains the parameters for the LDAP group extension. These are the name and ID values
that are configured on the Extension Details page (Policies > Extensions > [Extension Name]).

private static final String USER_STORE_NAME = "User Store";
 private static final int EV_USER_STORE = 11;

 private static final String AUTHENTICATION_NAME = "Authentication";
 private static final int EV_AUTHENTICATION = 211;
 private static final String DEFAULT_AUTHENTICATION = "simple";

 private static final String DIRECTORY_TYPE_NAME = "Directory Type";
 private static final int EV_DIRECTORY_TYPE = 222;
 private static final String DEFAULT_DIRECTORY_TYPE = "unknown";

 private static final String PROVIDER_URL_NAME = "User Store Replica";
 private static final int EV_PROVIDER_URL = 31;
 private static final String DEFAULT_PROVIDER_URL = "ldap://localhost:389";

 private static final String LDAP_USER_DN_NAME = "LDAP User DN";
 private static final int EV_LDAP_USER_DN = 41;

 private static final String SECURITY_PRINCIPAL_NAME = "Security Principal";
 private static final int EV_SECURITY_PRINCIPAL = 51;

 private static final String SECURITY_CREDENTIALS_NAME = "Security Credentials";
 private static final int EV_SECURITY_CREDENTIALS = 52;

 private static final String SEARCH_CONTEXT_NAME = "Search Context";
 private static final int EV_SEARCH_CONTEXT = 61;

 private static final String DEBUG_NAME = "Debug";
 private static final int EV_DEBUG = 91;

Not all of the parameters need to be defined in the Administration Console. If you want the
administrator to decide the value that is mapped to the parameter, then you need to document the
parameter and let the administrator select the mapping.

This is also a good place to define any other static constants your extension needs.
50 NetIQ Access Manager 4.2 Developer Guide

Task 3: Retrieving Configuration Parameters before Policy
Evaluation

If your extension needs to be aware of some parameter values before it is called during policy
evaluation, you can retrieve the values during the initialize method. Each extension interface
(NxpeAction, NxpeCondition, NxpeContextDataElement) has an initialize method that contains a
configurationValues object. The following code snippet illustrates what the LDAP group extension
defines for this method. The setDebug line shows how to obtain the current value for the debug
parameter.

 public void initialize(
 NxpeParameterList configurationValues)
 throws NxpeException
 {
 this.configurationValues = configurationValues;

 setDebug(configurationValues);

 strProviderURL = DEFAULT_PROVIDER_URL;
 strAuthentication = DEFAULT_AUTHENTICATION;
 strDirectoryType = DEFAULT_DIRECTORY_TYPE;

 StringBuffer sbLdapFilter = new StringBuffer(128);

 // setup filter
 sbLdapFilter.append("(|(objectClass=");
 sbLdapFilter.append(CLS_GROUP);
 sbLdapFilter.append(")(objectClass=");
 sbLdapFilter.append(CLS_GROUPOFNAMES);
 sbLdapFilter.append(")(objectClass=");
 sbLdapFilter.append(CLS_GROUPOFUNIQUENAMES);
 sbLdapFilter.append("))");

 strLdapFilter = new String(sbLdapFilter);

 // setup search controls
 searchControls = new SearchControls();
 searchControls.setTimeLimit(0);
 searchControls.setReturningObjFlag(true);
 searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);
 searchControls.setReturningAttributes(new String[] { ATTR_CN });

 }

Task 4: Implementing the Extension Methods

Besides having an initialize method, each extension interface has a few other methods that need to
be implemented. The NxpeContextDataElement interface has the get methods. The following code
snippet illustrates how the LDAP Group extension implements three of these methods.
The Policy Extension API 51

public int getEnumerativeValue()
 {
 return (iEnumerativeValue);
 }

 public String getName()
 {
 return (strName);
 }

 public String getParameter()
 {
 return (strParameter);

The NxpeContextDataElement introduces a new element with additional methods. These methods
help you control the duration for which data returned from the extension interface should be cached
by Access Manager.

public int getValidForSeconds()
 {

 return -1;
 }

 public int getValidForSeconds ()
 {

 return 0;
 }

 public int getValidForSeconds ()
 {

 return n;
 }

getValidForSeconds informs the policy engine about how often data needs to be queried. Specify 0 as
the return value to query data for each request. Specify -1 as the return value to cache the data.
Substitute n with the number of seconds to indicate validity of the data.

The fourth method (the getValue method) is described in the next section. See “Task 5: Retrieving
Configuration Parameters at Policy Evaluation” on page 52.

Task 5: Retrieving Configuration Parameters at Policy Evaluation

All extension interfaces have a method for retrieving configuration parameters at policy evaluation.
The NxpeCondition interface has an evaluate method with an informationContext object. The
NxpeAction interface has a doAction method with a informationCxt object. The
NxpeContextDataElement interface has a getValue method with an informationContext object. The
informationContext object contains information about the user and the user’s request that you need.
You populate this object with the parameters that you need to evaluate the policy, and the policy
engine supplies the values.

The following code snippet illustrates how the LDAP Group extension retrieves parameter values:
52 NetIQ Access Manager 4.2 Developer Guide

public synchronized Object getValue(
 NxpeInformationContext informationContext,
 NxpeResponseContext responseContext)
 throws NxpeException
 {
 LdapContext ldapContext = null;

 String strUserStore = getUserStore(informationContext);
 String strProviderURL = getProviderURL(informationContext);
 String strAuthentication = getAuthentication(informationContext);
 String strDirectoryType = getDirectoryType(informationContext);

 String strLDAPUserDN = getLDAPUserDN(informationContext);
 String strDN = getSecurityPrincipal(informationContext);

 if (strLDAPUserDN == null)
 {
 strLDAPUserDN = strDN;
 }

 String strPassword = getSecurityCredentials(informationContext);
 String strSearchContext = getSearchContext(informationContext);

Notice that this code snippet does not have an ending parenthesis. All the main work of the extension
is done in this method. The next two tasks (Task 6: Connecting with the External Data Source and
Task 7: Returning from an Extension) are performed within the getValue method.

Task 6: Connecting with the External Data Source

How you connect to the external data source in your extension is specific to the type of data source
you are using. The following code snippet from the LDAP Group extension file illustrates how to
connect to an LDAP user store:

try
 {
 HashSet<String> groupDNs = new HashSet<String>();

 ldapContext = newInitialLdapContext(strDN, strPassword);

 NamingEnumeration neGroups = ldapContext.search(strSearchContext,
strLdapMemberFilter, searchControls);

This piece of code is very specific to LDAP.

Task 7: Returning from an Extension

The following code snippet from the LDAP Group extension illustrates the tasks you need to complete
as you return the results of your extension action/evaluation to the policy engine:
The Policy Extension API 53

while (neGroups.hasMore())
 {
 Attribute cn;
 SearchResult srGroup = (SearchResult) neGroups.next();
 String strGroupDN = srGroup.getNameInNamespace();

 groupDNs.add(strGroupDN);

 if (debug)
 {
 System.out.println("LDAPGroupDataElement: \"" + strGroupDN +
"\"");

 }
 }

 String[] strGroupDNs = new String[groupDNs.size()];

 groupDNs.toArray(strGroupDNs);
 return (strGroupDNs);

This code searches through the LDAP search results, retrieves the DN of any group found, adds it to
the array, then returns the array.

