
Operations Center
Custom Drawing and Layout Guide

September 2016

Legal Notice

For information about NetIQ legal notices, disclaimers, warranties, export and other use restrictions, U.S. Government
restricted rights, patent policy, and FIPS compliance, see https://www.netiq.com/company/legal/.

Copyright (C) 2016 NetIQ Corporation. All rights reserved.

https://www.netiq.com/company/legal/

Contents
About This Guide 7

1 Introduction 9

1.1 Default Layout View . 10
1.2 Custom Drawings. 10
1.3 Where Do I Start?. 11

2 Getting Started with the Layout View 13

2.1 Navigating Inside the Layout View . 13
2.2 Creating and Editing Custom Drawings . 15
2.3 Understanding Unplaced Elements . 16
2.4 Moving Drawing Elements . 17
2.5 Clearing a Drawing or Reverting to a Previous Drawing or Default Automatic Layout. 17
2.6 Setting Security on Graphic Elements . 18
2.7 Troubleshooting Tips . 18

2.7.1 Empty Drawings. 18
2.7.2 Identifying if a Shape is Associated to an Element . 18
2.7.3 Drawing Scale Too Small in Dashboard . 19

3 Using Basic Drawing Tools and Concepts 21

3.1 Understanding the Layout View Panels and Drawing Palette . 22
3.2 Selecting Drawing Objects . 23
3.3 Adding Shapes and Lines . 24
3.4 Changing Fill Colors. 26
3.5 Changing the Background Color . 26
3.6 Using Undo . 26
3.7 Manipulating Shapes and Objects . 27
3.8 Using the Grid to Align Objects . 28
3.9 Grouping and Ungrouping Objects. 28

3.9.1 Working with Grouped Components . 29
3.10 Using Containers to Control Objects . 29

3.10.1 Grouping Components with a Container . 30
3.10.2 Adjusting the Wrap Settings. 30
3.10.3 Adjusting Container Layout . 30

4 Working with Clip Art and Graphics 33

4.1 Importing Graphics. 33
4.2 Using Graphics from the Clip Art Library . 33

4.2.1 Linking Clipart from the Graphics Library. 34
4.2.2 Embedding Clipart Images. 34

4.3 Managing Clipart Files . 35
4.4 Creating Graphics for the Clipart Library . 35
Contents 3

4 Ope
5 Adding Elements and Updating Drawing Components Using Element Properties 37

5.1 Associating Elements to a Drawing . 37
5.2 Dynamically Transforming Text, Shapes and Lines with Element Properties 38

5.2.1 Creating an Element Name Heading . 39
5.2.2 Changing the Associated Element. 40
5.2.3 Dynamically Updating a Shape’s Color based on Element Condition 41
5.2.4 Hiding and Showing Elements Based on Condition. 43
5.2.5 Coding Custom Behavior. 43

5.3 Changing Default Drill-Down Behavior Using Drawing Shortcuts . 43
5.4 Displaying an Element’s Children using Child Containers . 44

5.4.1 Customizing a Child Container . 46
5.5 Integrating Performance Metric Charts and Gauges into a Drawing . 47

5.5.1 Types of Charts . 48
5.5.2 Types of Gauges . 49
5.5.3 Adding Charts and Gauges . 50
5.5.4 Configuring Chart and Gauge Properties . 50

6 Working with Node Styles and Custom Graphics 55

6.1 Understanding the Node Style and the Node Style Library . 55
6.2 Changing the Node Style . 57

6.2.1 Applying a Node Style to All Elements in a Drawing . 58
6.2.2 Changing the Node Style for One Element Only . 58

6.3 Applying the Ambient Node Style. 58
6.4 Creating and Applying New Node Styles . 58

6.4.1 Creating the Node Style. 59
6.4.2 Testing the Node Style Using Preview Elements . 60
6.4.3 Applying the Node Style. 62

6.5 Importing and Managing Node Styles . 62
6.5.1 Importing a Node Style . 62
6.5.2 Deleting a Node Style . 63
6.5.3 Renaming a Node Style . 63
6.5.4 Adding a Node Style Folder . 63
6.5.5 Deleting a Folder . 63

6.6 Associating Custom Graphics with Classes and Elements . 64
6.6.1 Viewing a Drawing or Graphic . 64
6.6.2 Creating and Associating a Custom Drawing or Graphic . 64
6.6.3 Associating a Node Style or Drawing Template . 65

6.7 Stacked Container Example: Toggling Graphics Based on Condition State. 65

7 Using Drawing Templates 69

7.1 Applying Templates to Drawings . 69
7.1.1 Applying a Template to Elements of a Class . 69
7.1.2 Applying a Template to an Element . 70
7.1.3 Using a Template to Create a Custom Drawing. 70

7.2 Unapplying Templates from Drawings . 70
7.2.1 Unapplying a Template for an Element . 71
7.2.2 Unapplying a Template for a Class . 71

7.3 Creating Templates . 71
7.3.1 Creating a New Template . 71
7.3.2 Creating a Template from a Custom Drawing . 72
7.3.3 Editing Templates . 73

7.4 Importing and Managing Templates . 74
7.4.1 Importing a Template . 74
7.4.2 Organizing Templates Using Folders. 74
7.4.3 Deleting a Template . 75
rations Center Custom Drawing and Layout Guide

7.4.4 Renaming a Template or Folder . 75

8 Layout View Examples 77

8.1 Geographical View Example . 77
8.2 Tabular Data View . 84
8.3 Business Process View Example . 87

A Rendering Rule Precedence for Node Styles and Graphics 91

A.1 Element Rendering Look Up Strategy . 92
A.2 Creating a Test Model . 94

A.2.1 Creating a New Metamodel Class and Elements . 94
A.2.2 Creating a Manually Bound Element in the Drawing . 96

A.3 Viewing the Layout in the Dashboard. 97
A.4 Creating Node Styles for Testing . 97
A.5 Applying the Ambient Node Style to the Drawing. 98
A.6 Changing the Node Style through Binding . 99
A.7 Applying a Node Style to a Class . 101
A.8 Applying a Graphic to a Class . 102

A.8.1 Changing the Class Node Style to a Custom Graphic. 102
A.8.2 Applying a Node Style at the Element Instance Level . 103
A.8.3 Applying a Graphic at the Element Instance Level . 105
A.8.4 Overriding a Single Element Node Style . 106
A.8.5 Clearing Previously Set Node Styles and Graphics. 108

B Bind Language API Reference 115

B.1 Bind Task Examples. 115
B.1.1 Adding Tooltips or Pop-Ups to Portlets in the Dashboard . 116
B.1.2 Tying an Element to a Drawing Shape . 122
B.1.3 Changing Shapes or Showing Objects Based on Element Condition 123
B.1.4 Changing Shapes Based on Element Property . 123
B.1.5 Displaying Element Name or Element Property . 124
B.1.6 Displaying Element Children . 125
B.1.7 Formatting Numbers, Dates, and Time . 126

B.2 Bind Templates. 127
B.2.1 Bind Attributes . 128
B.2.2 Template Subcommands. 129
B.2.3 Layout Bind Commands . 129
B.2.4 Layout Target Element Attributes . 130
B.2.5 Generated Copy Variables . 130

B.3 Layout . 130
B.4 Bind Values . 133

B.4.1 Bind Value Attributes . 134
B.4.2 Using NOC Script in Bind:Value Tag . 135

B.5 Resource Generation . 136
B.6 Bind Promotion. 136
B.7 General Bind Annotations . 137
B.8 Script Objects . 137

C Editing the Source SVG Code 139

C.1 Editing the SVG Code and Regenerate the Drawing . 139
C.2 Using the Opacity Attribute. 140
C.3 Using Relative DNames for Node Attribute Matching . 140
Contents 5

6 Ope
C.4 Looking at the Source Code with a Toggling Graphic Node Style Example. 142
C.5 Looking at the Source Code with a Child Container Example . 151

Glossary of Terms 157
rations Center Custom Drawing and Layout Guide

About This Guide

The Custom Drawing and Layout Guide provides a visual analysis of critical relationships and
conditions across multiple branches of an element hierarchy.

 Chapter 1, “Introduction,” on page 9

 Chapter 2, “Getting Started with the Layout View,” on page 13

 Chapter 3, “Using Basic Drawing Tools and Concepts,” on page 21

 Chapter 4, “Working with Clip Art and Graphics,” on page 33

 Chapter 5, “Adding Elements and Updating Drawing Components Using Element Properties,” on
page 37

 Chapter 6, “Working with Node Styles and Custom Graphics,” on page 55

 Chapter 7, “Using Drawing Templates,” on page 69

 Chapter 8, “Layout View Examples,” on page 77

 Appendix A, “Rendering Rule Precedence for Node Styles and Graphics,” on page 91

 Appendix B, “Bind Language API Reference,” on page 115

 Appendix C, “Editing the Source SVG Code,” on page 139

 “Glossary of Terms” on page 157

Audience

This guide is intended for Operations Center system administrators who manage and create custom
drawings in the Layout view.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Additional Documentation & Documentation Updates

This guide is part of the Operations Center documentation set. For the most recent version of the
Custom Drawing and Layout Guide and a complete list of publications supporting Operations Center,
visit our Online Documentation Web Site at Operations Center online documentation.

The Operations Center documentation set is also available as PDF files on the installation CD or ISO;
and is delivered as part of the online help accessible from multiple locations in Operations Center
depending on the product component.

Additional Resources

We encourage you to use the following additional resources on the Web:

 NetIQ User Community (https://www.netiq.com/communities/): A Web-based community with a
variety of discussion topics.
About This Guide 7

https://www.netiq.com/documentation/operations-center/
https://www.netiq.com/communities/

 NetIQ Support Knowledgebase (https://www.netiq.com/support/kb/
?product%5B%5D=Operations_Center): A collection of in-depth technical articles.

 NetIQ Support Forums (https://forums.netiq.com/forumdisplay.php?26-Operations-Center): A
Web location where product users can discuss NetIQ product functionality and advice with other
product users.

Technical Support

You can learn more about the policies and procedures of NetIQ Technical Support by accessing its
Technical Support Guide (https://www.netiq.com/Support/
process.asp#_Maintenance_Programs_and).

Use these resources for support specific to Operations Center:

 Telephone in Canada and the United States: 1-800-858-4000

 Telephone outside the United States: 1-801-861-4000

 E-mail: support@netiq.com (support@netiq.com)

 Submit a Service Request: http://support.novell.com/contact/ (http://support.novell.com/contact/)

Documentation Conventions

In NetIQ documentation, a greater-than symbol (>) is used to separate actions within a step and items
in a cross-reference path. The > symbol is also used to connect consecutive links in an element tree
structure where you can either click a plus symbol (+) or double-click the elements to expand them.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a forward slash to preserve case considerations in
the UNIX* or Linux* operating systems.

A trademark symbol (®, ™, etc.) denotes a NetIQ trademark. An asterisk (*) denotes a third-party
trademark.
8 Operations Center Custom Drawing and Layout Guide

https://www.netiq.com/support/kb/?product%5B%5D=Operations_Center
https://forums.netiq.com/forumdisplay.php?26-Operations-Center
https://www.netiq.com/Support/process.asp#_Maintenance_Programs_and
support@netiq.com
http://support.novell.com/contact/

1 1Introduction

The Operations Center Layout view can provide a visual analysis of critical relationships and
conditions across multiple branches of an element hierarchy. The dynamic linking feature binds
graphics in a drawing to element conditions and attributes, thus enabling automatic updates of the
drawing when elements change. The Layout view also provides a set of drawing tools for adding
shapes, colors, text, and many other features found in standard drawing products.

Planning a Layout view custom drawing requires consideration of its purpose and usage. Typically,
administrators create and edit Layout view drawings for various types of users. Before creating a
drawing, consider the drawing’s audience and the information they need. For example, a Layout view
for executives is likely to contain a diagram of a service model’s health and compliance. In contrast,
an operations department is interested in a network diagram identifying critical performance areas.

A Layout drawing is built in the Operations Center console by Administrators, but can be published in
the Dashboard for your users.

 Section 1.1, “Default Layout View,” on page 10

 Section 1.2, “Custom Drawings,” on page 10

 Section 1.3, “Where Do I Start?,” on page 11
Introduction 9

1.1 Default Layout View
By default, the Layout view shows the selected element and its first-level children using a Gradient
Bubble node style where fill color corresponds to the element’s current condition. Using default
condition settings, red means CRITICAL, orange means MAJOR, and so on. Arrows between
elements show the relationships between parent and children. This is illustrated in Figure 1-1:

Figure 1-1 Default Layout View Drawing

1.2 Custom Drawings
In some cases, you may wish to customize an element’s layout by stylizing the node style; or, adding
graphics to create a custom drawing -- in order to help users better understand the organization of
elements in an infrastructure.

The following are examples of how the default Layout view can be modified to create attractive, useful
and informational displays:

Geographic Maps

An imported map can be overlaid with circles or other
shapes to represent the current network performance
in each country. Location shapes are linked to element
condition color. Or maps can be used in many creative
ways such as linking and updating the relevant portion
of the map to show system status.
10 Operations Center Custom Drawing and Layout Guide

1.3 Where Do I Start?
Read this guide to plan a Layout view and learn to use features that make the Layout drawing
dynamic and how to customize the drawing with logos, clipart, and more. Examples are provided in
Chapter 8, “Layout View Examples,” on page 77 to help you get started.

Of note:

 New users of the Layout view should first read Chapter 2, “Getting Started with the Layout View,”
on page 13 for an introduction to commonly used features.

 Basic editing information, such as how to import clip art or a use the drawing tools, is found in:

 Chapter 3, “Using Basic Drawing Tools and Concepts,” on page 21

 Chapter 4, “Working with Clip Art and Graphics,” on page 33

 Chapter 5, “Adding Elements and Updating Drawing Components Using Element
Properties,” on page 37

 Advanced features, such as binding elements to a drawing are explained in Chapter 5, “Adding
Elements and Updating Drawing Components Using Element Properties,” on page 37.

 Experienced users wanting to understand how to apply templates and node styles at different
levels should read:

 Chapter 6, “Working with Node Styles and Custom Graphics,” on page 55

 Chapter 7, “Using Drawing Templates,” on page 69

 For step-by-step instructions in creating example applications using various Layout view
features, see Chapter 8, “Layout View Examples,” on page 77.

Business Processes

Imported graphics represent various elements in a
business process. The shapes beneath the graphics
are linked to element condition colors. For example,
the Procurement element is red, representing the
CRITICAL condition. The Layout view drawing tools
were used to add text labels, arrows, and basic
background shapes using gradient colors.

Custom Node Styles

Customized node styles can enhance the automatic
layout and illustrate the status of a network
configuration management application. The computer
graphic node style uses fill color to show current
server condition and identify sites experiencing critical
problems. Server names use bound text to also show
server condition. The drawing shows mapping and
visualization of configuration items that enables peer-
to-peer and hierarchical views. It also avoids
duplicates and enables matching of configuration
items from different sources.The SVG graphics help
users visualize critical relationships among elements
in different areas of the element hierarchy.
Introduction 11

 For more advanced topics including Bind language reference materials:

 Appendix A, “Rendering Rule Precedence for Node Styles and Graphics,” on page 91

 Appendix B, “Bind Language API Reference,” on page 115

 Appendix C, “Editing the Source SVG Code,” on page 139
12 Operations Center Custom Drawing and Layout Guide

2 2Getting Started with the Layout View

When a user switches to the Layout view for any element, the view updates to show a drawing if
available. If no drawing has been created, the default automatic layout displays.

Typically, system users do not have the authority to modify Layout view drawings. In some cases, the
Layout view can be disabled and not be available to users who are not members of the administrators
group. For more information, see Access Control in the Operations Center Security Management
Guide.

The Layout view is read-only when indicated by a lock icon in the bottom left of the view. In read-only
mode, you can navigate the view, zoom into different areas, and drill down to view linked elements.

The following sections cover basic functionality to start building custom drawings for element Layout
views:

 Section 2.1, “Navigating Inside the Layout View,” on page 13

 Section 2.2, “Creating and Editing Custom Drawings,” on page 15

 Section 2.3, “Understanding Unplaced Elements,” on page 16

 Section 2.4, “Moving Drawing Elements,” on page 17

 Section 2.5, “Clearing a Drawing or Reverting to a Previous Drawing or Default Automatic
Layout,” on page 17

 Section 2.6, “Setting Security on Graphic Elements,” on page 18

 Section 2.7, “Troubleshooting Tips,” on page 18

2.1 Navigating Inside the Layout View
When you first open a Layout view, the drawing is in View mode, which means you can view, but
cannot modify the drawing. In View mode, you can:

 Use the basic navigation tools to move around the Layout view.

View Menu
Options

Button Shortcut Description

Zooms into to a selected area.

Click the Selection Zoom button, then click & drag inside
the Layout view to draw a selection rectangle. All elements
within the selection rectangle magnify to fill the viewing
area.

Zoom 1:1 1 Resets the drawing to 100%, but does not center the
drawing.

Zoom + + Incrementally magnifies the drawing.

Zoom – – Incrementally reduces the size of the drawing.
Getting Started with the Layout View 13

https://www.netiq.com/documentation/operations-center/pdfdoc/security_management/security_management.pdf#accesscontrol
https://www.netiq.com/documentation/operations-center/pdfdoc/security_management/security_management.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/security_management/security_management.pdf#bookinfo

 Use the Navigator pane to navigate large or complex drawings. Found in the lower left
panel, it presents a “bird’s eye” view of the drawing that is helpful when zoomed in on a large or
complex drawing. Click and drag the transparent overlay pane to display different portions of a
drawing in the Layout view.

To show/hide the navigator, select or deselect Show Navigator in the View menu.

 Drill down to element hierarchies. Move from the current Layout drawing to other drawings by
clicking elements in the current drawing. Drawing objects can be linked to specific elements in
the hierarchy. The system administrator who created a custom drawing for an element should
explain the general purpose of the drawing, and identify the linked elements.

If there is no drawing associated with the element, the default layout is shown. If the view is
empty, a new drawing was created without any graphics.

 Use the Unplaced Elements pane to identify and work with elements that have not been
placed in the drawing. See Section 2.3, “Understanding Unplaced Elements,” on page 16).

Zoom to... Selects the size of a drawing by a percentage.

Zoom to World Home Zooms to display the entire drawing. In most cases, it
centers and resets the drawing to 100%. If the drawing is
originally larger than the Layout view, it reduces the
drawing until it fits inside the view.

Use Pan to move the drawing position inside the view.
Click Pan to change to pan mode, then click and drag the
drawing to move it to the desired position.

View Menu
Options

Button Shortcut Description
14 Operations Center Custom Drawing and Layout Guide

2.2 Creating and Editing Custom Drawings
When considering changing the default Layout drawing, consider the changes needed to make it
useful for purposes of analysis and decision making. Consider the people using the drawing and the
information that is important and should surface immediately. Design a layout of icons and graphics
that best convey element, service, or process information.

Some important general facts about working with the Layout view:

 Each Layout view drawing is associated with the element selected in the Explorer pane.

 When a Layout view is first displayed, it is read only. Making any changes to a Layout drawing
creates a custom drawing. To modify a drawing requires switching to Edit mode, which locks the
element and prevent other users from editing the same Layout view.

 A Layout drawing can only be modified by one user at a time. When a Layout drawing is being
edited, it is locked until the user saves or cancels the drawing.

 Changes in the Layout view are not automatically saved. Use Save Drawing or Ctrl+S to save
your work.

To create a drawing:

1 In the Explorer pane, select the element and open the Layout tab.

2 Right-click the Layout view background and select New Drawing, or use keyboard shortcut (Ctrl
+ N). All element nodes and any existing drawing objects are cleared from the view.

Child elements are listed in the Unplaced Elements pane. For more information about Unplaced
Elements, see Section 2.3, “Understanding Unplaced Elements,” on page 16.

3 To build a custom drawing do any of the following:

 Select elements that are important to visualize on screen in a single drawing.

Drag and drop existing child elements from the Unplaced Elements pane.

For more information about unplaced elements, see Section 2.3, “Understanding Unplaced
Elements,” on page 16.

Drag and drop elements from any branch of the elements hierarchy to a Layout drawing.
For example, mix elements from an adapter hierarchy and the Service Models hierarchy in
a single drawing.

 Click and drag elements inside the drawing to arrange them in an optimal layout. Decide the
best way to graphically represent these elements using node styles.

Select a node style from the node styles that are available. You can select a simple graphic
that displays only the element name or a descriptive style that displays the number of
children and the date/time the element was last updated.

 Add color, text, shapes, and clipart using the drawing tools. Use arrows to show
relationships.

For more information on drawing tools and shapes, see Chapter 3, “Using Basic Drawing
Tools and Concepts,” on page 21.

 Dynamically update status and information by binding element conditions or attributes to
shapes or text in the drawing.

The binding feature automatically updates graphic colors when element conditions change.
Similarly, if the element name or other linked attribute changes, bound text in a drawing also
updates.

For more information about binding elements to a drawing, see Chapter 5, “Adding
Elements and Updating Drawing Components Using Element Properties,” on page 37
Getting Started with the Layout View 15

 Import maps, logos, and other images to enhance the drawing.

For more information on applying nodestyles and using custom graphics, see Chapter 6,
“Working with Node Styles and Custom Graphics,” on page 55.

 Apply a drawing template to apply a standard set of drawing objects or attributes.

For more information about applying drawing templates, see Section 7.1, “Applying
Templates to Drawings,” on page 69.

4 For more information about the Layout portlet, see “Configuring the Layout Portlet” in the
Operations Center Dashboard Guide.

To edit a Layout view drawing:

1 In the Explorer pane, select the desired element and open the Layout tab.

2 By default, the Layout view is read-only. Click Switch to Edit Mode in the Layout view status bar.

In the Explorer pane, the word (Locked) displays next to the selected element to show the
Layout view is locked for this element. The view updates to display the drawing tools toolbar.

TIP: You can also switch to Edit mode by pressing Ctrl+D or by clicking Edit > Edit Drawing.

3 Make changes to the drawing.

4 Save the drawing changes by pressing Ctrl+S or by right-clicking the background and selecting
Save Drawing.

2.3 Understanding Unplaced Elements
The Unplaced Elements pane, found in the lower left panel, presents a listing of any elements that are
not included in a custom drawing. When the Layout view is in Edit mode, these elements can be
dragged and dropped into the drawing.

When you create a new drawing using the New Drawing option (or use the Clear Drawing option to
start over), the Layout view is cleared and all children—native and linked elements—as well as any
drawing objects are removed from the drawing and placed in the Unplaced Elements pane. They
remain there until you drag and drop them into the drawing. In some cases, you might have some
elements to remain “hidden” from the Layout drawing. For these elements, you would leave them in
Unplaced Elements.

Figure 2-1 Unplaced Elements Pane
16 Operations Center Custom Drawing and Layout Guide

https://www.netiq.com/documentation/operations-center/pdfdoc/dashboard/dashboard.pdf#bl5gggf
https://www.netiq.com/documentation/operations-center/pdfdoc/dashboard/dashboard.pdf#bookinfo

By default, the Unplaced Elements pane is available only for administrators—therefore, any unplaced
elements are unknown by users who do not have permissions to view it. The Unplaced Elements
pane can be exposed to users by setting the SVG.ShowUnplaced property to true in the launch.jnlp
file.

To show the Unplaced Elements pane for all users:

1 Modify the /OperationsCenter_install_path/html/client/template/launch.jnlp file to
set the SVG.ShowUnplaced property to true:

<property name="SVG.ShowUnplaced" value="true" />

2 Run the Operations Center Configuration Manager and click Apply.

For more information on the Operations Center Configuration Manager, see the Operations
Center Server Configuration Guide.

2.4 Moving Drawing Elements
A common action is to move elements in a drawing, for the purposes of reorganization or to make the
content easier to read.

To move a drawing element:

1 Click Switch to Edit Mode in the Layout view status bar.

In the Explorer pane, the word (Locked) displays next to the selected element. No one else can
modify the Layout view for this element.

The view updates to display the drawing tools toolbar.

2 Drag the elements to the appropriate location.

3 Save the changes to the drawing by pressing Ctrl+S or by right-clicking the background and
selecting Save Drawing.

2.5 Clearing a Drawing or Reverting to a Previous
Drawing or Default Automatic Layout
At any time, you can abandon unsaved changes to revert to the last saved drawing or the original
default drawing.

Table 2-1 Undoing a custom drawing

To... Do the following:

Revert to last saved drawing Click Edit > Revert to Last Saved.

Remove a drawing and revert to
the original automatic layout

Click Edit > Revert to Automatic Layout.

This reverts to the default Gradient Bubble node style and a traditional tree
layout style. Everything in the drawing is removed, except for the element
associated with the drawing and its first-level children. The drawing must be
saved at least once for the Revert to Automatic Layout option to be
available.
Getting Started with the Layout View 17

https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo

2.6 Setting Security on Graphic Elements
Security permissions can be set for graphic elements and drawing objects, such as templates, node
styles, and clip art. Follow the same rules as those used for establishing permissions for other
elements, as described in the Operations Center Security Management Guide. These permissions
apply when editing Layout view drawings. However, the permissions are ignored when a user views a
saved drawing.

For example, a user does not need View privileges for a clipart image in order to see the clipart in a
Layout drawing. However, in Edit mode, a user needs View permissions to add the clipart to a new
drawing or to an existing drawing.

2.7 Troubleshooting Tips
The following sections provide help for the following:

 Section 2.7.1, “Empty Drawings,” on page 18

 Section 2.7.2, “Identifying if a Shape is Associated to an Element,” on page 18

 Section 2.7.3, “Drawing Scale Too Small in Dashboard,” on page 19

2.7.1 Empty Drawings

If the Layout view is empty with no elements or custom drawing, the following situations may be
occurring:

 A new drawing was created and saved without any graphics. For instructions to re-create the
default layout, see Section 2.5, “Clearing a Drawing or Reverting to a Previous Drawing or
Default Automatic Layout,” on page 17

 The drawing channel is set to Element Graphic when none has been created. For more
information, see Section 6.6, “Associating Custom Graphics with Classes and Elements,” on
page 64.

2.7.2 Identifying if a Shape is Associated to an Element

By default, nothing in the drawing indicates a shape is bound to an element. Sometimes it is useful to
identify the drawing shapes that are bound to elements.

To toggle between displaying and hiding the bind symbol, which is a lightning bolt, click View > Show
Bindings:

Clear everything and start from
scratch

Right-click the background of the drawing, then select Clear Drawing.

Clearing a drawing removes everything from the Layout view, leaving it in
Edit mode. However, nothing changes in the Explorer pane element
hierarchy. The elements there remain intact.

To... Do the following:
18 Operations Center Custom Drawing and Layout Guide

https://www.netiq.com/documentation/operations-center/pdfdoc/security_management/security_management.pdf#bookinfo

The lightning bolt symbol indicates the circle shape is bound to an element.

Elements for which a user does not have View permission do not display in the Layout view drawing.
Thus, if an element is bound to an icon in the Layout view, the icon is not visible to users who do not
have View permission for the element.

2.7.3 Drawing Scale Too Small in Dashboard

The Layout portlet is used to display layouts and custom drawings in the Operations Center
Dashboard. Generally, settings in the portlet’s edit-side options are used to control the display of the
drawing, however. some custom drawings can look out of proportion compared to automatic layouts
when navigating the hierarchy.

To force the diagram to scale larger than its natural size in the Dashboard, right-click the background
of the drawing (while in Edit Mode) and select Enable Dashboard Fit-to-Space Scaling.