This task is specific to the purpose of the extension. If the purpose of the extension is to evaluate a
condition and determine whether the user matches the condition, the code for this task should show
the extension obtaining the user’s value for the condition, comparing that value to the expected value,
then return True for a match, False for a mismatch, and Error if extension cannot perform the
evaluation.
54 NetIQ Access Manager 4.2 Developer Guide

Task 8: Error Handling

Each extension must handle potential error conditions. The following lines illustrate how the LDAP
Group extension handles potential errors:

catch (NamingException e)
 {
 if (debug)
 {
 e.printStackTrace();

 }

 throw (new NxpeException(NxpeResult.ErrorDataUnavailable, e));

 }
 finally
 {
 if (ldapContext != null)
 {
 try
 {
 ldapContext.close();

 }
 catch (NamingException e)
 {
 if (debug)
 {
 System.out.println(e.getMessage());

 }

Task 9: Performing Extension-Specific Tasks

After your extension has implemented all the required interface methods, the rest of the code
implements what the extension requires to perform its purpose. Everything that follows the

 ********************** LDAPGroupDataElement/private ********************

comment in the LDAPGroupDataElement.java file shows how the LDAP Group extension performs
its required tasks. For example, you can see how the extension retrieves parameter information from
the policy engine, such as the user’s DN, security credentials, and user store information. With this
information the extension interacts with the LDAP user store and retrieves the groups the user
belongs to.

4.3 Creating an Extension
You can create the following types of extensions:

 Section 4.3.1, “Creating a Context Data Extension,” on page 56

 Section 4.3.2, “Creating a Condition Extension,” on page 60

 Section 4.3.3, “Creating an Action Extension,” on page 63
The Policy Extension API 55

4.3.1 Creating a Context Data Extension

A context data extension can be used for a Role policy, an Authorization policy, an Identity Injection
policy, or an External Attribute Source policy. When the extension is used for an Authorization policy,
it can only be used to evaluate a condition. When it is used for a Role policy, it can be designed to do
the following:

 A condition to determine whether the user meets the requirements for a role assignment

 An action for activating roles based on the values returned by the extension.

When the extension is used for an Identity Injection policy, it injects data into the Authentication
header, the custom header, or the query string.

The following sections describe the interfaces, methods, and configuration parameters available for a
context data extension:

 “Context Data Interfaces and Methods” on page 56

 “Available Configuration Parameters for a Data Context Extension” on page 57

For sample code for this type of extension, see the LDAPGroupDataElement.java and
LDAPGroupDataElementFactory.java file.

Context Data Interfaces and Methods

When creating a context data element extension, you need to implement the following interfaces and
methods:

Interface Method Purpose

NxpeContextDataElementFactory Contains the method required to create a context data element
object.

getinstance Creates the NxpeContextDataElement object.

NxpeContextDataElement Contains the methods required to create a context data element
that can be used for injection, for activating roles, or in a
condition.

initialize Called by policy engine and therefore must be implemented. It
initializes the element and passes to your extension any
configuration values you have requested. These parameters
contain valid information only if the parameters contain
information independent of the request that triggers policy
evaluation.

The data in the configurationValues parameter is valid only during
the lifetime of the initialize method. If your extension needs to
preserve this configuration data, you must maintain a reference.

The get methods in this interface allow you to retrieve information
about the parameters when the policy is being evaluated.

getEnumerativeValue Returns -1. Reserved for future releases.

getName Retrieves the name of the data element of the policy.

getParameter Retrieves the string value of the parameter of the policy.
56 NetIQ Access Manager 4.2 Developer Guide

When you configure a condition in a policy in the Administration Console, you select a condition and
a value. The condition sets up the left operand for the comparison and the value sets up the right
operand for the comparison.

Available Configuration Parameters for a Data Context Extension

You can use any of the data items listed in the Table 4.x to create configuration parameters that allow
you to retrieve information about the request and the user making the request. Select the parameters
that are useful for your extension. Many of the available data items might not be useful for your
implementation.

 Table 4-1, “Configuration Parameters for a Role Policy,” on page 57

 Table 4-2, “Configuration Parameters for an Identity Injection Policy,” on page 58

 Table 4-3, “Configuration Parameters for an Authorization Policy,” on page 58

 Table 4-4, “Configuration Parameters for an External Attribute Source Policy,” on page 59

Table 4-1 Configuration Parameters for a Role Policy

getValue Called by the policy engine when a request triggers a policy
evaluation. The informationContext object contains the parameter
values that you need from the policy engine in order to perform
the evaluation.

Data Item Returns

Authentication IDP The name of the Identity Server that authenticated the user.

Authenticating Contact The URI of the contract that the user used for authentication.

Authentication Method The name of the method the user used for authentication.

Authentication Type The type of authentication the user used, such as Name Password,
Secure Name Password, x509, Smart Card, Smart Card PKI, and
Token.

Credential Profile The credentials the user used for authentication, such as LDAP
Credentials (CN, DN, and password), X509 Credentials (with
certificate subject, with certificate issuer, with public certificate, and
with serial number), and SAML Credentials.

If a custom contract has been created that uses other credentials for
authentication, these credentials are not available within the
credential profile.

LDAP Group The DNs of any LDAP groups the user belongs to. If it is multi-valued,
this item returns a string array.

LDAP OU The DNs of any OUs that are part of the user’s DN. If it is multi-valued,
this item returns a string array.

LDAP Attribute The value or values stored in the specified LDAP attribute. If it is multi-
valued, this item returns a string array.

Liberty User Profile The value or values stored in the specified Liberty User Profile
attribute.

Interface Method Purpose
The Policy Extension API 57

Table 4-2 Configuration Parameters for an Identity Injection Policy

Table 4-3 Configuration Parameters for an Authorization Policy

Roles from Identity Provider The names of the Roles assigned to the user by the Identity Server
when the user authenticated. If it is multi-valued, this item returns a
string array.

User Store The name of the user store that authenticated the user.

User Store Replica The URL of the replica that authenticated the user.

String Constant The static value the administrator has been instructed to enter.

Data Item Returns

Authenticating Contact The URI of the contract that the user used for authentication.

Client IP The IP address of the user.

Credential Profile The credentials the user used for authentication, such as LDAP
Credentials (CN, DN, and password), X509 Credentials (with
certificate subject, with certificate issuer, with public certificate, and
with serial number), and SAML Credentials.

If a custom contract has been created that uses other credentials for
authentication, these credentials aren’t available within the credential
profile.

LDAP Attribute The value or values stored in the specified LDAP attribute. If it is multi-
valued, this item returns a string array.

Liberty User Profile The value or values stored in the specified Liberty User Profile
attribute.

Proxy Session Cookie The session cookie associated with the user.

Roles The roles that have been assigned to the user

Shared Secret The value of the specified shared secret.

String Constant The static value the administrator has been instructed to enter.

Data Item Returns

Authentication Contract The URI of the contract used for authentication or the URI of the
specified contract.

Client IP The IP address of the user.

Credential Profile The credentials of the user. You can ask for LDAP credentials
(username, DN, and password), X.509 credentials (public certificate
subject, public certificate issuer, public certificate, serial number), or
the SAML assertion.

Current Date The date when the request was sent.

Day of Week The day when the request was sent.

Data Item Returns
58 NetIQ Access Manager 4.2 Developer Guide

Table 4-4 Configuration Parameters for an External Attribute Source Policy

Current Day of Month The day of the month when the request was sent.

Current Time of Day The time of day when the request was sent.

HTTP Request Method The HTTP method in the request.

LDAP Attribute The value of the specified LDAP attribute.

LDAP OU The value of any OUs in the user’s DN.

Liberty User Profile The value of the specified Liberty attribute.

Roles The roles that have been assigned to the user.

URL The URL of the current request.

URL Scheme The HTTP scheme (HTTP or HTTPS) of the current request.

URL Host The hostname specified in the URL of the current request.

URL Path The path specified in the URL of the current request.

URL File Name The filename specified in the URL of the current request.

URL File Extension The file extension specified in the URL of the current request.

X-Forwarded-For IP The value in the X-Forwarded-For header in the current request.

String Constant The static value the administrator has been instructed to enter.

Data Item Returns

Authentication IDP The name of the Identity Server that authenticated the user.

Authenticating Contact The URI of the contract that the user used for authentication.

Authentication Method The name of the method the user used for authentication.

Authentication Type The type of authentication the user used, such as Name Password,
Secure Name Password, x509, Smart Card, Smart Card PKI, and Token.