For more information about the Layout portlet, see “Configuring the Layout Portlet” in the Operations
Center Dashboard Guide.
Getting Started with the Layout View 19

https://www.netiq.com/documentation/operations-center/pdfdoc/dashboard/dashboard.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/dashboard/dashboard.pdf#bl5gggf

20 Operations Center Custom Drawing and Layout Guide

3 3Using Basic Drawing Tools and
Concepts

This section covers the basic editing features and the primary drawing tools that are available to
customize your Layout view drawing.

The following sections cover basic editing and drawing features for creating a custom drawing:

 Section 3.1, “Understanding the Layout View Panels and Drawing Palette,” on page 22

 Section 3.2, “Selecting Drawing Objects,” on page 23

 Section 3.3, “Adding Shapes and Lines,” on page 24

 Section 3.4, “Changing Fill Colors,” on page 26

 Section 3.5, “Changing the Background Color,” on page 26

 Section 3.6, “Using Undo,” on page 26

 Section 3.7, “Manipulating Shapes and Objects,” on page 27

 Section 3.8, “Using the Grid to Align Objects,” on page 28

 Section 3.9, “Grouping and Ungrouping Objects,” on page 28

 Section 3.10, “Using Containers to Control Objects,” on page 29
Using Basic Drawing Tools and Concepts 21

3.1 Understanding the Layout View Panels and
Drawing Palette
In Edit mode, the Layout view displays drawing tools and drawing properties. Figure 3-1 shows the
main components of the Layout view that are referenced throughout this section:

Figure 3-1 Layout View’s Drawing Tools and Properties

Some tips on using the layout view:

 Use the Navigator to focus on a specific area of the drawing.

 Use the Drawing Tools to add shapes, lines, and text to the drawing. Also import graphics and
zoom in or out of the drawing.

 The Palette displays various properties panes with options for drawing objects, such as colors,
line widths, and auto update with element name or condition color. The property panes available
depend on the type of object that is selected in the drawing. To facilitate viewing, collapse panes
that are not of interest and expand the panes you are using most.
22 Operations Center Custom Drawing and Layout Guide

The Palette location in the browser can vary, depending on your selection.

The Palette can display as a floating dialog box, a tab, or a docked element. The Palette location
depends on your selection. Click View > Palette Location, then select a location:

Controller: Adds Palette as a tab where the Navigator and Graphics tabs display.

Floating: The Palette can be dragged as a single component to any location on the screen. You
can move the Palette at any time. Click (Attach/Pushpin) to dock the Palette to the right side
of the screen.

Docked: Anchors the Palette to the right side of the screen. Click (Detach) to change to a
floating Palette.

Hidden: Removes the Palette from the Layout view. To display the Palette, select one of the
other menu options.

3.2 Selecting Drawing Objects
There are two selection modes in the Layout view:

 Normal: Grouped objects respect the layering of a group of objects. A group has to be
ungrouped in order for a single object within the group to be selected and altered.

 Flattened: The layers created by object groupings are “flattened” and single objects in the group
can easily be selected and altered without ungrouping all.

To select objects:

1 To select complex items (grouped items) as a single item, click (Normal).

2 To select and move a single item that is part of a group, click (Flattened).
Using Basic Drawing Tools and Concepts 23

3.3 Adding Shapes and Lines
The Layout view provides a full set of drawing tools. These tools function much the same way as
features found in other drawing products. Add text, colored shapes and imported clipart to provide
additional information and enhance the appearance of a drawing.

In Edit mode, drawing tools display along the bottom of the Layout view:

Figure 3-2 Drawing Toolbar

Each tool button has a roll-over tooltip. Place the mouse over a button and a tooltip displays the
button name.

A few buttons on the toolbar enable freehand drawing of lines or shapes, depending on whether you
select a fill color.

Table 3-1

Adding Text

 (Add Text)
Click on the drawing and enter your text. Use options in the Properties
and Text panes to change color or font.

To automatically update the text with element name or attribute, see
Section 5.2.1, “Creating an Element Name Heading,” on page 39.

Adding Shapes

 (Add Rectangle)

 (Add Circle)

 (Add Ellipse)

 (Add Polygon)

 (Add Triangle)

 (Add Diamond)

Click and drag the outline of the shape anyplace in the drawing. Later,
click and drag any of the shape’s endpoints to modify the size or
dimensions of the shape.Change almost any feature of a shape using
the Properties palette: the line and fill colors, line shapes and width,
shape shadows, and so on.

To automatically update the fill color based on element condition
color, see Section 5.2.3, “Dynamically Updating a Shape’s Color
based on Element Condition,” on page 41.

Drawing Lines and Arrows

 (Add Line)
Click and drag to draw the line.Change line color and thickness using
the Properties palette.

To modify the line angle, simply click and drag one of the end
points.To snap the line in 15 degree increments, press Shift while
drawing the line end points.Move the line by clicking and dragging its
midpoint.
24 Operations Center Custom Drawing and Layout Guide

 (Add Connection)
Connect two drawing objects.Position the mouse over an element to
display blue “x” s at the connection points. Click one blue “x” to start
the line, and drag the line over to click the blue “x” on a different
object.

 (Add Block Arrow)
Click and drag to draw the arrow.

Drawing Freehand Shapes and Lines

 (Add Polyline)

 (Add Simple Curve)

 (Add Complex Curve)

1. Click to start the line, then drag to draw the first line segment.
Click once to mark the end of the line segment.

2. Drag to draw the next segment. Click once to mark the end the
line segment.

TIP: To snap a polyline in 15 degree increments to create
curves, press Shift while drawing.

3. When finished drawing all segments, double-click to finish the
line.

4. To fill the shape drawn by the line, select a fill color.
Using Basic Drawing Tools and Concepts 25

3.4 Changing Fill Colors
There are several ways to change the line or fill color of a shape. Use the color palette, see
Section 3.1, “Understanding the Layout View Panels and Drawing Palette,” on page 22, or click
(Color) on the Layout drawing toolbar.

It is possible to create custom colors and apply them to new or existing drawing components.

To apply colors:

1 To change colors, do one of the following:

1a In the toolbar, click (Color) to open the Change Color dialog box.

Select a new color using the Swatches, HSB, and RGB tabs.

1b In the toolbar, click (Color Picker), then click any other color in the drawing.

2 Drag the Color button to an existing shape.The shape color updates.

3.5 Changing the Background Color
A quick way to enhance a drawing is to add background color.

To specify the background color for the drawing:

1 Click Edit > Set Background Color to open the color selector.

2 To change the background color to create a dramatic effect, select a color, then click OK.

The background changes to the selected color.

3.6 Using Undo
If you make a mistake while drawing, use the Undo feature. It works for most actions that are
performed using the drawing tools and drawing options, such as Group, Cut, Paste, and so on.

To use the Undo and Redo features:

To do this Press Or Click

Undo Ctrl+Z Edit > Undo

Redo Ctrl+Y Edit > Redo
26 Operations Center Custom Drawing and Layout Guide

3.7 Manipulating Shapes and Objects
While working in the Layout view, you can use standard element options for the element currently
selected in the Explorer pane. These options include viewing element properties, and viewing
Impacted and Root Cause.

In Edit mode, right-clicking the background of the drawing displays drawing options in addition to the
standard element options, which display under the Element menu option. Edit and Format menu
options are available for editing drawing shapes, which are added using the drawing tools, and for
graphics that represent elements in the Elements hierarchy (displayed in the Explorer pane).

 To select a drawing shape or element for editing, click the shape in the Layout view.

The selection “handles” display around its perimeter.

 To select multiple elements, press and hold the Shift key, then select multiple elements.

 To change the color of shapes or lines in a drawing, use the Properties pane. To view a tooltip for
any item on this pane, position the mouse over the item.

Select a drawing component, such as a shape or line. The Properties pane updates to display
the current properties for the drawing object.

Keep in mind that the properties apply only to the Layout view items that can use them. For
example, if you use the Palette to set a group’s line, color, and fill properties, the drawing
attempts to pass these property values to the children nested inside that group. This inheritance
works only if a different property value has not been specified for the nested children. Specified
property values for children take precedence over their parents’ properties.

 To edit shapes, right-click a drawing shape, or click the Edit menu, then select an option:

Copy: Copies the shape and all its properties to the clipboard.

Paste: Pastes the shape in the drawing.

Cut: Removes the shape and places it on the clipboard.

Delete: Permanently removes the shape from the drawing.

 To edit editing shapes or elements that were manually added to the drawing (not elements that
are part of the Automatic layout), right-click a shape or element, or click the Format menu and
select an option:

Align: Arranges multiple elements using the selected starting point, such as Right or Top.
Available only when multiple elements are selected.

Set to the same: Changes the elements to the same width, height, or size. Available only when
multiple elements are selected.

Spacing: Place the elements in the horizontal or vertical center of the view. Available only when
multiple elements are selected.

Order: When elements overlap, specify the order for the current shape in relation to the other
element: on Top or Bottom, or one layer Down or Up.

Rotate: Rotates the elements using the specified degree.

Flip: Turns the elements 180 degrees along its vertical or horizontal axis.
Using Basic Drawing Tools and Concepts 27

3.8 Using the Grid to Align Objects
Use the grid feature to align shapes and other drawing components. Aligning components with the
grid is optional.

Do the following tasks, as necessary:

1 To display the grid, click View > Grid > Show Grid.

The grid displays in the Layout view.

2 To align elements with the closest grid line, click View > Grid > Enable Align with Grid.

All new shapes and lines align with the grid.

Existing elements do not align with the grid, unless you try to move them.

3 To hide the grid, click View > Grid > Show Grid.

The grid disappears.

4 To change the grid spacing, do the following:

4a Click View > Grid > Grid Settings to open the Modify Grid Settings dialog box.

4b Edit the zoom level and intervals.

4c Click OK.

The grid updates.

3.9 Grouping and Ungrouping Objects
Grouping drawing components combines multiple components into a single component. Grouping is
useful when you should rearrange or manage many components on the screen. Instead of having to
drag multiple components, you can click once and select multiple items and move them at one time.

Ungrouping is particularly important when editing imported images, such as maps. In order to edit one
area of the image, you might need to ungroup the image first.

The Group options described in the following subsections are available under the Edit menu, and also
by right-clicking a drawing components.

To group drawing components:

1 Use the selection methods listed above to select components. For example, this might include
elements, shapes, and associated text labels.

Elements generated by an Automatic layout cannot be grouped with other items.

2 Right-click the group, then select Group.

The selected components become a single component.
28 Operations Center Custom Drawing and Layout Guide

To ungroup drawing components:

1 Select the group.

2 Right-click the group, then select Ungroup.

3.9.1 Working with Grouped Components

Actions performed on a group affect the group as a single entity. They do not affect individual
components within the group. For example, if you drag and drop an element from the Explorer pane
to a group, it binds to the entire group, not to any single drawing component in the group.

However, it is possible to change individual components while keeping the group intact. These
changes include modifying shapes, colors, text, and binding elements to shapes or lines.

To change individual objects within a group:

1 Select the group.

A dashed box outlines the group.

Another hint for identifying a group is in the Palette ID label. The node type displays in the label,
and in the case of a group, it displays a <G> ID label instead of a <PATH> ID.

2 Right-click, then select Change Group.

A yellow band outlines the group.

3 Select individual components within the group and make changes.

You can edit only the components that have white selection “handles,” which were added using
the drawing tools. Components that were linked or copied to the drawing from the Element
hierarchy have grey selection “handles” and cannot be edited.

The hierarchy elements, such as Your Firewall, cannot be edited.

4 When finished, right-click the container, then select Save Group.

3.10 Using Containers to Control Objects
Container can help you group objects with more options and control over objects than the standard
grouping feature.

There are three types of containers that can be used with the Layout view:

 Simple Container: groups one or more objects in an outer container.

 Stack Layout Container: layers multiple objects. Stack Layout Container are useful to create
node styles that show a different graphic based on the element state.

For information about using stack containers to create a node style, see Section C.4, “Looking at
the Source Code with a Toggling Graphic Node Style Example,” on page 142.

 Children Container: shows one or more levels of child elements.

For more information about using children containers, see Section 5.4, “Displaying an Element’s
Children using Child Containers,” on page 44.

This section covers how to group multiple objects with a simple container:

 Section 3.10.1, “Grouping Components with a Container,” on page 30

 Section 3.10.2, “Adjusting the Wrap Settings,” on page 30

 Section 3.10.3, “Adjusting Container Layout,” on page 30
Using Basic Drawing Tools and Concepts 29

3.10.1 Grouping Components with a Container

To group drawing components with a container:

1 Use the selection tool to select the desired components.

For example, this might include elements, shapes, and associated text labels.

Elements generated by an Automatic layout cannot be grouped with other items.

2 Right-click anywhere on a selected component and select Customize > Container > Wrap in
Container.

3.10.2 Adjusting the Wrap Settings

While outer containers can be modified just like any other rectangle or drawing shape, there are some
options that are unique to containers.

To adjust the outer container and wrapping attributes:

1 To adjust the wrap settings, right-click the container and select Customize > Container >
Wrapping > Adjust Wrap Settings. The Adjust Wrap Settings dialog box opens.

Do any of the following:

 Select any of the Pad radio buttons to adjust the spacing between the components.

 Specify the minimum width of the outer container in the Minimum Width field.

 Specify the minimum height of the outer container in the Minimum Height field.

2 To hide or show the outer container do one of the following:

 To hide the outer container, right-click the container and select Customize > Container >
Hide Wrapping Rectangle.

The outer rectangle is invisible to the view.

 To restore the outer container, right-click the container and select Customize > Container >
Show Wrapping Rectangle.

3.10.3 Adjusting Container Layout

There are many types of layouts available for a container that set how components are displayed in
the container. Grid and Flow layouts have additional settings for configuration.

Table 3-2 Container Layout Types

Layout Type Use to display objects and elements...

Cluster In a circular grouping of the objects, packing them together, with the
largest ones in the center.

Cluster Box In a rectangular grouping of the objects, packing them together, with the
largest ones in the center.

Flow In a single column, based on the front to back arrangement of the objects
and elements. Items in the front display at the top.

Grid Organized in rows and columns. Configure up to 6 columns. Elements
automatically wrap to form as many rows as needed.
30 Operations Center Custom Drawing and Layout Guide

To adjust the outer container and wrapping attributes:

1 In the drawing, right-click the container, then select Customize > Container > Layout > Set
Layout. The Set Layout dialog box opens.

2 Select the layout type in the drop-down list, and click OK.

The view updates to the new layout type.

3 To adjust settings, right-click the container and do one of the following:

 Flow Layout: select Customize > Child Container > Layout > Adjust Flow Layout.

 Grid Layout: select Customize > Container > Layout > Adjust Grid Layout.

Horizontal In a single horizontal row, based on the front to back arrangement of
objects and elements. Items in the back display (left), followed by items
further to the front.

HTML Similar to how you would use html to format text content. The
components flow, usually from left to right, as they are added to a
container, but control strings like "br", "tab" and "p" can be used to better
adjust the location.

Stack One at a time based on conditional settings that determine how they are
toggled in and out. For an example, see Section 6.7, “Stacked Container
Example: Toggling Graphics Based on Condition State,” on page 65.

Wrap in a rectangular shape. Generally used to surround a group of child
objects with a rectangle after the child objects have been laid out.

Layout Type Use to display objects and elements...
Using Basic Drawing Tools and Concepts 31

32 Operations Center Custom Drawing and Layout Guide

4 4Working with Clip Art and Graphics

Graphics can be imported to enhance a drawing. For example, add company logos or custom
graphics that represent an organization. These graphics can be resized and moved after they are in
the Layout view.

 Section 4.1, “Importing Graphics,” on page 33

 Section 4.2, “Using Graphics from the Clip Art Library,” on page 33

 Section 4.3, “Managing Clipart Files,” on page 35

 Section 4.4, “Creating Graphics for the Clipart Library,” on page 35

4.1 Importing Graphics
Import graphics can be in the following formats: .png, .gif, .bmp, or .jpg.

To import a graphic:

1 In the toolbar, click (Image).

2 In the Layout view, click the background to place the image in its native size, or else draw an
outline to scale the image to fit within the outlined rectangle.

The Open dialog box opens.

3 Navigate to and select the image file.

The image displays in the Layout view.

4 Move or resize the image as you would standard shapes that are drawn using the toolbar.

4.2 Using Graphics from the Clip Art Library
Sample clipart ships with Operations Center and is organized into folders representing different
content categories. Use clip art for backgrounds or images within the Layout view. You can also
import SVG clipart from other sources.

Clipart displays under Administration > Graphics > Clipart. You should import and organize clipart
using this hierarchy.

The Graphics tab (at the bottom of the Explorer pane) allows you access to the same clipart library
under Administration > Graphics and is used to add clipart to the Layout drawing.

Drag and drop clipart onto the Layout view to use as a background or an additional image. In this way,
clipart images are added as a linked objects from the Graphics Library. However, they can also be
added as embedded directly into the Layout drawing.

 Section 4.2.1, “Linking Clipart from the Graphics Library,” on page 34

 Section 4.2.2, “Embedding Clipart Images,” on page 34
Working with Clip Art and Graphics 33

4.2.1 Linking Clipart from the Graphics Library

Generally when adding clipart to a drawing, you are simply linking an object from the Graphics
Library. This can be accomplished from the Administration > Graphics > Clipart hierarchy or from the
Graphics tab at the bottom of the Explorer pane.

To add clipart to a drawing:

1 Click the Graphics tab.

2 Select Clipart from the Categories drop-down list to display the clipart folders.

3 Double-click a folder.

The images in the folder display. If necessary, scroll down to view additional images.

4 To change the size of the icons displayed in the Graphics tab, right-click anyplace in the
Graphics tab, then select the icon size (small, medium, and so on) from the pop-up menu.

5 Select a clipart image.

6 Drag and drop the image to the Layout view.

The server1 clipart graphic is added to the drawing.

Alternatively, you can drag and drop clipart from the Administration > Graphics > Clipart folder
from the Explorer pane to the Layout view.

The drag and drop action automatically changes the Layout view from View to Edit mode.

7 If necessary, click a “handle” around the clipart and drag to enlarge or shrink the image.

You can also drag the image to reposition it.

8 If you are placing the clipart as background, right-click the image, then select Order > Send to
Bottom.

The image displays beneath other drawing components in the Layout view.

4.2.2 Embedding Clipart Images

Embedding an image from the Graphics Library is only accomplished via the Administration >
Graphics > Clipart hierarchy. An embedded image is saved as an object in the Layout drawing and is
no longer linked from the Graphics Library.

To embed clipart into a drawing:

1 From the Explorer pane, click to expand Administration > Graphics > Clipart.

2 While holding the Ctrl key, drag and drop the clipart object into the Layout view.

The drag and drop action automatically changes the Layout view from View to Edit mode. The
clipart image is added as an embedded image.

3 If necessary, click a “handle” around the clipart and drag to enlarge or shrink the image.

You can also drag the image to reposition it.

4 If you are placing the clipart as background, right-click the image, then select Order > Send to
Bottom.

The image displays beneath other drawing components in the Layout view.
34 Operations Center Custom Drawing and Layout Guide

4.3 Managing Clipart Files
Clipart is stored under the Administration > Graphics. Any SVG graphical files can be imported into
the clip art library. You can also create folders to organize your clip art. Files can be deleted or
renamed using right-click menu options.

To add a clipart folder:

1 In the Explorer pane, under Administration > Graphics.

2 To create a new folder, right-click Clipart (or any folder beneath it), then select Add Folder.

3 To import a graphic to the clip art library, do the following:

3a Right-click the Clipart folder (or any folder beneath it), then select Import Clipart to open the
Import Clipart dialog box.

3b Navigate to and select the SVG graphic file, then click Open. When prompted, specify a
name for the new clipart image.

4.4 Creating Graphics for the Clipart Library
You can create clipart using the Layout view drawing tools.

To create clipart:

1 In the Explorer pane, right-click Clipart (or any folder beneath it), then select Create Clipart.

2 Specify a name for the new graphic, then click OK.

The name of the new graphic displays in the Explorer pane.

3 Click the Layout View tab.

The Layout view updates to display an icon representing the clipart element.

4 Verify that the Editing Channel is set to Drawing.

5 Press Ctrl+D to enter Edit mode.

6 Delete the icon representing the clipart element.

7 Create the content using the drawing tools.

8 Save the drawing by pressing Ctrl+S.
Working with Clip Art and Graphics 35

36 Operations Center Custom Drawing and Layout Guide

5 5Adding Elements and Updating Drawing
Components Using Element Properties

Although a Layout drawing is associated with a specific element, it is possible to add elements from
other element hierarchies to the drawing. Elements can be linked (added to the current element
hierarchy in the Explorer pane), or just displayed in the drawing.

The Layout view binding feature allows you to:

 Include drawing shapes, lines and arrows that display element condition color; and update
automatically as the element’s condition changes.

 Use children containers to display child elements for any number of levels of children that can be
filtered and sorted as desired.

 Insert text showing element name, DName or attribute values.

 Show charts or gauges of element performance metrics.

This section focuses on the steps to bind drawing shapes or text to elements as well as create
children containers. It is assumed that you know how to use the drawing toolbar to add shapes,
arrows, lines, and text. For more information, see Section 3.3, “Adding Shapes and Lines,” on
page 24.

 Section 5.1, “Associating Elements to a Drawing,” on page 37

 Section 5.2, “Dynamically Transforming Text, Shapes and Lines with Element Properties,” on
page 38

 Section 5.3, “Changing Default Drill-Down Behavior Using Drawing Shortcuts,” on page 43

 Section 5.4, “Displaying an Element’s Children using Child Containers,” on page 44

 Section 5.5, “Integrating Performance Metric Charts and Gauges into a Drawing,” on page 47

5.1 Associating Elements to a Drawing
The term “binding” is used to describe the process of linking an element to a component of the Layout
drawing. The element can originate from any element branch. It can be copied, moved, or linked to be
a child of the element associated with the drawing, or it can simply be added to the drawing and not
added to the current element’s hierarchy.

To bind an element to a drawing:

1 In the Explorer pane, select the element whose Layout drawing should be modified and open the
Layout tab.

Any element can be selected in any hierarchy.

2 Click Switch to Edit Mode.
Adding Elements and Updating Drawing Components Using Element Properties 37

3 In the Explorer pane, drag an element from any part of the hierarchy and drop it on the
background of the Layout view to display a menu for linking, moving or copying the element:

To expand or collapse the element hierarchy in the Explorer pane so you can locate an element
for dragging and dropping, click the plus (+) or minus (–) symbols. This action does not exit the
drawing for the current element.

IMPORTANT: Avoid a common error of inadvertently changing the Layout view drawing from
one element to another. While editing the drawing for one element, do not left-click other
elements in the Explorer pane. This switches the Layout view from the current element to the
clicked element.

4 Select one of the following:

Move Here: Cuts and pastes the element (and its children) as a child of the target element, both
in the Explorer pane and in the Layout view.

Copy Here: Pastes a copy of the element (and its children) as a child of the target element, both
in the Explorer pane and in the Layout view.

Link Here: Creates a link between the added element (and its children) and the element
associated with the Layout view drawing. The added element and its children display in the
Layout view beneath the element associated with the drawing and also display beneath the
element in the Explorer pane.

Add to Drawing Only: Adds the dropped element to the Layout view drawing. No link is
established between the element in the Explorer pane and the Layout view drawing element.

5 Save the drawing changes by pressing Ctrl+S, or by right-clicking the background and selecting
Save Drawing.

The added element displays in the drawing using the default node style graphic. The element’s
current condition is represented by the graphic fill color.

5.2 Dynamically Transforming Text, Shapes and Lines
with Element Properties
When any drawing component (such as a shape or line) has been linked to an element, it can be
dynamically updated based on condition, an element attribute, or by using NOC Script.

For example, bind the element condition color to the shape fill color or line fill color. A red square
representing a network helps quickly identify a CRITICAL network problem in a drawing.

You can easily configure the following:

 headings or text that display element name, dName or attribute values.

See Section 5.2.1, “Creating an Element Name Heading,” on page 39 and Section 5.2.2,
“Changing the Associated Element,” on page 40

 shapes and lines that change colors based on element condition.
38 Operations Center Custom Drawing and Layout Guide

See Section 5.2.3, “Dynamically Updating a Shape’s Color based on Element Condition,” on
page 41

 objects that display or hide based on condition levels.

See Section 5.2.4, “Hiding and Showing Elements Based on Condition,” on page 43

 affect the drawings with custom behavior using NOC script.

See Section 5.2.5, “Coding Custom Behavior,” on page 43

Typically, the bind is performed by creating the shape, then dragging and dropping an element to the
shape. By default, the element’s condition is bound to the shape’s fill color.

IMPORTANT: Binding an adapter element (listed under Administration > Adapters) has unexpected
results and is unsupported. The result of dragging and dropping an adapter element to a Layout view
shape is that a duplicate adapter element with UNKNOWN status displays in the Explorer pane.

Keep in mind that the drawing itself remains bound to the element currently selected in the hierarchy
(Explorer pane)—the drawing “owner.” Initially, element binding is inherited throughout the drawing.
All children inherit the drawing owner’s DName information. This inheritance is changed when you
use the Bind feature described in the following subsections to bind a different element to a child in the
drawing.

5.2.1 Creating an Element Name Heading

You can add a text label that is bound to element name, DName, or element property attribute.
Whenever the element changes, the content automatically updates based the newly associated
element.

This feature is especially useful when creating node styles or templates that may be applied to
multiple drawings.

IMPORTANT: Deleting elements that are bound to a graphic in the Layout view will remove the ability
to update with the element’s state, property, and so on. However, the graphic remains in the drawing
and if the element is restored, the graphic reanimates and the binding is restored. Otherwise, drop
another element on the graphic to bind it.

To add a dynamically updated text label or heading:

1 Create placeholder text:

1a Click (Add Text) and click inside the drawing, then enter placeholder text.

1b Edit the Properties and Text palette panes to change the color or font attributes.

2 Bind the text to the name, DName, or attribute of the current element:

2a Select the text object.

2b In the Palette, select one of the options under Content Binding:

 Use Element Name: Displays the element’s name.

 Use Element DName: Display the element’s distinguished name.

 Use Element Attribute: Enter the attribute to display, then click Set.

The list of valid attributes displays on the element’s Properties page: Element, Last
Reported, Condition, and so on.
Adding Elements and Updating Drawing Components Using Element Properties 39

The following illustrates binding the text with Element Name. The text automatically updates
with the element’s name.

5.2.2 Changing the Associated Element

To bind a drawing component to a different Operations Center element:

1 In the Element pane, click Set in the Element section.

This opens the Browse for Element dialog box.

2 Select the element, then click OK.

The Element pane updates to display the selected element in the Element section, and the
drawing component is linked to the newly selected element.

To remove the binding from the drawing component:

1 In the Element section of the Element pane, click Clear.

A dialog box displays asking you to confirm removing the binding.

2 Click Yes.

The drawing component is no longer bound to the element. However, keep in mind the drawing
remains linked to the current element in the Explorer pane.
40 Operations Center Custom Drawing and Layout Guide

5.2.3 Dynamically Updating a Shape’s Color based on Element
Condition

After binding an element to a drawing component, decide whether to use the element’s condition
color to shade the drawing shape. Use this feature to have the drawing shape’s color change
automatically whenever the element condition changes.

There could be situations when you want to define the element condition color used to shade bound
drawing components. For example, if an element condition is CRITICAL, MAJOR, or MINOR, the
drawing component (such as a square) should be red. If the element is in any other condition, the
square should be green, as if it were in the OK state.

Another application of this feature is to define a custom color for the default or set condition. For
example, use a custom magenta color when the condition is MAJOR or MINOR.

1 Associate the shape or line to the desired element by dragging any element from the Explorer
pane and dropping it on the shape. By default, the drawing shape’s fill color is linked to the
element condition.

In the above illustrations, dragging and dropping the Billing element to the circle binds the
element condition, which currently is CRITICAL (red), to the circle fill color. In the Element
property pane, Use Element Condition for Fill is selected by default.

2 In the Element pane, select one or both of the following check boxes:

 Use Element Condition for Line

 Use Element Condition for Fill

The drawing component colors update to match the element condition.
Adding Elements and Updating Drawing Components Using Element Properties 41

Note: If an adapter shuts down and any of its element conditions are bound as fill colors to
drawing shapes, these shapes change to the UNKNOWN state. No tooltips are available while
the adapter is down.

3 To customize the condition color:

3a Click the Custom check box next to Use Element Condition for Line or for Fill.

3b Select CRITICAL from the Set drop-down list, then click the red, orange, and yellow
squares next to When.

If the linked element is in the CRITICAL, MAJOR, or MINOR state, the drawing component
is shaded red, as though it were CRITICAL.

3c Select OK from the Default drop-down list.

If the linked element is in any other state, the drawing component is shaded green, as
though it were OK.

4 To define a custom condition color:

4a Select the Custom check box next to Use Element Condition for Line or for Fill.

4b Select <custom> from the Set drop-down list.

4c Click the color block to the right to display the custom color palette.

4d Define the custom color, then select it.

4e Click the orange (MAJOR) and yellow (MINOR) squares.

If the element condition is either MAJOR or MINOR, the bound drawing component is
shaded using the custom color (in this example, magenta).

4f In the Default drop-down list, select a condition to use when the element is in any other
state except MAJOR or MINOR.

In this example, the drawing component is shaded green (OK) if it is in any state except
MAJOR or MINOR:
42 Operations Center Custom Drawing and Layout Guide

5.2.4 Hiding and Showing Elements Based on Condition

The Visibility Binding feature specifies the element conditions that determine whether elements are
displayed or hidden in the Layout view. By default, all conditions are displayed.

Elements can be hidden only in drawings that are in the View mode (read only).

To hide elements with one or more conditions:

1 In the Visibility Bindings section of the Element pane, click one or more condition Color buttons
to hide all elements that have the conditions when the drawing is in View mode (read only).

The Color button appearance changes when it is hidden.

In Edit mode, all hidden elements display.

5.2.5 Coding Custom Behavior

NOC Script can be used to customize the behavior for drawing component colors or any additional
behaviors as can be imagined. Use any of the options as outlined in the following table, then enter
your custom NOC Script.

5.3 Changing Default Drill-Down Behavior Using
Drawing Shortcuts
The drawing shortcut feature enables you to double-click an element in the Layout view and go to
(select) a different element in the Explorer pane. This rule provides an exception to the default drill-
down behavior for an element.

To set up the Drawing Shortcut:

1 In the Drawing Shortcut section of the Element pane, click Set.

2 Navigate to the element, then click OK.

The selected element name displays in the Drawing Shortcut section.

When the Across Business Units object is double-clicked in the Layout view, the Layout view
drawing drills in to show the Application Servers drawing, which is in a different branch of the
element hierarchy, because of the defined Drawing Shortcut.

Shape Attribute Right-click menu option:

Fill, Solid Color Customize > Add Binding > Fill.

Fill, Gradient Color Customize > Add Binding > Condition Gradient > Fill.

Stroke, Solid Color Customize > Add Binding > Stroke.

Stroke, Gradient Color Customize > Add Binding > Condition Gradient > Stroke.

Stoke Width Customize > Add Binding > Stroke-Width.

Opacity Customize > Add Binding > Opacity.

Opacity configurations require the use of a custom NOCscript or a direct edit of
the SVG source. For an example, see “Shape Transparency Based on Element
Property Value” on page 124.

Custom Effect Customize > Add Binding > Script.
Adding Elements and Updating Drawing Components Using Element Properties 43

TIP: When an element is bound to a shape and you hover the mouse over the element in View
mode, the status bar displays the name of the bound element as a link to the shape. However,
when a drawing shortcut exists and you hover the mouse over the affected element, the status
bar displays the drawing shortcut element name as the link to the shape.

5.4 Displaying an Element’s Children using Child
Containers
Child Containers make it easy to create a container of an element’s children. After a Child Container
is added to a drawing, you can decide to:

 Filter elements.

 Modify how elements are sorted.

 Change the layout of how element nodes are displayed.

 Change the number of levels of children shown.

 Specify the maximum number of children shown.

 Apply a new node style.

For more information about Node Styles, see Chapter 6, “Working with Node Styles and Custom
Graphics,” on page 55.

NOTE: Stack containers are another type of container that can be added to a drawing. Stack
containers are especially useful when creating new node styles as they can layer multiple objects
which can be hidden or shown based on a condition that is met. For more information about Stack
Containers, see Section 6.7, “Stacked Container Example: Toggling Graphics Based on Condition
State,” on page 65 and Section C.4, “Looking at the Source Code with a Toggling Graphic Node Style
Example,” on page 142.

To add a child container to a drawing:

1 Open the Layout view for the desired element.

2 Right-click the background of the Layout View, and select New Drawing.

All elements are removed leaving the Layout view empty and in Edit Mode.

3 Right-click the Layout View, and select Customize > Container > Add > Children Container.

A child container displaying all elements displays.

4 To filter the elements show, right-click the container, and select Customize > Child Container >
Filtering > Adjust Filtering. Do any of the following:

 Include the current element (“self”) in the drawing.

 Look for matching elements under non-matching elements. This is useful when you are
going more than 1 layer deep.

 Use regular expressions to include elements based on name, dName, or class.

 Exclude or include elements based on condition levels.

 Or write a script to apply a custom filter.

5 To change the number of columns, right-click the container, then select Customize > Child
Container > Layout > Adjust Layout. In this example, we selected 4 columns.

6 To sort the elements, right-click the container, then select Customize > Child Container > Layout
> Sorting. You can sort by condition, name, dName, or class.
44 Operations Center Custom Drawing and Layout Guide

In this example, we selected Sort Direction > Ascending and Sort By > Condition to show
elements with the most severe condition first.

7 To adjust element depth or maximum number of elements shown, right-click the container, then
select Customize > Child Container > Depth > Adjust Depth. In this example, we didn’t make any
changes to depth settings.

8 To change the style of the element nodes, do the following:

8a Right-click the container, then select Change Group.

8b In the Graphics panel, select the Nodes category and locate the desired node style.

In this example, we selected Technology > Networking > Router.

8c Drag the node style image over onto an elements inside the container.

8d Select Change Node Style for All Nodes from the pop-up menu.

All element nodes update with the new node style.

8e Right-click the container, then select Save Group.

9 To add an Element Name label, do the following:

9a Click the Text drawing tool, and click the Layout background.

9b Select the text object, and in the Palette, select Content Binding > Use Element Name.

9c Select both the child container and the text object, and select Customize > Container >
Wrap in Container.

9d Right-click the container and select Customize > Container > Layout > Set Layout. Set the
layout to Flow.

9e Do the following to order the objects and remove the background color on the container.

9e1 Right-click the container, and select Change Group.

9e2 Right-click the text object, and select Arrange > Send to Back. The text moves to the
top but disappears behind the container background.

9e3 Right-click the outer container, and select Arrange > Send to Back. The element name
(text object) is now visible above the child container.

9e4 To make the outer container transparent, select the outer container, and in the Palette
panel in the Properties section, and remove the color selections (X buttons in color
selectors) for both fill and border.

9e5 Right-click the container, and select Change Group.
Adding Elements and Updating Drawing Components Using Element Properties 45

5.4.1 Customizing a Child Container

Child Containers can be customized to display every configuration of elements that you need. The
following sections address the various options you can apply on Child Containers:

 “Quick Reference for Child Container Settings” on page 46

 “Adjusting the Layout Type and Layout Options” on page 46

Quick Reference for Child Container Settings

Table 5-1 provides a list of the various settings that allow you to customize the container in your
Layout drawing.

Table 5-1 Child Container Settings Quick Reference

Adjusting the Layout Type and Layout Options

There are many types of layouts available for a container that set how components are displayed in
the container. Grid and Flow layouts have additional settings for configuration.

Table 5-2

For options to set: Right-Click the container object and select...

Current element Customize > Child Container > Filtering > Adjust Filtering

Element depth Customize > Child Container > Depth > Adjust Depth

Filter by name, Dname, or class.
Filter using custom script.

Customize > Child Container > Filtering > Adjust Filtering

Filter on condition state Customize > Child Container > Filtering > Adjust Filtering

Include matching children under non-
matching elements

Customize > Child Container > Filtering > Adjust Filtering

Maximum elements Customize > Child Container > Depth > Adjust Depth

Number of columns Customize > Child Container > Layout > Adjust Layout

Sort by, Sort order Customize > Child Container > Layout > Sorting

Layout Type Great for...

Grid Organizing many elements/objects using a series of
columns and rows. Set how many items display before
wrapping to the next row. Set filters based on element
class or condition and adjust element depth settings.

Flow Keeping a text label displaying with another object like
a child container. This layout lets you set alignment of
objects to left, center or right. The order in which
objects display rely on the current order/arrangement
of objects from front to back.
46 Operations Center Custom Drawing and Layout Guide

To change the layout type and set layout settings:

1 In the drawing, right-click the container, then select Customize > Child Container > Layout > Set
Children Layout.

2 Select the layout type in the drop-down list.

3 To include the parent element in the container, select the Include “self” in layout radio button.

4 Click OK.

The view updates to the new layout type.

5 To adjust settings for a Grid Layout, right-click the container and select Customize > Child
Container > Layout > Adjust Grid Layout. The Adjust Grid Layout dialog box opens.

Specify options as desired for the number of columns, node alignment, spacing widths, column
width and row height.

6 To adjust setting on a Flow Layout, right-click the container and select Customize > Child
Container > Layout > Adjust Flow Layout. The Adjust Flow Layout dialog box opens.

Specify options as desired for the spacing and width.

5.5 Integrating Performance Metric Charts and
Gauges into a Drawing
Charts and gauges for performance metrics can be easily added to any drawing. They can be added
via the Layout Customize menu, or by applying them as a node style.

In order to use these features, Operations Center must be configured to capture historical
performance data. For information on capturing performance metrics, see “Capturing Alarm and
Performance History” in the Operations Center Server Configuration Guide.

Layout drawing charts and gauges:

 Render performance metrics for the current element, another element, the parent or grandparent
element, or a specified element or set of elements

 Compare one or more metrics (up to five) using a bar, stacked bar, line, or pie charts.

 Display information about a single metric series using various types of gauge displays.

 Can use regular expressions or scripts (FormulaScript) matchers to select metrics.

 (Charts) Must be configured for refresh interval, axis and grid values, and background color
bands for acceptable condition (not available for Pie charts).

 (Gauges) Must be configured for refresh interval, minimum/maximum expected values, and
condition threshold definitions.

 Provide various display options that allow you to toggle various information on and off inside the
chart or gauge display.

 Can use one element for display name and algorithm setting context, and a another element for
metric/source data.

Add charts or gauges to the Layout drawing via the Layout Customize menu, or by applying as a
nodes style. For more information about node styles, see Chapter 6, “Working with Node Styles and
Custom Graphics,” on page 55.

The following sections describe how to add a chart to the Layout drawing and configure it:

 Section 5.5.1, “Types of Charts,” on page 48

 Section 5.5.2, “Types of Gauges,” on page 49
Adding Elements and Updating Drawing Components Using Element Properties 47

https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#alarmperformance
https://www.netiq.com/documentation/operations-center/pdfdoc/server_configuration/server_configuration.pdf#alarmperformance

 Section 5.5.3, “Adding Charts and Gauges,” on page 50

 Section 5.5.4, “Configuring Chart and Gauge Properties,” on page 50

5.5.1 Types of Charts

A series of charts are available to add to the Layout view drawing. All charts show information for one
metric including current, average and range values; a trending line; and date/time of last update.
Each chart is configurable with various options to hide or show any of this information. And, severity
can be overlaid on the chart as background colors.

Bar

The bar chart uses vertical columns to chart
the values of one or more metric series.

Line

The line chart plots data points in one or more
metric series.

Pie

The pie chart is divided into proportional
sections based on metric values. Use the pie
chart when you want to compare the size of
each metric as a slice with the whole of the
pie.

Stacked Bar

The stacked bar chart compares the
contribution of each metric to the total of all by
using stacked columns. Use the stacked bar
chart when you have multiple metrics and
when you want to emphasize the total.
48 Operations Center Custom Drawing and Layout Guide

5.5.2 Types of Gauges

A series of gauges are available to add to the Layout view drawing. Gauges show information for one
metric that can include current, average and range values; a sparkline; and date/time of last update.
Each gauge is configurable with various options to hide or show any of this information. And,
depending on the type of gauge, the current value is interpreted using a needle gauge, filled cylinder,
progress bar, or lit LED bars.

Basic Display

The basic display gauge shows various information
about a metric’s performance. Any graphic from the
Operations Center Graphics > Clipart or Graphics >
Nodes libraries can be included in the gauge
display. The condition of the source element is
used to updated the background color of attached
graphic, when possible.

Cylinder

The cylinder gauge interprets the current value of a
metric as a volume in a three-dimensional cylinder.
Based on gauge configurations, the metric value is
evaluated for severity which updates the
background color of the volume fill inside the
cylinder.

LED Bar

The LED gauge interprets the current value of a
metric to light up bars on an LED display. Based on
gauge configurations, the metric value is evaluated
for severity which updates the background color of
the bars.

Percent Bar

The Percent Bar gauge interprets the current value
of a metric to fill out the progress bar. Based on
gauge configurations, the metric value is evaluated
for severity which updates the background color of
the progress bar.
Adding Elements and Updating Drawing Components Using Element Properties 49

5.5.3 Adding Charts and Gauges

To watch a video tutorial on chart and gauge configuration in layout drawings, go to:

http://www.youtube.com/watch?v=DwdWXdA9PPw

To add a chart or gauge to the Layout drawing:

1 In the drawing (Edit Mode), right-click the background, then select Customize, then do one of the
following:

 To add a chart, go to Customize > Charts and select the chart type.

Select from options to add a bar, line, pie or stacked bar chart.

 To add a gauge, go to Customize > Gauges and select the gauge type.

Select from options to add a basic, cylinder, LED bar, percent bar, sparkline, or
speedometer gauge.

The chart or gauge is added to the Layout drawing.

By default, charts are rendered showing the Operations Server metric, Total.Summary.Used, for
a 30 minute interval. For these, as well as gauges, you must configure the source element and
data properties (desired metric(s)) in Properties.

2 Continue Configuring Chart and Gauge Properties to customize the chart.

5.5.4 Configuring Chart and Gauge Properties

After a chart is added to the drawing, you can configure it. At a minimum, you must select the source
element and define the metric(s) to chart.

 “Using Drag & Drop to Change Element Context” on page 50

 “Updating Chart and Gauge Properties” on page 51

Using Drag & Drop to Change Element Context

For some charts and gauges, you may want the context to be different from the natural element (the
element currently selected in the Explorer pane). Setting a context association changes the defaults
for chart/gauge titles as well as the context used when applying Source Element settings. For

Sparkline

The Sparkline gauge shows a small trending line,
called a sparkline, using the recent values of a
specified metric.

Speedometer

The speedometer gauge interprets the current
value of a metric and displays this “speed” on an
analog-style needle. Based on gauge
configurations, the metric value is evaluated for
severity which updates the background color of the
needle display.
50 Operations Center Custom Drawing and Layout Guide

http://www.youtube.com/watch?v=DwdWXdA9PPw

example, if the chart/gauge is looking for a metric from a parent element, the parent element of the
context element is used to retrieve metric data. For information on Source Element settings, see
Step 8 on page 53.

To change the source element using drag & drop:

1 While maintaining focus of the Layout drawing chart/gauge, locate the new element in the
Explorer pane.

2 Click the new element and drag it over onto the chart or gauge. A message displays, “Are you
sure you want to change this drawing item to be bound to element ElementName?”

3 Click Yes.

The chart is now driven by the new element, it uses this element for the chart/gauge name as
well as the context used for some Source Element settings.

Updating Chart and Gauge Properties

To configure a Layout drawing chart/gauge:

1 In the drawing (Edit Mode), right-click the chart or gauge, then select Customize > Properties.

The Properties dialog opens.

Properties tabs and options vary between the type of chart or gauge selected. The above
illustration shows Chart Properties for Bar, Line and Stacked Bar charts.

By default, the chart or gauge is rendered using the Operations Center Server element, using
the Total.Summary.Used metric, for last 30 minutes of data.

2 (Charts) In the Chart Properties tab, configure various display properties:

Chart Type: Select from Bar, Line, Stacked Bar, or Pie.

IMPORTANT: After changing the chart type, click OK to save the change and exit the Properties
dialog. Then, reopen Properties to configure properties specific to the new chart type.

Chart Width: Specify the width of the chart, in pixels.

Chart Height: Specify the height of the chart, in pixels.

Select Constrain size to width/height to enforce chart dimensions in the Operations Center
Dashboard. Use this option to keep charts uniform in size when there is more than one chart
included in a view. Padding is adjusted from the inner chart, as needed, to keep the chart
consistent with the size dimensions.

Legend Position: Specify the visibility and location of the legend. Select Hidden to hide the
legend. Select from Bottom, Right, Top or Left to indicate where to show the legend.

Refresh Interval: Specify the amount of time between reload of chart data.

Line Width: (Line charts only) Specify the width of the chart line, in pixels.

As appropriate, select from the following check box options:

 Select Show last updated to show the date/time that the last update was received.

 Select Show chart title to show a title for the chart. Type the desired text in the field
provided.

 Select Show element name to show the element’s name in the chart title. If a title is
specified in the option above, element name shows as a subtitle under the title.

3 (Pie Charts) In the Pie Chart Properties tab, configure various display properties:

Gradient: Select from On or Off to adjust the rendering of color in the pie chart slices.
Adding Elements and Updating Drawing Components Using Element Properties 51

Shadow Width: Use the drop-down to specify the thickness for the pie chart’s shadow.

Sort Order: Specify the order in which to show slices inside the pie chart. Select from Series
Ascending, Series Descending, Values Ascending, or Values Descending.

Legend Format: Specify possible additional information to display in the legend beside the
metric name. Select from Value Only, Percent Only, Both Value and Percent or Neither Value or
Percent.

4 (Gauges) In the Gauge Properties tab, configure various display properties:

Gauge Title: Specify a title to show in the top of the gauge display.

Last Update: Specify the syntax to display the date and time of last update. Use the Java
SimpleDateFormat to specify date format, and wrap informational text in apostrophes.

For example, the default 'Last updated: ' EEEE MM/dd/yy hh:mm:ss a outputs the following:
Last updated: Tuesday, 07/10/12 12:15:05 PM.

Minimum (Expected): Specify the lowest valid value you expect the metric to be. This value is
used when performing threshold evaluations.

Maximum (Expected): Specify the highest valid value you expect the metric to be. This value is
used when performing threshold evaluations.

Refresh Interval: Specify, in seconds, the amount of time between reload of gauge data.

Condition Thresholds: (Non-Basic Gauges Only) Select from the following options to specify
how the condition applies when evaluating the gauge value against threshold limits:

 Condition applies when gauge is equal or greater than threshold: Select this option to
trigger the condition level when the gauge value is equal or greater than the threshold
value.

 Condition applies when gauge is less than threshold: Select this option to trigger the
condition level when the gauge is less than the threshold value.

Then, specify the percentage value for each threshold state. Threshold evaluations are
calculated using the expected minimum and maximum values above. If the actual value is above
the maximum expected value, the condition shows as the most severe condition level. If the
condition is less than the minimum expected value, the condition shows as the least severe
condition level.

Display Options: Select any of the following check box options to hide or show various
information in the gauge display.

 Show element name: Deselect this option to hide the element name.

 Show average value: Deselect this option to hide the average metric value.

 Show sparkline: Deselect this option to hide the trending line.

 Show range: Deselect this option to hide the expected minimum and maximum values.

 Show actual/current value: Deselect this option to hide the current metric value.

 Show metric name: Deselect this option to hide the metric name, or Gauge Title value if
specified.

 Show last update: Deselect this option to hide the last date and time the data was last
refreshed.

5 In the Data Properties tab, define the performance metric to chart or drive the gauge and specify
time range options.

If a performance metric is not available, Operations Center looks for a matching element
property instead.
52 Operations Center Custom Drawing and Layout Guide

NOTE: Element properties cannot show historical data. If an element property is used to create
a line chart, the chart will have only a single point for the element property. To create a line chart
with historical values, you must add a performance series for the element property.

Under Specify Time Window, specify the range of time to chart by entering a number and
selecting from Minutes, Hours or Days,

If charting availability metrics, specify a calendar to apply in the Use Calendar drop-down list.
Undefined time periods in the calendar are treated as blackout times and are not count against
the element.

Under Specify Metric, specify the metric(s) to chart by selecting one of the following options:

 Single Metric: Charts the one metric as explicitly defined.

Specify the name of the metric in the Metric Name field, then specify text to show for the
metric’s line in the Label field.

 Specify Regular Expression Metric Matcher: Charts up to five metrics using a regular
expression.

Specify a regular expression to match in the Regular Expression field.

Even if the regular expression finds more than 5 matching metrics, the chart only shows the
first 5 found.

 Specify Script: Charts up to five metrics by running the specified script.

Edit the script example or enter valid NOC Script to capture the desired metrics.

The script must be written using NOC Script. For more information, see the Operations
Center Scripting Guide. For information about available objects, see Section B.8, “Script
Objects,” on page 137

For gauges, Even if the script finds more than 5 matching metrics, the chart only shows the
first 5 found.

6 (Line, Bar and Stacked Bar Charts) In the Axis and Grid tab, configure properties related to the
chart’s axis and grid lines.

Chart Minimum Value: Enter the smallest value to show on the chart Y axis. Enter numeric
values only without separators. If not specified, the chart’s axis adjusts to show the full range of
values. If specified and more data exists, the metric line will cap and shows as a flat line.

Chart Maximum Value: Enter the largest value to show on the chart Y axis. Enter numbers only
without separators. If not specified, the chart’s axis adjusts to show the full range of values. If
specified and more data exists, the metric line will cap and shows as a flat line.

As appropriate, select from the following check box options:

 Select Show series average lines to chart a line for the average of each metric.

 Select Show series line shadow to show chart lines styled with a shadow.

 Select Show X axis grid lines to show grid lines running vertically.

 Select Show Y axis grid lines to show grid lines running horizontally.

7 (Line, Bar and Stacked Bar Charts) In the Background Color Bands tab, configure conditional
banding based on severity ranges.

Select the check box for each severity to show banded in the chart background. For each
selected, specify the Floor and Ceiling values, using numeric values only without separators.

8 In the Source Element tab, specify the relative element that supplies metric(s) data.

Self: Uses the natural element (current element selected in the Explorer pane), or the context
element if one is applied. For more information on context elements, see “Using Drag & Drop to
Change Element Context” on page 50.
Adding Elements and Updating Drawing Components Using Element Properties 53

https://www.netiq.com/documentation/operations-center/pdfdoc/scripting/scripting.pdf#bookinfo

Parent Element: Uses the parent of the natural or context element.

Grandparent Element: Uses the grandparent of the natural or context element.

Specify DName: Uses a specified element. Enter the full DName of the desired element.

Specify Custom DName With Script: Matches an element based on the script provided. Enter
valid NOC Script code. For more information, see the Operations Center Scripting Guide. For
information about available objects, see Section B.8, “Script Objects,” on page 137

9 (Basic Gauge) In the Graphic tab, specify an optional graphic to show in the gauge. The graphic
defined must reside in the Graphics > Clipart or Graphics > Nodes libraries.

In the Graphics Location field, specify the path to the graphic using double-underscore "__"
characters to separate folder and graphic names. Do not include the Graphics folder in the path.

For example, to reference Graphics > Clipart > People > person, specify the Graphic
Location as: Clipart__People__person.

Special characters must be encoded. Use the steps below to capture the exact path location for
the clipart or graphic file. If no graphic is specified or cannot be located, and the Show Graphic
option is enabled, the gradient bubble nodestyle is displayed for the source element. To hide the
graphic, unselect the Show Graphic check box.

To obtain the graphic location path, do the following:

9a Exit the gauge Properties dialog.

9b In the Explorer pane, located the desired graphic in Administration > Graphics > Clipart or
Administration > Graphics > Nodes.

9c Right-click the graphic name, and select Generate Graphic Location.

The graphic location is copied to the clipboard.

9d Reopen the gauge Properties dialog, switch to the Graphic tab, and paste the location into
the Graphics Location field.

10 Click Apply at any time to apply the changes. The chart updates.

11 Click OK to save changes and close the Properties dialog.
54 Operations Center Custom Drawing and Layout Guide

https://www.netiq.com/documentation/operations-center/pdfdoc/scripting/scripting.pdf#bookinfo

6 6Working with Node Styles and Custom
Graphics

One key feature of any drawing is the graphic used to represent the elements. This graphic is called a
node style. The default node style is the Gradient Bubble, which displays rounded rectangles
containing the element name with a fill color corresponding to the element’s condition.

Operations Center ships with many node style examples that can be accessed from under
Administration > Graphics > Nodes. A library of three dimensional technology-related node styles
(with 2 condition fill options for most) can be found under Administration > Graphics > Nodes >
3D_Library.

The following sections cover creating, applying, and managing node styles:

 Section 6.1, “Understanding the Node Style and the Node Style Library,” on page 55

 Section 6.2, “Changing the Node Style,” on page 57

 Section 6.3, “Applying the Ambient Node Style,” on page 58

 Section 6.4, “Creating and Applying New Node Styles,” on page 58

 Section 6.5, “Importing and Managing Node Styles,” on page 62

 Section 6.6, “Associating Custom Graphics with Classes and Elements,” on page 64

 Section 6.7, “Stacked Container Example: Toggling Graphics Based on Condition State,” on
page 65

6.1 Understanding the Node Style and the Node Style
Library
Operations Center ships with many different node styles. It’s easy to change the node style used in a
drawing. Simply drag and drop a node style from the Explorer pane to an element in the drawing.

A dynamic node style is shaded using the current condition color of an element and displays text that
represents the element name, as illustrated in Figure 6-1:

Figure 6-1 The Default Node Style Updates Automatically with Current Condition Color

The fill color and text name change automatically when the linked element is updated. For example,
in Figure 6-1, the Clean Bubble node style is bound to the Mechanicsburg element. If the element
changes from CRITICAL to OK, the fill color changes from red to green.

All node styles shipped with Operations Center are dynamic. Just drag and drop a node style on an
element and it uses the element name and condition color.
Working with Node Styles and Custom Graphics 55

Figure 6-2 shows some of the standard node styles:

Figure 6-2 Node Style Sample

The node styles display under Administration > Graphics > Nodes. Click a node style and a sample
drawing representing the node style displays in the Layout view.

A popular node style is the Stoplight, which uses a red, yellow, or green “light” to identify the status of
a linked element. For example, a red light indicates an element has a CRITICAL or MAJOR severity,
as illustrated in Figure 6-3:

Figure 6-3 Layout View – Stoplight Node Style
56 Operations Center Custom Drawing and Layout Guide

The seven severity levels used in Operations Center map to one of the three colored lights in the
Stoplight node style, as defined in Table 6-1:

Table 6-1 Stoplight Node Style Color Mapping

Figure 6-1 illustrates some of the node styles that are available under the 3D_Library folder.

Figure 6-4 3D, Partial-Filled Node Styles

You can change the node style for all elements in a drawing, for a specific element, or for all elements
of a class.

6.2 Changing the Node Style
To create a standard view of all elements in a drawing, apply one node style to all the elements in a
drawing.