Credential Profile The credentials the user used for authentication, such as LDAP
Credentials (CN, DN, and password), X509 Credentials (with certificate
subject, with certificate issuer, with public certificate, and with serial
number), and SAML Credentials.

If a custom contract has been created that uses other credentials for
authentication, these credentials are not available within the credential
profile.

LDAP Group The DNs of any LDAP groups the user belongs to. If it is multi-valued, this
item returns a string array.

LDAP OU The DNs of any OUs that are part of the user’s DN. If it is multi-valued,
this item returns a string array.

LDAP Attribute The value or values stored in the specified LDAP attribute. If it is multi-
valued, this item returns a string array.

Liberty User Profile The value or values stored in the specified Liberty User Profile attribute.

Data Item Returns
The Policy Extension API 59

4.3.2 Creating a Condition Extension

A condition extension can be used in a Role policy or an Authorization policy. In both types of policy,
the policy engine provides the extension with some data about the user and the request. The
extension retrieves additional data from an external source, then evaluates the condition. The
extension returns True, False, or Error to the policy engine.

The following sections describe the interfaces, methods, and configuration parameters available for a
condition extension.

 “Interfaces and Methods for a Condition Extension” on page 60

 “Available Configuration Parameters for a Condition Extension” on page 61

Interfaces and Methods for a Condition Extension

When creating a condition extension, you need to implement the following interfaces and methods:

Roles from Identity Provider The names of the Roles assigned to the user by the Identity Server when
the user authenticated. If it is multi-valued, this item returns a string array.

User Store The name of the user store that authenticated the user.

User Store Replica The URL of the replica that authenticated the user.

String Constant The static value the administrator has been instructed to enter.

Data Item Returns

Interface Method Purpose

NxpeConditionFactory Contains the method required to create a condition object.

getInstance Creates the NxpeCondition object.

NxpeCondition Contains the methods required to evaluate the condition for a
policy.

initialize Called by policy engine and therefore must be implemented. It
initializes the element and passes to your extension any
configuration values you have requested. These parameters
contain valid information only if the parameters contain
information independent of the request that triggers policy
evaluation.

The data in the configurationValues parameter is valid only during
the lifetime of the initialize method. If your extension needs to
preserve this configuration data, you must maintain a reference.

evaluate Called by the policy engine when the condition extension needs
to be evaluated for a policy. The informationContext parameter
contains the parameter information the extension needs from the
policy engine to evaluate the condition. The responseContext
parameter contains the results of the extension’s evaluation of
the condition.

setInterfaceId Sets the unique string value for the condition. This value is used
for tracing evaluation.
60 NetIQ Access Manager 4.2 Developer Guide

Available Configuration Parameters for a Condition Extension

You can use the configuration parameters to gather information about the user. You can then use this
information when evaluating your condition and use it to determine whether the condition should
return True or False. The available configuration parameters depend upon whether it is a condition for
a Role policy or a condition for a Authorization policy. Select the parameters that are useful for your
extension. Many of the available data items might not be useful for your implementation.

 Table 4-5, “Configuration Parameters for a Role Condition,” on page 61

 Table 4-6, “Configuration Parameters for an Authorization Condition,” on page 62

Table 4-5 Configuration Parameters for a Role Condition

Data Item Returns

Authentication IDP The name of the Identity Server that authenticated the user.

Authenticating Contact The URI of the contract that the user used for authentication.

Authentication Method The name of the method the user used for authentication.

Authentication Type The type of authentication the user used, such as Name Password,
Secure Name Password, x509, Smart Card, Smart Card PKI, and
Token.

Credential Profile The credentials the user used for authentication, such as LDAP
Credentials (CN, DN, and password), X509 Credentials (with
certificate subject, with certificate issuer, with public certificate, and
with serial number), and SAML Credentials.

If a custom contract has been created that uses other credentials for
authentication, these credentials are not available within the
credential profile.

LDAP Group The DNs of any LDAP groups the user belongs to. If it is multi-valued,
this item returns a string array.

LDAP OU The DNs of any OUs that are part of the user’s DN. If it is multi-valued,
this item returns a string array.

LDAP Attribute The value or values stored in the specified LDAP attribute. If it is multi-
valued, this item returns a string array.

Liberty User Profile The value or values stored in the specified Liberty User Profile
attribute.

Roles from Identity Provider The names of the Roles assigned to the user by the Identity Server
when the user authenticated. If it is multi-valued, this item returns a
string array.

User Store The name of the user store that authenticated the user.

User Store Replica The URL of the replica that authenticated the user.

String Constant The static value the administrator has been instructed to enter.
The Policy Extension API 61

Table 4-6 Configuration Parameters for an Authorization Condition

Data Item Returns

Authentication Contract The URI of the contract used for authentication or
the URI of the specified contract.

Client IP The IP address of the user.

Credential Profile The credentials of the user. You can ask for LDAP
credentials (username, dn, and password), X.509
credentials (public certificate subject, public
certificate issuer, public certificate, serial number),
or the SAML assertion.

Current Date The date when the request was sent.

Day of Week The day when the request was sent.

Current Day of Month The day of the month when the request was sent.

Current Time of Day The time of day when the request was sent.

Destination IP The destination IP address of the request.

HTTP Request Method The HTTP method in the request.

LDAP Attribute The value of the specified LDAP attribute.

LDAP OU The value of any OUs in the user’s DN.

Liberty User Profile The value of the specified Liberty attribute.

Roles The roles that have been assigned to the user.

URL The URL of the current request.

URL Scheme The HTTP scheme (HTTP or HTTPS) of the current
request.

URL Host The hostname specified in the URL of the current
request.

URL Path The path specified in the URL of the current
request.

URL File Name The filename specified in the URL of the current
request.

URL File Extension The file extension specified in the URL of the
current request.

X-Forwarded-For IP The value in the X-Forwarded-For header in the
current request.

String Constant The static value the administrator has been
instructed to enter.
62 NetIQ Access Manager 4.2 Developer Guide

4.3.3 Creating an Action Extension

There are the three types of actions: deny, permit, and obligation. The following sections describe the
interfaces, methods, and configuration parameters available for an action extension.

 “Action Interfaces and Methods” on page 63

 “Actions” on page 63

 “Available Configuration Parameters for an Action Extension” on page 64

Action Interfaces and Methods

When creating an action extension, you need to implement the following interfaces and methods:

Actions

A policy rule can have multiple obligation actions but only one terminating action of either permit or
deny. A permit or deny action needs to return either success or failure to the policy engine. An
obligation action can return either success or failure; the policy engine just needs the
acknowledgement that the obligation extension has performed its action.

An extension that implements an obligation action can use the doAction method to enter a log or audit
event in another system or send an email message.

An extension that implements a deny or permit action can use the doAction method to ask another
database or policy to evaluate a condition and then return the results of that evaluation to the Access
Manager policy engine.

Interface Method Purpose

NxpeActionFactory Contains the methods required to create an action object.

getInstance Creates the NxpeAction object.

NxpeAction Contains the methods required to implement a deny, permit, or
obligation action.

Initialize Called by the policy engine and therefore must be implemented.
It initializes the element and passes to your extension any
configuration values you have requested. These parameters
contain valid information only if the parameters contain
information independent of the request that triggers policy
evaluation.

The data in the configurationValues parameter is valid only during
the lifetime of the initialize method. If your extension needs to
preserve this configuration data, you must maintain a reference.

doAction Called by the policy engine when the action extension needs to
be evaluated for a policy. The informationCtx parameter contains
the parameter information the extension needs from the policy
engine to evaluate the condition. The responseCtx parameter
contains the results of the action.

setInterfaceId Sets the unique string value for the action. This value is used for
tracing the action during policy evaluation.
The Policy Extension API 63

Available Configuration Parameters for an Action Extension

You can use any of the data items in the list to retrieve information about the user and the user’s
request to create a configuration parameter. Your extension can then use this information in
determining the type of action to take. Select the parameters that are useful for your extension. Many
of the available data items might not be useful for your implementation.