 Section 6.2.1, “Applying a Node Style to All Elements in a Drawing,” on page 58

 Section 6.2.2, “Changing the Node Style for One Element Only,” on page 58

Element Severity Stoplight Color

CRITICAL, MAJOR Red

MINOR, INFO Yellow

OK, UNKNOWN, UNMANAGED Green
Working with Node Styles and Custom Graphics 57

6.2.1 Applying a Node Style to All Elements in a Drawing

To apply a node style to all elements in a drawing:

1 In the Explorer pane, click the element whose Layout drawing is to be modified.

2 Click Switch to Edit Mode.

3 Drag a node style from the Explorer pane and drop it on an element in the drawing.

4 From the pop-up menu, select Change Node Style for All Nodes.

All elements in the drawing update to use the new node style. Additional elements added to the
drawing also use the new node style.

6.2.2 Changing the Node Style for One Element Only

It is possible to use different node styles in a drawing. This can distinguish a set of elements or
provide detailed information only for a few elements and save layout space for displaying additional
elements using a more compact node style.

To change the node style:

1 Drag a node style from the Explorer pane and drop it on an element in the drawing.

2 From the pop-up menu, select Change Node Style for This Node Only.

Only the selected element updates to use the new node style.

6.3 Applying the Ambient Node Style
The Ambient node style changes all elements that currently use the system default node style. It is a
way to quickly change multiple nodes at once.

To apply an Ambient node style:

1 Drag and drop a node style to the drawing background.

2 Click Yes when asked to confirm changing to the Ambient node style.

All nodes using the system default node style change to the Ambient node style. Other nodes
retain their current node styles.

6.4 Creating and Applying New Node Styles
You can create various types of node styles. They can be quite simple or more complex.

As an example, the following sections walk you through creating a dynamic node style that contains a
small-sized circle and text that could represent a city on a map, and then applying the node style to a
map.

For a different node style example using a Stack Layout Container to hide and show graphics based
on state, see Section C.4, “Looking at the Source Code with a Toggling Graphic Node Style
Example,” on page 142.
58 Operations Center Custom Drawing and Layout Guide

When defining a new node style, specify whether to make the node style dynamic by binding an
element’s name or condition color to the node style text or fill/line color.

 Section 6.4.1, “Creating the Node Style,” on page 59

 Section 6.4.2, “Testing the Node Style Using Preview Elements,” on page 60

 Section 6.4.3, “Applying the Node Style,” on page 62

6.4.1 Creating the Node Style

This sections shows how to create a small circle that might be used as a node style for a map.

To create a node style and add it to the drawing:

1 In the Explorer pane, expand Administration > Graphics > Nodes to display a list of existing node
styles.

2 Right-click Nodes, then select Create Node Style.

3 In the Create Node Style dialog box, specify a name.

For this example, use City.

4 Click OK.

The node style is highlighted in the Explorer pane and the Layout view switches to Edit mode.

The node style uses the default template when creating a new node style. If the default
template has been customized, the new node style might look different from the above
illustration.

5 Click Edit > New Drawing.

6 In the confirmation dialog box, click Yes.

The default graphics are deleted, leaving a blank drawing area.

7 Verify the Editing Channel is set to Drawing.

8 In the toolbar, click (Circle).

9 Draw a small circle that represents a city.

10 In the Palette, in the Properties pane, select the thinnest line to outline the circle.

11 In the Element pane, select the check box next to Use Element Condition for Fill.

This colors each circle using a corresponding element’s current severity code color (such as
CRITICAL is red).

12 In the drawing toolbar, click (Text).

13 Click anywhere on the drawing, then enter element name in the field.

14 Click OK.

15 Drag the text to place it to the right of the circle.

Optionally, you can align the text and graphics with the red axes that represent the X, Y origin
(0,0) for the node style.

16 In the Palette, in the Element pane, select the Use Element Name radio button.

The text changes to the current element name.

17 In the Text property pane, change the font size to 10.
Working with Node Styles and Custom Graphics 59

18 In the Properties pane, change the text fill color to black.

19 Click Edit > Save Drawing (or use Ctrl + s).

The finished new node style is created and ready to be used.

6.4.2 Testing the Node Style Using Preview Elements

Using a preview element allows you to test the node style without having to apply it to an actual
element. You can set a preview element at point while you are creating a new node style.

Preview elements are especially helpful when creating or testing node styles that have element or
child containers because they allow you to test the node style’s behavior when more than one
element is involved.

For example, in the illustration below, we have a node style that lists the elements children, but
without setting a preview element, we just see an empty box.

Figure 6-5 Box of Children Node Style No Preview Element Set

After a preview element is set, as in Figure 6-6, you can see how the layout and behavior is, without
having to test it by applying it to an existing element in your hierarchy.

Figure 6-6 Box of Children Node Style With Preview Element
60 Operations Center Custom Drawing and Layout Guide

Preview elements can be set for both node styles and drawing templates. For information on
templates, see Chapter 7, “Using Drawing Templates,” on page 69.

 “Setting a Preview Element” on page 61

 “Disabling/Disabling the Preview Element” on page 61

 “Clearing the Preview Element” on page 61

Setting a Preview Element

To set a preview element:

1 In the Layout view, click Switch to Edit to edit the node style (or template).

2 Do one of the following:

 Click Set Preview Element.

 Click Change Preview Element.

A Browse For Element dialog opens.

3 Locate and select the desired element to be used to preview the node style or template.

4 Click OK.

The node style or template updates showing element information from the preview element
setting.

Disabling/Disabling the Preview Element

To remove the preview element for a node style (or template):

1 In the Layout view, click Switch to Edit to edit the node style (or template).

2 Right-click the background of the Layout view, and select Preview Element > Disable Element.

The preview element settings are disabled to show the node style or template definition without a
preview element.

3 To enable the preview element, right-click the background of the Layout view, and select Preview
Element > Enable Element.

The preview element settings are re-applied to the node style or template.

Clearing the Preview Element

To clear preview element settings for a node style (or template):

1 In the Layout view, click Switch to Edit to edit the node style (or template).

2 Right-click the background of the Layout view, and select Preview Element > Clear Element.

The preview element setting is deleted. The node style or template definition displays without a
preview element.
Working with Node Styles and Custom Graphics 61

6.4.3 Applying the Node Style

The next step is applying a node style to one or more elements in a Layout drawing. This example
uses the node style created in Section 6.4.1, “Creating the Node Style,” on page 59.

To apply a new node style:

1 In the Explorer pane, select the element that contains child elements whose node styles should
change.

2 In the bottom of the Layout view, click Switch to Edit Mode.

3 Expand Administration > Graphics > Nodes.

4 Locate the node style you want use (City) and drag it to an element (such as NYC).

A pop-up menu displays options for changing the node style.

5 Select Change Node Style for All Nodes.

All elements are updated to use the new node style.

6.5 Importing and Managing Node Styles
In some cases, you might want to import a node style created on a different system.

Consider the impact and limitations of changing, renaming, or deleting node styles with regard to
existing drawings. After renaming or deleting a node style, the next loading of a drawing that used the
original node style fails. However, changing the content of a node style presents no problem because
related drawings are updated upon the next viewing.

Do the following, as necessary:

 Section 6.5.1, “Importing a Node Style,” on page 62

 Section 6.5.2, “Deleting a Node Style,” on page 63

 Section 6.5.3, “Renaming a Node Style,” on page 63

 Section 6.5.4, “Adding a Node Style Folder,” on page 63

 Section 6.5.5, “Deleting a Folder,” on page 63

6.5.1 Importing a Node Style

To import a node style:

1 In the Explorer pane, expand Administration > Graphics.

2 Right-click Nodes (or any folder beneath it), then select Import Node Style to open the Import
Node Style dialog box.

3 Navigate to and select the node style file, then click Open.

The new node style displays in the Explorer pane.
62 Operations Center Custom Drawing and Layout Guide

6.5.2 Deleting a Node Style

Default node styles cannot be deleted. However, any custom node style you create can be.

To delete a node style:

1 Right-click a node style, then select Delete Node Style to open a confirmation dialog box.

2 Click OK.

The node style disappears from the Explorer pane.

6.5.3 Renaming a Node Style

Default node styles cannot be renamed. However, any custom node style you create can be.

To rename a node style:

1 Right-click the element, then select Rename to open the Rename dialog box.

2 Specify the new name, then click OK.

The new graphic name displays in the Explorer pane.

6.5.4 Adding a Node Style Folder

Create folders in the Explorer pane to organize node styles.

To add a node style folder:

1 In the Explorer pane, expand Administration > Graphics.

2 Right-click Nodes (or any folder beneath it), then select Add Folder to open the Create Node
Style Folder dialog box.

3 Specify a name for the folder, then click OK.

The new folder displays in the Explorer pane.

6.5.5 Deleting a Folder

Default node style folders cannot be deleted. However, any folder you create can be.

To delete a node style folder:

1 Right-click the node style folder, then select Delete Folder to open a confirmation dialog box.

2 Click OK.

The folder name disappears from the Explorer pane.
Working with Node Styles and Custom Graphics 63

6.6 Associating Custom Graphics with Classes and
Elements
Use the Editing Channel to create custom graphics and drawings and associate them with specific
classes and elements. You can also associate a node style or drawing template with an element or
class.

A class association results in all elements created using the class inherit the associated graphic,
drawing, node style, or template. It is possible to override the class association by selecting an
element and changing the drawing, template, graphic, or node style associated with it.

 Section 6.6.1, “Viewing a Drawing or Graphic,” on page 64

 Section 6.6.2, “Creating and Associating a Custom Drawing or Graphic,” on page 64

 Section 6.6.3, “Associating a Node Style or Drawing Template,” on page 65

6.6.1 Viewing a Drawing or Graphic

To view a drawing or graphic associated with a class or element:

1 Do one of the following:

 In the Explorer pane, expand Elements > parent elements (if necessary), then select an
element.

 In the Explorer pane, expand Administration > Metamodel > Classes, then select a class.

2 In the Layout view toolbar, click the Editing Channel drop-down list (which by default, is selected
to and displays as Drawing), then select one of the options.

The Layout view updates. The Layout view is empty if there is no graphic or drawing associated
with the element or class, or if a new drawing was created without any graphics. If there is no
associated node style or template, the Layout view displays “none” in the middle of the screen.

When a different element is selected in the Explorer pane, the Editing Channel returns to the
default Drawing channel.

6.6.2 Creating and Associating a Custom Drawing or Graphic

To create and associate a custom drawing or graphic with an element or class:

1 Do one of the following:

 In the Explorer pane, select an element.

 In the Explorer pane, expand Administration > Metamodel > Classes, then select a class.

2 In the Layout view toolbar, click the Editing Channel drop-down list, then select Drawing or
Element Graphic.

The Layout view updates.

3 Click Switch to Edit Mode.

4 Create the drawing or graphic.

5 Press Ctrl+S to save the drawing or graphic.
64 Operations Center Custom Drawing and Layout Guide

6.6.3 Associating a Node Style or Drawing Template

Associating node styles and templates with an element or class requires dragging and dropping the
node style or template on to the Layout view.

To associate a node style or drawing template with an element or class:

1 Do one of the following:

 In the Explorer pane, select an element.

 In the Explorer pane, expand Administration > Metamodel > Classes, then select a class.

2 In the Layout view toolbar, click the Editing Channel drop-down list, then select Element Node
Style or Element Drawing Template.

The Layout view updates.

3 In the Explorer pane, click the plus (+) symbols to expand Administration > Graphics, then
expand either Node Styles or Templates.

TIP: Take care not to click these elements. You do not want to change the focus from the class or
element selected in Step 1.

4 Drag and drop a node style or template into the Layout view.

The Layout view updates to display the selected node style or template.

5 To replace a node style or template in the Layout view, simply drag and drop a different node
style or template into the Layout view.

The view updates.

6 To delete the existing node style or template, click Clear.

6.7 Stacked Container Example: Toggling Graphics
Based on Condition State
In this example, we’ll create a node style that displays a different graphic matching the condition state
of an element. When the element’s condition updates, the node will show an appropriate weather
graphic overlaid on a condition color-filled background. For example,

For more information on the clip art and graphics library, see Chapter 4, “Working with Clip Art and
Graphics,” on page 33. For an additional example, that includes looking at the source code bind
language, see and Section C.4, “Looking at the Source Code with a Toggling Graphic Node Style
Example,” on page 142.

 OK MAJOR CRITICAL
Working with Node Styles and Custom Graphics 65

To create a stacked node style:

1 In the Explorer pane, expand Administration > Graphics > Nodes to display a list of existing node
styles.

2 Right-click Nodes, and select Create Node Style.

3 Select your new node style and open the Layout view.

4 Right-click the background of the Layout View, and select New Drawing. All elements are
removed leaving the Layout view empty and using Edit Mode.

5 Right-click the Layout View, and select Customize > Container > Add > Stacked Layout
Container. A container displays showing two placeholder elements:

6 Right-click the container (green rectangle object), and select Change Group.

7 Add all the graphic files that you would like to display for condition changes.

7a Open the Graphics tab in the left pane and select the desired category.

7b Click and drag any of the graphics to anywhere on the background of the Layout view. One
by one they are automatically added to the container. The order that you add them is not
important.

7c Click the default shapes or any unwanted objects in the container and delete them.
66 Operations Center Custom Drawing and Layout Guide

8 Associate the graphics to condition levels.

8a Click to select the clipart object you want to assign.

8b Open the Palette tab and select the condition states (Visible Conditions settings under
Element) that must be present for this object to display. Click to enable or disable
conditions. In this example, the sun displays only for OK condition values.

8c Repeat these steps for each graphic or object in the container.

9 Right-click the container and select Save Group.

10 To test the node style, click Set Preview Element and select an element in Elements or Services.

In this example, we selected an element with a CRITICAL condition. Only the
WeatherSevereAlert graphic displays with the condition filled background. As expected, all other
graphics are hidden for this state.

Be sure to test or double-check values for each condition state so that you know the behavior of
the node style functions the way you’d like. One way to test is to apply the nodestyle to a branch
of your Services hierarchy that has elements representing all condition states.

11 Switch to View Mode and save the node style.

12 Later, to make changes to the node style, do the following:

12a In Edit Mode, right-click the container, and select Change Group.

12b Make the desired changes.

12c When you are finished, right-click the container, and select Save Group.

12d Return to View Mode and save the changes.
Working with Node Styles and Custom Graphics 67

68 Operations Center Custom Drawing and Layout Guide

7 7Using Drawing Templates

Templates can save time when there is a need to create the same type of layout multiple times. For
example, use the Radial template to lay out elements with the parent in the center and children as
spokes. Operations Center ships with some default templates. An easy way to create custom
templates is to copy a default template, rename it, then modify it.

The following sections cover all aspects of creating and applying drawing templates:

 Section 7.1, “Applying Templates to Drawings,” on page 69

 Section 7.2, “Unapplying Templates from Drawings,” on page 70

 Section 7.3, “Creating Templates,” on page 71

 Section 7.4, “Importing and Managing Templates,” on page 74

7.1 Applying Templates to Drawings
Applying a template to a drawing modifies the default, automatic drawing. If changes are made to the
template, any drawings attached to the template are automatically updated with the changes.

When a drawing has a template applied to it, a icon displays under the lower right corner of the
drawing. Hover the mouse over the template to view the name of the attached template.

IMPORTANT: A template applies to a drawing only for as long as you do not modify and save that
drawing. If you make and save changes to a drawing after applying a template, the template is no
longer applied to the drawing.

The following sections describe the various ways of applying templates to a drawing:

 Section 7.1.1, “Applying a Template to Elements of a Class,” on page 69

 Section 7.1.2, “Applying a Template to an Element,” on page 70

 Section 7.1.3, “Using a Template to Create a Custom Drawing,” on page 70

7.1.1 Applying a Template to Elements of a Class

To apply a template to elements of a specific class:

1 Do one of the following:

 Open the Layout view containing the custom drawing you wish to apply as a class template.

 In the Explorer pane, click to expand Administration > Graphics > Templates and open the
desired template’s Layout view.

2 Right-click in the background of the Layout view and select Save as Custom. The Custom Save
dialog box opens.

3 Do one of the following:

 If working from the layout view of an element with the same class as you wish to apply the
template to, select the Save drawing as template for all elements of class: className radio
button.
Using Drawing Templates 69

The template is applied to any elements of the class and is saved as a template under
Administration > Graphics > Templates > _class and named using the class name. Note
that the template is not applied to the drawing you are saving from.

 If working from the template directory or an element of a different class, select the Save
drawing as template for specified classradio button then specify the class name.

The template is applied to any elements of the selected class and is saved as a template
under Administration > Graphics > Templates > _class and named using the class name.
Note that the template is not applied to the drawing you are saving from.

IMPORTANT: Saving a class template overwrites any existing template for that class.

4 Click Save.

7.1.2 Applying a Template to an Element

To apply a template to a single element:

1 Navigate to the desired element and open the element’s Layout view.

2 On the console toolbar, change the Editing Channel to Element Drawing Template.

3 Drag and drop a template from Administration > Graphics > Templates to the element’s Layout
view background. The drawing is attached to the template.

4 Change the Editing Channel to Drawing.

Existing elements are drawn using the shapes, arrows, colors, and so on inherited by the
selected template. A template icon displays under the lower right corner of the drawing.

Future changes to the template are automatically inherited by the drawing.

7.1.3 Using a Template to Create a Custom Drawing

To apply a template as a custom drawing:

1 Drag and drop a template from Administration > Graphics > Templates to the element’s Layout
view background. A confirmation box opens.

2 Do one of the following:

 Click Yes to update the drawing with template properties. A custom drawing saves for the
element with properties of the template drawing.

A custom drawing icon displays below the lower right corner of the drawing.

The template is not dynamically linked to the element drawing and changes to the template
do not affect the element’s custom drawing.

 Click No to cancel.

7.2 Unapplying Templates from Drawings
Depending on where you want to unapply a template, there are two ways:

 Section 7.2.1, “Unapplying a Template for an Element,” on page 71

 Section 7.2.2, “Unapplying a Template for a Class,” on page 71
70 Operations Center Custom Drawing and Layout Guide

7.2.1 Unapplying a Template for an Element

To unapply a template on a single element:

1 Open the element’s Layout view.

2 Change the Editing Channel to Element Drawing Template.

3 Click Clear. The drawing reverts to the default automatic layout.

7.2.2 Unapplying a Template for a Class

The best way to unapply a template to a class of elements is to delete the template. When the
template is deleted, all elements of that class revert to the default automatic layout.

Class templates are saved in Administration > Graphics > Templates> _class with the same name as
the class they are applied to.

For information on deleting templates, see Section 7.4.3, “Deleting a Template,” on page 75.

7.3 Creating Templates
There are two ways to create new templates:

 Create a new template and build the drawing from scratch.

The disadvantage to working directly from the Templates directory is that there will only be one
node available to work with.

 Save an existing custom drawing as a template.

This method is best if you are working with containers. It is also easiest to visualize as you can
work with in an environment where there are element children.

The following sections describe how to create templates:

 Section 7.3.1, “Creating a New Template,” on page 71

 Section 7.3.2, “Creating a Template from a Custom Drawing,” on page 72

 Section 7.3.3, “Editing Templates,” on page 73

7.3.1 Creating a New Template

While it is easy to create new templates working with the Templates node, the disadvantage is that
there is only one node visible while creating the drawing.

For more information about creating templates working with containers or child elements present, see
Section 7.3.2, “Creating a Template from a Custom Drawing,” on page 72.

To create a new template:

1 In the Explorer pane, click to expand Administration > Graphics > Templates.

2 Right-click Templates, then select Create Template. The Create Template dialog box opens.

3 Specify a template name.

4 Click OK.
Using Drawing Templates 71

The new template displays in the Explorer pane and Layout view updates to display the drawing
for the new template.

5 Verify the Editing Channel is set to Drawing.

6 Use the Layout view drawing tools to define a drawing that will become a new template.

You can also drag and drop clip art, node styles, and other templates to define the new template.

For information about editing the drawing and creating custom drawings, see Section 2.2,
“Creating and Editing Custom Drawings,” on page 15.

For information on using the drawing tools, see Chapter 3, “Using Basic Drawing Tools and
Concepts,” on page 21.

For information on creating custom node styles and adding graphics, see Chapter 6, “Working
with Node Styles and Custom Graphics,” on page 55.

For information on testing the template by setting a preview element, see Section 6.4.2, “Testing
the Node Style Using Preview Elements,” on page 60.

7 Save the drawing for the new template by pressing Ctrl+S.

7.3.2 Creating a Template from a Custom Drawing

The advantage of creating a template from a custom drawing is that you can more easily work with
containers and see how the template would be applied on a larger scale, where a hierarchy exists
under an element.

While working with a custom drawing, you can also make it a template to apply to other elements or a
class of elements.

To create a template from a custom drawing:

1 Open the Layout view containing the custom drawing you wish to save as a template.

If you do not already have the custom drawing created, click Switch to Edit Mode and create a
custom drawing that you wish to use as a template from any element.

For information about editing the drawing and creating custom drawings, see Section 2.2,
“Creating and Editing Custom Drawings,” on page 15.

For information on using the drawing tools, see Chapter 3, “Using Basic Drawing Tools and
Concepts,” on page 21.

For information on creating custom node styles and adding graphics, see Chapter 6, “Working
with Node Styles and Custom Graphics,” on page 55.

2 Right-click in the background of the Layout view and select Save as Custom. A Custom Save
dialog box opens.

3 Do one of the following:

 If you’ve just made changes to the current drawing and wish to save them for that element,
select the Save drawing on the current element radio button.

IMPORTANT: Selecting this option cancels the link between the element and a template if
one was previously applied.

 To save the drawing as a template for elements of the same class, select the Save drawing
as template for all elements of class: className radio button.

The template is applied to any elements of the class and is saved as a template under
Administration > Graphics > Templates > _class and named using the class name. Note
that the template is not applied to the drawing you are saving from.
72 Operations Center Custom Drawing and Layout Guide

IMPORTANT: Saving a template for a class overwrites any existing template for that class.

 To save the drawing as a template for another class of elements, select the Save drawing
as template for specified class radio button then specify the class name.

The template is applied to any elements of the selected class and is saved as a template
under Administration > Graphics > Templates > _class and named using the class name.
Note that the template is not applied to the drawing you are saving from.

IMPORTANT: Saving a template for a class overwrites any existing template for that class.

 To save the drawing as a template, select the Save drawing to a specific template radio
button.

Specify a new template name in the field or browse to select an existing template to
overwrite.

The drawing is saved as a template under Administration > Graphics > Templates.

4 To test the new template, locate the new template under Administration > Graphics > Templates
and set a preview element.

For instructions, see Section 6.4.2, “Testing the Node Style Using Preview Elements,” on
page 60.

5 Click Save.

7.3.3 Editing Templates

Templates can be edited and saved from Administration > Graphics > Templates or from the Layout
view of an element where the template is actively applied.

To edit a template:

1 Do one of the following:

 Open the Layout view of an element where the template is applied.

To verify the template applied, hover the mouse over the icon displayed under the lower
right corner of the element’s Layout view drawing. The tool tip displays the name of the
linked template.

 In the Explorer pane, click to expand Administration > Graphics > Templates and open the
desired template’s Layout view.

2 Click Switch to Edit Mode and update the drawing as desired.

For information about editing the drawing and creating custom drawings, see Section 2.2,
“Creating and Editing Custom Drawings,” on page 15.

For information on using the drawing tools, see Chapter 3, “Using Basic Drawing Tools and
Concepts,” on page 21.

For information on creating custom node styles and adding graphics, see Chapter 6, “Working
with Node Styles and Custom Graphics,” on page 55.

For information on testing the template by setting a preview element, see Section 6.4.2, “Testing
the Node Style Using Preview Elements,” on page 60.
Using Drawing Templates 73

3 Save the changes by pressing by pressing Ctrl+S.

 If editing from an element’s drawing, a confirmation box opens. Click Yes to save the
changes to the template.

Or, click No to view other options. For more information about these options, see
Section 7.3.2, “Creating a Template from a Custom Drawing,” on page 72

Changes are saved to the template and the drawings for all linked elements update.

7.4 Importing and Managing Templates
 Section 7.4.1, “Importing a Template,” on page 74

 Section 7.4.2, “Organizing Templates Using Folders,” on page 74

 Section 7.4.3, “Deleting a Template,” on page 75

 Section 7.4.4, “Renaming a Template or Folder,” on page 75

7.4.1 Importing a Template

To import a template:

1 In the Explorer pane, click to expand Administration > Graphics > Templates.

2 Right-click Templates or any folder beneath it, then select Import Template. The Import Template
dialog box opens.

3 Navigate to and select the template file, then click Open.

The new template displays as a Templates element.

7.4.2 Organizing Templates Using Folders

To organize templates using folders:

1 In the Explorer pane, click to expand Administration > Graphics > Templates.

2 Right-click Templates or any folder beneath it, then select Add Folder to open the Create
Template Folder dialog box.

3 In the Explorer pane, click to expand Administration > Graphics > Templates.

4 Do one of the following:

 To create a new folder, right-click Templates or any folder beneath it, then select Add
Folder. The Create Template Folder dialog box opens.

Specify a name for the folder, then click OK.

The new folder displays in the Explorer pane.

 To delete a folder, right-click the folder, then select Delete Folder. A confirmation dialog box
opens.

Click OK.
74 Operations Center Custom Drawing and Layout Guide

7.4.3 Deleting a Template

To delete a template:

1 In the Explorer pane, click to expand Administration > Graphics > Templates.

To delete a template for a class an return to using the automatic layout for class elements, open
the _class directory.

2 Right-click the template, then select Delete Template. A confirmation box opens.

3 Click OK.

The template disappears from the Explorer pane and any associated drawings return to the
default automatic layout.

7.4.4 Renaming a Template or Folder

To rename a template or folder:

1 In the Explorer pane, click to expand Administration > Graphics > Templates.

2 Right-click the template or folder, then select Rename. The Rename dialog opens.

3 Specify the new name, then click OK.

The new name displays in the Explorer pane.
Using Drawing Templates 75

76 Operations Center Custom Drawing and Layout Guide

8 8Layout View Examples

The following sections give step-by-step instructions for creating various types of customized layout
drawings:

 Section 8.1, “Geographical View Example,” on page 77

This first example is a geographical Layout view that uses maps and dynamic elements that
update automatically to show element conditions.

 Section 8.2, “Tabular Data View,” on page 84

This second example shows a tabular view application, of a service catalog summary view. The
colored rectangles identify the current status of individual services and the corresponding
Service Level Agreement (SLA) health.

 Section 8.3, “Business Process View Example,” on page 87

This third example shows the key steps in a business process, which is graphically represented
in the Layout view. Each step is linked to an element condition to show critical events and
relationships.

8.1 Geographical View Example
Businesses whose internal resources and services span multiple geographic areas find it useful to
analyze performance and target troubleshooting methods by location. For example, mergers and
other types of vendor or partner relationships create interrelated business processes, such as supply
chain or post-sales support. Businesses that deliver products and services across geographic areas
of varying size find it useful to view service delivery levels, outages, and other problems by location.
This view can help prioritize problem resolution, organize delivery or service routes, and site visits,
and identify and proactively protect at-risk areas from technology outages.

Use the Layout view to create a high-level view of the status of services and availability of resources
by geographic area, without having to change existing element hierarchies or create new ones. It is
easy to add a map to the Layout view, then organize relevant elements on the map.

Rather than sort through events based only on criticality or date, your staff can pinpoint “hot spots”
that experience critical technology outages frequently, resulting in substandard delivery of services to
customers. This helps in selecting sites for redeploying or purchasing new resources. It also keeps
the IT staff focused on maintaining service availability to troubled regions, rather than just responding
to alarm after alarm.

Understanding how resources impact service by location also helps IT staff alert the business to
potential service disruptions. For instance, if IT cannot avoid problems with routers in the Boston
area, the staff can tell business managers which customers might experience service disruptions.
Together, the business and IT staff can take proactive steps to mitigate or even avoid trouble in the
first place, as well as to accurately assist impacted customers.

Some business-critical applications rely on an IT infrastructure spread across multiple continents.
The sheer scope of these resources makes finding the root cause of availability problems a difficult
process. However, you can create Layout drawings that identify the state of applications and which
particular technology components are impacting that state — all in real time. The team can quickly
Layout View Examples 77

identify a business issue’s source and location, as well as prioritize its support workload. For
example, retail bank executives want to know the state of their business in real time, such as the state
of ATM operations and telephone service in different regions and branches.

Layout views can show the state of key services by city, region or country. The views have the power
to drill down from, for instance, regional ATM operations to the ATMs in a specific bank. Bank
executives can hold IT accountable for their services. They have immediate information on the
services that drive profits and customer satisfaction. If an outage is unavoidable on the technical side,
the business can take action to mitigate the impact, such as by making alternate arrangements for
customers and branches.

Assume a wireless company has recently completed a merger with a smaller company. IT managers
must eliminate redundant hardware and software. The challenge is realizing cost-savings while
guaranteeing the reliability of critical business services, such as point-of-sale resources and credit
checking.

By integrating and interpreting data from across the provider’s infrastructure and viewing it by
geographic region, IT staff can identify technology issues to focus on first. For instance, IT executives
can measure the results of a resource consolidation on service availability in key cities.

Another important goal after a merger is consolidating the large number of servers the company
relied on. Managers can use Layout views to see high-level information, such as whether a key
company application is available in certain regions. It’s a way for IT to communicate value, as well to
keep management aware of their ability to do business. Operations Center integrates data from the
manufacturer’s existing management tools. With this information, Operations Center continuously
determines — in real time and over time — how IT resources are impacting overall services, services
in a particular region, or key technology groupings in various data centers. The staff becomes
focused on responding and even preventing service problems — not just reacting to alarms.

The company has organized its Operations Center business views by key applications, such as credit
checking, point-of-sale data collection, and customer problem reports. These are the top-level
elements in Operations Center. Within each application, server availability and performance data are
rolled up into major sales markets, such as Boston, New York, Philadelphia, and Washington, DC.

Now assume the IT manager wants to view availability status for each application by city. The
completed Layout view drawing in Figure 8-1 shows the current credit checking system availability in
Boston, New York, Philadelphia, and Washington, DC. Red corresponds to CRITICAL status, orange
corresponds to MAJOR status, and so on. CRITICAL cities require more detailed inspection, because
it is likely multiple servers are down and the credit checking system might not be functioning in the
affected sales centers.
78 Operations Center Custom Drawing and Layout Guide

Figure 8-1 illustrates that the cities are linked to existing elements and their current condition. The red
CRITICAL squares indicates problems exist with the credit checking system in NYC and Washington
DC.

Figure 8-1 Map Example

In this example, each city is represented by a small circle whose fill color matches the city availability
condition and by text displaying the city name. Each city is bound to an element in the Elements
hierarchy.

Creating this type of view consists of:

 Adding specific elements to the drawing

 Adding a map image to the Layout background

 Adding a title, change the background color

 Changing the background color

 Saving the drawing
Layout View Examples 79

To create conditions across a map:

1 In the Explorer pane, select an element.

The Layout drawing will be associated with this element. In this example, we created a new
Service Model element named United States.

2 In the bottom of the Layout view, click New Drawing. The drawing clears and switches to Edit
mode.

3 Place the elements from the Element hierarchy that will be used in this drawing.

The display format used for each element is called a node style.

Operations Center ships with many different node styles. You can simply select one, then drag
and drop it on a drawing.

Select a node style to format the cities displayed in the drawing.

3a In the Explorer pane, expand and locate the elements that should be surfaced in this
drawing.

In this example, we expand Elements > US Network Operations.

You can click the plus (+) and minus (–) symbols to expand and collapse element
hierarchies. However, do not click an element name in the Explorer pane or the Layout view
shifts to that element and away from the United States element.

3b From the Explorer pane, drag and drop Boston to the Layout view.

3c From the pop-up menu, select Add to Drawing Only.

The default node style displays to represent Boston:

3d Expand Administration > Graphics > Nodes.

3e Locate the node style you want use (ClassicSmall is used in this example) and drag it to
Boston.

3f From the menu, select Change Node Style for All Nodes.

Boston updates to use the new node style.

3g Drag the remaining cities from the Explorer pane to the Layout view.

Select Add to Drawing Only for all of them.

Notice that the circle fill colors automatically change to match the city elements’ current
conditions.
80 Operations Center Custom Drawing and Layout Guide

The fill colors for the squares are bound to the element conditions:

4 Add a background map and arrange geographical locations:

The final steps to complete the drawing consist of

A number of maps ship with Operations Center. You can also import maps. In this example. we
are adding a background map of the United States and arranging the cities in the correct
geographic locations.

4a Click the Graphics tab.

4b From the Categories drop-down list, select Maps.

4c Drag and drop the US Map to the view pane:

4d Right-click the map, then select Arrange > Send to Back.
Layout View Examples 81

4e Resize the map graphic by dragging its endpoints until it is approximately the same size as
the one shown in the following:

4f Click and drag the cities to the appropriate geographic location on the map.

5 Add text to complete the drawing. We are adding a title and background color, before saving the
drawing.

5a Create a title for the drawing by clicking (Text) on the drawing tools toolbar.

5b Enter Availability by City.

5c Change the text size, font, or color using the property panes.

5d Drag the title to the appropriate location.

5e Right-click the Layout view, then select Set Background Color.

5f Select a color from the palette, then click OK.

The background color updates.
82 Operations Center Custom Drawing and Layout Guide

6 Click Edit > Save Drawing.

The finished drawing:

Notice that placing the mouse over any drawing object that is linked to an element displays a
summary of the element condition. In this example, place the mouse over the city name or
symbol.
Layout View Examples 83

8.2 Tabular Data View
The Layout view illustrated in Figure 8-2 provides a service catalog summary view. The colored
rectangles help quickly identify the current status of individual services and the corresponding SLA
health.

Figure 8-2 Service Catalog Summary View

Creating this type of view consists of:

 Using drawing tools to create a grid for services and adding text

 Creating rectangles to represent the current conditions for individual services and their SLAs

 Dragging and dropping service and SLA elements to the appropriate rectangles, to bind the
element conditions to the fill color of the rectangles
84 Operations Center Custom Drawing and Layout Guide

The following sections describe how to create the above view:

To create a grid diagram in the Layout view:

1 First we will draw the grid:

1a Draw a rectangle that has a blue fill as shown in the following:

1b Add lines to subdivide the grid into rows and columns.

2 Next we will finish the drawing components:

2a Add text to name the rows and columns.

2b Add a chart title at the top of the drawing.

2c Add rectangles to represent the element and SLA conditions.

2d Change the background color by right-clicking the background and selecting Set
Background Color.

2e Drag and drop service elements and SLAs from the Explorer pane to the rectangles in the
drawing.

By default, the element conditions bind to the rectangle fill colors.
Layout View Examples 85

3 The last step is associating the shapes in the grid to elements and updating color based on the
element’s condition state.

3a Drag an element from the Explorer pane to the appropriate rectangle in the drawing.

By default, the element condition color is used to fill the rectangle.

3b Drag elements from any branch of the Explorer pane.

For example, drag SLAs from the SLA branch and drag elements from the Service Models
branch.

3c Confirm the correct element is used for binding by checking the Element name displayed in
the Element property pane.
86 Operations Center Custom Drawing and Layout Guide

8.3 Business Process View Example
This Layout view illustrated in Figure 8-3 identifies key steps in a business process. Steps are linked
to elements so that the fill color use to represent each step corresponds to the current element state.
End-to-end service management enables monitoring and controlling service problems from a single
console view. The drawing integrates all existing sources of infrastructure data into a single place,
easing the problem of diagnosis where cause and effect are separate.

Figure 8-3 shows the business processes that support order processing. Color-coding reflects each
process’ state — red for CRITICAL, green for OK, and so on. IT staffers can right-click a process in
trouble and immediately see what technology issue is causing the problem and what other technology
and business areas that issue is impacting.

Figure 8-3 Completed Supply Chain Business Process Layout View

Creating this example requires:

 Changing the background color

 Dragging and dropping elements from different branches of the Elements hierarchy in the
Explorer pane to the Layout view

 Changing the node style

 Adding a rectangle to highlight specific elements

 Adding heading/descriptive text

 Adding lines and arrows to illustrate connection between drawing elements

Start by changing the background color and adding a filled rectangle to draw attention to a specific set
of steps:

1 Change the background color of the business process view:

1a Right-click the background, then select Set Background Color.

1b Select a color from the palette.

In this example, a blue background is used.
Layout View Examples 87

2 Add elements to the business process view:

2a Drag and drop elements from the Explorer pane to create the correct sequence of steps in
the business process:

2b When prompted, select to a placement action for the element.

By default, the dropped elements use the Gradient Bubble node style.

For details on the menu items, see Chapter 5, “Adding Elements and Updating Drawing
Components Using Element Properties,” on page 37.

3 Change the node style for all elements in the drawing.

By default, the Bubble Gradient node style is used. In this application, a smaller node style is
preferable, to enable displaying the maximum number of elements on the screen at one time. In
this example, the Classic Small node style is used.

3a In the Explorer pane, expand Administration > Graphics > Nodes.

3b Drag the Classic Small node style from the Explorer pane and drop it on an element in the
drawing.

The following illustrates changing all node styles to ClassicSmall:

3c From the menu, select Change Node Style for All Nodes.

All elements in the drawing update to use the new node style.

The following illustrates elements using the ClassicSmall node style:
88 Operations Center Custom Drawing and Layout Guide

4 Add a rectangle to highlight specific elements in the Supply Chain process after completing all
drag and drop actions. Otherwise, if you drop an element onto a shape, such as a rectangle, the
element is bound to the shape.

4a Click (Rectangle) on the drawing toolbar.

4b Drag to draw an outline of the shape anyplace in the view, then release the mouse button to
display the finished shape.

4c Drag the shape to the correct location in the drawing.

4d If it is necessary to modify the size, click and drag any of the shape’s endpoints.

4e Select the rectangle, then click the appropriate fill color in the Palette.

4f If the rectangle displays on top of the elements, thereby obscuring them, change the
display’s order by right-clicking the rectangle and selecting Order > Send to Bottom.

The rectangle moves beneath the elements:

5 Add descriptive text.

Use the Text tool to add descriptive text to the drawing. This text is not bound to any
elements.
Layout View Examples 89

6 As a final step, use the drawing toolbar to add arrows showing the relationships among the steps
in the business process.

6a Click (Line).

6b Click to start and drag to draw the line.

6c Release the mouse to finish drawing:

The above illustrates that you can add arrows to show the process flow.

To change the line width or add arrow heads use the options in the drawing palette, see
Section 3.1, “Understanding the Layout View Panels and Drawing Palette,” on page 22.
90 Operations Center Custom Drawing and Layout Guide

A ARendering Rule Precedence for
Node Styles and Graphics

This section describes the lookup strategy used to determine the node style or custom graphic
rendering used for an element in a Layout view drawing.

It also provides examples using a series of step-by-step instructions. Re-create the examples to
understand how the node style/graphic representation works in the Layout view. Considering the
numerous ways a node style can be applied to elements, it could be unclear which settings or
overrides take precedence. Read through the section, then try the example steps to see first-hand
how the node style settings and priorities work.

It is assumed the reader is a proficient user of Operations Center and the Layout view in particular.
Many steps in this section are general in nature and it is assumed the reader knows how to navigate
the Layout view and can create drawings and portals.

 Section A.1, “Element Rendering Look Up Strategy,” on page 92

 Section A.2, “Creating a Test Model,” on page 94

 Section A.3, “Viewing the Layout in the Dashboard,” on page 97

 Section A.4, “Creating Node Styles for Testing,” on page 97

 Section A.5, “Applying the Ambient Node Style to the Drawing,” on page 98

 Section A.6, “Changing the Node Style through Binding,” on page 99

 Section A.7, “Applying a Node Style to a Class,” on page 101

 Section A.8, “Applying a Graphic to a Class,” on page 102
Rendering Rule Precedence for Node Styles and Graphics 91

A.1 Element Rendering Look Up Strategy
In the context of the Operations Center Layout view, element rendering is performed by locating the
selected node style or graphic representation for a specific element in a specific drawing.

This property can be set in many places. A default lookup strategy determines which node style or
graphic rendering to use for an element in a drawing. Referring to Figure A-1, the lookup works from
top to bottom:

Figure A-1 Nodestyle Flowchart
92 Operations Center Custom Drawing and Layout Guide

The lookup strategy is performed in the following order:

1. binding | override (* DRAWING SPECIFIC)

Use this setting to override all other node styles and graphics in a drawing and assign a specific
node style for a specific element.

2. element | graphic

An element in a drawing has a custom graphic defined for this instance of the element. This
graphic is specified in the element’s Element Graphic drawing channel. This graphic might have
been created by a user in v4.0, or it could result from a conversion from v3.5.x for an
Organization element that contained a custom graphic.

3. element | node style

An element in a drawing has a custom node style defined for this instance of the element. This
graphic is specified in the Element Node Style drawing channel. This channel is merely a
reference to a custom node style listed under Administration > Graphics > Node Style.

4. element class | graphic

An element in a drawing has a class definition with a custom graphic defined. This graphic is
specified in the Element Graphic drawing channel for this instance of the class definition, which
appears in the Metamodel branch of the Administration hierarchy.

IMPORTANT: There is currently an open issue with these two element class options. Only
Org type elements support these settings. This is a constraint put in place by the Metamodel
implementation.

5. element class | node style

An element in a drawing has class definition with a custom node style defined. This is specified
in the Element Node Style drawing channel for this instance of the class definition, which
appears in the Metamodel branch of the Administration hierarchy.

6. binding | specify (* DRAWING SPECIFIC)

An element was added to a drawing using the Automatic Layout option. The user chose to set a
node style for the all elements generated by this layout option.

TIP: This setting can be overridden by the higher priority settings that are found for each element
in the binding.

7. Ambient (* DRAWING SPECIFIC)

The Ambient node style changes all elements that currently use the system default node style. It
is a way to quickly change multiple nodes at once. Drag and drop a node style to the drawing
background.

8. System

There is no node style set on a drawing and no node style or graphic found for the target element
by searching the list above.

The subsequent sections provide examples of how the element rendering priorities work. Start by
creating custom classes and apply them to new elements, then create a corresponding portal. You
can create several node styles and apply them.
Rendering Rule Precedence for Node Styles and Graphics 93

A.2 Creating a Test Model
This example that walks you through creating a new Metamodel class and applying the class to a set
of elements. It also shows you how to manually bind an element to the drawing.

 Section A.2.1, “Creating a New Metamodel Class and Elements,” on page 94

 Section A.2.2, “Creating a Manually Bound Element in the Drawing,” on page 96

A.2.1 Creating a New Metamodel Class and Elements

To create a new Metamodel class and elements that use this class:

1 In the Explorer pane, under Administration > Metamodel > Classes, create a new class named
CustomRendering.

This class does not require changing any Metamodel settings.

2 Select this new class in the Explorer pane, then switch to the Layout view.

The view should resemble the following:

3 Create a new Service Model element named RenderingTesting.

4 In the Explorer pane, select RenderingTesting.

Notice that the default node style used to represent the element is Gradient Bubble in the Layout
view.

5 Create three child elements under RenderingTesting named:

 CustomChild1

In the Class field, select the custom class CustomRendering (defined earlier in Step 1 on
page 94).

 CustomChild2

In the Class field, select the custom class CustomRendering.
94 Operations Center Custom Drawing and Layout Guide

 GenericOrgChild3

In the Class field, leave the default Org class.

The resulting Layout view should resemble the following:
Rendering Rule Precedence for Node Styles and Graphics 95

A.2.2 Creating a Manually Bound Element in the Drawing

To create a manually bound element inside a drawing:

1 In the Layout view, switch to Edit mode.

2 Drag and drop CustomChild1 from the Explorer pane to the background of the drawing.

Make sure you drop the element the background and not on any of the existing elements.

3 Select Add to Drawing Only from the pop-up menu.

The resulting drawing resembles the following:
96 Operations Center Custom Drawing and Layout Guide

A.3 Viewing the Layout in the Dashboard
To view the layout in the Dashboard:

1 Create a default portal for the RenderingTesting element.

The rendered portal should look identical to the Layout drawing shown here:

2 Deselect the Use Relationships check box in the Layout portlet so that the SVG layout is used.

A.4 Creating Node Styles for Testing
To create node styles for testing, do the following:

1 Under Administration > Graphics > Nodes, create a node style named RenderingTestAmbient.

2 Edit the node style as follows:

 Right-click the node style graphic, then select Ungroup.

 Change the <default> text to AMBIENT.

 Add a text label beneath the square and bind the label to the Element Name option.

 Select everything in the drawing, then right-click Group.

 Save the drawing.
Rendering Rule Precedence for Node Styles and Graphics 97

The following illustrates the resulting drawing:

3 Create a node style named RenderingTestClass and edit it as follows:

3a Change the <default> text to CLASS.

3b Add a text label beneath the square and bind that label to the Element Name option.

4 Create a node style named RenderingTestElement and edit it as follows:

4a Change the <default> text to ELEMENT.

4b Add a text label beneath the square and bind that label to the Element Name option.

5 Create a node style named RenderingTestOverride and edit it as follows:

5a Change the <default> text to OVERRIDE.

5b Add a text label beneath the square and bind that label to the Element Name option.

6 Create a node style named RenderingTestSpecify and edit it as follows:

6a Change the <default> text to SPECIFY.

6b Add a text label beneath the square and bind that label to the Element Name option.

A.5 Applying the Ambient Node Style to the Drawing
The Ambient node style changes all elements that currently use the system default node style. It is a
way to quickly change multiple nodes at once. Drag and drop a node style to the drawing
background.

To apply the Ambient node style to all elements in a drawing:

1 In the Explorer pane, click Services > Service Models > RenderingTesting.

At this point, no node style has been set relative to the drawing so the system default of Gradient
Bubble is used.

2 Under Administration > Graphics > Node Styles, drag and drop the RenderingTestAmbient node
style to the background of the drawing.

Be sure to drop on the background and not on an element in the drawing.

3 When prompted, click Yes to set the Ambient node style.
98 Operations Center Custom Drawing and Layout Guide

4 Verify that the drawing resembles the following:

5 Save the drawing.

6 Refresh the associated Operations Center dashboard page and verify the same view displays.

A.6 Changing the Node Style through Binding
At this point, the Ambient node style has been set in the drawing. Now, you will change the node style
for a specific element, then when prompted, change the node style for all nodes in the drawing.

The following example applies the binding | specify switch.
Rendering Rule Precedence for Node Styles and Graphics 99

To update the node style for all drawing nodes:

1 In the Explorer pane, under Administration > Graphics > Node Styles, drag and drop the
RenderingTestSpecify node style to the RenderingTesting element in the drawing.

2 Select All Nodes from the menu.

The following results occur:

 The binding node style is set for the binding tree that starts with RenderingTesting as the
root.

 The Ambient node style also changes, as All Nodes was selected.

 Verify that the drawing resembles the figure below. The manually-bound CustomChild1 is
also rendered using the SPECIFY node style because the AMBIENT node style was
changed when All Nodes was selected.

3 Save the drawing.

4 Refresh the Operations Center dashboard page and verify the view above displays.
100 Operations Center Custom Drawing and Layout Guide

A.7 Applying a Node Style to a Class
The following section of the example applies a node style to a class and tests the element class |
node style switch.

To apply a node style to a class:

1 In the Explorer pane, under the Metamodel hierarchy, select the CustomRendering custom
class.

2 On the console toolbar, switch to the Element Nodestyle drawing channel.

3 In the Explorer pane, under Administration > Graphics > Node Styles, drag and drop the
RenderingTestClass node style to the Layout view.

This sets the node style to RenderingTestClass for the CustomRendering element class.

4 Change the view back to the Drawing channel.

5 In the Explorer pane, click Service Models > RenderingTesting and verify that all element
instances of the CustomRendering custom class now use the RenderingTestClass node style.

This feature allows you to control node styles from the class level.

The view should resemble the following:

The elements whose class is CustomRendering are easily identified by having CustomClass in
their names. Only these elements should use the RenderingTestClass node style that shows
CLASS inside the node.

6 Refresh the Operations Center dashboard page and verify the same view displays.
Rendering Rule Precedence for Node Styles and Graphics 101

A.8 Applying a Graphic to a Class
 Section A.8.1, “Changing the Class Node Style to a Custom Graphic,” on page 102

 Section A.8.2, “Applying a Node Style at the Element Instance Level,” on page 103

 Section A.8.3, “Applying a Graphic at the Element Instance Level,” on page 105

 Section A.8.4, “Overriding a Single Element Node Style,” on page 106

 Section A.8.5, “Clearing Previously Set Node Styles and Graphics,” on page 108

A.8.1 Changing the Class Node Style to a Custom Graphic

The following section of the example changes the node style of a class to a custom graphic and tests
the element class | graphic switch.

To change a class node style to a custom graphic:

1 In the Explorer pane, under Metamodel > Classes, select the CustomRendering custom class.

2 On the console toolbar, switch to the Element Graphic drawing channel.

3 Add the following drawing elements to the drawing:

3a Draw an ellipse in the same location as the illustration below.

It might be necessary to pan the drawing to see the red axes, because they initially display
in the upper left-hand corner. Notice that the origin of the ellipse is relative to the red axes
that represent the (0,0) coordinate origin of the drawing.

3b Bind the ellipse’s fill color to element condition. The ellipse’s fill changes to green.

3c Add a label named CLASS GRAPHIC inside the ellipse.

3d Add a label beneath the ellipse and bind that label to the Element Name option.

4 Save the drawing.
102 Operations Center Custom Drawing and Layout Guide

5 Return to the RenderingTesting element and verify that all element instances of the
CustomRendering custom class now use the CustomRendering custom drawing graphic.

This feature allows the user to control custom graphics from the class level.

The drawing should resemble the following:

6 Refresh the Operations Center dashboard page and verify the same view displays.

A.8.2 Applying a Node Style at the Element Instance Level

The following example applies a node style at the element instance level and tests the element |
node style switch.

To apply a node style at the element instance level:

1 In the Explorer pane, select the element RenderingTesting > CustomChild1.

2 Switch to the Element Node Style drawing channel.

3 In the Explorer pane, under Administration > Graphics > Node Styles, drag and drop the
RenderingTestElement node style to the Layout view.

This should set the node style to RenderingTestElement for the CustomChild1 element class.
Rendering Rule Precedence for Node Styles and Graphics 103

4 Return to the RenderingTesting view and verify that all copies of the CustomChild1 element now
use the RenderingTestElement node style.

This allows you to control node styles from the element instance level. In every drawing where
this element appears, this graphic is used, unless it is overridden by a higher priority rendering.

The drawing should resemble the following:

5 Refresh the Operations Center dashboard page and verify the same view displays.
104 Operations Center Custom Drawing and Layout Guide

A.8.3 Applying a Graphic at the Element Instance Level

The following section of the example applies a graphic at the element instance level and test the
element | graphic switch.

To apply a graphic at the element instance level:

1 In the Explorer pane, select the RenderingTest > CustomChild1 element.

2 Switch to the Element Graphic drawing channel.

3 Edit the drawing using the following steps:

3a Draw a rectangle in the same location as the following:

It might be necessary to pan the drawing to see the red axes as they initially display in the
upper left-hand corner. Notice how the origin of the rectangle is relative to the red axes that
represent the (0,0) coordinate origin of the drawing.

3b Bind the rectangle’s fill color to element condition.

3c Add a label named ELEMENT GRAPHIC inside the rectangle.

3d Add a label beneath the rectangle and bind that label to the Element Name option.

4 Save the drawing.

5 Return to the RenderingTesting view.
Rendering Rule Precedence for Node Styles and Graphics 105

6 Verify that all copies of the CustomChild1 element now use the CustomChild1 custom graphic.

This allows you to control graphics from the element instance level. In every drawing where this
element appears, this graphic is used, unless it is overridden by a higher priority rendering.

The drawing should resemble the following:

7 Refresh the Operations Center dashboard and verify the same view displays.

A.8.4 Overriding a Single Element Node Style

The following section of the example overrides the node style for a single element and tests the bind
| override switch.

To override the node style for a single element:

1 In the Explorer pane, select the RenderingTesting element.

2 On console toolbar, verify the Drawing channel is selected.

3 In the Explorer pane, under Administration > Graphics > Node Styles, drag and drop the
RenderingTestOverride node style to the CustomChild1 element in the Layout view.

The CustomChild1 element is part of the nested tree layout.
106 Operations Center Custom Drawing and Layout Guide

4 Select This Node Only from the pop-up menu.

The node style changes to RenderingTestOverride for only one copy of CustomChild1. This
override setting only applies to the binding that caused the element to display in the drawing.
The other copy of CustomChild1 still uses the custom element graphic set in the previous
section.

The drawing should resemble the following:

5 Save the drawing.

6 Refresh the Operations Center dashboard page and verify the same view displays.

7 While still viewing the RenderingTesting element, drag and drop the RenderingTestOverride
node style to the orphaned CustomChild1 element in the layout that is not part of the nested tree
layout.
Rendering Rule Precedence for Node Styles and Graphics 107

8 Select This Node Only from the pop-up menu.

This should set the node style to RenderingTestOverride for only this copy of the CustomChild1
element in this drawing.

The drawing should resemble the following:

Now, each copy of the CustomChild1 element has its own override rendering.

9 Save the drawing.

10 Refresh the associated portal and verify the same view displays.

A.8.5 Clearing Previously Set Node Styles and Graphics

The following sections cover how to clear the various types of node styles and graphic switches.

NOTE: There is currently no option in the Operations Center console for clearing the Ambient setting
or the binding|specify setting. These settings can be cleared by directly editing the SVG source,
which is explained in Appendix C, “Editing the Source SVG Code,” on page 139.

 “Clearing the Bind | Override Switch” on page 109

 “Clearing the Element | Graphic Switch” on page 111

 “Clearing the Element | Node Style Switch” on page 112
108 Operations Center Custom Drawing and Layout Guide

 “Clearing the Element Class | Graphic Switch” on page 113

 “Clearing the Element Class | Node Style Switch” on page 114

Clearing the Bind | Override Switch

To clear the bind | override switch:

1 In the Explorer pane, select the RenderingTesting element.

2 On the console toolbar, verify the Drawing channel is selected.

3 Switch to Edit mode.

4 Right-click the orphaned CustomChild1 element in the layout that is not part of the nested tree
layout.

5 Select Remove Node Style Override from the menu, then click Yes to remove the override.

6 Verify that the override is removed from only this copy of CustomChild1.

The drawing should resemble the following:

There might be a short delay before the old rendering is cleared from the graphics cache.

7 Save the drawing.

8 Refresh the Operations Center dashboard page and verify the same view displays.

9 Switch to Edit mode and right-click the CustomChild1 element that is part of the nested tree
layout.
Rendering Rule Precedence for Node Styles and Graphics 109

10 Select Remove Node Style Override from the menu, then click Yes to remove the override.

11 Verify that the override is removed from only this copy of CustomChild1.

There might be a short delay before the old rendering has been cleared from the graphics cache.