Data Item Returns

Authentication Contract The URI of the contract used for authentication or the
URI of the specified contract.

Client IP The IP address of the user.

Credential Profile The credentials of the user. You can ask for LDAP
credentials (username, dn, and password), X.509
credentials (public certificate subject, public certificate
issuer, public certificate, serial number), or the SAML
assertion.

Current Date The date when the request was sent.

Day of Week The day when the request was sent.

Current Day of Month The day of the month when the request was sent.

Current Time of Day The time of day when the request was sent.

HTTP Request Method The HTTP method in the request.

LDAP Attribute The value of the specified LDAP attribute.

LDAP OU The value of any OUs in the user’s DN.

Liberty User Profile The value of the specified Liberty attribute.

Roles The roles that have been assigned to the user.

URL The URL of the current request.

URL Scheme The HTTP scheme (HTTP or HTTPS) of the current
request.

URL Host The hostname specified in the URL of the current
request.

URL Path The path specified in the URL of the current request.

URL File Name The filename specified in the URL of the current
request.

URL File Extension The file extension specified in the URL of the current
request.

X-Forwarded-For IP The value in the X-Forwarded-For header in the
current request.

String Constant The static value the administrator has been instructed
to enter.
64 NetIQ Access Manager 4.2 Developer Guide

4.4 Installing and Configuring an Extension
After you have created your extension, you need to install it, configure it, and distribute it.

 Section 4.4.1, “Installing the Extension on the Administration Console,” on page 65

 Section 4.4.2, “Distributing a Policy Extension to Access Manager Devices,” on page 67

 Section 4.4.3, “Distributing the Extension to Customers,” on page 67

4.4.1 Installing the Extension on the Administration Console

To install an extension, you need to have access to the JAR file and know the following information
about the extension or extensions contained within the file.

What you need to create A display name for the extension.

A description for the extension.

What you need to know The policy type of the extension, which defines the
policy type it can be used with. You should know
whether it is an extension for an Access Gateway
Authorization policy, an Access Gateway Identity
Injection policy, or an Identity Server Role policy.

The name of the Java class that is used by the
extension. Each data type usually uses a different
Java factory class.

The filename of the extension.

The type of data the extension manipulates.

Authorization Policy: Can be used to return:

 An action of deny, permit, or obligation.

 A condition that the extension evaluates and
returns either true or false.

 A data element that the extension retrieves and
the policy can use for evaluating a condition.

Identity Injection Policy: A data extension that
retrieves data for injecting into a header.

Identity Role Policy: Can be used to return:

 A condition that the extension evaluates and
returns either true or false

 A data element that the extension retrieves,
which can be used in evaluating a condition or
used to assign roles

External Attribute Source Policy: You can use it to:

 Get attributes from the external sources.

 Create shared secrets. This shared secret then
can be used in configuring other policies or can
be used by the Identity Servers in their attribute
sets.
The Policy Extension API 65

If the file contains more than one extension, you need to create a configuration for each extension in
the file.

1 Copy the JAR file to a location that you can browse to from the Administration Console.

2 In the Administration Console, click Policies > Extensions.

3 To upload the file, click Upload > Browse, select the file, then click Open.

4 (Conditional) If you want this JAR file to overwrite an existing version of the file, select Overwrite
existing *.jar file.

5 Click OK.

The file is uploaded to the Administration Console, but nothing is visible on the Extensions page
until you create a configuration.

6 To create an extension configuration, click New, then fill in the following fields:

Name: Specify a display name for the extension.

Description: (Optional) Specify the purpose of the extension and how it should be used.

Policy Type: From the drop-down list, select the type of extension you have uploaded.

Type: From the drop-down list, select the data type of the extension.

Class Name: Specify the name of the class that creates the extension, for example
com.acme.policy.action.successActionFactory.

File Name: From the drop-down list, select the JAR file that contains the Java class that
implements the extension and its corresponding factory. This should be the file you uploaded in
Step 3.

7 Click OK.

8 (Conditional) If the extension requires data from Access Manager, click the name of the
extension.

9 In the Configuration Parameters section, click New, specify a name and ID, then click OK.

The developer of the extension must supply the name and ID that the extension requires.

10 In the Mapping column, click the down-arrow, then select the required data type.

The developer of the extension must supply the data type that is required. If the data type is a
data string, then the developer needs to explain the type of information you need to supply in the
text field.

11 (Conditional) If the extension requires more than one data item, repeat Step 9 and Step 10.

12 Click OK.

The extension is now available for the policy type it was created for.

13 (Conditional) If the class can be used for multiple policy types, you need to create an extension
configuration for each policy type.

For example, if an extension can be used for both an Identity Injection policy and a Role policy,
you need to create an entry for both. The File Name option should contain the same value, but
the other options should contain unique values.

14 Continue with Section 4.4.2, “Distributing a Policy Extension to Access Manager Devices,” on
page 67.

The names, IDs, and mapping type of any
configuration parameters. Configuration parameters
allow the policy engine to pass data to the extension,
which the extension can then use to retrieve data or as
part of its evaluation.
66 NetIQ Access Manager 4.2 Developer Guide

4.4.2 Distributing a Policy Extension to Access Manager Devices

To distribute the policy extension to the devices that need it:

1 Create a Role, Identity Injection, or Authorization policy that uses the extension.

2 Assign the policy to a device:

 For a Role policy, enable it for an Identity Server.

 For an Authorization policy, assign it to a protected resource.

 For an Identity Injection policy, assign it to a protected resource.

IMPORTANT: Do not update the device at this time. The JAR files must be distributed before
you update the device.

3 Distribute the JAR files:

3a Click Policies > Extensions.

3b Select the extension, then click Distribute JARs.

3c Restart services on the devices listed for reboot.

 Linux: Enter the following command:

Identity Server: /etc/init.d/novell-idp restart

Access Gateway: /etc/init.d/novell-mag restart

 Windows: Enter the following commands:

net stop Tomcat7
net start Tomcat7

4 (Conditional) If the extension is for an Authorization policy or an Identity Injection policy, update
the Access Gateway.

5 (Conditional) If the extension is for a Role policy, update the Identity Server.

4.4.3 Distributing the Extension to Customers

You can distribute the extension as either a JAR file or as a ZIP file. If the extension contains multiple
types of extensions or contains multiple configuration parameters, you might want to consider
distributing the extension as a ZIP file.

You need to import your JAR file and configure it as described in Section 4.4.1, “Installing the
Extension on the Administration Console,” on page 65. After it has been configured, you can select to
export it as a ZIP file. Your users can then import the ZIP file, and each extension type you have
created is imported with its configuration parameters. In the documentation you create for the
extension, you need to document any parameter the user needs to modify after the import.

To export an extension:

1 In the Administration Console, click Policies > Extensions.

2 Select all the extensions that are part of your JAR file.

If you have more than one JAR file, you can select the extensions that belong to it and include
them in the same export.

3 Click Export, specify a name for the file, then click OK.

4 Follow your browser prompts to save the file to disk.
The Policy Extension API 67

4.5 Sample Codes
You can find the sample codes for the following extensions in netiq-access-manager-sdk-4_2-
extensions.tar.gz in the NetIQ Access Manager 4.2 Developer Kit.

For more information, see NetIQ Access Manager - Sample Code.

 Section 4.5.1, “Data Extension for External Attribute Source Policy,” on page 68

 Section 4.5.2, “Template Policy Extensions,” on page 68

 Section 4.5.3, “LDAP Group Data Element,” on page 69

 Section 4.5.4, “PasswordClass,” on page 69

4.5.1 Data Extension for External Attribute Source Policy

This example demonstrates how an External Attribute Source policy retrieves information from
external sources. It provides details about:

 How to configure and install the External Attribute Source Data policy extension in the
Administration Console.

 Implementation details of the extension factory and extension classes.

 How to use the information retrieved from the External Attribute Source policies as shared
secret. It also explains how to use that shared secret to configure other policies or use them in
the Identity servers to retrieve attributes from external sources.