The drawing should resemble the following:

12 Save the drawing.

13 Refresh the Operations Center dashboard page and verify the same view displays.
110 Operations Center Custom Drawing and Layout Guide

Clearing the Element | Graphic Switch

To clear the element | graphic switch:

1 In the Explorer pane, select the CustomChild1 element.

2 On the console toolbar, switch to the Element Graphic drawing channel.

3 Right-click the background, then select Clear Element Graphic.

4 Click Yes to accept.

5 Verify that the Element Graphic drawing channel is cleared.

6 Return to the RenderingTesting view.

All copies of the CustomChild1 element have reverted to the CustomChild1 element instance
node style.

There could be a short delay before the old rendering is cleared from the graphics cache.

The resulting drawing should resemble the following:

7 Refresh the Operations Center dashboard and verify the same view displays.
Rendering Rule Precedence for Node Styles and Graphics 111

Clearing the Element | Node Style Switch

To clear the element | node style switch:

1 In the Explorer pane, select the CustomChild1 element.

2 On the console toolbar, switch to the Element Nodestyle drawing channel.

3 Click Clear in the upper right-hand corner of the view.

4 Verify the node style clears and the text in the center changes to none.

5 Return to the RenderingTesting view and verify all copies of the CustomChild1 element have
reverted to their class definition’s custom graphic (defined for the CustomRendering custom
class).

There could be a short delay before the old rendering is cleared from the graphics cache.

The resulting drawing should resemble the following:

6 Refresh the associated portal and verify the same view displays.
112 Operations Center Custom Drawing and Layout Guide

Clearing the Element Class | Graphic Switch

To clear the element class | graphic switch:

1 In the Explorer pane, expand Administration > Metamodel > Classes > the CustomRendering
custom class.

2 On the console toolbar, switch to the Element Graphic drawing channel.

3 Right-click the drawing, then select Clear Element Graphic.

4 Click Yes to accept.

5 Verify that the Element Graphic drawing channel is cleared.

6 Return to the RenderingTesting Layout view and verify that all copies of the CustomChild1
element have reverted to their CustomRendering class definition’s node style.

There can be a short delay before the old rendering is cleared from the graphics cache.

The resulting drawing is shown in the following:

7 Refresh the associated portal and verify the same view displays.
Rendering Rule Precedence for Node Styles and Graphics 113

Clearing the Element Class | Node Style Switch

To clear the element class | node style switch:

1 In the Explorer pane, select the CustomRendering class.

2 On the console toolbar, switch to the Element Nodestyle drawing channel.

3 Click Clear in the upper right-hand corner of the view.

4 Verify the node style clears and the text in the center changes to none.

5 Return to the RenderingTesting view and verify that all copies of the CustomChild1 element have
reverted to the SPECIFY node style.

At this point the Ambient node style is using the RenderingTestSpecify node style and the
binding node style is also set to RenderingTestSpecify.

There could be a short delay before the old rendering is cleared from the graphics cache.

The resulting drawing should resemble the following:

6 Refresh the associated portal and verify the same view displays.
114 Operations Center Custom Drawing and Layout Guide

B BBind Language API Reference

The bind language is based on a small set of orthogonal concepts. The goal is to create a simple
means of marking up XML with constructs to generate structured content, lay out content, and update
content. The bindings are intended to do their work both on a functional transform basis and on an
incremental basis. Incremental updates are present to allow the efficient updating of a real-time
display, and to facilitate incorporation into editing environments.

The three primary forms/phases are:

 Templates

 Layout

 Values

During the template phase the XML tree is recursively examined for template constructs, which
generate and prune content according to instructions. When all template activity has completed, the
layout phase adjusts that content according to layout instructions. Then on an ongoing basis, specific
values/attributes within the XML tree are updated. If conditions dictate that a structural change occurs
(via template activity), then the template and layout phases are repeated.

Using the bind language, you can generate and alter just about anything in an SVG drawing.
Everything in SVG is text, so everything is fair game. You can adjust the size of objects, alter their
colors, hide and show graphics, change scales and transforms, and anything else that comes to
mind. Before we get into the details of the bind language let’s outline a series of common scenarios
and their solutions. Some of the commands won’t make sense until you understand the overall
language, but the next sections should give you a more solid idea of what can be built, and how to go
about doing it.

 Section B.1, “Bind Task Examples,” on page 115

 Section B.2, “Bind Templates,” on page 127

 Section B.3, “Layout,” on page 130

 Section B.4, “Bind Values,” on page 133

 Section B.5, “Resource Generation,” on page 136

 Section B.6, “Bind Promotion,” on page 136

 Section B.7, “General Bind Annotations,” on page 137

 Section B.8, “Script Objects,” on page 137

B.1 Bind Task Examples
This section discusses how the underlying SVG/XML level works. When you understand how these
tasks are accomplished at the XML level, you’ll be in a much better position to understand what’s
working or not working, and why that is so. And, you’ll be able to create custom visualizations and
interactions much more easily.

 Section B.1.1, “Adding Tooltips or Pop-Ups to Portlets in the Dashboard,” on page 116

 Section B.1.2, “Tying an Element to a Drawing Shape,” on page 122
Bind Language API Reference 115

 Section B.1.3, “Changing Shapes or Showing Objects Based on Element Condition,” on
page 123

 Section B.1.4, “Changing Shapes Based on Element Property,” on page 123

 Section B.1.5, “Displaying Element Name or Element Property,” on page 124

 Section B.1.6, “Displaying Element Children,” on page 125

 Section B.1.7, “Formatting Numbers, Dates, and Time,” on page 126

B.1.1 Adding Tooltips or Pop-Ups to Portlets in the Dashboard

In the dashboard, the Layout portlet is used to display the same information (or drawings) that you
have in the console’s Layout view. You can modify the Layout view drawing code to leverage tooltip
and pop-up functionality in the dashboard.

The following sections cover adding tooltips or pop-ups to portlets. This functionality applies to the
dashboard.

 “Tooltips for the Layout Portlet” on page 116

 “Pop-ups in the Layout Portlet” on page 118

Tooltips for the Layout Portlet

A tooltip can be displayed when the mouse is hovered over a specific element in the Layout portlet in
the dashboard. For more information about the Layout portlet and the dashboard, see the Operations
Center Dashboard Guide.

Although the tooltip is created in the Layout View, it cannot be displayed in a Layout View drawing in
the Operations Center console.

The tooltip must be manually inserted into an SVG drawing. The mechanism to create the tooltip
requires a specific structure as follows:

<g tooltiptype="outer" preserveId="true" display="none">
<g id="uniqueid" tooltiptype="inner" preserveId="true" display="inline"
timeout="7000">
 <…tooltip content goes here…>
 </g>
 </g>

This structure consists of an inner and an outer SVG Group object. The purpose of the outer Group
object is to hide the inner Group object when the tooltip should not be displayed. A different
mechanism directly refers to the inner Group object when it is time to display the tooltip.

The outer group must have a tooltiptype of "outer" and the inner group must have a
tooltiptype of "inner". Both groups must have the preserveId set to True. The display attribute
is required for both groups. The outer group could toggle the display attribute from "none" to
"inline" at design time in the Operations Center console in order to preview how the tooltip can
render. The inner group must have display set to "inline". The inner group can supply an optional
attribute called timeout, which sets the display time of the tooltip in milliseconds. The default timeout
value is 5000 milliseconds. The inner group MUST have an id that is unique within the current
document. The tooltip is referenced by this id.

The tooltip content can be very flexible, but because the Layout portlet renders the Layout contents
as a snapshot, each tooltip must be constructed at rendering time by the dashboard to ensure the
tooltip is fully rendered. The tooltip contents can also display “bound” element data. The element that
is “bound” is determined by the currently inherited “dname” value where the tooltip structure is
defined.
116 Operations Center Custom Drawing and Layout Guide

https://www.netiq.com/documentation/operations-center/pdfdoc/dashboard/dashboard.pdf#bookinfo

The tooltip for a drawing item is determined by walking up the parent XML hierarchy. At each parent
level, if a group object with “tooltip” set to “outer” is encountered as a child of that parent, this tooltip is
used. The tooltip cannot be an immediate child of the <svg> root drawing element.

Figure B-1 shows a simple tooltip showing an element’s “name” when the mouse is hovered over the
rectangle:

Figure B-1 Tooltip Displayed in a Layout Portlet in the Dashboard

The tooltip in the example is defined as follows:

<svg dname="org=SimpleRectangle/org=tooltip/org=testing/root=Organizations"
MOS_EnableMouseEvents="true">
 <g>
 <rect stroke="#000000" stroke-linecap="butt" width="245"
fill="rgb(128,128,128)" stroke-dasharray="none" filter="none" stroke-width="3"
height="141" undofill="#c0c0c0" x="0" stroke-linejoin="miter" opacity="1" y="0">
 <bind:fill property="condition" default="" set="" when=""/>
 </rect>
 <g tooltiptype="outer" preserveId="true" display="inline" transform="matrix(1,
0, 0, 1, 95, 75)">
 <g tooltiptype="inner" id="rect_caption" preserveId="true">
 <g>
 <rect x="-15.847" y="57.862" fill="white" text-anchor="middle"
width="86.1938" height="16.289" bind:container="true" stroke="gray"
overflow="visible"/>
 <bind:layout name="wrap" pad="2" id="103"/>
 <text x="27" font-size="11px" y="70" fill="black" text-anchor="middle"
gautolayout="103" stroke="none" overflow="visible"
xml:space="preserve">SimpleRectangle<bind:value property="name"/></text>
 </g>
 </g>
 </g>
 </g>
 </svg>

In this example, the rectangle and the tooltip outer group element are wrapped inside of another
group element. This is done because of how the tooltip is determined by walking up the parent XML
hierarchy.

Some of the root <svg> attributes have been omitted for this example. However, there is a required
attribute on the root <svg> element. This is the MOS_EnableMouseEvents, which must be set to True
in order to activate the mouse handling mechanism in the Layout portlet in the dashboard.
Bind Language API Reference 117

Tooltips can also use node styles as the tooltip content. This tooltip is defined by the following nested
outer/inner tooltip structure:

<g tooltiptype="outer" preserveId="true" display="inline" transform="matrix(1, 0,
0, 1, 124, -40)">
 <g id="rect_caption" tooltiptype="inner" preserveId="true" transform="matrix(
1, 0, 0, 1, 0, 0)" display="inline">
 <g>
 <g bind:graphic="Nodes__Detailed"/>
 </g>
 </g>
</g>

Using node styles for constructing tooltips is the recommended method for implementing complex
tooltips. For example, the tooltip shown in Figure B-1 on page 117 is a node style.

Pop-ups in the Layout Portlet

In the dashboard, the Popup definition allows you to open a new dialog box or Web page from the
Layout portlet. Although the pop-up definition is defined inside the Layout View’s source code, the
pop-up is not available as a feature for use from the Layout View of the Operations Center console—
the resulting pop-up is only active in the dashboard depending on how it is defined.

For more information about the Layout portlet and the dashboard, see the Operations Center
Dashboard Guide.

As mentioned above, pop-ups are defined differently depending on whether it is to apply to the
dashboard. The following sections describe the Popup definition and show how to implement for the
dashboard:

 “Understanding Pop-Up Definition” on page 118

 “Creating a Pop-Up for the Dashboard” on page 119

Understanding Pop-Up Definition

The pop-up definition is used to open a new dialog box or Web page. It contains a parameter
identifying the DName of the selected item used to pre-populate data in the new window or Web
page.

A pop-up URL template is a group object with the following required parameters:

 portalPopupURLTemplate:

 Defines the actual URL template itself.

 Refers to an existing URL within the current portlet definitions.

 The DName must be parameterized in the template with the following replacement tag:

[INSERT_DNAME_HERE]

This instructs the pop-up mechanism to insert the currently active DName (derived from the
click) into the URL when launched.

NOTE: Never replace [INSERT_DNAME_HERE] with an actual DName value, this is the
mechanism for Operations Center to dynamically insert the DName of the active element.

 The parameter cannot contain ampersand (&) characters. Replace them with &. The &
character is a reserved character in SVG and cannot appear in an attribute value.

 popupTargetFrameIds: Identifies the target dialog box in which to open the pop-up URL.
118 Operations Center Custom Drawing and Layout Guide

https://www.netiq.com/documentation/operations-center/pdfdoc/dashboard/dashboard.pdf#bookinfo

Optionally, the following parameters can be defined:

 popupURLParams: Defines the parameters used to display the pop-up dialog box. For
example,
popupURLParams="toolbar=no,location=no,menubar=no,resizable,scrollbars".

 popupTargetWindow: Defines the name of the browser window. For example,
popupTargetWindow="_blank".

If a direct parent of any child element contains a group object with a portalPopupURLTemplate
attribute, this pop-up URL Template is used. The group object with a portalPopupURLTemplate
attribute must be a direct parent of any child that should inherit that pop-up.

Creating a Pop-Up for the Dashboard

Figure B-2 is an example of a pop-up implemented for the dashboard’s Layout portlet. A tooltip
provides hyperlinks for additional options.

Figure B-2 Pop-up in Layout Portlet in the Dashboard

These links contain the DName for the selected element so they can use the popup definition to
launch and populate other portlets. Clicking a link opens the selected element in a different portlet.
For details on portlet structures, see the Operations Center Dashboard Guide.
Bind Language API Reference 119

https://www.netiq.com/documentation/operations-center/pdfdoc/dashboard/dashboard.pdf#bookinfo

For example, clicking PopupAndDriveALL in the illustration above opens a new the dashboard page
where all portlets on the page are focused to the selected element, as shown in Figure B-3:

Figure B-3 Clicking an option in the portal pop-up opens this dashboard page in a new browser window.

When creating a pop-up link in the dashboard, the portalPopupURLTemplate can be used to drive the
current element on the page by passing in the portlet’s namespace or Portal Identifier with the
element DName.

The following code shows syntax using the popup parameters to drive all portlets on the dashboard
page. Keep in mind it is only a portion of the entire set of Bind language used to create the Layout
view. View the Layout View’s source code using the View Source option in the Operations Center
console.

<g>
 <g portalPopupURLTemplate="/web/communitya/
page1?global_identity=[INSERT_DNAME_HERE]" popupTargetWindow="our_popup"
popupURLParams="toolbar=no,location=no,menubar=no,resizable,scrollbars">
 <text x="154" font-size="10pt" y="70" text-decoration="underline"
transform="matrix(1, 0, 0, 1, -146, -16)" fill="blue" filter="none" font-
style="italic" opacity="1" stroke="none">PopupAndDriveALL</text>
 </g>
</g>

IMPORTANT: The [INSERT_DNAME_HERE] section of the code should never be manually
modified. This is for internal use and instructs Operations Center to dynamically use the DName of
the current element.
120 Operations Center Custom Drawing and Layout Guide

Links can also be configured to drive only those portlets as specified. Specify the exact portlets to
update in the page by including the namespace or identifier for each portlet we wish to drive by
appending the portalPopupURLTemplate value with a portlet_ids parameter such as
&portlet_ids="id1,id2".

For example:

<g>
 <g portalPopupURLTemplate="/web/communitya/
page1?global_identity=[INSERT_DNAME_HERE]&portlet_ids=layoutA"
popupTargetWindow="our_popup"
popupURLParams="toolbar=no,location=no,menubar=no,resizable,scrollbars">
 <text x="154" font-size="10pt" y="70" transform="matrix(1, 0, 0, 1, -146, -
16)" text-decoration="underline" fill="blue" filter="none" font-style="italic"
opacity="1" stroke="none">PopupAndDriveSome</text>
 </g>
</g>

Using the dashboard portlet identifier feature, you can create user-friendly names for the portlets
which is much easier (and shorter) to reference than the namespace. The example above takes
advantage of this feature.

NOTE: Some of the root <svg> attributes have been omitted for these examples. It is important to
note that a MOS_EnableMouseEvents must be added as an attribute on the root <svg> element and
set to True in order to activate the mouse handling mechanism in the Layout portlet for the
dashboard.

To determine the portalPopupURLTemplate value and the optional portlet identifiers in the dashboard:

1 In Internet Explorer, access the dashboard and go to the page.

NOTE: Only use Internet Explorer to perform this procedure.

2 To determine the portalPopupURLTemplate value:

2a From the Web browser address/location bar, copy the URL which might look something like
the following (or in some cases, much simpler):

http://serverName:8080/web/guest/popuptemplate

2b Remove the server prefix and the extra portlet parameters from the URL (basically retaining
the community and page portion of the URL) and insert them into the following template:

relative_server_path?global_identity=[INSERT_DNAME_HERE]

to obtain the following for the example from step 2:

/web/guest/popuptemplate?global_identity=[INSERT_DNAME_HERE]

3 (Optional) To determine the Namespace or Portal Identifier to drive a specific portlet(s):

3a Open the Preferences for the portlet to drive and navigate to the Advanced tab. The
Common tab opens under Advanced.

3b Copy the portlet namespace or identifier.

The namespace is shown at the top of the Common tab:
Bind Language API Reference 121

(Optional) Scroll down to locate or specify the Portlet Identifier. The Portlet Identifier can be
easier to use and remember than the portlet namespace as it creates a “friendly URL”:

3c In the Layout View’s Source, when defining the portalPopupURLTemplate as shown earlier
in this section, specify the namespace or identifier using the portlet_ids parameter to be
passed to the page. For example:

&portlet_ids=portlet1,portlet2

Use a comma delimited list for multiple portlet namespace or identifiers.

For example, by appending our previous example and using friendly URLs (Portlet
Identifiers), we have:

/web/guest/
popuptemplate?global_identity=INSERT_DNAME_HERE&portlet_ids=proptable4
2,properties42

4 In the Layout View’s Source, set the portalPopupURLTemplate to the value as obtained as a
result of Step 2 or Step 3.

B.1.2 Tying an Element to a Drawing Shape

You can tie an element to a drawing shape by setting the DName attribute of the shape:

<g DName='root=Organizations'>
 <rect width='100' height='100'>
 <bind:condition/>
 </rect>
</g>

SVG ignores this attribute, but the layout system can use it to know which element to bind to the
shape.

When set, the DName attribute affects every shape beneath it in the SVG or XML tree. But you can
set other DNames beneath it in the tree.

A DName attribute overrides whatever is set above it.
122 Operations Center Custom Drawing and Layout Guide

B.1.3 Changing Shapes or Showing Objects Based on Element
Condition

The following sections cover changing shapes and hiding/showing objects:

 “Shape Background Color” on page 123

 “Shape Border Color” on page 123

 “Hiding and Showing Objects” on page 123

Shape Background Color

To change a shape’s background color to reflect an element’s condition, use the <bind:condition>
tag inside the shape tag:

<rect width='100' height='100' stroke='black'>
 <bind:condition/>
</rect>

Shape Border Color

To change a shape’s border color to reflect an element’s condition, use the <bind:stroke> tag inside
the shape tag:

<rect width='100' height='100' stroke='blue' fill='white' stroke-width='5'>
 <bind:stroke property='condition'/>
</rect>

Hiding and Showing Objects

To set the visibility of a shape or object based on element condition, use the <bind:visibility> tag:

<rect width='100' height='100' visibility='hidden'>
 <bind:visibility when='critical,major' set='visible' else='hidden'/>
</rect>

B.1.4 Changing Shapes Based on Element Property

The following sections cover changing shape characteristics based on element property values:

 “Shape Size” on page 123

 “Scaling by a Factor when Setting a Numeric Property” on page 124

 “Shape Style Based on Element Property Value” on page 124

 “Shape Transparency Based on Element Property Value” on page 124

Shape Size

To set the size of a shape based on property value, use the <bind:width> tag, then specify a
property attribute:

<rect width='50' height='20'>
 <bind:width property='users'/>
</rect>

The shape width changes based on the value of the property.
Bind Language API Reference 123

Scaling by a Factor when Setting a Numeric Property

To scale an attribute by a factor using an element property value, specify a value to multiply against
the property value:

<rect width='50' height='20'>
 <bind:width>element['users'] * 5</bind:width>
</rect>

Shape Style Based on Element Property Value

To change the style of a shape based on an element property, conditional statements can be used. In
the following example, the border of the shape is grey:

<rect stroke-width='1' stroke='grey' width='100' height='100'>
 <bind:stroke-width>
<![CDATA[
if (element['users'] < 50) 1 else 5
]]>
 </bind:stroke-width>
 <bind:stroke>
<![CDATA[
if (element['users'] < 50) 'green' else 'red'
]]>
 </bind:stroke>
</rect>

If the users property on the element is greater than 50, the shape border increases to a width of 5
pixels and changes from green to red.

The following partial code example shows a simplified ranging syntax:

<rect width='100' height='100'>
 <bind:stroke-width property='users' range='< 50 :green;< 80 :orange' else='red'/>
</rect>

Shape Transparency Based on Element Property Value

To change an objects transparency based on an element property, use the <bind:opacity> tag. In
the following example, the property value is divided by 100 to set a percentage value of opacity.

<rect fill='green' stroke='black' opacity='1'>
 <bind:opacity>element['users'] / 100.0</bind:opacity>
</rect>

B.1.5 Displaying Element Name or Element Property

The following sections cover how to display and element name or property value:

 “Element Name” on page 125

 “Element Property Value” on page 125

 “Default Property Value” on page 125

 “Controlling Width of Text” on page 125
124 Operations Center Custom Drawing and Layout Guide

Element Name

To show the name of an element, use the <bind:value> tag, setting the bind property to 'name':

<text font-size='18' text-anchor='middle'>
 <bind:value property='name'/>
</text>

Element Property Value

To show the value of a specific element property, use the <bind:value> tag, setting property to the
element property name:

<text>
 <bind:value property='responseTime'/>
</text>

Default Property Value

If a property doesn’t exist, you can set the default value by specifying a default attribute on the
<bind:value> tag:

<text text-anchor='middle'>
 <bind:value property='responseTime' default='not available'/>
</text>

Controlling Width of Text

Control the width of wrapped text by adding a wrap tag to a <bind:value> on a text-based content
bind. The value of the wrap tag controls the width of the wrapped text. The wrapper attempts to break
on spaces, but it breaks a word if it is longer than the specified wrap width.

This example sets the wrap width to 75:

<text overflow="visible" x="27" y="65" font-size="10" text-
anchor="middle">ClassicWrap<bind:value property="name" wrap="75"
texthash="1.52892531E9" undo="Classic Small"/>
</text>

Notice that the wrap attribute must be contained inside of the <bind:value> tag.

B.1.6 Displaying Element Children

The following sections cover how to display the number of children or the children along a path of a
shape:

 “Number of Children” on page 126

 “Number of ORG Children” on page 126

 “Children along a Path” on page 126
Bind Language API Reference 125

Number of Children

To show the number of children for the element, set the property attribute to childCount in the
<bind:value> tag:

<text>
 <bind:value property='childCount'/>
</text>

Number of ORG Children

To show the number of children for the element, set the property attribute to orgChildCount in the
<bind:value> tag:

<text>
 <bind:value property='orgChildCount'/>
</text>

Children along a Path

Children can be displayed for any element. By using or modifying the following code, the children can
be displayed along the circumference of a circle or the edge of any shape (for example, rectangles,
lines, paths, or curves).

In this example, we show setting them to display along the edge of a circle:

<circle id='circlepath' fill='none' stroke='grey' r='500'/>
<bind:children graphic='Nodes__Classic'>
 <bind:layout path='#circlePath'/>
</bind:children>

B.1.7 Formatting Numbers, Dates, and Time

The following section cover how to format numbers, dates and times:

 “Numbers” on page 126

 “Time” on page 127

 “Date” on page 127

 “Date-Time” on page 127

 “Custom Date-Time” on page 127

Numbers

Format numbers using Java’s Formatter class. For example:

<text>
 <bind:value property='childCount' format='Number of children: %1$d'/>
</text>

The above formats an integer property. To format a floating point property, use %1$f instead of %1$d.

Java’s Formatter class documentation can be referenced at http://java.sun.com/j2se/1.5.0/docs/api/
java/util/Formatter.html (http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html).
126 Operations Center Custom Drawing and Layout Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

Time

<text>
 <bind:value property='lastUpdate' format='time'/>
</text>

Date

<text>
 <bind:value property='lastUpdate' format='time'/>
</text>

Date-Time

<text>
 <bind:value property='lastUpdate' format='datetime'/>
</text>

Custom Date-Time

In addition to the shortcuts supplied above (which do locale-specific date and time formatting
automatically), you can specify the exact format of a date-time string by supply a format compatible
with Java’s SimpleDateFormat class:

<text>
 <bind:value property='lastUpdate' format='EEE, d MMM yyyy HH:mm:ss Z'/>
</text>

B.2 Bind Templates
The bind language provides an ability to create copies of template objects, based on the shape of the
input data. Diagrams are frequently composed of sections, where those sections are filled with
instances of various elements related to the section. Similar visual representations are often used to
for display, but each figure is customized in certain ways. An icon representing a server can be the
same across all server depictions, but the fill color of the icon could be derived from the server’s state.

The following subsections describe the attributes, commands, and variables for bind templates:

 Section B.2.1, “Bind Attributes,” on page 128

 Section B.2.2, “Template Subcommands,” on page 129

 Section B.2.3, “Layout Bind Commands,” on page 129

 Section B.2.4, “Layout Target Element Attributes,” on page 130

 Section B.2.5, “Generated Copy Variables,” on page 130
Bind Language API Reference 127

B.2.1 Bind Attributes

The following are valid bind attributes:

 target: Contains an element reference to the element that will be the parent SVG element to any
newly created child objects.

By default this is the parent element of the bind:templates command. Several steps are
performed to attempt to locate a different element target:

1. If the element reference begins with the # character, the rest of the reference designates an
XML element directly by ID lookup.

2. If the element reference is nonempty and does not begin with the # character, it is
interpreted as an XPath expression rooted at the command. XPath provides a powerful
ability to use relative navigation and querying to specify the element to use.

3. If the element reference is empty, the siblings of the command is searched to see if any of
them possess a bind:container attribute. If more than one sibling has the
bind:container attribute, the closest is chosen (by distance).

4. Otherwise, the parent of the command is selected as the target.

 graphic: Contains an element reference to the graphic element that is copied to the target.

The same steps for element reference resolution apply, excluding 3 and 4.

 lookup: Specifies a strategy for looking up a graphic to insert.

This is a comma-delimited list, order-sensitive, with the following possibilities. Each strategy can
have a drawing identifier, specified as strategy?drawing.

 element: Retrieve a drawing from the element being laid out.

 class: Retrieve a drawing from the class of the element being laid out.

 bind: Use the graphic specified on the bind command.

 icon: Try to bind in the large icon of the source.

 smallicon: Bind in the small icon of the source.

 url(urlIdentifier): Use the graphic reachable by the url.

 source: Designates the source of element information to copy.

Allowable values are:

 children: All NAM and ORG children of the element.

 nam: All NAM children.

 org: All ORG children.

 element: The nearest single element DName.

 properties: The properties of the current element.

 clipart: Names a clipart object to introduce into the diagram. This is normally used only by
the UI while dragging clipart into the drawing.

 [future] offers: The service level offers an element participates in.

 classFilter: A regular expression that must match against the element class name of the
sources.

If you want to match against host or router, you might enter host|router.

 nameFilter: A regular expression used to filter the full names of the sources.

For elements, it filters the DNames. For properties, it filters the property names.
128 Operations Center Custom Drawing and Layout Guide

 scriptFilter: You can provide a NOC script that receives element, DName, and so forth as
variables.

Return True if the element should be included, and False if it should not. Any other return value
is considered to be False.

 unplaced: Provides a means of laying out elements that are not placed within the current
drawing.

You can set it to the following values:

 layout: Shows elements that are not handled by the current layout command.

 drawing: Shows elements that are not placed anywhere else in the current drawing.

 resize: Resizes the graphic.

 transform: Designates a transform that is applied to each of the cloned visual elements.

This is useful for applying a uniform scaling across children, or for offsets.

 source-port: When connecting, use this port as the default source point for connection lines.

Defaults to South.

If a top-to-bottom graph is being laid out, the source port is South and the default dest-port is
North.

 dest-port: When connecting, use this port as the default destination.

B.2.2 Template Subcommands

The following template subcommands are available:

 bindfilter: Filters out elements based on an expression.

This can be used, for example, to exclude child elements that are not critical.

 bind:sort: Designates a sort ordering for child elements.

This can be used to sort on child element name.

B.2.3 Layout Bind Commands

The following layout bind commands are available:

 bind:templates: This is the core bind:templates command.

Each of the other commands listed here is transformed into a bind:templates command,
internally.

 bind:children: Equivalent to bind:templates with source=children (all NAM and ORG
children).

 bind:org: Equivalent to bind:templates with source=org (ORG children).

 bind:nam: Equivalent to bind:templates with source=nam (NAM children).

 bind:element: Equivalent to bind:templates with source=element (binds self, the nearest
scoped object).

 bind:link: Use link objects to direct connections within the current child/layout groupings.

 bind:properties: Equivalent to bind:templates with source=properties (current object’s
properties).
Bind Language API Reference 129

B.2.4 Layout Target Element Attributes

Elements that are siblings of the bind:templates command are eligible for layout. Certain attributes
allow further control of this process. They are as follows:

 bind:group: A given layout can be performed with respect to a group of child objects.

Only those child objects tagged with the specified group are included in the layout. This allows
multiple layouts to be performed on a parent object, if that is desired. It also provides an easy
mechanism to exclude elements from a layout (simply assign a different group).

The bind:group is optional. If the bind:layout command does not specify a group, the default
group is assumed.

All elements that are not tagged with a bind:group attribute are assumed to be part of the
default group.

 bind:container: Designates an element as a possible container for template copies.

If a bind:templates command does not specify a target, the nearest bind:container to it (if
one exists) is selected as the parent object for the newly created copies.

B.2.5 Generated Copy Variables

As each clone element is created, certain additional attribute variables are added to the generated
element to make further binding easier to perform. These variables create certain curves and make
them available to further binding commands. They can be used to create certain effects that change
when an object is cloned along a path or into a container, such as fading out or scaling down.

 alpha: Linear, from 0.0 to 1.0, evenly spaced and incremented for each child.

 log: Logarithmic from 0.0 to 1.0, shifting distribution towards end of scale.

 sigma: S-curve, distribution toward both ends.

B.3 Layout
Layout operates in a context, which is the siblings of the bind:layout element.

Every sibling element with graphical content (anything visual) with the same bind:group is part of the
layout.

Any relationships between the elements (parent-child, and so on) are visible as lines drawn between
the visual elements.

Because layout operates on siblings it is common to place the layout command within a group:

<g>
 <bind:layout name="tree"/>
 <rect bind:container="true" width="1"
 height="1" stroke="blue" fill="none"/>
 <rect width="50" height="25"/>
 <circle r="25" stroke="blue" fill="none" />
</g>
130 Operations Center Custom Drawing and Layout Guide

The bind:layout operates against the second rectangle and the circle. The first rectangle has
bind:container=true specified. When a rectangle is tagged with bind:container, it is excluded
from the layout. After layout is completed the bound of the laid-out graphics is computed, and the
container rectangle is stretched to fit around them. This provides a convenient way of wrapping
automatically laid-out graphics.

It’s frequent to want only the wrapping behavior and no other layout. Just specify name="wrap" in
your bind:layout command if you want this. We often want to apply automatic layout to only those
elements that have been automatically generated by a variant of the bind:template element.

You can place the bind:layout element inside a bind:template (or bind:children) element, as
follows:

<g>
 <bind:children graphic="Nodes__Classic#node" depth="2">
 <bind:layout name="ortho"/>
 </bind:children>
 <rect bind:container="true" width="1" height="1"
 stroke="blue" fill="none"/>
 <circle r="25" stroke="blue" fill="none" />
</g>

The rect and circle elements are not automatically laid out. Only visual elements generated by the
bind:children command are.

Bind layout attributes:

 resize: Most layout methods move the child objects, as necessary.

It is often desirable that a parent figure wrap the children, after layout.

By default the bind engine attempts to resize the parent object; otherwise, it searches for a
bind:container element.

 bind:group: Group tag for elements that should be laid out.

As with templates, a default group is present.

 name: Uses the named layout algorithm.

First, this looks for saved layouts. If an appropriate layout is found, it is used. Otherwise, the
following are possible:

 tree

 hier

 circle

 balloon

 grip

 organic

 grid

Property Default Description

columns 4 The number of columns in the grid.

columnWidth 100 The width of the columns that are created.

rowHeight 130 The height of the rows that are created.

gap 5 Gap between rows and columns.
Bind Language API Reference 131

 wrap

Wraps a rectangular shape around the other children being laid out.

This is generally used to surround a group of child objects with a rectangle after the child
objects have been laid out.

The rectangular object should have the bind:container attribute set to True so wrap will
know which shape to adjust.

 flow

 border

When border is specified, the child elements can have a constraint attribute. This attribute
should be one of north, east, south, west, or center.

Elements on the edges are pushed to that edge. The element labeled center occupies the
rest of the space.

 table

If none is specified, a default of hier is used.

Table performs box layout on subelements. The syntax is somewhat different from a
conventional table layout, as we should ensure that the SVG engine can “see” the graphic
elements we are arranging. Instead of putting our graphical elements inside TD and TR

Property Default Description

pad 3 Sets overall padding when wrapping a rectangular shape around another.

xpad 0 Sets padding on the left and right when wrapping.

ypad Sets padding on the top and bottom when wrapping.

Property Default Description

width 400 If specified, ensures that the resulting layout will be the specified width.

This is an easy way to flow a series of elements into a grouping, which will
wrap if they cannot fit into the width specified.
132 Operations Center Custom Drawing and Layout Guide

elements, we put our table bindings inside the graphical elements. If a width or height
attribute is provided for a tableRow or tableColumn, that row or column is set to that width.
Otherwise, the maximum height and/or width for the column/row is used.

<g>
 <rect bind:container="true" width="100" height="100"/>
 <bind:layout name="table"/>
 <g>
 <bind:tableRow/>
 <text>Column 1</text>
 <text>Column 2</text>
 <text>Column 3</text>

 </g>
 <g>
 <bind:tableRow/>
 <g><circle radius="25"><bind:condition/></circle></g>
 <g><circle radius="50"><bind:conditiongradient/></circle></g>
 <g>
 <bind:layout name="table"/>

 <g>
 <bind:tableRow/>
 <text>Column 1</text>
 <text>Column 2</text>
 <text>Column 3</text>

 </g>
 </g>
 </g>
</g>

 path: An element reference (as above, minus 3 and 4). If specified, it indicates that the cloned
objects are laid out alone the specified shape’s path. Implies type="path".

 spacing: One of alpha, log, sigma, or a number indicated the fixed spacing number to use.

When cloned objects are laid out along a path, the specified curve is used to distribute them.

If a fixed spacing number is provided, objects are spaced according to that until the length of the
path is used up. Subsequent objects are discarded.

 stroke: As in SVG, specifies the stroke paint used to draw connections. This can be a color, or
any other legal SVG paint.

 stroke-width: As in SVG, specifies the width of the strokes used to draw connections.

 stroke-opacity: Transparency of connection strokes.

 stroke-dasharray: Specifies dash pattern for connections.

 stroke-dashoffset: Dash pattern offset for connections.

 stroke-linecap: Endpoint specification for connections.

 stroke-linejoin: Join specification for connections.

 stroke-miterlimit: Miter spec for connection joins.

 marker-start: Start point marker.

 marker-mid: Marker used for each vertex on connectors, except the first and last.

 marker-end: Marker used on the last point of a connection.

B.4 Bind Values
Binding of values is one of the core functions of the dynamic SVG binder. You can create a bind
command that sets the attribute of its parent element, or sets the text value. The bind command does
two things: It specifies how to generate the value to be set, and also specifies where that value is to
Bind Language API Reference 133

be placed. Binds are probably the single most used command, so the default behavior of any element
in the bind namespace is to set an attribute of that name:

<bind:anything value-expressions.. />

You can also specify the attribute you want to set by including it on the general form of the command:

<bind:value attr="attrname" value-expressions... />

It’s common to set the text content of the parent element, rather than set an attribute. A bind:value
without an attribute does this:

<bind:value value-expressions... />

Value-expressions generate the strings that are placed as text content or as attributes. You can
gather properties from bound elements, use special property forms for convenience, execute velocity
expressions, and execute xpath expressions.

 Section B.4.1, “Bind Value Attributes,” on page 134

 Section B.4.2, “Using NOC Script in Bind:Value Tag,” on page 135

B.4.1 Bind Value Attributes

Bind values attributes:

 attr: Names the attribute on the parent element that is set by this binding command.

When not present and no special form is being used, the text content of the parent element is
set.

 bulkattrs: Names a list of comma separated element properties to request and cache in a single
request. Requires the use of NOC script to display the values.

Must use cachingelement instead of element to request the attriubes at the NOC script level.
This element provides the cached attributes specified by the bulkattrs attribute.

For example, see Section B.4.2, “Using NOC Script in Bind:Value Tag,” on page 135. For
information about available script objects, see Section B.8, “Script Objects,” on page 137

 property|prop|p: Specifies a property to retrieve on the bound element, or specifies the name of
a specially handled property.:

 childcount: The number of NAM children of the element.

 orgchildcount: The number of ORG (contributing) children of the element.

 condition: Translates the condition of the element into an SVG color.

 conditionhighlight: Translates the condition of the element into a somewhat lighter SVG
color.

 conditiontext: Name of the condition.

 conditionbackground: Background color, usually the same as condition.

 conditionforeground: Color for text foreground — make this the color of conditiontext if
the text is written against a fill of condition.

 conditiongradient: Translates the condition of the element into a nice horizontal gradient
reference. When specifying conditiongradient you can also specify the prefix attribute.
The bind engine appends the integer value of the ElementCondition to the prefix you
specify:

<bind:value attr="fill" property="conditiongradient"
 prefix="Static__statics#square_">
134 Operations Center Custom Drawing and Layout Guide

If the element’s condition is critical, change the fill property to:

fill="url(Static__statics#square_1)"

 DName: Retrieves the DName of the element.

 name: Retrieves the name of the element.

 image: Creates an in-line reference to the element’s large icon.

 smallimage: Creates an in-line reference to the element’s small icon.

 scope: Instructs the bind engine to perform a scoped lookup for the property name. This is
normally used only with the bind:properties template expression, where the cloned
elements are generated with property attributes set on them.

 value|val|v: Contains a NOC Script expression that is evaluated.

The result is a string that is set to the named attribute.

 xpath|xp|x: Specifies an xpath expression.

The xpath expression is executed with the binding element as its context. The resulting nodes
will have their text contents extracted, appended together, and set as the value of the attribute.

 format: Supplies additional formatting for some kinds of objects.

For java.util.Date, this can be set to time, date, date/time, or to any date/time formatting
string that is acceptable to the java.text.SimpleDateFormat class. For other, nondate objects, the
format string is passed to Java’s String.format method, allowing arbitrary formatting. For the
format string syntax and possibilities, see the Java documentation.

 when: If specified, the result of the value-expressions must match one of the entries in the when
clause, which is a comma-separated list.

If a match is not found, the default value (defined next) is used.

 default, else: Defines a value to be use if the expression results in an empty string, or if the
when clause fails.

 set: Used in conjunction with when to provide a simple “if” capability.

If the when condition matches, the value of the set attribute is returned. If the condition does not
match, the default attribute’s value is used.

B.4.2 Using NOC Script in Bind:Value Tag

Using NOC script inside the Bind:Value tag, you can perform a single request to display the values of
element multiple properties in the Layout view.

As described above, this mechanism makes a single request for needed element properties for a
given drawing instead of making several individual requests. This can be especially beneficial in
cases when a node style displays multiple property values; where instead of multiple requests, all
values for all elements are returned by a single request.

For non-script bindings in the Layout view, these attributes are auto-detected by the engine. But,
when using NOC script, the user must specify the element properties to be bulk requested in the
bulkattrs attribute, then use cachingelement to retrieve the values to a variable which is then
used to display them.

In the following example, NOC script is used to display 5 custom attributes on an element:

<text x="14" font-size="14pt" y="131" fill="#000000" text-anchor="middle"
filter="none" opacity="1" stroke="none">
<bind:value bulkattrs="PropertyName1,PropertyName2,PropertyName3,PropertyName4,
PropertyName5">
Bind Language API Reference 135

<![CDATA[
var val1 = cachingelement["PropertyName1"];
var val2 = cachingelement["PropertyName2"];
var val3 = cachingelement["PropertyName3"];
var val4 = cachingelement["PropertyName4"];
var val5 = cachingelement["PropertyName5"];
val1+":"+val2+":"+val3+":"+val4+":"+val5
]]>

When the code is rendered, the output is something like the following:

</
bind:value>Property1value:Property2value:Property3value:Property4value:Property5va
lue</text>

For information about available script objects, see Section B.8, “Script Objects,” on page 137

B.5 Resource Generation
The bind:gradient element has the following attributes:

 condition: Can be OK, Critical, Major, Minor, and so on.

 type: Is either “linear” or “radial.”

These create a simple linear, rectangular gradient based on the specified condition color.

A lighter version of the color is used for the other end of the gradient, if the ending color is not
specified.

The type attribute defaults to linear.

B.6 Bind Promotion
Special bind commands are available to assist in the creation of example-based palettes. The
bind:promote attribute tags parts of an SVG drawing so they can participate in the drawing editor’s
example palettes.

It has the following attribute:

 bind:promote: A comma-separated list of promotion commands, where each promotion
command consists of the following:

sourceAttr[->destAttr]

When an element possessing a bind:promote attribute is selected in the example palette, the
value of the source attribute is copied to the currently selected objects in the drawing.

If the arrow (->) and destAttr are present, the attribute is renamed.
136 Operations Center Custom Drawing and Layout Guide

B.7 General Bind Annotations
Certain bindings are placed as attributes throughout the SVG model. These set context for
operations, and direct how certain functions should be performed. They are independent of the
various bind:* elements. These can exist at arbitrary points in the XML structure.

General bind annotations:

 bind:highlight: Signifies a match for palette handling.

The bind engine adds bind:highlight to elements in a palette that match against the element
passed to the highlight method. It is set to Some if at least one element in the selection matches;
otherwise, it is set to All if all elements in the selection match.

 bind:DName: Sets the DName, which is used as the root object for most commands.

This is a scoped attribute. When a command requires a DName (or other object identification) to
continue, it searches from the binding location upwards to parents until a binding is found.

B.8 Script Objects
The following script objects are available when using NOC scripts for custom Layout views:

 element: Operations Center element, which is documented in the Operations Center Scripting
Guide.

 dname: Dname derived from the element in the current scope of the executing layout view
script.

 cachingelement: A helper element used to access bulk-requested element attributes. See
Section B.4, “Bind Values,” on page 133.

 document: A reference to the current layout view's XML document. This document is of type
org.w3c.dom.svg.SVGDocument which is a subclass of org.w3c.dom.Document.

These script objects are for use with NOC Script. For more information about NOC Script, see the
Operations Center Scripting Guide.

Note that binding, target, mode layoutElement, and util objects are intended for internal use and
are subject to change in a future release.
Bind Language API Reference 137

https://www.netiq.com/documentation/operations-center/pdfdoc/scripting/scripting.pdf#bookinfo
https://www.netiq.com/documentation/operations-center/pdfdoc/scripting/scripting.pdf#bookinfo

138 Operations Center Custom Drawing and Layout Guide

C CEditing the Source SVG Code

If you are familiar with SVG code, you might consider editing the SVG source code that controls the
Operations Center Layout view. Some features are not available through the Layout view menus, but
can be implemented using SVG code. One such feature is the opacity attribute, which uses the
element condition to determine its transparency in the Layout view. For example, if the element is in
an OK state, then the condition does not display (it changes to transparent); however, if it is
CRITICAL, it does display (it shows at 100% opacity.

IMPORTANT: Operations Center is not responsible for the behavior of user-modified SVG code. By
editing the SVG code, you accept all responsibility for the results. Consider saving a backup of the
current drawing before editing the SVG code. Use Appendix B, “Bind Language API Reference,” on
page 115 as a reference when editing.

 Section C.1, “Editing the SVG Code and Regenerate the Drawing,” on page 139

 Section C.2, “Using the Opacity Attribute,” on page 140

 Section C.3, “Using Relative DNames for Node Attribute Matching,” on page 140

 Section C.4, “Looking at the Source Code with a Toggling Graphic Node Style Example,” on
page 142

 Section C.5, “Looking at the Source Code with a Child Container Example,” on page 151

C.1 Editing the SVG Code and Regenerate the
Drawing
The View Source link allows you to examine and directly edit the SVG code associated with a
drawing. The Highlight in Source View option automatically marks the SVG code for a selected object
in the drawing.

To edit the SVG code:

1 In Edit mode, do one of the following:

 Right-click an element, then select Highlight in Source View. The Source view displays the
highlighted code associated with the element.

 Click View Source.

2 Right-click the background of the Source view to access editing options, including:

 Find, Find Next: Locates specified text string.

 Highlight Syntax: Highlights selected text string.

 Insert CDATA Marks: Saves typing time by entering:

 <![CDATA[]]>

 Insert Bind Script Template: Saves typing time by entering bind command syntax, which
you can then customize.

 Remove Generated Elements: Removes all text related to generated elements in the
drawing.
Editing the Source SVG Code 139

 Turn on Line Wrap: Enables line wrapping for easier viewing.

 Small/Medium/Large: Changes text size in Source View.

3 Click (Save).

4 Click Back to Preview to switch from the code view to the Layout view drawing.

The XML validator examines the edited SVG code and attempts to highlight any problematic
code.

5 Right-click the drawing background, then select Regenerate Drawing.

C.2 Using the Opacity Attribute
The opacity attribute determines the element’s transparency based on the element condition. The
following code example shows an SVG rectangle object whose opacity attribute is set by the Layout
bind engine, based on the bound element’s condition. Multiple options could be specified in the when
attribute to allow banding of the opacity levels. The following example creates four bands across the
set of element conditions, where opacity is 100% for elements with a CRITICAL condition and 20
percent for elements with an UNKNOWN condition.

<rect viewlink="org=Parent/root=Organizations" stroke="#000000"
visibility="visible" dname="org=Parent/root=Organizations" width="213"
fill="rgb(255,64,64)" stroke-width="3" height="163" opacity="1.0" x="-253"
y="364">

 <bind:fill property="condition" default="" undo="#c0c0c0" set="" when=""/>
 <bind:opacity property="condition" default="1.0"

when="Unmanaged+Unknown=0.2,Info+OK=0.4,Major+Minor=0.6,Critical=1.0"/>
</rect>

Another option is changing the rectangle’s line width (1, 2, 3, and so on) according to the element
condition. Use the following code:

when='ok+info=1,minor=2,major+critical=3' default='1'/>

C.3 Using Relative DNames for Node Attribute
Matching
When you have element structures that are reused in various hierarchies, it is possible to use relative
child dname references when creating node styles; that can then be applied to any similar element
hierarchy and will apply rendering rules without further customization.

Using this feature, the node style might contain a series of shapes, each filled with the condition of a
different child element. Or, a series of text labels, each updated with an element property value for a
different child element. What makes this feature unique is that each child dname reference is added
as a relative reference. This means that the node syle can be applied to any hierarchy that has the
same set of child elements.

For example, let’s say we have various server-related parent elements and each has the same three
child elements to surface information about Backup, Capacity, and Performance; as shown in the
figure below.
140 Operations Center Custom Drawing and Layout Guide

Figure C-1 Hierarchy Structure with Standard Set of Child Elements

And, we create a node style that displays the condition color of the three child elements: Backup,
Capacity, and Performance.

Figure C-2 Node Style showing condition of Backup, Capacity and Performance Child Elements

In our source code, we bind each rectangle to each child element’s relative dName so that the node
style can be reused for other server parent elements. Notice in the code sample below, the dname
attribute for rectangle one is dname="org=Backup/.." which is a relative reference to look for any
ORG child element named Backup.

 <rect stroke="#000000" id="0" stroke-linecap="butt" dname="org=Backup/.."
width="38" dname_relid="-1" fill="rgb(128,128,128)" bind:marks="missing" stroke-
dasharray="none" filter="none" stroke-width="1" height="42" undofill="#c0c0c0"
x="21" stroke-linejoin="miter" opacity="1" y="108">

 <bind:fill property="condition" default="" set="" when=""/>

 </rect>

 <rect stroke="#000000" id="1" stroke-linecap="butt" dname="org=Capacity/.."
width="38" dname_relid="-1" fill="rgb(128,128,128)" bind:marks="missing" stroke-
dasharray="none" filter="none" stroke-width="1" height="42" undofill="#c0c0c0"
x="78" stroke-linejoin="miter" opacity="1" y="108">

 <bind:fill property="condition" default="" set="" when=""/>

 </rect>

 <rect stroke="#000000" id="2" stroke-linecap="butt" dname="org=Performance/.."
width="38" dname_relid="-1" fill="rgb(128,128,128)" bind:marks="missing" stroke-
dasharray="none" filter="none" stroke-width="1" height="42" undofill="#c0c0c0"
x="135" stroke-linejoin="miter" opacity="1" y="108">

 <bind:fill property="condition" default="" set="" when=""/>

 </rect>
Editing the Source SVG Code 141

C.4 Looking at the Source Code with a Toggling
Graphic Node Style Example
In this example, we’ll build a new node style and take a look at what happens as the source code and
bind commands are built in the background.

We’ll set the node style to display different graphic displays based on element state, such as:

In order to set this up, we’ll create a “toggle” between graphics based on the element condition.

To do this, we will take advantage of a stack container, which allows you to overlay multiple objects
directly on top of each other. Bind rules are then created for each graphic to indicate when it is visible
or hidden based on specific element conditions.

If these bind rules are not set properly, two graphics can possibly show for a particular state. In some
cases, this might be desirable. You can have an extra adornment for some states in addition to the
main graphic toggle and a condition color change.

To build a node style that toggles between various graphics based on state:

1 In the Explorer pane, expand Administration > Graphics > Nodes.

2 Right-click Nodes, then select Create Node Style.

Although node style names can contain spaces, because of encoding of source code, note that
names with no spaces are easier to read if you are planning to work directly in the source code.

3 Click the Layout tab to open the Layout view.

A simple default object displays. The Layout view is in Edit mode by default.

4 Right-click the drawing background, then select Clear Drawing to start building the node from
scratch.

The default object is removed.

Shows recycle symbol when state
is OK.

Shows a yellow caution symbol
when element is any state other
than OK or Critical.

Shows a red/round attention
symbol when state is Critical.
142 Operations Center Custom Drawing and Layout Guide

5 Right-click the Layout view background, then select Customize > Container > Add > Stack
Layout Container. A stack layout container shows in the view:

A stack container “stacks” one or more objects in a container. Each object is directly on top of the
other with the order determine by the order that objects are added (first object is on top). The
background of the stack container has a bind rule, which tells it to update background color
based on current element condition.

6 Click View Source to view the source code in the layout editor:

<?xml version="1.0" encoding="ISO-8859-1"?><svg xmlns:xlink="http://
www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" xmlns:bind="http://
www.managedobjects.com/bind" bind:setup="1151445190011" MOS_PanX="448"
contentScriptType="text/ecmascript" zoomAndPan="magnify" MOS_PanY="232"
contentStyleType="text/css" dname="graphic=ToggleIndicator/
graphicsFolder=Development/graphicsFolder=Nodes/graphics=Graphics/
root=Administration" version="1.0" width="1000.0" dname_relid="1"
preserveAspectRatio="xMidYMid meet" height="1000.0" MOS_World="1"
MOS_Scale="1.0" overflow="visible">
 <defs/>

The next section of code is the opening tag for the container and default container attributes:

 <g transform="translate(-158.0,114.0)">
 <bind:layout minWrapHeight="30" wrap="true" pad="15" id="1225bc948ab"
gap="10" name="grid" align="center" columns="1" minWrapWidth="30">
 <bind:value default="stack" property="condition" set="stack"
default.edit="grid" attr="name" ignoregenerated="true" set.edit="grid"
when="Unknown,Critical,Major,Minor,Info,OK,Unmanaged"/>
 </bind:layout>

Now, the top object is formed (square shape):

 <rect x="-11.5" y="-11.5" fill="rgb(128,255,128)" width="78"
undofill="lightgray" rx="4" opacity="1" bind:container="true" height="124"
ry="4" stroke="black" stroke-width="1.5">
 <bind:fill property="condition" default="" set="" when=""/>
 </rect>
 <rect gautolayout="1225bc948ab" stroke="#000000" stroke-linecap="butt"
transform="matrix(1, 0, 0, 1, 5, 5)" width="45" fill="#c0c0c0" stroke-
dasharray="none" filter="none" stroke-width="3" height="43" opacity="1" x="0"
stroke-linejoin="miter" y="0"/>

And then, the bottom object (round shape):

 <circle transform="matrix(1, 0, 0, 1, 27.5, 79.5)" fill="#c0c0c0"
gautolayout="1225bc948ab" filter="none" cx="0" stroke-dasharray="none"
r="16.5" opacity="1" cy="0" stroke="#000000" stroke-width="3"/>
 </g>

And lastly, the closing tag for the outer container:

</svg>

7 Click Back to Preview to work with objects in the layout editor.

8 Right-click the container, then select Change Group to allow the objects inside the container to
be modified.
Editing the Source SVG Code 143

9 To delete the default shapes inside the container, select each shape, then click Delete.

The source code updates as shown:

<?xml version="1.0" encoding="ISO-8859-1"?><svg xmlns:bind="http://
www.managedobjects.com/bind" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns="http://www.w3.org/2000/svg" MOS_PanX="0" contentScriptType="text/
ecmascript" zoomAndPan="magnify" MOS_PanY="0" contentStyleType="text/css"
dname="graphic=ToggleIndicator/graphicsFolder=Development/
graphicsFolder=Nodes/graphics=Graphics/root=Administration" version="1.0"
preserveAspectRatio="xMidYMid meet" MOS_World="1" MOS_Scale="1.0"
overflow="visible">

With only the container code remaining (the 2 objects are no longer there):

 <g transform="translate(461.0,334.0)">
 <bind:layout minWrapHeight="30" wrap="true" xmlns:bind="http://
www.managedobjects.com/bind" pad="15" id="12260bc2b1c" gap="10" name="grid"
align="center" columns="1" minWrapWidth="30">
 <bind:value default="stack" property="condition" set="stack"
default.edit="grid" attr="name" ignoregenerated="true" set.edit="grid"
when="Unknown,Critical,Major,Minor,Info,OK,Unmanaged"/>
 </bind:layout>
 <rect x="-10.0166" y="-13.21" fill="lightgray" width="141.033"
xmlns:bind="http://www.managedobjects.com/bind" rx="4" opacity="1"
bind:container="true" height="124.6642" ry="4" stroke="black" stroke-
width="1.5"/>
 </g>
 <defs/>
</svg>

10 Select graphics from the clipart library and add them to the container.

10a Click the Graphics tab to open the graphics selector panel.

10b Locate the desired clipart image.

For this example, we chose the recycle, attention3 and attention2 images in the Symbols
folder.

10c Click and drag each image from the graphics panel into the layout view background (do not
try to drop directly on top of the container).