The policy extension example includes NameAttributeFromMailIDFactory.java and
NameAttributeFromMailID.java.

4.5.2 Template Policy Extensions

This includes the following two types:

 Template Condition Policy

 Template Data Policy

 Template Action Policy

Template Condition Policy

You can use this example as a template to implement a policy extension of type Condition that is
com.novell.nxpe.NxpeCondition. This example provides a basic framework that can be used as a
starting point for creating data policy (com.novell.nxpe.NxpeContextDataElement.) extensions. It
provides details about:

 How to configure and install a Condition policy extension in the Administration Console.

 Implementation details of the extension factory and extension classes.

The policy extension example includes PolicyConditionExtnFactoryTemplate.java and
PolicyConditionExtnTemplate.java.
68 NetIQ Access Manager 4.2 Developer Guide

https://www.netiq.com/documentation/access-manager-developer-documentation/samplecodes/main.html
https://www.netiq.com/documentation/access-manager-developer-documentation/resources/netiq-access-manager-sdk-4_2-extensions.tar.gz

Template Data Policy

You can use this example as a template to implement a policy extension of type Data that is
com.novell.nxpe.NxpeContextDataElement. This example provides a basic framework that can be
used as a starting point for creating such policy extensions. It provides details about:

 How to configure and install the Data policy extension in the Administration Console.

 Implementation details of the extension factory and extension classes.

The policy extension example includes PolicyDataExtnFactoryTemplate.java and
PolicyDataExtnTemplate.java.

Template Action Policy

You can use this example as a template to implement a policy extension of type Action that is
com.novell.nxpe.NxpeContextActionElement. The action policy extension are of the following types:
Permit, Deny, and Obligation. This example provides a basic framework that can be used as a
starting point for creating such policy extensions. It provides details about:

 How to configure and install the Action policy extension - Permit, Deny, and Obligation, in the
Administration Console.

 Implementation details of the extension factory and extension classes.

The policy extension example includes:

 PolicyActionExtnDenyFactoryTemplate.java

 PolicyActionExtnDenyTemplate.java

 PolicyActionExtnPermitFactoryTemplate.java

 PolicyActionExtnPermitTemplate.java

4.5.3 LDAP Group Data Element

This example illustrates how a policy extension can use external data sources to obtain information.
This policy extension connects to the required LDAP repository, runs a search on it, and returns the
results. An Identity Injection policy is created in this example that uses this policy extension.

The policy extension example includes LDAPGroupDataElement.java and
LDAPGroupDataElementFactory.java.

4.5.4 PasswordClass

This authentication class extends the base class LocalAuthenticationClass and performs a form
based authentication. The policy extension example includes passwordClass.java.

For more information, see Section 2.4, “Understanding the Authentication Class Example,” on
page 21 and Section 2.6, “Deploying Your Authentication Class,” on page 29.
The Policy Extension API 69

70 NetIQ Access Manager 4.2 Developer Guide

5 5Custom Rule in Risk-Based
Authentication

This document explains how to create a Custom Rule Class for risk based authentication. The API
presented here allows developers to leverage their own risk based custom rule mechanisms within
the Risk based Authentication architecture. The following topics are covered:

 Section 5.1, “Prerequisites,” on page 71

 Section 5.2, “Understanding the Rule Class,” on page 71

 Section 5.3, “Creating a Custom Rule Class,” on page 72

 Section 5.4, “Understanding the Custom Rule Class Example,” on page 74

 Section 5.5, “Deploying Your Custom Rule Class,” on page 79

 Section 5.6, “Understanding Custom attributes in History SQL Database,” on page 81

 Section 5.7, “Custom Geo Location Data Provider Integration,” on page 82

5.1 Prerequisites
 Access Manager 4.1

 Your development environment requires the same installation as outlined in the NetIQ Access
Manager Installation Requirements

 Copy the nidp.jar, NAMCommon.jar and risk-*.jar files in the following directory of your Identity
Server to your development project:

 On Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 On Windows: C:Program Files (x86)NovellTomcatwebappsnidpWEB-INFlib

5.2 Understanding the Rule Class
Before developing a Custom Rule class, review the following concepts:

 Section 5.2.1, “Rules of Risk Authentication,” on page 71

5.2.1 Rules of Risk Authentication

Risk evaluation is done using a set of rules configured. You can configure the in-built default rules that
are provided in the product. If you have a requirement that is not achievable using these rules, then
you can write your own rule as a custom rule. As shown in the below figure, Risk Engine evaluate all
the rules configured one-by-one, and evaluates the Risk Score with Risk Level for the connecting
user.
Custom Rule in Risk-Based Authentication 71

https://www.netiq.com/documentation/access-manager-41/
https://www.netiq.com/documentation/access-manager-41/

Figure 5-1 Risk Engine evaluating Rules

Risk Engine collects all the activity details of the connecting user and passes it on to the rules for
evaluation. These include IP address of the connecting client, HTTP headers, Cookies, User
attributes, user historical data etc.

The Risk Engine architecture provides a programming interface that allows you to create a custom
Rule class. This rule can be configured like any other rule for Risk Engine. Whenever the Risk Engine
evaluates this rule, corresponding risk core will be added in case if the rule (Condition) fails.

5.3 Creating a Custom Rule Class
You can create the custom Rule class by extending the
com.novell.nam.nidp.risk.core.rules.Rule class. This class is available with risk-core.jar file.
You class must override the abstract method called 'evaluate()' in the custom class. This method
should contain the business logic for the custom rule and this method should return 'true' if the rule
condition is success. If not the method should return 'false'.

Class Details of com.novell.nam.nidp.risk.core.rules.Rule.

Authentication Methods Description

evaluate () Takes HTTPContext, LocationContext, DeviceContext, UserContext and
ResponseObject as its arguments. Example of using these classes are
provided in the code below.

Returns True, if the rule evaluation passes. If failed, false will be returned and
risk score will be considered for this rule.

isHistoricalDataEnabled() Returns true if historical data is enabled for the rule

getName() Returns the name of the Rule inString

getPriority() Returns the priority of the rule in integer.

isExceptionRule() Returns true if this rule is a Privileged Rule.

isRuleEnabled() Returns true if this rule is enabled

isNATed() Returns true if Nat setting is enabled for this server

setType() Takes String or List as argument. This is used as part of the constructor to
inform the RiskEngine to get the type of History data this Rule needs

clearType() Clears the Types set so far
72 NetIQ Access Manager 4.2 Developer Guide

Class Details of com.novell.nam.nidp.risk.context.HTTPContext

Class Details of com.novell.nam.nidp.risk.context.LocationContext

Class Details of com.novell.nam.nidp.risk.context.UserContext

getType() Returns the List of Types set by this Rule

isHistoryEnabled() Same as isHistoricalDataEnabled()

getBoolean() Takes name of the property in String as argument and returns its boolean
value. These are Rule properties set as part of the configuration.

getProperty() Takes name of the Property in String and returns the value that is configured
for this Rule in String

getLong() Takes name of the property in String as argument and returns its long value.
These are Rule properties set as part of the configuration.

getInteger() Takes name of the property in String as argument and returns its int value.
These are Rule properties set as part of the configuration.

getClientIP() Takes HTTPContext & LocationContext as arguments and returns IP of the
connecting client in String

isServerNATed() Same as isNATed()

isNegateResult() Returns true if negate results options is enabled for the rule

getReturnValue() Evaluated result is passed to it and this applies isNegateResult on it

getRiskScore() Returns the risk score assigned to this rule in int

SaveOnSuccessfulAuth() Return true in your custom rule class, if you want to set a cookie back to the
browser. You will need to write a small piece of code to set the cookie value.
Example of this will be provided in this document.

getRequiredAttributes() Override this method in your class. This must return Array of String of user
attributes that is required for your rule to evaluate the risk.

Authentication
Methods

Description

getM_HTTPHeaders() Returns the name/value map of http headers of the connecting client

getCookieValue() Returns the value of the cookie in String. Takes name of the cookie as argument in
String

Authentication Methods Description

GetClientIPAddress() Returns the client IP from the Http Request object

Authentication Methods Description
Custom Rule in Risk-Based Authentication 73

User session properties that are set by a custom authentication class can be used as part of the
custom risk authentication rules. HTTPContext that is passed to the rule evaluation contains this
information.

With the following code snippet, you can get the previously set session values by using a custom risk
rule class:

Inside evaluate method,

 public boolean evaluate(HTTPContext httpContext, LocationContext lContext,
DeviceContext dContext, UserContext uContext, ResponseObject rspObject)

{

String email = (String)httpContext.getSessionContext().get("ExernalEmail");

// Continue evaluation.

}

5.4 Understanding the Custom Rule Class Example
The following example explains how to create a custom rule class:

import java.util.Base64;
import java.util.Map;
import java.util.Properties;
import com.novell.nam.nidp.risk.context.DeviceContext;
import com.novell.nam.nidp.risk.context.HTTPContext;
import com.novell.nam.nidp.risk.context.LocationContext;
import com.novell.nam.nidp.risk.context.UserContext;
import com.novell.nam.nidp.risk.core.rules.Rule;
import com.novell.nam.nidp.risk.util.ResponseObject;

public class CustomRuleTmpl extends Rule {

Authentication
Methods

Description

getUserLoginT
imeStamp()

Returns the long value of Clients login time. Its same value as returned by
Calendar.getInstance().getTimeInMillis()

get() Returns Object for the provided name. This could be Attribute of the user that was requested
using getRequiredAttributes() or could be the History Record requested through
setType() of Rule class. Examples of this method will be part of Custom Rule example
codes.
74 NetIQ Access Manager 4.2 Developer Guide

 /**
 * @param configProps
 * All the configuration will be passed to the constructor.
 *
 * Pass the type of user historical data you want.
 *
 */
 public CustomRuleTmpl(Properties configProps) {super(configProps);

 /*
 * Check all the properties that is configured
 */
 printProperties(configProps);

 if (isHistoricalDataEnabled())
{
// Enter all the user attributes that you need from the history database
// Generally you would need one or two values.
setType(HistoricalAttributeEntries.IP.name());

 /*
* Following commented code shows the way to get other
* historical data from database.
* setType(HistoricalAttributeEntries.LASTLOGGEDINTIME.name());
* setType(HistoricalAttributeEntries.CITY.name())
* setType(HistoricalAttributeEntries.COUNTRY.name());
* setType(HistoricalAttributeEntries.REGION.name());
* setType(HistoricalAttributeEntries.RISKSCORE.name());
* setType(HistoricalAttributeEntries.LOGINRESULT.name());
* setType(HistoricalAttributeEntries.RISKCATEGORY.name());
* setType(HistoricalAttributeEntries.RISKSCORE.name());
* setType(HistoricalAttributeEntries.REGIONCODE.name());
* setType(HistoricalAttributeEntries.METROCODE.name());
* setType(HistoricalAttributeEntries.POSTCODE.name());
 *
 *
 * Or you could even set it using an array List
 * clearType(); // Clear the previously set rule type values

 * ArrayList<String> historyAttributes = newArrayList<String>();
 * historyAttributes.add (HistoricalAttributeEntries.IP.name());
 * historyAttributes.add (HistoricalAttributeEntries.LASTLOGGEDINTIME.name());
 * setType(historyAttributes);
 */

 }

 }

private void printProperties(Properties configProps) {

 System.out.println("Configured properties are : -");
 for (Entry<Object, Object> e: configProps.entrySet())
 System.out.println("Name :" + e.getKey() + "Value : " + e.getValue());
}

Custom Rule in Risk-Based Authentication 75

 /* (non-Javadoc)
 * @see
com.novell.nam.nidp.risk.core.rules.Rule#evaluate(com.novell.nam.nidp.risk.context
.HTTPContext,
com.novell.nam.nidp.risk.context.LocationContext,
com.novell.nam.nidp.risk.context.DeviceContext,
com.novell.nam.nidp.risk.context.UserContext,
com.novell.nam.nidp.risk.util.ResponseObject)
 *
 * This method evaluates the rule and is called in the order of the priority.
 *
 * Parameters
 * HttpContext - Contains all the request http header information
 * LocationContext - Contains information about the client location (IP)
 * DeviceContext - Contains device information
 * UserContext - Contains user information, that includes, user attributes,
roles and historical login data of the user.
 * ResponseObject - Can be used for setting cookies, headers and user
attributes on completion of the risk calculation.
 *
 * Return Values
 * true - on successful evaluation of the rule.
 * false - if failed to evaluate the rule. In this case configured risk score will
be considered.
 *
 * This method will have 3 sections
 * 1) Pre-evaluation : - To get all the parameters of the user login
 * 2) Evaluate the rule : - Apply the use case to the evaluation using the
parameters
 * 3) Post-evaluation : - Set result, cookie and history parameters if needed
 */

@Override
 public boolean evaluate(HTTPContext httpContext, LocationContext
 lContext,DeviceContext dContext, UserContext uContext,
 ResponseObject rspObject) {

 boolean returnValue = false;

 if (m_ruleEnabled)
{
/* ######## Pre-Evaluation Section #####################*/

 getHTTPHeaderInformation(httpContext);

 getCookieInformation(httpContext, "JSESSIONID");

 getLocationParameter(lContext);

 getUserContext(uContext);

 /* ############### Evaluation Section ####################*/
 {
 /*
 * Change the return value according logic of the
 * evaluation
 */
if (true)
 returnValue = true;
 }
76 NetIQ Access Manager 4.2 Developer Guide

 /* ############### Post-Evaluation Section ####################*/
 /*
 * Execute the post evaluation method to consider other configuration like negate
result
 */

// rspObject.setUserAttr(HistoricalAttributeEntries.IP.name(), clientIP);

 return getReturnValue(returnValue);
 }

 return true;
}

 /*
 * Get all the user context/attributes
 */
 private void getUserContext(UserContext uContext) {
 // TODO Auto-generated method stub

 getUserAttribute(uContext);

 getUserRoles(uContext);

 getHistoricalData(uContext);

 }

 /*
 * Get the historical data of the user from the configured DataBase
 */
 private void getHistoricalData(UserContext uContext) {

 // It will get all the passed transaction for the user in the past.
 // If the transaction you looking for is not found, that mean it has failed for
that log in.
 HistoryRecord records =
(HistoryRecord)uContext.get(HistoricalAttributeEntries.IP.name());

 if (records != null)
{
 System.out.println("Printing past entries from the History, in this example
its the IP used by the user");
 for(Object o : records.getValue())
System.out.println("< " + (String)o + "
>n");
 }
 }

 /*
 * Get the user's current role information
 */
 private void getUserRoles(UserContext uContext) {

String[] values = (String[])
uContext.get(UserProfile.Constants.ROLES.name());

 RiskLog.debug("Roles of the user are ");
for (String role : values)
 RiskLog.debug(" " + role + ",");
}

Custom Rule in Risk-Based Authentication 77

 /*
 * Get the user's ldap attributes.
 *
 * NOTE: To get attributes here, you must return
the name of the attributes you need, using method getRequiredAttributes();

 */
 private void getUserAttribute(UserContext uContext) {

 // Value will be null if attribute name is not set as part of
getRequiredAttributes()
 String mail = (String) uContext.get("mail");
String carlicense = (String) uContext.get("carlicense");

 System.out.println("Mail attribute of the user is " + mail + ",
and the carlicense is " + carlicense);
 }

/*
 * This method should return the name of the user ldap attributes required during
evaluation of the rule.
 * You could configure those in the custom rule properties and can pass the value
here.
 */
 @Override
 public String[] getRequiredAttributes() {
 // TODO Auto-generated method stub
 String[] attributes = new String[2];

 attributes[0] = "mail";
attributes[1] = "carlicense";
 return attributes;
}

 /*
 * Get the location parameter of the user
 *
 */
private void getLocationParameter(LocationContext lContext) {