The source code updates as shown here. The code adds the three new graphics into the
container just beneath it’s <rect></rect> tag:

 <g transform="translate(321.0,299.0)">
 <bind:layout minWrapHeight="30" wrap="true" xmlns:bind="http://
www.managedobjects.com/bind" pad="15" id="122c25d2b41" gap="10" name="grid"
align="center" columns="1" minWrapWidth="30">
 <bind:value default="stack" property="condition" set="stack"
default.edit="grid" attr="name" set.edit="grid"
when="Unknown,Critical,Major,Minor,Info,OK,Unmanaged"/>
 </bind:layout>
 <rect bind:container="true" stroke="black" width="141.033"
fill="rgb(128,255,128)" stroke-width="1.5" height="315.3989"
xmlns:bind="http://www.managedobjects.com/bind" undofill="lightgray" x="-
10.0166" rx="4" opacity="1" y="-8.5239" ry="4">
 <bind:fill property="condition" default="" set="" when=""/>
 </rect>

The following section contains Object 1, recycle:
144 Operations Center Custom Drawing and Layout Guide

 <g transform="matrix(1, 0, 0, 1, 10.522090911865234,
0.692075252532959)" display="inline" instantiated="122c25d2b42"
bind:marks="Clipart" gautolayout="122c25d2b41" xmlns:bind="http://
www.managedobjects.com/bind" id="122c25d2b42_clipart" ghash="19c484af"
bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__recycle" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>
 </g>

The following section contains Object 2, attention3:

 <g transform="matrix(1, 0, 0, 1, 5.220731258392334, 93.2699203491211)"
display="inline" instantiated="122c25d2b44" bind:marks="Clipart"
gautolayout="122c25d2b41" id="122c25d2b44_clipart" ghash="fe87ffe9"
bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__attention3" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>
 </g>

The following section contains Object 3, attention2:

 <g transform="matrix(1, 0, 0, 1, 20.500015258789062,
212.49998474121094)" display="inline" instantiated="122c25d2b45"
bind:marks="Clipart" gautolayout="122c25d2b41" id="122c25d2b45_clipart"
ghash="7d8870b4" bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__attention2" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>
 </g>
 </g>

11 Set the condition binds for each graphic.

11a Select a graphic object inside the container.

The object is selected and Layout palette panels display.

For instance, we’ll select the recycle graphic first.

11b In the Palette panel (Element section), deselect any conditions when the recycle graphic is
to be hidden.

In this case, we deselect all conditions except OK (green).

11c Repeat for all three graphics to set the desired conditions where the graphic is to be visible.

The source code updates as shown here. Under each graphic object, new bind rules are
added for visibility. The first is hidden for all conditions except OK, the second is hidden
when condition is OK or Critical, and the third is hidden for all conditions except Critical.

 <g transform="matrix(1, 0, 0, 1, 10.522090911865234,
0.692075252532959)" display="inline" instantiated="122c25d2b42"
bind:marks="Clipart" gautolayout="122c25d2b41" xmlns:bind="http://
www.managedobjects.com/bind" id="122c25d2b42_clipart" ghash="19c484af"
bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__recycle" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>

The new bind rule for visibility:
Editing the Source SVG Code 145

 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
set.edit="inline" when="Unknown,Critical,Major,Minor,Info,Unmanaged"/>
 </g>

 <g transform="matrix(1, 0, 0, 1, 5.220731258392334, 93.2699203491211)"
display="inline" instantiated="122c25d2b44" bind:marks="Clipart"
gautolayout="122c25d2b41" id="122c25d2b44_clipart" ghash="fe87ffe9"
bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__attention3" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>

Another bind rule for visibility is added here:

 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
set.edit="inline" when="Critical,OK"/>
 </g>

 <g transform="matrix(1, 0, 0, 1, 20.500015258789062,
212.49998474121094)" display="inline" instantiated="122c25d2b45"
bind:marks="Clipart" gautolayout="122c25d2b41" id="122c25d2b45_clipart"
ghash="7d8870b4" bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__attention2" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>

And, another is added here:

 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
set.edit="inline" when="Unknown,Major,Minor,Info,OK,Unmanaged"/>
 </g>

12 Right-click the Layout view background, then select Save Group.

The container group is saved and the Layout view background switches to white.

13 To add element name label to the node display, right-click the Layout background, then select
Customize > Add Caption.

In this step we’ll add a caption, which automatically updates with the element’s name.

A caption label is added:
146 Operations Center Custom Drawing and Layout Guide

The source code updates as shown here. This code adds a caption tag directly under the node
container tag but before the closing </SVG> tag:

 <?xml version="1.0" encoding="ISO-8859-1" standalone="no"?><svg
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"
xmlns:bind="http://www.managedobjects.com/bind" MOS_PanX="181"
contentScriptType="text/ecmascript" zoomAndPan="magnify" MOS_PanY="136"
contentStyleType="text/css" dname="graphic=ToggleIndicator/
graphicsFolder=Nodes/graphics=Graphics/root=Administration" version="1.0"
width="142.5330047607422" dname_relid="1" MOS_viewBox="300 279 162 336"
preserveAspectRatio="xMidYMid meet" height="316.8988952636719" MOS_World="0"
MOS_Scale="1.0" overflow="visible">
<g transform="matrix(1, 0, 0, 1, 10.522090911865234, 0.692075252532959)"
display="inline" instantiated="122c25d2b42" bind:marks="Clipart"
gautolayout="122c25d2b41" xmlns:bind="http://www.managedobjects.com/bind"
id="122c25d2b42_clipart" ghash="19c484af" bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__recycle" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>
 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
set.edit="inline" when="Unknown,Critical,Major,Minor,Info,Unmanaged"/>
 </g>
 <g transform="matrix(1, 0, 0, 1, 5.220731258392334, 93.2699203491211)"
display="inline" instantiated="122c25d2b44" bind:marks="Clipart"
gautolayout="122c25d2b41" id="122c25d2b44_clipart" ghash="fe87ffe9"
bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__attention3" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>
 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
set.edit="inline" when="Critical,OK"/>
 </g>
 <g transform="matrix(1, 0, 0, 1, 20.500015258789062, 212.49998474121094)"
display="inline" instantiated="122c25d2b45" bind:marks="Clipart"
gautolayout="122c25d2b41" id="122c25d2b45_clipart" ghash="7d8870b4"
bind:graphicsource="clipart">
 <image width="100" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="Clipart__Symbols__attention2" xlink:type="simple"
xlink:actuate="onLoad" height="100" preserveAspectRatio="xMidYMid meet"
xlink:show="embed" overflow="visible"/>
 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
set.edit="inline" when="Unknown,Major,Minor,Info,OK,Unmanaged"/>
 </g>

The caption is added here above the container closing SVG tag:

 <g gautolayout="122c25d2b53" transform="translate(56.2292,252.638)">
 <rect x="-15.7293" y="53.862" fill="white" text-anchor="middle"
width="81.7163" bind:container="true" height="18.289" stroke="gray"/>
 <bind:layout name="wrap" pad="0" id="122c25d2b52"/>
 <text x="25.0" font-size="11px" y="67.0" fill="black" text-
anchor="middle" gautolayout="122c25d2b52" stroke="none"
xml:space="preserve">ToggleIndicator<bind:value property="name"/></text>
 </g>
</svg>
Editing the Source SVG Code 147

14 Position the caption to display at the edge of the node box.

You can force the caption to overlay the bottom of the node box by wrapping both the caption
and the node container in an outer container, and then update the vertical gap to a negative
value.

14a Do one of the following:

 Click and drag on the Layout background to select both the container and the caption.

 Press Shift while clicking to select each object, one at a time, until both are selected.

14b Right-click over one of the selected objects, then select Customize > Container > Wrap in
Container:

14c Right-click the new container, then select Customize > Container > Layout > Set Layout to
open the Set Layout dialog box.

14d Select Flow from the drop-down list.

The extra space is removed from between the objects in the container.

14e Right-click the new container, then select Customize > Container > Layout > Adjust Flow
Layout to open the Adjust Flow Layout dialog box.

14f Update the VGap to -5 to overlap the caption with the node container.
148 Operations Center Custom Drawing and Layout Guide

14g Click Apply to save and apply the setting, or click OK to save the setting and exit the dialog
box.

14h Right-click the new container, then select Customize > Container > Wrapping > Hide
Wrapping Rectangle to hide the outer container when the node style is in use.

The above selections result in the following configuration:

The source code updates as shown here. The code highlighted in yellow, show the new
outer container that now groups the node container and caption (which is still below the
node container):

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?><svg
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/
svg" xmlns:bind="http://www.managedobjects.com/bind" MOS_PanX="181"
contentScriptType="text/ecmascript" zoomAndPan="magnify" MOS_PanY="136"
contentStyleType="text/css" dname="graphic=ToggleIndicator/
graphicsFolder=Nodes/graphics=Graphics/root=Administration" version="1.0"
width="142.5330047607422" dname_relid="1" MOS_viewBox="300 279 162 336"
preserveAspectRatio="xMidYMid meet" height="316.8988952636719"
MOS_World="0" MOS_Scale="1.0" overflow="visible">
 <defs/>

The new outer container starts here:

 <g>
 <bind:layout width="" wrap="true" pad="10" vgap="-5" id="122c25d2b53"
hgap="0.0" name="flow" gap="10" columns="1" align=""/>
 <rect x="-1.0E-4" y="-15" fill="lightgray" width="162.533" rx="4"
bind:container="true" height="350.289" ry="4" stroke="black" stroke-
width="1.5"/>

 <g gautolayout="122c25d2b53" transform="translate(20.7665,4.2739)">
 <bind:layout minWrapHeight="30" wrap="true" pad="15" id="122c25d2b41"
gap="10" name="grid" align="center" columns="1" minWrapWidth="30">
 <bind:value default="stack" property="condition" set="stack"
default.edit="grid" attr="name" set.edit="grid"
when="Unknown,Critical,Major,Minor,Info,OK,Unmanaged"/>
 </bind:layout>
 <rect bind:container="true" stroke="black" width="141.033"
fill="rgb(128,255,128)" stroke-width="1.5" height="315.3989"
undofill="lightgray" x="-10.0166" rx="4" opacity="1" y="-8.5239" ry="4">
 <bind:fill property="condition" default="" set="" when=""/>
 </rect>
 <g transform="matrix(1, 0, 0, 1, 10.522090911865234,
0.692075252532959)" display="inline" instantiated="122c25d2b42"
bind:marks="Clipart" gautolayout="122c25d2b41" id="122c25d2b42_clipart"
ghash="19c484af" bind:graphicsource="clipart">
 <image width="100" xlink:href="Clipart__Symbols__recycle"
xlink:type="simple" xlink:actuate="onLoad" height="100"
preserveAspectRatio="xMidYMid meet" xlink:show="embed" overflow="visible"/
>
 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
Editing the Source SVG Code 149

set.edit="inline" when="Unknown,Critical,Major,Minor,Info,Unmanaged"/>
 </g>
 <g transform="matrix(1, 0, 0, 1, 5.220731258392334,
93.2699203491211)" display="inline" instantiated="122c25d2b44"
bind:marks="Clipart" gautolayout="122c25d2b41" id="122c25d2b44_clipart"
ghash="fe87ffe9" bind:graphicsource="clipart">
 <image width="100" xlink:href="Clipart__Symbols__attention3"
xlink:type="simple" xlink:actuate="onLoad" height="100"
preserveAspectRatio="xMidYMid meet" xlink:show="embed" overflow="visible"/
>
 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
set.edit="inline" when="Critical,OK"/>
 </g>
 <g transform="matrix(1, 0, 0, 1, 20.500015258789062,
212.49998474121094)" display="inline" instantiated="122c25d2b45"
bind:marks="Clipart" gautolayout="122c25d2b41" id="122c25d2b45_clipart"
ghash="7d8870b4" bind:graphicsource="clipart">
 <image width="100" xlink:href="Clipart__Symbols__attention2"
xlink:type="simple" xlink:actuate="onLoad" height="100"
preserveAspectRatio="xMidYMid meet" xlink:show="embed" overflow="visible"/
>
 <bind:value default="inline" property="condition"
MOS_bindtype="visibility" set="none" default.edit="inline" attr="display"
set.edit="inline" when="Unknown,Major,Minor,Info,OK,Unmanaged"/>
 </g>
 </g>

The following is the caption showing element name:

 <g gautolayout="122c25d2b53" transform="translate(56.2292,252.638)">
 <rect x="-15.7293" y="53.862" fill="white" text-anchor="middle"
width="81.7163" bind:container="true" height="18.289" stroke="gray"/>
 <bind:layout name="wrap" pad="0" id="122c25d2b52"/>
 <text x="25.0" font-size="11px" y="67.0" fill="black" text-
anchor="middle" gautolayout="122c25d2b52" stroke="none"
xml:space="preserve">ToggleIndicator<bind:value property="name"/></text>
 </g>

The closing tag for the new outer container:

 </g>
</svg>

15 To test that the bind rules for condition will function on the node style as expected, do the
following:

15a Apply the node style to a layout for a test Service Model.

This can be done easily by dragging and dropping the node style onto the service model’s
Layout view.

15b Change the state of the service model using a condition algorithm or another method to
verify the node style functions as necessary.
150 Operations Center Custom Drawing and Layout Guide

C.5 Looking at the Source Code with a Child Container
Example
In this example, we want change the Layout view so that applies a filter and shows remaining
elements by condition, using a custom node style. We’ll take a look at what happens as the source
code and bind commands are built in the background. Generally, here is what we’ll do:

 Set up a child container

 Apply a filter that shows only ports and sort by condition

 Apply a custom node style

To build a drawing using a child container and apply a custom node:

1 In the Explorer pane, navigate to the desired element under Elements or Service Models, then
open the Layout View.

In this example, we used a service model with an element matcher:

2 Right-click the background of the Layout View, then select New Drawing.

All elements are removed leaving the Layout view empty and in Edit Mode.
Editing the Source SVG Code 151

3 Right-click the Layout View, then select Customize > Container > Add > Children Container.

A child container displaying all elements displays:

The source code updates as shown here to add a container that uses a bind:layout tag inside
the bind:chidren tag to layout all children. Notice that code for generated elements is removed
from this code sample so that it is easier to see the basic structure of what is added.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?><svg
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"
xmlns:bind="http://www.managedobjects.com/bind" bind:setup="1252087240607"
MOS_PanX="-217" contentScriptType="text/ecmascript" zoomAndPan="magnify"
MOS_PanY="-155" contentStyleType="text/css" dname="org=Ports/org=demo/
root=Organizations" version="1.0" preserveAspectRatio="xMidYMid meet"
MOS_World="0" MOS_Scale="0.75" overflow="visible">
 <g transform="translate(306.0,229.0)">
 <bind:layout name="wrap" pad="10" id="12385dab0e9"/>
 <rect x="40.5589" y="-6" fill="lightgray" width="909.9905" rx="4"
bind:container="true" height="684" ry="4" stroke="black" stroke-width="1.5"/>
 <bind:children self="false" id="12385dab0be">
 <bind:layout gap="10" name="grid" columns="3" id="12385dab0e8"
align="center"/>
 </bind:children>
 </g>
 <defs>
 <rect fill="none" width="32" height="32" id="emptyIcon" stroke="gray"/>
 </defs>
</svg>

4 Filter the elements shown.

In this step we’ll create a filter that shows only ports.

Do the following:

4a Right-click the container, then select Customize > Child Container > Filtering > Adjust
Filtering to open the Adjust Filtering dialog box.

4b In the Class Name field, enter port.* to find only those elements with a class beginning
with port.
152 Operations Center Custom Drawing and Layout Guide

4c Click OK.

The view updates to only show port elements:

Filters in bind tags check the next level of elements only if the parent element passes the
filter. Regular expressions can be used to define filtering matcher as in the above example.

The source code updates as shown here to add the class filter to the bind:children tag:

<bind:children classFilter="port.*"
conditionFilter="OK,INFO,MINOR,MAJOR,CRITICAL,UNKNOWN" self="false"
nameFilter="" scriptFilter="" dnameFilter="" id="12385dab0be">
 <bind:layout gap="10" name="grid" columns="3" id="12385dab0e8"
align="center"/>
 </bind:children>

5 Adjust the display, as desired.

In this example, we’ll adjust the layout and sort by condition.

Do the following:

5a Right-click the container, then select Customize > Child Container > Layout > Adjust Layout
to open the Adjust Layout dialog box.

5b Select the 4 radio button from Columns.

5c Click OK to close the Adjust Layout dialog box.

5d Right-click the container, then select Customize > Child Container > Layout > Sorting to
open the Adjust Sorting dialog box.

5e Select the Ascending radio button from Sort Direction.

5f Select the Condition radio button from Sort By.
Editing the Source SVG Code 153

5g Click OK.

The Adjust Sorting dialog box closes:

The source code updates as shown here to adjust the bind:layout tag inside the
bind:children tag:

 <bind:children classFilter="port.*"
conditionFilter="OK,INFO,MINOR,MAJOR,CRITICAL,UNKNOWN" self="false"
nameFilter="" scriptFilter="" dnameFilter="" id="12385dab0ea">
 <bind:layout id="12385dab114" columnWidth="" rowHeight="" gap="10"
name="grid" align="center" columns="4" sortascend="condition"/>
 </bind:children>
 </g>

6 To update with the desired node style, do the following:

6a Right-click the container, then select Change Group.

6b From the Explorer pane, expand Administration > Graphics > Nodes.

6c Navigate within the Nodes folder until you find the desired node style.

TIP: Be careful not to select any of the objects under Nodes, else the Layout view changes
focus and leaves the Layout drawing you are working with.

6d Drag the selected node style over onto one of the elements inside the Layout view
container.

6e Select Change Node Style for All Nodes from the pop-up menu.

All element nodes update with the new node style:
154 Operations Center Custom Drawing and Layout Guide

6f Right-click the container, then select Save Group.

The source code updates as shown here to add the bind:ambient tag inside the main SVG
tag:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?><svg
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/
svg" xmlns:bind="http://www.managedobjects.com/bind"
bind:setup="1252088279618" MOS_PanX="-65" contentScriptType="text/
ecmascript" zoomAndPan="magnify" MOS_PanY="-14" contentStyleType="text/
css" dname="org=Ports/org=demo/root=Organizations" version="1.0"
width="1468.310546875" dname_relid="1" MOS_viewBox="120 136 1488 631"
preserveAspectRatio="xMidYMid meet"
bind:ambient="Nodes__Technology__Networking__Switch"
height="611.6928100585938" MOS_World="0" MOS_Scale="0.5"
overflow="visible">
Editing the Source SVG Code 155

156 Operations Center Custom Drawing and Layout Guide

Glossary of Terms

ambient node style. Changes the node style for all elements currently using the system default node
style. Drop a node style on the drawing background to quickly change multiple nodes at once.

automatic binding. The process of automatically linking child elements to a Layout drawing
associated with their parents.

automatic layout. The system default layout drawing, which uses the default Gradient Bubble node
style and a traditional tree layout style.

binding. The process of linking an element condition or property to a component of a drawing.
Changes made to the element automatically update the linked drawing component. See also color
binding and content binding, and automatic binding and manual binding.

color binding. A feature that links an element condition color to the fill or line color of a drawing
shape. The fill/line color updates automatically when the element condition changes.

content binding. A feature that links an element property (name, DName, attribute) to text in a
drawing. If the property changes, the text updates automatically.

custom graphic. A graphic specified in the Element Graphic drawing channel is used to represent
an element in a drawing.

drawing component. Any item displayed in the Layout view that was added using the drawing
toolbar (shapes, arrows, text, and so on), or is an imported graphic or clipart, or was added by binding
an element to the drawing.

drawing properties. Each drawing component has a set of properties displayed as a set of panes in
the Palette.

editing channel. Enables switching between the Layout drawing for an element and other default
drawing-related settings for the element: Element Graphic, Element Node Style, or Element Drawing
Template.

element graphic. An element in a drawing can have a custom graphic defined. This graphic is
specified in the element’s Element Graphic editing channel. This graphic could have been created by
a user in v4.0, or results from a conversion from v3.5.x.

grouping. Combines multiple elements into a single element. Grouping is useful when rearranging or
managing many elements in a drawing.

manual binding. The action of dragging and dropping an element to the Layout drawing, and
optionally linking, copying, or moving the element to the element associated with the drawing.

navigator. Component of the Layout view that preserves a “bird’s eye” view of the drawing as you
zoom and move.

node style. The graphic representation of an element in a Layout drawing. Node styles display under
Administration > Graphics > Nodes in the Explorer pane.

palette. A Layout view component that displays editable properties of the item currently selected in
the drawing. These property panes include line widths and colors, text fonts, and binding settings.
Glossary of Terms 157

templates. Applies a set of node styles and layout pattern to the current drawing. Templates can
save time when there is a need to create the same type of layout multiple times. Templates display
under Administration > Graphics in the Explorer pane.

ungrouping. Separates a drawing component into the original components (before the Group
command was used), such as countries in a continent map. Useful when you need to edit a portion of
the drawing.
158 Operations Center Custom Drawing and Layout Guide

	Operations Center Custom Drawing and Layout Guide
	About This Guide
	1 Introduction
	1.1 Default Layout View
	1.2 Custom Drawings
	1.3 Where Do I Start?

	2 Getting Started with the Layout View
	2.1 Navigating Inside the Layout View
	2.2 Creating and Editing Custom Drawings
	2.3 Understanding Unplaced Elements
	2.4 Moving Drawing Elements
	2.5 Clearing a Drawing or Reverting to a Previous Drawing or Default Automatic Layout
	2.6 Setting Security on Graphic Elements
	2.7 Troubleshooting Tips
	2.7.1 Empty Drawings
	2.7.2 Identifying if a Shape is Associated to an Element
	2.7.3 Drawing Scale Too Small in Dashboard

	3 Using Basic Drawing Tools and Concepts
	3.1 Understanding the Layout View Panels and Drawing Palette
	3.2 Selecting Drawing Objects
	3.3 Adding Shapes and Lines
	3.4 Changing Fill Colors
	3.5 Changing the Background Color
	3.6 Using Undo
	3.7 Manipulating Shapes and Objects
	3.8 Using the Grid to Align Objects
	3.9 Grouping and Ungrouping Objects
	3.9.1 Working with Grouped Components

	3.10 Using Containers to Control Objects
	3.10.1 Grouping Components with a Container
	3.10.2 Adjusting the Wrap Settings
	3.10.3 Adjusting Container Layout

	4 Working with Clip Art and Graphics
	4.1 Importing Graphics
	4.2 Using Graphics from the Clip Art Library
	4.2.1 Linking Clipart from the Graphics Library
	4.2.2 Embedding Clipart Images

	4.3 Managing Clipart Files
	4.4 Creating Graphics for the Clipart Library

	5 Adding Elements and Updating Drawing Components Using Element Properties
	5.1 Associating Elements to a Drawing
	5.2 Dynamically Transforming Text, Shapes and Lines with Element Properties
	5.2.1 Creating an Element Name Heading
	5.2.2 Changing the Associated Element
	5.2.3 Dynamically Updating a Shape’s Color based on Element Condition
	5.2.4 Hiding and Showing Elements Based on Condition
	5.2.5 Coding Custom Behavior

	5.3 Changing Default Drill-Down Behavior Using Drawing Shortcuts
	5.4 Displaying an Element’s Children using Child Containers
	5.4.1 Customizing a Child Container

	5.5 Integrating Performance Metric Charts and Gauges into a Drawing
	5.5.1 Types of Charts
	5.5.2 Types of Gauges
	5.5.3 Adding Charts and Gauges
	5.5.4 Configuring Chart and Gauge Properties

	6 Working with Node Styles and Custom Graphics
	6.1 Understanding the Node Style and the Node Style Library
	6.2 Changing the Node Style
	6.2.1 Applying a Node Style to All Elements in a Drawing
	6.2.2 Changing the Node Style for One Element Only

	6.3 Applying the Ambient Node Style
	6.4 Creating and Applying New Node Styles
	6.4.1 Creating the Node Style
	6.4.2 Testing the Node Style Using Preview Elements
	6.4.3 Applying the Node Style

	6.5 Importing and Managing Node Styles
	6.5.1 Importing a Node Style
	6.5.2 Deleting a Node Style
	6.5.3 Renaming a Node Style
	6.5.4 Adding a Node Style Folder
	6.5.5 Deleting a Folder

	6.6 Associating Custom Graphics with Classes and Elements
	6.6.1 Viewing a Drawing or Graphic
	6.6.2 Creating and Associating a Custom Drawing or Graphic
	6.6.3 Associating a Node Style or Drawing Template

	6.7 Stacked Container Example: Toggling Graphics Based on Condition State

	7 Using Drawing Templates
	7.1 Applying Templates to Drawings
	7.1.1 Applying a Template to Elements of a Class
	7.1.2 Applying a Template to an Element
	7.1.3 Using a Template to Create a Custom Drawing

	7.2 Unapplying Templates from Drawings
	7.2.1 Unapplying a Template for an Element
	7.2.2 Unapplying a Template for a Class

	7.3 Creating Templates
	7.3.1 Creating a New Template
	7.3.2 Creating a Template from a Custom Drawing
	7.3.3 Editing Templates

	7.4 Importing and Managing Templates
	7.4.1 Importing a Template
	7.4.2 Organizing Templates Using Folders
	7.4.3 Deleting a Template
	7.4.4 Renaming a Template or Folder

	8 Layout View Examples
	8.1 Geographical View Example
	8.2 Tabular Data View
	8.3 Business Process View Example

	A Rendering Rule Precedence for Node Styles and Graphics
	A.1 Element Rendering Look Up Strategy
	A.2 Creating a Test Model
	A.2.1 Creating a New Metamodel Class and Elements
	A.2.2 Creating a Manually Bound Element in the Drawing

	A.3 Viewing the Layout in the Dashboard
	A.4 Creating Node Styles for Testing
	A.5 Applying the Ambient Node Style to the Drawing
	A.6 Changing the Node Style through Binding
	A.7 Applying a Node Style to a Class
	A.8 Applying a Graphic to a Class
	A.8.1 Changing the Class Node Style to a Custom Graphic
	A.8.2 Applying a Node Style at the Element Instance Level
	A.8.3 Applying a Graphic at the Element Instance Level
	A.8.4 Overriding a Single Element Node Style
	A.8.5 Clearing Previously Set Node Styles and Graphics

	B Bind Language API Reference
	B.1 Bind Task Examples
	B.1.1 Adding Tooltips or Pop-Ups to Portlets in the Dashboard
	B.1.2 Tying an Element to a Drawing Shape
	B.1.3 Changing Shapes or Showing Objects Based on Element Condition
	B.1.4 Changing Shapes Based on Element Property
	B.1.5 Displaying Element Name or Element Property
	B.1.6 Displaying Element Children
	B.1.7 Formatting Numbers, Dates, and Time

	B.2 Bind Templates
	B.2.1 Bind Attributes
	B.2.2 Template Subcommands
	B.2.3 Layout Bind Commands
	B.2.4 Layout Target Element Attributes
	B.2.5 Generated Copy Variables

	B.3 Layout
	B.4 Bind Values
	B.4.1 Bind Value Attributes
	B.4.2 Using NOC Script in Bind:Value Tag

	B.5 Resource Generation
	B.6 Bind Promotion
	B.7 General Bind Annotations
	B.8 Script Objects

	C Editing the Source SVG Code
	C.1 Editing the SVG Code and Regenerate the Drawing
	C.2 Using the Opacity Attribute
	C.3 Using Relative DNames for Node Attribute Matching
	C.4 Looking at the Source Code with a Toggling Graphic Node Style Example
	C.5 Looking at the Source Code with a Child Container Example

	Glossary of Terms