 String clientIP = lContext.getClientIPAddress();
RiskLog.debug("Client Ip address for this request is = " + clientIP);

 Properties props = new Properties();
Provider provider;

 try {
 provider = GeoLocationFactory.getProvider
 RiskEngine.getInstance().getCoreProps().getProperty("geolocation.provider"),
null, props);

 GeoLocBean geoLoc = provider.readGeoLocInfo(InetAddress
.getByName(clientIP));
78 NetIQ Access Manager 4.2 Developer Guide

 System.out.println("Country = " + geoLoc.getCountry());
System.out.println("Country code = " + geoLoc.getCountryCode());
 System.out.println("City = " + geoLoc.getCity());
} catch (GeoLocException | UnknownHostException
e) {
 // TODO Auto-generated catch block
System.out.println("Geo location configuration exception
" + e.getLocalizedMessage());
e.printStackTrace();
 }

 }

 /*
 * Get a spefic cookie out of headers
 */
 private void getCookieInformation(HTTPContext httpContext,
String cookieName) {

 String cookieValue = httpContext.getCookieValue(cookieName);

 RiskLog.debug("Cookie Name = " + cookieName + "
Value = " + cookieValue);
 }

 /*
 * Get all http Context information.
 * Contains all http headers that is part of the request, including cookies.
 */
 private void getHTTPHeaderInformation(HTTPContext httpContext) {

 Map<String, String> headers = httpContext.getM_HTTPHeaders();

 Iterator itr = headers.entrySet().iterator();

 for (Map.Entry< String, String> entry : headers.entrySet()
)
 RiskLog.debug("Header Name = " + entry.getKey()
 + " Value = " + entry.getValue());

 }

}

5.5 Deploying Your Custom Rule Class
1. Create a jar file for your custom rule class and any associated classes.

2. Copy the jar file to the following location in the Identity Server:

 Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 Windows: C:Program Files (x86)NovellTomcatwebappsnidpWEB-INFlib

If the Identity Server is in a cluster, the file needs to be copied to all members of the cluster.

3. In the Administration Console, click Access Manager > Policies> Risk Configuration > Rules >
New.
Custom Rule in Risk-Based Authentication 79

Figure 5-2 Custom Rule Name

Rule name: Specify a name that the Administration Console can use to identity this custom rule

Rule Definitions: Select the 'custom rule' to configure the custom rule

4. Fill in the following fields:

Figure 5-3 Custom Rule Details

Custom class Name: Specify the name of your Java class

Check User History: Select this option if you are using the user's history data in you custom
class

Negate Result: Select this option to reverse the output of the rule condition

Class Property: Specify the parameters and values which will be passed to the custom class at
runtime.

Property Name: Name of the parameter

Value: Value of the parameter

5. Click Next, and specify the risk score for the rule.
80 NetIQ Access Manager 4.2 Developer Guide

Figure 5-4 Specifying Risk Score for Custom Rule

Rule Group: Select the group name.

Risk Score: Specify the risk score for the custom rule.

Privileged Rule: Select if the custom rule is a privileged rule.

6. Click Finish > OK.

7. On the Identity Servers page, click Update.

8. Update any associated devices (Access Gateways, SSL VPN servers, or J2EE* Agents) that are
using this Identity Server configuration.

9. Restart the IDP server.

5.6 Understanding Custom attributes in History SQL
Database
Risk module has a feature to save historical data of the user login as part of the SQL database.
Custom rule examples explain how to read the existing parameters from the historical database. If
you have requirement to create a new attribute in the database for your custom rules to use, then you
could do it as follows:

1. Create the custom tables as below:

 CREATE TABLE netiq_risk.extra
(
 id VARCHAR(32) NOT NULL,
 custom_string_entry1 VARCHAR2(100),
 custom_int_entry2 INTEGER,
 custom_char_entry3 CHAR(1),
 CONSTRAINT fk_extra_id FOREIGN KEY (id) REFERENCES netiq_risk.usr(id)
)

2. The table name should be 'extra'.

3. The column name (attribute) should start with 'custom' followed by the data type of the column,
like custom_<datatype>_<name of the attribute>

e.g) custom_string_userlogintime

4. The attribute name should match the database column name.

5. Currently the following data types are supported for the custom attributes:

 String

 Int

 Char
Custom Rule in Risk-Based Authentication 81

 Boolean

 Date

5.6.1 Custom Rule example

As part of your customer class constructor, set the type of the history you are looking for.

//Get the last login time of the user
 setType(HistoricalAttributeEntries.LASTLOGGEDINTIME.name());
//Get the custom string user login time of the user
 setType("custom_string_userlogintime");

As part of the evaluate() method, you can access these custom values as below:

HistoryRecord records =
 (HistoryRecord)uContext.get("custom_string_userlogintime");
 String value = (String)records.getValue().get(0);

At the end of the evaluate() method, you can set the value of the custom attribute as below:

(ResponseObject)rspObject.setUserAttr("custom_string_userlogintime","12:02:01");

Post evaluation of the risk, this will be set to the extra table on the SQL database.

5.7 Custom Geo Location Data Provider Integration
This section documents describes how to integrate the custom geo location data provider. The API
presented here allows developers to integrate the custom geo location data provider within RISK
based authentication of the Access Manager architecture. The following topics are covered:

 Section 5.7.1, “Prerequisites,” on page 82

 Section 5.7.2, “Understanding the Geo Location Provider interface,” on page 83

 Section 5.7.3, “Creating a Custom Geo Location Provider Class,” on page 83

 Section 5.7.4, “Understanding the Custom Geo Location Provider Class Example,” on page 83

 Section 5.7.5, “5.7.5 Deploying Your Custom Geo Location Provider Class,” on page 84

5.7.1 Prerequisites

 Access Manager 4.1

 Your development environment requires the same installation as outlined in the "NetIQ Access
Manager Installation Requirements (https://www.netiq.com/documentation/access-manager-41/
)"

 Copy the nidp.jar, NAMCommon.jar and risk-*.jar and third party Geo Location data provider jar
files in the following directory of your Identity Server to your development project:

 On Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 On Windows: C:Program Files (x86)NovellTomcatwebappsnidpWEB-INFlib
82 NetIQ Access Manager 4.2 Developer Guide

https://www.netiq.com/documentation/access-manager-41/
https://www.netiq.com/documentation/access-manager-41/

5.7.2 Understanding the Geo Location Provider interface

5.7.3 Creating a Custom Geo Location Provider Class

You can create the custom geo location provider class as follows:

Implementing Provider Interface

import com.novell.nam.nidp.risk.core.geoloc.Provider;

public interface Provider {

 public void init(Properties props);
 public GeoLocBean readGeoLocInfo(InetAddress IPAddress) throws GeoLocException;
}

We can create the Custom Provider class by implements the above interface. We should override the
above init() and readGeoLocInfo() methods.

Extending Abstract Provider Class

import com.novell.nam.nidp.risk.core.geoloc.AbstractProvider;

public abstract class AbstractProvider implements Provider {

 abstract public void init(Properties props);

 abstract public GeoLocBean readGeoLocInfo(InetAddress IPAddress)
throws GeoLocException;

public AbstractProvider(Properties props){
init(props);
 }
 }

We can create the Custom Provider class by extending the above AbstractProvider class. We should
override the above init() and readGeoLocInfo() abstract methods.

5.7.4 Understanding the Custom Geo Location Provider Class
Example

import com.novell.nam.nidp.risk.core.geoloc.AbstractProvider;
import com.novell.nam.nidp.risk.core.geoloc.exception.GeoLocException;
import com.novell.nam.nidp.risk.core.geoloc.model.GeoLocBean;

public class MyCustomGeoProvider extends AbstractProvider {

Method Description

init() Takes Properties as its arguments. This properties object contains the parameters which
are passed through the Admin Console for this Custom class. The method used to
initialize the Geo Location Provider Class.

readGeoLocInfo() Takes InetAddress as its arguments. It returns the Geo Location information as
GeoLocation Bean.
Custom Rule in Risk-Based Authentication 83

 public MyCustomGeoProvider (Properties props) {
 super(props);

 }

// The argument 'props' contains
the configuration parameters which are provided in the admin console for
this custom class.
@Override
 public void init(Properties props) {

 }

// This method should return the geo location
information
@Override
public GeoLocBean readGeoLocInfo(InetAddress IPAddress)
throws GeoLocException {
// read the geo location information
from any external provider using webservice calls or any sources

 return null;
}

}

5.7.5 5.7.5 Deploying Your Custom Geo Location Provider Class

 Create a jar file for your custom geo location provider class and any associated classes.

 Copy the jar files to the following location in the Identity Server:

 Linux: /opt/novell/nam/idp/webapps/nidp/WEB-INF/lib

 Windows: C:Program Files (x86)NovellTomcatwebappsnidpWEB-INFlib

 If the Identity Server is in a cluster, the file needs to be copied to all members of the cluster.

 In the Administration Console, click Access Manager > policies> Risk Configuration >
GeoLocation

 Select Custom Provider from the drop-down and fill in the following fields:
84 NetIQ Access Manager 4.2 Developer Guide

Figure 5-5 Specify Geo Location Rule Name

Provider Name: Specify a name that the Administration Console can use to identity this custom
provider.

Java Class Path: This allows you to specify the path name of your custom Geo Provider Java class.

Class Property: Specify the parameters and values which will be passed to the custom class at
runtime.

Property Name: Name of the parameter.

Value: Value of the parameter.

 Click OK.

 On the Identity Servers page, click Update.

 Update any associated devices (Access Gateways, SSL VPN servers, or J2EE* Agents) that are
using this Identity Server configuration.

 Restart the IDP Server.
Custom Rule in Risk-Based Authentication 85

86 NetIQ Access Manager 4.2 Developer Guide

A ARevisions

This section outlines all the changes that have been made to the Access Manager SDK
documentation (in reverse chronological order).

May 2015 Added a new chapter: RBA Custom Rule

August 2012 Made the following changes in LDAP Server Plug-in:

 Changed the code under section 3.3 Directory Plug-In.

 Replaced nidp.jar with NAMCommon.jar.

 Replaced
com.novell.nidp.common.authority.ldap.jndi.LDAPStorePlugin with
com.novell.nam.common.ldap.jndi.LDAPStorePlugin.

Added table 4-4 Configuration Parameters for an External Attribute Source Policy

Added the 'External Attribute Source Policy' references in sections 4.1.2, 4.3.1,
and 4.4.1.

Added a new section: 4.5 Sample Codes.

Fixed broken links.

Changed the template to NetIQ.

February 2012 Removed Appendix A, “Identity Injection Java Plug-In. This API has been
deprecated. Modified the tomcat paths for Linux and added paths for Windows.

November 2009 Removed two unsupported LocalClassAuthentication methods (showErrorJSP
and getIDPProviders) from the manual.

March 2009 Split the SDK into two SDKs, one for Access Manager 3.0.4 and one for Access
Manager 3.1.

January 2009 Added information on how to use the policy extension API. This new feature is
only available in Access Manager 3.1. For more information, see Chapter 4, “The
Policy Extension API,” on page 41.

Deprecated the Identity Injection Java Plug-In interface (Appendix A, “Identity
Injection Java Plug-In). It has been replaced by the policy extension API in Access
Manager 3.1.

July 2008 Added information about the LDAP server plug-in that you can create to extend
the directory types that the Identity Server supports for user stores. See
Chapter 3, “LDAP Server Plug-In,” on page 33.

April 2008 Added information about the doAuthenticate() method that was added in Access
Manager 3.0 SP3 and takes advantage of secret store unlocking. See
Section 2.3.2, “doAuthenticate Method,” on page 13.

October 10, 2007 Added information about additional methods and grouped the methods. Added
information about localizing an authentication class. See Chapter 2, “Identity
Server Authentication API,” on page 11.

Added a section on how to design a plug-in. (Section A.4, “Designing the Plug-
In,”).
Revisions 87

May 14, 2007 Added Chapter 2, “Identity Server Authentication API,” on page 11.

December 6, 2006 Added the component to the Novell Developer Kit as an Early Access
(unsupported) document.
88 NetIQ Access Manager 4.2 Developer Guide

	NetIQ Access Manager 4.2 Developer Guide
	About NetIQ Corporation
	Our Viewpoint
	Our Philosophy
	Our Solutions
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	About this Book and the Library
	Intended Audience
	Other Information in the Library

	1 Getting Started
	1.1 Development Overview
	1.1.1 SDK Components

	1.2 Selecting an Integrated Development Environment

	2 Identity Server Authentication API
	2.1 Prerequisites
	2.2 Understanding the Authentication Class
	2.2.1 Authentication Class Components
	2.2.2 How the Authentication Class Operates

	2.3 Creating an Authentication Class
	2.3.1 Project Requirements
	2.3.2 doAuthenticate Method
	2.3.3 Authentication Methods
	2.3.4 Class Property Methods
	2.3.5 Status Methods
	2.3.6 User Information Methods
	2.3.7 CallbackAuthentication Method
	2.3.8 Other Methods

	2.4 Understanding the Authentication Class Example
	2.4.1 Extending the Base Authentication Class
	2.4.2 Implementing the doAuthenticate Method
	2.4.3 Prompting for Credentials
	2.4.4 Verifying Credentials
	2.4.5 PasswordClass Example Code

	2.5 Localizing the Prompts in Your Authentication Class
	2.5.1 Creating a Properties File
	2.5.2 Creating a Resource Class
	2.5.3 Creating or Modifying a JSP Page

	2.6 Deploying Your Authentication Class

	3 LDAP Server Plug-In
	3.1 Prerequisites
	3.2 Creating the LDAP Plug-In
	3.3 eDirectory Plug-In
	3.4 Installing and Configuring the LDAP Plug-In
	3.5 Troubleshooting

	4 The Policy Extension API
	4.1 Getting Started
	4.1.1 Prerequisites
	4.1.2 Types of Policy Extensions
	4.1.3 How the Policy Engine Interacts with an Extension

	4.2 Common Elements and Tasks
	4.2.1 Implementing Common Elements
	4.2.2 Initializing the Factory Object
	4.2.3 Retrieving Information from the Identity Server User Store
	4.2.4 Implementing the Extension Interface

	4.3 Creating an Extension
	4.3.1 Creating a Context Data Extension
	4.3.2 Creating a Condition Extension
	4.3.3 Creating an Action Extension

	4.4 Installing and Configuring an Extension
	4.4.1 Installing the Extension on the Administration Console
	4.4.2 Distributing a Policy Extension to Access Manager Devices
	4.4.3 Distributing the Extension to Customers

	4.5 Sample Codes
	4.5.1 Data Extension for External Attribute Source Policy
	4.5.2 Template Policy Extensions
	4.5.3 LDAP Group Data Element
	4.5.4 PasswordClass

	5 Custom Rule in Risk-Based Authentication
	5.1 Prerequisites
	5.2 Understanding the Rule Class
	5.2.1 Rules of Risk Authentication

	5.3 Creating a Custom Rule Class
	5.4 Understanding the Custom Rule Class Example
	5.5 Deploying Your Custom Rule Class
	5.6 Understanding Custom attributes in History SQL Database
	5.6.1 Custom Rule example

	5.7 Custom Geo Location Data Provider Integration
	5.7.1 Prerequisites
	5.7.2 Understanding the Geo Location Provider interface
	5.7.3 Creating a Custom Geo Location Provider Class
	5.7.4 Understanding the Custom Geo Location Provider Class Example
	5.7.5 5.7.5 Deploying Your Custom Geo Location Provider Class

	A Revisions

